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 A B S T R A C T

Achieving a net-zero energy system in Europe by 2050 will likely require large-scale deployment of hydrogen 
and seasonal energy storage to manage variability in renewable supply and demand. This study addresses two 
key objectives: (1) to develop a modeling framework that integrates seasonal storage into a stochastic multi-
horizon capacity expansion model, explicitly capturing tactical uncertainty across timescales; and (2) to assess 
the impact of seasonal hydrogen storage on long-term investment decisions in European power and hydrogen 
infrastructure under three hydrogen demand scenarios. To this end, the multi-horizon stochastic programming 
model EMPIRE is extended with tactical stages within each investment period, enabling operational decisions 
to be modeled as a multi-stage stochastic program. This approach captures short-term uncertainty while 
preserving long-term investment foresight. Results show that seasonal hydrogen storage considerably enhances 
system flexibility, displacing the need for up to 600 TWh/yr of dispatchable generation in Europe after 2040 
and sizing down cross-border hydrogen transmission capacities by up to 12%. Storage investments increase by 
factors of 5–14, which increases the investments in variable renewables and improve utilization, particularly 
solar. Scenarios with seasonal storage also show up to 6% lower total system costs and more balanced 
infrastructure deployment across regions. These findings underline the importance of modeling temporal 
uncertainty and seasonal dynamics in long-term energy system planning.
1. Introduction

1.1. Problem context

Managing uncertainty is a key challenge in the energy transition. 
Methods like stochastic programming help address uncertainty across 
operational, tactical, and strategic levels [1]. This paper adopts un-
certainty definitions on different time scales from logistical planning 
following Schmidt and Wilhelm [2].

• Strategic: Uncertainty affecting technology choice, location, and 
sizing of energy infrastructure to optimize long-term development 
for a sustainable and efficient energy system.

• Tactical: Uncertainty impacting production plans and energy 
storage inventory to optimize medium-term operations for sea-
sonal supply–demand balance.
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• Operational: Uncertainty influencing timely energy delivery to 
optimize short-term operations for meeting immediate needs and 
maintaining reliability.

Hydrogen is expected to play a key role in Europe’s net-zero transi-
tion by 2050, especially where direct electrification is impractical [3]. 
It can also help balance variability from high shares of VRES [4]. 
Despite not being the most cost-effective or efficient storage option [5], 
this paper hypothesizes that hydrogen, particularly seasonal storage, 
can effectively manage tactical uncertainty and support long-duration 
energy balancing [6]. Hordvei et al. [7] explores investment planning 
for Europe’s 2050 energy system, emphasizing VRES and electrolyzer 
expansion, but the study omits seasonal hydrogen storage and tactical 
uncertainty.
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Acronyms

BALMOREL Baltic Model of Regional Electricity Liberal-
ization

BESS Battery energy storage systems
CCS Carbon capture and storage
EMPIRE European Model for Power System In-

vestment with high shares of Renewable 
Energy

ENTSO-E European Network of Transmission System 
Operators for Electricity

EU European Union
H2 Hydrogen gas
MILP Mixed integer linear programming
PW Power
PyPSA-Eur Python for Power System Analysis - Europe
UK United Kingdom
VRES Variable renewable energy sources

1.2. Research gaps

Seasonal energy storage has been studied to explore the potential 
of hydrogen in Europe [8–12]. However, these studies either assume 
perfect foresight of future conditions or do not allow for energy storage 
between seasons. Moreover, current studies lack a thorough analysis 
of hydrogen demand profile assumptions, often based on uncertain 
projections [8,9].

The literature lacks studies modeling tactical uncertainty and ana-
lyzing seasonal hydrogen storage in capacity expansion models. Since 
real-world decisions must account for uncertainty, it remains unclear 
how seasonal storage investments influence VRES and related infras-
tructure.

1.3. Research objectives

This paper addresses two research questions:

1. How can seasonal energy storage be modeled in a stochastic 
multi-horizon capacity expansion model to account for tactical 
uncertainty?

2. What are the effects of seasonal energy storage on European in-
vestment planning for hydrogen and power infrastructure under 
different future scenarios when considering tactical uncertainty?

The main objectives of this paper are to (1) develop a multi-horizon 
capacity expansion model incorporating tactical uncertainty, and (2) 
apply it in a European case study to assess how seasonal hydrogen 
storage affects long-term investment decisions toward 2050. Tactical 
uncertainty includes variations in weather and energy demand, and the 
case study will compare results with and without the consideration of 
tactical uncertainty and seasonal storage.

A secondary objective is to examine how seasonal variations in 
hydrogen demand influence long-term investments. Demand profiles, 
driven by sector adoption in transport and industry [13], are uncertain. 
Thus, three scenarios are explored: winter peak (mirroring natural gas 
use [14]), summer peak, and constant demand. While future patterns 
may differ, the focus is on how these profiles affect the value of seasonal 
hydrogen storage under tactical uncertainty.

This paper extends EMPIRE [7] with seasonal hydrogen storage in 
a stochastic multi-horizon framework, enabling inter-seasonal planning 
under short-term and tactical uncertainties such as VRES availability 
and energy demand. The novelty lies in modeling seasonal uncertainty 
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and assessing how different hydrogen demand profiles affect the Euro-
pean energy system. Practical implications include supporting investors 
and policymakers in identifying affected technologies and making ro-
bust investment decisions. The European case study also highlights the 
most suitable countries for seasonal hydrogen storage deployment.

1.4. Paper structure

The paper is structured as follows: Section 2 reviews research to 
further elaborate on gaps and contributions. Section 3 details our 
model extension and mathematical formulation in response to the first 
research question. Section 4 describes the case studies and data, while 
Section 5 presents and discusses the results in response to the second 
research question. Finally, the paper concludes in Section 6.

2. Literature review

This section presents current research in energy storage and hydro-
gen in capacity expansion models before presenting the research gaps 
and our contribution to the existing literature. There are many energy 
modeling tools to study future smart energy systems [15], and Table  1 
provides a filtered overview of the models commonly used to address 
capacity expansion, hydrogen, storage, and uncertainty, serving as a 
foundation for the discussion that follows.

2.1. Uncertainty modeling in energy system planning

Building on the overview in Table  1, this study emphasizes the 
importance of uncertainty modeling in energy system planning. Ac-
curately capturing both short- and long-term uncertainty is critical 
for robust investment and operational decisions [12]. Multi-horizon 
stochastic programming, applied in several recent studies [17–19], is 
the leading method for addressing multi-timescale uncertainty. No-
tably, Zhang et al. [20] introduced a model incorporating both tem-
poral scales, while Zhang et al. [21] proposed efficient decomposition 
techniques.

Literature highlights the need for high temporal and spatial res-
olution, and scenario-based analysis, especially for modeling energy 
storage under variable renewables [22,23]. Capturing uncertainty in 
VRES availability and demand profiles is essential due to their strong 
interdependence with storage and production.

This study extends EMPIRE with seasonal storage and tactical un-
certainty, enabling more realistic modeling of storage investments and 
operations under uncertain conditions.

2.2. Seasonal energy storage modeling

Building on the need to model uncertainty across timescales, this 
section reviews how seasonal storage is represented in capacity expan-
sion models. Kaut [12] introduces a method for linking seasonal storage 
across representative periods in multi-horizon frameworks. However, 
this approach assumes perfect foresight, limiting its ability to capture 
tactical uncertainty.

A key challenge is the trade-off between modeling seasonal correla-
tion and preserving uncertainty. Including full-year scenarios enables 
optimal storage use but removes uncertainty, while seasonally inde-
pendent models like EMPIRE maintain stochasticity but restrict inter-
seasonal energy flows, potentially underestimating long-term storage 
needs.

Abgottspon and Andersson [16] addresses this by using a stochastic 
tree to optimize hydropower operations under uncertain future prices, 
capturing tactical uncertainty without perfect foresight. While both 
studies focus on seasonal storage, one emphasizes investment planning 
and the other operational revenue, neither fully explores system-wide 
impacts or interactions with VRES investments.
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Table 1
Model comparison for most relevant literature.
 Article Model Stochastic Linear Seasonal storage Hydrogen Full year Seasonal scale 
 Neumann et al. [8] PyPSA-Eur-Sec X X X X 1  
 Strømholm and Rolfsen [11] – X X 12.96  
 Abgottspon and Andersson [16] – X X X 1  
 Kaut [12] HyOpt X X X X Both 1, 6.48, 12.96 
 Hordvei et al. [7] EMPIRE X X X  
 Kountouris et al. [9] BALMOREL X X X X 1  
 Gabrielli et al. [10] – X X X X 1  
 This paper EMPIRE X X X X 2.17  
Further highlighting the importance of hydrogen storage, Elberry 
et al. [24] show that geological hydrogen storage in Finland can reduce 
fossil fuel use and emissions while improving energy self-sufficiency. 
These findings support the need for integrated system-level models that 
combine hydrogen storage, uncertainty, and infrastructure planning.

2.3. Seasonal hydrogen storage in energy system models

To address this, Strømholm and Rolfsen [11] presents a multi-
horizon MILP model for hydrogen production and storage using his-
torical price data. It models one representative week per quarter to 
reduce complexity but focuses on single-facility revenue maximization, 
excluding system-wide investment impacts.

Fu and Hsieh [25] analyze Taiwan’s energy system under various 
technology scenarios, comparing hydrogen storage with battery alter-
natives. They find hydrogen to be cost-effective in high-RES systems, 
reducing LCOE by 74%–78%. Sahraie et al. [26] use a stochastic MILP 
to minimize operational costs in a local energy system with dynamic 
hydrogen demand. Long-term hydrogen storage improves flexibility 
and buffers uncertainty from RES and load variability.

Several studies model seasonal hydrogen storage in full-year, multi-
energy frameworks. Gabrielli et al. [10] explores storage profiles under 
varying capacities and VRES levels in a single-node model. Neumann 
et al. [8], Kountouris et al. [9], and Lux et al. [27] use PyPSA-Eur-Sec, 
BALMOREL, and Enertile, respectively, to assess hydrogen networks 
in Europe. While Neumann et al. [8] finds limited seasonal storage 
use, the others highlight the need for large-scale storage, estimating 
capacities up to 180 TWh in solar-heavy scenarios.

Hydrogen demand in Neumann et al. [8] is modeled from industry 
demand and zero-emission vehicle projections, assuming some energy 
demand in these sectors will be met by hydrogen. The demand has 
a daily profile repeated throughout the year, lacking seasonal vari-
ation. Kountouris et al. [9] does not specify a demand profile but 
similarly uses existing industry and transport data to project total 
demand for the coming decades.

Hydrogen demand in these studies is typically based on industry 
and transport projections, often assuming flat or repeated daily profiles 
without seasonal variation. Moreover, while these models offer high 
spatial and temporal resolution, they do not account for operational or 
tactical uncertainty in investment decisions.

This study complements existing work by explicitly modeling tac-
tical uncertainty and exploring a wider range of seasonal hydrogen 
demand profiles, offering new insights into the role of hydrogen storage 
in long-term system planning.

2.4. Research gaps and contribution

The literature highlights a gap in modeling tactical uncertainty and 
analyzing seasonal hydrogen storage in capacity expansion planning. 
This study addresses both by quantifying how seasonal storage, un-
der tactical uncertainty, influences investments in VRES and energy 
infrastructure. To do so, the EMPIRE model is extended to allow inter-
seasonal energy transfer and incorporate varying hydrogen demand 
profiles and multi-timescale uncertainty.

This study makes two key contributions:
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1. It enables inter-seasonal hydrogen storage in EMPIRE by linking 
representative seasons. The value of this feature is assessed by 
comparing scenarios with and without seasonal storage under 
varying hydrogen demand profiles.

2. It introduces tactical uncertainty through multi-stage subprob-
lems in a multi-energy carrier model. Unlike existing
hydropower-focused models, this approach incorporates hydro-
gen storage across multiple years in a European energy system 
context.

In summary, this study advances capacity expansion modeling by 
integrating seasonal hydrogen storage and tactical uncertainty. The 
extended EMPIRE model offers new insights into how hydrogen stor-
age affects infrastructure investment and renewable integration under 
diverse demand conditions.

3. Methodology

This section presents the multi-horizon stochastic optimization
model EMPIRE [18] with extensions to investigate the value of sea-
sonal hydrogen storage, including endogenous consideration of tactical 
uncertainty.

3.1. Model overview

EMPIRE is a multi-carrier energy system model for planning op-
erational and investment decisions in the European energy market. 
It represents the system as a network of nodes (markets with energy 
demand) and arcs (transmission links). The model minimizes total 
system costs by optimizing investments in production, storage, and 
transmission capacities, subject to constraints like capacity limits and 
VRES availability. Operational decisions follow from these investments 
and must meet hourly demand.

This study builds on the version of EMPIRE developed by Durakovic 
et al. [17], which includes explicit modeling of power and hydrogen 
carriers, their transmission networks, and demand. Power market mod-
eling includes generation, storage, and cross-border flows (see [18]). 
The next section details the hydrogen market framework.

3.2. Hydrogen representation

Electrolysis is considered the only means of hydrogen production, 
meaning hydrogen production from natural gas reformers is excluded 
following the EU green hydrogen strategy [28]. Production must meet 
EU criteria for green hydrogen, including additionality and spatial and 
temporal correlation [29]. Although a 90% renewable grid exemption 
exists, it is not applied due to eligibility uncertainties. For details on 
the mathematical constraints for green hydrogen requirements, please 
refer to (A.6) and (A.7) in Appendix  A [7].

As detailed in Durakovic et al. [17], hydrogen can be transported 
through pipelines, with net transfer capacity represented as arcs be-
tween nodes. Similar to the modeling of power transmission invest-
ments, this approach abstracts the physical size of the pipes, focusing 
solely on their net transmission capacity in tons per hour. Hydrogen 
can also be stored underground in salt caverns, aquifers, or depleted 
gas fields, with total potential energy storage capacity constrained by 
the country’s geographical characteristics, as outlined in Section 4.2.
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Fig. 1. EMPIRE model structure with short-term and tactical uncertainty. Each tree within an investment period represents a multi-stage stochastic problem.
3.3. Model decision structure

Fig.  1 illustrates that EMPIRE represents two time horizons: long-
term strategic periods spanning multiple years and short-term opera-
tional periods with hourly resolution. The investment horizon concerns 
investment decisions for each long-term period, while the operational 
horizon involves operational decisions across several stochastic sce-
narios within each investment period. Investment decisions remain 
consistent across the operational scenarios embedded in the investment 
period, and these scenarios depict the hourly dispatch of assets for 
market clearing at each node.

3.4. Stochastic scenario generation

Stochastic scenarios are generated through random sampling of 
representative operational time windows with hourly resolution, as 
described in Backe et al. [30], to capture the uncertainty of stochastic 
parameters. These parameters include power and hydrogen demand 
profiles at each node for each operational hour and the production 
efficiency of VRES. Historical data realizations, scaled to represent a 
future investment period, are used. Data is sampled by selecting a 
starting hour within seasonal partitions, each covering a month or 
more across multiple years. For each investment period and seasonal 
partition, a unique starting hour is randomly chosen to construct the op-
erational time window with hourly resolution, maintaining chronology 
and cross-correlation by using the same starting hour for all parameters 
in every investment period and seasonal partition. The duration of the 
operational time window is flexible, typically ranging from one day 
(24 h) to two weeks (336 h).

All scenarios are treated as equiprobable, meaning each is assumed 
to be equally likely. This is a standard approach when using histor-
ical data to represent future uncertainty in the absence of a known 
probability distribution. It ensures a balanced representation of possible 
outcomes without introducing bias.

To ensure the model accounts for high demand, peak operational 
windows are included by sampling random years and identifying two 
key hours: one with the highest demand at a single node, and one with 
the highest total demand across all nodes. For more details, see Backe 
et al. [30].

3.5. Model extensions

To address the inherent conflict between modeling seasonal energy 
storage and capturing tactical uncertainty, we introduce a novel exten-
sion to the EMPIRE model that represents a significant methodological 
advancement. Traditionally, short-term operational periods in capacity 
expansion models are treated as independent representative snapshots, 
limiting the ability to model intertemporal dynamics such as energy 
storage. In this work, we transform these operational periods into a co-
herent multi-stage stochastic decision framework, where representative 
periods are dynamically linked through energy storage levels.

Table  2 summarizes the extensions made to EMPIRE compared 
to Durakovic et al. [17]. This paper introduces a key innovation by 
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incorporating the sequential nature of tactical uncertainty while pre-
serving the long-term investment planning horizon, enabling a more 
realistic representation of seasonal storage across timescales. To man-
age complexity, hydrogen demand is treated as exogenous, and the 
model is solved using a rolling horizon approach (Section 3.8). Ad-
ditionally, the model has been extended to incorporate the green 
hydrogen definition, as detailed in [7].

3.6. Multi-stage extension

In previous publications with EMPIRE [18,30,31], operational sce-
narios assume perfect foresight. Although each investment period in-
cludes several operational scenarios, the information about uncer-
tain parameters is known with certainty within each operational sce-
nario. Representative periods for energy demand and VRES availability 
are sampled by season, but no inter-seasonal storage transfer is al-
lowed. This structure balances stochastic modeling with computational 
tractability.

Fig.  1 shows the extended model structure of EMPIRE used in 
this paper with tactical uncertainty. To incorporate seasonal storage, 
seasonal dependence is introduced by allowing energy storage levels 
to transfer from the end of one representative period to the beginning 
of the next through the coupling constraints shown in Section 3.7. 
Including seasonal storage introduces the challenge of perfect infor-
mation over the entire operational period. This implies an unrealistic 
assumption that the model can optimize storage operations based on 
complete foresight of demand profiles and VRES production efficiency 
throughout each investment period. Tactical uncertainty is introduced 
by restructuring the operational decisions into a multi-stage decision 
problem. This incorporates tactical uncertainty between seasons by 
branching the stochastic tree at seasonal transitions.

However, since representative periods only capture a portion of 
their respective seasons, directly transferring the storage levels leads 
to underestimating the value of seasonal storage [12]. To address this, 
the net change in storage levels is scaled at the end of a representative 
period using a seasonal scale factor, assuming that the non-sampled 
hours within the season operate similarly to the represented hours. The 
scaling factor is determined by Eq.  (1)

𝛿 =
Actual days per month

Days per representative month =
365∕12

14
= 2.17 (1)

Relying solely on the net storage within a representative period to 
scale the transferred storage could introduce irregularities if the sam-
pled period does not accurately reflect typical seasonal conditions [12]. 
To mitigate this issue, the number and length of representative periods 
is increased.

3.7. Mathematical formulation

The model structure of EMPIRE has been changed to a multi-horizon 
stochastic program with multi-stage operational decision problems. All 
regions in the model are represented by the set  , and all investment 
periods are represented by the set . Each operational node 𝜓 , circles 
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Table 2
Model extensions to EMPIRE in this paper compared to Durakovic et al. [17].
 Model feature Durakovic et al. [17] This paper  
 Tactical uncertainty No Yes  
 Seasonal ‘‘Connection’’ Storage fixed at 50% in first and last hour 

of a season
Storage is transferred from one season to the next 

 Hydrogen demand flexibility Endogenous demand Fixed demand per day  
 Long-Term horizon Multi-horizon Rolling horizon  
 Green hydrogen formulation All electrolysis-based hydrogen Adhering to EU green hydrogen definition [29]  
in Fig.  1, is represented by 𝜓  hours. 𝑆𝑡𝑎𝑟𝑡
𝜓  and 𝐸𝑛𝑑

𝜓  represents the 
first and last hour of the operational node 𝜓 . The first operational 
hour within an operational node is linked to the last hour in its parent 
node. The last operational hour in the final leaf nodes is linked back 
to the first operational hour in the initial operational node. This leads 
to a cyclic modeling of seasonal storage. The set of seasonal storage of 
energy carriers is defined as 𝑐,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙, which is a subset of all storage 
units 𝑐 . In the following, the constraints related to seasonal storage 
are presented. For the complete formulation of objective function and 
constraints in the EMPIRE model, see Appendix  A and Hordvei et al. 
[7].

𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓 = 𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ−1,𝑖,𝜓 + 𝑦𝑐,𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 − 𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 ,

𝑐 ∈ , 𝑏 ∈ 𝑐 , 𝑛 ∈  , ℎ ∈ 𝜓 ⧵𝑆𝑡𝑎𝑟𝑡
𝜓 , 𝑖 ∈ , 𝜓 ∈ 𝛹. (2)

𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓 = 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝜓 + 𝑦𝑐,𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 − 𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 ,

𝑐 ∈ , 𝑏 ∈ 𝑐 , 𝑛 ∈  , ℎ = 𝑆𝑡𝑎𝑟𝑡
𝜓 , 𝑖 ∈ , 𝜓 ∈ 𝛹. (3)

Eq.  (2) ensures that, in an operational node 𝜓 , the storage level 𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓
at the end of hour ℎ equals to the storage level in the previous hour 
𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ−1,𝑖,𝜓  plus the net charge in the current hour 𝑦

𝑐,𝑐ℎ𝑟𝑔
𝑏,𝑛,ℎ,𝑖,𝜓 − 𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 . 

Eq. (3) constraints the storage operation in the first hour in each node, 
where 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝜓  is the initial storage level. These constraints apply to all 
storage units.
𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,𝑙,𝑖,𝑒 = 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝑓 + 𝛿(𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,𝑘,𝑖,𝑓 − 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝑓 ),

𝑐 ∈ , 𝑏 ∈ 𝑐,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 , 𝑛 ∈  , 𝑖 ∈ , 𝑒 ∈ 𝛹, 𝑓 ∈ 𝛹𝑒,

ℎ ∈ 𝑆𝑡𝑎𝑟𝑡
𝑓 , 𝑘 ∈ 𝐸𝑛𝑑

𝑓 , 𝑙 ∈ 𝑆𝑡𝑎𝑟𝑡
𝑒 . (4)

Eq.  (4) ensures that the initial energy storage level in the first opera-
tional hour in operational node 𝜓 is passed from the last operational 
hour in its ancestor node. The 𝛹𝑒 is the set of the ancestor node to 
node 𝑒, and 𝛿 is the seasonal scaling factor of storage level from one 
operational node to the next. With the seasonal partition used in this 
paper, 𝛿 is defined in Eq.  (1).

3.8. Rolling horizon investment perspective

To manage the complexity of long-term investment modeling with 
tactical uncertainty and seasonal storage, we use a rolling horizon 
approach [32]. This method divides the full problem into smaller, 
sequential subproblems, each covering a few investment periods. It en-
ables detailed operational and investment modeling while keeping the 
problem computationally feasible. Complex features like multi-stage 
stochastic programming and inter-seasonal storage are included, with 
investment decisions passed between subproblems to ensure temporal 
consistency.

Fig.  2 illustrates this setup: the full horizon of 𝑋 periods is divided 
into 𝑍 subproblems, each solving 𝑌  periods. The arrow illustrates that 
only investment decisions of the first period in the next subproblem 
are carried forward; investment decisions beyond the first investment 
period of the next subproblem inform the solution but are not retained. 
Operational decisions remain independent across periods. The process 
continues until all periods are covered, without a convergence criterion.

While this approach may lead to myopic decisions and underinvest-
ment in long-term assets, it reflects real-world short-termism [33] and 
5 
Fig. 2. Rolling investment horizon.

Fig. 3. Comparison of hydrogen and power demand profiles for 2045–2048. These 
dynamic profiles vary by representative period and are scaled to match annual demand 
for each investment period.

significantly reduces complexity [34]. To further simplify the model, 
spatial and technological detail is reduced (see Appendix  H). A full 
assessment of these simplifications is left for future work.

In summary, the extended EMPIRE framework enables robust anal-
ysis of seasonal hydrogen storage by integrating inter-seasonal en-
ergy transfer and tactical uncertainty, supporting investment decisions 
under varying hydrogen demand and operational variability.

4. Case studies and data

This section details the specific model input parameters and case 
studies used in our analysis.

4.1. Case studies

To address the inherent uncertainty in future hydrogen demand, 
three distinct seasonal demand profiles are considered: Winter peak, 
constant, and summer peak. These profiles capture ‘‘corners’’ of the 
variability in potential hydrogen usage patterns over the year.

The winter peak profile reflects historical natural gas demand, 
which is higher in winter due to heating, assuming hydrogen may 
replace natural gas. In contrast, the summer peak profile represents a 
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Table 3
Key data description and sources.
 Data category Source Details  
 Hydrogen demand [36–39], Includes profile and flipped demand cases  
 VRES Power Production [40,41] Includes wind, solar, and other renewables  
 Hydrogen Storage Capacity Model assumptions, [42] Includes seasonal storage capacities and cost  
 Generator Investments [43] Includes traditional and renewable generators  
 Electrolyzer Investments [44] Assumed efficiency and cost trends  
 Operational Costs Model calculations, [45] Includes maintenance and variable costs  
 Geographic Data Model calculations 20 nodes representing countries and regions in Europe 
Table 4
Variable and fixed operational cost sources.
 Description Source 
 Fixed OM cost for generators [43]  
 Variable OM costs for generators [46]  
 Fuel costs for generators [47]  
 CCS cost time series variable for generators [48]  
 Power fixed OM cost for storage [49]  
 Energy fixed OM cost for storage [49]  
 Storage site fixed OM cost for CO2 [50]  
 Assumed 5% of CAPEX for CO2 pipeline [48]  
 Electrolyzer fixed OM cost for hydrogen [44]  
 Assumed 1% of CAPEX for hydrogen pipeline [51]  
 Storage fixed OM cost for hydrogen [52]  

reversed pattern, accounting for potential future demand from sectors 
like heavy-duty transport [35]. The constant profile assumes uniform 
demand year-round. While actual future demand may differ, these 
stylized profiles are used to assess how seasonal variation affects the 
value of hydrogen storage, not to predict demand.

To answer the second research questions from Section 1, the three 
profiles and their counterparts with seasonal dependence marked with 
‘- S’ are compared:

1. ‘Winter peak’ and ‘Winter peak - S’
2. ‘Constant’ and ‘Constant - S’
3. ‘Summer peak’ and ‘Summer peak - S’

These six cases are designed to assess how seasonal storage influ-
ences investment decisions under different hydrogen demand patterns 
throughout the year.

In scenarios without seasonal storage, energy levels are not trans-
ferred between representative periods. Instead, each period starts and 
ends with storage at 50% of installed capacity to maintain balance, 
enforced at each scenario tree node. Fig.  3 shows the hydrogen demand 
profiles alongside the consistent power demand profile, which peaks in 
winter.

4.2. Data

EMPIRE minimizes total system costs, categorized by investment 
and operational costs, all adjusted with a 5% discount rate as per [18]. 
The cost of investing in increased capacities is aligned with Shirizadeh 
et al. [3].

EMPIRE models production, transmission, and storage of power 
and hydrogen, including fossil-based generation with CCS. Key tech-
nologies and parameters with sources are summarized in Tables  3
and 4. Initial capacities and cost assumptions are based on publicly 
available European datasets, which includes cost learning curves for 
key technologies like renewable generators and electrolyzers. Hydro-
gen demand is derived from scenario-based projections and historical 
gas usage patterns, with stochastic sampling preserving correlations 
with power demand and VRES output. Hydrogen storage investment is 
modeled as a single investment option per region, potentially including 
a combination of salt caverns, depleted gas fields, aquifers, and rock 
caverns. See Appendix  B for detailed data sources and assumptions.
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4.3. Rolling horizon and multi-stage parameters

The model uses a rolling investment horizon of three periods, with 
each period lasting three years to align with the EU’s green hydrogen 
additionality rule [7]. The full planning horizon spans eight periods, 
solved through four overlapping subproblems.

Each investment period includes 12 representative two-week op-
erational periods (336 h each), totaling 4032 hourly-modeled hours. 
Seasonal variation is captured using monthly partitions. The multi-stage 
stochastic structure includes three stages per period, with four equally 
probable branches based on random sampling, split before May and 
September (see Fig.  1 and Section 3.4).

4.4. Model reproducibility and computational requirements

For reproducibility of the model results, the code and data are 
available as open access on the public project Github page Hordvei 
and Hummelen [53]. Running the model requires a Python installation 
supporting Pyomo [54], and the data is given in Excel-files. In addition, 
a solver installation is required, e.g., Gurobi. To run the model, execute 
the python script ‘run_EMPIRE.py’.

The numerical instances presented in this paper have been solved 
on a computer cluster Lenovo ThinkSystem SD530 with 2 × 3.5 GHz 
Intel Xeon Gold 6144 CPU (8 core) and 384 GB RAM. Solver perfor-
mance metrics indicate that the average subproblem solution time was 
approximately 10 h, and four subproblems are solved to roll over the 
entire horizon ending in 2048. When including the time required for 
model construction and file operations, the average total solution time, 
including all subproblems, is 64 h. Furthermore, the maximum memory 
requirement during execution reached 180 GB.

5. Results and discussion

This section presents and discusses the results, starting with a 
breakdown of the total system costs and then examining hydrogen and 
power investment decisions and their operations.

While EMPIRE includes batteries (BESS) and pumped hydro, this 
study focuses on hydrogen as a seasonal storage option. Batteries 
are excluded from seasonal storage due to high CAPEX and losses, 
and pumped hydro is limited by its comparatively small technical 
potential [55].

5.1. Total system costs

Fig.  4 illustrates the total system costs of the six cases. Among 
seasonal demand profiles, winter peaks are more expensive than sum-
mer peaks. As shown in Fig.  4, without seasonal storage, generator 
investment costs increase by 2% for summer peaks and 10% for winter 
peaks compared to constant demand. These higher costs are driven 
by increased peak demand, with winter peaks requiring more costly 
infrastructure than summer peaks.

Constant hydrogen demand is generally more cost-effective than 
seasonal profiles due to better year-round infrastructure utilization. 
‘Winter peak’ scenarios are costlier because the infrastructure needed 
for high winter demand remains underused in summer. Similarly, ‘Sum-
mer peak’ scenarios require early investments in power generation and 
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Fig. 4. Total system costs in 2024–2048.
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hydrogen pipelines that are underutilized in winter. Although summer 
peaks align better with solar PV production, the resulting savings are 
insufficient to offset the higher peak capacity requirements compared 
to constant demand.

5.2. Cost impact of seasonal hydrogen storage

When seasonal storage is enabled, Fig.  4 shows reduced total system 
costs for all hydrogen demand profiles, ranging from 1–5% (EUR 19–115
billion) of total system cost, where the highest cost savings result when 
hydrogen demand peaks in winter. Comparing constant hydrogen de-
mand with seasonal variability reveals that constant demand generally 
incurs 0–8% (EUR 3–167 billion) lower total system costs, both with and 
without seasonal hydrogen storage.

Seasonal hydrogen storage reduces total system costs primarily by 
lowering generator investment, saving EUR 22–130 billion across de-
mand profiles. Although storage investment rises by EUR 13–69 billion, 
it offsets the need for more costly generation capacity.

In the ‘Winter peak’ case, storing hydrogen from summer for winter 
use is more cost-effective than ramping up winter electrolyzer produc-
tion. Without storage, higher winter demand and limited solar output 
drive up investments in electrolyzers and generators. Seasonal storage 
offsets these needs, despite added storage costs, leading to significant 
savings.

In the ‘Summer peak’ case, seasonal hydrogen storage reduces sys-
tem costs by 2%, despite alignment with solar output in later years 
(Appendix  I). This is due to reduced need for additional generators, 
electrolyzers, and operational costs. However, ‘Summer peak - S’ is 
slightly more expensive than ‘Constant - S’ because the need for early 
investments in storage and electrolyzers to satisfy peak demand during 
summer means that future technology cost reductions are not captured.

5.3. Hydrogen investments and geographic differences

The increased storage capacities for seasonal hydrogen storage are 
shown in Fig.  5, which presents geographic differences in expected 
annual hydrogen production, hydrogen pipelines, and hydrogen storage 
capacities in 2045.

In general, adding seasonal storage reduces pipeline capacity needs 
by improving pipeline utilization during low-demand periods. How-
ever, under constant hydrogen demand, pipelines are already optimized 
for steady use, so seasonal storage barely reduces pipeline costs (Fig. 
4). Spain sees the largest storage increase from ‘Constant’ to ‘Constant 
- S’, enabling a 7% reduction in pipeline capacity to France by 2045. 
However, in the rest of Europe, storage expansion is limited, as constant 
demand can be efficiently met through consistently utilized pipelines 
without requiring local storage.

In the ‘Winter peak - S’ scenario, hydrogen storage is most extensive 
and widely distributed, with Spain, France, and Germany seeing the 
largest increases. This allows a 12% reduction in pipeline capacity 
between Spain and France by 2045, as surplus hydrogen can be stored 
during periods of high production. Locating storage near major de-
mand centers reduces the need for long-distance transmission from 
Southern to Northern Europe during winter peaks. France plays a key 
intermediary role due to its central location and borders with several 
high-demand countries, enabling efficient redistribution of hydrogen 
and contributing to a 15% reduction in total European pipeline capacity 
by 2045.

In the transition from ‘Summer peak’ to ‘Summer peak - S’, storage 
increases are modest and spread across many regions, unlike the con-
centrated expansions seen in ‘Winter peak - S’ and ‘Constant - S’. This is 
because summer peak demand aligns with high solar output, reducing 
the need for seasonal balancing to about half of that in ‘Constant - S’. 
Additionally, summer storage shifts the spatial distribution of hydrogen 
production (see Appendix  C).
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Notably, while hydrogen storage investment costs are higher in 
‘Summer peak - S’ than in ‘Constant - S’ (Fig.  4), total storage capacity 
is lower in 2045. This is due to front-loaded investments in ‘Summer 
peak - S’, with later investments benefiting from technology learning 
and lower future costs (see Appendix  E).

5.4. Hydrogen system operations

Allowing seasonal storage changes the operational decisions regard-
ing hydrogen production and storage. Fig.  6 shows the expected storage 
levels, hydrogen production, hydrogen demand met, and hydrogen 
burnt for power in 2045. The plots display median storage trajectories, 
as well as the 25th to 75th percentile in the stochastic scenarios.

In all cases without seasonal storage, the expected production pro-
files closely follow the demand curves. Limited investments in stor-
age necessitate matching production to demand to avoid high load-
shedding costs. Conversely, despite differing demand curves, the ex-
pected production profiles are similar in all cases with seasonal storage. 
The introduction of seasonal storage allows for a strategy where all 
excess VRES production is utilized for hydrogen production, regardless 
of immediate demand.

Hydrogen will be used for power in non-seasonal storage cases due 
to the absence of seasonal balancing without seasonal energy storage. 
This topic will be elaborated further in Appendix  G.

5.5. Power generation differences between demand scenarios

Fig.  7 shows power production differences between peaking and 
constant hydrogen demand cases by presenting aggregated values over 
six years for clarity and ease of interpretation. Winter-peaking hydro-
gen demand aligns poorly with solar power, making it a less cost-
effective option than constant demand. Consequently, solar generation 
decreases in winter-peaking scenarios, replaced by power generators 
better suited to high winter demand, such as wind, biomass, nuclear, 
hydrogen CCGT, and fossil-based generators.

In contrast, summer peaking hydrogen demand correlates well with 
seasonal solar production variation, which makes solar a competitive 
alternative. Consequently, cheap solar replaces expensive investments 
including fossil-based generators with carbon capture and storage, 
nuclear, and biomass.

Although annual hydrogen and power demand are exogenous, Fig. 
7 mostly show that the power differences above the horizontal zero line 
are not equal to the part below zero. The majority of these differences 
result from losses, with smaller amounts of load shedding.

In all cases without seasonal storage, some power comes from 
burning hydrogen, which is a major loss source. Furthermore, in cases 
with higher solar production, power is more likely to be transmitted 
between regions or stored in batteries, causing higher losses.

5.6. Power generation differences with seasonal storage

Fig.  8 shows power production differences between seasonal and 
non-seasonal storage cases. Seasonal hydrogen storage enhances the 
value of variable renewable energy sources, particularly solar, by en-
abling better alignment between production and demand. Seasonal 
storage reduces the need for installed production capacity, while total 
power generation remains nearly unchanged until 2042, meaning that 
utilization of installed capacity is higher with seasonal storage.

Between 2042 and 2048, all seasonal storage scenarios in Fig.  8 
show a marked reduction in the use of dispatchable power, as stored 
hydrogen and increased renewable generation meet a larger share of 
demand. The largest reduction occurs in the ‘Winter peak’ scenario, 
where over 600 TWh/year of dispatchable generation is replaced pri-
marily by solar power. In the ‘Constant’ scenario, solar substitutes 
more than 300 TWh/year, while ‘Summer peak’ reduces excess solar 
generation and the need to reconvert hydrogen to electricity. Seasonal 



S.E. Hummelen et al.

Fig. 5. Expected annual hydrogen production, hydrogen pipelines, and hydrogen storage capacities in 2045. Regions with annual hydrogen production exceeding 5 Mt are plotted 
as numbers. Pipelines with less than 100 ton/h capacity are not shown.
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Fig. 6. Annual hydrogen storage, production, and demand profiles in 2045. The median is shown as a dotted line, with shaded areas indicating the interquartile range (25th to 
75th percentile).
storage also lowers reliance on infrastructure with high conversion 
losses, such as long-distance transmission and batteries, resulting in a 
reduced overall need for power production during this period.

Overall, seasonal storage is advantageous for VRES production 
due to the ability to store substantial hydrogen produced by non-
dispatchable energy sources over a long time. Furthermore, the higher 
the demand during summer, the more competitive solar production 
becomes. Note that the average annual difference in solar production 
between ‘Constant’ and ‘Summer peak’ cases of 500 TWh is a relative 
increase of 4.18%. Thus, the total production mix is relatively similar 
for all cases, although a clear pattern on what impacts generator 
investments is seen. Lastly, seasonal storage has a stabilizing effect 
on seasonal power prices, showing in particular that the median price 
throughout a year fluctuates considerably less when seasonal storage is 
allowed. This is discussed in further detail in Appendix  F

5.7. Limitations and future research

This study has several limitations that should be considered when 
interpreting the results. First, future hydrogen demand remains highly 
uncertain due to hydrogen’s emerging role across sectors. The seasonal 
10 
demand profiles used are illustrative rather than predictive and may 
not reflect future dynamics, especially if driven by sectors like heavy 
transport or industry. More detailed sectoral modeling or adaptive 
demand projections could improve future analyses.

Second, the model assumes a fixed trajectory of technology pa-
rameters, such as electrolyzer efficiency and cost. If technological 
advancements evolve differently, this could shift the balance between 
production and storage investments. For example, higher electrolyzer 
efficiency may favor on-demand hydrogen production over seasonal 
storage. Incorporating learning curves or uncertainty in technology 
development would better capture these effects.

Third, renewable energy availability is based on random sampling 
of historical weather data, which may not fully capture future cli-
mate uncertainty or extreme events. As climate patterns shift, this 
approach could underestimate long-term variability. For example, re-
search has already shown changes in hydropower potentials due to 
climate change [56]. Future work could incorporate advanced mete-
orological models or synthetic extreme weather years for more robust 
representation.

Fourth, while hydrogen storage is the focus for seasonal flexibility, 
other options, such as demand response [57] or power-to-X [58], are 
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Fig. 7. Power production differences between peaking and constant demand cases.
not fully represented. Including a broader set of flexibility solutions 
would provide a more comprehensive view of system-wide trade-offs.

Fifth, the spatial resolution is limited to 20 aggregated nodes, 
which simplifies modeling but may underestimate local transmission 
bottlenecks and regional variations in supply and demand. This could 
lead to underestimation of infrastructure needs and misallocation of 
storage. Higher-resolution or hybrid models could address this.

Sixth, the rolling horizon approach improves computational
tractability but may lead to suboptimal, myopic investment decisions 
due to limited foresight. While this reflects some aspects of real-world 
decision-making, advanced decomposition methods [19,21] could im-
prove coordination across time steps and enhance solution quality.

Finally, although tactical uncertainty is modeled, the approach 
still simplifies real-world decision-making by system operators and 
investors, who respond to evolving market signals, regulations, and 
risk preferences. Future work could explore more adaptive or behavior-
based modeling frameworks to better reflect these complexities.

6. Conclusion

6.1. Concluding remarks

This study extends the EMPIRE model to incorporate tactical uncer-
tainty, enabling a more accurate representation of seasonal hydrogen 
storage within energy system planning. To address the computational 
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complexity introduced by this enhancement, a rolling horizon ap-
proach is employed, allowing for iterative solution of subproblems with 
reduced temporal scope.

The principal contributions and insights of this work are summa-
rized as follows:

Modeling tactical uncertainty:  A novel framework restruc-
tures the EMPIRE model to represent seasonal storage in multi-
horizon capacity expansion by formulating operational subprob-
lems as multi-stage stochastic programs. This captures tactical 
uncertainty between representative periods and avoids assuming 
perfect foresight. A rolling investment horizon ensures compu-
tational tractability while maintaining consistency in investment 
and operational decisions.
Value of seasonal storage: With strong seasonal supply–demand 
variation, enabling inter-seasonal energy transfer increases hy-
drogen storage investments by factors of 5–14 and enhances 
system flexibility, reducing reliance on pipelines and dispatchable 
generation. It also boosts the value of variable renewables, espe-
cially solar, by improving seasonal balancing and infrastructure 
utilization. The results highlight that ignoring seasonal dynam-
ics can significantly undervalue renewables’ potential to replace 
dispatchable sources.
Implications of seasonal hydrogen demand profiles: Analyz-
ing three hydrogen demand profiles reveals that the European 
energy system is highly sensitive to seasonal variation. Winter-
peaking demand leads to higher production and storage costs 
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Fig. 8. Power production differences between seasonal and non-seasonal storage cases.

and greater reliance on dispatchable power and wind. Given the 
uncertainty in future demand patterns, models should account for 
seasonal variability to ensure robust, cost-effective planning.

6.2. Policy implications

While the model highlights cost-effective storage and transmis-
sion strategies, real-world implementation may face policy and reg-
ulatory hurdles, such as permitting delays and limited cross-border 
coordination. Current market structures also undervalue long-duration 
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storage and flexibility. Overcoming these challenges requires proac-
tive policy design, harmonized regulations, and incentives that reward 
system-wide flexibility. Policymakers should prioritize:

Adaptive investment frameworks: Traditional planning frame-
works often overlook the value of flexible infrastructure. Policy-
makers should adopt frameworks that support phased deployment 
of hydrogen infrastructure. This is crucial given uncertainties 
in future hydrogen demand, which is shown in this paper to 
significantly influence technology choices and regional roles.
Regional coordination for hydrogen infrastructure: Countries 
like France play a key role as intermediary hubs due to their 
central location and network connectivity. Strengthening EU-wide 
coordination can optimize hydrogen flows, storage placement, 
and cross-border infrastructure planning.
Incentives for flexibility and storage: Seasonal hydrogen stor-
age enhances renewable integration and reduces reliance on dis-
patchable power. Governments should promote demand-side flex-
ibility and support storage deployment to improve system effi-
ciency and resilience.

6.3. Final remarks

This study demonstrates the importance of integrating tactical un-
certainty and seasonal hydrogen storage into long-term energy system 
planning. By extending the EMPIRE model, we provide a more realistic 
and flexible framework for evaluating infrastructure investments under 
uncertainty. The findings emphasize that overlooking seasonal dynam-
ics and uncertainty can lead to suboptimal decisions, under-investment 
in storage, and over-reliance on dispatchable generation. As Europe 
moves toward a net-zero energy system, planning tools must evolve to 
reflect the complexity of future energy systems. This work contributes 
to that evolution, offering both methodological advancements and 
actionable insights for researchers, system planners, and policymakers 
navigating the energy transition.
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Appendix A. Mathematical formulation

 𝜓 Operational node  
 𝑐 Commodity  
 ℎ Operational hour  
 𝑖, 𝑗 Investment period  
 𝑛, 𝑚 Geographical node  
 𝑝 Production method  
 𝑏 Storage type  
 𝑡 Transmission type  
 𝛹 Operational Nodes  
  Commodities  
  Operational hours  
  Geographical nodes  
  Investment periods  
 𝑐𝑛 All possible bidirectional arcs to node 𝑛 for 

commodity 𝑐
 

 𝑐 Production methods for commodity 𝑐  
 𝑐 Storage types for commodity 𝑐  
  𝑐 Transmission types for commodity 𝑐  
 𝜎𝑐 Sinks of commodity 𝑐  
 𝑞𝑎,𝑖 Cost for production, storage, or transmission 

method 𝑎 in period 𝑖
 

 𝑞𝑛,𝑖 Cost for geographical node 𝑛 in period 𝑖  
 𝐷𝑐

𝑛,ℎ,𝑖,𝜓 Exogenous demand for commodity 𝑐 in node 𝑛, 
hour ℎ, period 𝑖, scenario 𝜓

 

 𝑖𝑙𝑖𝑓𝑒𝑝 Lifetime of production method 𝑝  
 𝑖𝑙𝑖𝑓𝑒𝑡 Lifetime of transmission type 𝑡  
 𝑖𝑙𝑖𝑓𝑒𝑏 Lifetime of storage type 𝑏  
 𝐿𝑝𝑒𝑟𝑖𝑜𝑑 Length of investment periods  
 𝑥̄𝑝𝑛,𝑖 Remaining initial capacity of production method 

𝑝 in node 𝑛, period 𝑖
 

 𝑥̄𝑏𝑛,𝑖 Remaining initial capacity of storage type 𝑏 in 
node 𝑛, period 𝑖

 

 𝑥̄𝑡𝑛,𝑚,𝑖 Remaining initial capacity of transmission type 𝑡
for bidirectional arc (𝑛, 𝑚), in period 𝑖

 

 𝛼𝜓 Scale factor for operational node 𝜓  
 𝜋𝜓 Probability of scenario 𝜓  
 𝑟 Annual discount rate  
 𝑣𝑝𝑛,𝑖 Available capacity of production method 𝑝 in 

node 𝑛, period 𝑖
 

 𝑣𝑏𝑛,𝑖 Available capacity of storage type 𝑏 in node 𝑛, 
period 𝑖

 

 𝑣𝑡𝑛,𝑚,𝑖 Available capacity of transmission type 𝑡 in 
bidirectional arc (𝑛, 𝑚), period 𝑖

 

 𝑥𝑝𝑛,𝑖 Capacity built of production method 𝑝 in node 𝑛, 
period 𝑖

 

 𝑥𝑏𝑛,𝑖 Capacity built of storage type 𝑏 in node 𝑛, period 𝑖 
 𝑥𝑡𝑛,𝑚,𝑖 Capacity built of transmission type 𝑡 in 
bidirectional arc (𝑛, 𝑚), period 𝑖
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 𝑦𝑐,𝑡𝑟𝑎𝑛𝑠𝑡,𝑛,𝑚,ℎ,𝑖,𝜓 Transmission at transmission type 𝑡 for 

commodity 𝑐 in bidirectional arc (𝑛, 𝑚), hour ℎ, 
period 𝑖, scenario 𝜓

 

 𝑦𝑐,𝑠𝑖𝑛𝑘𝑛,ℎ,𝑖,𝜓 Endogenous demand of commodity 𝑐 in node 𝑛, 
hour ℎ, period 𝑖, scenario 𝜓

 

 𝑦𝑐,𝑠𝑜𝑢𝑟𝑐𝑒𝑝,𝑛,ℎ,𝑖,𝜓 Production of commodity 𝑐 by production method 
𝑝 in node 𝑛, hour ℎ, period 𝑖, scenario 𝜓

 

 𝑦𝑐,𝑙𝑙𝑛,ℎ,𝑖,𝜓 Load shed of commodity 𝑐 in node 𝑛, hour ℎ, 
period 𝑖, scenario 𝜓

 

 𝑦𝑐,𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 Charging of storage type 𝑏 for commodity 𝑐 in 
node 𝑛, hour ℎ, period 𝑖, scenario 𝜓

 

 𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 Discharging of storage type 𝑏 for commodity 𝑐 in 
node 𝑛, hour ℎ, period 𝑖, scenario 𝜓

 

 𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓 Storage level of commodity 𝑐 in storage type 𝑏, 
node 𝑛, hour ℎ, period 𝑖, scenario 𝜓

min 𝑧 =
∑

𝑖∈
(1 + 𝑟)𝐿

𝑝𝑒𝑟𝑖𝑜𝑑 (𝑖−1)×

[
∑

𝑐∈
(
∑

𝑛∈

∑

𝑎∈𝑐∪𝑐
𝑞𝑖𝑛𝑣𝑎,𝑖 𝑥

𝑎
𝑛,𝑖 +

∑

𝑛∈

∑

𝑚∈𝑐𝑛

∑

𝑡∈ 𝑐
𝑞𝑖𝑛𝑣𝑡,𝑖 𝑥

𝑡
𝑛,𝑚,𝑖)+

𝑣
∑

𝜓∈𝛹
𝜋𝜓

∑

𝑠∈
𝛼𝜓

∑

ℎ∈𝑠

∑

𝑛∈

∑

𝑐∈

∑

𝑝∈𝑐
𝑞𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑝,𝑖 𝑦𝑐,𝑠𝑜𝑢𝑟𝑐𝑒𝑝,𝑛,ℎ,𝑖,𝜓+

𝑣
∑

𝜓∈𝛹
𝜋𝜓

∑

𝑠∈
𝛼𝜓

∑

ℎ∈𝑠

∑

𝑛∈

∑

𝑐∈
𝑞𝑐,𝑙𝑙𝑛,𝑖 𝑦

𝑐,𝑙𝑙
𝑛,ℎ,𝑖,𝜓 ].

(A.1)

EMPIRE is a stochastic energy system model aiming at minimizing 
the total system cost to cover energy demand in Europe. The total 
system costs include investment costs for production, storage, and 
transmission, as well as operational costs for production and commod-
ity load shed costs. All costs are discounted with an annual rate 𝑟 of 5%, 
where 𝑣 =

∑(𝐿𝑝𝑒𝑟𝑖𝑜𝑑−1)
𝑗=0 (1 + 𝑟)−𝑗 and represents scaling and discounting 

of the annualized costs to the length of an investment period. The 
objective function is described in Eq.  (A.1). 
∑

𝑝∈𝑐
𝑦𝑐,𝑠𝑜𝑢𝑟𝑐𝑒𝑝,𝑛,ℎ,𝑖,𝜓 −

∑

𝑠𝑖𝑛𝑘∈𝜎
𝑦𝑐,𝑠𝑖𝑛𝑘𝑛,ℎ,𝑖,𝜓 −

∑

𝑐
(𝑦𝑐,𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 − 𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 )−

∑

 𝑐

∑

𝑚∈𝑐𝑛

(𝑦𝑐,𝑡𝑟𝑎𝑛𝑠𝑡,𝑛,𝑚,ℎ,𝑖,𝜓 − 𝑦𝑐,𝑡𝑟𝑎𝑛𝑠𝑡,𝑚,𝑛,ℎ,𝑖,𝜓 ) + 𝑦
𝑐,𝑙𝑙
𝑛,ℎ,𝑖,𝜓 = 𝐷𝑐

𝑛,ℎ,𝑖,𝜓

∀ 𝑐 ∈ , 𝑛 ∈  , ℎ ∈ , 𝑖 ∈ , 𝜓 ∈ 𝛹.

(A.2)

The model is introduced with a general formulation of the flow 
balance for a commodity 𝑐 in EMPIRE, covering power and hydrogen. 
Eq.  (A.2) states that the demand of a commodity 𝐷𝑐

𝑛,ℎ,𝑖,𝜓  is to be 
balanced by the sum of production, endogenous use of commodity, net 
storage charge, net export, and load shed.

𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓 = 𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ−1,𝑖,𝜓 + 𝑦𝑐,𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 − 𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 ,

𝑐 ∈ , 𝑏 ∈ 𝑐 , 𝑛 ∈  , ℎ ∈ 𝜓 ⧵𝑆𝑡𝑎𝑟𝑡
𝜓 , 𝑖 ∈ , 𝜓 ∈ 𝛹. (A.3)

Table B.5
Maximum hydrogen storage potential by node.
 Node Max capacity [TWh]
 Benelux 36  
 Czech Republic–Slovakia 24  
 Denmark 3  
 France 32  
 Germany 61  
 Great Britain 5  
 Hungary 17  
 Italy 47  
 Poland 9  
 Spain 8  
 Switzerland–Austria 23  
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Table B.6
Annual hydrogen demand in Mton/year.
 Geographic node 2024 2027 2030 2033 2036 2039 2042 2045  
 Balkan 0.42 0.45 0.48 0.77 1.05 1.33 1.55 1.73  
 Baltic 0.15 0.17 0.19 0.30 0.41 0.51 0.58 0.63  
 Benelux 1.44 1.57 1.69 2.58 3.47 4.37 5.35 6.37  
 Czech Republic–Slovakia 0.27 0.36 0.44 0.76 1.08 1.39 1.62 1.80  
 Denmark 0.04 0.06 0.08 0.18 0.28 0.38 0.48 0.58  
 Finland 0.18 0.18 0.18 0.40 0.62 0.85 1.05 1.24  
 France 0.60 0.67 0.74 1.23 1.72 2.21 2.97 3.86  
 Germany 1.98 2.33 2.69 5.20 7.71 10.22 11.98 13.36 
 GreatBrit. 0.80 1.15 1.50 2.85 4.20 5.56 7.21 9.01  
 Greece 0.33 0.33 0.33 0.43 0.52 0.62 0.75 0.89  
 Hungary 0.20 0.22 0.24 0.45 0.67 0.88 1.00 1.09  
 Ireland 0.03 0.06 0.09 0.17 0.26 0.34 0.42 0.49  
 Italy 0.73 0.92 1.11 2.45 3.80 5.14 5.95 6.49  
 Norway 0.24 0.36 0.48 0.58 0.68 0.78 0.89 1.01  
 Poland 0.78 0.78 0.78 1.26 1.74 2.22 2.61 2.95  
 Portugal 0.11 0.12 0.14 0.23 0.32 0.41 0.51 0.62  
 Romania 0.17 0.21 0.26 0.54 0.82 1.10 1.30 1.46  
 Spain 0.61 0.61 0.61 1.17 1.73 2.29 2.86 3.45  
 Sweden 0.18 0.19 0.20 0.39 0.57 0.76 0.91 1.05  
 Switzerland-Austria 0.18 0.23 0.29 0.47 0.65 0.82 0.98 1.12  
 Total 9.44 10.98 12.53 22.41 32.29 42.17 50.95 59.20 
𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓 = 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝜓 + 𝑦𝑐,𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 − 𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 ,

𝑐 ∈ , 𝑏 ∈ 𝑐 , 𝑛 ∈  , ℎ = 𝑆𝑡𝑎𝑟𝑡
𝜓 , 𝑖 ∈ , 𝜓 ∈ 𝛹. (A.4)

Eq.  (A.3) ensures that, in an operational node 𝜓 , the storage level 
𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓  at the end of hour ℎ equals to the storage level in the previous 
hour 𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ−1,𝑖,𝜓  plus the net charge in the current hour 𝑦

𝑐,𝑐ℎ𝑟𝑔
𝑏,𝑛,ℎ,𝑖,𝜓 −

𝑦𝑐,𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏,𝑛,ℎ,𝑖,𝜓 . Eq. (A.4) constraints the storage operation in the first hour in 
each node, where 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝜓  is the initial storage level. These constraints 
apply to all storage units.

𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,𝑙,𝑖,𝑒 = 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝑓 + 𝛿(𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,𝑘,𝑖,𝑓 − 𝑦𝑐,𝑠𝑡𝑜𝑟,0𝑏,𝑛,ℎ,𝑖,𝑓 ),

𝑐 ∈ , 𝑏 ∈ 𝑐,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 , 𝑛 ∈  , 𝑖 ∈ , 𝑒 ∈ 𝛹, 𝑓 ∈ 𝛹𝑒,

ℎ ∈ 𝑆𝑡𝑎𝑟𝑡
𝑓 , 𝑘 ∈ 𝐸𝑛𝑑

𝑓 , 𝑙 ∈ 𝑆𝑡𝑎𝑟𝑡
𝑒 . (A.5)

Eq.  (A.5) ensures that the initial energy storage level in the first 
operational hour in operational node 𝜓 is passed from the last opera-
tional hour in its ancestor node. The 𝛹𝑒 is the set of the ancestor node 
to node 𝑒, and 𝛿 is the seasonal scaling factor of storage level from one 
operational node to the next. 
∑

𝑒∈
(𝑥𝑒𝑛,𝑖 × 𝜂

𝑃𝑊
𝑒 ) ≤

∑

𝑔∈𝑉 𝑅𝐸𝑆
𝑥𝑔𝑛,𝑖

∀ 𝑛 ∈  , 𝑖 ∈ .
(A.6)

The additionality constraint, shown in Eq.  (A.6), limits electrolyzer 
investments 𝑥𝑒𝑛,𝑖 within the set  to the generator capacity built 𝑥

𝑔
𝑛,𝑖

within the set of VRES generators 𝑉 𝑅𝐸𝑆 for each period 𝑖 and node 
𝑛. The exogenous parameter 𝜂𝑃𝑊𝑒  represents the constant power (PW) 
consumption for producing one ton of hydrogen (H2) at electrolyzer 𝑒, 
ensuring that electrolysis power demand does not exceed the capacity 
of newly built VRES generators. 
∑

𝑒∈
(𝑦𝐻2 ,𝑠𝑜𝑢𝑟𝑐𝑒
𝑒,𝑛,ℎ,𝑖,𝜓 × 𝜂𝑃𝑊𝑒 ) ≤

∑

𝑔∈𝑉 𝑅𝐸𝑆
(𝜉𝑔,𝑛,ℎ,𝑖,𝜓 ×

𝑖
∑

𝑗=𝑖′
𝑥𝑔𝑛,𝑗 )

∀ 𝑛 ∈  , 𝑖 ∈ , ℎ ∈ ,

𝜓 ∈ 𝛹, 𝑖′ = max{1, 𝑖 − 𝑖𝑙𝑖𝑓𝑒𝑔 }.

(A.7)

Eq.  (A.7) define the spatial and temporal correlation between re-
newable power generation and electrolysis. Eq.  (A.7) limits the hourly 
power for all electrolysis ∑𝑒∈ 𝑦

𝐻2 ,𝑠𝑜𝑢𝑟𝑐𝑒
𝑒,𝑛,ℎ,𝑖,𝜓  to the total available power 

from additional VRES in that node 𝑛 and hour ℎ. Parameter 𝜉
𝑔,𝑛,ℎ,𝑖,𝜓

14 
indicates the stochastic availability of a renewable source, based on 
historical data, while 𝑖𝑙𝑖𝑓𝑒𝑔  accounts for generator depreciation. 

𝑖
∑

𝑗=𝑖′
𝑥𝑝𝑛,𝑗 + 𝑥̄

𝑝
𝑛,𝑖 = 𝑣𝑝𝑛,𝑖

∀ 𝑐 ∈ , 𝑝 ∈ 𝑐 , 𝑛 ∈  , 𝑖 ∈ , 𝑖′ = 𝑚𝑎𝑥{1, 𝑖 − 𝑖𝑙𝑖𝑓𝑒𝑝 }.

(A.8)

𝑖
∑

𝑗=𝑖′
𝑥𝑏𝑛,𝑗 + 𝑥̄

𝑏
𝑛,𝑖 = 𝑣𝑏𝑛,𝑖

∀ 𝑐 ∈ , 𝑏 ∈ 𝑐 , 𝑛 ∈  , 𝑖 ∈ , 𝑖′ = 𝑚𝑎𝑥{1, 𝑖 − 𝑖𝑙𝑖𝑓𝑒𝑏 }.

(A.9)

𝑖
∑

𝑗=𝑖′
𝑥𝑡𝑛,𝑚,𝑗 + 𝑥̄

𝑡
𝑛,𝑚,𝑖 = 𝑣𝑡𝑛,𝑚,𝑖

∀ 𝑐 ∈ , 𝑡 ∈  𝑐 , 𝑛 ∈  , 𝑚 ∈ 𝑐𝑛,

𝑖 ∈ , 𝑖′ = 𝑚𝑎𝑥{1, 𝑖 − 𝑖𝑙𝑖𝑓𝑒𝑡 }.

(A.10)

Eqs. (A.8)–(A.10) defines the total available capacity of production 
𝑣𝑝𝑛,𝑖, storage 𝑣𝑏𝑛,𝑖 and transmission 𝑣𝑡𝑛,𝑚,𝑖 as the sum of all invested 
capacity within its lifetime. 𝑖′ represents the first investment period 
still within the asset’s lifetime, relative to the current period 𝑖. Total 
available capacity equals the sum of the invested and initial capacity. 

𝑦𝑐,𝑠𝑜𝑢𝑟𝑐𝑒𝑝,𝑛,ℎ,𝑖,𝜓 ≤ 𝑣𝑝𝑛,𝑖
∀ 𝑐 ∈ , 𝑝 ∈ 𝑐 , 𝑛 ∈  , ℎ ∈ , 𝑖 ∈ , 𝜓 ∈ 𝛹.

(A.11)

𝑦𝑐,𝑠𝑡𝑜𝑟𝑏,𝑛,ℎ,𝑖,𝜓 ≤ 𝑣𝑏𝑛,𝑖
∀ 𝑐 ∈ , 𝑏 ∈ 𝑐 , 𝑛 ∈  , ℎ ∈ , 𝑖 ∈ , 𝜓 ∈ 𝛹.

(A.12)

𝑦𝑐,𝑡𝑟𝑎𝑛𝑠𝑡,𝑛,𝑚,ℎ,𝑖,𝜓 ≤ 𝑣𝑡𝑛,𝑖
∀ 𝑐 ∈ , 𝑡 ∈  𝑐 , 𝑛 ∈  , 𝑚 ∈ 𝑐𝑛,

ℎ ∈ , 𝑖 ∈ , 𝜓 ∈ 𝛹.

(A.13)

Eqs. (A.11)–(A.13) assures that assets cannot be operated above the 
installed capacity. 
∑

𝑠∈
𝛼𝑠

∑

ℎ∈𝑠

∑

𝑛∈

∑

𝑐∈

∑

𝑝∈𝑐
𝜂𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑝 𝑦𝑐,𝑠𝑜𝑢𝑟𝑐𝑒𝑝,𝑛,ℎ,𝑖,𝜓 ≤ 𝐸𝑚𝑎𝑥𝑖

∀ 𝑖 ∈ , 𝜓 ∈ 𝛹.
(A.14)

Finally, Eq.  (A.14) ensures that the total emission in each scenario 
is limited by the emission cap 𝐸𝑚𝑎𝑥𝑖  for each investment period.

Appendix B. Detailed data sources

The initial power generator and storage capacities are sourced from 
the European Network of Transmission System Operators for Electricity 
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Table C.7
Solar capacity factors.
 Solar capacity factor 
 Spain 16.7%  
 Portugal 16.6%  
 Greece 16.0%  
 Italy 15.3%  
 Balkan 15.21%  

Table C.8
LCOE for solar and wind for selected areas in 2045. Values are not discounted.
 Solar (e/kWh) Wind (e/kWh) 
 Spain 0.0321 0.0468  
 Italy 0.0354 0.0600  
 Balkan 0.0348 0.0491  
 Greece 0.0334 0.0456  

Table C.9
Modeled distances between selected areas in km.
 Spain Italy Balkan  
 France 920.72 959.64 1595.35 
 Germany 1725.35 962.83 1262.77 
 Switzerland 1645.66 524.27 823.90  
 Poland 2335.06 1404.16 983.84  
 Benelux 1425.88 1390.70 1690.64 

(ENTSO-E) statistical factsheet 2022 [59]. The cost of natural gas is 
from [45], and the cost of CCS is from [60].

Total hydrogen demand for EU countries is based on the Global 
Ambition scenario from ENTSO-E [39], while demand for the UK, 
Switzerland, Norway is sourced from Government [38], AXPO [36], 
and DNV [37], respectively. Annual hydrogen demand can be seen in 
Table  B.6. Future demand profiles follow historical natural gas pat-
terns from the ENAGAS database [61], using 2015–2019 daily profiles. 
Where available, industry-specific data is used; otherwise, total demand 
profiles are applied. Aggregated regions adopt the profile of the largest 
gas-consuming country, and Norway uses Denmark’s profile. Hydrogen 
demand is sampled alongside other stochastic data to preserve cross-
correlations with power demand and VRES output (see Section 3.4). No 
assumptions are made about specific end-use sectors, though European 
Network of Transmission System Operators for Electricity (ENTSO-E) 
[62] note likely dominance by hard-to-abate sectors and synthetic fuel 
production.

Hydrogen storage capacity and cost data are sourced from Cihlar 
et al. [42]. The model allows investment in all storage types listed in 
Table  3 in [42], with a weighted average capital cost of 25.12 EUR/kg 
hydrogen, covering salt caverns, depleted gas fields, aquifers, and rock 
caverns. The maximum capacity for development of hydrogen storage 
is shown in Table  B.5.

Appendix C. Why Spain is a dominant hydrogen producer

Table  C.7 lists the top five countries with the highest solar capacity 
factors, calculated as annual output divided by the theoretical maxi-
mum at full availability. These values, analogous to Levelized Cost of 
Energy (LCOE), indicate that Spain offers the lowest-cost solar power, 
as confirmed in Table  C.8. However, the small differences between 
Spain, Portugal, and Greece suggest that cost alone does not explain 
Spain’s dominance.

Table  C.9 shows distances between major producers and consumers. 
Spain is only marginally closer to France than Italy (by 4%), and 
not significantly closer to other major consumers, indicating that ge-
ographic proximity is not Spain’s main advantage.

The final factor influencing a country’s competitiveness is year-
round availability. While hourly solar peaks are similar across coun-
tries, seasonal variation differs significantly. As shown in Fig.  C.9, 
15 
Spain has the most consistent solar output throughout the year, with 
January and December production reaching 67% and 50% of peak 
monthly output, respectively. Since hydrogen and electricity demand 
are highest in winter under the constant and winter peak scenarios, 
Spain’s relatively stable winter production gives it a distinct advantage 
over other countries.

Lastly, wind production increases in Greece and the Balkans during 
winter, boosting hydrogen output. However, wind has a higher lev-
elized cost of electricity (LCOE) than solar (Table  C.8) and is more 
valuable for covering evening power demand when solar is unavailable. 
Solar remains the more economical choice for hydrogen production due 
to its lower cost and the relative affordability of hydrogen storage.

Appendix D. Hydrogen-solar correlation

Hydrogen production share of Spain in 2045 ranges from 45.0% in 
the lowest to 49.6% in the highest cases. Furthermore, shares of the 
whole of southern Europe lay in the range of 65%–70%, demonstrating 
that solar rich countries produce a majority of hydrogen. The hourly 
correlation of hydrogen and solar production for Spain in the Winter 
peak case is displayed in Fig.  D.10, showing that hydrogen production 
will completely shut down when there is no solar production in June, 
and run at a very low capacity at night during December.

Appendix E. Hydrogen storage investments in cases with seasonal 
storage

As shown in Section 5.1, hydrogen storage costs are significantly 
higher in the ‘Summer peak - S’ scenario compared to ‘Constant - S’, 
despite lower total storage in the final period. Fig.  E.11 illustrates 
that ‘Summer peak - S’ sees substantial early investment in storage 
compared to ‘Constant - S’. Since total costs are expressed in net 
present value, delayed investments appear cheaper due to technological 
developments, even if total capacity is higher.

The high initial storage investment in ‘Summer peak - S’, despite 
seasonal alignment with solar production, is due to:

High electrolyzer costs early on: Although annual demand is 
equal across scenarios, ‘Summer peak - S’ has  20% higher peak 
days. Given that electrolyzer costs drop by 52% by the final 
period (pre-discounting), it is more cost-effective to store surplus 
hydrogen from low-demand days than to oversize electrolyzers 
for short-lived peaks.
Uncertain demand-supply mismatch: In the constant demand 
case, future hydrogen needs constant, allowing precise storage 
planning. In contrast, dynamic profiles require larger storage 
buffers to hedge against simultaneous demand spikes and low 
VRES output.

In later periods, ‘Summer peak - S’ shows reduced storage needs due 
to better alignment between solar generation and hydrogen demand, 
along with cheaper electrolyzers. Early reliance on storage to manage 
summer peaks results in hydrogen production that closely follows 
surplus VRES availability, as seen in Fig.  6.

Appendix F. Power price distribution

Fig.  F.12 shows power shadow prices across scenarios. Unlike actual 
prices, shadow prices reflect the cost impact of reducing demand by 
one unit in a given hour. Though demand is perfectly inelastic, making 
shadow prices more volatile, they still offer insight into future price 
trends. Seasonal storage helps stabilize these prices: median values 
(red line) stay within 30% of 50 EUR/MWh year-round, while non-
seasonal cases show greater winter variability. Although box heights 
(price spread) are not smaller with seasonal storage, average prices 
remain more consistent across seasons.



S.E. Hummelen et al.

Fig. C.9. Seasonal power balance of Southern European locations in 2045 for the Winter peak case. The percentages for January and December (months with the lowest solar 
production on average) signify the production ratios for solar output between those months and the maximum producing month.
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Fig. D.10. Solar-Hydrogen correlation for Spain in June and December 2045 in ‘Winter peak - S’.

Fig. E.11. Total storage capacity development for seasonal storage cases.
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Fig. F.12. Boxplots of power shadow prices for different cases in 2045.
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Fig. G.13. Operating plots for Germany in June and December 2045 in ‘Winter peak’.
Appendix G. Hydrogen for power

Fig.  6 shows that in all scenarios without seasonal storage, hydro-
gen is used for power generation despite its low round-trip efficiency 
(33%–38% [43]). Since hydrogen demand must be met within two 
weeks each month, systems are sized for peak months, leading to 
overcapacity during low-demand periods. For instance, in ‘Winter peak 
- S’, December requires enough hydrogen and power capacity to meet 
high demand, while in July, lower demand and higher solar output 
result in excess hydrogen production, which is stored and used at 
night as a cheaper alternative to other dispatchable sources. Fig.  G.13 
illustrates how Germany, the main hydrogen consumer for power in 
2045, uses hydrogen to meet night-time power demand when wind 
power is insufficient.
19 
Appendix H. Spatial aggregation in this EMPIRE version

To manage model complexity, we reduced spatial resolution to 20 
European nodes. Smaller or less impactful countries with similar pro-
files, including the Benelux, Baltics, Balkans, Austria–Switzerland, and 
Czechia–Slovakia—were aggregated. In contrast, Ireland, the UK, Por-
tugal, and Spain remained separate due to distinct production profiles 
and significant hydrogen and power roles. Aggregation involved sum-
ming demands and capacities, using the dominant country’s stochastic 
profile to preserve realism.

Appendix I. Regional power production and transmission net-
work

See Fig.  I.14. 



S.E. Hummelen et al. Energy Strategy Reviews 61 (2025) 101818 
Fig. I.14. Expected annual power production per region and power transmission capacities in 2045.
Data availability

Data will be made available on request.
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