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This research presents a workflow that integrates emerging machine learning methods with geospatial mapping
techniques to improve the identification of shipwrecks in bathymetry data. By first refining the study area into
high-potential units, machine learning algorithms can be applied more efficiently. This approach accelerates

frameworks the process, reduces computational demands, and offers an adaptive method that can eventually be tailored to
Keywords: survey needs and different seabed environments. This paper contributes to the current discourse surrounding
Shipwrecks the discovery and management of underwater cultural heritage (UCH) in the context of global seabed mapping,
Machine learning developments in autonomous marine survey, and continued offshore development. Shipwrecks constitute a
Bathymetry significant proportion of UCH sites that are increasingly likely to be discovered and impacted by these

Remote sensing
Maritime archaeology
Geographic Information Systems (GIS)

developments, and thus archaeologists need adequate tools for their rapid detection and monitoring to keep
pace with the rate of data generation.

The proposed workflow uses a raster extraction method as a filtering process to identify areas of seabed with
high shipwreck potential, based on their topographic signature in three different visualisations of bathymetry
(slope, curvature, and topographic position index). Using these results, several different machine learning
algorithms were tested on their ability to identify both intact, visible shipwrecks (‘conspicuous’ wrecks) as
well as smaller, possible wreck sites. These methods were tested over an area of 3,131 km? from the south
coast of England. Results show that the Raster Extraction method was able to filter out 96% of the test data,
while still detecting 78% of the test shipwrecks (n=253). Machine learning models trained on different data
visualisations (Hillshade, Shaded Relief, Curvature) and algorithms (Single Shot Detector, Faster R-CNN, and
Mask R-CNN) had varied performances in terms of recall and precision.

1. Introduction challenge to locate and identify. As the rate of marine data collection
increases, however, at ever higher resolutions, so grows the potential

UNESCO (2007, 4) have estimated that there are likely to be in of this data to transform our understanding of the past. What is clear,

excess of three million shipwrecks world wide. The location and attribu-
tion of the majority of these remains to be resolved. While underwater
cultural heritage (UCH; UNESCO, 2001) is not limited to shipwrecks,
these sites often have a legislative, research, and commercial focus, as
they are typically some of the most visible and evocative sites on the
sea floor. Shipwrecks are an important resource not only in terms of
their historical and archaeological potential, but also for their wider
socio-cultural value (Adams, 2001, 2013; Gibbins and Adams, 2001).
As such, the significance of shipwrecks has been well recognised in
maritime archaeology since the early stages of the discipline (Basch,
1972; Hasslof, 1972; Muckelroy, 1978).

Today, shipwrecks represent both an opportunity and a challenge.
An opportunity to deepen our understanding of the past, but are still a

therefore, is the need for methods which allow us to keep up with the
rate of data generation, to help locate, and inform optimal recording
and management strategies.

An area with a high density of recorded UCH is the continental shelf
of the United Kingdom (UK) (Satchell and Palma, 2007). In English
territorial waters alone (up to 12 nm), there are around 37,000 known
shipwreck sites and recorded ship losses (England, 2016). The vast
majority of the known historic maritime record in England dates from
the mid-19th to mid-20th centuries, with 96% of known and dated
wrecks lost between 1840 and 1950 (England, 2016). However, as
recent research has highlighted, it is extremely difficult to quantify and
identify this underwater resource accurately; a detailed assessment of
273 shipwrecks in the Irish Sea found that 40% of these ‘known’ wrecks
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were misidentified (McCartney, 2022). The causes of misidentification
were varied, but often related to the historically low resolution survey
data that prevented clear identification of anything beyond anomaly,
matched to heavy reliance on documentary evidence pointing to a
location of loss, then equating the two. Thus, ‘possible’ equivalence
slowly came to be read as ‘probable’. These findings have significant
implications for the wider study and understanding of shipwrecks in
the UK. By extrapolating these results, it is estimated that at least
1,373 shipwrecks in the UK’s Exclusive Economic Zone are currently
misattributed (McCartney, 2022).

Thus, it becomes clear that there is an imperative to accurately
locate and quantify UCH in order to begin to better understand what
the record constitutes and how best to investigate and manage it.
This desire extends beyond pure archaeological research as there is
a variety of interested parties and stakeholders relating to seabed
mapping; just in the UK alone, there are nine additional sectors that
have equally valid interests in shipwrecks, which vary from fishing to
navigation to recreation activities (Firth, 2018). However, in partic-
ular, the increasing amount of global offshore development, such as
wind farms and underwater cables, can pose a more direct threat to
shipwrecks (Papageorgiou, 2018).

Moreover, increasing offshore development, alongside the push for
global seabed mapping (Jakobsson et al., 2017; Mayer et al., 2018;
Wolfl et al,, 2019) continues to generate large amounts of marine
geophysical data that require assessment to identify underwater archae-
ological sites, such as shipwrecks. Archaeologists, therefore, require
adequate methods, tools, and workflows to analyse these ‘Big’ datasets
while remaining time, cost, and labour-effective in their identifications.
Traditional analyst-led methods are becoming less desirable in the face
of the sheer amount of geospatial data that require assessment. As
such, semi-automated methods for the detection of potential sites is
a growing interest in archaeological research (Opitz and Herrmann,
2018; Davis, 2019; Bickler, 2021; Cacciari and Pocobelli, 2022).

This paper aims to integrate two different semi-automated methods
for the detection of shipwrecks on a regional scale using bathymetry
(seabed elevation) data from the UK. The first method is a topographic
inference approach, which identifies potential shipwrecks based on
their value signatures in different raster data visualisations. The second
method uses several machine learning algorithms trained to detect ship-
wrecks using different visualisations of bathymetry data. This includes
a pre-trained detection model from ESRI (2021) as well as custom
models created for this research. The performance of each method was
evaluated against an existing shipwreck database (UKHO) and manual
review.

The key contributions of this paper are:

+ Provide an accessible and detailed workflow using traditional Ge-
ographic Information Systems (GIS) tools that identifies potential
shipwrecks in large bathymetry datasets.

* Demonstrate the importance of careful application of
semi-automated methods; specifically, how seabed variability
needs to be accounted for to successfully apply machine learning
methods in a precise manner.

2. Background

In recent years, the increase in volume, resolution, and access to
wide-coverage remote sensing datasets has facilitated archaeological
prospection at increasingly larger scales (Lambers et al., 2019). This so-
called ‘explosion’ in digital spatial data has subsequently changed how
archaeology is undertaken in many contexts (Bennett et al., 2014). The
growing volume of digital data available also presents new challenges
to current documentation workflows as traditional prospection methods
become increasingly untenable at larger scales (Bevan, 2015; McCoy,
2017; Banaszek et al., 2018; Green, 2023). As such, there has been
a push for closer integration of computer-aided detection in archaeo-
logical prospection (Bennett et al., 2014; Bevan, 2015; Traviglia et al.,
2016).
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2.1. Semi-automated methods for archaeological prospection

The use of computer-aided workflows has already enabled the de-
velopment of image processing techniques for the rapid extraction of
archaeological features in remote sensing imagery (Cheng and Han,
2016; Sevara et al., 2016). Previous computer-aided archaeological
research used template matching to identify consistent geometric fea-
tures (Lemmens et al., 1993; de Boer, 2005; Trier et al., 2009; Trier
and Pilg, 2012; Kvamme, 2013), knowledge-based techniques to extract
known sites such as enclosures (Zingman, 2016), and Object-Based
Image Analysis (OBIA) to segment and classify images based on their vi-
sual properties (Bescoby, 2006; Van Ess et al., 2006; Jahjah et al., 2007;
Hay and Castilla, 2008; Blaschke, 2010; Blaschke et al., 2014; Sevara
and Pregesbauer, 2014; Magnini and Bettineschi, 2019; Janowski et al.,
2021).

Template-matching and knowledge-based methods typically work
well for regular, geometric features such as mounds, crop marks, and
enclosures (Kvamme, 2013). However, these techniques are less adapt-
able and are not particularly suited for archaeological feature classes
that have high variability in shape/size or that are rotationally vari-
ant (Kvamme, 2013). As such, OBIA methods have become more popu-
lar as they can overcome these limitations and have been increasingly
applied to high-resolution geospatial data (Sevara and Pregesbauer,
2014; Davis, 2019).

In recent archaeological research, machine learning is also becom-
ing increasingly popular as it has proven to be capable of classifying
large and complex visual datasets for the detection of archaeological
features (Caspari and Crespo, 2019, 2). Machine learning approaches
differ from traditional methods because they do not explicitly rely
on knowing the exact properties and characteristics of expected (ar-
chaeological) objects; rather than manually defining these properties
to find objects that match given criteria, a computer learns these
characteristics by being given positive and negative instances of an
object class (Lambers et al., 2019, 3).

Despite their success, however, it is also clear that these techniques
are arguably most effective when operating in parallel with, and un-
der the supervision of, knowledgeable experts (Lucas, 2022; Hussain
et al.,, 2023). Automated analysis can provide a useful first step in
the recording process for areas that may lack a pre-existing historic
record and, therefore, could provide a preliminary database for further
development (Gallwey et al., 2019). Thus, machine learning can help
realise the full potential of Big Data remote sensing datasets for archae-
ological purposes (Karamitrou et al., 2022) while keeping the ‘human
in the loop’ element of traditional research. Moreover, even if just
acting in a preliminary analytical capacity, machine learning facilitates
the rapid identification of areas of greatest potential interest which
can better target limited archaeological resources. In this manner, they
can act as effective labour-saving tools as much as they are cost and
time-effective (Lucas, 2022).

2.2. Machine learning in archaeology

For object identification in images, two main machine learning
‘tasks’ are used: object detection and image segmentation (Sevara et al.,
2016). Overviews of the use of each these tasks are included in Tables
1, 2, and 3; while not exhaustive, they demonstrate broad trends
within recent archaeological literature. Detailed and useful overviews
of archaeological machine learning can be found elsewhere (Fiorucci
et al., 2020; Mantovan and Nanni, 2020; Argyrou and Agapiou, 2022;
Jamil et al., 2022; Kadhim and Abed, 2023; Camara et al., 2023; Bellat
et al., 2025) as well as more general overviews of machine learning in
remote sensing (Guo et al., 2016; Ball et al., 2017; Garcia-Garcia et al.,
2018; Minaee et al., 2020; Gui et al., 2024).

Object detection tasks have been frequently utilised in archaeologi-
cal research as they are effective at localising potential features in large
image datasets. These tasks have been primarily applied to satellite
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Table 1

Table overview of object detection and image classification techniques in archaeological research.
Authors Task Algorithm Data Object(s)
Zingman et al. (2016) Image Classification AlexNet (CNN) Satellite Imagery Enclosures

Guyot et al. (2018)

Image Classification

Random Forests

LiDAR

Burial Mounds

Trier et al. (2018)

Image Classification

SVM, AlexNet

LiDAR

Charcoal Kilns

Caspari and Crespo
(2019)

Image Classification

CNN

Satellite Imagery

Burial Mounds

Lambers et al. (2019) Object Detection WODAN (Faster R-CNN) LiDAR Barrows, Celtic Fields
Verschoof-van der Vaart Object Detection WODAN (Faster R-CNN), VGG-16 LiDAR Barrows, Celtic Fields,
and Lambers (2019) Charcoal Kilns

Trier et al. (2019) Object Detection CNN, ResNet-18 LiDAR Roundhouses, Shieling

Huts, Cairns

Orengo et al. (2020) Image Classification Random Forests Multi-Spectral Mounds
Imagery
Phelan and Riordan Image Classification CNN, ResNet-34 Aerial Imagery Ringforts

(2020)

Somrak et al. (2020) Image Classification VGG-19 LiDAR Aguada, Buildings,

Platforms, Terrain
Kramer (2021) Image Classification, CNN LiDAR, Various

Object Detection Multi-Spectral
Imagery

Olivier and Object Detection YOLOv4 LiDAR Barrows, Celtic Fields,
Verschoof-van der Charcoal Kilns
Vaart (2021)
Landauer et al. (2022) Image Classification CNN, ResNet-34 LiDAR Hillforts
Canedo et al. (2023) Object Detection YOLOvV5 LiDAR Burial Mounds
Character et al. (2023) Image Classification Random Forests LiDAR Cave Entrances
Verschoof-van der Object Detection YOLOv4 LiDAR Relict Charcoal Hearths
Vaart et al. (2023)
Character et al. (2024)  Object Detection YOLOv3 LiDAR Mayan Mounds

imagery and LIDAR data and on a variety of site types; though they
perform particularly well on regular feature classes such as barrows,
mounds, and enclosures (Table 1).

Segmentation tasks are becoming increasingly popular because they
offer a more complete understanding of an image scene through pixel-
by-pixel labelling (Garcia-Garcia et al., 2018; Minaee et al., 2020). In
recent archaeological research (Table 2), LiDAR data has used most
frequently for image segmentation to detect a range of features (Kazimi
et al., 2018; Gallwey et al., 2019; Kazimi et al., 2019; Bundzel et al.,
2020; Bonhage et al., 2021; Guyot et al., 2021; Kazimi and Sester,
2023). Other data sources that have also been successfully used include
satellite and aerial imagery (Soroush et al., 2020; Altaweel et al., 2022;
Karamitrou et al., 2022), Ground Penetrating Radar (Kiiciikdemirci and
Sarris, 2020), and even 3D photogrammetry datasets (Vandenabeele
et al., 2023).

2.3. Machine learning in maritime archaeology

Machine learning approaches have also been successfully applied to
several types of marine data for the detection of underwater sites and
objects (Table 3). For example, object detection algorithms have been
used for the identification of shipwrecks in side-scan sonar data (Ye
etal., 2018; Xu et al., 2019; Zhu et al., 2019; Labbé-Morissette and Gau-
tier, 2020; Xu et al., 2022). There has even been successful integration
of these methods into real-time Autonomous Underwater Vehicle (AUV)
surveys (Rutledge et al., 2018; Nayak et al., 2021), highlighting their
potential for tackling global ocean mapping challenges (Wang et al.,
2022).

Segmentation algorithms, however, have thus far been underutilised
in maritime research, despite successful applications for amphorae de-
tection in photo orthomosaics (Drap et al., 2019), shipwreck detection
in satellite imagery (Karamitrou et al., 2023), and recent identification
of seabed layers in sub-bottom seismic data (Fraser et al., 2024).

The closest comparable study for this research is Character et al.’s
(2021) work using machine learning (object localisation) for shipwreck
detection in bathymetry data from the United States. Their work pro-
vided a crucial proof-of-concept and demonstrated the capabilities of
these methods for shipwreck detection; their model was able to detect
95% of the test shipwrecks while maintaining a very high precision rate
of 90% across large areas of seabed (Character et al., 2021, 6-7).

3. Materials and methods

This study used publicly-accessible multibeam bathymetry data
from the UK, downloaded through the Admiralty Seabed Mapping
Service (available at: https://seabed.admiralty.co.uk). A spatial reso-
lution of 1 m was used, based on previous research (Plets et al., 2011,
2), which identify this as being the minimum optimal resolution for
shipwreck identification. The extent of the study area can be seen in
Fig. 1, covering a total area of 15,126 km? from the North East to the
South of England. All bathymetry data was in Bathymetry Attributed
Grid (.bag) format, before conversion to TIFF (.tif), and each area
downloaded corresponded to a single survey, rather than time average
data. The individual bathymetry tiles were grouped into four major
geographic regions: North East (NE), East (E), South East (SE), and
South (S). This was done to enable easier handling of the data and
reduce the computational requirements to process each layer.

An overview of the methods workflow, from data input to detection
outputs, is shown in Fig. 2. All geospatial analysis, including the
machine learning stage, was completed using ArcGIS Pro (3.3.0). The
Deep Learning Libraries Framework for ArcGIS was required to run the
necessary tools (available at: https://github.com/Esri/deep-learning-
frameworks). The ArcGIS tools were subsequently run using an NVIDIA
Quadro RTX 6000 GPU (NVIDIA-SMI 537.13) with 152 GB of GPU
memory and NVIDIA CUDA (12.2). GPU use is recommended as it
enables more efficient and faster image processing than the CPU (Hess
and Alouta, 2021). The specific GIS tools used for each analysis step
are italicised and/or in brackets (Example Tool).
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Table 2
Table overview of image segmentation techniques in archaeological research.
Authors Task Algorithm Data Object(s)
Kazimi et al. (2018) Image Segmentation CNN, VGG-16, SAE LiDAR Natural Streams, Lakes,
Tracks
Gallwey et al. (2019) Image Segmentation U-Net LiDAR Mining Pits
Kazimi et al. (2019) Image Segmentation DeepLabv3+ LiDAR Bomb Craters, Charcoal
Kilns
Bundzel et al. (2020) Semantic Segmentation U-Net, Mask R-CNN LiDAR Mayan Structures

Soroush et al. (2020) Image Segmentation U-Net Satellite Imagery Qanat Shafts
Kiiciikdemirci and Semantic Segmentation U-Net GPR Archaeological

Sarris (2020) Structures (Buried)
Bonhage et al. (2021) Instance Segmentation Mask R-CNN LiDAR Relic Charcoal Hearths
Guyot et al. (2021) Instance Segmentation Mask R-CNN LiDAR Various

Altaweel et al. (2022) Instance Segmentation Mask R-CNN UAV Aerial Imagery Structures, Mounds,

Qanats

Karamitrou et al.

Semantic Segmentation

SegNet, SimpleNet

Satellite Imagery

Arch. Features/

ImprovedNet

(2022) Structures
Kazimi and Sester Semantic Segmentation RVNet, RVGAN LiDAR Bomb Craters, Charcoal
(2023) Kilns, Burial Mounds,
Mining Holes
Vandenabeele et al. Semantic Segmentation DeepLabv3+ Photogrammetry Historic Masonry
(2023)
Table 3
Table overview of machine learning applications in maritime archaeology.
Authors Task Algorithm Data Object(s)
Rutledge et al. (2018) Object Detection SVM, CNN Side-Scan Sonar Shipwrecks
Ye et al. (2018) Object Detection VGG, ResNet18 Side-Scan Sonar Shipwrecks, Aircraft
Nayak et al. (2021) Object Detection CNN Side-Scan Sonar Shipwrecks
Drap et al. (2019) Image Segmentation CNN Underwater Imagery Amphorae
Zhu et al. (2019) Image Classification AdaBoost, kNN, Side-Scan Sonar Shipwrecks
Random Forests, SVM
Xu et al. (2019) Object Detection Faster R-CNN, YOLO, Side-Scan Sonar Shipwrecks

Labbé-Morissette and
Gautier (2020)

Object Detection

FAST, MSER, DBSCAN

Side-Scan Sonar

Shipwrecks, Fishing
Gear

Character et al. (2021) Object Detection YOLOvV3 Bathymetry Shipwrecks

Xu et al. (2022) Image Classification SonarNet, GAPVGG Side-Scan Sonar Shipwrecks
(VGG16)

Karamitrou et al. Semantic Segmentation SimpleNet Satellite Imagery Shipwrecks (Black

(2023) Reefs)

Fraser et al. (2024) Semantic Segmentation DeepLabv3+ Seismic Seabed Layers

3.1. Step 1: Raster extraction

The first semi-automated method identifies potential shipwrecks
based on their influence on the seabed’s topography (Fig. 3). This
method was developed as a preliminary step to enhance and stream-
line the application of machine learning. Existing approaches typically
rely on either geospatial techniques or machine learning indepen-
dently, whereas this research integrates both, potentially offering a
more effective application, as will be discussed later.

Shipwrecks cause changes to the seabed environment not only due
to their material, e.g. metal wrecks (Karamitrou et al., 2023), but
also due to their influence on the surrounding sediment and water
dynamics (Quinn and Smyth, 2018). This method identifies areas of
change on the seabed in the overlapping values of several different
visualisation layers: slope, curvature, and topographic position index
(TPI).

Slope and curvature were used because shipwrecks should have
statistically different values in these visualisations compared to the
background seabed topography (Character et al., 2021, 8). TPI values
are a calculation of a cell’s elevation compared to its surrounding
neighbours within a specified range (Weiss, 2001; Jenness, 2006). This

identifies areas of comparative high and low elevation (positive and
negative TPI values, respectively). Thus TPI was used as it was well
suited to identify not only shipwrecks themselves, which are often
higher than the surrounding seabed, but also any scour that would be
present (i.e. negative TPI). TPI was calculated with the Jenness (2006)
method from the Topography Toolbox for ArcGIS (Dilts, 2019) and used
a circle neighbourhood with a 30 cell radius (i.e. 30 metres). This was
based on trial and error, attempting to maximise shipwreck signatures
while minimising background topography.

To combine all three visualisations, the layers were reclassified
into five classes using the Reclassify tool with the Jenks distribution
function (ESRI, 2024). The Jenks distribution was used as it identifies
natural groupings within a dataset that are not evenly distributed. Re-
classification enables new values to be assigned to each class (i.e. range)
of values. Slope was reclassified with low values being equal to 1 and
high values being equal to 5 (Min-Max = 1,2,3,4,5), as we should expect
shipwrecks to have higher slope values than the background seabed.
Curvature and TPI were reclassified with both minimum and maximum
values being equal to 5, then 4 then 1 (Min-Max = 5,4,1,4,5). This was
done not only because high positive values of each of these layer should
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Fig. 1. Map showing the extent of 1 m bathymetry data used in this research.

https://seabed.admiralty.co.uk). Map coordinates are shown in British National Grid.

indicate shipwrecks but also both negative curvature and TPI values can
indicate seabed scour.

The visualisations were combined using the addition function in
Raster Calculator, producing a single raster with a range of values
between 3 and 15. By filtering out low value cells (Extract by Attributes)
seabed areas with low shipwreck potential can be effectively removed
and reduce the amount of data required for further assessment. For
this research, only maximum cell values (15) were extracted in the
combined raster, although a lower threshold (or a variable one) would
also work. Finally, to produce a more workable format for manual
review, the raster is converted into a polygon feature class (Raster to
Polygon) and buffered to 20 m (Buffer) to reduce noise by merging
detections with close spatial proximity.

The Raster Extraction workflow produces seabed areas with high
potential for shipwreck sites, inferred from their topographic charac-
teristics. These areas were then prepared for further analysis using
machine learning detection models, trained to identify shipwrecks.
To do this, centralised points for each output polygon were created
(Feature to Point) and then buffered (Buffer) to the size of the trained
models (256 x 256). Square polygons are then created using the
Minimum Bound Geometry tool which are used to clip the visualisation
layers (Raster Clip) used for detection input with the machine learning
models.

T 1
200 Kilometers

I 1 T
500000 600000 700000

All data was downloaded from the Admiralty Seabed Mapping Service (available at:

3.2. Step 2: Machine learning in ArcGIS pro

All stages of the machine learning workflow (data collection, pre-
processing, training, and testing) were completed using the deep learn-
ing tools available in ArcGIS Pro. ArcGIS was used because the software
provides an accessible approach to machine learning tools while being
easily integrated with geospatial datasets.

Several visualisation methods (hillshade, shaded relief, and curva-
ture) were first used to increase the visibility of potential shipwreck
sites from the original bathymetry. Hillshade is a standard visualisation
in archaeological prospection studies and is often used in machine
learning approaches. Shaded Relief is a type of colourised hillshade
and was used to enable comparison to the pre-trained ESRI model
(2021) which had been trained using this visualisation. The hillshade
and shaded relief visualisations were created using default settings:
Azimuth 315, Altitude 45, and Z factor 1.

Lastly, curvature was used because, while shipwrecks should have
statistically different values in this visualisation compared to the sur-
rounding seabed (Character et al., 2021, 8), it is not very easy to
visually assess for the human analyst. Thus this enabled a comparison
between ‘analyst friendly’ visualisations, hillshade and shaded relief,
to a visualisation that may be more conducive to a computer vision
approach.
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Fig. 2. A flowchart showing the overall methods workflow, from the bathymetry data input, visualisation creation, raster extraction filtering, and machine learning.
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Fig. 3. The Raster Extraction workflow, showing the outputs of each stage: visualisations - (a) slope, (b) curvature, and (c) topographic position index. Analysis stage - (d)
combined reclassified raster, (e) extracted high values (filtering), and (f) the final output as a buffered polygon (blue) shown with a hillshade background layer.
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Fig. 4. Examples of hillshade training images used to train the hillshade detection models, showing the difference between conspicuous wrecks (left: a—d) and smaller, less visually

prominent wreck sites (right: e-h).

3.2.1. Training data

Training data was created (Export Training Data for Deep Learning)
which consisted of image tiles in TIFF (.tif) format of 256 x 256
pixel size. A single class of ‘Shipwreck’ was labelled and exported for
the training data, which accounted for both conspicuous (i.e. well-
preserved, highly visible) wrecks as well as smaller, possible wrecks
(Fig. 4).

The training data was augmented primarily using 50% stride (128)
and 90° image rotation to create synthetic data to increase the amount
of training samples. In total 8,956 training images were created from
1,014 shipwrecks that were identified in the three training regions (NE,
E, and SE). These images, while being labelled as a single object class,
contained 573 examples of conspicuous shipwrecks and 441 examples
of smaller wreck anomalies. Additional augmentation was completed
during the training of the detection models (Train Deep Learning Model),
which included further rotation, brightness, contrast, zoom, and crop
changes (see Appendix, Table A.1).

3.2.2. Model architectures

Three different object detection models were selected in order to
compare their performance for shipwreck detection. This enabled not
only an evaluation of the impact of the different visualisations but also
the machine learning algorithms themselves.

The first class of models used was ‘Single Shot Detector’ (SSD),
a one-stage object detector that predicts object bounding boxes and
class labels directly from the image (Liu et al., 2016). Without a
proposal generation phase, SSD is fast and can even work in real-time
settings. SSD algorithms can incorporate information from multiple
scales, enabling them to detect objects of varying size (Liu et al., 2016).

Second, a Faster R-CNN (Region-based Convolutional Neural Net-
work) model was used. In contrast to the SSD algorithm, this model has
a two-stage object detection framework (Ren et al., 2016). The model’s
architecture is broken down into two modules: a Regions Proposal
Network (RPN) and a Fast R-CNN feature extractor (Ren et al., 2016).
Essentially, the RPN uses a CNN to propose regions of interest as a
first stage and then a Fast R-CNN is used to extract features from the
proposed regions.

The third model class, Mask R-CNN (used in the ESRI pre-trained
model), is an extension of the Faster R-CNN algorithm which adds the
capability of pixel-segmentation (He et al., 2017). This is a type of
instance segmentation; in addition to the Faster R-CNN bounding box

and class label, the Mask R-CNN generates a binary pixel mask for each
object (He et al., 2017).

SSD models are specifically designed for object detection and have
been used in previous archaeological studies (Ye et al., 2018; Verschoof-
van der Vaart and Lambers, 2019; Trier et al., 2019). Several ar-
chaeological studies have also effectively used Faster R-CNN mod-
els (Verschoof-van der Vaart and Lambers, 2019; Trier et al., 2021)
as well as the Mask R-CNN segmentation model (Bundzel et al., 2020;
Altaweel et al., 2022; Bonhage et al., 2021; Guyot et al., 2021).

3.2.3. Backbone networks

All three model types were trained using the same backbone ar-
chitecture of ResNet50. ResNet (Residual Network) is a type of CNN
architecture that improves detection performance by making it easier
to optimise (He et al., 2016). This is achieved by using residual (or
skip) connections that allow the model to more efficiently learn through
deeper layers.

The backbone architectures available in ArcGIS Pro have already
been preconfigured (trained) on a generic image dataset, in this case,
the ImageNet dataset (Russakovsky et al., 2015) to apply a procedure
known as transfer learning. This is where a model trained on a par-
ticular task, typically a generic task with a large associated dataset,
is fine-tuned on the task of interest. This process not only reduces
the amount of training time required but research has shown that
the use of pre-trained layer weights is greatly beneficial compared
to random initialisation (Yosinski et al., 2014), including in remote
sensing contexts (Nogueira et al., 2017).

Despite all other models and datasets performing well during train-
ing with ResNet50, the Faster R-CNN curvature model failed to learn.
As such, another residual network, ResNet34, was used to train this
model. Once the training stage was complete, the Detect Object Using
Deep Learning tool was used to run the trained models across the testing
area (see Appendix, Table A.2 for details).

4. Results

Using an existing shipwreck database (UKHO), a total of 253 ship-
wrecks were manually identified in the testing data (South region)
across an area of around 3,131 km?2. These shipwrecks were grouped
into two broad classes when evaluating the performance of each
method; conspicuous (i.e. visually prominent) and ‘possible’
shipwrecks. The former consist of visually prominent wrecks that are
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Table 4
Raster Extraction results for all shipwreck sites and conspicuous wrecks.

Raster Extraction

Case 1: All Sites (n = 253)

Recall Precision F1 Score

0.78 0.11 0.20

Case 2: Conspicuous Shipwrecks (n = 107)

Recall Precision F1 Score

0.98 0.06 0.11

usually intact metal wrecks. The latter group was only able to be
identified as wrecks using the UKHO database and typically were much
smaller, less visually distinct sites.

Standard machine learning performance metrics, Recall, Precision,
and F1 Score, were used to evaluate the performance of both the Raster
Extraction method and the machine learning models. The basis of these
measurements is the number of True Positives (TP), False Positives (FP),
and False Negatives (FN) that are identified by the model.

Recall is the fraction of objects in the test data that are correctly
identified (TP / (TP + FN)). Precision is the fraction of detections that
are true positives (TP / (TP +FP)). F1 Score is the harmonic average
of recall and precision that measures the detection performance for
each selection class (F1 = 2 x recall x precision / (recall + preci-
sion)). These performance metrics are shown in Tables 4 and 5. The
Raster Extraction method was able to identify 78% of all shipwrecks
(197/253) in the testing area and performed particularly well on the
conspicuous shipwrecks, with 98% (105/107) being detected. This
method, however, had a low precision score; 11% for all features and
only 6% for conspicuous wrecks, indicating high rates of false positive
detections. The low F1 scores of the Raster Extraction (0.20 and 0.11)
show that this method struggles to balance recall and precision.

In total, seven different machine learning (ML) detection models
were trained and tested, each with interesting performance variations
across networks and datasets. Examples of some of the true positives
detections are shown in Fig. 6. The best-performing ML model on all
shipwreck sites was an SSD trained on a curvature dataset, which
identifies 73% of all sites with 47% precision. This is also reflected
in the F1 score of 0.57, the highest for all the models, indicating the
best balance between recall and precision. The best ML model for
identifying conspicuous wrecks is an SSD trained on a shaded relief
dataset which, despite a lower precision of 28%, detects 90% of these
shipwrecks.

The ESRI pre-trained model was fine-tuned on the UK dataset as
running the model without this step resulted in zero correct detections.
The ESRI model was only able to detect just over half (55%) of all ship-
wreck sites, with a precision of 24%. It performed better on conspicuous
wrecks, with 72% detected, although with a lower precision of 17%.
The SSD trained on shaded relief had higher performance metrics for
all sites and conspicuous wrecks than the ESRI model. Although the F-
RCNN model had higher recall numbers, it had slightly lower precision
and F1 scores than the ESRI model.

5. Discussion
5.1. Raster extraction

The Raster Extraction method filtered out 96% of the original test
area, removing around 3,000 kmZ, while still detecting 78% of all ship-
wreck sites. The vast majority of unidentified sites are in the ‘possible’
shipwreck class with only 63% of these sites being detected. However,
98% of conspicuous wrecks were successfully identified, with only two
shipwrecks being missed (Fig. 5). As such, this method presents a
strong use-case scenario for the rapid identification of prominent, metal
wrecks in new survey data. Moreover, despite the low precision of this
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method, it functions well as a preliminary filtering step for the machine
learning detection process, as it greatly reduces the amount of data that
needs to be analysed while retaining a high recall score.

Research by Davis et al. (2020) and Davis et al. (2024) highlight
the potential for using a more traditional, ‘topographic inference’ ap-
proach to identify both shipwrecks as well as smaller archaeological
deposits. Davis et al. (2020) used a hydrological depression iden-
tification algorithm (Wu et al.,, 2016) and effectively repurposed it
to detect possible shipwrecks in bathymetry data. Their Inverse De-
pression Analysis managed to achieve a recall of 71% in their study
area.

This research attempted to extend this topographic inference ap-
proach by identifying potential shipwrecks not only by their elevational
change but also by other characteristics (slope, curvature, TPI) which
make them distinct features on the seabed. The use of three different
visualisations has made this methodology more robust in its identifica-
tions; with a higher recall for all sites (78%) and was able to perform
well across very large areas with different seabed environments. The
implementation of this method is also relatively straightforward, using
standard built-in GIS tools, making it an accessible way for rapid
preliminary surveys.

While this method is very effective at reducing the amount of
data, the low precision results shows that it works best in a pre-
liminary capacity; further analysis, either using manual or machine
learning methods, is required to reduce false positive detections. Also
note that our workflow requires deciding on an appropriate value of
a hyperparameter: the threshold value above which to consider the
combined reclassified raster for detections. In this work, we set this to
the maximum raster value (15). The existence of this hyperparameter
could represent a limitation of our work, although it is common for
detection algorithms to include such hyperparameters. However, using
the maximum value did cause smaller, less prominent wreck sites to
not be detected, reflected by only 63% of smaller sites being identified.

A key step to improve the Raster Extraction method and results
would thus be to use a variable threshold based on a coarse-level seabed
characterisation. By first completing a seabed characterisation, differ-
ent thresholds could be optimised to different seabed environments. For
example, using a lower threshold on flatter, sandy seabeds and higher
threshold on more complex bedform areas. This step should further
increase the amount of smaller shipwreck sites being detected but
would also result in more overall detections (i.e. more false positives).

Existing semi-automated workflows for seabed classification using
high-resolution bathymetry data already exist and have used both
GIS-based approaches (Walbridge et al., 2018) as well as machine
learning (Arosio et al., 2023). Seabed mapping is a multidisciplinary
field, with importance to several different research areas including
benthic ecology, marine geology, and subsea engineering. The Raster
Extraction method could, therefore, be further developed into a more
sophisticated workflow using tools and expertise developed in these
fields.

5.2. Machine learning models

The machine learning models trained using Shaded Relief data
consistently perform well in terms of recall, across both shipwreck
classes, but often suffered from low precision. Curvature-based models
(especially the SSD for all sites) achieve the highest precision and F1
scores, indicating a better balance between correct detections and false
positives. This is particularly important because the curvature visual-
isation is not as analyst-friendly, i.e. easy to look at, than the other
visualisations. The machine learning algorithms are unaffected by this,
and even perform better on this dataset. Moreover, the most successful
model network in terms of performance (SSD on curvature), is one
of the worst performing models when trained and tested on hillshade
data. Overall, precision remains low across most methods and datasets,
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Fig. 5. Examples of shipwreck sites, shown in hillshade visualisation, that were not detected (False Negatives) by the raster extraction method: (a) and (b) are the two missed

conspicuous wrecks, (¢) a possible, disarticulated wreck, and (d) a small, possible wreck.

Table 5

Machine Learning results showing the performance of the custom models by algorithm (SSD, F-RCNN,
and M-RCNN), visualisation, and shipwreck class. F-RCNN* indicates the only model trained with

ResNet34 instead of ResNet50.

Visualisation | Hillshade Curvature Shaded Relief \
Model | F-RCNN | SSD | F-RCNN* | SSD | F-RCNN | SSD | M-RCNN |
Case 1: All Features (n = 197)
Recall 0.70 0.20 0.47 0.73 0.75 0.73
Precision 0.13 0.01 0.45 0.47 0.20 0.42
F1 Score 0.22 0.02 0.46 0.57 0.32 0.53 ‘
Case 2: Conspicuous Shipwrecks (n=105) \
Recall 0.90 0.21 0.70 0.85 0.90 0.90
Precision 0.09 0.01 0.36 0.29 0.13 0.28
F1 Score 0.16 0.01 0.48 0.43 0.23 0.43

reflecting a persistent issue with false positives. Models like the curva-
ture F-RCNN and shaded relief SSD demonstrate some improvement,
but may not be enough for consistently reliable classifications.

The ESRI model (after fine-tuning on the UK dataset) did not out-
perform other models that were pre-trained on generic image datasets.
This may be because the characteristics of the original ESRI training
data differ too much from the UK dataset. In the sample data the
model is provided with, the ESRI model performs well on clusters of
much smaller shipwrecks and has a reported average precision score
of 0.92 in these conditions. In contrast, the UK dataset, and the test
region specifically, typically has more isolated, larger shipwrecks. This
difference is not optimal for transfer learning success, and thus there is
currently no identifiable benefit of fine-tuning the ESRI model in these
circumstances.

In Character et al.’s (2021) study they trained and tested a ma-
chine learning object detection model for shipwreck identification in
hillshade visualisations of bathymetry data. Their model was able to
achieve very high recall (95%) and precision (90%) across large a
study area of seabed. Their work used fewer training images than this
research, just 410 shipwreck chips, but was able to achieve substan-
tially better results. The main difference, and the one likely limiting the
precision of the custom detection models created here, is that they also
trained their model on an equal number of background topography fea-
tures to reduce the number of false positive detections. Character et al.
(2021) also used a different model network and backbone algorithm
(YOLOv3 with Darknet53; Redmon and Farhadi, 2018) than the models
used in this research. Their research helps to, again, highlight the
importance of considering the background seabed environment and its
impact upon semi-automated methods. By integrating this background
training to our models, the number of false positives is expected to
reduce, especially if domain-specific knowledge is accounted for.

A regional breakdown of the detection results across the test area
was completed to identify problematic areas causing false positives
(Table 6). The table shows the top five largest numbers of detections
across the test area regions for the Raster Extraction method and for
each machine learning model. The tables shows a clear and consistent
spatial pattern with several ‘problematic’ regions consistently causing
high numbers of false positive detections for all methods and data

visualisations. These problematic regions have large areas of rock
outcrops, dense sand waves, and other linear seabed features that cause
the erroneous detections (Fig. 7).

What is clear from this breakdown is that a major challenge to any
semi-automated method is being able to adapt and overcome different
levels of seabed complexity — from relatively flat, sandy seabeds to
sand waves and exposed rock. Thus, the use of any method needs to
have a clearly defined purpose for use and specification for what seabed
environment it is suited to.

While recognising this challenge, there is still a reasonable oppor-
tunity for transferability of the detection models created during this
research. It is feasible that these models could be applied to new
high-resolution bathymetry datasets, both multibeam echosounder and
LiDAR-derived bathymetry, to detect shipwrecks. Greater success is
likely if higher spatial resolution data is used (e.g. 0.5 m) but larger
wrecks would still be detected in slightly coarser data (e.g. 2 m).

5.3. Wider implications

In the context of the push for global seabed mapping and its
corresponding Big Data challenges, it is clear that traditional manual
interpretation techniques are becoming increasingly untenable. Au-
tomation helps offer a viable solution to effectively and systematically
analysing vast (marine) datasets.

While it is true that conspicuous wrecks are typically easily identi-
fied during the data collection phase of marine geophysical surveys,
manual detection of wrecks is subjective and highly influenced by
factors like the processor’s experience, fatigue, and time pressures.
As such, automated tools can assist in identifying features that may
have been missed during initial data processing, such as less-visually
obvious, smaller shipwrecks. Moreover, with the increasing number of
projects and the tight timelines for processing and interpreting data,
semi-automated approaches are becoming crucial for double-checking
and improving human interpretation.

Similarly, automated methods can also offer useful and effective
ways to aid cultural heritage management strategies (Cowley, 2012;
Magnini and Bettineschi, 2019). This is especially important for under-
water cultural heritage, which can often be neglected or understudied
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Fig. 6. Examples of True Positive machine learning detections on both conspicuous and smaller ‘possible’ shipwrecks. Results shown are from SSD models trained on hillshade
(a,b), curvature (c,d), and shaded relief (e,f). Examples from the ESRI model (M R-CNN), trained on shaded relief, are also shown (g,h).
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Fig. 7. Examples of False Positive machine learning detections, showing the main problematic features; rocky areas, sand waves, and linear features. Results shown are from SSD
models trained on hillshade (a—c), curvature (d-f), and shaded relief (g-i). Examples from the ESRI model (Mask R-CNN), trained on shaded relief, are also shown (j-1).
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Table 6
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Regional breakdown of the survey areas that comprise the final testing area (South). This table shows the five largest numbers of detections
across the survey regions by method and clearly identifies several commonly problematic areas.

Top 5 detection numbers

Raster Extraction Hillshade Curvature Shaded Relief ESRI
Region Threshold 15 F-RCNN SSD F-RCNN SSD F-RCNN SSD M-RCNN
Lyme Bay 1IN X
Lyme Bay 1S
Lyme Bay 2
Lyme Bay 3
Lyme Bay 4 X
Lyme Bay 5
Selsey Bill to Lee-on-Solent X X X X X X X
Southern Approaches Eastern Solent X X X X X X X X
Newhaven to Shoreham X X X X X X X
Beachy head to Newhaven Blk 1 X
Beachy head to Newhaven Blk 2 X
Beachy Head East rMCZ X X X X X X X
Hastings to Beachy Head X X X X X X X
Percentage of All Detections 94.5 80.0 55.6 84.43 65.85 73.53 61.03 83.97

due to the challenges of the marine environment, such as inaccessibil-
ity (Andreou et al., 2022). New management strategies for underwater
sites can be developed by using automated methods to rapidly identify
areas of high archaeological potential through probable site identifi-
cation, such as using the workflow outlined in this paper. This can
be refined by using further classification of these detected sites, such
as a shipwreck being articulated or disarticulated or using a more
detailed class scheme (Gregory et al., 2024). From these classifications,
priorities of study or conservation could be developed. In this manner,
automated site detection and classification can thus also help inform
field-based research and investigations, as has already been done for
terrestrial research (Lambers, 2018).

6. Conclusions

This paper presents a new semi-automated workflow for the detec-
tion of shipwreck sites in bathymetric data. A preliminary ‘topographic
inference’ approach was first applied to identify seabed areas with high
shipwreck potential, based on their value signatures in three visualisa-
tions of bathymetry data: slope, curvature, and topographic position
index (TPI). This Raster Extraction method acted as a filtering process,
reducing the amount of data, prior to the application of machine
learning (ML) object detection models. In total, seven different ML
models were trained and tested for this research, which included test-
ing three different algorithms (SSD, Faster R-CNN, and Mask R-CNN)
combined with three different data visualisations: hillshade, curvature,
and shaded relief. These methods were tested over 3,131 km2 of 1 m
resolution bathymetry from the south coast of England. In this area,
a wide variety of shipwreck morphology had to be considered when
evaluating the method performance; ‘conspicuous’ wrecks, defined as
visually prominent, large shipwrecks as well as much smaller, possible
wreck features.

The Raster Extraction method was able to filter 96% of the orig-
inal test data while still detecting 78% of all shipwreck features
(n = 197/253). It is particularly suited to identify conspicuous wrecks,
with 98% of these being identified (n = 105/107). However, only 63%
of smaller features were able to be detected as well as having a low
precision rate overall (11%). The ML models that performed best on
all sites were the curvature SSD (F1 = 0.57) and the shaded relief SSD
(F1 = 0.53). For conspicuous wreck sites, 90% recall was achieved by
three models (hillshade Faster R-CNN and shaded relief Faster R-CNN
and SSD), although most models suffered from low precision.

This paper aimed to present this new workflow in an accessible
format and used standard geospatial mapping tools to complete both
stages of analysis in ArcGIS Pro. It also highlighted how the successful
application of any semi-automated method for the detection of under-
water archaeological sites needs to carefully consider the local seabed
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environment and the specific capabilities/limitations of the applied
tools. These are particularly important considerations for archaeologists
in the context of global seabed mapping initiatives to be able to
effectively identify potential sites in rapidly expanding marine datasets.
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Appendix

Train Deep Learning Model tool parameters (Table A.1) and Detect
Object Using Deep Learning tool parameters (Table A.2).

Data availability

All of the bathymetry data used in this study was downloaded from
the Admiralty’s Seabed Mapping Service available for free at: https:
//seabed.admiralty.co.uk/.

The UKHO Wrecks and Obstruction Database is available here:
https://www.admiralty.co.uk/access-data/marine-data.

The Deep Learning Libraries Framework for ArcGIS is available at:
https://github.com/Esri/deep-learning-frameworks.
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Table A.1

Model training configuration.
Max Epochs 50
Model Type SSD, Faster R-CNN, Mask R-CNN
Batch Size 64

Learning Rate Blank (Optimal Learning Rate
determined by ArcGIS based on

learning curve)

ResNet50 (*ResNet34 for
Curvature F R-CNN)

None (*Except for ESRI Mask
R-CNN retrain)

10%

Backbone Model

Pre-trained Model

Validation

Stop when model stops
improving

False (Continue Training)

Freeze Model False (Unfreeze Model)

Data Augmentation Custom

Augmentation Rotate ’30.0;0.5’

Parameters Brightness ’(0.4,0.6);1.0°
Contrast ’(0.75,1.5);1.0
Zoom ’(1.0,1.2);1.0
Crop '224;1.0;(0,1);(0,1)

Chip Size 256

Monitor Metric Validation Loss

Table A.2

Model detection configuration.
Padding 56
Threshold 0.6
Batch Size 64
Exclude Pad Detections True
Test Time Augmentation False
Non Maximum Suppression True
NMS Overlap 0.1
Confidence Score Field Confidence

Max Overlap Ration 0
Processing Mode Process as Mosaicked Image
Use Pixel Space No Pixel Space
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