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Abstract 

To understand the mechaisnm behind high respond (HighR) compared to low respond 

(LowR) to resistnace training (RT) and whey protein supplementation (20g/day), we 

analysied vastus laterails muscle biopsies from a total of 50 participants. Utilising the MRI 

muscle cross-sectional area (CSA) data, we defined responders as those who had hypertrophy 

exceeding the 1.7% method error. Quadriceps CSA in the lower responder (LowR) (n=25, 

mean age 69±5 years) and HighR (n=25, mean age 67±4 years) increased from 53.6 ± 12.1 

cm2 to 55.4 ± 12.8 cm2 after 10 weeks of RET (3.3 ± 1.7%, P < 0.001) and increased the 

absolute CSA in the higher responders (HighR) from 53.7 ± 12.5 cm2 to 59.2 ± 13.6 cm2 

(10.3 ± 2.0%, P < 0.001). Muscle biopsies were taken from the vastus lateralis before and 

after RT. We performed untargeted liquid chromatography-mass spectrometry metabolomics 

to investigate changes in muscle metabolic regulation. The partial least squares discriminant 

analysis (PLS-DA) yielded the best results using the polar extracts, achieving a 75% average 

correct classification rate for predicting HighR and LowR. There was no signifncat 

differences in metabolomic profile at the basline.  Our findings revealed several metabolic 

pathways, including branched-chain amino acid catabolism, tryptophan metabolism (indole 

and kynurenine pathways), the TCA cycle, gut-derived metabolites, carnitine shuttle 

metabolism as prominent pathways disrupted in LowR. We provide new insights and has the 

potential to identify and enhance interventions targeting muscle metabolism, ultimately 

improving muscle mass and strength to reduce the risk of sarcopenia and frailty in older age. 

 

 

Keywords: muscle hypertrophy; muscle strength; resistance training; older age; 

metabolomics 
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1 INTRODUCTION 

Currently, resistance training (RT) is recognized as the most effective ‘anti-frailty’ 

intervention that can counter muscle loss and improve muscle function in older age [1]. RT 

involves exercises by a muscle or muscle group against external resistance, typically 

comprised of higher-load, lower-repetition muscle contractions  [2]. RT is known to induce 

muscle hypertrophy in addition to improving muscular strength and metabolic health. The 

metabolic adaptations induced by RT result in an increased flux of amino acids and other 

substrates for the process of protein synthesis and other biosynthetic pathways [3], which are 

required to increase muscle protein turnover and mass [1, 4]. Despite the existing evidence 

suggesting a broad metabolic change with RT[3, 5], less is known about the effect of RT at 

the muscle metabolic level, especially in aging muscle. Biochemical assessments, including 

metabolomics in response to exercise, have the potential to identify biological pathways that 

are essential in developing strategies for the management of ageing diseases and frailty [6, 7]. 

We conducted high-throughput untargeted liquid chromatography-mass spectrometry on 

vastus lateralis muscle biopsies for metabolic profiling. These biopsies were taken 10 weeks 

apart from a well-phenotyped older population that had completed a resistance training (RT) 

intervention [8]. From this analysis, we identified distinct phenotypes: lower responders 

(LowR; bottom tertile) and higher responders (HighR; top tertile) based on hypertrophy 

profiles following the RT intervention. We aimed to relate muscle metabolic phenotypes 

before and after 10wk of RT and, based on the HighR compared to LowR phenotype, to 

assess whether associated biochemical networks related to biological response associated 

with the response to the application of the loading stimulus, which is well-known to improve 

muscle function, counter anabolic resistance and enhance muscle function.  

 

2 METHODS 

2.1 Study population 

Of the 83 participants in the previous study [8], muscle biopsies were obtained from 67 of the 

healthy older adults, comprising 30 men (68 ± 4 years, BMI = 26.4 ± 3.0 kg/m2) and 37 

women (68 ± 5 years old, BMI = 26.4 ± 4.3 kg/m2). The participants were generally healthy, 

but some had metabolic diseases (type 2 diabetes, hypertension, hypercholesterolemia) for 

which they were receiving medications. None had regularly engaged in structured exercise, 

such as resistance or aerobic training, for at least six months prior to the study. Exclusion 

criteria included type I diabetes, ischemic myocardial disease, arrhythmia, uncontrolled 
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hypertension, and any major orthopedic or musculoskeletal disorder. The study was approved 

by the Human Research Ethics Committee of the University of Sao Paulo. All participants 

provided written, informed content prior to taking part in the study and to have their tissue 

samples stored and analyzed after the main study. The main trial was registered at clinical 

trial registration number NCT06718712. The ethical approval for muscle biopsy analysis was 

obtained from the University of Liverpool Central University Research Ethics Committee, 

reference number 12689. 

 

2.2 Resistance exercise training protocol 

The protocol for RT and dietary assessments has been described previously [8]. In summary, 

all participants performed unilateral knee extension exercises two times a week for 10 weeks. 

One of the subject’s legs performed 1 set, while the contralateral leg performed 4 sets of 8-15 

repetitions, with 90 seconds of rest interval between sets. In the present study, we focused 

exclusively on the leg that performed 4 sets (i.e., the multiset condition), which was 

previously shown to show a more robust muscle hypertrophy response [8].  

 

2.3 Hypertrophy response classification 

To classify response variation, we used the change in MRI-measured muscle cross-sectional 

area (CSA) from baseline and compared that value to the usual method variation in magnetic 

resonance imaging (MRI) measurement method error. The method error on repeated scans 

was 1.7%. When we rank-ordered participants’ hypertrophy for males and females separately 

from baseline, the 67 participants from whom we had muscle were divided, and two distinct 

groups were identified comprising the top 25 (n=10 males and n=13 females) and bottom 25 

(n=15 males and n=12 females) participants in terms of their rank from the lowest responses 

for the males and females (Figures 1A, B). We only used the hypertrophic response to 4 sets 

of exercise as it resulted in a more robust hypertrophic response, but responder status was 

conserved in the same participants within the leg that performed only one set, but admittedly 

with a less robust anabolic response (data not shown). 

 

2.4 Untargeted liquid chromatography-mass spectrometry (LCMS) metabolomics analysis 

2.4.1 Sample preparation 

Reagents used included Optima® LC-MS grade methanol (MeOH), chloroform (CHCl3), 

acetonitrile (ACN), isopropyl alcohol (IPA) and water (H2O) were used for sample 

preparation and subsequent analysis. LC-MS LiChropur™ grade (≥ 99.0%) ammonium 
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formate and formic acid (FA) were used as solvent buffers. HPLC grade absolute ethanol 

(99.8% v/v) was used for maintenance and cleaning. Briefly, 10 mg (±1 mg) of muscle tissue 

was suspended in 216 µL of a pre-chilled MeOH: Water (2.86:1) mix in 2 mL Precellys™ 

tubes. Samples were homogenised in two consecutive 10-s cycles at 5000 rpm using a Qiagen 

PowerLyzer® 24 (Qiagen, Germany). The homogenised samples were transferred to 2 mL 

Eppendorf tubes® and mixed with 240 µL of pre-chilled CHCl3: H2O (2:1) and allowed to 

incubate on ice for 10 min. Samples were vortexed (30 s) and centrifuged (3500 g, 4 °C, 5 

min) to achieve phase separation. Aliquots (200 µL) from each of the polar (upper) and non-

polar (lower) phases were collected in separate 2 mL Eppendorf tubes® and dried to 

evaporation in a cold-trap vacuum centrifuge. The dried extracts were stored at -80 °C until 

UHPLC-MS analysis. Metabolomic analysis was carried out th the Cetnre of metabolomic 

Research, Liverpool Shared Research Facilty (LIV-SRF), the Univertity of Liverpool. 

 

2.4.2 Quality control and assurance (QA/QC) 

A fixed amount of homogenized tissue extract was aliquoted from all samples to prepare 

pooled QC samples and conditioning QC samples as described in [9]. Pooled QCs were used 

for the assessment of data quality. Extraction blanks, solvent blanks, QC samples and system 

suitability test (SST) samples were prepared alongside samples using the same preparation 

method [9]. 

 

2.4.3 UHPLC-MS analysis 

Untargeted metabolomics data were acquired using a ThermoFisher Scientific Vanquish 

UHPLC system coupled to an Orbitrap ID-X Tribid mass spectrometer (MS) (ThermoFisher 

Scientific Inc., UK). Dried polar extracts were reconstituted in 100 µL of ACN: Water 

(90:10), and the non-polar extracts were reconstituted in 100 µL of Water: Methanol (80:20) 

and transferred to glass vials. The polar extracts were separated on a Hypersil GOLD™ aQ 

(C18, polar 2.1 mm x 10 mm x 1.9 µm, ThermoFisher Scientific) while the non-polar extracts 

were separated on Hypersil GOLD™ Vanquish ™ C18 column. During analysis, columns 

were maintained at 50 °Cover a 15 min gradient elution (detailed in Table (X)) and 0.4 

mL/min flow rate. Samples were stored at 4 °C throughout the run in LC-autosampler. A 5 

µL sample was injected for both electrospray ionisation modes (ESI+/-).  Data were acquired 

in full-scan mode. Each analytical batch was bracketed with blank and conditioning QC 

injections and contained periodic pooled QC sample injections[10]. To aid compound 

annotation and identification ddMS2 data were acquired from 3x QC samples over (a) 66.7-
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1000, (b) 66.7-300, (c) 300-600 and (d) 600-900 m/z ranges[11]. Detailed gradient elution 

profiles, solvent composition (Supplementary Table 1) and MS parameters are described in 

(Supplementary Table 2) for all modes.  

2.5 Statistical analysis 

The distribution of data was assessed using the Shapiro-Wilk test. Baseline characteristics of 

the participants among higher and lower responder groups were analyzed using an unpaired 

T-test. A Chi-square test was performed for nominal variables (i.e. clinical conditions in the 

present study). Changes in absolute quadriceps CSA between groups were assessed using a 

linear mixed model (group x time), with a Tukey post hoc test performed when a significant 

interaction was detected. The percent change in the CSA between higher and lower groups 

was analyzed using an unpaired t-test. Statistical significance was set at P < 0.05, and data are 

presented as mean ± SD. Statistical analyses were completed using R (version 4.3.2).  

2.6 Metabolomic analysis 

The LC-MS data were first deconvolved using compound discoverer 3.2 (Thermo-Fisher). 

Tentative annotations were made for each detected metabolic feature using MS/MS spectra 

matching. The deconvolved data matrices were then imported into MATLAB (Mathworks, 

MA) 2023a for multivariate analysis. Principal component analysis was performed to inspect 

the integrity of the data. Partial least squares- discriminant analysis (PLS-DA) model was 

then employed to discriminate high responder vs. low responder and also pre-treatment vs. 

post-treatment. The models were validated by using 1,000 bootstrapping procedures as 

described previously [12]. To assess the statistical significance level of the performance of 

the models, permutation tests were also performed. Further, we manually curated all 

metabolites to discern biologically relevant signals from noise. Lastly, N-way ANOVA was 

performed on each log-transformed metabolic feature to detect whether there are statistically 

significant differences between pre-treatment vs. post-treatment or high responder vs. low 

responders. A Benjamini-Hochberg false discovery rate was then employed on the p-values 

of the ANOVA tests to control the increased risk of false discovery by multi-testing. Further, 

to visualize the results of PCA analyses, MetaboAnlyst 6.0 was used to present the PCA, 

PLSDA and orthogonal PCA scores plots (Figure 1E, F, G). Orthogonal PCA has a similar 

predictive capacity compared to PLS and improves the interpretation of the predictive 

components and the systematic variation [13]. 
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3 RESULTS 

Participants’ characteristics for LowR and HighR are shown in Table 1. Of the total 

participants (n=50), 25 were classified as lower responders (LowR) and 25 as higher 

responders (HighR,), based on a 2% (normal method variability) cut-off value (Figure 1). No 

significant differences were observed in anthropometric measures between the groups prior to 

the intervention (P > 0.05; Table 1). Additionally, no significant differences were found in 

the prevalence of clinical conditions (T2DM, Hypertension, and cholesterol) or habitual 

nutritional intake (data not shown) across the groups (P > 0.05). The absolute quadriceps 

CSA in the LowR increased from 53.6 ± 12.1 cm2 to 55.4 ± 12.8 cm2 after 10 weeks of RET 

(3.3 ± 1.7%, P < 0.01; Figure 1A). The 10 weeks of RET also increased the absolute CSA in 

the HighR from 53.7 ± 12.5 cm2 to 59.2 ± 13.6 cm2 (10.3 ± 2.0%, P < 0.001; Figure 1B). 

While both LowR and HighR showed increases in the CSA following the RET, the percent 

change in CSA was statistically significantly, and arguably physiologically, greater in the 

HighR compared to the LowR (P < 0.001; Figure 1B). 

 

3.1 Analysis of muscle metabolome in response to RT 

At study entry (baseline), there were no significant differences in muscle metabolome 

between groups. From the PLSDA analysis best results were obtained from the models using 

polar extracts in predicting HighR and LowR response (Figure 1C-G) with 75% averaged 

correct classification rate (CCR) in predicting pre- or post-RT. The corresponding empirical 

p-value of 0.006 (i.e., only 6 out of 1,000 permutation tests had resulted in the NULL models 

obtaining better results than that of the corresponding observed models). The same averaged 

CCR of models using non-polar extracts  was slightly lower, at 72%, with an empirical p-

value of 0.0163, which is still statistically significant (Figure 1D). The performances of the 

models predicting LowR vs. HighR were generally worse than those predicting Pre vs. Post. 

The VIP included mostly such as amino acids, peptides include BCAAs, typtophan, proline, 

and glutamine. From the PLSDA results, we also developed the variable importance in 

projection (VIP) as presented in Figures 2 A and B. Further, the top enriched pathways are 

shown in Figures 2C and 2D (the data will be deposited MetaboLights).The averaged CCR in 

predicting LowR vs. HighR of the models using polar  metabolites (Figure 2B) was 71% (p = 

0.0221), and that of the models using non-polar  metabolites (Figure 2B) was 66% (p = 

0.0568). We observed distinct metabolic insights from the analysis of HighR compared to 

LowR. In this study, we have provided an overview of our findings based on the most 
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prominent functional features of these metabolites. In particular, the HighR metabolic 

phenotype showed greater relative levels of amino acids (isoleucine, leucine, valine, 

phenylalanine, lysine, glutamine, methionine, tyrosine, and citrulline) (Figure 3A and B); 

peptides and other related metabolites (such as carnosine, acetylcarnitine, creatine, alanyl-

glutamine, taurine, and spermidine; Figure 3C); vitamins and cofactors such as riboflavin and 

nicotinamide (Figure 4A); gut-related metabolites (indole, kynurenic acid, adrenaline, and 

isoprenaline; Figure 4B); neurotransmitters and signalling molecules (such as acetylcholine 

and adenosine diphosphate); and finally, fatty acid derivatives such as alpha-aminoadipic acid 

and isoprene (Figure 4C). 

 

3.2 Pathway analysis 

The pathway analysis indicated that greater impact can be attributed to peptides and amino 

acid metabolism. (Figure 2C, D). The topmost significant pathways, as indicated by the 

lowest p-values, include histidine, glutathione, tryptophan and tyrosine metabolisms (Figure 

2C). Further, we utilized the KEGG pathways and visualised branched-chain amino acids 

(BCAA) pathways (Figure 5) and tryptophan metabolism in the muscles (Figure 6) and their 

response to long-term RT. We identified valine, leucine isoleucine and their branched-chain 

aminotransferase metabolites, and branched-chain fatty acids being upregulated in response 

to exercise (Figure 5). Furthermore, the results suggested that both tryptophan-kynurenine 

and tryptophan-indole metabolism were significantly upregulated in response to RT in human 

muscle (Figure 6). Results from the functional Mummichog pathway analysis are presented 

in Figure 7, and full data is available in Supplementary material 1 and visualised in Figure 7 

A. The top 5 most enriched Mummichog pathways in HighR compared to LowR included 

tyrosine, aspartate and tryptophan metabolisms (Figure 7B). 

 

4 DISCUSSION 

The findings of this study revealed that the metabolic profile of older individuals exhibited 

different responses to RT training, aligning with a phenotype characterized by a greater 

anabolic response (HighR). We propose that these findings offer important insight into the 

phenomenon of anabolic resistance, which is characterized by a poorer response to the 

normally robustly anabolic stimuli of RT and feeding [8]. Here, we provide a comprehensive 

interpretation of the significant metabolites that were identified and differed between 

individuals who showed a robust anabolic response versus a lesser anabolic response based 

on their known and potential functions in muscle metabolism, exercise and ageing. 
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4.1 Branched-chain amino acids 

We showed that valine, leucine, and isoleucine were elevated in the skeletal muscle of HighR 

(Figure 3). This finding is in agreement with the notion that the expression of BCAA 

aminotransferase (BCAT2), an enzyme that catabolizes the first step of BCAA 

transamination, is highly expressed and active in the skeletal muscle [14]. We have 

previously reported and shown a key role for the BCAT2 gene in relation to skeletal muscle 

hypertrophy [14]. One factor contributing to this phenomenon with resistance exercise could 

be the upregulation of BCAT2, leading to the production of keto-acids of each BCAA [15]. 

This phenomenon may be reversed in resistance-trained individuals who often exhibit higher 

BCAA levels in their skeletal muscle, partly due to increased skeletal muscle insulin 

sensitivity. A recent study using mouse models validated that impaired BCAA catabolism 

weakens muscle mass and strength by disrupting mTOR signaling. Additionally, enhancing 

BCAA catabolism with BT2 was found to protect against sarcopenia in aged mice and in 

mice lacking Ppm1k, a key positive regulator of BCAA catabolism in skeletal muscle[16]. 

We also propose that HighR individuals may possess more efficient BCAA metabolism, 

facilitating the conversion of BCAAs into branched-chain keto acids (BCKAs), which may 

be more closely related to the regulation of muscle protein turnover (Figure 5). While 

knowledge regarding their role is limited, enhanced fatty acid oxidation has been shown to 

increase the ratio of mitochondrial acetyl-CoA:CoA and NADH:NAD+, leading to the 

inactivation of pyruvate dehydrogenase [17]. In contrast, there is limited knowledge 

regarding the functions of branched-chain α-ketoacid dehydrogenase (BCKDH) complex in 

human muscle with RT.  

 

4.2 Tryptophan metabolism  

Our pathway and functional analysis showed significant enrichment of tryptophan 

metabolism in HighR compared to LowR (Figure 6). The tryptophan pathway is involved in 

inflammation, immune responses, and excitatory neurotransmission; furthermore, it has been 

implicated in various diseases [18]. Tryptophan is an essential amino acid, which is degraded 

by kynurenine enzymes (e.g., indoleamine 2,3-dioxygenase and/or kynurenine 

aminotransferase) into kynurenines and is critical for the modulation of muscle protein 

synthesis, as well as the immune and central nervous system function [19]. The kynurenine 

pathway of tryptophan degradation is the major catabolic pathway for this essential amino 

acid [20]. Our results confirm previous work, where the muscle kynurenine levels were 
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higher (Figure 4) in the muscle tissue of active vs. sedentary older adults [21]. At the same 

time, its downstream metabolites, kynurenic acid and nicotinamide adenine dinucleotide 

(NAD+) were also linked to better cardiorespiratory fitness and muscle oxidative capacity 

[18]. Further, tryptophan metabolism is also regulated in the gut, especially in the production 

of indole-derived metabolites [22-24].  Work in murine models and C2C12 cells suggested 

the role of indole propionic acid in protecting against inflammation [25], and the microbial 

indole has been shown to affect growth and metabolic function in multiple organs, including 

muscle, in mutated indole-producing wild-type mice [26]. Overall, our findings aligned with 

the previous models, suggesting that there is an important exercise–gut–muscle interaction 

regulated by tryptophan metabolism. 

 

4.3 Gut-derived metabolites 

In addition to tryptophan metabolism, we identified metabolites such as 4-hydroxyhippurate, 

creatine, proline, and stachydrine that were upregulated in the High R (Figure 3). 

Interestingly, recent Mendelian randomization analysis (utilizing gut-related metabolites 

genes) has shown a causal link between these metabolites with muscle function and muscle 

mass. Further, analysis using faecal samples has shown an association of several bacterial 

metabolites and increased lipopolysaccharide biosynthesis with depleted phenylalanine, 

tyrosine, and tryptophan biosynthesis in older adults with sarcopenia  [27]. In addition, cholic 

acid was also upregulated, which is a bile acid utilized in the gut (Figure 4)[28]. Further 

interventional studies focusing on the gut-muscle axis are needed to substantiate these 

findings, especially on how RT relates to the upregulation/downregulation of gut-related 

metabolites may be warranted. 

 

4.4 Carnosine 

Our study showed a higher relative abundance of carnosine in HighR compared to LowR 

(Figureure 3C). In humans, carnitine is produced primarily in the liver and kidneys from the 

amino acids lysine and methionine, with the help of vitamins C, B6, and niacin [29]. 

Carnosine is a naturally occurring dipeptide composed of two amino acids, beta-

alanine and histidine, and it is found in high concentrations in skeletal muscle [30]. Higher 

levels of muscle carnosine and carnitine are associated with improved muscle function, 

intracellular pH buffering capacity, ATP regeneration, and energy availability [31], which are 

critical for muscle adaptation following RT, explaining, in part, the greater capacity of HighR 

to gain muscle. Hoetker et al. [32] showed mitochondrial carnitine homeostasis (m-carn) 
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contents and ATPDG1 gene expression concomitantly fluctuate throughout different phases 

of exercise, suggesting that the amount of carnosine synthesis is an important regulator of m-

carn homeostasis. In general, our findings show that concomitant upregulation of carnosine 

synthesis is likely involved in maintaining stable carnitine levels after 10 weeks of RT, which 

could indicate a more efficient energy production and fatigue resistance in HighR compared 

to LowR.  

 

4.5 Acylcarnitine 

We observed that RT exercise affected muscle levels of acylcarnitines (a short-chain 

acylcarnitine [C2]) in the HighR compared to LowR. There are more than 1000 types of 

acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-

groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they 

can be broken down to produce energy [21, 33]. Our findings align with previous work 

suggesting that exercise can induce upregulation of acylcarnitines in humans, which 

influences muscle bioenergetics and acetyl group balance during and after exercise [34]. The 

key acylcarnitines identified in the current study are shown in Supplementary Table 3, 

include acetylcarnitine, a short-chain metabolite involved in energy metabolism, and 3-

hydroxyoctanoylcarnitine, a medium-chain hydroxylated acylcarnitine indicative of 

incomplete fatty acid β-oxidation. The medium-chain acylcarnitines, including O-

heptanoylcarnitine (C7) and carnitine (C8),  play an important role in the carnitine shuttle 

[33].  

 

4.6 Neurotransmitters 

Denervated muscle fibres have been proposed as another contributor to declines in muscle 

mass and strength during ageing, for which altered acetylcholine (ACh) receptors have been 

implicated in partially explaining neuromuscular junction instability [5]. Eight weeks of 

heavy RT in healthy older men have previously shown a decrease in Ach receptor subunits α1 

and ε subunit messenger RNA (mRNA), which were accompanied by an increase in muscle 

strength and (type II fibre) hypertrophy [5]. However, it is worth noting that receptor subunit 

levels do not directly reflect ACh production or release. The increased muscle ACh levels of 

HighR may indicate an enhanced ACr release at the neuromuscular junction of vastus 

lateralis (Figure 4). We have found several other neurotransmitters (Figure 4C), which 

confirm the important role of motor unit engagement in better response to RT in older people.  
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4.7 Pathways and functional analyses 

Overall, we showed that muscle is an active metabolism organ where we identified more than 

100 enriched pathways as a result of loading exercise. Overall, these pathways seem to have a 

significant role in the mechanisms of ageing, muscle weakness and frailty. Recently, Pu et 

al.[35] reported plasma NMR metabolomics and identified glycolytic and gluconeogenic 

metabolites, including lysine, leucine, and Acetoacetyl-CoA, to be related to frailty index, 

which has been identified in our muscle LC-MS analysis. Further, a large-scale study 

utilizing plasma mass-spectrometry data showed carnitine shuttle pathways [6], which was 

aligned with our study, where 11 significant hits of carnitine shuttle metabolites were 

upregulated in response to RT.  

 

4.8 Considerations 

Some important considerations must be acknowledged when interpreting our findings. The 

muscle samples were taken 48 hours after training, and thus, the metabolic shift 

predominantly reflected the medium to longer-term effect of exercise on muscle [36]. Dietary 

intake of participants was monitored before RT, and during RT, and there was no significant 

difference between the groups, which is a strength of the study design [8]. To fully uncover 

the effects of RT in older adults, further data on circulating metabolites and faecal microbiota 

could provide a more comprehensive picture of metabolomic changes. Given the sample size, 

we did not perform a sex-based analysis. Despite this, we had males and females in the LowR 

and HighR groups. A common question in ‘responder-based’ analysis is whether participants 

that are characterised as responders are persistently responders. In this case, a strategy might 

be to let all participants detrain and retrain them to assess this. Such an approach is highly 

impractical, time-consuming and inordinately expensive; however, we note that our 

classification into the top and bottom 25 responders with 4 sets of exercise was preserved in 

the contralateral limb that performed only 1 set of exercise in the same subjects. That is, the 

physiological hypertrophy response was conserved within an individual and so we propose 

our responder status was robust.  

 

5 CONCLUSIONS 

Our results contribute to understanding the mechanistic differences between HighR and 

LowR to RT in ageing. These data also provide an opportunity for future interventions that 

could guide the development of studies (i.e., dietary interventions) aiming to optimize muscle 

health and reduce the burden of sarcopenia and frailty in older adults. Additionally, the 
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changes observed between groups may be used to monitor muscle adaptations to RT, which 

could help predict hypertrophic responses over time. This information could assist in 

adjusting their therapeutic strategies to support LowR individuals by initiating additional 

nutritional or nutraceutical interventions that may be beneficial. 
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Table 1. Baseline characteristics of the participants. 

 LowR (n=25) HighR(n=25) P 

Distribution (%) 37.3 37.3  

Sex (M/F) 10/15 13/12  

Age (yr) 69 ± 5 67 ± 4 0.086 

Body mass (kg) 71 ± 13 72 ± 13 0.745 

Height (m) 1.62 ± 0.1 1.66 ± 0.1 0.363 

Body mass index (kg/m2) 27.x ± 4.x 26.y ± 3. y 0.829 

1RM (kg) 42 ± 16 51 ± 21 0.224 

Type 2 diabetes, n (%) 1 (4) 2 (8) 0.837 

Hypertension, n (%) 7 (28) 4 (16) 0.579 

Hypercholesterolemia, n (%) 7 (28) 5 (20) 0.264 

Data are expressed as means ± SD. Lower responder, LowR (see METHODS); Higher 

responder, HighR (see METHODS); BMI, body mass index; RM, repetition maximum; 

T2DM, type 2 diabetes mellitus. 
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Figure 1. Study design overview and analytical methods. A) Muscle biopsies were taken 
from participants before and after 10 weeks of Resistance Training, magnetic resonance 
imaging-measured quadriceps muscle cross-sectional area (CSA), from which the high 
responders (HighR) and low responders (LowR) groups were established. B) The change in 
the quadriceps muscle CSA between HighR and LowR, * significantly different from pre-
training; + significantly different from LowR (P<0.001). The shaded box shows normal 
method variation. Panels C) and D) Show the polar positive and non-polar positive PLS-DA 
analysis. MetaboAnalyst version 6.0 was used to visualise E) Principal components analysis 
(PCA), F) Partial Least Squares Discriminant Analysis (PLSDA) and G) Orthogonal PCA. 

P < 0.01 (0.006) P < 0.05 (0.0221) 

C) Polar Positive Mode D) Non-Polar Positive 
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Figure 2 Study design and analytical 
methods. A) Supervised Partial Least-Squares Discriminant Analysis (PLS-DA) was also 
used to calculate the top 50 metabolites. B) Variable importance in projection. C) Shows the 
results of pathways enrichment analysis by using the name of the compound identified from 
the KEGG database. D) Shows the enrichment analysis impact and p-values indicating the 
top enriched pathways. All analyses were performed utilising MetaboAnalyst version 6.0, 
according to 1250 sub-chemical class metabolite sets of library-matched RaMP-DB 
(integrating KEGG via HMDB, Reactome, WikiPathways). 
  

A) PLS-DA analysis B) VIP scores from PLSDA 

C) KEGG enrichment (Top 25)  
D) Pathway enrichment analysis  
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Figure 3. Upregulated and downregulated amino acids and peptides (given the large 
number of metabolites, these box plots represent a selected subset). Multiple t-tests were 
performed in MetaboAnalyst 6.0. The box plots show A) upregulated Amino Acids, B) 
Downregulated amino acids, and C) Upregulated Peptides with FDR<0.05 that were 
upregulated or downregulated, comparing HighR to LowR. Given the large number of 
metabolites these box plots are representing a selected number  
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Figure 4. Upregulated and downregulated vitamins, Tryptophan-related gut 
metabolites, and neurotransmitters (given the large number of metabolites, these box plots 
represent a selected subset). Multiple t-tests were performed in MetaboAnalyst 6.0. The box 
plots show examples of significant metabolites between high responders compared to low 
responders, grouped based on their function. A) Vitamins and co-factors, B) Gut-related 
metabolites, and C) Neurotransmitters. These metabolites are either from VIP or with 
biological relevance with FDR<0.05 that were upregulated, comparing HighR to LowR.
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Figure 5. Schematic overview of the Branc Chain Amino Acids-related pathways and the significant metabolites detect
study adapeted from KEGG. Illustration of the catabolism pathways of BCAAs (leucine, isoleucine, and valine). The s
metabolites identified in this study were overlaid onto the BCCA pathway, to assess its components based on their response to
training. The false discovery rates (FDRs) were derived from multiple t-tests conducted in MetaboAnalyst 6.0. 
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Figure 6. Tryptophan-related pathways from adapted from the KEGG database. The FDRs were calculated using multiple
MetaboAnalyst 6.0. A large number of tryptophan metabolites were identified in muscle tissue and found to be upregulated in the high
group. At this stage, to further elaborate the tryptophan metabolism function, we extracted the KEGG IDs that were identified from M
pathways and were introduced into Cytoscape_Metscape version 3.10.2. B) Tryptophan-kynurenine metabolism. 
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Figure 7. Mummichog analysis. A) Displays the results from the Mummichog analysis 
conducted using MetaboAnalyst 6.0. Unique identified m/z values with p-values set to the top 
10% threshold (0.008) were used, along with retention time (in minutes) and analysis mode 
(positive), to generate the enriched pathways. The MFN human genome-scale metabolic 
model, which is manually curated and derived from multiple sources (KEGG, BIGG, 
Edinburgh Model, and Recon2), was utilized. The most enriched pathways identified include 
tyrosine metabolism, aspartate and arginine metabolism, tryptophan metabolism, the urea 
cycle, and amino acid groups. B) Shows the top 10 enriched metabolic pathways from 
Mummichog analysis with P-Fisher 0.05, and numbers in the ring represent the number of 
significant metabolite hits. 
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