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Abstract

To understand the mechaisnm behind high respond (HighR) compared to low respond
(LowR) to resistnace training (RT) and whey protein supplementation (20g/day), we
analysied vastus laterails muscle biopsies from a total of 50 participants. Utilising the MRI
muscle cross-sectional area (CSA) data, we defined responders as those who had hypertrophy
exceeding the 1.7% method error. Quadriceps CSA in the lower responder (LowR) (n=25,
mean age 6915 years) and HighR (n=25, mean age 67+4 years) increased from 53.6 + 12.1
cm? to 55.4 + 12.8 cm? after 10 weeks of RET (3.3 £ 1.7%, P < 0.001) and increased the
absolute CSA in the higher responders (HighR) from 53.7 + 12.5 cm? to 59.2 + 13.6 cm?
(10.3 £ 2.0%, P < 0.001). Muscle biopsies were taken from the vastus lateralis before and
after RT. We performed untargeted liquid chromatography-mass spectrometry metabolomics
to investigate changes in muscle metabolic regulation. The partial least squares discriminant
analysis (PLS-DA) yielded the best results using the polar extracts, achieving a 75% average
correct classification rate for predicting HighR and LowR. There was no signifncat
differences in metabolomic profile at the basline. Our findings revealed severa metabolic
pathways, including branched-chain amino acid catabolism, tryptophan metabolism (indole
and kynurenine pathways), the TCA cycle, gut-derived metabolites, carnitine shuttle
metabolism as prominent pathways disrupted in LowR. We provide new insights and has the
potential to identify and enhance interventions targeting muscle metabolism, ultimately

improving muscle mass and strength to reduce the risk of sarcopenia and frailty in older age.

Keywords: muscle hypertrophy; muscle strength; resistance training; older age;
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1INTRODUCTION

Currently, resistance training (RT) is recognized as the most effective ‘anti-frailty’
intervention that can counter muscle loss and improve muscle function in older age [1]. RT
involves exercises by a muscle or muscle group against external resistance, typicaly
comprised of higher-load, lower-repetition muscle contractions [2]. RT is known to induce
muscle hypertrophy in addition to improving muscular strength and metabolic health. The
metabolic adaptations induced by RT result in an increased flux of amino acids and other
substrates for the process of protein synthesis and other biosynthetic pathways [3], which are
required to increase muscle protein turnover and mass [1, 4]. Despite the existing evidence
suggesting a broad metabolic change with RT[3, 5], less is known about the effect of RT at
the muscle metabolic level, especially in aging muscle. Biochemical assessments, including
metabolomics in response to exercise, have the potential to identify biological pathways that
are essential in developing strategies for the management of ageing diseases and frailty [6, 7].
We conducted high-throughput untargeted liquid chromatography-mass spectrometry on
vastus lateralis muscle biopsies for metabolic profiling. These biopsies were taken 10 weeks
apart from a well-phenotyped older population that had completed a resistance training (RT)
intervention [8]. From this analysis, we identified distinct phenotypes: lower responders
(LowR; bottom tertile) and higher responders (HighR; top tertile) based on hypertrophy
profiles following the RT intervention. We aimed to relate muscle metabolic phenotypes
before and after 10wk of RT and, based on the HighR compared to LowR phenotype, to
assess Whether associated biochemical networks related to biological response associated
with the response to the application of the loading stimulus, which is well-known to improve

muscle function, counter anabolic resistance and enhance muscle function.

2METHODS

2.1 Study population

Of the 83 participants in the previous study [8], muscle biopsies were obtained from 67 of the
healthy older adults, comprising 30 men (68 + 4 years, BMI = 26.4 + 3.0 kg/m?) and 37
women (68 + 5 years old, BMI = 26.4 + 4.3 kg/m?). The participants were generally healthy,
but some had metabolic diseases (type 2 diabetes, hypertension, hypercholesterolemia) for
which they were receiving medications. None had regularly engaged in structured exercise,
such as resistance or aerobic training, for at least six months prior to the study. Exclusion

criteria included type | diabetes, ischemic myocardial disease, arrhythmia, uncontrolled
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hypertension, and any major orthopedic or musculoskeletal disorder. The study was approved
by the Human Research Ethics Committee of the University of Sao Paulo. All participants
provided written, informed content prior to taking part in the study and to have their tissue
samples stored and analyzed after the main study. The main trial was registered at clinical
trial registration number NCT06718712. The ethical approval for muscle biopsy analysis was
obtained from the University of Liverpool Central University Research Ethics Committee,
reference number 12689.

2.2 Resistance exercise training protocol

The protocol for RT and dietary assessments has been described previously [8]. In summary,
all participants performed unilateral knee extension exercises two times aweek for 10 weeks.
One of the subject’s legs performed 1 set, while the contralateral leg performed 4 sets of 8-15
repetitions, with 90 seconds of rest interval between sets. In the present study, we focused
exclusively on the leg that performed 4 sets (i.e., the multiset condition), which was

previously shown to show a more robust muscle hypertrophy response [8].

2.3 Hypertrophy response classification

To classify response variation, we used the change in MRI-measured muscle cross-sectional
area (CSA) from baseline and compared that value to the usual method variation in magnetic
resonance imaging (MRI) measurement method error. The method error on repeated scans
was 1.7%. When we rank-ordered participants hypertrophy for males and females separately
from baseline, the 67 participants from whom we had muscle were divided, and two distinct
groups were identified comprising the top 25 (n=10 males and n=13 females) and bottom 25
(n=15 males and n=12 females) participants in terms of their rank from the lowest responses
for the males and females (Figures 1A, B). We only used the hypertrophic response to 4 sets
of exercise as it resulted in a more robust hypertrophic response, but responder status was
conserved in the same participants within the leg that performed only one set, but admittedly

with aless robust anabolic response (data not shown).

2.4 Untargeted liquid chromatography-mass spectrometry (LCMS) metabolomics analysis
2.4.1 Sample preparation

Reagents used included Optima® LC-MS grade methanol (MeOH), chloroform (CHCls),
acetonitrile (ACN), isopropyl acohol (IPA) and water (H.O) were used for sample
preparation and subsequent analysis. LC-MS LiChropur™ grade (> 99.0%) ammonium
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formate and formic acid (FA) were used as solvent buffers. HPLC grade absolute ethanol
(99.8% v/v) was used for maintenance and cleaning. Briefly, 10 mg (1 mg) of muscle tissue
was suspended in 216 uL of a pre-chilled MeOH: Water (2.86:1) mix in 2 mL Precellys”
tubes. Samples were homogenised in two consecutive 10-s cycles at 5000 rpm using a Qiagen
PowerLyzer® 24 (Qiagen, Germany). The homogenised samples were transferred to 2 mL
Eppendorf tubes® and mixed with 240 pL of pre-chilled CHCIs: H,O (2:1) and allowed to
incubate on ice for 10 min. Samples were vortexed (30 s) and centrifuged (3500 g, 4 °C, 5
min) to achieve phase separation. Aliquots (200 pL) from each of the polar (upper) and non-
polar (lower) phases were collected in separate 2 mL Eppendorf tubes® and dried to
evaporation in a cold-trap vacuum centrifuge. The dried extracts were stored at -80 °C until
UHPLC-MS analysis. Metabolomic analysis was carried out th the Cetnre of metabolomic
Research, Liverpool Shared Research Facilty (LIV-SRF), the Univertity of Liverpool.

2.4.2 Quality control and assurance (QA/QC)

A fixed amount of homogenized tissue extract was aliquoted from all samples to prepare
pooled QC samples and conditioning QC samples as described in [9]. Pooled QCs were used
for the assessment of data quality. Extraction blanks, solvent blanks, QC samples and system
suitability test (SST) samples were prepared alongside samples using the same preparation
method [9].

2.4.3 UHPLC-MS analysis

Untargeted metabolomics data were acquired using a ThermoFisher Scientific Vanquish
UHPLC system coupled to an Orbitrap ID-X Tribid mass spectrometer (MS) (ThermoFisher
Scientific Inc., UK). Dried polar extracts were reconstituted in 100 puL of ACN: Water
(90:10), and the non-polar extracts were reconstituted in 100 uL of Water: Methanol (80:20)
and transferred to glass vials. The polar extracts were separated on a Hypersil GOLD™ aQ
(Cug, polar 2.1 mm x 10 mm x 1.9 um, ThermoFisher Scientific) while the non-polar extracts
were separated on Hypersil GOLD™ Vanquish ™ Cyg column. During analysis, columns
were maintained at 50 °Cover a 15 min gradient elution (detailed in Table (X)) and 0.4
mL/min flow rate. Samples were stored at 4 °C throughout the run in LC-autosampler. A 5
uL sample was injected for both electrospray ionisation modes (ESI+/-). Data were acquired
in full-scan mode. Each analytical batch was bracketed with blank and conditioning QC
injections and contained periodic pooled QC sample injections[10]. To aid compound

annotation and identification ddM S? data were acquired from 3x QC samples over (a) 66.7-
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1000, (b) 66.7-300, (c) 300-600 and (d) 600-900 nVz ranges[11]. Detailed gradient elution
profiles, solvent composition (Supplementary Table 1) and MS parameters are described in
(Supplementary Table 2) for all modes.

2.5 Statistical analysis

The distribution of data was assessed using the Shapiro-Wilk test. Baseline characteristics of
the participants among higher and lower responder groups were analyzed using an unpaired
T-test. A Chi-sguare test was performed for nominal variables (i.e. clinical conditions in the
present study). Changes in absolute quadriceps CSA between groups were assessed using a
linear mixed model (group x time), with a Tukey post hoc test performed when a significant
interaction was detected. The percent change in the CSA between higher and lower groups
was analyzed using an unpaired t-test. Statistical significance was set at P < 0.05, and data are
presented as mean + SD. Statistical analyses were completed using R (version 4.3.2).

2.6 Metabolomic analysis

The LC-MS data were first deconvolved using compound discoverer 3.2 (Thermo-Fisher).
Tentative annotations were made for each detected metabolic feature using MS/IMS spectra
matching. The deconvolved data matrices were then imported into MATLAB (Mathworks,
MA) 2023a for multivariate analysis. Principal component analysis was performed to inspect
the integrity of the data. Partial least squares- discriminant analysis (PLS-DA) model was
then employed to discriminate high responder vs. low responder and also pre-treatment vs.
post-treatment. The models were validated by using 1,000 bootstrapping procedures as
described previously [12]. To assess the statistical significance level of the performance of
the models, permutation tests were also performed. Further, we manualy curated all
metabolites to discern biologically relevant signals from noise. Lastly, N-way ANOVA was
performed on each log-transformed metabolic feature to detect whether there are statistically
significant differences between pre-treatment vs. post-treatment or high responder vs. low
responders. A Benjamini-Hochberg false discovery rate was then employed on the p-values
of the ANOVA tests to control the increased risk of false discovery by multi-testing. Further,
to visualize the results of PCA analyses, MetaboAnlyst 6.0 was used to present the PCA,
PLSDA and orthogonal PCA scores plots (Figure 1E, F, G). Orthogonal PCA has a similar
predictive capacity compared to PLS and improves the interpretation of the predictive

components and the systematic variation [13].
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3RESULTS

Participants characteristics for LowR and HighR are shown in Table 1. Of the total
participants (n=50), 25 were classified as lower responders (LowR) and 25 as higher
responders (HighR,), based on a 2% (normal method variability) cut-off value (Figure 1). No
significant differences were observed in anthropometric measures between the groups prior to
the intervention (P > 0.05; Table 1). Additionally, no significant differences were found in
the prevalence of clinical conditions (T2DM, Hypertension, and cholesterol) or habitual
nutritional intake (data not shown) across the groups (P > 0.05). The absolute quadriceps
CSA in the LowR increased from 53.6 + 12.1 cm’ to 55.4 + 12.8 cm” after 10 weeks of RET
(3.3+ 1.7%, P < 0.01; Figure 1A). The 10 weeks of RET also increased the absolute CSA in
the HighR from 53.7 + 12.5 cm? to 59.2 + 13.6 cm? (10.3 + 2.0%, P < 0.001; Figure 1B).
While both LowR and HighR showed increases in the CSA following the RET, the percent
change in CSA was dtatistically significantly, and arguably physiologicaly, greater in the
HighR compared to the LowR (P < 0.001; Figure 1B).

3.1 Analysis of muscle metabolome in response to RT

At study entry (baseline), there were no significant differences in muscle metabolome
between groups. From the PLSDA analysis best results were obtained from the models using
polar extracts in predicting HighR and LowR response (Figure 1C-G) with 75% averaged
correct classification rate (CCR) in predicting pre- or post-RT. The corresponding empirical
p-value of 0.006 (i.e., only 6 out of 1,000 permutation tests had resulted in the NULL models
obtaining better results than that of the corresponding observed models). The same averaged
CCR of models using non-polar extracts was slightly lower, at 72%, with an empirical p-
value of 0.0163, which is still statisticaly significant (Figure 1D). The performances of the
models predicting LowR vs. HighR were generally worse than those predicting Pre vs. Post.
The VIP included mostly such as amino acids, peptides include BCAAS, typtophan, proline,
and glutamine. From the PLSDA results, we also developed the variable importance in
projection (VIP) as presented in Figures 2 A and B. Further, the top enriched pathways are
shown in Figures 2C and 2D (the data will be deposited MetaboL ights).The averaged CCR in
predicting LowR vs. HighR of the models using polar metabolites (Figure 2B) was 71% (p =
0.0221), and that of the models using non-polar metabolites (Figure 2B) was 66% (p =
0.0568). We observed distinct metabolic insights from the analysis of HighR compared to

LowR. In this study, we have provided an overview of our findings based on the most
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prominent functional features of these metabolites. In particular, the HighR metabolic
phenotype showed greater relative levels of amino acids (isoleucine, leucine, valine,
phenylaanine, lysine, glutamine, methionine, tyrosine, and citrulline) (Figure 3A and B);
peptides and other related metabolites (such as carnosine, acetylcarnitine, creatine, alanyl-
glutamine, taurine, and spermidine; Figure 3C); vitamins and cofactors such as riboflavin and
nicotinamide (Figure 4A); gut-related metabolites (indole, kynurenic acid, adrenaline, and
isoprenaline; Figure 4B); neurotransmitters and signalling molecules (such as acetylcholine
and adenosine diphosphate); and finally, fatty acid derivatives such as a pha-aminoadipic acid
and isoprene (Figure 4C).

3.2 Pathway analysis

The pathway analysis indicated that greater impact can be attributed to peptides and amino
acid metabolism. (Figure 2C, D). The topmost significant pathways, as indicated by the
lowest p-values, include histidine, glutathione, tryptophan and tyrosine metabolisms (Figure
2C). Further, we utilized the KEGG pathways and visualised branched-chain amino acids
(BCAA) pathways (Figure 5) and tryptophan metabolism in the muscles (Figure 6) and their
response to long-term RT. We identified valine, leucine isoleucine and their branched-chain
aminotransferase metabolites, and branched-chain fatty acids being upregulated in response
to exercise (Figure 5). Furthermore, the results suggested that both tryptophan-kynurenine
and tryptophan-indole metabolism were significantly upregulated in response to RT in human
muscle (Figure 6). Results from the functional Mummichog pathway analysis are presented
in Figure 7, and full data is available in Supplementary material 1 and visualised in Figure 7
A. The top 5 most enriched Mummichog pathways in HighR compared to LowR included
tyrosine, aspartate and tryptophan metabolisms (Figure 7B).

4 DISCUSSI ON

The findings of this study revealed that the metabolic profile of older individuals exhibited
different responses to RT training, aligning with a phenotype characterized by a greater
anabolic response (HighR). We propose that these findings offer important insight into the
phenomenon of anabolic resistance, which is characterized by a poorer response to the
normally robustly anabolic stimuli of RT and feeding [8]. Here, we provide a comprehensive
interpretation of the significant metabolites that were identified and differed between
individuals who showed a robust anabolic response versus a lesser anabolic response based

on their known and potential functions in muscle metabolism, exercise and ageing.
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4.1 Branched-chain amino acids

We showed that valine, leucine, and isoleucine were elevated in the skeletal muscle of HighR
(Figure 3). This finding is in agreement with the notion that the expresson of BCAA
aminotransferase (BCAT2), an enzyme that catabolizes the first step of BCAA
transamination, is highly expressed and active in the skeletal muscle [14]. We have
previously reported and shown a key role for the BCAT2 gene in relation to skeletal muscle
hypertrophy [14]. One factor contributing to this phenomenon with resistance exercise could
be the upregulation of BCAT2, leading to the production of keto-acids of each BCAA [15].
This phenomenon may be reversed in resistance-trained individuals who often exhibit higher
BCAA levels in their skeletal muscle, partly due to increased skeletal muscle insulin
sensitivity. A recent study using mouse models validated that impaired BCAA catabolism
weakens muscle mass and strength by disrupting mTOR signaling. Additionally, enhancing
BCAA catabolism with BT2 was found to protect against sarcopenia in aged mice and in
mice lacking Ppm1k, a key positive regulator of BCAA catabolism in skeletal muscle[16].
We also propose that HighR individuals may possess more efficient BCAA metabolism,
facilitating the conversion of BCAAs into branched-chain keto acids (BCKAS), which may
be more closely related to the regulation of muscle protein turnover (Figure 5). While
knowledge regarding their role is limited, enhanced fatty acid oxidation has been shown to
increase the ratio of mitochondria acetyl-CoA:CoA and NADH:NAD+, leading to the
inactivation of pyruvate dehydrogenase [17]. In contrast, there is limited knowledge
regarding the functions of branched-chain a-ketoacid dehydrogenase (BCKDH) complex in
human muscle with RT.

4.2 Tryptophan metabolism

Our pathway and functional analysis showed significant enrichment of tryptophan
metabolism in HighR compared to LowR (Figure 6). The tryptophan pathway is involved in
inflammation, immune responses, and excitatory neurotransmission; furthermore, it has been
implicated in various diseases [18]. Tryptophan is an essential amino acid, which is degraded
by kynurenine enzymes (e.g., indoleamine 2,3-dioxygenase and/or Kkynurenine
aminotransferase) into kynurenines and is critical for the modulation of muscle protein
synthesis, as well as the immune and central nervous system function [19]. The kynurenine
pathway of tryptophan degradation is the mgor catabolic pathway for this essential amino

acid [20]. Our results confirm previous work, where the muscle kynurenine levels were
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higher (Figure 4) in the muscle tissue of active vs. sedentary older adults [21]. At the same
time, its downstream metabolites, kynurenic acid and nicotinamide adenine dinucleotide
(NAD") were also linked to better cardiorespiratory fitness and muscle oxidative capacity
[18]. Further, tryptophan metabolism is also regulated in the gut, especially in the production
of indole-derived metabolites [22-24]. Work in murine models and C2C12 cells suggested
the role of indole propionic acid in protecting against inflammation [25], and the microbial
indole has been shown to affect growth and metabolic function in multiple organs, including
muscle, in mutated indole-producing wild-type mice [26]. Overall, our findings aligned with
the previous models, suggesting that there is an important exercise—gut—muscle interaction

regulated by tryptophan metabolism.

4.3 Gut-derived metabolites

In addition to tryptophan metabolism, we identified metabolites such as 4-hydroxyhippurate,
creatine, proline, and stachydrine that were upregulated in the High R (Figure 3).
Interestingly, recent Mendelian randomization analysis (utilizing gut-related metabolites
genes) has shown a causal link between these metabolites with muscle function and muscle
mass. Further, analysis using faecal samples has shown an association of several bacterial
metabolites and increased lipopolysaccharide biosynthesis with depleted phenylalanine,
tyrosine, and tryptophan biosynthesis in older adults with sarcopenia [27]. In addition, cholic
acid was also upregulated, which is a bile acid utilized in the gut (Figure 4)[28]. Further
interventional studies focusing on the gut-muscle axis are needed to substantiate these
findings, especially on how RT relates to the upregulation/downregulation of gut-related

metabolites may be warranted.

4.4 Carnosine

Our study showed a higher relative abundance of carnosine in HighR compared to LowR
(Figureure 3C). In humans, carnitine is produced primarily in the liver and kidneys from the
amino acids lysine and methionine, with the help of vitamins C, B6, and niacin [29].
Carnosine is a naturally occurring dipeptide composed of two amino acids, beta
alanine and histidine, and it is found in high concentrations in skeletal muscle [30]. Higher
levels of muscle carnosine and carnitine are associated with improved muscle function,
intracellular pH buffering capacity, ATP regeneration, and energy availability [31], which are
critical for muscle adaptation following RT, explaining, in part, the greater capacity of HighR

to gain muscle. Hoetker et al. [32] showed mitochondrial carnitine homeostasis (m-carn)
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contents and ATPDGL1 gene expression concomitantly fluctuate throughout different phases
of exercise, suggesting that the amount of carnosine synthesisis an important regulator of m-
carn homeostasis. In general, our findings show that concomitant upregulation of carnosine
synthesisis likely involved in maintaining stable carnitine levels after 10 weeks of RT, which
could indicate a more efficient energy production and fatigue resistance in HighR compared

to LowR.

4.5 Acylcarnitine

We observed that RT exercise affected muscle levels of acylcarnitines (a short-chain
acylcarnitine [C2]) in the HighR compared to LowR. There are more than 1000 types of
acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-
groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they
can be broken down to produce energy [21, 33]. Our findings align with previous work
suggesting that exercise can induce upregulation of acylcarnitines in humans, which
influences muscle bioenergetics and acetyl group balance during and after exercise [34]. The
key acylcarnitines identified in the current study are shown in Supplementary Table 3,
include acetylcarnitine, a short-chain metabolite involved in energy metabolism, and 3-
hydroxyoctanoylcarnitine, a medium-chain hydroxylated acylcarnitine indicative of
incomplete fatty acid B-oxidation. The medium-chain acylcarnitines, including O-
heptanoylcarnitine (C7) and carnitine (C8), play an important role in the carnitine shuttle
[33].

4.6 Neurotransmitters

Denervated muscle fibres have been proposed as another contributor to declines in muscle
mass and strength during ageing, for which altered acetylcholine (ACh) receptors have been
implicated in partially explaining neuromuscular junction instability [5]. Eight weeks of
heavy RT in healthy older men have previously shown a decrease in Ach receptor subunits o1
and ¢ subunit messenger RNA (mRNA), which were accompanied by an increase in muscle
strength and (type 1 fibre) hypertrophy [5]. However, it is worth noting that receptor subunit
levels do not directly reflect ACh production or release. The increased muscle ACh levels of
HighR may indicate an enhanced ACr release at the neuromuscular junction of vastus
lateralis (Figure 4). We have found several other neurotransmitters (Figure 4C), which

confirm the important role of motor unit engagement in better response to RT in older people.
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4.7 Pathways and functional analyses

Overall, we showed that muscle is an active metabolism organ where we identified more than
100 enriched pathways as aresult of loading exercise. Overall, these pathways seem to have a
significant role in the mechanisms of ageing, muscle weakness and frailty. Recently, Pu et
al.[35] reported plasma NMR metabolomics and identified glycolytic and gluconeogenic
metabolites, including lysine, leucine, and Acetoacetyl-CoA, to be related to frailty index,
which has been identified in our muscle LC-MS analysis. Further, a large-scale study
utilizing plasma mass-spectrometry data showed carnitine shuttle pathways [6], which was
aligned with our study, where 11 significant hits of carnitine shuttle metabolites were

upregulated in response to RT.

4.8 Considerations

Some important considerations must be acknowledged when interpreting our findings. The
muscle samples were taken 48 hours after training, and thus, the metabolic shift
predominantly reflected the medium to longer-term effect of exercise on muscle [36]. Dietary
intake of participants was monitored before RT, and during RT, and there was no significant
difference between the groups, which is a strength of the study design [8]. To fully uncover
the effects of RT in older adults, further data on circulating metabolites and faecal microbiota
could provide a more comprehensive picture of metabolomic changes. Given the sample size,
we did not perform a sex-based analysis. Despite this, we had males and females in the LowR
and HighR groups. A common question in ‘responder-based’ analysis is whether participants
that are characterised as responders are persistently responders. In this case, a strategy might
be to let all participants detrain and retrain them to assess this. Such an approach is highly
impractical, time-consuming and inordinately expensive; however, we note that our
classification into the top and bottom 25 responders with 4 sets of exercise was preserved in
the contralateral limb that performed only 1 set of exercise in the same subjects. That is, the
physiological hypertrophy response was conserved within an individual and so we propose

our responder status was robust.

5 CONCLUSIONS

Our results contribute to understanding the mechanistic differences between HighR and
LowR to RT in ageing. These data also provide an opportunity for future interventions that
could guide the development of studies (i.e., dietary interventions) aiming to optimize muscle

health and reduce the burden of sarcopenia and frailty in older adults. Additionally, the
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changes observed between groups may be used to monitor muscle adaptations to RT, which
could help predict hypertrophic responses over time. This information could assist in
adjusting their therapeutic strategies to support LowR individuals by initiating additional

nutritional or nutraceutical interventions that may be beneficial.
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Table 1. Baseline characteristics of the participants.

LowR (n=25) | HighR(n=25) P
Distribution (%) 37.3 37.3
Sex (M/F) 10/15 13/12
Age (yr) 69+5 67+4 0.086
Body mass (kg) 71+13 72+13 0.745
Height (m) 1.62+0.1 1.66+0.1 0.363
Body mass index (kg/m?) 27X+ 4.X 26y +3.y 0.829
1RM (kg) 42+ 16 51+21 0.224
Type 2 diabetes, n (%) 1(4) 2(8) 0.837
Hypertension, n (%) 7 (28) 4 (16) 0.579
Hypercholesterolemia, n (%) 7(28) 5(20) 0.264
Data are expressed as means + SD. Lower responder, LowR (see METHODS); Higher
responder, HighR (see METHODS); BMI, body mass index; RM, repetition maximum;
T2DM, type 2 diabetes mellitus.
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Figure 1. Study design overview and analytical methods. A) Muscle biopsies were taken
from participants before and after 10 weeks of Resistance Training, magnetic resonance
imaging-measured quadriceps muscle cross-sectional area (CSA), from which the high
responders (HighR) and low responders (LowR) groups were established. B) The change in
the quadriceps muscle CSA between HighR and LowR, * significantly different from pre-
training; + significantly different from LowR (P<0.001). The shaded box shows normal
method variation. Panels C) and D) Show the polar positive and non-polar positive PLS-DA
analysis. MetaboAnalyst version 6.0 was used to visualise E) Principal components analysis
(PCA), F) Partial Least Squares Discriminant Analysis (PLSDA) and G) Orthogonal PCA.
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Figure 2 Study design and analytical

methods. A) Supervised Partial Least-Squares Discriminant Analysis (PLS-DA) was also
used to calculate the top 50 metabolites. B) Variable importance in projection. C) Shows the
results of pathways enrichment analysis by using the name of the compound identified from
the KEGG database. D) Shows the enrichment analysis impact and p-values indicating the
top enriched pathways. All analyses were performed utilising MetaboAnalyst version 6.0,
according to 1250 sub-chemical class metabolite setsof library-matched RaMP-DB
(integrating KEGG via HM DB, Reactome, WikiPathways).
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Figure 3. Upregulated and downregulated amino acids and peptides (given the large
number of metabolites, these box plots represent a selected subset). Multiple t-tests were
performed in MetaboAnalyst 6.0. The box plots show A) upregulated Amino Acids, B)
Downregulated amino acids, and C) Upregulated Peptides with FDR<0.05 that were
upregulated or downregulated, comparing HighR to LowR. Given the large number of
metabolites these box plots are representing a selected number
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Figure 4. Upregulated and downregulated vitamins, Tryptophan-related gut
metabolites, and neurotransmitters (given the large number of metabolites, these box plots
represent a selected subset). Multiple t-tests were performed in MetaboAnalyst 6.0. The box
plots show examples of significant metabolites between high responders compared to low
responders, grouped based on their function. A) Vitamins and co-factors, B) Gut-related
metabolites, and C) Neurotransmitters. These metabolites are either from VIP or with
biological relevance with FDR<0.05 that were upregulated, comparing HighR to LowR.
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Figure 7. Mummichog analysis. A) Displays the results from the Mummichog analysis
conducted using MetaboAnalyst 6.0. Unique identified m/z values with p-values set to the top
10% threshold (0.008) were used, along with retention time (in minutes) and analysis mode
(positive), to generate the enriched pathways. The MFN human genome-scale metabolic
model, which is manually curated and derived from multiple sources (KEGG, BIGG,
Edinburgh Model, and Recon2), was utilized. The most enriched pathways identified include
tyrosine metabolism, aspartate and arginine metabolism, tryptophan metabolism, the urea
cycle, and amino acid groups. B) Shows the top 10 enriched metabolic pathways from
Mummichog analysis with P-Fisher 0.05, and numbers in the ring represent the number of
significant metabolite hits.
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