
Vol.:(0123456789)

Metabolomics (2025) 21:9
https://doi.org/10.1007/s11306-024-02199-8

ORIGINAL ARTICLE

Metabolomic heterogeneity of ageing with ethnic diversity: a step 
closer to healthy ageing

Dakshat Trivedi1,2 · Katherine A. Hollywood3 · Yun Xu1 · Fredrick C. W. Wu4 · Drupad K. Trivedi3 · Royston Goodacre1

Received: 25 June 2024 / Accepted: 10 November 2024 / Published online: 15 December 2024 
© The Author(s) 2024, corrected publication 2025

Abstract
Introduction  Outside of case–control settings, ethnicity specific changes in the human metabolome are understudied espe-
cially in community dwelling, ageing men. Characterising serum for age and ethnicity specific features can enable tailored 
therapeutics research and improve our understanding of the interplay between age, ethnicity, and metabolism in global 
populations.
Objective  A metabolomics approach was adopted to profile serum metabolomes in middle-aged and elderly men of different 
ethnicities from the Northwest of England, UK.
Methods  Serum samples from 572 men of White European (WE), South Asian (SA), and African-Caribbean (AC) ethnici-
ties, ranging between 40 and 86 years were analysed. A combination of liquid chromatography (LC) and gas chromatogra-
phy (GC) coupled to high-resolution mass spectrometry (MS) was used to generate the metabolomic profiles. Partial Least 
Squares Discriminant Analysis (PLS-DA) based classification models were built and validated using resampling via bootstrap 
analysis and permutation testing. Features were putatively annotated using public Human Metabolome Database (HMDB) 
and Golm Metabolite Database (GMD). Variable Importance in Projection (VIP) scores were used to determine features of 
interest, after which pathway enrichment analysis was performed.
Results  Using profiles from our analysis we classify subjects by their ethnicity with an average correct classification rate 
(CCR) of 90.53% (LC–MS data) and 85.58% (GC–MS data). Similar classification by age (< 60 vs. ≥ 60 years) returned 
CCRs of 90.20% (LC–MS) and 71.13% (GC–MS). VIP scores driven feature selection revealed important compounds from 
putatively annotated lipids (subclasses including fatty acids and carboxylic acids, glycerophospholipids, steroids), organic 
acids, amino acid derivatives as key contributors to the classifications. Pathway enrichment analysis using these features 
revealed statistically significant perturbations in energy metabolism (TCA cycle), N-Glycan and unsaturated fatty acid bio-
synthesis linked pathways amongst others.
Conclusion  We report metabolic differences measured in serum that can be attributed to ethnicity and age in healthy popula-
tion. These results strongly emphasise the need to consider confounding effects of inherent metabolic variations driven by 
ethnicity of participants in population-based metabolic profiling studies. Interpretation of energy metabolism, N-Glycan and 
fatty acid biosynthesis should be carefully decoupled from the underlying differences in ethnicity of participants.
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1  Introduction

The global population is rapidly ageing, and man is 
expected to live longer than ever before. Countries glob-
ally will face increased old age dependency ratios (OADR) 
with the proportion of 60 years old set to double by 2050 
(WHO, 2022). The question: ‘What is ageing?’—is yet 
to be fully answered (Kondoh et al., 2020). Despite sub-
stantial advances in understanding the mechanisms of 
aging, the translation of these insights from research to 
clinical application has been markedly constrained. This 
constraint reflects our limited understanding of the inher-
ent variability in aging, especially in the context of the 
diverse environmental exposures, known as the expo-
some, that uniquely affect each individual. (Orešič et al., 
2020). The heterogeneity impacts at all stages of life right 
from infancy to old age. For instance, rates of infant and 
maternal mortality (Knight et al., 2009), incidences of 
cardiovascular disease (CVD) (Lip et al., 2007), and the 
risk of type 2-diabetes (T2DM) (Mikhail et al., 2021) are 
all known to be higher in Black and South Asian popula-
tions globally. In comparison White counterparts suffer a 
higher mortality from cancer (Delon et al., 2022), demen-
tia and Alzheimer incidences (Mukadam et al., 2023). 
From historical reports of selective immune response to 
fatal diseases such as Tuberculosis (TB), acquired immune 
deficiency syndrome (AIDS) (Winkler et al., 2004) and 
malaria (Arama et al., 2015) to more recent COVID-19 
pandemic these disparities have been exemplified across 
ethnicities globally through evidently disproportionate 
impact and higher mortality rates (Tai et al., 2022; Yaya 
et al., 2020). Some studies refer to these as being a conse-
quence of ‘community-level deprivation’ (Lo et al., 2021) 
whilst other propose ‘randomness’ to account for it (Smith, 
2011). These disparities could be a result of genetics, 
environment, or an interaction between the two through 
epigenetic mechanisms. Independent of the cause, these 
disparities in health and disease must be investigated and 
understood to enable our populations to remain healthier, 
happier, and functional for longer. This becomes pivotal 
as we transition from the era of omics-based discoveries to 
precision medicine-led treatments and prognosis (Trivedi 
et al., 2017).

Ageing and ethnicity are two distinct entities with 
a common facet of being nonmodifiable and irrevers-
ible factors. Moreover, these are impacted by cultural, 
genetic, environmental, and socio-economic contributors. 
Although ethnicity can be considered a greater and more 
significant factor of ageing given its role within a popula-
tion. Diverse ethnicities can exhibit varying preferences 

and awareness towards diet and nutrition which can reflect 
in their metabolome (Clarke et al., 2023) and can be asso-
ciated to diet related metabolic diseases (Stratakis et al., 
2022). Additionally, contributions from non-nutrient 
components like their choice of medical approach, i.e., 
choosing traditional, herbal, homeopathic, or naturopathic 
practices over modern medicine, this too can determine 
their metabolic makeup. There is evidence for geographi-
cal location and migration to play a role in cluster genetic 
variations within a population (Tishkoff & Kidd, 2004). 
Thus, understanding ageing through ethnic phenotype 
could be a way forward. Despite ageing being independ-
ent of gender distinctions, our knowledge of hormonal and 
biochemical processes at the onset of ageing in men is 
relatively understudied (Gava et al., 2011; Lee et al., 2009) 
in contrast to that in females (Huddleston et al., 2011). 
Whilst both ethnicity and age have been studied as factors 
in such studies, their influence on changes in metabolome 
in an ageing, multi-ethnic population remains unexplored.

In recent years, metabolomics has emerged as a pow-
erful investigation tool in simplifying complex interplay 
between genetics, environment, and health. These phenotyp-
ing approaches have been used to study mammalian systems 
and changes occurring at the cellular level due to diseases, 
drug dosage and other factors like nutrition or environmen-
tal perturbations. Metabolomics which does not target pre-
defined sets or lists of metabolites has immense potential 
when probing a system to generate a hypothesis besides its 
clinical utility in diagnosis, phenotypic stratification and as a 
precursor to the development of targeted metabolic therapies. 
Mass spectrometry-based methods have been tested for phe-
notyping large populations (Dunn et al., 2011, 2015; Hajjar 
et al., 2023; Psychogios et al., 2011) given the high-resolution 
and high throughput capabilities. The findings of these stud-
ies form a baseline reference of serum metabolite levels in a 
relatively healthy population and, to some extent, explore the 
complex relationships among demographic factors, environ-
mental influences, and disease-associated heterogeneity and 
metabolomics.

Despite the perceived sample preparation and chroma-
tographic challenges, LC–MS has been the versatile choice 
over the years for high-resolution data acquisition (Roberts 
et al., 2022; Trivedi, 2012; Vuckovic 2012). The addition of 
GC–MS extends the detection coverage to small polar mol-
ecules which are useful as these represent central carbon and 
nitrogen metabolism ( McGarrah et al., 2018; Misra, 2021; 
Mojsak et al., 2021; Zeki et al., 2020). In this study we use a 
combination of reversed phase LC–MS and GC–MS platforms 
to generate metabolomic profiles from human serum for com-
prehensive coverage (Zeki et al., 2020).



Metabolomic heterogeneity of ageing with ethnic diversity: a step closer to healthy ageing﻿	 Page 3 of 15  9

2 � Materials and methods

2.1 � Study population

The study population consisted of middle-aged and older 
men (mean ± SD age: 59 ± 12 years) of White European, 
South Asian, and African Caribbean ethnic origins. These 
men were originally recruited from the Manchester area for 
the Human Serum Metabolome project (Dunn et al., 2015) 
and the European Male Ageing Study (EMAS). Briefly, 
fasting blood samples were collected along with clinical 
parameters (including age, gender, BMI, smoking status), 
health questionnaire and anthropometric measures. Details 
including sample collection and background have been out-
lined by Lee et al. (2009) and Dunn et al. (2015). From 709 
samples available those with missing metadata such as age, 
Body Mass Index (BMI), comorbidities or with ‘missing’ or 
‘other’ ethnicities were excluded (see details in Table S1). A 
subset of 572/709 samples analysed in this study are detailed 
in Table 1. Individuals were matched for age and BMI. Indi-
viduals with more than three co-morbidities reported were 
excluded to avoid confounded effects due to multimorbidity 
(Salisbury et al., 2011) in the profiles generated.

2.2 � Chemicals and reagents

For LC–MS: Optima® LC–MS grade water, methanol, and 
formic acid (Fisher Scientific) and for GC–MS: Optima® 
LC–MS grade water, anhydrous pyridine, N-methyl-N-tri-
methylsilyl tri fluoroacetamide (MSTFA), and methoxamine 
(Fisher Scientific). For retention index (RI) reagents used 

were decane, dodecane, pentadecane, nonadecane, doc-
osane and hexane. Internal standard (IS) mix consisted of 
lysine-d4, succinic-d4 acid, glycine-d5, and benzoic acid-d5 
(Sigma Aldrich). HPLC grade absolute ethanol (99.8%, v/v) 
diluted in water was used for apparatus cleaning and general 
maintenance.

2.3 � Sample preparation

Samples were stored at − 80 °C until preparation. Samples 
were randomly picked and further re-randomised prior to 
data acquisition to ensure no systematic biases remained. 
Samples were passively thawed on ice during preparation. 
Two × 50 µL aliquots per sample, one for each LC–MS and 
GC–MS analysis were collected into a 1.5 mL Eppendorf 
tubes. For GC–MS analysis 50 µL of IS was added to all 
samples at this stage. Serum was deproteinised by adding 
200 µL ice-cold methanol. Samples for LC–MS analyses 
were vortexed for 10 s followed by centrifugation at 30 °C, 
13,500 g, for 15 min. The supernatant was lyophilised in 
a vacuum centrifuge overnight. Lyophilised pellets were 
reconstituted in 100 µL methanol. Samples were vortexed, 
transferred to glass vials for LC–MS analysis.

GC–MS derivatisation: Post-deproteinisation samples 
were derivatised with addition of 25 µL O-methoxyamine-
HCl in anhydrous pyridine followed by vortex mixing for 
10 s and placing onto a heat block at 65 °C for 40 min. 
Following that, 25 µL of MSTFA was added to each sam-
ple, vortex mixed (10 s) and placed on to a heating block 
at 65 °C for 40 min. 10 µL of 1 mg/mL RI solution (Dunn 
et al., 2011) was added to each vial before vortex mixing 
for 10 s and centrifuging at 30 °C, 17,500 g for 15 min. 
50 µL of supernatant was transferred to a sterile GC glass 
vial capped with rubber sealed caps.

Quality control: A fixed amount of serum was aliquoted 
from all samples to prepare a pooled quality control (QC) 
and system conditioning QCs as described in (Broadhurst 
et al., 2018). Extraction blanks were prepared alongside 
samples by substituting serum volume (50 µL) with water. 
Solvent blanks were also prepared to assess data quality 
and system performance but not used in statistical analy-
sis. Pooled QCs were used during acquisition and pre-
processing steps to assess instrument and data quality.

2.4 � Metabolic profiling and data acquisition

LC–MS analysis: Samples were analysed with an Ultimate 
3000 UHPLC (Thermo Scientific) coupled to a Q-Exactive™ 
Plus Hybrid Quadrupole-Orbitrap™ Mass Spectrometer. 
Hypersil GOLD C18 column (1.9 µm, 2.1 mm × 100 mm), 
heated and held at 55 °C was setup for chromatographic 
separation of analytes. 5 µL extracted serum was injected 
for each sample. Metabolites were separated in samples at a 

Table 1   Distribution and demographics of subjects in this study

*BMI and age are expressed as mean ± standard deviation. Alcohol 
intake is expressed as a ratio of drinkers: non-drinkers (72 of the 
287 had missing data for alcohol consumption). Smoking status is 
expressed as a ratio of smokers: non-smokers. **Data were collected 
on morbidities including high blood pressure, heart conditions, liver 
conditions, kidney conditions, thyroid disease, prostate disease, dia-
betes, bronchitis, asthma and incidences of any cancers and stroke. 
Subjects with 2 or more comorbidities of these were classed as mor-
bid, whilst those with 0 or 1 of these conditions reported were classed 
as healthy

Parameters White Euro-
pean (WE)

South 
Asian (SA)

African Carib-
bean (AC)

N 287 143 142
Age (years) 63.66 ± 10.68 56.97 ± 11.12 54.01 ± 10.63
BMI (kg/m2)* 27.47 ± 3.89 27.75 ± 3.70 27.80 ± 4.86
Alcohol intake 74: 141 (0.34) 141:2 (70.5) 128:14 (9.14)
Smoking status 21: 266 (0.07) 22: 120 (0.18) 21: 121 (0.17)
Morbid: 

healthy**
150: 137 (1.09) 86: 57 (1.5) 60: 82 (0.73)



	 D. Trivedi et al.9  Page 4 of 15

flow rate of 0.5 mL/min with a controlled 15-min gradient 
of LC–MS grade mobile phases: (A) H2O with added (0.1% 
(v/v) formic acid) and (B) methanol (MeOH) with (0.1% 
(v/v) formic acid). The gradient started at 5% (B) for 2 min, 
increased linearly to 95% (B) over 8 min, and was held for 
2 min. It then returned to 5% (B) at 12.1 min, held for 2 min 
and finally re-equilibrated at 14.1 min to initial conditions.

Data acquisition was conducted in full MS mode in the 
scan range of 70–1050 m/z with a resolution of 70,000 
FWHM, an AGC target of 3.106 and a maximum injec-
tion time of 200 ms. The samples were analysed in positive 
mode. For MS, the spray voltage was set to 3.5 kV. The cap-
illary temperature was 260 °C, sheath gas 50, aux gas 12.5, 
max spray current 100 and the probe heater temperature 
was 425 °C for the analysis. Tuning, calibration, and instru-
ment maintenance was carried out as per the manufacturer’s 
recommendations.

GC–MS analysis: Data were acquired using an Agilent 
7890B GC paired with an Agilent 5977B MSD and operated 
with an Agilent 7693 autosampler. The sample (1 μL) was 
injected onto a VF-5 ms (inert, 5% phenylmethyl polysilox-
ane) column (30 m × 250 μm × 0.25 μm; Agilent Technolo-
gies) with an inlet temperature of 280 °C and a split ratio 
of 25:1. Helium was used as the carrier gas with a flow rate 
of 1.5 mL/min and a pressure of 14.1 psi. The chromatogra-
phy was programmed to begin at 70 °C with a hold time of 
4 min, followed by an increase to 300 °C at a rate of 14 °C/
min and a final hold time of 4 min. The total run time per 
analysis was 14.42 min. The MS was equipped with an elec-
tron ion source using 70 eV ionisation and a fixed emission 
of 35 μA. The mass spectrum was collected for the range of 
50–550 m/z.

2.5 � Data processing and statistical analysis

Data pre-processing: All raw data files were centroided 
and converted to.mzXML using ProteoWizard 3.0 (Cham-
bers et al., 2012). Data were deconvolved and aligned using 
Progenesis QI for LC, and eRAH package using R for GC 
combined with in-house data pre-processing toolbox [avail-
able at BioSpec Github (https://​github.​com/​Biosp​ec/)]. For 
LC–MS, parameters were setup within data pre-processing 
method for all 30,265 features detected. A filter was applied 
such that if a feature was not present in at least 10% of QCs, 
it was removed, and remainder of features were kept only if 
relative standard deviation (%) was less than coefficient of 
variance (%CV) of 40%. This was followed by blank sig-
nal intensity ratio filter, which removed 28,507 features. 
The resulting output had 1758 features. Similar strategy for 
GC-MS reduced 2074 features to 1253. Pooled QCs were 
used to algin signal drifts within batches and to perform 
LOESS (locally estimated scatterplot smoothing) normali-
sation between batches. The data were log10-transformed, 

Pareto scaled, and missing values replaced with cubic spline 
interpolation.

Clustering analysis: Data trends were tested with the 
unsupervised multivariate method of Principal Component 
Analysis (PCA) using MetaboAnalyst 4.0 (Chong et al., 
2019).

Discriminant analysis and classification modelling: To 
test the classification and prediction ability of the LC–MS 
and GC–MS profiles generated we employed supervised 
approach with PLS-DA based classification models for: (i) 
age with the four intervals 40–49.99, 50–59.00, 60–69.99 
and ≥ 70 years of age; (ii) age < 60 and ≥ 60 years; and (iii) 
the three ethnicities (South Asian, White European and Afri-
can Caribbean). These models were validated with bootstrap 
resampling with 1000 iterations. In addition, 1000 null mod-
els were also generated where the output class variable was 
randomly permuted (Gromski et al., 2015). PLS-DA was 
performed in MATLAB 2019a (MathWorks), and the results 
are presented as correct classification rates (CCRs) for the 
1000 test sets only.

Feature selection and ranking: To identify the significant 
contributors to the PLS-DA classifications above the vari-
able importance in projection (VIP) scores were calculated 
using MATLAB 2019a for all three models. The top fea-
tures from LC–MS analysis were putatively annotated using 
accurate mass matching to HMDB (https://​hmdb.​ca). For 
GC–MS, the features were assigned putative identifications 
by matching fragment spectra to compound spectra in the 
GMD (http://​gmd.​mpimp-​golm.​mpg.​de/). Metabolomics 
Standards Initiative (MSI) guidelines were adhered to for 
annotation of all compounds (Sumner et al., 2007) and so 
LC–MS were at Level 3 at best and GC–MS to MSI Level 2.

Pathway enrichment and functional analysis: Mummic-
hog was employed within MetaboAnalyst 4.0 (https://​www.​
metab​oanal​yst.​ca) (Pang et al., 2022) to assess collective 
functional impact of significant metabolic features (Li et al., 
2013). For mummichog analysis all m/z features were ranked 
by Mann-Whitney (MW) U-test and Kruskal Wallis (KW) 
ANOVA scores, and corresponding p-values. These features 
were then mapped onto a combination of known human met-
abolic models, including Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Kanehisa & Goto, 2000), Biochemical 
Genetic and Genomic knowledgebase (BiGG) (King et al., 
2016) and the Edinburgh Model (Ma et al., 2007).

Correlation and confounder analysis: To identify associa-
tions and guide downstream statistical analysis, a Spearman’s 
correlation test was performed. We aimed to investigate 
association of age and ethnicity to the metadata available 
for these subjects. The metadata included anthropometric 
measures (height, BMI, waist circumference, waist-to-hip 
and waist to height ratios), clinical measurements (glucose, 
insulin, homa_ir (homeostatic model assessment of insu-
lin resistance), homa_s (homeostatic model assessment for 

https://github.com/Biospec/
https://hmdb.ca
http://gmd.mpimp-golm.mpg.de/
https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
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insulin sensitivity), shbg (sex hormone binding globulin), 
cholesterol, LDL (low density lipoprotein) and HDL [high 
density lipoprotein) cholesterol, triglycerides, HDL (high 
density lipoprotein) triglycerides, high_bp (blood pressure)] 
and data on comorbidities and health conditions (bronchi-
tis, asthma, liver condition, kidney condition, thyroid, heart 
condition, diabetes, prostate condition, cancer and stroke). 
A correlation matrix was calculated for these in R and visu-
alised as a correlation squares plot (Fig. S8). To evaluate 
confounding effects of age in ethnicity classification and 
vice versa we built PLS-DA models that were age-adjusted 
in ethnicity or ethnicity-adjusted in age. Additionally, mod-
els were created using subsets of our subject population 
i.e., drinkers versus non-drinkers to test for influence of 
alcohol intake in our classification models. Using the same 
subsets pathway enrichment analysis was also performed to 
determine confounding effect of alcohol intake in age spe-
cific pathway impact. To determine if there was a confound-
ing effect of ethnicity on citric acid expression in our cohort, 
box whiskers plots and pairwise t-test was performed on 
normalised citrate intensities of these subjects.

3 � Results

The metabolic features which passed data filtering thresh-
olds, QC normalisation, alignment checks and appeared 
consistently for all samples were deemed reproducible. We 
retained 1758 such features from LC–MS and 1253 such 
features from GC–MS for statistical analysis. PCA showed 
no clear clustering or trends in the data separating these sam-
ples by age or ethnicity, however, QCs showed good cluster-
ing (Fig. S1). No confounding effects were seen on the age 
and ethnicity models constructed. No significant correlation 
was observed between age, ethnicity, and subject metadata 
from Spearman’s correlation tests. Figure S9 displays insig-
nificant difference in citrate level across ethnicities.

3.1 � Classification of subjects by ethnicity

Samples were divided into three categorical classes based 
on subject’s ethnic origin. Classes consisted of n = 143 SAs, 
n = 142 ACs and n = 287 WEs. It is known that models gen-
erated using unbalanced sample numbers may introduce bias 
towards a single class i.e., WEs ethnicity outnumbering SAs 
and ACs approximately 2–1. To avoid this we applied the 
Synthetic Minority Oversampling Technique (SMOTE) pre-
viously reported (Chawla et al., 2002) to our dataset. We 
built and compared PLS-DA models built with and without 
SMOTE applied data. Models with SMOTE applied showed 
marginal but not statistically significant improvement in 
their averaged correct classification rate (data not shown), 
indicating that SMOTE did not bias these analyses to the 

smaller group. A series of PLS-DA models were built and 
rather than show PLS scores, which in the literature are at 
best generated from only the training data and do not rep-
resent the outputs of the models [in terms of the Y-variable 
that is used as the target output (Westerhuis et al., 2008)], 
we show our results in terms of the ability for PLS-DA to 
classify the test set data. Therefore, Fig. 1 represents a his-
togram of the test set outputs from 1000 bootstrap validated 
PLS-DA models built to classify subjects by their ethnicity 
using metabolic features in their serum. The figure shows 
observed versus null distributions (from 1000 permutation 
tests) and reports CCRs alongside prediction accuracy, sen-
sitivity, and specificity of these models (the same process 
was used for Figs. 2 and 3).

3.2 � Classification of subjects by age

For classification by age, two models were built, each using 
different class distributions. In model 1, subjects were 
stratified into four 10-year bands between 40 and 86 years 
i.e., 40–49.99 years (n = 145), 50–59.99 years (n = 174), 
60–69.99 years (n = 121) or ≥ 70 years (n = 140). In model 
2, the subjects were split into two broader classes: < 60 years 
(n = 319) versus ≥ 60 years (n = 261). Figure 2 shows PLS-
DA output and permutation testing distributions for model 
1.  Classifying  subjects into tighter 10-year age bands, 
resulted in decreased CCRs of 73.13% (LC–MS) and 36.08% 
(GC–MS), indicating lesser metabolic variation in serum 
profiles. Alternatively, this may be due to the reduced num-
ber of samples within four groups compared to two  group 
comparison.  Both classification rates and prediction accura-
cies were seen to improve significantly for model 2 when just 
two age brackets are used, with almost no overlap between 
the actual models and the null distributions (Fig. 3).

3.3 � Determining confounding effects of age 
and ethnicity

The models created to test confounding effects of age in eth-
nicity and vice versa reported average correct classification 
rates of < 30% (for both instances). This indicated no obvi-
ous confounding effects were present Fig. S2. Additionally, 
PLS-DA classification for ethnicity showed no significant 
contribution from ‘age’ when included as a variable.

3.4 � Feature annotation and metabolite 
identification

Having established a clear and good classification of these 
men based on their metabolomic profiles, by age and eth-
nicity, the next stage was to attempt to understand what 
biochemical processes may be driving these models. We 
note here that we are aware of the published MSI guidelines 
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(Sumner et al., 2007), where two orthogonal properties are 
used for annotation and identification (if a standard is avail-
able). For our analyses the two different physicochemical 
properties are retention time—relating to polarity in LC–MS 
and volatility in GC–MS—and mass spectrometry informa-
tion, where for LC–MS this is solely accurate mass (due 
to the high mass resolution mass analyser used) and for 
GC–MS fragmentation patterns due to high energy (viz. 
70 eV) electron ionization. Thus, for GC–MS our iden-
tification against external libraries (e.g., GMD) is at best 
MSI Level 2, and for LC–MS as we are using accurate mass 
only, this is less confident. In addition, we did fact check our 
annotations to make sure they are not spurious following 
suggestions published recently (Theodoridis et al., 2023). If 
an identification of analyte had low biological plausibility 

(i.e. a plant specific metabolite seen in serum) or low plau-
sibility in terms of chromatographic retention (i.e. a lipid 
peak was seen within first two minutes of a gradient analysis 
using C18 column), we annotated the feature as ‘unknown/
unidentified’.

To select discriminatory variables, we used input vari-
ables from PLS-DA models with VIP score > 1 from both 
ethnicity and the two age PLS-DA models. Features were 
ranked by descending VIP scores. The top 10% variables 
from each model were annotated with m/z matching to 
HMDB (LC–MS) and accurate mass and spectral fragmenta-
tion match to GMD database (GC–MS). In PLS-DA model-
ling a clear ranking-based feature selection may not always 
be possible when too many variables contribute equally 
towards classification of the response variable, therefore data 

Fig. 1   PLS-DA models built to classify subjects based on their eth-
nicity (White European vs. South Asian vs. African Caribbean) using 
metabolic features discovered with LC–MS (a, b) and GC–MS (c, 
d). Histograms a and c show the null distribution (grey bars) versus 

observed distribution (orange bars) the averaged correct classification 
and graphics b and d report class-wise classification rates, in addition 
to model’s overall sensitivity, specificity and prediction accuracy for 
each bootstrapped PLS-DA model
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specific cut-off should be calculated for accurate ranking of 
features (Akarachantachote et al., 2014). We chose the top 
10% annotated variables (Tables S2–S5) ranked by their VIP 
scores for visualisation (Figs. S3–S7).

3.5 � Pathway enrichment analysis

Pathway enrichment analysis was performed using the 
most important m/z features, determined by their VIP 
scores being higher than 1 from PLS-DA models used to 
predict age and ethnicity. Features selection returned 1574 
features for LC–MS and 561 features for GC-MS with VIP 
scores > 1. Figure 4 shows the output in form of a bubble 
plot with each pathway represented with a circular node. 
For simpler interpretation, each filled circle corresponds to 
a metabolic pathway or a biological process, its size repre-
sents importance of that pathway in the context of analysis 
and its colour profile (yellow to red) infer the statistical 
significance (low to high) of these computed enrichments. 

This allowed us to prioritise selection of relevant enriched 
pathway for further interpretation, with the published lit-
erature. Typically, a large and red circle tends to be a path-
way of high priority given its enrichment and significance. 
Pathways with significant hits have been highlighted. Note, 
not all the named pathways had statistically significant 
p-values, i.e., p-value below the set threshold value of 0.05 
post Benjamini–Hochberg false discovery rate (BH-FDR) 
correction. Only those truly significant (i.e., FDR adjusted 
p-value ≤ 0.05) are discussed below.

4 � Discussion

Literature reviews reveal that the study of ethnic differ-
ence in men’s metabolic profiles has to date received very 
little attention. As noted by Vasishta et al. (2022), many 
metabolomics studies examining the metabolome from 
an ethnic perspective yield inconclusive result. This lack 
of clarity often stems from factors such as insufficient 

Fig. 2   PLS-DA models built to classify subjects based on age in 
four brackets (viz. 40–49.99  years, 50–59.99  years, 60–69.99  years, 
or   ≥ 70 years) using metabolic features discovered with LC–MS (a, 
b) and GC–MS (c, d). Histograms a and c show the null distribution 

(grey bars) versus observed distribution (orange bars) the averaged 
correct classification and graphics b and d report class-wise classi-
fication rates, in addition to overall sensitivity, specificity and predic-
tion accuracy for each bootstrapped PLS-DA model
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sample sizes, issues with metadata (e.g., gender, BMI, 
waist-to-hip ratio) either being mismatched or self-
reported, or the constraints of limited case–control study 
designs (Hu et al., 2022). Our study follows recommenda-
tions from the community (Trivedi et al., 2017) and had 
572 well-matched, fasted serum samples from commu-
nity dwelling subjects with at least a 113 samples in each 
class for any single statistical analysis performed. These 
results are therefore a good representation of the ethnic 

phenotypes in the UK (White European, South Asian 
and African Caribbean) that have been characterised by 
metabolomics approaches. We were able to obtain metab-
olomic profiles of these men using LC–MS and GC–MS 
and could classify accurately these men using their meta-
bolic signatures into ethnic phenotypes and age groups. 
To achieve this, we leveraged PLS-DA and validated 
this supervised learning method using bootstrapping 
and permutation testing. Finally, in this process the key 

Fig. 3   PLS-DA models built to classify subjects based on two classes 
of age (viz. < 60  years vs. ≥ 60  years old) using metabolic features 
discovered with LC–MS (a, b) and GC–MS (c, d). Histograms a and 
c show the null distribution (grey bars) versus observed distribution 

(orange bars) the averaged correct classification and graphics b and 
d report class-wise classification rates, in addition to overall sensitiv-
ity, specificity and prediction accuracy for each bootstrapped PLS-DA 
model
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contributing input variables (metabolites) were ranked 
and used for enriched metabolic pathway analysis using 
MetaboAnalyst. Below are discussions of the main path-
ways that we propose are biochemically distinct between 
ethnic and age phenotypes.

4.1 � N‑Glycan biosynthesis in ethnicity

With Fisher’s exact test (FET) p-value of 0.02, N-glycan 
biosynthesis was the only highly significant impacted path-
way by ethnicity specific discriminators (Fig. 4a). Gebrehi-
wot et al. (2018) defined the inter-ethnic variations of the 

Fig. 4   Pathway enrichment analysis results from MetaboAnalyst 4.0. 
This functional analysis was performed using all m/z  features, their 
corresponding MW U-test (age) and KW-ANOVA scores (ethnic-
ity), and p-values. Subfigures (a) and (b) represent ethnicity-specific 
pathways derived from LC-MS and GC-MS data, respectively. Sub-
figures (c) and (d) display age-specific pathways from LC-MS and 

GC-MS data, respectively.  The  y-axis  represents the − log(10) p-val-
ues from pathway enrichment analysis, with p-value threshold set at 
0.05. The x-axis shows pathway enrichment expressed as the ratio of 
observed hits to expected hits on a pathway, where expected hits are 
based on chance alone
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N-glycome in serum in healthy individuals of US origin 
including South Indian, Japanese, and Ethiopian popula-
tions. These authors demonstrated an ethnicity-specific 
N-glycan expression pattern with 13 out of 51 glycans exclu-
sively detected in Ethiopians. Immunoglobulin G (IgG), the 
most abundant circulating immunoglobulin, is heavily gly-
cosylated, the alteration of which imposes a dysregulated 
immune-inflammatory response leading to increased risk of 
cardiovascular disease development. IgG-associated N-gly-
can traits are differentially associated with the development 
of hypertension in a population-pooled analysis of 4757 
participants of different ethnicities (Chinese Han, Croatian 
Korcula, Croatian Vis and Scottish Orkney) (Wang et al., 
2016). In a similar study, at least 10 IgG N-glycan traits 
associated with incident hypertension in ethnic minorities 
of China (namely, Uygur, Kazak, Kirgiz, and Tajik) (Liu 
et al., 2018). Although previous studies have not established 
a clear link between stratified ethnicity and IgG N-glyco-
sylation, N-glycan traits show differential correlations with 
ethnic groups. This information can be further investigated 
in future population-based studies across both genders to 
gain a clearer understanding of how N-glycans vary across 
ethnicities and whether these variations are significant.

4.2 � Biosynthesis of unsaturated fatty acids 
and ethnicity

Ethnicity specific metabolic conversion of fatty acids such 
as linoleic acid (LA) and arachidonic acid (AA) have been 
reported previously (Abdelmagid et al., 2015). Recently, 
a study performed in a US based cohort identified 259 
metabolites including γ-LA, an intermediate between LA 
and AA in the conversion chain to be differentiating Black 
and White women based on their ethnicity. The study linked 
these metabolites to the increased susceptibility of coronary 
heart disease observed in these women (Hu et al., 2022). 
Such changes can be attributed to ethnicity specific genetic 
variations for enzymes involved in long-chain fatty acid syn-
thesis, such as delta 5-desaturase (D5D) and delta 6-desatu-
rase. Polymorphisms of genes encoding these enzymes 
have been reported to alter in Caucasian and Asian adults, 
resulting in differential plasma fatty acid profiles (Merino 
et al., 2011). Omega-3 polyunsaturated fatty acids sug-
gest that ethnic diversity affects cardiovascular outcomes 
through variations in lipid profiles and glucose homeostasis 
(Patel et al., 2010). Ethnic differences are also associated 
with distinct inflammatory phenotypes; for instance, several 
studies indicate that Black individuals have higher levels of 
inflammatory biomarkers compared to Hispanics, Whites, or 
Asians (Abdelmagid et al., 2015; Carroll et al., 2009; Stowe 
et al., 2010). Anti-inflammatory long-chain polyunsaturated 
fatty acids (LC-PUFAs) are often prescribed to mitigate sub-
clinical inflammation associated with aging. A question 

remains as to whether dysregulation or heterogenicity of 
fatty acid metabolism biologically contributes to ethnicity-
based differences in health outcomes, considering the age of 
the cohort. Whether this contribution is independent of other 
factors should also be investigated. However, to definitively 
address these questions, it is necessary to investigate clinical 
measurements of known disease precursors and hormonal 
data. Previous research (Eendebak et al., 2017) has shown 
that these factors have differential impacts by ethnicity in 
men from the same cohort as ours.

Despite being classified as an unmodifiable risk factor 
for poor cardiovascular outcomes, ethnicity is increasingly 
recognised to have a significant impact on patient outcomes. 
For instance, African-Caribbeans, Hispanics, and other eth-
nic minorities have a substantially increased prevalence of 
hypertension (HTN) and type 2 diabetes mellitus, which 
automatically imposes a higher baseline threshold for 
developing end-organ damage, including heart failure (HF) 
(Kim et al., 2010). In this cohort Spearman’s correlation 
of the clinical and biochemical metadata (Fig. S8) revealed 
no strong correlation of age, clinical characteristics, mor-
bidity, and physiology with ethnicity. There was a moder-
ately strong negative correlation between ethnicity and age 
(r = − 0.47). There was a weak negative correlation observed 
between ethnicity and waist-to-hip ratio (r = − 0.31) and 
shbg (r = − 0.15). Age showed moderate positive correlation 
to shbg (r = 0.36), high blood pressure (r = 0.35) and stroke 
(r = 0.22) all of which are expected to vary with age. As 
such, in absence of any strong correlation there is very little 
indication of any significant confounding effect from comor-
bidities and lifestyle present in this cohort. It should be noted 
that association with age related ailments such as high blood 
pressure and heart condition or stroke is expected in a cohort 
consisting of middle aged and older men. An essential takea-
way for epidemiological metabolomics analysts would be the 
strengthened requirement to account for confounding effects 
of both age and ethnicity in future human metabolic profiling 
studies using serum.

4.3 � Citrate (TCA) cycle and ageing

In the present study citrate, as an indicator of the TCA cycle, 
was significantly impacted (FET p-value = 0.04) by age spe-
cific classifiers from our discriminant analysis. This finding 
that citric acid was upregulated in older age groups cor-
roborates findings from a large-scale UK based phenotyping 
study in serum by Dunn et al. (2015). Moreover, Saito et al. 
(2016) also claim energy metabolites of citrate cycle to be 
significantly different between young and old men. Whilst 
the TCA cycle has been linked to ageing and age-associated 
diseases (Chin et al., 2014) it has not been co-studied for 
influence from ethnicity of individuals. To determine if 
there was a confounding effect of ethnicity on citric acid 
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expression in our cohort, box whiskers plots and pairwise 
t-test was performed which showed insignificant difference 
in citrate level across ethnicities (Fig. S9). Extracellular cit-
rate accumulation in the senescent cells is considered to be 
a marker for chronological age independent of sex, BMI or 
telomere length (Mycielska et al., 2022) and abnormalities 
in the citrate cycle have been associated to declined intrinsic 
capacity in older individuals (Pan et al., 2022). In rodents 
(Chen et al., 2018), and in humans, citrate stored in bones is 
released into extracellular matrix in osteoporosis, a disease 
more prevalent in the later age.

The citrate cycle occurs within the mitochondria and 
involves a series of chemical reactions resulting in the pro-
duction of diverse metabolites mediating several cellular 
functions, including epigenetic modifications, post-trans-
lational modifications, and diverse biosynthetic pathways 
(Martínez-Reyes & Chandel, 2020). There is growing evi-
dence that links TCA metabolic dysregulation with age-
ing and age-associated diseases. A UK-based phenotyping 
study in a large populations (n = 1200) found citric acid is 
not gender-specific and increased with age in both males 
and females (Dunn et al., 2015) where ethnicity was not 
accounted for.

4.4 � Porphyrin metabolism and other age‑related 
pathways

The impact on porphyrin metabolism was noticeable with 
respect to age. There is not much information available to 
link porphyrin metabolism to age. Reports of alcohol con-
sumption causing disturbances to porphyrin metabolism 
have been published (Doss et al., 2000). Alcohol is con-
sidered a porphyrinogenic agent and a cause for hepatic 
coproporphyrinuria later manifested as alcohol-induced 
liver damage. Among our subjects 13/572 report chronic 
liver-related disease or dysfunction. It is unlikely for this 
enrichment to have been contributed from these 13 men; this 
association between age and porphyrin metabolism should 
be further investigated. To investigate whether alcohol intake 
in this population influenced ageing in this population, we 
performed mummichog analysis on two subsets of our popu-
lation i.e., drinkers and non-drinkers. Porphyrin metabolism 
pathway remained impacted (Fig. S10a, b) in both cases sug-
gesting the alcohol intake in these subjects did not play a 
role in its enrichment.

Anthranilic acid, a metabolite produced in the L-trypto-
phan-kynurenine pathway, was observed to increase with age 
(Fig. S6). Previous studies report L-tryptophan-kynurenine 
pathway associated with ageing and age-related diseases. 
Dunn et al. (2015) reported decreasing tryptophan with 
male ageing which can be explained by increased muscle 
mass turnover. An increase in kynurenine causes trypto-
phan to decrease and this has been linked with age-specific 

cognitive decline (van der Goot & Nollen, 2013). Kynure-
nine is a downstream metabolite of tryptophan metabolism 
and a substrate for formation of anthranilic acid (Ramos-
Chávez et al., 2018). Therefore, decrease in tryptophan can 
explain increasing anthranilic acid with progressing age. 
A recent study linked metabolic biomarkers of decreased 
intrinsic capacity in elderly to tryptophan metabolism among 
other key pathways reported (Pan et al., 2022).

We note that some of the metabolites (Figs. S6 and S7) 
may not be of endogenous origin yet differentially expressed. 
Metabolites like gallic acid (Kahkeshani et al., 2019) may be 
from anti-inflammatory, neuropsychological and metabolic 
supplements, caffeic acid from coffee intake (Bastianini 
et al., 2018) whereas potential metabolites from use of cos-
metic and anti-ageing solutions such as L-rhamnose (Pageon 
et al., 2019) were also detected. We found kaempferol—a 
polyphenol administered as supportive treatment for diseases 
in some traditional medicinal approaches (Ren et al., 2019). 
This could be indicative of the cultural diversity within 
this population and their self-care habits. Detection of such 
metabolites is expected alongside endogenous metabolites in 
a global profiling experiment performed using highly sensi-
tive, chemically specific MS-platforms.

4.5 � Strengths, limitations, and outlook

There are some limitations to this study. Moreover, the same 
ethnic groups in different countries may have different serum 
metabolic profiles. These differences in serum metabolomes 
could be attributed to many external factors such as diet, 
environment, socio economic factors and access to health-
care in early age (Goodacre, 2007). Additional metadata 
including dietary intake, medication, significant lifestyle fac-
tors and any exposome influencers would enhance findings 
in such population-based metabolomics studies. Ethnicity in 
this population was determined using ethnic origins of one 
or both parent/s going back up to four generations. As robust 
as this method is, it is not a universal method to determine or 
record ethnicity in populations worldwide. Studies relying 
on any self-reported ethnicity data for e.g., Navarro et al. 
(2023) or ethnicity otherwise estimated or recorded, may 
not always be accurate or reliable. Therefore, the phenotype 
associated to such data may not be confidently defined; that 
is to say, there may not be a strong difference for these dif-
ferent groups. That said this is a large study where relatively 
large populations of individuals were measured: 287 White 
Europeans, 143 South Asians and 142 African Caribbeans.

Moreover, we address the inter-individual heterogeneity 
within our cohort, with respect to demographic data, differ-
ent clinical parameters, and comorbidities. The study is not 
intended to identify metabolic biomarkers of certain dis-
ease entities, but rather to illustrate the global association 
of metabolic profiles with aging and ethnicity. We did not 
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therefore attempt to investigate whether ethnicity is directly 
or independently related to the identified metabolites or 
metabolic pathways.

Our study highlights the potential of metabolomics in 
routine clinical decision making, where currently despite 
a suite of administrable therapies available in hospitals for 
some cases, the decision-making is often a struggle due to 
poorly understood patient response owing to population 
heterogeneity (Caiazzo et al., 2022). Koeken et al. (2022) 
sets the premise to show how metabolomic profiles can be 
used to predict immune responses which in turn can enable 
delivery of effective and tailored vaccines and therapies in 
populations. We encourage further work in this area with 
added analytical platforms, inclusion of other genders, wider 
ethnic diversity, larger sample size, additional metadata, and 
a multi-center validation mechanism to accelerate research 
in healthy ageing to alleviate socio-economic burdens. This 
could pave way for personalised biomarkers in future geared 
towards predictive, diagnostic, and therapeutic interventions 
needed for inclusive and healthy ageing.

5 � Conclusion

This work is our contribution towards the UN’s ‘decade of 
healthy ageing’ declaration. With the novel ethnicity spe-
cific metabolome changes reported here, we are a step closer 
to understanding differential mechanisms of ageing across 
these ethnic groups. We report that men of White European, 
South Asian, and African Caribbean origin have distinct 
metabolic signatures in serum with prediction potential of 
their ethnicity and age group. We report changes in energy 
and fatty acid metabolism driven by age and ethnicity of 
these men. This approach will need to be adapted to a wider 
range of ethnicities both within the UK and globally. Future 
work should include other genders, wider ethnic diversity, 
larger cohorts, longitudinal data, and multi-centre validation 
to accelerate research in healthy ageing.
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