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ABSTRACT

Recently, Jain [ASME J. Heat Mass Transfer, 220 (2024)] provided spreading-resistance

formulas for an isothermal source on compound, orthotropic, semi-infinite, two-dimensional

(axisymmetric) flux channels (tubes). The boundary condition (BC) in the source plane was

a discontinuous convection (Robin) one. Along the source, a sufficiently-large heat transfer

coefficient was imposed to approximate an isothermal condition; elsewhere, it was set to

zero, imposing an adiabatic BC. An eigenfunction expansion resolved the problem. Dis-

tinctly, we impose, precisely, a mixed isothermal-adiabatic BC in the source plane and use

conformal maps to resolve the spreading resistance for the limiting case of a compound,

isotropic flux channel. Our complimentary approach requires more time to compute the

spreading resistance. However, it converges uniformly rather than pointwise, converges

to the exact spreading resistance rather than one with an error, eliminates the Gibbs phe-
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nomenon at the edges of the source and fully resolves the square-root singularities in heat

flux as the discontinuity in the BC is approached.

NOMENCLATURE

T ∗ (dimensional) temperature (K)

T ∗
s (dimensional) source temperature (K)

x∗ (dimensional) coordinate (m)

y∗ (dimensional) coordinate (m)

2b∗ total width of channel (m)

2a∗ total width of source region (m)

h∗ height of the first layer (m)

k1 thermal conductivity of the first layer (W/m·K)

k2 thermal conductivity of the second layer (W/m·K)

z x+ iy

h1(z) analytic extension of θ1

h2(z) analytic extension of θ2

Dζ triply connected domain in Figure 3

θ1 non-dimensional temperature of the first layer

θ2 non-dimensional temperature of the second layer

σ k1/k2

a a∗/b∗

h h∗/b∗

x x∗/b∗

y y∗/b∗

1 INTRODUCTION

Spreading (constriction) resistance results when heat is conducted from (to) a finite region

to (from) a larger one because of the finite, “in-plane” thermal conductivity of all materials. It
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is important in a myriad of applications in heat transfer [1]. These include electronics packag-

ing [2], conduction in the base of a heat sink [3] and thermal contact resistance [4]. Moreover, its

mathematical-equivalent is common in many physical problems, as discussed by Hodes et al. [5].

For example, as discussed further below, it is encountered in the problems of finding the apparent

hydrodynamic and thermal slip lengths characterizing a superhydrophobic surface [6].

A new monograph by Muzychka and Yovanovich [1] discusses the extensive body of virtu-

ally all known analytical and semi-analytical solutions for spreading resistance and their applica-

tions. Such solutions, including that considered here, are extremely valuable relative to numerical

ones. For example, in the design of GaN-on-diamond high electron-mobility transistors, Bag-

nall and Muzychka [7] showed that their semi-analytical formula required an order-of-magnitude

smaller computation time than finite-element solutions. Given the new monograph [1], we only

discuss those studies relevant to the present work on the two-dimensional conduction problem of

an isothermal strip in an otherwise adiabatic source plane on a semi-infinite flux channel.

Before considering compound, semi-infinite, two-dimensional flux channels, we discuss so-

lutions for a single-material one. Figure 1 (a) illustrates this conduction problem, governed by

Laplace’s equation, for an isothermal source at a temperature T ∗
s and of width 2a∗ centered in the

middle (x∗ = 0) of the base (y∗ = 0) of a 2b∗-wide flux channel. The remaining boundaries of the

domain are adiabatic, except for a constant far-field heat flux, q∗. The thermal conductivity of the

material is k. In the dimensionless analogue of the problem shown in Figure 1 (b), we drop the

asterisks on relevant quantities, all lengths are non-dimensionalized by b∗ and T = T ∗k/(q∗b∗).

The mathematical equivalent of this problem, i.e., a constant, homogeneous Dirichlet boundary

condition (BC) on an otherwise constant, homogeneous Neumann BC finite-width plane in a semi-

infinite medium with a constant far-field Neumann BC satisfying Laplace’s equation, is common in

physics. Indeed, in 1939, Smythe [8], in the context of electrostatics, resolved the voltage field. He

did not, however, use his results to provide an expression for spreading resistance.

Turning to experiments, at least as early as 1949, spreading resistance in a closely-related

problem was measured. To be sure, in the context of electrostatics, i.e., the effect of electrical

contact resistance on resistance welding, Kouwenhoven and Sackett [9] measured it in electrical
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Fig. 1. (a) Dimensional and (b) dimensionless problems for a single-material, isotropic, semi-infinite flux channel.

experiments in the “abrupt change” configuration. Correspondingly, their specimens were metal

bars of rectangular-cross section with a finite-length constriction, also rectangular in cross section,

between the ends. The spreading resistance of such an abrupt change in a rectangular cross-

sectional area flux channel, where both the constricted and non-constricted regions are semi-

infinite has been resolved by Smythe [8]. In the limit that the ratio of the widths of the constricted-

to-non-constricted portions of the strip approaches zero, the spreading resistance is given by a

later-developed formula (1) discussed below. (Relatedly, the almost isothermal BC utilized by

Mikic [10], also discussed below, becomes valid.) Conversely, as this ratio becomes sufficiently

large, the increase in spreading resistance relative to the case of an isothermal strip in a semi-

infinite domain is dramatic [1]. However, both spreading resistances, of course, vanish as the ratio

approaches 1. Notably, in some experiments by Kouwenhoven and Sackett [9], the constriction

was eccentric, i.e., not centered along the base of the domain. Finally, in a subsequent study,

Kouwenhoven and Sackett [11] verified their experiments were consistent with the solution by

Smythe [8].
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The analytical solution to the problem depicted in Fig. 1, as mentioned by Muratov and Stanislov [12],

also traces back to a publication in 1955 by Moizhes [13], again in the context of electrostatics.

He was the first to provide the formula for spreading resistance, R∗
sp, i.e., for our purposes, the

additional temperature rise of the source relative to the one-dimensional problem, where it spans

the whole width of the domain, per unit heat rate in ◦C/W. The formula is

kL∗R∗
sp =

1

π
log
[
csc
(πa

2

)]
, (1)

where L∗ is the depth of the flux channel.

Analysis in a heat conduction context traces back to Mikic [10]. He resolved, via separation

of variables, the problem of an isoflux source in an otherwise adiabatic source plane, i.e., he

imposed a discontinuous rather than mixed BC. Clearly, there is no singularity in heat flux normal

to the source plane. Hodes et al. [14] expressed Mikic’s results for spreading resistance, based

on the mean or maximum source temperature, in terms of polylogarithm functions. Moreover, Li

and Lu [15] provide, in polar (r, θ) coordinates, the temperature field, local to the discontinuity.

Imposing an adiabatic condition at θ = 0 and finite and constant heat flux source at θ = π, it

manifests itself, dimensionlessly, as

T =
r

π
[log (r) cos (θ)− θ sin (θ)] +

∞∑
k=0

akr
k cos (kθ) .

Here, T = T ∗k/(q∗a∗), r = r∗/a∗ ≪ 1 and the constant coefficients ak require the full solution. In

Cartesian local coordinates (x = x∗/a∗, y = y∗/a∗) relative to the singularity at x = 0 in the source

plane (y = 0),

T =
x ln |x|

π
+

∞∑
k=0

ak|x|k cos θ. (2)
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Consequently, the heat flux in the source plane exhibits an O(r log r) singularity from any direction,

except π/2, as x approaches the discontinuity in the BC along the source plane.

Mikic next resolved, again, by separation of variables, the spreading resistance corresponding

to what is, today, sometimes referred to as an “almost isothermal” BC, i.e., the heat flux along the

source is proportional to 1/
√
a2 − x2. Moreover, albeit not mentioned in the relevant literature, he

also resolved the temperature field for the case of an isothermal source using a conformal map.

He, like Smythe [8], did not manipulate it to find spreading resistance but did use it to provide two

important results. First, he provided an exact formula for the heat flux over the isothermal portion

of the source plane. Secondly, he showed that (after manipulation of his Equation (D.16)) the

temperature profile over an almost isothermal source is accurate to O (a).

Proceeding chronologically, in 1968, Veziroglu and Chandra [16], unaware of the study by

Moizhes [13], independently resolved the formula (1) for spreading resistance. They also con-

sidered an eccentric heat source but for a constant heat flux rather than isothermal BC. Shortly

thereafter Veziroglu and Huerta [17] resolved the problem for an eccentric, isothermal source, as

did Sexl and Burkhard [18] soon thereafter.

This brings us to the seminal work by Philip [19, 20] in the context of the hydrodynamic BC at

fluid-fluid interfaces in porous media. He provided the perturbation to the velocity field for “clean”

(mobile/shear-free) interfaces relative to “dirty” (immobile/no slip) ones in a myriad of flow configu-

rations. Clearly, by dirty interfaces he was referring to those where the buildup of surfactants along

them immobilized them – see, e.g., Palaparthi et al. [21] for a discussion of the relevant physics.

One of the problems he considered was a linear-shear flow over a plate with a periodic array of

no-shear slots, the mathematical equivalent of the problem first resolved by Smythe [8] insofar as

the field and Moizhes [13] insofar as the perturbation to it at infinity, which led to, yet again, (1).

We note that the temperature field given by Mikic [10] and the velocity field given by Philip [19],

although distinct in form, are, of course, identical as shown in the Appendix A. We further note that

Philip’s problem is best viewed in terms of a constriction rather than spreading resistance context

as the no-slip BC is a momentum sink.

It is noteworthy that, in recent years, the foregoing work has had an enormous impact on
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the analysis of the flow and heat transfer in adiabatic and diabatic microchannels textured with

superhydrophobic surfaces. Representatively, Hodes et al. [14] used the results of the mixed

BC problem for the inner hydrodynamic problem and the discontinuous Neumann BC (first result

by Mikic [10]) for the inner thermal problem to resolve the flow and heat transfer in a diabatic,

superhydrhophobic microchannel via matched asymptotics. Moreover, as first studied in depth

by Peaudecerf et al. [22], immobilization of portions or all of menisci by surfactants, precisely the

physical mechanism of interest to Philip [19, 20], formed in superhydrophobic microchannels is

responsible for the reduced drag relative to the shear-free limit in most experimental studies [23].

More recent studies have progressed beyond the foregoing canonical problems. As discussed

by Hodes et al. [5], combining the results of Schnitzer [24] and Crowdy [25] provides formula for

the spreading resistance when the adiabatic portion of the bottom of the domain is a circular arc,

thereby capturing the effects of surface roughness. Moreover, again in the context of a flow over

superhydrophobic surface, Crowdy [26] resolved the spreading resistance for an arbitrary array

of isothermal and adiabatic BCs in the source plane in a period window and, subsequently, ex-

tended his result to the case of weakly-curved, circular arcs in [5]. Notably, Mayer et al. [27] used

the first result by Crowdy [26] in their resolution of thermocapillary-driven flow through a super-

hydrophobic microchannel. Moreover, the present result would constitute the inner hydrodynamic

problem in the context a flow of a layer of two liquids through a superhydrophobic microchannel

(see Hodes et al. [5] for the single fluid case). Finally, when the source is constant heat flux rather

than isothermal, Lam et al. [28], using a boundary perturbation, resolved the problem when the

adiabatic portion of the bottom of the domain is a weakly-curved circular arc.

The only result for spreading and constriction resistance for an isothermal source on a com-

pound flux channel is that by Jain [29]. Notably, a suite of related problems is resolved when

the source is isoflux [1], which simplifies the mathematics. For example the three-dimensional

problem for a rectangular source on a compound, orthotropic, finite-thickness flux channel with an

interfacial resistance between the layers and a convection BC in the sink plane has been resolved

by Muzychka [30]. Returning to the problem at hand, Jain [29] resolved the two-dimensional and

semi-infinite Cartesian (isothermal strip in source plane) and axisymmetric (isothermal circle in
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source plane) cases. The thermal conductivities in both regions of the channel were orthotropic;

therefore, materials such as pyrolytic graphite that are used in the thermal management of elec-

tronics may be accommodated. Representatively, HPMS Graphite (Woodland, CA), sells flexible,

low-density graphite sheet in their HGS series with “in-plane” thermal conductivities up to 1800

W/(mK) and “through-plane” ones between 10 and 26 W/(mK). Jain [29] resolved the mixed BCs

in the source plane by utilizing a discontinuous convection BC. The heat transfer coefficient was

very large over the source to approximate it as isothermal. It was zero elsewhere in the source

plane to render it adiabatic.

There are many physical configurations where the spreading resistance in compound flux

channels is relevant. For example, soft metallic coatings are used to reduce thermal contact

resistance between mating surfaces [31]. Representatively, Kang et al. [32] increased, by up to

a factor of 7, the thermal contact conductance of joints between Aluminum 6061 T6 surfaces by

coating them with micron-scale thickness, vapor-deposited lead, tin or indium. N.b., there is an op-

timal thickness of such coatings because, although they are relatively soft such that contact area

increases, they are less conductive than Aluminum. Moreover, the bases of Aluminum heat sinks

are often anodized to increase their emissivity and corrosion resistance, provide dielectric isola-

tion and enable, for aesthetics, absorption of colored dyes. The porous metal-oxide layer formed

by anodization is often tens of microns thick. In such applications, the lower “thin film” region

of the compound flux channel can not be considered semi-infinite. Indeed, conduction is multi-

dimensional until a perpendicular distance from the source plane of about the width of the flux

channel. Therefore, the coupled problem, where varying temperature and heat flux are matched

at the interface, needs to be resolved.

We consider an isotropic compound flux channel but impose a true isothermal-adiabatic (Dirichlet-

Neumann) mixed BC in the source plane to complement the study by [29]. Via complex analysis,

we fully resolve the aforementioned square-root singularity in heat flux as the change from a Dirich-

let to Neumann BC in the source plane is approached. Specifically, requisite conformal maps are

developed using Schottky-Klein prime functions, subsequently referred to as prime functions, tai-

lored to multiply connected domains. Using them and a technique for solving mixed boundary
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value problems for multiply connected domains described by Miyoshi et al. [33, 34], we derive

a linear system for the coefficients of the temperature field. They are easily evaluated by code

available on github [35] and a sample code for computing them is provided in Appendix C.

The rest of this paper is organized as follows: Section 2 presents the mathematical formulation

of the mixed boundary-value problem. Section 3 calculates spreading resistances and numerical

results are presented in Section 4 followed by a Discussion in Section 5.

2 PROBLEM FORMULATION

Following Jain [29], we formulate the problem for heat conduction from an isothermal source

on a compound, semi-infinite, two-dimensional flux channel as per Fig. 2. However, our materials

are isotropic rather than orthotropic. The source is 2a∗ wide and its temperature is denoted by T ∗
s .

The source plane (y∗ = 0) is otherwise adiabatic and of total width 2b∗. The origin is the center of

the source. The lower material (domain D1) is of finite thickness h∗ and of thermal conductivity k1.

The upper one (domain D2) is semi-infinite and of thermal conductivity k2. The temperature fields

T ∗
1 (x

∗, y∗) and T ∗
2 (x

∗, y∗) satisfy Laplace’s equation as per

k1

(
∂2T ∗

1

∂x∗2
+

∂2T ∗
1

∂y∗2

)
= 0, (3)

k2

(
∂2T ∗

2

∂x∗2
+

∂2T ∗
2

∂y∗2

)
= 0. (4)

Turning to the BCs, the isothermal source is defined by

T ∗
1 (x

∗, 0) = T ∗
s , −a∗ < x∗ < a∗. (5)

The adiabatic boundaries outside the source region in the source plane and on the sides of the
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Fig. 2. Isothermal source on a compound, isotropic, semi-infinite, two-dimensional flux channel.

domain manifest themselves as

∂T ∗
1

∂y∗
(x∗, 0) = 0, −b∗ ≤ x∗ ≤ −a∗, a∗ ≤ x∗ ≤ b∗ (6)

∂T ∗
1

∂x∗
(±b∗, y∗) = 0, 0 ≤ y∗ ≤ h∗, (7)

∂T ∗
2

∂x∗
(±b∗, y∗) = 0, y∗ > h∗. (8)

On the interface between the materials, temperature and heat flux continuity read


T ∗
1 (x

∗, h∗) = T ∗
2 (x

∗, h∗),

k1
∂T ∗

1

∂y∗
(x∗, h∗) = k2

∂T ∗
2

∂y∗
(x∗, h∗),

(9)
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for −b∗ ≤ x∗ ≤ b∗. A constant heat flux BC holds in the far-field as per

∂T ∗
2

∂y∗
→ −q∗/k2, y∗ → ∞. (10)

We define the following non-dimensional variables



θj = (T ∗
j − T ∗

s ) ·
k2
q∗b∗

, j = 1, 2,

σ = k1/k2,

(x, y) = (x∗/b∗, y∗/b∗),

(a, h) = (a∗/b∗, h∗/b∗).

(11)

The dimensionless form of the problem becomes, as depicted in Fig. 3,

∇2θ1 = 0, (x, y) ∈ D1, (12)

∇2θ2 = 0, (x, y) ∈ D2, (13)

with



θ1(x, 0) = 0, −a ≤ x ≤ a,

∂θ1
∂y

(x, 0) = 0, a ≤ |x| ≤ 1,

∂θ1
∂x

(±1, y) = 0, 0 ≤ y ≤ h,

∂θ2
∂x

(±1, y) = 0, y ≤ ∞,

(14)

where D1 ≡ {(x, y)| − 1 ≤ x ≤ 1, 0 ≤ y ≤ h}, and D2 ≡ {(x, y)| − 1 ≤ x ≤ 1, h ≤ y ≤ ∞} and the
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continuity conditions (9) are


θ1 = θ2,

σ
∂θ1
∂y

=
∂θ2
∂y

.
(15)

The far-field condition (10) becomes

θ2 → −y + constant +O(1/z), as y → ∞, (16)

where z ≡ x+ iy. It ensures the uniqueness of the solution [29].

Jain [29] used Fourier expansions of θ1 and θ2, obtaining linear systems for Fourier coefficients.

Rather than resolving the mixed boundary condition on y = 0, he considered a discontinuous

convection boundary condition, where the Biot number (dimensionless heat transfer coefficient)

was very large in the isothermal region and zero in the adiabatic one. However, because of the

square-root singularity on this boundary at x = ±a, a large number of coefficients was necessary

and the singularity is not fully resolved.

3 SPREADING RESISTANCE

This section summarizes our result for spreading resistances obtained from complex analysis.

In dimensional form, the spreading resistance is [1]

Rsp =
T ∗
s − T ∗

average

Q∗ (17)
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Fig. 3. Non-dimensional geometry and two conformal mappings. The map z = Θ(η) maps the upper-half disc to the period region

D2, and the map z = Z(ζ) maps the upper-half disc outside C1 to the period region D1.

where T ∗
average is the average temperature in the plane of the source on y∗ = 0 and Q∗ is the heat

rate into D∗, i.e., for a unit-depth domain,

Q∗ = −2

∫ b∗

0
k2

(
∂T ∗

∂z∗

)
z∗→∞

dx∗. (18)
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The non-dimensional spreading resistance is given by

k2b
∗Rsp = −1

2
θaverage(x, 0), (19)

where the average θaverage on y = 0 is given by

θaverage =

∫ 1

0
θ1(x, 0)dx, (20)

which is easily calculated after we obtain θ1 on the source plane.

We proceed by summarizing our approach for obtaining the spreading resistance as detailed

in Appendix B. Since θ1 is harmonic, it is convenient to define an analytic extension of θ1 as

h1(z) = χ1 + iθ1 in the complex z = x + iy-plane. Because there exist singularities at x ± a, we

use a special basis of complex function Qn(ξ(z)), which removes these singularities safely using

a conformal mapping approach. Consider a truncated Fourier expansion of h1(z) as the basis of

a complex function Qn(ξ(z)) as follows:

h1(z) =

N−1∑
n=0

anQn(ξ(z)), (21)

where Qn(ζ) satisfies boundary conditions

Im[Qn(ζ)] ≡ gn(ζ) =


0, ζ ∈ C0,

cos(nπRe[Z(ζ)]), ζ ∈ C1,

cos(nπRe[Z(ζ)]), ζ ∈ C2,

(22)

and ζ = ξ(z) is an inverse of the conformal map z = Z(ζ) in Figure 3. (Note that Qn(ζ) can
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be computed by the Schwarz integral formula (23) with boundary data (22) for triply connected

domains.) This boundary value problem can be solved by the Schwarz integral formula [36] using

the prime function ω(., .) and the integral of the first kind, i.e.,

Qn(ζ) =
1

2π

2∑
j=0

∮
Cj

ĝn(ζ
′)d(logω(ζ, ζ ′) + logω(ζ, 1/ζ ′))

+ α(v1(ζ) + v2(ζ)) + c1, α, c1 ∈ R, (23)

where v1(ζ) and v2(ζ) are the integrals of the first kind associated to C1 and C2. These special

functions ω(., .), v1(ζ), and v2(ζ) can be calculated easily by Github code [35]. The parameter α

is determined by the coupling equations of h1(z) and h2(z), and c1 is an arbitrary real parameter.

The function ĝn(ζ) in (23) satisfies

ĝn(ζ) =


− αIm[v1(ζ) + v2(ζ)], ζ ∈ C0,

cos(nπRe[Z(ζ)])− αIm[v1(ζ) + v2(ζ)], ζ ∈ C1,

cos(nπRe[Z(ζ)])− αIm[v1(ζ) + v2(ζ)], ζ ∈ C2,

(24)

where α is given by a single-valuedness condition for multiply connected domains [36]. The

spreading resistance is then evaluated from θ1 = Im[h1(z)] and (20) after calculating the coef-

ficients an, n = 0, . . . , N − 1 in (21).

We emphasize that the singularities at x = ±a are eliminated when we evaluate the Schwarz

integral. Indeed, by using a conformal map z = Z(ζ) which maps ζ = ±1 to the edge z = ∓a and

the Schwarz reflection principle, the Schwarz integral has no singularities along the integral path.

This technique for the singularity removal is explained in detail in [37].

To obtain the coefficients an, the complex form of continuity conditions (15) are used. We

choose N evaluating points zn = xn+ih, 0 ≤ xn ≤ 1 and obtain a linear system for the coefficients

15
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a ≡ (a0, a1, . . . , aN−1)
⊤ as follows:

σM1a = M2a+ v, (25)

where M1 and M2 are N -by-N matrices, which are calculated by evaluating the Schwarz integrals

(23) and (51) at zn, defined in (63), (64), and v = Re[(−1+ z1,−1+ z2, . . . ,−1+ zN )⊤]. This linear

system is easily solved after Qn(z) and Pn(z) defined in (61) are computed. The derivation of the

linear system (25) is explained in detail in Appendix B.

Note that once M1 and M2 are calculated for geometrical parameters a and h, these matrices

can be used again to calculate the temperature fields for different σ [34]. This decreases the

computational time for evaluating the spreading resistances with fixed geometrical parameters.

The limiting case of a single-layered isotropic flux tube, i.e., σ = 1 is used to verify our solution

provides the spreading resistance given by (1). This case corresponds to the the result is given by

Veziroglu and Chandra [16] (known as the “Philip’s-type” solution in the field of fluid dynamics [19]).

4 RESULTS

For all computations, equally-spaced collocation points between 0 ≤ x ≤ 1, y = h are chosen

for zn, n = 1, . . . , N . The inverse of Z(ζ) is obtained numerically by the interpolation on ζ ∈ C0.

For the computation of the Schwarz integral for the unit circle (51), it is convenient to use the

Fourier expansion on the unit circle. This numerical technique is explained in detail in [36].

The number of Fourier coefficients N in our approach must be carefully chosen for calculating

θ1(x, h). In order to determine N , we compare our numerical scheme with (1) for σ = 1 and the

Fourier expansions proposed by Jain [29]. Jain expanded the solution for θ2(x, y) as follows:

θ2(x, y) = C0 +D1y +

N∑
n=1

Cn exp(−nπy) cos(nπx), (26)

where Cn, n = 1, . . . , N are Fourier coefficients for the solution. To derive the linear system for Cn,
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Fig. 4. (a) − log10 error between Jain (2024) and Chandra and Veziroglu (1). (b) CPU time versus log10 error. We used Bi0 =
1.0×105 except the magenta line and green line of the top figure. We set the height of channel h as 0.6. The data in the top figure

are the same as the data in the bottom figure. The memory error occurs when we compute the coefficients of N = 5.0× 1.04.

Jain [29] assumes a large Biot number Bi0 along the source (Bi0 at y = 0) as per

−∂θ1
∂y

= Bi(x)θ1(x, 0), (27)

where

Bi(x) =


Bi0, 0 < x < a

0, a < x < 1.

(28)
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Fig. 5. (a) − log10 error between our conformal mapping approach and Chandra and Veziroglu (1). Our conformal mapping

approach converges to the analytical formula (1) with the error less than 10−5. (b) CPU time versus log10 error.We set the height

of channel h as 0.6. The initial computation time around 15 seconds include the computation of parameters of the triply connected

domain Dζ and the calculation of θaverave by using the Schwarz integral. The data in the top figure are the same as the data in the

bottom figure.

A sufficiently large Biot number should be chosen so that the condition (27) becomes a good

approximation of the boundary condition on the adiabatic portion, i.e., −a ≤ x ≤ a, y = 0. We used

Bi0 = 1.0× 105 for our numerical experiments. We also used Bi0 = 1.0× 103 and Bi0 = 1.0× 104

for the numerical comparison in Figure 4.

A standard laptop (MacBook Pro 2023, Memory 18GB, Apple M3 Pro) is used for numerical

computations. Computation time and accuracy depend not only on the number of Fourier coeffi-

cients N but on the number of points of the integral (20) and the Schwarz integral. We set 500

equally-spaced points between −1 ≤ Re[ζ] ≤ 0, Im[ζ] = 0, in the ζ-plane to evaluate the inte-

gral (20), and 1000 equally-spaced points to evaluate the Schwarz integral (23). We used MATLAB
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Fig. 6. θ1(x, 0) vs. x from our approach with 30 coefficients and that of Jain [29] with 800 terms and 3000 terms for h = 0.4 and

a = 0.4. It can be seen that the increase in the number of coefficients N deteriorates the accuracy at the singularity, i.e., x = 0.4.

2024a software for all computations, i.e., the results by Jain [29] and by our Schwarz integral

formulas.

Figure 4 (a) shows a − log10 of the relative errors between R
(N)
sp calculated by the approach

by Jain up to N − 1-th order of Fourier coefficients for σ = 1 and the analytical formula (1). The

approach by Jain is not ”convergent” since the error does not tend to zero. This is because of

the finite value of Bi0. Moreover, when Bi0 = 1.0 × 103, the result is convergent but the accuracy

is around 1.0 × 10−2. The situation for Bi0 = 1.0 × 104 is similar but the accuracy is less than

1.0× 10−3.

Figure 4 (b) shows the CPU time for calculating R
(N)
sp using the approach by Jain [29] with

respect to the − log10 of the errors. While the results given by Jain [29] are oscillatory, his solution

can be evaluated immediately (less than 1 second) when N ≈ 1.0 × 103. However, in order to
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Fig. 7. Contour plots of θ1(x, y) and θ2(x, y) with different σ ≡ k1/k2. (a) a = 0.4, h = 0.4, σ = 5.0, (b) a = 0.4,

h = 0.4, σ = 1.0, (c) a = 0.4, h = 0.4, σ = 2/3, and (d) a = 0.6, h = 0.2, σ = 1/3.

obtain good results by Jain (2024), many terms for the Fourier coefficients are needed.

In contrast, Figure 5 (a) shows a − log10 of the errors between R
(N)
sp calculated by the conformal

mapping approach up to (N − 1)-th order of Fourier coefficients for σ = 1 and the analytical

formula (1). It can be seen that our solutions converge to the analytical formula and the errors are
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Fig. 8. Spreading resistance for different σ ≡ k1/k2 with different h. The ratio of source region to period is set to be a = 0.4 (a)

and a = 0.6 (b).

less than 10−5 after N = 10.

Figure 5 (b) shows the CPU time for calculating R
(N)
sp with respect to the − log10 of the errors.

Our method needs to obtain appropriate parameters of δ and q, and calculate the Schwarz integral,

which takes more time than the method by Jain [29]. Based on the above, we set N = 30 for all

numerical experiments.

One reason for the accuracy for R(N)
sp from Jain [29] is the Gibbs phenomenon as per Figure 6,

which is a comparison of θ1(x, 0) from Jain [29] and our results. It can be seen that our results

match to the results from Jain [29] for a range of values of σ. However, the Gibbs phenomenon is

seen at the edge x = ±a for the solutions given by Jain [29], as he used the Fourier expansions

along the whole x ∈ [−1, 1]. In general, the Gibbs phenomenon occurs when one uses Fourier
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Fig. 9. Spreading resistance for different σ ≡ k1/k2 with different a. The height of the first layer is set to be h = 0.2 (a) and

h = 0.5 (b). It is also confirmed that when σ = 1.0, the result is exactly the same as Chandra and Vezioglu (1968), plotted as

black circles.

expansions for discontinuous functions such as the temperature field on y = 0 in the problem

at hand as explained in [38]. Hence, its representation using the Fourier expansion by Jain [29]

exhibits it near the singularities at x = ±a. This is the reason for the oscillations in the temperature

field along the source plane observed in Figure 6.

Figure 7 shows contour plots of θ1(x, y) and θ2(x, y) with (a) σ = 5.0, (b) σ = 1, (c) σ = 2/3,

and (d) σ = 1/3. The geometrical parameters are set to be a = 0.4 and h = 0.4 for cases (a), (b),

and (c), and a = 0.6 and h = 0.2 for case (d). This figure shows our numerical calculations resolve

the temperature fields around the singularities x = ±a.

Figure 8 shows the spreading resistance for different σ ≡ k1/k2 with different h. The ratio of
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source region to periodicity is set to be a = 0.4 (a) and a = 0.6 (b). The spreading resistance

decreases monotonically with respect to σ. All lines merge at the value (1) when σ = 1.0, because

the geometry becomes a single-layer. It can be observed that k2b∗Rsp increases as h increases

when σ < 1, whereas k2b
∗Rsp decreases as h increases when σ > 1. That is, when σ < 1 then

the lower material is less conductive, and so increasing h increases the spreading resistance.

However, when σ > 1, the lower material is more conductive; therefore, increasing h decreases

the spreading resistance. Figure 9 shows the spreading resistance for different σ ≡ k1/k2 with

different a. The height of the first layer is set to be h = 0.2 (a) and h = 0.5 (b). It is also confirmed

that when σ = 1.0, the result is exactly the same as Chandra and Vezioglu (1968), plotted as black

circles.

We emphasize that although conventional computation tools, such as Matlab PDE Toolbox [39]

and COMSOL Muliphysics 6.3.0.290 [40], may resolve the conduction problem under considera-

tion, they require more computational resources and are less accurate than our method. Indeed,

such numerical methods require a very dense mesh to compute the temperature field, especially

around the square-root singularity, which they cannot fully resolve.

To validate the accuracy of our method, the coupled 2D Laplace equations are solved by using

the finite element method (FEM) in COMSOL Multiphysics 6.3.0.290 [40] on a higher performance

computer. The height of the second layer, i.e., D2, is set to be 20 instead of infinity. Tables 1, 2

and 3 compare the values k2b
∗Rsp calculated by our approach with the results from that of Jain [29],

COMSOL Multiphysics 6.3.0.290 [40], when σ = 1, σ = 1/3, and σ = 2 with h = 0.8 and h = 0.4.

The total width of the channel is set to be 2. The minimum mesh size for the discretized mesh of

the finite elements is 1.16× 10−4 but the maximum mesh size is 0.015 for Mesh 1, 0.01 for Mesh 2,

and 0.005 for Mesh 3. The relative tolerance for solving the FEM is set to be 1.0× 10−3 for Mesh 1

but 1.0× 10−8 for Mesh 2 and Mesh 3. Our conformal mapping approach shows closer agreement

with Jain [29] than the COMSOL results, even for the finest mesh considered (Mesh 3) and we

proceed to provide a comparison.

The values of k2b∗Rsp for a = 0.4 and σ = 1 from the exact solution by Veziroglu & Chan-

dra [16] (1) are displayed in the rightmost column in Table 1. It can be seen that the result by
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Conformal mapping Jain [29] COMSOL Chandra & Veziroglu [16]

(Mesh 1) h = 0.8 0.169148 0.169727 0.162529 0.169148

(Mesh 2) h = 0.8 0.166669

(Mesh 3) h = 0.8 0.167921

(Mesh 1) h = 0.4 0.169155 0.169727 0.166748 0.169148

Table 1. Comparison of k2b
∗Rsp calculated by our approach with the results by that of Jain [29], COMSOL Multiphysics [40], and

Veziroglue & Chandra [16] when σ = 1 and a = 1 with h = 0.8 and h = 0.4. The minimum mesh size for the discretized mesh

is 1.16× 10−4 but the maximum mesh size is 0.015 for Mesh 1, 0.01 for Mesh 2, and 0.005 for Mesh 3. The relative tolerance

for solving the FEM is set to be 1.0× 10−3 for Mesh 1 but 1.0× 10−8 for Mesh 2 and Mesh 3.

Conformal mapping Jain [29] COMSOL

(Mesh 1) h = 0.8 0.504766 0.506491 0.491347

(Mesh 2) h = 0.8 0.497376

(Mesh 3) h = 0.8 0.501107

(Mesh 1) h = 0.4 0.475281 0.476860 0.461164

Table 2. Comparison of k2b
∗Rsp between our approach, the results by that of Jain [29] and COMSOL Multiphysics. The ratio σ

is set to be 1/3 and a = 0.4. The minimum mesh size for the discretized mesh is 1.16 × 10−4 but the maximum mesh size is

0.015 for Mesh 1, 0.01 for Mesh 2, and 0.005 for Mesh 3. The relative tolerance for solving the FEM is set to be 1.0× 10−3 for

Mesh 1 whereas 1.0× 10−8 for Mesh 2 and Mesh 3.

COMSOL with Mesh 1 gives around a 4% error. Since the FEM-based approach cannot com-

pletely accommodate the singularities at x = ±a, even with arbitrarily-small mesh size, there exist

some computational errors relative to the the analytical solution (1). (Singularity subtraction could

be implemented as per, e.g., Game et al. [41], but we did not do this.) It is also observed that de-

creasing the mesh size and restricting the relative tolerance yield more accurate results, but at the

cost of increased computational resources. When σ = 1/3 and σ = 2, a comparison between our

approach and Jain [29] and COMSOL are provided in Tables 2 and 3, respectively. The differences

are negligible for a sufficiently dense mesh with sufficiently low residuals.

5 DISCUSSION

We have provided a new solution, based on complex analysis, to resolve a mixed (isothermal-

adiabatic) boundary condition in the source plane, to obtain the spreading resistance in a com-
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Conformal mapping Jain [29] COMSOL [40]

(Mesh 1) h = 0.8 0.084873 0.085164 0.080276

(Mesh 2) h = 0.8 0.083626

(Mesh 3) h = 0.8 0.084256

(Mesh 1) h = 0.4 0.088343 0.088645 0.087859

Table 3. Comparison of k2b
∗Rsp between our approach, the results by that of [29] and COMSOL Multiphysics 6.3.0.290. The ratio

σ is set to be 2 and a = 0.4.

pound, isotropic, semi-infinite flux channel. It complements the recent and more general solution

by Jain [29] that also applies for non-isotropic thermal conductivities, by fully resolving the sin-

gularities in heat flux in the source plane and achieving a more accurate spreading resistance at

the expense of increased, but still negligible, computation time. Although the computation time

becomes unrealistic, it would be possible to obtain the same accuracy as our results from the ap-

proach by Jain [29] with much higher Bi0 number and a larger number of the Fourier coefficients

N .

We end this article by noting that this approach is applicable for materials which have or-

thotropic thermal conductivity. In this case we change the coordinates (x, y) = (x∗/k1x, y
∗/k1y) in

D1 and (x, y) = (x∗/k2x, y
∗/k2y) in D2, where kjx and kjy, j = 1, 2 are thermal resistances with re-

spect to x∗ and y∗ axis in D1 and D2, respectively. After using the changes of coordinates above,

the governing equations in the first and second layer become the 2D Laplace equation. Also,

the temperature field for eccentric heat sources is available by simply modifying the conformal

mapping Z(ζ) and the geometry of the predomain Dζ [36].
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A CONNECTION BETWEEN PHILIP’S SOLUTION [19] AND CHANDRA AND VEZIROGLU [16]

When σ = 1, i.e., there is a single material, the dimensionless temperature field (θ) satisfies

the (2D) Laplace’s equation

∇2θ(x, y) = 0, (29)

where 0 < a < b and y > 0 subject to

θ(x, 0) = 0, x ∈ [−a, a], (30)

∂θ

∂y
(x, 0) = 0, x ∈ [−b,−a], x ∈ [a, b], (31)

∂θ

∂x
(±b, y) = 0, 0 < y < ∞, (32)

∂θ

∂y
→ −1 as y → ∞. (33)

For this problem, there are two well-known formula for the solution for the mixed boundary value

problem. The first solution is given by Philip [19], where he used a Schwarz-Christoffel map

to solve the mixed boundary value problem. The second solution is given by Chandra and

Vezioglu [16] in the field of heat transfer.

For the computation of Philip’s solution [19], an appropriate logarithmic branch should be cho-

sen. We choose

cos−1(z) = −i log[z − (z2 − 1)1/2] = −i log[z − i(1− z2)1/2]. (34)

and Im[log z] is chosen between −π < Im[log z] ≤ π for −b < x < b, y > 0. Philip’s solution [19]is
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given by

hPhilip(z) = −2b

π
cos−1

(
cos(πz/2b)

cos(πa/2b)

)
, (35)

where cos−1(z) is evaluated by using the second expression of (34) and a logarithmic branch is

chosen between −π < arg[z] < π.

A relevant mathematical identity is

h(z) = −2b

π
cos−1

(
cos(π(b− z)/2b)

cos(π(b− a)/2b)

)

= − ib

π
log


√

d2 + f2 tanh2(iπ(b− z)/2b) + 1√
d2 + f2 tanh2(iπ(b− z)/2b)− 1

+ b

= − ib

π
log

[√
d2 − f2 tan2(π(b− z)/2b) + 1√
d2 − f2 tan2(π(b− z)/2b)− 1

]
+ b

= − ib

π
log

[
1 +

√
1− f2/ cos2(π(b− z)/2b)

1−
√
1− f2/ cos2(π(b− z)/2b)

]
, (36)

where θ(x, y) = Im[h(z)], z = x+ iy and d and f are given by

d ≡ cos(πa/2b), f ≡ sin(πa/2b) = cos(π(b− a)/2b).

The left-hand-side corresponds to Philip’s-type solution [19], whereas the right-hand-side cor-

responds to the solution given by Mikic [10]. This equality can be proven by taking cos of the
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right-hand-side and using d2 + f2 = 1 as follows:

cos(−πh(z)/2b)

= cos

[
i

2
log

[√
d2 − f2 tan2(π(b− z)/2b) + 1√
d2 − f2 tan2(π(b− z)/2b)− 1

]
− π

2

]

= cos

[
i

2
log

[
1 +

√
d2 − f2 tan2(π(b− z)/2b)

1−
√
d2 − f2 tan2(π(b− z)/2b)

]]
.

Multiplying both numerator and denominator by 1+
√
d2 − f2 tan2(π(b− z)/2b) and using d2+f2 =

1, we have

cos(−πh(z)/2b)

= cos

[
i

2
log

[
(1 +

√
1− f2(1 + tan2(π(b− z)/2b)))2

f2(1 + tan2(π(b− z)/2b))

]]

= cos

(
i log

[
1 +

√
1− f2/ cos2(π(b− z)/2b)

f/ cos(π(b− z)/2b)

])

=
cos(π(b− z)/2b)

f
=

cos(π(b− z)/2b)

cos(π(b− a)/2b)
, (37)

where we have used from the third line to the forth line

cos(ix) =
e−x + ex

2
. (38)
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Using the derivative of h(z) by z,

∂h

∂z
=

sin( π
2b(b− z))√

cos2( π
2b(b− a))− cos2( π

2b(b− z))
(39)

= −
cos(πz2b )√

sin2(πa2b )− sin2(πz2b )
. (40)

Around z = a, we can expand the ratio as follows:

sin2(πz2b )

sin2(πa2b )
= 1 +

π(z − a) cot(πa2b )

b

+
π2(z − a)2(cot2(πa2b )− 1)

4b2
+O((z − a)3). (41)

Hence we have a square-root singularity at z = a as follows:

∂θ

∂y

∣∣∣∣
z=a

= Re

[
∂h

∂z

]
= −

√
b cot(πa2b )

π(a− z)
+O(1), (42)

which means that the derivative of θ with respect to y has a square-root singularity at z = a.

B COMPLEX ANALYSIS FORMULATION

Let z = x+ iy be a complex plane, where the subdomains D1 and D2, bounded by symmetry

boundaries, are located. Let two conformal mappings define

z = Z(ζ) =
1

πi
log

(
ω(ζ, θ1(∞))

ω(ζ, θ2(∞))

)
, (43)

z = Θ(η) =
2

π
sin−1

(
−1

2

(
η +

1

η

))
+ ih. (44)
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Also we set the inverse of the maps as ζ = ξ(z), and

η = T (z) ≡ Θ−1(z)

= − sin
(π
2
(z − ih)

)
+
[
1 + sin2

(π
2
(z − ih)

)]1/2
.

These maps are illustrated in Figure 3. The first map (43) maps the upper half circle outside an

inner circle labelled D+
ζ to D1. The unit circle C+

0 is mapped to the source region, and the inner

circle C1 is mapped to the interface. The domain Dζ is defined as Dζ = D+
ζ ∪ D−

ζ , where D−
ζ

is a reflection of D+
ζ with respect to the x-axis as shown in Figure 3. The function ω(., .) is the

Schottky-Klein prime function, analytic in the triply connected domain Dζ . The second map is a

map from the upper-unit disc to the strip region D2. The outer boundary is mapped to the part

z = x + ih, −1 ≤ x ≤ 1, and the real axis is mapped to the vertical axes located at z = ±1 + iy,

y > h. This map was previously used by Miyoshi et al. [37] to resolve longitudinal flows through

a bounded channel over superhydrophobic surfaces with partially invaded grooves. Because θ1

and θ2 are harmonic functions in the z-plane, it is convenient to define h1(z) = χ1 + iθ1, and

h2(z) = χ2 + iθ2, where χ1 and χ2 are complex conjugates of θ1 and θ2, respectively. We resolve

the boundary value problems for θ1 and θ2 in the following subsection.

(i) Solution for D2

Due to the far-field condition given by (16), it is convenient to set

h2(z) = −(z − ih) + ĥ2(z) (45)

where ĥ2(z) ≡ χ̂2+ iθ̂2 is also an analytic function. As per the Cauchy-Riemann’s equations, θ̂2(z)
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on x = −1 and y ∈ (h,∞) is

∂θ̂2
∂x

= −∂χ̂2

∂y
= 0. (46)

Therefore, χ̂2 is constant on these portions. Because ĥ2(z) has no singularity on the domain D2,

even at infinity, it is convenient to set Re[ĥ2(z)] = 0 on z = ±1 + iy, y ∈ (h,∞).

Now we define H2(η) ≡ h2(Θ(η)), Ĥ2(η) ≡ ĥ2(Θ(η)), and assume that we know the field on

the interface between D1 and D2, i.e., −1 ≤ x ≤ 1, y = h, denoted as θf . Because of the map,

Im[Ĥ2(η)] = θf(Θ(η)), η ∈ C+
η . (47)

Due to the boundary condition,

Re[Ĥ2(η)] =
1

2
[Ĥ2(η) + Ĥ2(η)] = const (48)

on the real axis of the η-plane and we can set this is equal to 0 without loss of generality. Using

the Schwarz reflection principle, the function H2(η) is analytically extended to the lower plane in

the unit circle via

Ĥ2(η) = −Ĥ2(η). (49)
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Hence the Dirichlet boundary value problem for Ĥ2(η) is derived as follows:

Im[Ĥ2(η)] = ϕ2(η) ≡


θf(Θ(η)), η ∈ C+

η ,

θf(Θ(η)), η ∈ C−
η

(50)

This can be solved by the simple Schwarz integral for the unit circle [42], i.e.,

Ĥ2(η) =
1

2π

∮
Cη

ϕ2(η
′)

η′
η′ + η

η′ − η
dη′ + c2, c2 ∈ R, (51)

where c2 is a real constant. The far-field behavior means that Im[Ĥ2(η)] = 0 as η → 0. This is

automatically satisfied due to the nature of the boundary condition.

(ii) Solution for D1

First we define H1(ζ) ≡ h1(Z(ζ)). The boundary condition on y = h and the use of the map

Z(ζ) yield

Im[H1(ζ)] = θf(Z(ζ)), ζ ∈ C1. (52)

Also, on the portion −a < x < a, y = 0,

Im[H1(ζ)] = 0, ζ ∈ C+
0 (53)

The reflection on the real axis of the z-plane yields the boundary value problem for H1(ζ). Finally,
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we arrive at the boundary value conditions for the triply connected domain

Im[H1(ζ)] = ϕ1(ζ) =


0, ζ ∈ C0,

θf(Z(ζ)), ζ ∈ C1,

θf(Z(ζ)), ζ ∈ C2,

(54)

This boundary value problem can be solved by the Schwarz integral formula (55) and the integrals

of the first kind v1(ζ) and v2(ζ), i.e.,

H1(ζ) =
1

2π

2∑
j=0

∮
Cj

ϕ̂1(ζ
′)d(logω(ζ, ζ ′) + logω(ζ, 1/ζ ′))

+ α(v1(ζ) + v2(ζ)) + c1, α, c1 ∈ R. (55)

The parameter α is determined by the coupling equations of h1(z) and h2(z), and c1 is an arbitrary

real parameter. The function ϕ̂ now satisfies

ϕ̂1(ζ) =


− αIm[v1(ζ) + v2(ζ)], ζ ∈ C0,

θf(Z(ζ))− αIm[v1(ζ) + v2(ζ)], ζ ∈ C1,

θf(Z(ζ))− αIm[v1(ζ) + v2(ζ)], ζ ∈ C2,

(56)

where α is given by single-valuedness condition for multiply connected domains [36], i.e.,

∮
∂Dζ

ϕ̂1(ζ)dv1 = 0. (57)

(iii) Coupling h1(z) and h2(z)

By using the Cauchy-Riemann equations, the second equation of (15) and integrating from
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x = −1 on y = h, we have a condition for χ1 and χ2 as follows:

σ(χ1(x, h)− χ1(1, h)) = χ2(x, h)− χ2(1, h) + 1− x, (58)

where the final term of (58) comes from the constant far-field heat flux. It is convenient to set

χ1(1, h) = χ2(1, h) = 0 without loss of generality. The method for solving this problem is as

follows:

1. Expand the temperature on the boundary of the two layers θ1(x, h) as the Fourier coefficients:

θ1(x, h) =

N−1∑
n=0

an cosnπx, an ∈ R. (59)

2. Solve H2(η) by using the Schwarz integral for the unit disc:

h2(z) = H2(T (z)) = −(z − ih) +
N−1∑
n=0

anPn(T (z)), (60)

where Pn(η) is a solution for the boundary value problem with a contribution of n-th order

Fourier coefficient as follows:

Im[Pn(η)] =


cos(nπRe[Θ(η)]), η ∈ C+

η ,

cos(nπRe[Θ(η)]), η ∈ C−
η

(61)

.
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3. Solve H1(ζ) by using the Schwarz integral formula for the triply connected domain:

h1(z) = H1(ξ(z)) =

N−1∑
n=0

anQn(ξ(z)) (62)

where Qn(ζ) satisfies the boundary conditions (22).

4. Use equation (58) evaluated at N points zn on the common boundary to obtain the linear

system for the coefficients an. We obtain the linear equation (25) for a, where

M1 = Re





Q0(z1) Q1(z1) . . . QN−1(z1)

Q0(z2)
. . . . . . QN−1(z2)

...
. . . . . .

...

Q0(zN ) Q1(zN ) · · · QN−1(zN )




, (63)

M2 = Re





P0(z1) P1(z1) . . . PN−1(z1)

P0(z2)
. . . . . . PN−1(z2)

...
. . . . . .

...

P0(zN ) P1(zN ) · · · PN−1(zN )




, (64)

C COMPUTING THE PRIME FUNCTION

Analytical formulas were derived for the solution of the problem in terms of the prime function.

To plot temperature contours and calculate spreading resistances, it is necessary to be able to

evaluate the prime function ω(., .) and there are (at least) two ways to do this. The most numerically

efficient method is to make use of freely-available MATLAB codes that compute ω(., .) for any user-

specified circular domain [35, 36]. These codes are based on a numerical algorithm described in

detail in [43], which extends an earlier algorithm proposed by Crowdy and Marshall [44].

Also it is known that for triply connected domains, the prime function has a convergent product

39



On Spreading Resistance for an Isothermal Source on a Compound Flux Channel

formula as

ω(ζ, α) = (ζ − α)
∏
m∈Θ

(m(ζ)− α)(m(α)− ζ)

(m(ζ)− ζ)(m(α)− α)
. (65)

Here each function m lies in the set of Möbius maps which denotes all elements of the free Schot-

tky group generated by the basic Möbius maps {mj ,m
−1
j : j = 1, 2}, except for the identity and

excluding all inverses [36]. We use this method for computing the prime function in all numerical

experiments.

Following the first way to compute the prime function, we provide code for computing the prime

function ω(., .) and the conformal map z = Z(ζ) using a “sk-prime” package [35]. After installing

the skprime functions, one can use the following code to calculate the map Z(ζ):

Listing 1. Matlab code for computing the map Z(ζ)

1dv = [0.5i,-0.5i]; % the center

2qv = [0.2,0.2]; % the radius

3D = skpDomain(dv,qv);

4thinf = dv - qv.ˆ2./(conj(dv));

5% ------ define the prime function

6w1 = skprime(thinf(1)+1i*1e-10,D);

7w2 = skprime(thinf(2)-1i*1e-10,D);

8zzeta = @(zeta) 1/pi/1i*log(w1(zeta)./w2(zeta));

Only six-lines of code computes the conformal map z = Z(ζ) using the prime function in triply

connected domains. We note that the radii and the centers of inner discs should be determined

with respect to the geometry of the first layer, i.e., δ and q are chosen to satisfy


Z(1) = −a,

Z(δ + qi) = ih.

(66)
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Equations (66) are solved using any non-linear solver such as Newton’s method. The approxima-

tions for δ and q with respect to the geometry are described in [45]
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