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ABSTRACT

Whilst there is a considerable body of work in the literature on the theory of acoustic
propagation in marine sediment, the incorporation of gas bubbles into such theories is
done with the inclusion of assumptions which severely limit the applicability of those

models to practical gas-laden marine sediments.

Following an Introduction (section 1), section 2 develops a theory appropriate for
predicting the acoustically-driven dynamics of a single spherical gas bubble
embedded in an incompressible lossy elastic solid. Use of this theory to calculate
propagation parameters requires calculation of the gas pressure component of section
2, and the options are outlined in section 3, with the implications for the description of
dissipation. This leads to a discussion in section 4 into further of how dissipation
enters the description, and in section 5 how the entire scheme can be incorporated into

a propagation model.



LIST OF SYMBOLS

Py
Po

P, (t)

R(t)

T

r?

Ty and T

the sound speed in the solid for compressional waves of

infinitesimal amplitude.
the specific heat of the gas at constant pressure
the thermal conductivity of the gas within the bubble

the sum of all steady and unsteady pressures outside the bubble

wall

the sum of all steady and unsteady pressures in the gas

the internal bubble pressure at equilibrium,

vapour pressure

the static pressure in the liquid just outside the bubble wall
the value of p very far from the bubble

bubble radius

equilibrium bubble radius

the radial displacement of the bubble wall

Gas temperature

the undisturbed temperature of the liquid far from the bubble
the components of the stress tensor in the solid

the liquid particle velocity.

radial velocity in the gas



v ratio of specific heats for the gas

&, the component of the strain tensor in the radial direction
A and G, Lamé constants

P liquid density

o density in the gas

yoX density of elastic solid

o the surface tension

n shear viscosity of the liquid

Mg bulk viscosity of the liquid

. ‘radiation viscosity’

7 shear viscosity of the solid

i ‘thermal viscosity’

> Fo the vector summation of all body forces

w the angular driving frequency

. a circular frequency parameter which s used in place of the

driving frequency @

Vi



1 Introduction

Whilst there is a considerable body of work in the literature on the theory of acoustic
propagation in marine sediment, the incorporation of gas bubbles into such theories is
done with the inclusion of assumptions which severely limit the applicability of those

models to practical gas-laden marine sediments [1].

The assumption of quasi-static gas dynamics limits applicability to cases where the
frequency of insonification is very much less than the resonances of any bubbles
present, and eliminate from the model all bubble resonance effects, which often of are
overwhelming practical importance when marine bubble populations are insonified.
This limitation becomes more severe as gas-laden marine sediments are probed with

ever-increasing frequencies [2].

The assumption of monochromatic steady-state bubble dynamics, where the bubbles
pulsate in steady state, is inconsistent with the use of short acoustic pulses to obtain

range resolution.

The assumption of monodisperse bubble populations is inconsistent with the wide

range of bubble sizes that are found in maine sediments.

The ubiquitous assumption of linear bubble pulsations becomes increasingly
questionable as acoustic fields of increasing amplitudes are used to overcome the high
attenuations, and the resulting poor-signal-to-noise ratios (SNRs), often encountered

in marine sediments.

This report outlines a theory which does not requires the above assumptions. Some
assumptions are still maintained, notably that the bubbles in question interact with the
sound field through volumetric pulsation. Whilst this does not necessarily mean that
the bubbles should be spherical at all times, it is through this assumption that the
theory encompasses the volumetric pulsations. It is well-known that there are classes
of bubbles in sediment which do not behave in this way (e.g. those which bear a
closer resemblance of ‘slabs of gas’ and ‘gas-filled cracks’, than they do to gas-filled

spheres).



In this first analysis the assumption is also maintained that the sediment outside of
each individual bubble may be treated as incompressible. Whilst this greatly eases the
analysis, the extent to which it is correct will depend on the characteristics of the
sediment. The result of this assumption is that acoustic radiation damping is
neglected. Furthermore the sediment outside of the bubble is assumed to be a lossy

elastic solid, and no bubble-bubble interactions are assumed to occur.

It should be noted that this analysis is also relevant to acoustic propagation through

tissue, provided that the latter can be treated as an incompressible lossy elastic solid.

Section 2 will develop formulation appropriate for predicting the acoustically-driven
dynamics of a single spherical gas bubble embedded in an incompressible lossy
elastic solid. Section 3 will outline the options for evaluating the gas pressure
component of section 2, with the implications for the description of dissipation. This
leads to a discussion in section 4 into further of how dissipation enters the description,

and in section 5 how the entire scheme can be incorporated into a propagation model.

2 Theory for the dynamics of a single gas bubble in an

incompressible lossy elastic solid

In the following derivation, the use of the dot notation in this, and the subsequent

equations of motion, indicates the use of the material derivative [3§2.2.2], i.e.:

Rzﬁﬂa.v) @
Dt ot

where u is the liquid particle velocity. For the discussion of the pulsation of a single
bubble whose centre remains fixed in space, as occurs in this report, the convective
term (the second term on the right) is zero. Before applying the equations of this
book, critical evaluation should be made of their applicability, given this restriction.

Models of translating bubbles need careful evaluation. Even where bubbles are



assumed to pulsate only, if they exist in a dense cloud then the convective term may

be significant [4].

The following derivation relies assumes that the material outside the gas bubble wall
is incompressible, and assumes that spatially uniform conditions are assumed to exist
within the bubble.

When these assumptions are applied for the case of a gas bubble in a liquid, the
equations for the conservation of energy within the liquid can be coupled to that of the
diffusion of dissolved gas within it, and to the equation for conservation of mass in
the liquid:

1Dp VAT (Continuity equation) (2)
p Dt

op = , -
=—+V-(pu)=0
p (pu)

where u is the liquid particle velocity and p is the liquid density; and to the equation
for conservation of momentum in the liquid:
PO p(%+(a.v)a] Y F _vp{%"%jwva)_wma

(Navier Stokes equation) (3)
where p represents the sum of all steady and unsteady pressures.

Equation (3) simplifies in a number of ways for limits which are often appropriate to
gas bubbles in water [3§2.3.2]. The term 7V xVxu encompasses the dissipation of

acoustic energy associated with, amongst other things, vorticity, and hence is zero in

conditions of irrotational flow (required for the definition of a velocity potential). The

term (477/ 3+ 175 )?(? -u) represents the product of viscous effects (through the shear

nand bulk g viscosities of the liquid), with the gradient of V-u (which, from (2),

represents in turn the liquid compressibility). As an interaction term, it is generally



small. Note that setting it to zero does not imply that all viscous effects are neglected,
but simply that they appear only through the boundary condition. Lastly, the term
> F., represents the vector summation of all body forces which are neglected in the
formulations of this report. If it is then assumed that the bubble remains spherical at
all times and pulsates in an infinite body of liquid, then because of spherical
symmetry, the particle velocity in the liquid u is always radial and of magnitude

u(r,t), and equations (2) and (3) reduce, respectively, to:

2
op +i26(r ,ou):0
ot r or
and
au ua_u+£@ 0. (Euler’s equation)
ot o por

The situation is somewhat different for a single gas bubble in an incompressible lossy

elastic solid. The bubble radius R(t) oscillates about some equilibrium radius R, with

bubble wall velocity R(t). Euler’s equation for liquids must be modified for solids as

follows

T,+T
ps(ﬁus +US%J:_6_D+%Q(|’2T”)_M
ot or or r°or r

where p, is the bulk density of the solid material outside of the bubble wall, u; is the

particle velocity in the elastic solid and T, T, and T, are the components of the

rr?
stress tensor. Note that because the trace of the stress tensor is zero in elastic solids

(as it also is in Newtonian liquids), the following relationship will be assumed valid

[5]:

Trr = _(T6’9 +T¢¢) :

(4)

()

(6)

(7)



Equation (6) will now be integrated through the solid (from R to r =), using the

assumption of liquid incompressibility, which implies that:

R (8)

g

u(rt)=—

where the bubble has radius R(t) and wall velocity R(t) as it pulsates about some
equilibrium radius R, with radial wall displacement R_. The integration process can

be divided into a series of smaller integrals:

; ; ) B - ., 9
jps%dhj %58(R (OR®) 4, &(R R+22RRjdr (9)
ot r ot r
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2
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R

} = p.(R R+2R?).
r R

T au T p. ou? Do ) p.R? (10)
U —dr=|=—dr==(uj(r=o,t)—u (R ,t) )= ———.
lpssar lzar S (Lr=o-wR y)=-
0 2 © 2 @ 2 (11)
j %6(r T”)dr:I r—Z%dHJ T—’Z’aLdr
R I0oor re or R Iooor
= %duj Z-Errdr:Trr(r:oo,t)—Trr(R,t)+j 2o gy
5 or | T
(12)

Combining these subsidiary integrals allows the integration of (6) to be undertaken

from across the solid and liquid phases (i.e. from R to r =):



.. . 2 13
PRR+Z p R = B, (RD-P.(O+T, (1 =50 -T, R0+ [3dr &
:

R
where T, (r =oo,t) is taken to equal zero.

The boundary condition at the bubble wall (r=R) is as follows:

= R,t =T R,t +— 3 —
pg ps( ) rr( ) R R

where o is the surface tension, and do /R represents a radial force which results
from the variation in the concentration of surface active molecules on the bubble wall

as the bubble pulsates, although this is normally assumed to be zero [5].
Substitution of (14) into (13) gives:

3 (15)

RR+—R’="—| p,———-——-— pw(t)+J'3Ldr]
2 s r

which can be readily evaluated using the techniques familiar for gas bubbles in liquids

provided it is possible to determine T, the radial component of the stress tensor in

r?

the sediment.

The radial component of the stress tensor in the dissipative elastic solid consists of
two parts, encompassing respectively the elastic and dissipative characteristics of the

solid. The elastic constituent [6] can be expressed in terms of the Lamé constants A,
and G (the latter also being known as the modulus of rigidity):
(16)

T =(h+26) % ) b
or r



where ¢,, is the component of the strain tensor in the radial direction which, for small

displacements, is given by:
2 17
Ep = (&} R.. a7)

where R, is the radial displacement of the bubble wall. Note that this solid has been

assumed to be incompressible (equation (8)), and for such solids the Lamé coefficient

A, becomes so large as to be undefined. However, as will be shown later, this is not

cause problems in the current calculation.

The second constituent of the radial component of the stress tensor in the dissipative

elastic solid T reflects the losses associated with the internal friction within it. If
the velocity gradient is small, the higher order terms can be neglected, and the
damping becomes proportional to the first derivative of the velocity [7], 2n,(cu/or),
where 7, is the shear viscosity of the solid. Church [5] notes that this is equivalent to

assuming that the dilational viscosity is negligible [8]. The extent to which this is

valid in gas-laden sediment will depend on the specific case.

Taking both the elastic and lossy characteristics of the solid together, the radial

component of the stress tensor is:

2 ‘ 18
T, =R (GR, +nR) (%)

"~ 3
r

The assumption of solid incompressibility has caused terms involving the Lamé

coefficient A, to cancel out, voiding the problems which could have been caused by

its undefined valued for an incompressible solid. The integral for the solid in equation

(15) can now be evaluated:



% . (19)
[ Ledr-—2GR +nR)
O R

Equation (15) can now be expressed with the integrals evaluated using (19):

3 1 (20)

.. . 4 .
RR+=-R*’=—|p - ——-—"—-p (1)——(G.R R) |.
+2 ps[pg P, (t) R (GR, +17, )]

Equation (20) forms the basis of predicting the dynamics of a single bubble in a lossy
elastic solid. Section 3 will outline the options for evaluating the gas pressure
component of this, and Section 4 discusses how the entire scheme can be incorporated

into a propagation model.

3 Methods for calculating the gas pressure and the effect on thermal

damping

By far the most common way of calculating pg (required for evaluation of (20)) is to
appeal to a polytropic law). It involves calculating the pressure in the gas at a given
bubble size by comparing it with the pressure at equilibrium. The latter is equal to the
sum of the static pressure in the liquid just outside the bubble wall (po), plus the
Laplace pressure at equilibrium 26/R, (where o is the surface tension [382.1]), minus

that component due to vapour ( p, ). Hence when the bubble has radius R the pressure

in the gas will be:

(L 20 (R_j 21)
pg_ pO RO pv R

This adjusts the relationship between bubble volume and gas pressure (effectively, the
‘spring constant’ of the bubble) to account for heat flow across the bubble wall, but
crucially it ignores net thermal losses from the bubble (see below). Therefore if (20) is
evaluated using a polytropic law, the result would, without correction, ignore two of

the major sources of dissipation: net thermal losses and, through the incompressible



assumption, radiation losses. Approximate corrections, which artificially enhance the
viscosity to account for thermal and radiation damping, are available through use of
enhancements to the viscosity [5], although these are only partially effective. These
enhancements, which are discussed further in section 4, are based on the same physics

as the ‘linear’ damping coefficients

A more accurate option, which would keep the nonlinear character of (20)
uncompromised, would be by combining the continuity and energy relations for a
perfect gas with spatially uniform pressure to provide an exact expression for the
velocity field in terms of the temperature gradient. This reduces the problem to an
ordinary differential equation for the internal pressure, with a nonlinear partial
differential equation for the temperature field, for a bubble which is spherical at all
times. Furthermore, if it is assumed that vapour effects are negligible, and that the
bubble wall temperature does not change (justified by estimating temperature changes
when the heat flux from the thermal boundary layer in the gas is equated to that
entering the boundary layer just beyond the bubble wall), then these two assumptions
effectively make consideration of the effect of thermal dissipation on pgy primarily an
issue of the gas dynamics. For most common cases, it is acceptable to assume a
constant meniscus temperature equal to the undisturbed liquid temperature, with T(r,t)
representing the time-varying temperature field within the bubble [11]. If the density

and radial velocity in the gas are p, and u, respectively (there are no tangential

9

velocity components), then, the continuity equation for the gas is:

Dp . (22)
Dtg +p,V-0,=0

and the equation for the conservation of energy is

0 R (23)
p.C, 204 ps| T Dp, =V (K, VT)
Dt ét| p, Dt

9



where viscous heating in the gas in neglected; where C, is the specific heat of the gas
at constant pressure, which in this derivation is assumed to be constant’; and where

the thermal conductivity of the gas within the bubble, K_, is a function of the gas

g’

temperature [9, 10]:

K 0.74 24
—9:2.6526><10’4T (24)
[WK /m] [K]

Recall that only a single value pi(t) is required to describe completely the spatially
uniform pressure in the bubble, and that the notation indicates use of the convective

derivative. Applying a perfect gas law having constant specific heat at constant

pressure
| (25)
PyCypT = 7p
y-1
ol __ s (26)
aT p_ T

to the combination of the two conservation laws ((22),(23)), integration of the

spherically symmetric system gives the radial velocity field in the gas:

0o = {0, T2} @)

in terms of the temperature gradient and the convective derivative of the pressure. By

applying the boundary condition that u, must equal the velocity of the bubble wall at

the location of the wall, (27) can be recast to give a differential equation for the

spatially uniform pressure within the bubble

' In most studies of non-inertial cavitation it has been enough to assume that the specific heat of the gas is

constant. If the gas temperature changes become great, the temperature dependence needs to be included.

10



3 ot (28)
Pi :E((y_l)KgE

—WiRJ
R

Clearly the temperature gradient needs to be evaluated if (28) is to be of used in a
bubble equation of motion. There is flexibility in the route now taken, using for
example the equation of continuity coupled with the equation of state of a perfect gas.
Alternatively one can use the enthalpy equation in nonconservation form, and by
doing so Prosperetti et al. [11] obtained (29) from (23):

_ _ _ 29
e O (29)
y—1{ at or )T ré or or

Evaluation of (29) requires the radial velocity field from (27), and allowance for the
dependence on gas thermal conductivity Kq on temperature during the oscillation (24).
With these, the pressure within the bubble is calculated, and this can be used to
resolve the dependency on pq of the various equations of motion. Of the options for
numerical integration of this scheme, Prosperetti et al. [11] chose a finite-difference,
second order predictor-corrector method. Unless an extremely small time step was
used, the accumulated error prevented integration over too many cycles. Kamath and
Prosperetti [12] describe a collocation method, the Galerkin method with a fixed
number of terms, and an adaptive Galerkin method with a variable number of terms
(an adaptive Galerkin-Chebyshev spectral method), the latter proving to be the most
precise and efficient. The accuracy of the pseudospectral method can be assessed by
using the computed temperature field and pressure to calculate the total mass of gas
within the bubble [12, 13].

However despite the severe problems associated with the alternative route (i.e. the
polytropic one, see above) few workers calculate of py using these formulations. This
is perhaps because, unlike the polytropic model, the alternative described above does
not provide a simple equation for gas pressure. Instead they give a set of equations to
determine average temperature, and then using the perfect gas law to obtain the
spatially-averaged pressure. By far the more common route has been to appeal to a

polytropic law. This approach will give an answer, but this will contain a degree of

11
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inaccuracy (see above) that is rarely quantified. As outlined at the start of this section,
this has implications for how dissipation is described. This theme is developed in the

following section.

4, The options for incorporating dissipation

The previous section outlined the options for calculating the pressure in the gas, and
how this was intimately involved with the description of dissipation in the equation of

motion of the bubble.

The simplest mechanism to incorporate into description of bubble dynamics are the
losses resulting from shear viscosity in the medium outside of the bubble wall. If

equation (20) were to be applied to a liquid, the familiar Rayleigh-Plesset equation is

generated:
. 3. ' (30)
RR.,.ERZ:i pg_Z_O'_G_O'_pOO(t _MR .
2 e, R OR R

One option to include thermal and radiation losses in the equation of motion is to
enhance the viscosity artificially to account for the dissipation which these

mechanisms produce.

Noting that viscous losses are explicit in (30) through the term 47R/R, one might
include thermal losses by artificially enhancing the viscosity using, for example, the
physics behind the linear damping constants [14]. This so-called ‘thermal viscosity’
is therefore another parameter, evaluated from a linearised system, which is used in
calculating the predictions of a nonlinear equation of motion. Prosperetti et al. [15]
express this additional viscosity as:

Po3{E(e- )} (31)

it = 4.

where

12



3y (32)

where, developing the expression in (32) for Dy (the gas thermal diffusivity at
equilibrium), note it is defined in terms of the specific heat capacity at constant
pressure (Previous usage of the specific heat capacity at constant volume in this

context [16] was non-standard):

_ KM 1K (T, (33)
’ Cppg(pi,e’Too) v pi,e’

where p;, is the internal bubble pressure at equilibrium, K, is the thermal

conductivity of the gas, C, is the specific heat capacity at constant pressure, p, is the
density of the gas, and T, is the undisturbed temperature of the liquid far from the
bubble. The parameter . is used in place of the driving frequency @ . This was an

attempt to allow description of non-monochromatic forcing and transient behaviour.

With the inclusion of thermal viscosity, the Rayleigh-Plesset takes some account of
thermal losses, as well as adjusting the internal pressure to account for reversible heat
transfer across the wall by use of the polytropic index. However if the formulations
have assumed liquid incompressibility, the Rayleigh Plesset equation will take no
account of the energy radiation into the fluid brought about through the passage of the
sound through a compressible medium. To address this, an “‘acoustic viscosity’ has

been proposed to compensate [17, 18] for this deficiency:
_ piRS (34)
77rad 400

This is, in effect, a linear result from the Keller equation.

There are clearly approximations inherent in this approach. If they introduce an
unacceptable level of inaccuracy, then alternative approaches exist, although these

generally have more extensive computational requirements. These include the

13



introduction of thermal losses through equations (22) to (29), and the introduction of

radiation losses into the equation of motion for a bubble using terms resembling
Rp(R,t)/c, where p,(R,t) is the sum of all steady and unsteady pressure just outside

the bubble wall, and c is sound speed in the solid for compressional waves of

infinitesimal amplitude [19, 20].

Assessment of whether the description of dissipation is sufficiently accurate can be
made by viewing the bubble dynamics in a space made up of the driving pressure (P),
the bubble volume (V), and time (t). Using this PVt space, the bubble population can

be split into a series of radius size bins [21]. Then calculation of the losses can be

made through an appropriate summation of the J.PdV areas mapped by each bubble,

and the sound speed through the population can be calculated through an appropriate

summation of the gradients mapped out in the PVt space [21].

5. Incorporating this formulation into an acoustic propagation

simulation

Once (20) (or any appropriate alternative) has been used to obtain radius time history
data for bubbles, an acoustic propagation simulation can be constructed which
incorporates nonlinear time-dependent bubble oscillations. Key to evaluation of (20)
(or any appropriate alternative) is the choice of the method for calculating the gas
pressure (section 3) and selection of G, and 7, for the gassy sediment in question.
Whilst estimates of these might be obtained from the literature, it is vitally important
to appreciate the assumptions inherent in their calculation, so as to avoid
compromising (20) (or any appropriate alternative) (for example by inserting values
of G, and 7, which have been calculated for a sediment under assumption of quasi-

static bubble dynamics, which compromises the efforts to avoid having to make such

an assumption through section 2).

Having through (20) (or any appropriate alternative) evaluated radius/time histories,

the bubble population can be divided into appropriate size bins, and a representative

14



bubble size allocated for each bin. For each representative bubble, volume/pressure
plots can be derived in the manner outlined by Leighton et al. [21]. Summation of the
volumes of these provides the attenuation, which can be calculated for the steady-state

or for short pulses, and the sound speed through use of the spines of these loop.

In calculating the attenuation, it is important to appreciate that if the polytropic law of
section 3 is used, thermal losses will not be included (unless a ‘thermal viscosity’ is
calculated — see section 4). Furthermore, the assumption of incompressibility in the
solid precludes the inclusion of acoustic radiation losses from (20) (unless an

‘acoustic viscosity’ is calculated — see section 4).

Therefore if (20) on its own is used, the only losses associated with the bubble motion
are viscous losses at the bubble wall. If the gas pressure is calculated through use of
(27) to (29), then thermal losses are also included. Similarly, instead of (20), there are

options for attempting to ensure that acoustic radiation losses will also be included.

Further details of proposed methods for incorporating this into an acoustic

propagation model can be found in Leighton [1].
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