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Abstract

Persistent homology encodes the evolution of homological features of a multifiltered cell complex in
the form of a multigraded module over a polynomial ring, called a multiparameter persistence module,
and quantifies it through invariants suitable for topological data analysis.

In this paper, we establish relations between the Betti tables, a standard invariant for multigraded
modules commonly used in multiparameter persistence, and the multifiltered cell complex. In partic-
ular, we show that the grades at which cells of specific dimensions first appear in the filtration reveal
all positions in which the Betti tables are possibly nonzero. This result can be used in combination
with discrete Morse theory on the multifiltered cell complex originating the module to obtain a better
approximation of the support of the Betti tables. In the case of bifiltrations, we refine our results by
considering homological critical grades of a filtered chain complex instead of entrance grades of cells.
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1 Introduction
One of the main concepts in Topological Data Analysis is persistent homology, a tool to capture topological
information at multiple scales and provide meaningful topological summaries of the data, as surveyed, for
example, in [Ghr07, Car09, EM12]. In practice, assuming that a data set comes equipped with measurements
like functions or metrics to filter it, persistent homology transforms the filtered data into a nested family
of chain complexes that depend on as many parameters as the number of different measurements used.
Applying homology with coefficients in a field F to such a filtered chain complex produces a parametrized
family of vector spaces, connected by linear transition maps, called a persistent homology module. Algebraic
invariants of persistent homology modules provide the required summaries of the data topology.

Classically, the development of the theory of persistent homology originated from two separate roots:
Morse theory (as in, e.g., [Bar94, Fro96, Rob00, ELZ02]), and commutative algebra (as in, e.g., [ZC05,
CZ09, Oud15]). These two perspectives reconcile very elegantly in the case of 1-parameter persistence, i.e.
when the filtration depends on only one parameter. In this case, persistent homology modules admit a
complete invariant, the so-called barcode, encoding the lifespan of homology classes through the considered
filtration. From the standpoint of Morse theory, the endpoints of bars in a persistence barcode correspond
to the cancellation of pairs of critical points of the filtering (Morse) function [ELZ02]. From the algebraic
perspective, a persistent homology module is a representation of a finite linear quiver in the category of
vector spaces. Thus, a 1-parameter persistence module admits a unique decomposition into interval modules,
i.e. indecomposable modules, each supported on an interval. These intervals are exactly the bars of the
persistence barcode [ZC05].

It is of both theoretical and practical interest to understand persistent homology in the case of multiple
parameters, yielding to the so-called multiparameter persistence. Indeed, in applications, one often needs to
filter the data using more than only one measurement, obtaining a multiparameter persistence module. This
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is the case, for example, when there are different drivers for a phenomenon [BCGS13], or when one needs to
downsize the role of outliers by adding a co-density measurement to the principal, explanatory, measurement
as in [FL13, BL22].

Unfortunately, the theory of multiparameter persistence modules proves to be much more elusive than
the single-parameter one: in particular, since multigraded modules are of wild representation type [Gab72],
more complicated indecomposables than just intervals can generally occur, and it is impossible to list them
all or characterize them via discrete invariants. Despite this difficulty, all the relevant homological events in
a multiparameter filtration are conveniently captured by the Betti tables of the multiparameter persistent
homology module [CZ09]. However, these events cannot be paired to obtain summaries similar to barcodes,
and their mutual dependencies cannot be easily unveiled.

One of the motivations of this paper is to relate the events captured by the Betti tables of a multiparameter
persistent homology module to the events captured by Morse theory, considered in its combinatorial
formulation [For98, Koz05]. This attempt to reconnect the algebraic perspective to Morse theory in the
multiparameter situation is both of theoretical interest in commutative algebra and of practical advantage,
as it provides a unified perspective to study persistent homology modules together with the underlying
filtered complexes.

In this perspective, starting from the observation that for a 1-parameter persistent homology module
the support of the Betti tables coincides with the set of entrance grades of critical cells in the filtration
under consideration, our goal is to understand whether and to what extent this fact can be generalized to
multiparameter persistence. An indication that this may be the case comes from the results of [GL23], which
establish Morse inequalities involving, on the one hand, the values of the Betti tables of a multiparameter
persistent homology module, and, on the other hand, the so-called homological critical numbers of the same
filtration. The latter numbers can be viewed as theoretical lower bounds of the numbers of critical cells
entering the filtration at each filtration grade for any choice of a discrete gradient vector field consistent
with the filtration.

The results of this paper delimit, in the space of parameters, the support of the Betti tables of a persistent
homology module in terms of the entrance grades of cells in the multiparameter filtration. Moreover, we
study the relation between the dimension of the entered cells and the degree of the persistent homology
module on which they impact. In our setting, the multiparameter filtration is defined on an abstract cell
complex, an object representing in a combinatorial way a chain complex of vector spaces with distinguished
bases (Section 2.1). To obtain our main results of Sections 3, 5 and 6, the filtration is assumed to be defined
via the sublevel sets of measurement functions. In such filtrations, also called one-critical in topological data
analysis [CSZ09], every cell has a unique entrance grade (Section 2.2).

From a different perspective, we aim to highlight how prior known results about multigraded resolutions
are relevant to the study of multiparamenter persistence, and what can be gained in the context of persistence
by integrating them with Morse theory. Indeed, the main goal of this paper can be stated also in the
language of multigraded commutative algebra, considering n-graded modules over the polynomial ring
S := F[x1, . . . , xn]. An n-parameter persistent homology module can be viewed as an n-graded S-module V
which is presented as the homology at the middle term of a sequence A f−→ B

g−→ C of n-graded S-modules
with gf = 0. If the n-parameter filtration is one-critical, the modules A, B, and C are free. Our goal is to
study the Betti tables of V and relate their support with the grades of the generators of the modules A, B,
and C.

In Section 3, we highlight how multigraded free presentations and resolutions, well-studied in multigraded
commutative algebra [MS05, Pee10], can be applied in the context of multiparameter persistence. Via this
approach, we obtain some initial bounds on the support of the Betti tables of a persistent homology module
in terms of entrance grades of cells in the multiparameter filtration (Proposition 3.4 and Remark 3.5).

Nevertheless, we can say more about the support of Betti tables of persistence if, instead of approaching
the problem directly using a free resolution of the multiparameter persistence module, we use the Koszul
complex associated with the persistence module, a strategy already used in [Knu08, LW22, GL23]. More
specifically, our technique is based on the construction of the Koszul complex via mapping cones (Section 4).
Using this inductive construction, we can compute Betti tables by looking at the space of parameters only
locally and, more importantly, we can disentangle the different parameters of the multiparameter filtration:
the Koszul complex at a fixed grade in an n-parameter space is determined by the Koszul complexes at

2



nearby grades in an (n− 1)-parameter space. This allows for explicit and direct proofs. As an advantage, we
can identify obstructions to the vanishing of Betti tables of a persistence module, which may not be as clear
using the more abstract approach via free resolutions, and get tighter bounds than directly using resolutions.

In detail, given an n-parameter filtration {Xu}u∈Nn of a finite cell complex X, we consider, for any q ∈ N,
the set G(Xq) of entrance grades of q-cells in the filtration, as well as its closure G(Xq) with respect to least
upper bounds, i.e. the smallest set containing G(Xq) and the least upper bounds in Nn of its nonempty
subsets. We denote by ξqi : Nn → N the ith Betti table of the persistent homology module obtained as the
qth homology of the filtration. In the case when the filtration is one-critical, Theorem 5.10 of Section 5
states a relation between the support supp ξqi := {u ∈ Nn | ξqi (u) 6= 0} of the Betti tables and the sets of
entrance grades of cells: for all q ∈ N,

n⋃
i=0

supp ξqi ⊆ G(Xq+1) ∪ G(Xq).

This delimitation of the support of the Betti tables using the entrance grades of cells cannot be tightened
(see Example 5.12).

We next focus on particular Betti tables for which the containment above can be improved. Still in
Theorem 5.10, we prove that supp ξq0 ⊆ G(Xq) and supp ξqn ⊆ G(Xq+1), for all q ∈ N. More interestingly, in
Theorem 5.14 we identify a sufficient condition on submodules of boundaries and cycles for the vanishing of ξq1
at a grade u ∈ Nn. The condition for boundaries is the identity Bq(Xu) =

∑n
j=1 Bq(Xu−ej ) of submodules

of Cq(Xu), while the condition for cycles consists, up to a permutation on the set {1, . . . , n} enumerating
the parameters, of the identities

Zq(Xu−e`) ∩

∑
j<`

Zq(Xu−ej )

 =
∑
j<`

Zq(Xu−ej−e`),

for every ` ≤ n. Our result implies the bound supp ξq1 ⊆ G(Xq+1) ∪ G(Xq) for the support of the 1st
Betti table (Corollary 5.20). In particular, in comparison to what can be obtained using multigraded free
resolutions of the persistent homology module as in Section 3, we see that using the cone construction of the
Koszul complex we get somehow stronger results.

To reconnect our results with Morse theory, in Section 5.3 we observe that all our bounds for the support
of Betti tables can be applied to the Morse complex associated with any discrete gradient vector field
consistent with the filtration. The persistent homology module of the Morse complex has the same Betti
tables as that of the original filtration, but the set of entrance grades of cells is typically much smaller.
Therefore, using Morse complexes, one can often obtain better approximations of the support of the Betti
tables.

In the endeavor to improve the bounds for the support of Betti tables, rather than considering entrance
grades of cells (either of the original complex or of an associated Morse complex), as a further contribution of
this paper we show that, in the case of 2-parameter filtrations that are one-critical, the support of the Betti
tables of a persistent homology module is contained in the closure of the set of homological critical grades
(Section 6). Although limited to the case of two parameters, this result improves our results from Section 5
in two ways: it does not depend on the choice of a specific discrete gradient vector field and establishes that
all events witnessed by the Betti tables are determined by homological criticality (Corollary 6.6).

Our results of Section 5 and Section 6 hold for one-critical filtrations of cell complexes. Although they
cannot be applied directly to filtrations that are not one-critical, a generalization in this direction can be
obtained using results from [CSV17], as we explain in Section 7.

2 Preliminaries
Before presenting relevant background material for this article, let us establish some general notations: N
denotes the set {0, 1, . . .} of natural numbers; [n] denotes the set {1, 2, . . . , n}; {ei}i=1,...,n is the standard
basis of Nn; for any subset α ⊆ [n], we denote eα :=

∑
j∈α ej ; |J | denotes the cardinality of a set J ; the

symbols ∧ and ∨ denote the greatest lower bound and least upper bound, respectively.
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2.1 Based chain complexes, cell complexes, and homology
Let F denote a field, arbitrary but fixed. A based chain complex is a chain complex C∗ = (Cq, ∂q)q∈Z of vector
spaces over F, which we assume to be of finite dimension, such that each Cq is endowed with a distinguished
basis Xq. Throughout this article, we assume all chain complexes to be bounded, meaning that Cq = 0
whenever q < 0 or q ≥ m for some integer m. Based chain complexes can be viewed from a combinatorial
perspective, as their distinguished bases inherit the structure of an (abstract) cell complex, in the sense of
Lefschetz [Lef42]. In this work, we call cell complex a finite graded set X =

⊔
q∈NXq, whose elements are

called cells, endowed with an incidence function κ : X ×X → F. A cell σ ∈ Xq is said to have dimension q,
denoted dim σ = q, or to be a q-cell. The incidence function must satisfy two axioms: (i) κ(τ, σ) 6= 0 implies
dim τ = dim σ + 1, and (ii)

∑
ρ∈X κ(τ, ρ) · κ(ρ, σ) = 0, for any pair of cells τ and σ in X. We endow X with

the order relation ≤, called the face partial order, generated by the covering face relation: σ < τ if and only
if κ(τ, σ) 6= 0. Given a cell complex X, we denote C∗(X) = (Cq(X), ∂q)q∈Z the based chain complex such
that Xq is the fixed basis of Cq, for all q, with differentials ∂q : Cq → Cq−1 defined on each τ ∈ Xq by

∂q(τ) =
∑

σ∈Xq−1

κ(τ, σ)σ.

We observe that C∗(X) is the zero chain complex if X = ∅.
A graded set A =

⊔
q∈NAq is called a subcomplex of X if, for all τ ∈ A, every cell σ ∈ X such that

σ ≤ τ is also in A. This property makes A, endowed with the restriction of the incidence function of X,
a cell complex, and is equivalent to requiring C∗(A) to be a chain subcomplex of C∗(X). We denote by
Hq(X) := ker ∂q/ im ∂q+1 the homology F-modules of C∗(X), and by Hq(X,A) the homology F-modules of
the relative chain complex C∗(X,A).

We observe that the notion of a cell complex as reviewed above, equivalent to that of a based chain
complex, is general enough to include simplicial complexes and cubical complexes, among other widely used
combinatorial objects admitting a canonically associated chain complex. If the aim is computing homology,
finite CW complexes can also be represented by cell complexes, letting κ(τ, σ) be the degree of the attaching
map from the boundary of τ to σ.

2.2 Multifiltrations and multiparameter persistence
One of the main mathematical objects of interest in topological data analysis are functors from a poset to the
category of finite dimensional vector spaces over a field F. Here, we consider the indexing poset Nn, for some
integer n ≥ 1, equipped with the coordinate-wise partial order: for u = (ui), v = (vi) ∈ Nn, we write u � v if
and only if ui ≤ vi, for all 1 ≤ i ≤ n. In this article, an n-parameter persistence module is a functor from the
poset (Nn,�) with values in finite-dimensional F-vector spaces. Morphisms between such functors are the
natural transformations. Explicitly, an n-parameter persistence module V consists of a family {V u}u∈Nn of
F-vector spaces together with a family {ϕu,v : V u → V v}u�v∈Nn of linear maps such that ϕu,w = ϕv,w ◦ϕu,v
whenever u � v � w, and ϕu,u = idV u , for all u. A morphism between two n-parameter persistence modules
{V u, ϕu,v} and {Wu, ψu,v} is a family of linear maps {νu : V u →Wu}u∈Nn such that νv ◦ ϕu,v = ψu,v ◦ νu,
for all u � v in Nn. A morphism ν is an isomorphism (monomorphism, epimorphism, respectively) if, and
only if, its components νu are bijective (injective, surjective), for all u ∈ Nn.

In topological data analysis, the typical source of persistence modules are filtrations of cell complexes
associated with the data. An n-filtration of a cell complex X is a family {Xu}u∈Nn of subcomplexes of X such
that u � v implies Xu ⊆ Xv. If a cell σ of X is an element of Xur

⋃n
j=1 X

u−ej , we say that u is an entrance
grade of σ in the filtration. In this article we assume, unless otherwise stated, that filtrations {Xu}u∈Nn are
families of sublevel sets Xu = {σ ∈ X | h(σ) � u} of some order-preserving function h : (X,≤)→ (Nn,�),
with ≤ denoting the face partial order on X. This assumption is equivalent to requiring every cell of X to
have exactly one entrance grade, and will only be lifted in Section 7, where we discuss applications to general
n-filtrations.

The filtrations we are considering are usually called one-critical [CSZ09] in topological data analysis.
We want to highlight that assuming the uniqueness of entrance grades is fundamental in order to obtain
the results of Section 5 and Section 6, which are false for general filtrations of cell complexes (but can be
adapted as explained in Section 7). For instance, in this article we repeatedly use the following fact.
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Remark 2.1. Given a one-critical n-filtration {Xu}u∈Nn and a finite set of filtration grades {uj}j=1,...,k ⊆ Nn,
with uj = (uj,1, . . . , uj,n) for all j, we have

⋂k
j=1 X

uj = Xw, where w =
∧
{uj}j = (min{uj,1}j , . . . ,min{uj,n}j)

is the greatest lower bound of the subset {uj}j=1,...,k in Nn. In particular, for each subset α ⊆ [n], we have
the equality

⋂
j∈αX

u−ej = Xu−eα .
We are interested in persistence modules obtained as the homology of an n-filtration. Given an n-filtration

{Xu}u∈Nn and applying the qth homology functor, one obtains the n-parameter persistent qth-homology
module Vq = {V uq , ιu,vq }u�v∈Nn , with V uq := Hq(Xu) and ιu,vq : Hq(Xu)→ Hq(Xv) induced by the inclusion
maps Xu ↪→ Xv for u � v. We note that it is common to use the terms multifiltration and multiparameter
in place of, respectively, n-filtration and n-parameter, to indicate the generic case when n > 1. Moreover,
2-filtrations are also called bifiltrations.

The overall purpose of this work is to study the relation between the homological invariants of multiparam-
eter persistent homology modules called Betti tables and the multifiltrations from which they are obtained.
To this aim, we adopt some tools and terminology from commutative algebra. An n-graded module over
the polynomial ring S := F[x1, . . . , xn] is an S-module with a vector space decomposition V =

⊕
u∈Nn V

u

such that xi · V u ⊆ V u+ei , for all u ∈ Nn and i ∈ [n]. There is a standard equivalence [CZ09] between the
category of n-parameter persistence modules and the category of n-graded S-modules, allowing us to view a
persistence module {V u, ϕu,v} as the n-graded S-module

⊕
u∈Nn V

u, where the action of S is defined by
xi · z = ϕu,u+ei(z), for all z ∈ V u and i ∈ [n]. Standard homological invariants from commutative algebra,
like the Betti tables (also called multigraded Betti numbers, see Section 2.3), were among the first ones
studied in multiparameter persistence [CZ09, Knu08]. Given an n-parameter persistent homology module
{V uq , ιu,vq }, obtained as the qth homology of an n-filtration, we view it as the finitely generated n-graded
S-module Vq =

⊕
u∈Nn V

u
q and denote its ith Betti table by ξqi , for i ∈ {0, 1, . . . , n}. We recall that its Betti

tables are functions ξqi : Nn → N defined by

ξqi (u) := dim(TorSi (Vq,F))u,

for all u ∈ Nn. Explicitly, ξqi (u) is the dimension (as an F-vector space) of the piece of grade u of the
n-graded S-module TorSi (Vq,F). In Section 4 we give an equivalent definition of the Betti tables based on
the Koszul complex.

2.3 Multigraded modules and free resolutions
We now briefly review free resolutions of n-graded modules over the polynomial ring S := F[x1, . . . , xn]. In
this article, all n-graded S-modules are assumed to be finitely generated. Homomorphisms f : V → W

between n-graded S-modules are assumed to be n-graded, meaning that they preserve grades: f(V u) ⊆Wu,
for all u ∈ Nn. We refer to [MS05, Ch. 1] and to texts like [Eis05, Pee10] for further details.

For an n-graded S-module V and for a ∈ Zn, we denote by V (a) the module such that V (a)u = V u+a

for all u ∈ Nn, called the shift of V by a. The module S(−a) is the free S-module on one generator at grade
a ∈ Nn. It is isomorphic to the principal monomial ideal 〈xa〉, where xa denotes the monomial xa1

1 · · ·xann .
An n-graded S-module is called free if it is isomorphic to

⊕r
j=1 S(−aj) for some r ∈ N and aj ∈ Nn. For a

free module, r and {aj}rj=1 are uniquely determined.
As an example related to the multifiltrations of Section 2.2, one can consider the persistence module

{Cq(Xu), fu,vq }u�v∈Nn , where the maps fu,vq : Cq(Xu) ↪→ Cq(Xv) are induced by the inclusions Xu ↪→ Xv,
and regard it as the n-graded S-module Cq =

⊕
u∈Nn Cq(Xu). If the n-filtration {Xu}u∈Nn is one-critical,

then Cq is free, isomorphic to
⊕

σ∈Xq S(−vσ), where vσ denotes the unique entrance grade of the q-cell σ.
The differential ∂q : Cq → Cq−1 is an example of an n-graded homomorphism between n-graded S-modules,
whose component in grade u is ∂q : Cq(Xu)→ Cq−1(Xu), for all u ∈ Nn.

An (n-graded) free resolution of an n-graded S-module V is a sequence

· · · → F`
φ`−→ F`−1

φ`−1−−−→ · · · φ2−→ F1
φ1−→ F0 → 0

of n-graded free S-modules and n-graded homomorphisms which is exact at degree i (that is, kerφi = imφi+1)
for all i > 0, and such that cokerφ1 = V . An exact sequence · · · φ2−→ F1

φ1−→ F0
ε−→ V → 0 is called an

augmented free resolution of V , with the n-graded homomorphism ε called an augmentation. The smallest
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integer ` (if it exists) for which Fi = 0 for every i > ` is called the length of the resolution. By Hilbert’s
Syzygy Theorem, every finitely generated n-graded S-module V admits a free resolution with length ` ≤ n.

A free resolution is called minimal if the image of each homomorphism φi is contained in 〈x1, . . . , xn〉Fi−1,
where 〈x1, . . . , xn〉 denotes the homogeneous maximal ideal of S. Minimal free resolutions are unique up
to isomorphism, and they are an invariant of the isomorphism type of V . In particular, the number of
summands S(−u) in Fi, for every u ∈ Nn and i ∈ {0, 1, . . . , n}, is a well-defined invariant of V , and it
coincides with the value at u of the ith Betti table (or multigraded Betti number), ξi(u) := dim(TorSi (V,F))u.
To see this, recall that, by definition, TorSi (V,F) can be determined by applying the functor −⊗S F to a free
resolution of V and taking the ith homology of the resulting chain complex of n-graded S-modules. Choosing
a minimal free resolution of V , the homomorphisms φi ⊗S F are all zero, hence TorSi (V,F) = Fi ⊗S F has in
grade u an F-vector space of dimension equal to the number of summands S(−u) in Fi, for all u ∈ Nn.

A free presentation of an n-graded S-module V is an n-graded homomorphism φ1 : F1 → F0 between
free n-graded S-modules F1 and F0 such that cokerφ1 = V . In this article, we will occasionally refer to the
augmented sequence F1

φ1−→ F0 → V → 0, which is exact at F0 and V , as a free presentation of V . A free
presentation of V is called minimal if it is the portion (in degrees 1 and 0) of a minimal free resolution of V .

2.4 Discrete Morse theory and multifiltrations
Discrete Morse theory, developed by Forman [For98], is an adaptation of smooth Morse theory [Mil63] to a
combinatorial framework. In its original formulation, it allows, given a regular CW complex, to construct
a homotopy equivalent CW complex with a smaller number of cells. Building on Forman’s work, discrete
Morse theory has been formulated in purely algebraic terms for based chain complexes [Koz05] and in more
general frameworks [Skö06, JW09]. In this algebraic setting, the aim is to decompose a chain complex into a
smaller complex and an acyclic complex. As explained in Section 2.1, one can always take an equivalent
combinatorial perspective by considering the cell complexes associated with based cell complexes. We briefly
present here the main ideas of algebraic discrete Morse theory in the setting of this work.

Let C∗(X) be the chain complex associated with a cell complex X =
⊔
qXq, and let < be the covering face

relation on X introduced in Section 2.1. A pair of cells (σ, τ) ∈ X ×X with σ < τ is called a discrete vector.
A discrete vector field V on X is a collection of discrete vectors V = {(σj , τj)}j∈J such that all cells appearing
in V (indifferently as the first or the second component of a vector) are different. A discrete vector field V

determines a partition of X into three graded subsets M,S, T , where M is the set of unpaired cells, called
critical cells, and S (respectively, T ) is the set of cells appearing in V as first (respectively, second) components
of a discrete vector. The subsets M,S, T inherit the grading by dimension of the cells of X, so that for
example M =

⊔
qMq. A V-path between two cells σ and σ′ is a sequence (σ0, τ0, σ1, τ1, . . . , σr−1, τr−1, σr)

with r ≥ 1 such that σ0 = σ, σr = σ′, each (σi, τi) is a discrete vector of V, and σi+1 < τi. The V-path is
called closed if σr = σ1 and trivial if r = 1. A discrete vector field V is a discrete gradient vector field (also
called an acyclic matching or a Morse matching) when all closed V-paths are trivial.

The core result of discrete Morse theory [For98] can be algebraically stated as follows [KMS98, Skö06,
JW09].

Theorem 2.2. Let C∗(X) = (Cq(X), ∂q)q∈Z be the chain complex associated with a cell complex X =
⊔
qXq

and let V = {(σj , τj)}j∈J be a discrete gradient vector field on X. Then C∗(X) is chain homotopy equivalent
to C∗(M) = (Cq(M), ∂Mq )q∈Z, whereM =

⊔
qMq is the set of critical cells and ∂M is a differential determined

by ∂ and V.

We call C∗(M) the (discrete) Morse chain complex of C∗(X) associated with V. Let us stress that
in general C∗(M) is not a chain subcomplex of C∗(X), since its differential ∂M is not simply induced by
restriction by the differential ∂ of C∗(X). The details on how ∂M is (uniquely) determined by ∂ and V can be
found in [Skö06, JW09]. Equivalently, a cell complex structure on the set M =

⊔
qMq, called the (discrete)

Morse complex of X associated with V, is determined by the incidence function of X and V [KMS98]. In
general, M is not a subcomplex of X.

Discrete Morse theory of filtered chain complexes has been studied in a series of works related to
one-parameter [MN13] or multiparameter persistent homology [AKL17]. In the remainder of this subsection,
we present the main ideas of discrete Morse theory for multifiltrations.
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Consider an n-filtration {Xu}u∈Nn of a cell complex X, which determines a filtration {C∗(Xu)}u∈Nn of
the chain complex C∗(X). Given a discrete gradient vector field V on X, there are clearly induced filtrations
{Mu}u∈Nn on the Morse complexM and {C∗(Mu)}u∈Nn on the Morse chain complex C∗(M) = (Cq(M), ∂Mq ).
In general, the former is only a filtration of sets and the latter is only a filtration of graded F-vector spaces, as
the differential ∂M may fail to be compatible with the filtration. To avoid this, one can require the discrete
gradient vector field to interact nicely with the multifiltration on X.

Definition 2.3. A discrete gradient vector field V on X is consistent with a multifiltration {Xu}u∈Nn if,
for all (σ, τ) in V and all u ∈ Nn, σ ∈ Xu if and only if τ ∈ Xu.

If V is consistent with the multifiltration {Xu}u∈Nn , then {C∗(Mu)}u∈Nn is a filtration of chain subcom-
plexes of C∗(M) [MN13, AKL17]. Equivalently, {Mu}u∈Nn is a filtration of subcomplexes of M . Moreover,
the persistent homology modules associated with the multifiltrations of X and its Morse complex are
isomorphic (in the sense of Section 2.2).

Proposition 2.4 (Lemma 3.10 in [AKL17]). Let V be a discrete gradient vector field on a cell complex
X consistent with an n-filtration {Xu}u∈Nn , and let {Mu}u∈Nn be the n-filtration induced on the Morse
complex M . Then, for any q ∈ N, the persistence modules obtained as q-th homology of the n-filtrations
{Xu}u∈Nn and {Mu}u∈Nn are isomorphic.

3 Entrance grades and support of Betti tables via free resolutions
In this section, we illustrate how methods in multigraded homological algebra based on free presentations
and resolutions (see Section 2.3) can be used to derive relations between two different graded subsets of Nn:
the set of parameter grades at which new critical cells appear in the one-critical filtration {Xu}u∈Nn of a
cell complex X, on the one hand, and the set of parameter grades where the Betti tables of the persistent
homology module Vq =

⊕
u∈Nn Hq(Xu) are nonzero, on the other hand. Specifically, we obtain bounds on

the support of the 0th and 1st Betti table of Vq (Proposition 3.4), and we discuss the immediate consequences
of these bounds on the support of Betti tables of higher degrees (Remark 3.5). We conclude by observing
that some of the stronger results we will prove in Section 5 do not immediately follow from this approach.
For this reason, we defer the discussion of how our results on the support of Betti table can be combined
with discrete Morse theory to Section 5.3.

In this section we consider the following setting. Let {Xu}u∈Nn be a one-critical n-filtration of a cell
complex X. We assume the multifiltration {Xu}u∈Nn to be exhaustive, that is, X =

⋃
u∈Nn X

u. Clearly,
since X is graded by the dimension q of cells, this means that Xq =

⋃
u∈Nn X

u
q , for all q ∈ N. The one-

criticality assumption (Section 2.2) ensures that the chain complex associated with the filtration {Xu}u∈Nn
is made of free n-graded modules over the polynomial ring S := F[x1, . . . , xn]. More specifically, for any
q ∈ N, the n-graded S-module Cq :=

⊕
u∈Nn Cq(Xu) associated with the filtration is free and isomorphic to⊕

σ∈Xq S(−vσ), where vσ denotes the unique entrance grade of the q-cell σ. The set of all entrance grades
(Section 2.2) of q-cells is denoted by G(Xq) ⊆ Nn, and its closure with respect to least upper bounds is
denoted by G(Xq). Explicitly, G(Xq) := {

∨
L | L ⊆ G(Xq), L 6= ∅} ⊆ Nn, with

∨
L denoting the least upper

bound of L in (Nn,�).
By definition, the persistent homology module Vq =

⊕
u∈Nn Hq(Xu) is the homology at the middle term

of the sequence Cq+1
∂q+1−−−→ Cq

∂q−−→ Cq−1 of free n-graded S-modules and n-graded homomorphisms. Our
aim is constructing a free resolution of Vq that is informative of the relation between the support of the Betti
tables and the sets of entrance grades of cells. In this section, we denote by ξi(V ) the ith Betti table of an
n-graded S-module V , which we view as a function ξi(V ) : Nn → N with values ξi(V )(u) := dim(TorSi (V,F))u
defined as detailed in Section 2.3. We drop the module V from the notation of the Betti tables when it is
clear from the context. Lastly, let us recall that we use the notation ξqi := ξi(Vq) for the Betti tables of the
persistent homology module Vq =

⊕
u∈Nn Hq(Xu), and that we denote by supp ξqi := {u ∈ Nn | ξqi (u) 6= 0}

the support of ξqi .
We start by considering the following sequence of n-graded S-modules and n-graded homomorphisms,

Cq+1 ker ∂q Vq = ker ∂q
im ∂q+1

,
∂q+1 h
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where h is the canonical projection. This sequence is not a free presentation of Vq in general, since ker ∂q is
in general not free for n > 2 and q > 0. To obtain a free presentation of Vq, we consider a free presentation
F1 → F0 � ker ∂q of ker ∂q, which we assume to be minimal. This free presentation is the second row in the
diagram of n-graded S-modules

0 Cq+1 Cq+1

F1 F0 ker ∂q

Vq

∂ ∂q+1

φ1 ε

h

where the homomorphism ∂ is a lift of ∂q+1, which exists since Cq+1 is free (hence projective) and ε is
surjective. A free presentation of Vq is then given by

Cq+1 ⊕ F1 F0 Vq,
[∂ φ1] hε (3.1)

where [∂ φ1] denotes the n-graded homomorphism sending (c, x) ∈ Cq+1 ⊕ F1 to ∂(c) + φ1(x) ∈ F0. To see
that coker[∂ φ1] = Vq, we observe that the composition hε is surjective, and that its kernel coincides with
im[∂ φ1] = im ∂ + imφ1.

Our goal is approximating the sets of grades of the generators of the free modules F0 and Cq+1 ⊕ F1,
which are the sets supp ξ0(F0) and supp ξ0(Cq+1 ⊕ F1), respectively. In Proposition 3.4 we state bounds in
terms of the sets G(Xq) and G(Xq+1). To prove these bounds, we need some results on free resolution of
n-graded S-modules.

First, we state a result whose proof can be found for example in [Vip20, Lemma 2.1] or, in a slightly
different setting, in [CGR+24, Corollary 4.2].

Proposition 3.1. Let V be a (finitely generated) n-graded S-module. Then the supports of its Betti tables
satisfy the containments supp ξi+1 ⊆ supp ξi, for all i ≥ 1.

Next, we need a result on the structure of free resolutions. The proofs presented in [Pee10, Theorem 7.5]
or [Eis05, p. 6] carry over to the multigraded case.

Proposition 3.2. Every n-graded free resolution of an n-graded S-module V is isomorphic to the direct
sum of a minimal free resolution of V and short trivial complexes of the form 0→ S(−u) id−→ S(−u)→ 0,
with u ∈ Nn, possibly involving different homological degrees.

The following is a useful consequence of Propositions 3.1 and 3.2.

Corollary 3.3. Let K be the kernel of an n-graded homomorphism f : V → W of n-graded S-modules,
where V is free. Then supp ξ1(K) ⊆ supp ξ0(K).

Proof. Let F∗ = (· · · → F1
φ1−→ F0 → 0) be an n-graded minimal free resolution of K. The augmented free

resolution · · · → F1
φ1−→ F0

ε−→ K → 0 can be composed with the canonical monomorphism K
ι
↪−→ V to form

the sequence
· · · → F1

φ1−→ F0
ιε−→ V → 0 (3.2)

of free n-graded S-modules, which can be viewed as a (non-necessarily minimal) free resolution of the module
im f ∼= V/K ∼= coker ιε. By Proposition 3.2, the free resolution (3.2) of im f is isomorphic to a minimal free
resolution P∗ = (· · · → P2 → P1 → P0 → 0) plus a direct sum of short trivial complexes. By minimality of F∗,
a short trivial complex 0→ S(−u) id−→ S(−u)→ 0 which is a direct summand of (3.2) can only have nonzero
modules in homological degrees i = 0, 1 (using indices as in P∗). Since Betti tables count the multiplicity of
free summands S(−u) at each grade u ∈ Nn and each homological degree of a minimal free resolution (see
Section 2.3), this implies that supp ξ1(im f) ⊆ supp ξ0(K) and that supp ξi+1(im f) = supp ξi(K) for i ≥ 1,
which together with Proposition 3.1 gives

supp ξ1(K) = supp ξ2(im f) ⊆ supp ξ1(im f) ⊆ supp ξ0(K).
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We are now ready to prove bounds for the grades of the generators of the free modules appearing in the
free presentation (3.1).

Proposition 3.4. The containments supp ξ0(F0) ⊆ G(Xq) and supp ξ0(Cq+1⊕F1) ⊆ G(Xq+1)∪G(Xq) hold
for the modules in the free presentation (3.1) of Vq.

Proof. We start with an argument similar to the one used in the proof of Corollary 3.3. Let F∗ = (· · · → F1
φ1−→

F0 → 0) be a minimal free resolution of ker ∂q. The augmented exact sequence · · · → F1
φ1−→ F0

ε−→ ker ∂q → 0
can be spliced with the exact sequence 0→ ker ∂q

ι−→ Cq
∂q−→ Cq+1 to form the sequence

· · · → F1
φ1−→ F0

ιε−→ Cq
∂q−→ Cq+1 → 0 (3.3)

of free n-graded S-modules, which can be viewed as a (non-necessarily minimal) free resolution of the
module coker ∂q. By Proposition 3.2, the free resolution (3.3) is isomorphic to a minimal free resolution
P∗ = (· · · → P3 → P2 → P1 → P0 → 0) plus a direct sum of short trivial complexes. We observe that a short
trivial complex 0→ S(−u) id−→ S(−u)→ 0 with nonzero modules in homological degrees i = 2, 3 cannot be a
direct summand of (3.3), by minimality of the free resolution F∗ of ker ∂q. For this reason, the containment
supp ξ0(P2) ⊆ supp ξ0(P1), obtained by applying Proposition 3.1 to P∗ with i = 1, implies the containment
supp ξ0(F0) ⊆ supp ξ0(Cq). The first containment of the claim follows by recalling that the set supp ξ0(Cq)
of grades of the generators of Cq coincides with G(Xq) by definition.

We now consider the set supp ξ0(Cq+1⊕F1) = supp ξ0(Cq+1)∪ supp ξ0(F1). Again by definition, we have
supp ξ0(Cq+1) = G(Xq+1). We therefore focus on the set supp ξ0(F1) and observe that

supp ξ0(F1) = supp ξ1(ker ∂q) ⊆ supp ξ0(ker ∂q),

where the equality is by definition of Betti tables via minimal resolutions (Section 2.3), and the containment
is by Corollary 3.3. The second containment of the claim then follows from the equality ξ0(ker ∂q) = ξ0(F0)
and from the first part of the proof.

Remark 3.5. Since by Proposition 3.2 the free presentation (3.1) of Vq contains a minimal free presentation
as a direct summand, Proposition 3.4 yields the following two containments:

supp ξq0 ⊆ G(Xq), supp ξq1 ⊆ G(Xq+1) ∪ G(Xq).

We recall that the support of the 1st Betti table determines a bound for the support of all Betti tables
of positive degree, since

⋃n
i=1 supp ξqi ⊆ supp ξq1 . This general fact for n-graded S-modules is observed for

example in [CT15, Remark 3.2], and follows from Proposition 3.1. Using this fact, we immediately see that
n⋃
i=1

supp ξqi ⊆ G(Xq+1) ∪ G(Xq).

In Section 5, we will obtain the containments for supp ξq0 (Theorem 5.10) and supp ξq1 (Corollary 5.20)
with an alternative method based on the Koszul complex, which will allow us to improve some of the
statements regarding the support of higher Betti tables. In Theorem 5.10, we will prove the stronger
statement

⋃n
i=0 supp ξqi ⊆ G(Xq+1) ∪ G(Xq), together with the containment supp ξqn ⊆ G(Xq+1) for the

support of the nth Betti table.

4 The Koszul complex of a persistence module
In this section, we describe the Koszul complex associated with an n-parameter persistence module and illus-
trate some of its properties. In particular, given an n-parameter persistent homology module {Hq(Xu), ιu,vq },
we introduce its Koszul complex at u ∈ Nn, a chain complex whose ith homology module has dimension
equal to the Betti table value ξqi (u). This chain complex can be constructed via a repeated procedure which
allows us to add one parameter of the multifiltration at a time.

In Section 4.1, upon briefly recalling general definitions and results, we provide a more detailed description
of Koszul complexes of multiparameter persistent homology modules. We claim no original results in this
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subsection, as the Koszul complex is a standard tool, and the explicit description of its chain modules and
differentials in the case of persistent homology modules is included, for example, in [GL23, Sect. 3]. Here,
besides fixing notations, we provide further details, especially with regard to bifiltrations, that are relevant
to this work.

In Section 4.2, we explain how the Koszul complex associated with an n-parameter persistence module
can be constructed as an iterated mapping cone, and we highlight the role of this construction for persistent
homology modules, which intuitively allows one to disentangle the different parameters of the multifiltration
and study their impact on the Betti tables. In Section 5, we will apply this technique to study the support
of the Betti tables.

4.1 The Koszul complex of a multigraded module
Let S denote the polynomial ring F[x1, . . . , xn]. We recall that, for any subset α ⊆ [n], we set eα :=∑
j∈α ej ∈ {0, 1}n. The Koszul complex K∗ is a chain complex of free n-graded S-modules whose construction

is standard in commutative algebra (cf. [MS05, Def. 1.26]): for each i, let Ki :=
⊕

α⊆[n], |α|=i S(−eα),
where S(−eα) denotes the free S-module generated in grade eα by an element we denote 1α, for some
α = {j1 < j2 < . . . < ji}. The differentials dKi : Ki → Ki−1 are defined on generators by

dKi (1α) =
i−1∑
r=0

(−1)rxji−r · 1αr{ji−r}.

Given an n-graded S-module V =
⊕

u∈Nn V
u, the Koszul complex K∗(x1, . . . , xn;V )(u) of V at grade u ∈ Nn

is the piece of grade u of the (n-graded) chain complex V ⊗S K∗. This chain complex of F-vector spaces
can be used to determine the Betti tables ξi(u) := dim(TorSi (V,F))u of V at grade u, for i ∈ {0, 1, . . . , n}.
Indeed, by definition, TorSi (V,F) can be determined by applying the functor −⊗S F to a free resolution of V
and taking ith homology of the resulting chain complex (see Section 2.3). The roles of V and F can however
be interchanged, by virtue of the isomorphism TorSi (V,F) ∼= TorSi (F, V ) (see, e.g., [Rot09, Thm. 7.1]); in this
case, choosing K∗ as a (minimal) free resolution of F (see [MS05, Prop. 1.28]) yields, for all i ∈ {0, 1, . . . , n},
the equality

ξi(u) = dimHi(K∗(x1, . . . , xn;V )(u)).

Let us now provide a more explicit description of the Koszul complex K∗(x1, . . . , xn;Vq)(u) of a persistent
homology module {Hq(Xu), ιu,vq } associated with an n-parameter filtration {Xu}u∈Nn , regarded as an n-
graded S-module Vq =

⊕
u∈Nn Hq(Xu) (as reviewed in Section 2.2). Even if this description of the Koszul

complex can be easily adapted to any n-parameter persistence module, not necessarily built from a filtered
cell complex, we prefer to focus on the case of interest for this work in order to clearly introduce the notations
we will use in what follows.

For each i ∈ {0, 1, . . . , n}, the chain module in degree i of K∗(x1, . . . , xn;Vq)(u) is

Ki(x1, . . . , xn;Vq)(u) =
⊕

α⊆[n], |α|=i

Hq(Xu−eα).

The definition can be easily extended if, for some fixed u ∈ Nn and some α ⊆ [n], it happens that u−eα /∈ Nn:
throughout this article, by definition, we set Xw = ∅ whenever the grade w is not in Nn. Note that the
modules Ki(x1, . . . , xn;Vq)(u) are zero for all i /∈ {0, 1, . . . n}. The differentials of K∗(x1, . . . , xn;Vq)(u) are
defined in terms of the maps ιv,wq : Hq(Xv)→ Hq(Xw) as follows: the differential

di : Ki(x1, . . . , xn;Vq)(u)→ Ki−1(x1, . . . , xn;Vq)(u)

is defined as the alternating sum di =
∑i−1
r=0(−1)rdi,r of functions di,r : Ki(x1, . . . , xn;Vq)(u)→ Ki−1(x1, . . . , xn;Vq)(u)

mapping the summand Hq(Xu−eα) in Ki(x1, . . . , xn;Vq)(u), with α = {j1 < j2 < . . . < ji}, to the summand
Hq(Xu−eα+eji−r ) in Ki−1(x1, . . . , xn;Vq)(u), via the function ιu−eα, u−eα+eji−r

q . For the sake of a simpler
notation, we avoid denoting the grade u in the differentials di. As we explained, ξqi (u) coincides with the
dimension (as an F-vector space) of the ith homology module of K∗(x1, . . . , xn;Vq)(u).
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Let us detail the cases of n = 1 and n = 2 parameters for later convenience. For a 1-parameter filtration
{Xu}u∈N, the Koszul complex K∗(x1;Vq)(u) of Vq =

⊕
u∈NHq(Xu) at u ∈ N is

0 −→ Hq(Xu−1)
d1=ιu−1,u

q−−−−−−−→ Hq(Xu) −→ 0.

The Betti tables at grade u are ξq0(u) = dim coker ιu−1,u
q and ξq1(u) = dim ker ιu−1,u

q , which correspond
respectively to the number of births and deaths of q-homology classes at u ∈ N in the sense of persistence
[ELZ02].

For a 2-parameter filtration {Xu}u∈N2 , the Koszul complex K∗(x1, x2;Vq)(u) of the module Vq =⊕
u∈N2 Hq(Xu) at u ∈ N2 is

0 −→ Hq(Xu−e1−e2) d2−→ Hq(Xu−e1)⊕Hq(Xu−e2) d1−→ Hq(Xu) −→ 0,

with differentials

d2 =
[
−ιu−e1−e2,u−e1

q

ιu−e1−e2,u−e2
q

]
and d1 = [ιu−e1,u

q ιu−e2,u
q ].

The Betti tables at the grade u are

ξq2(u) = dim ker d2, ξq1(u) = dim(ker d1/ im d2), ξq0(u) = dim coker d1.

A morphism ν = {νu : V u → Wu}u∈Nn between n-parameter persistence modules {V u, ϕu,v} and
{Wu, ψu,v} induces a chain map between the Koszul complexes of V =

⊕
u∈Nn V

u and W =
⊕

u∈NnW
u at

u ∈ Nn, the morphism between the chain modules in degree i being
⊕
|α|=i ν

u−eα , with α ⊆ [n]. Moreover,
since taking finite direct sums preserves short exact sequences of vector spaces, taking the Koszul complex at
any fixed u is an exact functor, meaning that a short exact sequence 0→ U

µ−→ V
ν−→W → 0 of n-parameter

persistence modules induces a short exact sequence of Koszul complexes

0→ K∗(x1, . . . , xn;U)(u)→ K∗(x1, . . . , xn;V )(u)→ K∗(x1, . . . , xn;W )(u)→ 0.

Clearly, an isomorphism between persistence modules induces an isomorphism between their Koszul
complexes. In what follows, we will apply this observation in the particular case of a multifiltration {Xu}u∈Nn
of X and the induced multifiltration {Mu}u∈Nn of its Morse complex. By virtue of Proposition 2.4, since
the modules Vq :=

⊕
u∈Nn Hq(Xu) and V ′q :=

⊕
u∈Nn Hq(Mu) are isomorphic, their Koszul complexes

K∗(x1, . . . , xn;Vq)(u) and K∗(x1, . . . , xn;V ′q )(u) are also isomorphic, at all u ∈ Nn. As a consequence, the
Betti tables ξqi (u) can be determined considering the Morse complex instead of the original complex.

4.2 Explicit construction via mapping cones
We now illustrate the explicit construction of the Koszul complex K∗(x1, . . . , xn;Vq)(u) of Vq at grade u ∈ Nn

as an iterated mapping cone. The classical construction of the Koszul complex via mapping cones can be
found in [Eis05, § A2F] and [BH98, Ch. 1.6]; here we rephrase, adapt, and enrich it with examples, to provide
a complete and explicit treatment for Koszul complexes of persistent homology modules that conveys the
intuition of persistent homology.

Given a chain map f : B∗ → C∗, the mapping cone Cone(f)∗ of f is the chain complex with Cone(f)i :=
Bi−1 ⊕ Ci and differential δi : Bi−1 ⊕ Ci → Bi−2 ⊕ Ci−1 defined by

δi(b, c) := (−∂Bi−1(b), ∂Ci (c) + fi−1(b)), (4.1)

for all i, with b ∈ Bi−1, c ∈ Ci and ∂B , ∂C respectively denoting the differentials of B∗ and C∗, see [Eis95,
§ A3.12].

Let F := {Xu}u∈Nn be an n-filtration of a cell complex X. As is evident from the definitions in Section 4.1,
the Koszul complex K∗(x1, . . . , xn;Vq)(u) of the associated persistent homology module Vq =

⊕
u∈Nn Hq(Xu)

at the fixed grade u ∈ Nn only depends on the subcomplexes Xu−eα of the filtration, with α ⊆ [n]. In other
words, to determine K∗(x1, . . . , xn;Vq)(u) it is enough to consider the smaller n-filtration Fu := {Xu−eα}α⊆[n],
containing 2n subcomplexes of the original n-filtration F. We observe that, fixed any j ∈ [n], the n-filtration

11



Fu can be partitioned into 2n−1 1-filtrations Xu−eα−ej ⊆ Xu−eα , one for each α ⊆ [n]r {j}. More generally,
fixed any non-empty subset J := {j1, . . . , jt} ⊆ [n], there is a partition of Fu consisting of 2n−t t-filtrations
of the form {Xu−eα−eγ}γ⊆J , one for each α ⊆ [n] r J . Every such t-filtration has an associated Koszul
complex K∗(xj1 , . . . , xjt ;Vq)(u− eα) that intuitively only encodes information on the parameters j1, . . . , jt
of the n-filtration Fu. Given k ∈ [n] r J , regarded here as an additional parameter to be taken into
account, one can consider the (t+ 1)-filtration given by the union of two t-filtrations {Xu−eα−eγ}γ⊆J and
{Xu−eα−ek−eγ}γ⊆J , for any α ⊆ [n] r (J ∪ {k}). Below, we will explain how the Koszul complex associated
with such (t+ 1)-filtration can be constructed as the mapping cone of a chain map between the two Koszul
complexes associated with the t-filtrations.

We begin by illustrating in detail the first few steps of the procedure based on iterated mapping cones
to construct the Koszul complex K∗(x1, . . . , xn;Vq)(u) starting from “1-parameter” Koszul complexes “in
direction ej”

K∗(xj ;Vq)(w) =
(

0 −→ Hq(Xw−ej )
d1=ι

w−ej,w
q−−−−−−−−→ Hq(Xw) −→ 0

)
,

for any fixed j ∈ [n] and for w = u− eα with α ⊆ [n] r {j}, and from specific chain maps between them.
The chain maps are those induced by inclusions “in direction ek”, for any fixed k ∈ [n] \ {j}, that is

fk(xj ;Vq)(w − ek) : K∗(xj ;Vq)(w − ek)→ K∗(xj ;Vq)(w),

with fki (xj ;Vq)(w − ek) : Ki(xj ;Vq)(w − ek)→ Ki(xj ;Vq)(w) defined, for degrees i = 0, 1, as

fk0 (xj ;Vq)(w − ek) = ιw−ek,wq : Hq(Xw−ek) −→ Hq(Xw),
fk1 (xj ;Vq)(w − ek) = ιw−ej−ek,w−ejq : Hq(Xw−ej−ek) −→ Hq(Xw−ej ).

The mapping cone Cone(fk(xj ;Vq)(w − ek))∗ is the Koszul complex K∗(xj , xk;Vq)(w), associated with the
2-filtration {Xw−eγ}γ⊆{j,k}. Intuitively, it is obtained from the previous step, where only the jth parameter
was considered, by adding one parameter more, namely the kth parameter of the original n-filtration.
Explicitly, K∗(xj , xk;Vq)(w) is the chain complex

0 −→ Hq(Xw−ej−ek) d2−−→ Hq(Xw−ej )⊕Hq(Xw−ek) d1−−→ Hq(Xw) −→ 0

where the differentials, applying the definition (4.1), are

d2 =
[
−ιw−ej−ek,w−ejq

ι
w−ej−ek,w−ek
q

]
and d1 = [ιw−ej ,wq ιw−ek,wq ].

The process we just described can be repeated, by choosing a new “direction” e` corresponding to a
new parameter ` ∈ [n] r {j, k} and constructing K∗(xj , xk, x`;Vq)(w) as the mapping cone of the chain map
f `(xj , xk;Vq)(w − e`) induced by inclusions in direction e`, for each w = u − eα with α ⊆ [n] r {j, k, `}.
Explicitly, f `(xj , xk;Vq)(w − e`) is defined by the following maps, in degrees i = 0, 1, 2:

f `0(xj , xk;Vq)(w − e`) = ιw−e`,wq ,

f `1(xj , xk;Vq)(w − e`) = ιw−ej−e`,w−ejq ⊕ ιw−ek−e`,w−ekq ,

f `2(xj , xk;Vq)(w − e`) = ιw−ej−ek−e`,w−ej−ekq .

If the order in which the indeterminates are added is changed, one obtains isomorphic chain complexes:
for example, K∗(xj , xk, x`;Vq)(w) is isomorphic to K∗(xj , x`, xk;Vq)(w). At the last step, one obtains
K∗(x1, . . . , xn;Vq)(u) as the mapping cone of the chain map fm(x1, . . . , x̂m, . . . , xn;Vq)(u − em) between
K∗(x1, . . . , x̂m, . . . , xn;Vq)(u− em) and K∗(x1, . . . , x̂m, . . . , xn;Vq)(u).

Thanks to the iterative nature of the process, we can provide an explicit description ofK∗(xj1 , . . . , xjt ;Vq)(u)
for any u ∈ Nn and any non-empty subset J := {j1, . . . , jt} ⊆ [n]. For each i ∈ {0, 1, . . . , |J |}, the chain
module in degree i is

Ki(xj1 , . . . , xjt ;Vq)(u) =
⊕

γ⊆J, |γ|=i

Hq(Xu−eγ ).

12



The modules Ki(xj1 , . . . , xjt ;Vq)(u) are zero for all i /∈ {0, 1, . . . , |J |}. The differentials of the chain complex
K∗(xj1 , . . . , xjt ;Vq)(u) can be described as follows: the differential

di : Ki(xj1 , . . . , xjt ;Vq)(u)→ Ki−1(xj1 , . . . , xjt ;Vq)(u)

is the alternating sum di =
∑i−1
r=0(−1)rdi,r, where di,r : Ki(xj1 , . . . , xjt ;Vq)(u) → Ki−1(xj1 , . . . , xjt ;Vq)(u)

is the function mapping each summand Hq(Xu−eγ ) of Ki(xj1 , . . . , xjt ;Vq)(u), with γ = {js(1), . . . , js(i)}
and s(1) < · · · < s(i), to the summand Hq(Xu−eγ+ejs(i−r) ) in Ki−1(xj1 , . . . , xjt ;Vq)(u) via the function
ι
u−eγ , u−eγ+ejs(i−r)
q .

For any k ∈ [n]r J , the Koszul complex K∗(xj1 , . . . , xjt , xk;Vq)(u) is the mapping cone of the chain map
induced by inclusions in direction ek,

fk(xj1 , . . . , xjt ;Vq)(u− ek) : K∗(xj1 , . . . , xjt ;Vq)(u− ek)→ K∗(xj1 , . . . , xjt ;Vq)(u),

which for each degree i ∈ {0, 1, . . . , |J |} is defined by

fki (xj1 , . . . , xjt ;Vq)(u− ek) =
⊕

γ⊆J, |γ|=i

ιu−eγ−ek, u−eγq .

In Section 5, several results will be obtained by showing certain mapping cones to be acyclic, i.e. having
vanishing homology in all degrees. We recall the following immediate consequence of [Eis95, Prop. A3.19]
(see also [Wei94, Corollary 1.5.4]), which gives an equivalent condition to the acyclicity of a mapping cone.

Proposition 4.1. A chain map f : B∗ → C∗ is a quasi-isomorphism (i.e., it induces isomorphisms
Hq(B∗) ∼= Hq(C∗) in homology, for all q ∈ Z) if and only if Cone(f)∗ is acyclic.

Corollary 4.2. Let f : B∗ → C∗ be a chain map, and let B∗ and C∗ be acyclic. Then Cone(f)∗ is acyclic.

Proof. If B∗ and C∗ are acyclic, the chain map f must be a quasi-isomorphism.

5 Entrance grades and support of Betti tables via Koszul com-
plexes

In this section, we resume the investigation, started in Section 3, of the relations between the set of entrance
grades of cells in a one-critical filtration {Xu}u∈Nn , and the set of grades where the Betti tables of the
persistent homology module Vq =

⊕
u∈Nn Hq(Xu) are nonzero. The main tool of the approach we propose

is the Koszul complex. In Section 5.1 we prove a result (Theorem 5.10) on the support of Betti tables ξqi
of all degrees i ∈ {0, . . . , n} which improves the results of Section 3. In Section 5.2, we focus on the Betti
table ξq1 , stating a sufficient condition for its vanishing at a given grade in terms of the submodules of cycles
and boundaries of Vq (Theorem 5.14). This result can be used to better approximate the support of ξq1 .
In Section 5.3, we explain how the presented results can be combined with reductions of the filtered cell
complex via discrete Morse theory.

Our fixed setting for the whole section will be as in Section 3. For the reader’s convenience, we briefly
recall it. Let {Xu}u∈Nn be a one-critical (Section 2.2) and exhaustive n-parameter filtration of a cell complex
X, which is also graded by the dimension q of cells. To study the connections with discrete Morse theory (in
Section 5.3), we consider a fixed discrete gradient vector field V consistent with the filtration (see Section
2.4), and denote by {Mu}u∈Nn the associated n-parameter filtration of the Morse complex M . Extending a
notation used in Section 3, we denote set of entrance grades (Section 2.2) of a non-empty subset Γ of cells of
X by

G(Γ) := {entrance grades of the cells of Γ} ⊆ Nn.

We denote by G the closure of a non-empty subset G ⊆ Nn with respect to the least upper bound in Nn, which
is the set G := {

∨
L | L ⊆ G,L 6= ∅} ⊆ Nn. Moreover, we recall that supp ξqi := {u ∈ Nn | ξqi (u) 6= 0} denotes

the support of the ith Betti table ξqi : Nn → N of the persistent homology module Vq =
⊕

u∈Nn Hq(Xu).
Lastly, we establish a notation that will be used throughout this section and state two simple results that
will be instrumental in studying the support of the Betti tables using Koszul complexes.
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Notation 5.1. Having fixed a grade u ∈ Nn, for any α ⊆ [n] we set w(α) := u− eα, where eα :=
∑
j∈α ej .

Lemma 5.2. Let A,B,C,D be subspaces of a vector space V over the field F. Suppose that B ⊆ A ⊆ C

and B ⊆ D ⊆ C, and let f : AB →
C
D be the linear map induced by the inclusion of A in C. Then there are

canonical isomorphisms

ker f = A ∩D
B

, im f ∼=
A

A ∩D
∼=
A+D

D
, coker f ∼=

C

A+D
.

Proof. Let ϕ denote the composition A ↪→ C � C
D of the canonical injection and projection. The map f ,

induced by ϕ on the quotient, is well defined since kerϕ = A ∩D ⊇ B, and satisfies ker f = kerϕ
B = A∩D

B

and im f = imϕ ∼= A
kerϕ , see e.g. [AM69, p. 19]. The remaining canonical isomorphisms of the claim are

obtained via the standard isomorphism theorems [AM69, Prop. 2.1].

Lemma 5.3. Let A f−→ B
g−→ C

h−→ D
i−→ E be an exact sequence of vector spaces over the fixed field F. Then

C = 0 if, and only if, f is surjective and i is injective.

Proof. If f is surjective and i is injective, then ker g = im f = B, which implies kerh = im g = 0, and therefore
C ∼= C/ kerh ∼= im h = ker i = 0. Conversely, if C = 0, then im f = ker g = B and ker i = im h = 0.

5.1 Results on the support of all Betti tables
Our goal for this subsection is to prove that

⋃n
i=0 supp ξqi ⊆ G(Xq)∪G(Xq+1) and, moreover, supp ξq0 ⊆ G(Xq)

and supp ξqn ⊆ G(Xq+1), for all q ∈ N (Theorem 5.10). For ξq1 , the result is improved in Section 5.2. We
observe that the first inclusion is clearly equivalent to the following statement: if u /∈ G(Xq)∪ G(Xq+1), then
ξqi (u) = 0, for all i ∈ {0, 1, . . . , n}. To start with, we prove a result that allows us to rephrase the hypothesis
of this statement.

Proposition 5.4. Let A be any subset of cells of X and let u ∈ Nn. Then u /∈ G(A) if and only if there
exists j ∈ [n] such that for any subset αj ⊆ [n] r {j} it holds (Xw(αj) rXw(αj)−ej ) ∩A = ∅, where w(αj) is
defined as in Notation 5.1.

Proof. We prove the contrapositive claim, showing the equivalence of the following statements:

1. u ∈ G(A).

2. For all j ∈ [n], there exists a subset αj ⊆ [n] r {j} such that
(
Xw(αj) rXw(αj)−ej

)
∩A 6= ∅.

Assume that u ∈ G(A). If u ∈ G(A), we are done by taking αj = ∅, for all j. If u /∈ G(A), then
u =

∨
{v1, . . . , vr} with r ≥ 2 and v1, . . . vr ∈ G(A). In this case, by definition of the least upper bound, for

all j ∈ [n] there exists `(j) ∈ [r] such that u− ej 6� v`(j). Therefore, taking a cell σ`(j) ∈ A with entrance
grade v`(j), we have σ`(j) ∈ (Xu rXu−ej ) ∩A, since u− ej 6� v`(j) implies σ`(j) /∈ Xu−ej by one-criticality
of the multifiltration (Section 2.2). The second statement follows again by taking αj = ∅, for all j.

Conversely, assume that the second statement holds. For each j ∈ [n], let v(j) denote the entrance grade
of a cell σj ∈

(
Xw(αj) rXw(αj)−ej

)
∩A, for some w(αj) = u−

∑
i∈αj ei. Let v =

∨
{v(1), . . . , v(n)}. From

v(j) � w(αj) � u, for all j, we see that v � u. Let us show now that v = u, which concludes the proof. If
v 6= u, then there exists j ∈ [n] such that v � u− ej . Since σj has entrance grade v(j) and v(j) � v � u− ej ,
we have σj ∈ Xu−ej . On the other hand, we are assuming that σj ∈ Xw(αj) with w(αj) = u−

∑
i∈αj ei and

j /∈ αj . The latter condition implies that w(αj) and u− ej are not comparable. More precisely, the greatest
lower bound of w(αj) and u− ej is w(αj)− ej . Hence, the one-criticality assumption on the multifiltration
yields a contradiction (see Remark 2.1), since we are assuming that σj /∈ Xw(αj)−ej .

We underline that the one-criticality assumption on the n-filtration {Xu}u∈Nn plays a key role in the
proof of Proposition 5.4.

Corollary 5.5. For any u ∈ Nn, we have u /∈ G(Xq) if and only if there exists j ∈ [n] such that Xw(αj)−ej
q =

X
w(αj)
q , for all subsets αj ⊆ [n] r {j}.
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Proposition 5.4 also yields information on the maps of the persistent homology modules {Hq(Xu), ιu,vq }
and {Hq−1(Xu), ιu,vq−1} in the “vicinity” of a fixed grade u /∈ G(Xq).

Corollary 5.6. If u /∈ G(Xq), then there exists j ∈ [n] such that, for all αj ⊆ [n] r {j}, the inclusion
Xw(αj)−ej ↪→ Xw(αj) induces a surjection

ιw(αj)−ej ,w(αj)
q : Hq(Xw(αj)−ej )→ Hq(Xw(αj))

and an injection
ι
w(αj)−ej ,w(αj)
q−1 : Hq−1(Xw(αj)−ej )→ Hq−1(Xw(αj)).

Proof. By Proposition 5.4, if u /∈ G(Xq), then there exists j ∈ [n] such that, for all αj ⊆ [n] r {j}, we
have Xw(αj)−ej

q = X
w(αj)
q , which implies Hq(Xw(αj), Xw(αj)−ej ) = 0. The claim follows from the following

portion of the long exact sequence of relative homology of (Xw(αj), Xw(αj)−ej ),

Hq(Xw(αj)−ej ) −−→ Hq(Xw(αj)) −−→ 0 −−→ Hq−1(Xw(αj)−ej ) −−→ Hq−1(Xw(αj)),

where the first map is ιw(αj)−ej ,w(αj)
q and the last map is ιw(αj)−ej ,w(αj)

q−1 .

Remark 5.7. Moving towards the proof of our main result, let us note that the hypothesis u /∈ G(Xq)∪G(Xq+1)
implies, applying Corollary 5.5 twice, that the following properties hold simultaneously:

(i) there exists j ∈ [n] such that Xw(αj)−ej
q = X

w(αj)
q , for all subsets αj ⊆ [n] r {j}.

(ii) there exists ` ∈ [n] such that Xw(α`)−e`
q+1 = X

w(α`)
q+1 , for all subsets α` ⊆ [n] r {`}.

Clearly, the indices j and ` of properties (i) and (ii) in Remark 5.7 can either coincide or not. We next
prove that both cases imply the acyclicity of certain Koszul complexes, addressing the case j = ` in Lemma
5.8 and the case j 6= ` in Lemma 5.9.

Lemma 5.8. If properties (i) and (ii) in Remark 5.7 are verified with j = `, then the Koszul complex
K∗(x1, . . . , xn;Vq)(u) is acyclic.

Proof. Reasoning as in the proof of Corollary 5.6, we see that the maps

iw(αj)−ej ,w(αj)
q : Hq(Xw(αj)−ej )→ Hq(Xw(αj))

are isomorphisms, for all subsets αj ⊆ [n] r {j}. Therefore, the induced chain map

f j(x1, . . . , x̂j , . . . , xn;Vq)(u− ej) : K∗(x1, . . . , x̂j , . . . , xn;Vq)(u− ej)→ K∗(x1, . . . , x̂j , . . . , xn;Vq)(u)

is an isomorphism of chain complexes. Hence, the claim follows from Proposition 4.1 becauseK∗(x1, . . . , xn;Vq)(u)
is the mapping cone of f j(x1, . . . , x̂j , . . . , xn;Vq)(u− ej).

Lemma 5.9. Let u ∈ Nn and suppose that properties (i) and (ii) of Remark 5.7 hold with j 6= `. Then, for
any w := w(α) = u− eα with α ⊆ [n] r {j, `}, the Koszul complex K∗(xj , x`;Vq)(w) is acyclic.

Proof. In order to apply Proposition 4.1, we regard K∗(xj , x`;Vq)(w) as the mapping cone of the chain map

f `(xj ;Vq)(w − e`) : K∗(xj ;Vq)(w − e`)→ K∗(xj ;Vq)(w).

We want to prove that f `(xj ;Vq)(w − e`) induces isomorphisms between the homology modules of

K∗(xj ;Vq)(w − e`) =
(

0→ Hq(Xw−ej−e`)
d1=ι

w−ej−e`,w−e`
q−−−−−−−−−−−−→ Hq(Xw−e`)→ 0

)

and

K∗(xj ;Vq)(w) =
(

0→ Hq(Xw−ej )
d1=ι

w−ej,w
q−−−−−−−−→ Hq(Xw)→ 0

)
.
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Since ιw−ej−e`,w−e`q and ιw−ej ,wq are surjective (see proof of Corollary 5.6), homology in degree 0 is zero for
both Koszul complexes. Hence, we only have to show that

f ′ : ker ιw−ej−e`,w−e`q → ker ιw−ej ,wq

is an isomorphism, where f ′ denotes the restriction of ιw−ej−e`,w−ejq to ker ιw−ej−e`,w−e`q . The map f ′ is
injective because ιw−ej−e`,w−ejq is injective (see proof of Corollary 5.6). We now show that f ′ is surjective.
We use here the notations Zq(Xv) and Bq(Xv) respectively for the submodules of cycles and boundaries
of Cq(Xv), for all v ∈ Nn. By Remark 5.7(i), Xw−ej−e`

q = Xw−e`
q and X

w−ej
q = Xw

q , which implies
Zq(Xw−ej−e`) = Zq(Xw−e`) and Zq(Xw−ej ) = Zq(Xw). Similarly, by Remark 5.7(ii), Xw−ej−e`

q+1 = X
w−ej
q+1

and Xw−e`
q+1 = Xw

q+1, which implies Bq(Xw−ej−e`) = Bq(Xw−ej ) and Bq(Xw−e`) = Bq(Xw). By Lemma 5.2,
we have

ker ιw−ej−e`,w−e`q = Zq(Xw−ej−e`) ∩Bq(Xw−e`)
Bq(Xw−ej−e`) , ker ιw−ej ,wq = Zq(Xw−ej ) ∩Bq(Xw)

Bq(Xw−ej ) .

Since f ′ is the map induced by the inclusion of the numerators, using Lemma 5.2 and the equalities of
subspaces Zq and Bq stated above, we obtain

coker f ′ ∼=
Zq(Xw−ej ) ∩Bq(Xw)

Zq(Xw−ej−e`) ∩Bq(Xw−e`) +Bq(Xw−ej ) = Bq(Xw)
Bq(Xw) ,

proving that f ′ is surjective, hence an isomorphism.

We underline that to conclude the proof we use an argument based on the equality of some subsets of
cells of X. This part of the proof cannot be replaced by using only the properties of the induced maps in
homology (as in Corollary 5.6). As a counterexample, consider the diagram

0 0

V 0

of vector spaces, with dimV 6= 0. We can regard the rows as two chain complexes with surjective differentials,
and the vertical arrows as an injective chain map between them, as in our proof. However, the mapping
cone of this chain map is clearly not acyclic.

We can now complete the proof of our main result for this section.

Theorem 5.10. Let {Xu}u∈Nn be an n-parameter exhaustive filtration of a cell complex X. Then
n⋃
i=0

supp ξqi ⊆ G(Xq+1) ∪ G(Xq),

for all q ∈ N. Furthermore, supp ξq0 ⊆ G(Xq) and supp ξqn ⊆ G(Xq+1), for all q ∈ N.

Proof. To prove that
⋃n
i=0 supp ξqi ⊆ G(Xq+1) ∪ G(Xq), let u /∈ G(Xq+1) ∪ G(Xq). As we have seen,

properties (i) and (ii) of Remark 5.7 hold, which involve indices j, ` ∈ [n]. If j = `, the Koszul complex
K∗(x1, . . . , xn;Vq)(u) is acyclic by Lemma 5.8. If j 6= `, consider the Koszul complexes K∗(xj , x`;Vq)(w), for
any w := w(α) = u−

∑
i∈α ei with α ⊆ [n] r {j, `}, which are acyclic by Lemma 5.9. The Koszul complex

K∗(x1, . . . , xn;Vq)(u) can be obtained from the chain complexes K∗(xj , x`;Vq)(w) by iterating the mapping
cone construction (see Section 4). At each iteration of this process, by Corollary 4.2, one obtains acyclic
Koszul complexes, hence we can conclude that K∗(x1, . . . , xn;Vq)(u) is acyclic, that is, ξqi (u) = 0 for all
i ∈ {0, . . . , n}.

To prove that supp ξq0 ⊆ G(Xq), we observe that if u /∈ G(Xq) then by Corollary 5.6 there exists j ∈ [n]
such that Hq(Xu−ej )→ Hq(Xu) is surjective. This implies that the differential d1 of the Koszul complex
K∗(x1, . . . , xn;Vq)(u) is surjective, hence ξq0(u) = dim(Hq(Xu)/ im d1) = 0.

Similarly, to prove that supp ξqn ⊆ G(Xq+1), we observe that if u /∈ G(Xq+1) then by Corollary 5.6 there
exists j ∈ [n] such that Hq(Xw−ej )→ Hq(Xw) is injective, where w := u−

∑
i∈[n]\{j} ei. This implies that

the differential dn of the Koszul complex K∗(x1, . . . , xn;Vq)(u) is injective, hence ξqn(u) = dim ker dn = 0.
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The following simple consequence of Theorem 5.10 gives a bound of the union of the support of the Betti
tables over all the homology degrees inside the union of the closures of the sets of entrance grades of critical
cells over all the dimensions.

Corollary 5.11. Under the assumptions of Theorem 5.10,
⋃n
q,i=0 supp ξqi ⊆

⋃n
q=0 G(Xq).

The following Example 5.12 shows that in general the right-hand side term of this inclusion cannot be
reduced to a smaller set defined in terms of the entrance grades of cells of X, making this inclusion tighter
in some sense. A more refined version of it when n = 2 will be given in the next section (cf. Corollary 6.6) in
terms of homological critical grades.

Example 5.12. Let n = 3 and let X be the following simplicial complex:

p1
p2

p3

p0

Let us consider the following 3-filtration of X: all vertices and the edges p1p2 and p2p3 have entry grade
0 = (0, 0, 0) ∈ N3; for all j ∈ {1, 2, 3}, let the edge p0pj have entry grade uj := λjej , for some positive integer
λj . Figure 1 in Section 5.2 represents a filtration of this form. Then, all entry grades and all their least
upper bounds in N3 are in supp ξqi for some q and i: ξ0

0(0) = 2, ξ0
1(uj) = 1 for all j, ξ1

0(uj ∨ uk) = 1 for all
j 6= k, and ξ1

1(u1 ∨ u2 ∨ u3) = 1. This example can be generalized to any n ≥ 1.

5.2 A condition for the vanishing of ξq1

As in the rest of the section, our starting point is an n-parameter exhaustive filtration {Xu}u∈Nn of a cell
complex X, of which we consider the qth persistent homology module regarded as the n-graded S-module
Vq =

⊕
u∈Nn Hq(Xu). For each u ∈ Nn, we write Hq(Xu) = Zq(Xu)

Bq(Xu) , where Zq(X
u) = ker(∂q : Cq(Xu) →

Cq−1(Xu)) and Bq(Xu) = im(∂q+1 : Cq+1(Xu) → Cq(Xu)). We observe that Zq :=
⊕

u∈Nu Zq(Xu) and
Bq :=

⊕
u∈Nu Bq(Xu) are n-graded S-modules, respectively given by the kernel of the n-graded ho-

momorphism ∂q :
⊕

u∈Nn Cq(Xu) →
⊕

u∈Nn Cq−1(Xu) and the image of the n-graded homomorphism
∂q+1 :

⊕
u∈Nn Cq+1(Xu)→

⊕
u∈Nn Cq(Xu). In this subsection, we give a condition for the vanishing of the

Betti table ξq1 of Vq at a fixed u ∈ Nn in terms of Bq(Xv) and Zq(Xv) at grades v ∈ {u− eα}α⊆[n] (Theorem
5.14), and we derive relations between the support of ξq1 and the entrance grades of cells.

Our aim is studying, for any fixed u ∈ Nn, the degree–1 homology of the Koszul complexK∗(x1, . . . , xn;Vq)(u),
whose dimension is the value ξq1(u).

We fix u ∈ Nn and q ∈ N. We choose ` ∈ [n] and define an n-filtered cell complex {X̃v}v∈Nn such that
its (q + 1)-cells are

X̃v
q+1 :=

{⋃
j∈[n]r{`}X

v−ej
q+1 if v ∈ {u, u− e`},

Xv
q+1 otherwise,

its lower dimensional cells are X̃v
r := Xv

r for all r ≤ q and all v ∈ Nn, and it does not have any cell of
dimension higher than q+1. The incidence function of X̃ is induced (by restriction) by the incidence function
of X. We remark that, since our goal is studying the Koszul complex at u, we will only look at the grades
v ∈ {u− eα}α⊆[n] of the filtration {X̃v}v∈Nn . The qth homology of {X̃v}v∈Nn is the n-graded S-module Ṽq
such that

Ṽ vq :=


Zq(Xv)∑

j 6=`
Bq(Xv−ej )

if v ∈ {u, u− e`},

Hq(Xv) = Zq(Xv)
Bq(Xv) otherwise.

(5.1)

For the sake of a simpler notation, we do not denote the dependence of Ṽq on the fixed u ∈ Nn and the
chosen ` ∈ [n].

The module Ṽq, which coincides with Vq for all grades except u and u− e`, is useful to prove the results
of this subsection. We observe that the natural n-graded homomorphism π : Ṽq → Vq is surjective, because
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pointwise it is the linear map
πv : Zq(Xv)∑

j 6=`Bq(Xv−ej ) �
Zq(Xv)
Bq(Xv) (5.2)

for the grades v ∈ {u, u− e`}, and it is the identity on Hq(Xv) for all other grades. We have therefore the
following exact sequence of n-graded S-modules:

0 kerπ Ṽq Vq 0.π

Since constructing the Koszul complex at u is an exact operation (see Section 4.1), we obtain the short exact
sequence of chain complexes

0 K∗(x1, . . . , xn; kerπ)(u) K∗(x1, . . . , xn; Ṽq)(u) K∗(x1, . . . , xn;Vq)(u) 0

and the induced long exact sequence in homology

· · · H1(K∗(Ṽq)(u)) H1(K∗(Vq)(u))

H0(K∗(kerπ)(u)) H0(K∗(Ṽq)(u)) H0(K∗(Vq)(u)) 0,

(5.3)

where we have suppressed the sequence (x1, . . . , xn) from the notation of the Koszul complexes for brevity.
The following proposition will be useful to prove the main result of this subsection.

Proposition 5.13. If Bq(Xu) =
∑n
j=1 Bq(Xu−ej ), then H0(K∗(kerπ)(u)) = 0.

Proof. We recall that the construction of the Koszul complex K∗(kerπ)(u) involves the graded pieces with
grades in {u− eα}α⊆[n] of the n-graded S-module kerπ. By definition of Ṽq, we have (kerπ)v = 0 for all v,
except for u and u− e`. We consider the linear map

(kerπ)u−e` = Bq(Xu−e`)∑
j∈[n]r{`}Bq(Xu−ej−e`)

η
u−e`,u
q−−−−−−−−→ (kerπ)u = Bq(Xu)∑

j∈[n]r{`}Bq(Xu−ej )

induced by the inclusion Bq(Xu−e`) ⊆ Bq(Xu). Regarded as a chain complex (concentrated in homological
degrees 1 and 0), the map ηu−e`,uq is isomorphic to the Koszul complex K∗(kerπ)(u), hence coker ηu−e`,uq

∼=
H0(K∗(kerπ)(u)). We conclude the proof using Lemma 5.2 to compute coker ηu−e`,uq :

coker ηu−e`,uq
∼=

Bq(Xu)
Bq(Xu−e`) +

∑
j∈[n]r{`}Bq(Xu−ej ) = Bq(Xu)∑n

j=1 Bq(Xu−ej )
= 0,

where the last equality holds by assumption.

Our main result of this subsection gives a condition for H1(K∗(Vq)(u)), and, equivalently, ξq1(u), to vanish.

Theorem 5.14. Let {Xv}v∈Nn be an n-parameter exhaustive filtration of a cell complex X. Fix u ∈ Nn,
and suppose that Bq(Xu) =

∑n
j=1 Bq(Xu−ej ) and that there exists a permutation ρ ∈ Sym(n) such that, for

every ` ∈ [n],

Zq(Xu−eρ(`)) ∩

∑
j<`

Zq(Xu−eρ(j))

 =
∑
j<`

Zq(Xu−eρ(j)−eρ(`)).

Then ξq1(u) = 0.

Proof. First, we prove the claim supposing that the hypothesis on the cycles is satisfied by the identity
permutation ρ = id[n]. The proof is by induction on the number n of parameters.

The base case n = 1 corresponds to the statement Bq(Xu) = Bq(Xu−1) implies ξq1(u) = 0 (as the
condition on Zq is trivially satisfied), which is true because ξq1(u) is the dimension of the vector space
ker ιu−1,u

q : Hq(Xu−1)→ Hq(Xu) which, by Lemma 5.2, is isomorphic to (Zq(Xu−1) ∩Bq(Xu))/Bq(Xu−1).
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We now prove the claim for n parameters, supposing it holds for n − 1 parameters. For any chosen
` ∈ [n], we can consider the module Ṽq associated with {X̃v}, defined as in Equation (5.1). Here, we
choose ` = n. Under the hypothesis that Bq(Xu) =

∑n
j=1 Bq(Xu−ej ), in the long exact sequence (5.3)

we have H0(K∗(kerπ)(u)) = 0 by Proposition 5.13, so it is sufficient to prove that H1(K∗(Ṽq)(u)) = 0 to
conclude that H1(K∗(Vq)(u)) = 0. We highlight that using Ṽq in the rest of the proof is convenient, as
it is constructed in a way that allows us to use the inductive assumption. We write the Koszul complex
K∗(Ṽq)(u) = K∗(x1, . . . , xn; Ṽq)(u) as the mapping cone (see Section 4.2) of the chain map induced by
inclusions in direction en,

fn(x1, . . . , xn−1; Ṽq)(u− en) : K∗(x1, . . . , xn−1; Ṽq)(u− en)→ K∗(x1, . . . , xn−1; Ṽq)(u).

In the rest of this proof, for simplicity we denote this chain map and the two Koszul complexes by
fn : Kn∗ (Ṽq)(u− en)→ Kn∗ (Ṽq)(u). We consider the long exact sequence of the mapping cone (see e.g. [Wei94,
§ 1.5.2]) for Cone(fn)∗ = K∗(Ṽq)(u):

· · · H1(Kn∗ (Ṽq)(u)) H1(K∗(Ṽq)(u))

H0(Kn∗ (Ṽq)(u− en)) H0(Kn∗ (Ṽq)(u)) H0(K∗(Ṽq)(u)) 0.

The Koszul complex Kn∗ (Ṽq)(u) = K∗(x1, . . . , xn−1; Ṽq)(u) is defined from the (n− 1)-parameter filtration
{X̃u−eα}α⊆[n−1], which allows us to apply the inductive assumption, since Bq(X̃u) =

∑n−1
j=1 Bq(X̃u−ej ) and

the condition involving the subspaces Zq is satisfied by ρ = id[n] restricted to [n − 1]. Therefore, by the
inductive assumption, H1(Kn∗ (Ṽq)(u)) = 0. Thus, by Lemma 5.3, the vanishing of H1(K∗(Ṽq)(u)) is ensured
by the injectivity of the function H0(fn) : H0(Kn∗ (Ṽq)(u− en))→ H0(Kn∗ (Ṽq)(u)) in the long exact sequence,
which is what we show to hold in the next step of the proof.

We begin by observing that H0(Kn∗ (Ṽq)(u)) can be written as follows:

H0(Kn∗ (Ṽq)(u)) ∼= coker

n−1⊕
j=1

Hq(X̃u−ej )
[ιu−e1,u
q ··· ι

u−en−1,u
q ]

−−−−−−−−−−−−−−→ Hq(X̃u)


= coker

n−1⊕
j=1

Zq(X̃u−ej )
Bq(X̃u−ej )

[ιu−e1,u
q ··· ι

u−en−1,u
q ]

−−−−−−−−−−−−−−→ Zq(X̃u)∑n−1
j=1 Bq(X̃u−ej )


∼=

Zq(X̃u)∑n−1
j=1 Zq(X̃u−ej )

= Zq(Xu)∑n−1
j=1 Zq(Xu−ej )

.

Similarly, there is a canonical isomorphism

H0(Kn∗ (Ṽq)(u− en)) ∼=
Zq(Xu−en)∑n−1

j=1 Zq(Xu−ej−en)
.

Using Lemma 5.2, we see that the kernel of the map H0(fn) : H0(Kn∗ (Ṽq)(u−en))→ H0(Kn∗ (Ṽq)(u)), induced
by the inclusion Zq(Xu−en) ⊆ Zq(Xu), is

ker(H0(fn)) ∼=
Zq(Xu−en) ∩ (

∑n−1
j=1 Zq(Xu−ej ))∑n−1

j=1 Zq(Xu−ej−en)
,

which is zero since the numerator coincides with the denominator by hypothesis. This concludes the proof
under the assumption ρ = id[n].

Lastly, we explain how the proof in the special case of the identity permutation implies the claim for a
generic permutation ρ on the set [n]. Let ρ be a permutation for which the hypothesis of the theorem is
satisfied. Then, we can consider the filtration {Lu−eα}α⊆[n] defined by Lu−eα := Xu−eρ(α) , which satisfies
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u− e3

u− e2

u− e1 u

Figure 1: A 3-parameter filtration {Xu−eα}α⊆{1,2,3} of simplicial complexes such that, for q = 1, the equality
Zq(Xu−e`) ∩ (Zq(Xu−ej ) + Zq(Xu−ek)) = Zq(Xu−ej−e`) + Zq(Xu−ek−e`) (see hypothesis of Theorem 5.14) does
not hold, for any choice of different j, k, ` in {1, 2, 3}. Using the Koszul complex K∗(V1)(u) it is easy to see, by a
dimension argument, that H1(K∗(V1)(u)) ∼= F and, equivalently, ξq1(u) = 1.

Bq(Lu) =
∑n
j=1 Bq(Lu−ej ) and, for every ` ∈ [n], Zq(Lu−e`) ∩

(∑
j<` Zq(Lu−ej )

)
=
∑
j<` Zq(Lu−ej−e`).

The Koszul complex of the associated qth persistent homology module at u is obtained from K∗(Vq)(u) =
K∗(x1, . . . , xn;Vq)(u) by permuting the indeterminates, and is therefore isomorphic to it (see Section 4.2).
We can therefore apply the proof for the case of the identity permutation to {Lu−eα}α⊆[n] and conclude
that ξq1(u) = 0.

Remark 5.15. The condition on the subspaces Zq in Theorem 5.14 amounts to n different identities of
subspaces of Zq(Xu). In the proof of the theorem we observed that, when the sum on the left-hand side
has zero summands, the corresponding inequality is trivially satisfied. It is worth noticing that the equality
corresponding to a sum on the left-hand side with exactly one summand is always satisfied too. In other words,
for any pair of distinct indices j, k ∈ [n], the identity Zq(Xu−ej )∩Zq(Xu−ek) = Zq(Xu−ej−ek) holds true. To
see this, we recall that Cq(Xu−ej )∩Cq(Xu−ek) = Cq(Xu−ej−ek) holds by one-criticality as a consequence of
Xu−ej ∩Xu−ek = Xu−ej−ek (see Remark 2.1), and we observe that Zq(Xv) = Cq(Xv)∩∂−1

q (0) for all v ∈ Nn,
where ∂q denotes the differential ∂q : Cq(∪vXv)→ Cq−1(∪vXv). In particular, for 2-parameter filtrations,
the condition of Theorem 5.14 on the subspaces Zq always holds. In Figure 1, we show a 3-parameter
filtration not satisfying the hypothesis of Theorem 5.14 on the subspaces Zq.

We now state conditions involving the fixed grade u ∈ Nn and the sets G(Xq+1) and G(Xq) of entrance
grades which ensure that the assumptions in Theorem 5.14 on the subspaces Bq and Zq are verified.

Proposition 5.16. If u /∈ G(Xq+1), then Bq(Xu) =
∑n
j=1 Bq(Xu−ej ).

Proof. The inclusion
∑n
j=1 Bq(Xu−ej ) ⊆ Bq(Xu) holds in general and follows from Bq(Xu−ej ) ⊆ Bq(Xu)

for every j ∈ [n]. To see the other inclusion, we first observe that u /∈ G(Xq+1) implies Cq+1(Xu) =
Cq+1(∪nj=1X

u−ej ), which is equal to
∑n
j=1 Cq+1(Xu−ej ). The claim then follows from the equalities

∂q+1(Cq+1(Xu)) = Bq(Xu) and ∂q+1(
∑n
j=1 Cq+1(Xu−ej )) =

∑n
j=1 Bq(Xu−ej ).

Remark 5.17. The converse implication is false as can be seen, for q = 0, considering a cell complex with two
vertices connected by two edges and the following 1-parameter filtration: the two vertices and one edge enter
at grade u− e1, and the other edge enters at grade u.
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Proposition 5.18. If u /∈ G(Xq), then there exists a permutation ρ ∈ Sym(n) such that, for every ` ∈ [n],

Zq(Xu−eρ(`)) ∩

∑
j<`

Zq(Xu−eρ(j))

 =
∑
j<`

Zq(Xu−eρ(j)−eρ(`)).

Proof. We prove the statement by induction on the number n of parameters. By Remark 5.15, for n = 1
and n = 2 the identities involving subspaces Zq hold in general.

To prove the induction step for n parameters, we recall that by Corollary 5.5 we have u /∈ G(Xq) if and
only if there exists k ∈ [n] such that Xw(αk)−ek

q = X
w(αk)
q , for all subsets αk ⊆ [n] r {k}. We take such

an index k and set ρ(n) := k. For any j 6= k, taking αk = {j}, we get Zq(Xu−ej−ek) = Zq(Xu−ej ). Hence,∑
j∈[n]r{k} Zq(Xu−ej−ek) =

∑
j∈[n]r{k} Zq(Xu−ej ), which implies Zq(Xu−ek)∩

(∑
j∈[n]r{k} Zq(Xu−ej )

)
⊆∑

j∈[n]r{k} Zq(Xu−ej−ek). The right-hand side is actually equal to the left-hand side, since the reverse
inclusion holds in general and follows from the fact that, for every j 6= k,

Zq(Xu−ej−ek) = Zq(Xu−ek) ∩ Zq(Xu−ej ) ⊆ Zq(Xu−ek) ∩
(∑

j∈[n]r{k} Zq(Xu−ej )
)
,

where the first equality is by Remark 5.15. This proves the equality involving subspaces Zq for ` = n.
Lastly, we have to show that for every ` < n the remaining equalities involving subspaces Zq in the claim

hold. This is a consequence of the inductive hypothesis, observing that the remaining equalities involve the
grades in {u− eα}α⊆[n]r{k}, which is a portion of an (n− 1)-parameter filtration, and that u is not a least
upper bound of grades in G(Xq) belonging to this filtration. By relabeling the parameters in [n] r {k} of the
(n− 1)-parameter filtration with indices in [n− 1] and applying the inductive assumption, we see that there
exists a bijection ρ′ : [n− 1]→ [n] r {k} such that the first n− 1 equalities of the claim hold. We complete
the proof by defining ρ(j) := ρ′(j), for all j < n.

Remark 5.19. The converse implication is false in general: for example, even if the equalities involving
subspaces Zq are satisfied, u can be the entrance grade of a q-cell of M that does not appear in any q-cycle.

Using Proposition 5.16 and Proposition 5.18 we immediately obtain the following corollary of Theorem
5.14. We note that the same bound for the support of ξq1 was obtained in Section 3 using multigraded
resolutions (Remark 3.5).

Corollary 5.20. Let {Xv}v∈Nn be an n-parameter exhaustive filtration of a cell complex X. If u ∈ Nn is
such that u /∈ G(Xq+1) ∪ G(Xq), then ξq1(u) = 0. In other words, supp ξq1 ⊆ G(Xq+1) ∪ G(Xq).

We end this subsection describing two particular cases in which the equalities involving subspaces Zq in
Theorem 5.14 are always satisfied. The first case corresponds to q = 0.

Corollary 5.21. Let {Xv}v∈Nn be an n-parameter exhaustive filtration of a cell complex X, of which we
consider the associated q-th persistent homology module with q = 0. If u ∈ Nn is such that B0(Xu) =∑n

j=1 B0(Xu−ej ), then ξ0
1(u) = 0. As a consequence, for q = 0 we have the following containments:

supp ξ0
0 ⊆ G(X0), supp ξ0

1 ⊆ G(X1),
n⋃
i=1

supp ξ0
i ⊆ G(X1).

Proof. Since the n-parameter filtration {Xv}v∈Nn is one-critical (see Remark 2.1), the following equalities of
(graded) sets hold for all w, v1, . . . , vk ∈ Nn:

Xw ∩
(⋃k

j=1 X
vj
)

=
⋃k
j=1 (Xw ∩Xvj ) =

⋃k
j=1 X

w∧vj .

Considering cells of dimension q and taking the F-linear span of the left-hand and right-hand sides one
obtains

Cq(Xw) ∩
(∑k

j=1 Cq(Xvj )
)

=
∑k
j=1 Cq(Xw∧vj ).

For q = 0, since Z0(Xv) = C0(Xv) for all v ∈ Nn, all the equalities involving subspaces Zq in Theorem 5.14
are therefore always satisfied. This proves the first part of the claim and, as an immediate consequence
using Proposition 5.16, the containment supp ξ0

1 ⊆ G(X1). The containment
⋃n
i=1 supp ξ0

i ⊆ G(X1) follows
from the fact that, for any n-graded S-module V ,

⋃n
i=1 supp ξi(V ) ⊆ supp ξ1(V ), see for example [CT15,

Remark 3.2]. Lastly, the containment supp ξ0
0 ⊆ G(X0) holds by Theorem 5.10.
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The second particular case corresponds to n = 2, i.e. to bifiltrations of persistent homology modules.

Corollary 5.22. Let {Xv}v∈N2 be an 2-parameter exhaustive filtration of a cell complex X. If u ∈ N2 is
such that Bq(Xu) =

∑n
j=1 Bq(Xu−ej ), then ξq1(u) = 0. The following containments hold:

supp ξq0 ⊆ G(Xq), supp ξq1 ⊆ G(Xq+1), supp ξq2 ⊆ G(Xq+1).

Proof. The first part of the claim follows from Theorem 5.14 and Remark 5.15, and it implies supp ξq1 ⊆
G(Xq+1) by Proposition 5.16. The other containments hold by Theorem 5.10.

5.3 Morse complex and support of the Betti tables
We conclude the section by observing how the results of Section 5.1 and Section 5.2 can be applied to
the Morse complex M associated with any discrete gradient vector field V consistent with the filtration
{Xu}u∈Nn of X (see Section 2.4). By Proposition 2.4, the persistent homology module V ′q :=

⊕
u∈Nn Hq(Mu)

associated with {Mu}u∈Nn is isomorphic to Vq, hence the Betti tables of V ′q coincide with the Betti tables ξqi
of Vq. This can be seen for example from the fact that, as observed at the end of Section 4.1, the Koszul
complexes of V ′q and Vq at any u ∈ Nn are isomorphic. Therefore, one can bound the support of the Betti
tables of Vq using the entrance grades of the cells of M . For example, Theorem 5.10 has the following
immediate consequence.

Corollary 5.23. Let {Xu}u∈Nn be an n-parameter exhaustive filtration of a cell complex X, let V be a fixed
discrete gradient vector field consistent with the filtration, and let {Mu}u∈Nn be the associated n-parameter
filtration of the Morse complex M . Then

n⋃
i=0

supp ξqi ⊆ G(Mq+1) ∪ G(Mq),

for all q ∈ N. Furthermore, supp ξq0 ⊆ G(Mq) and supp ξqn ⊆ G(Mq+1), for all q ∈ N.

Similarly, we can summarize as follows the statements corresponding to Theorem 5.14, Corollary 5.20,
Corollary 5.21 and Corollary 5.22 applied to the Morse complex.

Corollary 5.24. Let {Xu}u∈Nn be an n-parameter exhaustive filtration of a cell complex X, let V be a fixed
discrete gradient vector field consistent with the filtration, and let {Mu}u∈Nn be the associated n-parameter
filtration of the Morse complex M . Then the following facts hold.

1. If u ∈ Nn satisfies Bq(Mu) =
∑n
j=1 Bq(Mu−ej ) and there exists a permutation ρ ∈ Sym(n) such that,

for every ` ∈ [n],

Zq(Mu−eρ(`)) ∩

∑
j<`

Zq(Mu−eρ(j))

 =
∑
j<`

Zq(Mu−eρ(j)−eρ(`)),

then ξq1(u) = 0. As a consequence, the containment supp ξq1 ⊆ G(Mq+1) ∪ G(Mq) holds.

2. In the case q = 0, if u ∈ Nn is such that B0(Mu) =
∑n
j=1 B0(Mu−ej ), then ξ0

1(u) = 0. As a
consequence, the following containments hold:

supp ξ0
0 ⊆ G(M0), supp ξ0

1 ⊆ G(M1),
n⋃
i=1

supp ξ0
i ⊆ G(M1).

3. In the case n = 2, if u ∈ N2 is such that Bq(Mu) =
∑n
j=1 Bq(Mu−ej ), then ξq1(u) = 0. The following

containments hold:

supp ξq0 ⊆ G(Mq), supp ξq1 ⊆ G(Mq+1), supp ξq2 ⊆ G(Mq+1).
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6 Homological critical grades and support of Betti tables for bi-
filtrations

In this section, we fix n = 2 and study the support of the Betti tables of persistent homology modules
associated with a one-critical bifiltration {Xu}u∈N2 of a cell complex X. In what follows, we make use of the
notations introduced at the beginning of Section 5. Additionally, for q ∈ N, let us set

Cq(X) := {u ∈ N2 | dimHq(Xu, Xu−e1 ∪Xu−e2) 6= 0}

and call it the set of q-homological critical grades (see [GL23]). For any fixed u ∈ N2 and any q ∈ N, let us
recall the following known inequalities (see [LS22, Corollary 1], and [GL23] for a generalization to the case
n ≥ 2):

ξq0(u) + ξq−1
1 (u)− ξq−1

2 (u) ≤ dimHq(Xu, Xu−e1 ∪Xu−e2) ≤ ξq0(u) + ξq−1
1 (u) + ξq−2

2 (u). (6.1)

To interpret the results of this section, we remark that Cq(X) ⊆ G(Xq) and, more generally, if M is the
Morse complex associated with any discrete gradient vector field consistent with the filtration {Xu}u∈N2 , by
[LS22, Prop. 1] we have Cq(X) ⊆ G(Mq). As we will show (Proposition 6.5 and Corollary 6.6), for bifiltrations
we are able to bound the support of the Betti tables using the sets Cq(X) instead of the sets G(Mq), thus
strengthening our general results of Section 5 (cf. Corollary 5.23 and Corollary 5.24).

First, we prove a technical result that crucially depends on the one-criticality assumption (Section 2.2)
on the bifiltration.

Lemma 6.1. Let v ∈ N2 and let j 6= ` in {1, 2}. Then, there is a short exact sequence of chain complexes

0 −→ C∗(Xv−e` , Xv−e1−e2) −→ C∗(Xv, Xv−ej ) −→ C∗(Xv, Xv−e1 ∪Xv−e2) −→ 0.

Remark 6.2. The statement has to be interpreted by setting Xv−e1 = ∅ if v − e1 is not in N2, and similarly
for Xv−e2 and Xv−e1−e2 . We use this convention throughout this section.

Proof. Without loss of generality, we prove the statement for j = 1 and ` = 2. The sequence

0 −→ C∗(Xv−e1 ∪Xv−e2 , Xv−e1) −→ C∗(Xv, Xv−e1) −→ C∗(Xv, Xv−e1 ∪Xv−e2) −→ 0

associated with the triple Xv−e1 ⊆ Xv−e1 ∪Xv−e2 ⊆ Xv is exact. Now we observe that, for any q ∈ N, the
relative chain modules of the pair (Xv−e1 ∪Xv−e2 , Xv−e1) are

Cq(Xv−e1 ∪Xv−e2 , Xv−e1) := Cq(Xv−e1 ∪Xv−e2)
Cq(Xv−e1) = Cq(Xv−e1) + Cq(Xv−e2)

Cq(Xv−e1)

∼=
Cq(Xv−e2)

Cq(Xv−e1) ∩ Cq(Xv−e2) = Cq(Xv−e2)
Cq(Xv−e1−e2) =: Cq(Xv−e2 , Xv−e1−e2),

where we used the classical isomorphism theorem for modules and, in the penultimate equality, the fact
that Cq(Xv−e1) ∩ Cq(Xv−e2) = Cq(Xv−e1−e2) as a consequence of the equality Xv−e1 ∩Xv−e2 = Xv−e1−e2

given by the one-criticality assumption on the filtration (see Remark 2.1). These isomorphisms between
chain modules commute with the differentials of the chain complexes C∗(Xv−e1 ∪ Xv−e2 , Xv−e1) and
C∗(Xv−e2 , Xv−e1−e2), since they are induced by the differential of C∗(X).

Corollary 6.3. Let v ∈ N2, q ∈ N and j 6= ` in {1, 2}, and suppose that Hq(Xv, Xv−e1 ∪Xv−e2) = 0. Then
Hq(Xv, Xv−ej ) 6= 0 implies Hq(Xv−e` , Xv−e1−e2) 6= 0.

Proof. By Lemma 6.1, the following is a portion of a long exact sequence in homology:

Hq(Xv−e` , Xv−e1−e2) −→ Hq(Xv, Xv−ej ) −→ Hq(Xv, Xv−e1 ∪Xv−e2).

Since Hq(Xv, Xv−e1 ∪Xv−e2) = 0, the first map is surjective, and the claim follows immediately.

To prove the final result of this section (Proposition 6.5), we first show directly that the support of the
Betti table ξq−1

2 is contained in Cq(X).
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Lemma 6.4. For all q ∈ N, we have supp ξq−1
2 ⊆ Cq(X).

Proof. Let u ∈ supp ξq−1
2 . We prove that there exists λ ∈ N such that

Hq(Xu−λe1 , Xu−(λ+1)e1 ∪Xu−λe1−e2) 6= 0. (6.2)

If condition (6.2) holds for λ = 0, then u ∈ Cq(X). Otherwise, since the same property can be proven with
the roles of e1 and e2 interchanged, our claim follows by observing that (u− λe1) ∨ (u− µe2) = u, for every
λ, µ ∈ N.

Assume that (6.2) is false (i.e. it is an equality) for all λ ∈ N; then Hq(Xu−λe1 , Xu−λe1−e2) 6= 0 implies
Hq(Xu−(λ+1)e1 , Xu−(λ+1)e1−e2) 6= 0 by Corollary 6.3 (applied with v := u− λe1), and we can therefore use
an inductive argument. The base case of the induction is Hq(Xu−e1 , Xu−e1−e2) 6= 0 for λ = 1, which holds
because the hypothesis u ∈ supp ξq−1

2 implies that iu−e1−e2,u−e1
q−1 : Hq−1(Xu−e1−e2) → Hq−1(Xu−e1) has

nonzero kernel (see Section 4.1). Since Xu−λe1 = ∅ = Xu−λe1−e2 for a sufficiently large λ, we see that the
induction leads to a contradiction.

Proposition 6.5. For all q ∈ N, we have supp ξq0 ∪ supp ξq−1
1 ∪ supp ξq−1

2 ⊆ Cq(X).

Proof. Let us assume that u /∈ Cq(X). In the first inequality of (6.1), the term dimHq(Xu, Xu−e1 ∪Xu−e2)
is zero by definition of Cq(X). By Lemma 6.4, ξq−1

2 (u) = 0, hence we have ξq0(u) + ξq−1
1 (u) = 0, which is

equivalent to ξq0(u) = ξq−1
1 (u) = 0.

We observe that the inclusion supp ξq0 ⊆ Cq(X) can be proven directly, in a similar way to the proof of
Lemma 6.4. Contrarily, a direct proof of the inclusion supp ξq−1

1 ⊆ Cq(X) eludes us.
In conclusion, for bifiltrations, we can bound the support of Betti tables as follows.

Corollary 6.6. For all q ∈ N, the Betti tables of degree q satisfy

supp ξq0 ∪ supp ξq1 ∪ supp ξq2 ⊆ Cq(X) ∪ Cq+1(X).

Furthermore, the union of the supports of all Betti tables satisfies⋃
q

Cq(X) ⊆
⋃
q,i

supp ξqi ⊆
⋃
q

Cq(X).

Proof. The first statement holds by Proposition 6.5 and implies the second inclusion of the second statement.
The first inclusion of the second statement follows from the second inequality of (6.1), which implies that
Cq(X) ⊆ supp ξq0 ∪ supp ξq−1

1 ∪ supp ξq−2
2 , for all q ∈ N.

We remark that the first statement of Corollary 6.6 is not a consequence of Theorem 5.10, as for
2-parameter persistent homology modules it is known that Cq(X) can be strictly contained in G(Mq), for
any choice of a discrete gradient vector field to determine the latter set of grades (see [LS22, p. 2369] for an
example).

For n > 2 parameters, we believe that exact sequences like those of Lemma 6.1, along with those induced
in homology, can still be useful to study the relation between Betti tables and homological critical grades.
In this case, however, these sequences assemble in much more complicated systems, and appropriately
disentangling them would require a different approach.

7 Generalization to multi-critical filtrations
In this last section, we discuss how the results of Section 5 and Section 6 can be generalized to an n-
parameter filtration {Xu}u∈Nn that is not one-critical (Section 2.2). Such filtrations are called multi-critical.
As observed in Section 3, one-criticality ensures that the chain complex associated with the filtration
{Xu}u∈Nn is composed of free n-graded S-modules. More specifically, for any q ∈ N, Cq :=

⊕
u∈Nn Cq(Xu)

is free and isomorphic to
⊕

σ∈Xq S(−vσ), with vσ denoting the unique entrance grade of the cell σ. The
persistent homology module Vq =

⊕
u∈Nn Hq(Xu) is then defined as the homology at the middle term of the

sequence Cq+1
∂q+1−−−→ Cq

∂q−−→ Cq−1 of free n-graded S-modules. For a multi-critical filtration {Xu}u∈Nn , the
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modules of this sequence are in general not free. Using results from [CSV17], one can however present Vq as
the homology at the middle term of a sequence of free n-graded S-modules A f−→ B

g−→ C satisfying gf = 0,
which enables applying our results. Below, we describe the strategy to construct such a sequence starting
from a multi-critical filtration of a cell complex. For brevity, in this section we call a chain complex any
sequence of (not necessarily free) n-graded S-modules A f−→ B

g−→ C with gf = 0, observing that it can be
viewed for example as the chain complex · · · → 0→ ker f → A

f−→ B
g−→ C → coker g → 0→ · · · .

Let X = {Xu}u∈Nn be a multi-critical n-parameter filtration of a cell complex X. We suppose the filtration
to be exhaustive, meaning that X =

⋃
u∈Nn X

u. For every fixed q ∈ N, we denote by Xq = {Xu
q }u∈Nn the

induced filtration of sets of q-cells. Following [CSV17, Sect. 4], we recall how to construct a free presentation
of the n-graded S-module Cq :=

⊕
u∈Nn Cq(Xu).

For any cell σ ∈ Xq, the n-parameter filtration Xq[σ] = {Xu
q [σ]}u∈Nn of sets is defined by

Xu
q [σ] =

{
{σ} if σ ∈ Xu

q ,

∅ if σ /∈ Xu
q .

Let ent(σ) := {u ∈ Nn | σ ∈ Xu
q r

⋃n
j=1 X

u−ej
q } denote the set of entrance grades1 of σ. We recall that a

filtration is one-critical if and only if ent(σ) has exactly one element, for every cell σ of X. The F-linear span
of the filtration Xq[σ] is the n-graded S-module Cq[σ] =

⊕
u|σ∈Xuq

F, which is isomorphic to the monomial
ideal 〈xv | v ∈ ent(σ)〉. As observed in [CSV17], a free presentation of the n-graded S-module Cq[σ] is given
by ⊕

v0 6=v1∈ent(σ)

S(−v0 ∨ v1) π0[σ]−π1[σ]−−−−−−−−→
⊕

v∈ent(σ)

S(−v),

where the n-graded homomorphism πi[σ] sends the generator 1v0∨v1 at grade v0 ∨ v1 of S(−v0 ∨ v1) to
xv0∨v1−vi1vi ∈ S(−vi)v0∨v1 , for i ∈ {0, 1}.

The n-graded S-module Cq :=
⊕

u∈Nn Cq(Xu), which is the F-linear span of the filtration Xq, is isomorphic
to
⊕

σ∈Xq Cq[σ]. As already observed, if the filtration Xq is not one-critical, Cq is not free. A free presentation
of Cq is given by: ⊕

σ∈Xq

 ⊕
v0 6=v1∈ent(σ)

S(−v0 ∨ v1) π0[σ]−π1[σ]−−−−−−−−→
⊕

v∈ent(σ)

S(−v)

 .

In other words, Cq is isomorphic to the cokernel of the n-graded homomorphism π0−π1 :=
⊕

σ∈Xq (π0[σ]− π1[σ]).
To establish notations of modules and homomorphisms that will be used in what follows, we write this
presentation of Cq as

Rq Gq Cq,
π0−π1 pq (7.1)

where Gq :=
⊕

σ∈Xq
⊕

v∈ent(σ) S(−v) and Rq :=
⊕

σ∈Xq
⊕

v0 6=v1∈ent(σ) S(−v0 ∨ v1).
Next, following [CSV17, Sect. 5] we review how the n-parameter persistent homology module Vq =⊕
u∈Nn Hq(Xu) associated with a multi-critical filtration X = {Xu}u∈Nn can be expressed as the homology

of an explicitly constructed chain complex of free n-graded S-modules. Although the construction of [CSV17,
Sect. 5] is for n-parameter filtrations of simplicial complexes, it can readily be adapted to n-parameter
filtrations of cell complexes, as we now explain.

Starting from the sequence of n-graded S-modules

Cq+1 Cq Cq−1,
∂q+1 ∂q (7.2)

consider Cq−1 ∼=
⊕

σ∈Xq−1
Cq−1[σ] and define the free n-graded S-module Dq−1 :=

⊕
σ∈Xq−1

S and the
n-graded homomorphism ηq−1 : Cq−1 → Dq−1 given by the direct sum of the inclusions Cq−1[σ] ↪→ S, for all
σ ∈ Xq−1. Since ηq−1 is injective, replacing ∂q by the composition ηq−1∂q in the sequence (7.2) does not
affect the homology Vq at the middle term. Similarly, since the homomorphism pq+1 : Gq+1 → Cq+1 defined

1In [CSV17], the notation gen(σ) is used for the set here denoted by ent(σ).
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as in (7.1) is surjective, replacing ∂q+1 by the composition ∂q+1pq+1 in the sequence (7.2) does not affect the
homology Vq. In other words, the homology at the middle term of

Gq+1 Cq Dq−1,
∂q+1pq+1 ηq−1∂q (7.3)

is isomorphic to Vq. Since Gq+1 is free (and hence projective) and pq is surjective, there exists an n-graded
homomorphism δq+1 : Gq+1 → Gq such that the triangle

Gq

Gq+1 Cq

pq
δq+1

∂q+1pq+1

commutes. The proof of [CSV17, Prop. 5.2] carries over, showing that Vq is isomorphic to the homology at
the middle term of the following chain complex of free n-graded S-modules:

Rq ⊕Gq+1 Gq Dq−1.
[π0−π1 δq+1] ηq−1∂qpq (7.4)

We remark that the construction of this chain complex is not canonical, as it requires choosing a lift δq+1.
Now we denote by G(Gq) set of grades of the generators of Gq, and by G(Rq) the set of grades of the
generators of Rq, for all q. Explicitly, they are the following subsets of Nn:

G(Gq) = {v ∈ Nn | v ∈ ent(σ) for some σ ∈ Xq},
G(Rq) = {w ∈ Nn | w = v0 ∨ v1 with v0 6= v1 ∈ ent(σ), for some σ ∈ Xq}.

(7.5)

Our results of Section 5 and Section 6 can be applied to the persistent homology module Vq of a multi-critical
filtration X = {Xu}u∈Nn by replacing the chain complex (7.2) of (not necessarily free) n-graded S-modules
by the chain complex (7.4) of free n-graded S-modules to present Vq as the homology at the middle term.
In particular, this affects the sets of entrance grades of cells: in degree q, the set G(Gq) now plays the role
of G(Xq) in Section 5; similarly, G(Rq ⊕ Gq+1) = G(Rq) ∪ G(Gq+1) now replaces the set G(Xq+1). Lastly,
we observe that, with the aim of reducing the involved chain complexes, one can replace the n-filtered cell
complex X with an n-filtered Morse complex M , consider (7.2) to be the chain complex associated with M ,
and construct (7.4) from it.

As an example of how the results on one-critical filtrations can be adapted, we state the generalization of
Theorem 5.10 and Corollary 5.20 to the case of multi-critical filtrations.

Proposition 7.1. Let {Xu}u∈Nn be a multi-critical n-parameter exhaustive filtration of a cell complex X.
Then, for all q ∈ N,

supp ξq0 ⊆ G(Gq), supp ξq1 ⊆ G(Rq) ∪ G(Gq+1) ∪ G(Gq), supp ξqn ⊆ G(Rq) ∪ G(Gq+1),

and
n⋃
i=0

supp ξqi ⊆ G(Rq) ∪ G(Gq+1) ∪ G(Gq),

where the sets G(Gq), G(Gq+1) and G(Rq) are as in (7.5). Furthermore, the same containments hold if the
sets G(Gq), G(Gq+1) and G(Rq) are determined from {Mu}u∈Nn instead of {Xu}u∈Nn , where {Mu}u∈Nn is
the n-parameter filtration of the Morse complex M associated with any fixed discrete gradient vector field
consistent with the filtration {Xu}u∈Nn .
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