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Abstract

Persistent homology encodes the evolution of homological features of a multifiltered cell complex in
the form of a multigraded module over a polynomial ring, called a multiparameter persistence module,
and quantifies it through invariants suitable for topological data analysis.

In this paper, we establish relations between the Betti tables, a standard invariant for multigraded
modules commonly used in multiparameter persistence, and the multifiltered cell complex. In partic-
ular, we show that the grades at which cells of specific dimensions first appear in the filtration reveal
all positions in which the Betti tables are possibly nonzero. This result can be used in combination
with discrete Morse theory on the multifiltered cell complex originating the module to obtain a better
approximation of the support of the Betti tables. In the case of bifiltrations, we refine our results by
considering homological critical grades of a filtered chain complex instead of entrance grades of cells.
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1 Introduction

One of the main concepts in Topological Data Analysis is persistent homology, a tool to capture topological
information at multiple scales and provide meaningful topological summaries of the data, as surveyed, for
example, in [Ghr07, Car09, EM12]. In practice, assuming that a data set comes equipped with measurements
like functions or metrics to filter it, persistent homology transforms the filtered data into a nested family
of chain complexes that depend on as many parameters as the number of different measurements used.
Applying homology with coefficients in a field F to such a filtered chain complex produces a parametrized
family of vector spaces, connected by linear transition maps, called a persistent homology module. Algebraic
invariants of persistent homology modules provide the required summaries of the data topology.

Classically, the development of the theory of persistent homology originated from two separate roots:
Morse theory (as in, e.g., [Bar94, Fro96, Rob00, ELZ02]), and commutative algebra (as in, e.g., [ZC05,
CZ09, Oud15]). These two perspectives reconcile very elegantly in the case of 1-parameter persistence, i.e.
when the filtration depends on only one parameter. In this case, persistent homology modules admit a
complete invariant, the so-called barcode, encoding the lifespan of homology classes through the considered
filtration. From the standpoint of Morse theory, the endpoints of bars in a persistence barcode correspond
to the cancellation of pairs of critical points of the filtering (Morse) function [ELZ02]. From the algebraic
perspective, a persistent homology module is a representation of a finite linear quiver in the category of
vector spaces. Thus, a 1-parameter persistence module admits a unique decomposition into interval modules,
i.e. indecomposable modules, each supported on an interval. These intervals are exactly the bars of the
persistence barcode [ZCO05].

It is of both theoretical and practical interest to understand persistent homology in the case of multiple
parameters, yielding to the so-called multiparameter persistence. Indeed, in applications, one often needs to
filter the data using more than only one measurement, obtaining a multiparameter persistence module. This
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is the case, for example, when there are different drivers for a phenomenon [BCGS13], or when one needs to
downsize the role of outliers by adding a co-density measurement to the principal, explanatory, measurement
as in [FL13, BL22].

Unfortunately, the theory of multiparameter persistence modules proves to be much more elusive than
the single-parameter one: in particular, since multigraded modules are of wild representation type [Gab72],
more complicated indecomposables than just intervals can generally occur, and it is impossible to list them
all or characterize them via discrete invariants. Despite this difficulty, all the relevant homological events in
a multiparameter filtration are conveniently captured by the Betti tables of the multiparameter persistent
homology module [CZ09]. However, these events cannot be paired to obtain summaries similar to barcodes,
and their mutual dependencies cannot be easily unveiled.

One of the motivations of this paper is to relate the events captured by the Betti tables of a multiparameter
persistent homology module to the events captured by Morse theory, considered in its combinatorial
formulation [For98, Koz05]. This attempt to reconnect the algebraic perspective to Morse theory in the
multiparameter situation is both of theoretical interest in commutative algebra and of practical advantage,
as it provides a unified perspective to study persistent homology modules together with the underlying
filtered complexes.

In this perspective, starting from the observation that for a 1-parameter persistent homology module
the support of the Betti tables coincides with the set of entrance grades of critical cells in the filtration
under consideration, our goal is to understand whether and to what extent this fact can be generalized to
multiparameter persistence. An indication that this may be the case comes from the results of [GL23], which
establish Morse inequalities involving, on the one hand, the values of the Betti tables of a multiparameter
persistent homology module, and, on the other hand, the so-called homological critical numbers of the same
filtration. The latter numbers can be viewed as theoretical lower bounds of the numbers of critical cells
entering the filtration at each filtration grade for any choice of a discrete gradient vector field consistent
with the filtration.

The results of this paper delimit, in the space of parameters, the support of the Betti tables of a persistent
homology module in terms of the entrance grades of cells in the multiparameter filtration. Moreover, we
study the relation between the dimension of the entered cells and the degree of the persistent homology
module on which they impact. In our setting, the multiparameter filtration is defined on an abstract cell
complex, an object representing in a combinatorial way a chain complex of vector spaces with distinguished
bases (Section 2.1). To obtain our main results of Sections 3, 5 and 6, the filtration is assumed to be defined
via the sublevel sets of measurement functions. In such filtrations, also called one-critical in topological data
analysis [CSZ09], every cell has a unique entrance grade (Section 2.2).

From a different perspective, we aim to highlight how prior known results about multigraded resolutions
are relevant to the study of multiparamenter persistence, and what can be gained in the context of persistence
by integrating them with Morse theory. Indeed, the main goal of this paper can be stated also in the
language of multigraded commutative algebra, considering n-graded modules over the polynomial ring
S = TF[z1,...,2,]. An n-parameter persistent homology module can be viewed as an n-graded S-module V

which is presented as the homology at the middle term of a sequence A LB % 0ot n-graded S-modules
with gf = 0. If the n-parameter filtration is one-critical, the modules A, B, and C are free. Our goal is to
study the Betti tables of V' and relate their support with the grades of the generators of the modules A, B,
and C.

In Section 3, we highlight how multigraded free presentations and resolutions, well-studied in multigraded
commutative algebra [MS05, Peel0], can be applied in the context of multiparameter persistence. Via this
approach, we obtain some initial bounds on the support of the Betti tables of a persistent homology module
in terms of entrance grades of cells in the multiparameter filtration (Proposition 3.4 and Remark 3.5).

Nevertheless, we can say more about the support of Betti tables of persistence if, instead of approaching
the problem directly using a free resolution of the multiparameter persistence module, we use the Koszul
complez associated with the persistence module, a strategy already used in [Knu08, LW22, GL23|. More
specifically, our technique is based on the construction of the Koszul complex via mapping cones (Section 4).
Using this inductive construction, we can compute Betti tables by looking at the space of parameters only
locally and, more importantly, we can disentangle the different parameters of the multiparameter filtration:
the Koszul complex at a fixed grade in an n-parameter space is determined by the Koszul complexes at



nearby grades in an (n — 1)-parameter space. This allows for explicit and direct proofs. As an advantage, we
can identify obstructions to the vanishing of Betti tables of a persistence module, which may not be as clear
using the more abstract approach via free resolutions, and get tighter bounds than directly using resolutions.

In detail, given an n-parameter filtration {X"},en» of a finite cell complex X, we consider, for any ¢ € N,
the set §(X,) of entrance grades of g-cells in the filtration, as well as its closure §(X,) with respect to least
upper bounds, i.e. the smallest set containing §(X,) and the least upper bounds in N™ of its nonempty
subsets. We denote by £7: N — N the ith Betti table of the persistent homology module obtained as the
qth homology of the filtration. In the case when the filtration is one-critical, Theorem 5.10 of Section 5
states a relation between the support supp & = {u € N" | £(u) # 0} of the Betti tables and the sets of
entrance grades of cells: for all ¢ € N

U supp & € §(Xg41) U G(Xy).
i=0

This delimitation of the support of the Betti tables using the entrance grades of cells cannot be tightened
(see Example 5.12).
We next focus on particular Betti tables for which the containment above can be improved. Still in

Theorem 5.10, we prove that supp & € §(X,) and supp &2 C G(X,41), for all ¢ € N. More interestingly, in
Theorem 5.14 we identify a sufficient condition on submodules of boundaries and cycles for the vanishing of £]
at a grade u € N™. The condition for boundaries is the identity By(X") = 2?21 B, (X"~ ) of submodules
of Cy(X™), while the condition for cycles consists, up to a permutation on the set {1,...,n} enumerating

the parameters, of the identities

2y e 0 | 302,00 0) | = 30z,

j<t j<t

for every ¢ < n. Our result implies the bound supp&! C G(X,4+1) U §(X,) for the support of the 1st
Betti table (Corollary 5.20). In particular, in comparison to what can be obtained using multigraded free
resolutions of the persistent homology module as in Section 3, we see that using the cone construction of the
Koszul complex we get somehow stronger results.

To reconnect our results with Morse theory, in Section 5.3 we observe that all our bounds for the support
of Betti tables can be applied to the Morse complex associated with any discrete gradient vector field
consistent with the filtration. The persistent homology module of the Morse complex has the same Betti
tables as that of the original filtration, but the set of entrance grades of cells is typically much smaller.
Therefore, using Morse complexes, one can often obtain better approximations of the support of the Betti
tables.

In the endeavor to improve the bounds for the support of Betti tables, rather than considering entrance
grades of cells (either of the original complex or of an associated Morse complex), as a further contribution of
this paper we show that, in the case of 2-parameter filtrations that are one-critical, the support of the Betti
tables of a persistent homology module is contained in the closure of the set of homological critical grades
(Section 6). Although limited to the case of two parameters, this result improves our results from Section 5
in two ways: it does not depend on the choice of a specific discrete gradient vector field and establishes that
all events witnessed by the Betti tables are determined by homological criticality (Corollary 6.6).

Our results of Section 5 and Section 6 hold for one-critical filtrations of cell complexes. Although they
cannot be applied directly to filtrations that are not one-critical, a generalization in this direction can be
obtained using results from [CSV17], as we explain in Section 7.

2 Preliminaries

Before presenting relevant background material for this article, let us establish some general notations: N
denotes the set {0,1,...} of natural numbers; [n] denotes the set {1,2,...,n}; {e;}i=1,.n is the standard
basis of N"; for any subset o C [n], we denote eq = }_,c,, €;; |J| denotes the cardinality of a set J; the
symbols A and V denote the greatest lower bound and least upper bound, respectively.



2.1 Based chain complexes, cell complexes, and homology

Let F denote a field, arbitrary but fixed. A based chain complez is a chain complex C, = (Cy, 84)qez of vector
spaces over IF, which we assume to be of finite dimension, such that each C; is endowed with a distinguished
basis X,. Throughout this article, we assume all chain complexes to be bounded, meaning that C; = 0
whenever ¢ < 0 or ¢ > m for some integer m. Based chain complexes can be viewed from a combinatorial
perspective, as their distinguished bases inherit the structure of an (abstract) cell complez, in the sense of
Lefschetz [Lef42]. In this work, we call cell complex a finite graded set X =[] oy
called cells, endowed with an incidence function k : X x X =+ F. A cell 0 € X, is said to have dimension g,

X4, whose elements are

denoted dim o = ¢, or to be a g-cell. The incidence function must satisfy two axioms: (i) x(7,0) # 0 implies
dim7 =dimo +1, and (i) >_ ¢ x k(7. p) - £(p,0) = 0, for any pair of cells 7 and o in X. We endow X with
the order relation <, called the face partial order, generated by the covering face relation: o < 7 if and only
if k(7,0) # 0. Given a cell complex X, we denote C,.(X) = (Cy(X), 0y)qez the based chain complex such
that X, is the fixed basis of Cy, for all ¢, with differentials d, : Cy — Cy—1 defined on each T € X, by

Oq(1) = Z k(T,0)0.

oceXy1

We observe that C4(X) is the zero chain complex if X = .

A graded set A = |_|qu Aq is called a subcomplex of X if, for all 7 € A, every cell o € X such that
o < 7 is also in A. This property makes A, endowed with the restriction of the incidence function of X,
a cell complex, and is equivalent to requiring C,(A) to be a chain subcomplex of C,(X). We denote by
H,(X) :=ker 9,/ im 411 the homology F-modules of C,(X), and by H,(X, A) the homology F-modules of
the relative chain complex C, (X, A).

We observe that the notion of a cell complex as reviewed above, equivalent to that of a based chain
complex, is general enough to include simplicial complexes and cubical complexes, among other widely used
combinatorial objects admitting a canonically associated chain complex. If the aim is computing homology,
finite CW complexes can also be represented by cell complexes, letting x(7, o) be the degree of the attaching
map from the boundary of 7 to o.

2.2 Multifiltrations and multiparameter persistence

One of the main mathematical objects of interest in topological data analysis are functors from a poset to the
category of finite dimensional vector spaces over a field F. Here, we consider the indexing poset N, for some
integer n > 1, equipped with the coordinate-wise partial order: for u = (u;),v = (v;) € N", we write u < v if
and only if u; < wv;, for all 1 <14 < n. In this article, an n-parameter persistence module is a functor from the
poset (N”, <) with values in finite-dimensional F-vector spaces. Morphisms between such functors are the
natural transformations. Explicitly, an n-parameter persistence module V' consists of a family {V*},cnn of
F-vector spaces together with a family {¢*" : V* — VV},<,enn of linear maps such that ¢ = ¢ o "7
whenever © < v < w, and ™" = idy«, for all u. A morphism between two n-parameter persistence modules
{V¥ ®?} and {W*, "} is a family of linear maps {v* : V* — W"},cnn such that v¥ o p™? = ™" o v¥,
for all u < v in N™. A morphism v is an isomorphism (monomorphism, epimorphism, respectively) if, and
only if, its components v* are bijective (injective, surjective), for all u € N™.

In topological data analysis, the typical source of persistence modules are filtrations of cell complexes
associated with the data. An n-filtration of a cell complex X is a family { X"}, en» of subcomplexes of X such
that u < v implies X* C X". If a cell o of X is an element of X* U?:l XU we say that u is an entrance
grade of o in the filtration. In this article we assume, unless otherwise stated, that filtrations { X"}, enn are
families of sublevel sets X" = {0 € X | h(0) < u} of some order-preserving function h : (X, <) — (N, <),
with < denoting the face partial order on X. This assumption is equivalent to requiring every cell of X to
have exactly one entrance grade, and will only be lifted in Section 7, where we discuss applications to general
n-filtrations.

The filtrations we are considering are usually called one-critical [CSZ09] in topological data analysis.
We want to highlight that assuming the uniqueness of entrance grades is fundamental in order to obtain
the results of Section 5 and Section 6, which are false for general filtrations of cell complexes (but can be
adapted as explained in Section 7). For instance, in this article we repeatedly use the following fact.



Remark 2.1. Given a one-critical n-filtration {X"},cn» and a finite set of filtration grades {u;};=1,. x € N7,
with u; = (uj1,...,u;,) forall j, we have ﬂ?:l X" = X" wherew = A{u;}; = (min{u;1};,..., min{u;,};)
is the greatest lower bound of the subset {u;};—1, . » in N™. In particular, for each subset o C [n], we have
the equality (¢, X"™% = X"~ .

We are interested in persistence modules obtained as the homology of an n-filtration. Given an n-filtration
{X"“}uenn and applying the gth homology functor, one obtains the n-parameter persistent qth-homology
module Vy = {V;', 15" bu=<wenn, with V' := H,(X") and 1" Hy(X") — H,y(X") induced by the inclusion
maps X" — XV for u < v. We note that it is common to use the terms multifiltration and multiparameter
in place of, respectively, n-filtration and n-parameter, to indicate the generic case when n > 1. Moreover,
2-filtrations are also called bifiltrations.

The overall purpose of this work is to study the relation between the homological invariants of multiparam-
eter persistent homology modules called Betti tables and the multifiltrations from which they are obtained.
To this aim, we adopt some tools and terminology from commutative algebra. An n-graded module over
the polynomial ring S := F[xy,...,7,] is an S-module with a vector space decomposition V' =, ,cnn V"
such that z; - V* C V¥ for all u € N and i € [n]. There is a standard equivalence [CZ09] between the
category of n-parameter persistence modules and the category of n-graded S-modules, allowing us to view a
persistence module {V*, """} as the n-graded S-module €, - V", where the action of S is defined by
Tz = WUTe(z), for all z € V¥ and i € [n]. Standard homological invariants from commutative algebra,
like the Betti tables (also called multigraded Betti numbers, see Section 2.3), were among the first ones
studied in multiparameter persistence [CZ09, Knu08]. Given an n-parameter persistent homology module
{Vq“, ﬂq"”}, obtained as the gth homology of an n-filtration, we view it as the finitely generated n-graded
S-module V; = @, cy» V" and denote its ith Betti table by &1, for i € {0,1,...,n}. We recall that its Betti
tables are functions £ : N™ — N defined by

€2(u) = dim(Tor} (V, F))",

for all w € N™. Explicitly, £/(u) is the dimension (as an F-vector space) of the piece of grade u of the
n-graded S-module Tor? (V,, F). In Section 4 we give an equivalent definition of the Betti tables based on
the Koszul complex.

2.3 Multigraded modules and free resolutions

We now briefly review free resolutions of n-graded modules over the polynomial ring S := Flz1,...,2,]. In
this article, all n-graded S-modules are assumed to be finitely generated. Homomorphisms f : V — W
between n-graded S-modules are assumed to be n-graded, meaning that they preserve grades: f(V*) C W,
for all u € N™. We refer to [MS05, Ch. 1] and to texts like [Eis05, Peel0] for further details.

For an n-graded S-module V and for a € Z", we denote by V(a) the module such that V(a)* = Vvt
for all u € N™, called the shift of V' by a. The module S(—a) is the free S-module on one generator at grade
a € N™. It is isomorphic to the principal monomial ideal (z®), where 2 denotes the monomial x7* - - - z%~.

=1 S(—a;) for some r € N and a; € N". For a

An n-graded S-module is called free if it is isomorphic to €@
free module, 7 and {a;}};_; are uniquely determined.

As an example related to the multifiltrations of Section 2.2, one can consider the persistence module
{C(X™), f3" bu=venn, where the maps fi** : Cy(X") < Cy(X") are induced by the inclusions X" — X,
and regard it as the n-graded S-module Cy = @, cn Cq(X™). If the n-filtration {X™},enn is one-critical,
then Cj is free, isomorphic to @, X, S(—vs), where v, denotes the unique entrance grade of the g-cell o.
The differential 9, : Cy — Cy—1 is an example of an n-graded homomorphism between n-graded S-modules,
whose component in grade u is 0g: Cq(X™) = Cq—1(X"), for all v € N™.

An (n-graded) free resolution of an n-graded S-module V is a sequence

N * N et UL N LN RN

of n-graded free S-modules and n-graded homomorphisms which is exact at degree 4 (that is, ker ¢; = im ¢;11)

for all 4 > 0, and such that coker¢; = V. An exact sequence - - - ﬁ> Fy & Fy &V = 0 is called an
augmented free resolution of V', with the n-graded homomorphism ¢ called an augmentation. The smallest



integer ¢ (if it exists) for which F; = 0 for every i > £ is called the length of the resolution. By Hilbert’s
Syzygy Theorem, every finitely generated n-graded S-module V' admits a free resolution with length ¢ < n.

A free resolution is called minimal if the image of each homomorphism ¢; is contained in (21, ..., z,)F;—_1,
where (x1,...,2,) denotes the homogeneous maximal ideal of S. Minimal free resolutions are unique up
to isomorphism, and they are an invariant of the isomorphism type of V. In particular, the number of
summands S(—u) in F;, for every u € N® and 7 € {0,1,...,n}, is a well-defined invariant of V', and it
coincides with the value at u of the ith Betti table (or multigraded Betti number), & (u) = dim(Tors (V,F))*.
To see this, recall that, by definition, ToriS(V, F) can be determined by applying the functor — ®g F to a free
resolution of V' and taking the ith homology of the resulting chain complex of n-graded S-modules. Choosing
a minimal free resolution of V', the homomorphisms ¢; ®g F are all zero, hence Torf (V,F)=F, ®¢ F has in
grade u an F-vector space of dimension equal to the number of summands S(—u) in F;, for all u € N™.

A free presentation of an n-graded S-module V' is an n-graded homomorphism ¢ : F; — Fjy between
free n-graded S-modules F} and Fj such that coker ¢; = V. In this article, we will occasionally refer to the
augmented sequence F} Li Fy — V — 0, which is exact at Fy and V', as a free presentation of V. A free
presentation of V' is called minimal if it is the portion (in degrees 1 and 0) of a minimal free resolution of V.

2.4 Discrete Morse theory and multifiltrations

Discrete Morse theory, developed by Forman [For98], is an adaptation of smooth Morse theory [Mil63] to a
combinatorial framework. In its original formulation, it allows, given a regular CW complex, to construct
a homotopy equivalent CW complex with a smaller number of cells. Building on Forman’s work, discrete
Morse theory has been formulated in purely algebraic terms for based chain complexes [Koz05] and in more
general frameworks [Sk606, JW09]. In this algebraic setting, the aim is to decompose a chain complex into a
smaller complex and an acyclic complex. As explained in Section 2.1, one can always take an equivalent
combinatorial perspective by considering the cell complexes associated with based cell complexes. We briefly
present here the main ideas of algebraic discrete Morse theory in the setting of this work.

Let C'(X) be the chain complex associated with a cell complex X = | |, X, and let < be the covering face
relation on X introduced in Section 2.1. A pair of cells (o,7) € X x X with o < 7 is called a discrete vector.
A discrete vector field V on X is a collection of discrete vectors V = {(0;,7;)};cs such that all cells appearing
in V (indifferently as the first or the second component of a vector) are different. A discrete vector field V
determines a partition of X into three graded subsets M,S, T, where M is the set of unpaired cells, called
critical cells, and S (respectively, T') is the set of cells appearing in V as first (respectively, second) components
of a discrete vector. The subsets M, S, T inherit the grading by dimension of the cells of X, so that for
example M = |_|q M,. A V-path between two cells o and o’ is a sequence (0¢, 70,01, T1, ..., 0p—1,Tr—1,0)
with r > 1 such that o9 = o0, 0, = ¢’, each (04, 7;) is a discrete vector of V, and ¢;11 < 7;. The V-path is
called closed if o, = o1 and trivial if r = 1. A discrete vector field V is a discrete gradient vector field (also
called an acyclic matching or a Morse matching) when all closed V-paths are trivial.

The core result of discrete Morse theory [For98] can be algebraically stated as follows [KMS98, Sk606,
JWO09].

Theorem 2.2. Let Cy(X) = (Cy(X),dq)qez be the chain complex associated with a cell compler X = | |, X,
and let V = {(0j,7;)}jes be a discrete gradient vector field on X. Then C.(X) is chain homotopy equivalent
to Cu(M) = (Cq(M), 0 qez, where M = LI, M, is the set of critical cells and OM is a differential determined
by O and V.

We call C,(M) the (discrete) Morse chain complex of C.(X) associated with V. Let us stress that
in general C,(M) is not a chain subcomplex of C,(X), since its differential 3™ is not simply induced by
restriction by the differential d of C(X). The details on how ™ is (uniquely) determined by @ and V can be
found in [Sk606, JW09]. Equivalently, a cell complex structure on the set M = [ |, Mg, called the (discrete)
Morse complex of X associated with V, is determined by the incidence function of X and V [KMS98]. In
general, M is not a subcomplex of X.

Discrete Morse theory of filtered chain complexes has been studied in a series of works related to
one-parameter [MN13] or multiparameter persistent homology [AKL17]. In the remainder of this subsection,
we present the main ideas of discrete Morse theory for multifiltrations.



Consider an n-filtration {X"},enn of a cell complex X, which determines a filtration {C(X")}yenn of
the chain complex C,(X). Given a discrete gradient vector field V on X, there are clearly induced filtrations
{M"},enn on the Morse complex M and {C,(M")}yenn on the Morse chain complex C., (M) = (Cq(M), 93").
In general, the former is only a filtration of sets and the latter is only a filtration of graded F-vector spaces, as
the differential 9™ may fail to be compatible with the filtration. To avoid this, one can require the discrete
gradient vector field to interact nicely with the multifiltration on X.

Definition 2.3. A discrete gradient vector field V on X is consistent with a multifiltration {X"},enn if,
for all (o,7) in V and all w € N, ¢ € X* if and only if 7 € X*.

If V is consistent with the multifiltration {X*},enn, then {C\.(M"™)}yenn is a filtration of chain subcom-
plexes of C\ (M) [MN13, AKL17]. Equivalently, { M"},enn is a filtration of subcomplexes of M. Moreover,
the persistent homology modules associated with the multifiltrations of X and its Morse complex are
isomorphic (in the sense of Section 2.2).

Proposition 2.4 (Lemma 3.10 in [AKL17]). Let V be a discrete gradient vector field on a cell complex
X consistent with an n-filtration {X“}yenn, and let {M"}yenn be the n-filtration induced on the Morse
complex M. Then, for any q € N, the persistence modules obtained as q-th homology of the n-filtrations
{X"}uenn and {M"},enn are isomorphic.

3 Entrance grades and support of Betti tables via free resolutions

In this section, we illustrate how methods in multigraded homological algebra based on free presentations
and resolutions (see Section 2.3) can be used to derive relations between two different graded subsets of N™:
the set of parameter grades at which new critical cells appear in the one-critical filtration {X"},enn of a
cell complex X, on the one hand, and the set of parameter grades where the Betti tables of the persistent
homology module V; = @, cyn Hy(X") are nonzero, on the other hand. Specifically, we obtain bounds on
the support of the Oth and 1st Betti table of V; (Proposition 3.4), and we discuss the immediate consequences
of these bounds on the support of Betti tables of higher degrees (Remark 3.5). We conclude by observing
that some of the stronger results we will prove in Section 5 do not immediately follow from this approach.
For this reason, we defer the discussion of how our results on the support of Betti table can be combined
with discrete Morse theory to Section 5.3.

In this section we consider the following setting. Let {X"},enn be a one-critical n-filtration of a cell
complex X. We assume the multifiltration {X"},enn to be ezhaustive, that is, X = J,cyn X*. Clearly,
since X is graded by the dimension ¢ of cells, this means that X, = U, cnn X, 4 for all ¢ € N. The one-
criticality assumption (Section 2.2) ensures that the chain complex associated with the filtration {X*},enn
is made of free n-graded modules over the polynomial ring S := F[x1,...,x,]. More specifically, for any
q € N, the n-graded S-module C; == @, cyn Cq(X™) associated with the filtration is free and isomorphic to
D, X, S(—vs), where v, denotes the unique entrance grade of the g-cell o. The set of all entrance grades
(Section 2.2) of g-cells is denoted by G(X,) € N", and its closure with respect to least upper bounds is
denoted by §(X,). Explicitly, §(X,) :={V L | L C §(X,), L # 0} C N", with \/ L denoting the least upper
bound of L in (N” X).

By definition, the persistent homology module V; = @, c» Hy(X™) is the homology at the middle term

of the sequence Cy41q % Cy i) Cq—1 of free n-graded S-modules and n-graded homomorphisms. Our
aim is constructing a free resolution of V;, that is informative of the relation between the support of the Betti
tables and the sets of entrance grades of cells. In this section, we denote by &;(V') the ith Betti table of an
n-graded S-module V, which we view as a function & (V): N — N with values & (V)(u) == dim(Tor? (V, F))*
defined as detailed in Section 2.3. We drop the module V' from the notation of the Betti tables when it is
clear from the context. Lastly, let us recall that we use the notation & = &;(V;) for the Betti tables of the
persistent homology module Vy; = @, o Hq(X™), and that we denote by supp & := {u € N* | {(u) # 0}
the support of &7.
We start by considering the following sequence of n-graded S-modules and n-graded homomorphisms,

h _ kero,
Vq

Og+1
Cogr1 — kerd, = mogs1’



where h is the canonical projection. This sequence is not a free presentation of V; in general, since ker d, is
in general not free for n > 2 and ¢ > 0. To obtain a free presentation of V;, we consider a free presentation
Fy — Fy — ker 9, of ker 9;, which we assume to be minimal. This free presentation is the second row in the
diagram of n-graded S-modules

0 —— Gy =—— Cyiy

| b e

Fl i FQ £ ker aq

J»

Vq

where the homomorphism 0 is a lift of 9,41, which exists since Cyy1 is free (hence projective) and ¢ is
surjective. A free presentation of V; is then given by

E]
Cot1® F 001] Iy he

Va, (3.1)

where [0 ¢1] denotes the n-graded homomorphism sending (¢, z) € Cyy1 @ Fy to 9(c) + ¢1(z) € Fy. To see
that coker[d ¢1] = Vg, we observe that the composition he is surjective, and that its kernel coincides with
im[0 ¢1] = im0 + im ¢.

Our goal is approximating the sets of grades of the generators of the free modules Fy and Cy11 @ F1,
which are the sets supp & (Fo) and supp £o(Cqt1 @ F1), respectively. In Proposition 3.4 we state bounds in
terms of the sets §(X,) and §(X,41). To prove these bounds, we need some results on free resolution of
n-graded S-modules.

First, we state a result whose proof can be found for example in [Vip20, Lemma 2.1] or, in a slightly
different setting, in [CGR*24, Corollary 4.2].

Proposition 3.1. Let V be a (finitely generated) n-graded S-module. Then the supports of its Betli tables
satisfy the containments supp ;41 C suppé&;, for alli > 1.

Next, we need a result on the structure of free resolutions. The proofs presented in [Peel0, Theorem 7.5
or [Eis05, p. 6] carry over to the multigraded case.

Proposition 3.2. Every n-graded free resolution of an n-graded S-module V' is isomorphic to the direct
sum of a minimal free resolution of V' and short trivial complezxes of the form 0 — S(—u) u, S(—u) =0,
with uw € N", possibly involving different homological degrees.

The following is a useful consequence of Propositions 3.1 and 3.2.

Corollary 3.3. Let K be the kernel of an n-graded homomorphism f : V. — W of n-graded S-modules,
where V' is free. Then supp & (K) C supp & (K).

Proof. Let F, = (--+ — Fy 2, Fy — 0) be an n-graded minimal free resolution of K. The augmented free

resolution - -- — Fj o, Fy = K — 0 can be composed with the canonical monomorphism K <% V to form
the sequence

RN RN NN N (3.2)

of free n-graded S-modules, which can be viewed as a (non-necessarily minimal) free resolution of the module
im f 2 V/K = coker te. By Proposition 3.2, the free resolution (3.2) of im f is isomorphic to a minimal free
resolution P, = (--+ — P, — P; — Py — 0) plus a direct sum of short trivial complexes. By minimality of F,
a short trivial complex 0 — S(—u) Mg (—u) — 0 which is a direct summand of (3.2) can only have nonzero
modules in homological degrees ¢ = 0,1 (using indices as in Py). Since Betti tables count the multiplicity of
free summands S(—u) at each grade u € N® and each homological degree of a minimal free resolution (see
Section 2.3), this implies that supp & (im f) C supp &y (K) and that supp &1 (im f) = supp &;(K) for i > 1,
which together with Proposition 3.1 gives

supp &1 (K) = supp & (im f) C supp & (im f) C supp &o(K).




We are now ready to prove bounds for the grades of the generators of the free modules appearing in the
free presentation (3.1).

Proposition 3.4. The containments supp &o(Fo) C G(X,) and supp Eo(Cyy1 @ F1) C G(Xy41) U S(X,) hold
for the modules in the free presentation (3.1) of V.

Proof. We start with an argument similar to the one used in the proof of Corollary 3.3. Let F, = (--- — F} o,
Fy — 0) be a minimal free resolution of ker 9,. The augmented exact sequence - - - — F} & Fy 55 ker Oy — 0

d
can be spliced with the exact sequence 0 — ker d, 5 Cy — Cyq1 to form the sequence

SRR S e, O -0 (3.3)

of free n-graded S-modules, which can be viewed as a (non-necessarily minimal) free resolution of the
module coker 9,. By Proposition 3.2, the free resolution (3.3) is isomorphic to a minimal free resolution
P.=(---— P; — P, » P, — Py — 0) plus a direct sum of short trivial complexes. We observe that a short
trivial complex 0 — S(—u) s (—u) — 0 with nonzero modules in homological degrees i = 2,3 cannot be a
direct summand of (3.3), by minimality of the free resolution F} of ker d,. For this reason, the containment
supp &o(P2) C supp &y(Py), obtained by applying Proposition 3.1 to P, with ¢ = 1, implies the containment
supp &o(Fp) C supp&o(Cy). The first containment of the claim follows by recalling that the set supp &y(Cy)
of grades of the generators of C, coincides with §(X,) by definition.

We now consider the set supp &o(Cy+1 @ F1) = supp §o(Cyt1) Usupp o (F1). Again by definition, we have
supp §o(Cy+1) = G(Xy4+1). We therefore focus on the set supp &o(F1) and observe that

supp &o(F1) = supp &1 (ker 9;) C supp &o(ker d;),

where the equality is by definition of Betti tables via minimal resolutions (Section 2.3), and the containment
is by Corollary 3.3. The second containment of the claim then follows from the equality &y (ker d,) = &o(Fp)
and from the first part of the proof. O

Remark 3.5. Since by Proposition 3.2 the free presentation (3.1) of V; contains a minimal free presentation
as a direct summand, Proposition 3.4 yields the following two containments:

suppél € (X)),  supp&f C G(Xg41) U G(Xy).

We recall that the support of the 1st Betti table determines a bound for the support of all Betti tables
of positive degree, since |J_; supp&! C supp &;. This general fact for n-graded S-modules is observed for
example in [CT15, Remark 3.2], and follows from Proposition 3.1. Using this fact, we immediately see that

U supp&f € G(Xg11) US(X,).
=1

In Section 5, we will obtain the containments for supp ¢ (Theorem 5.10) and supp &f (Corollary 5.20)
with an alternative method based on the Koszul complex, which will allow us to improve some of the
statements regarding the support of higher Betti tables. In Theorem 5.10, we will prove the stronger
statement |J_,supp&! C G(X411) U G(X,), together with the containment supp&? C G(X,41) for the
support of the nth Betti table.

4 The Koszul complex of a persistence module

In this section, we describe the Koszul complex associated with an n-parameter persistence module and illus-
trate some of its properties. In particular, given an n-parameter persistent homology module {Hy(X™), L}
we introduce its Koszul complex at u € N, a chain complex whose ith homology module has dimension
equal to the Betti table value & (u). This chain complex can be constructed via a repeated procedure which
allows us to add one parameter of the multifiltration at a time.

In Section 4.1, upon briefly recalling general definitions and results, we provide a more detailed description

of Koszul complexes of multiparameter persistent homology modules. We claim no original results in this



subsection, as the Koszul complex is a standard tool, and the explicit description of its chain modules and
differentials in the case of persistent homology modules is included, for example, in [GL23, Sect. 3]. Here,
besides fixing notations, we provide further details, especially with regard to bifiltrations, that are relevant
to this work.

In Section 4.2, we explain how the Koszul complex associated with an n-parameter persistence module
can be constructed as an iterated mapping cone, and we highlight the role of this construction for persistent
homology modules, which intuitively allows one to disentangle the different parameters of the multifiltration
and study their impact on the Betti tables. In Section 5, we will apply this technique to study the support
of the Betti tables.

4.1 The Koszul complex of a multigraded module

Let S denote the polynomial ring Flzy,...,2,]. We recall that, for any subset a C [n], we set e, =
> jea i € {0,1}™. The Koszul complex K, is a chain complex of free n-graded S-modules whose construction
is standard in commutative algebra (cf. [MS05, Def. 1.26]): for each i, let K; = €D,c(y), |aj=i S(—€a);
where S(—e,) denotes the free S-module generated in grade e, by an element we denote 1,, for some
a={j1 <j2 <...<j;}. The differentials dX : K; — K;_; are defined on generators by

i—1
A (1) =Y (=D %) Lo,y

=0
Given an n-graded S-module V' = @, .y V¥, the Koszul complex Ky (x1,...,2,;V)(u) of V at grade u € N
is the piece of grade u of the (n-graded) chain complex V ®g K,. This chain complex of F-vector spaces
can be used to determine the Betti tables & (u) := dim(Tor{ (V,F))* of V at grade u, for i € {0,1,...,n}.
Indeed, by definition, Toris (V,F) can be determined by applying the functor — ® g F to a free resolution of V'
and taking ¢th homology of the resulting chain complex (see Section 2.3). The roles of V and F can however
be interchanged, by virtue of the isomorphism Torf (V,F) = Torf (F, V) (see, e.g., [Rot09, Thm. 7.1]); in this
case, choosing K, as a (minimal) free resolution of F (see [MS05, Prop. 1.28]) yields, for all ¢ € {0,1,...,n},
the equality

&i(u) = dim H; (Ky (21, ...y zn; V) (w)).

Let us now provide a more explicit description of the Koszul complex K, (x1, ..., zy; Vy)(u) of a persistent
homology module {H,(X"), ¢y} associated with an n-parameter filtration {X*},enn, regarded as an n-
graded S-module V; = @, cy» Hy(X™) (as reviewed in Section 2.2). Even if this description of the Koszul
complex can be easily adapted to any n-parameter persistence module, not necessarily built from a filtered
cell complex, we prefer to focus on the case of interest for this work in order to clearly introduce the notations
we will use in what follows.

For each i € {0,1,...,n}, the chain module in degree i of Ky (z1,...,2n; Vy)(u) is

Ki(@y, ..o Vo)(w) = @ Hy(X"7¢).

aCln], |a|=i

The definition can be easily extended if, for some fixed © € N™ and some a C [n], it happens that u—e, ¢ N™:
throughout this article, by definition, we set X* = () whenever the grade w is not in N”. Note that the
modules K; (21, ..., 2; Vy)(u) are zero for all ¢ ¢ {0,1,...n}. The differentials of K. (z1,...,2,; Vy)(u) are
defined in terms of the maps ;™" : Hy(X") — Hy(X"™) as follows: the differential

di Ki(zg, ..o xn; Vo) (u) = Kimp (21, .. 205 V) ()

is defined as the alternating sum d; = Z:;B(fl)rdw of functions d; - : Ki(z1,...,2n; Vo) (u) = Ki—i(z1, ..., 203 Vg) (w)
mapping the summand Hg (X"~ ) in K;(x1, ..., 2,; Vg)(u), with o = {j1 < j2 < ... < j;}, to the summand

Hy (X" i) in Ki_y(21,...,20; V,)(u), via the function LZﬁemuieaJre”’r
notation, we avoid denoting the grade  in the differentials d;. As we explained, &/(u) coincides with the

dimension (as an F-vector space) of the ith homology module of K, (z1, ..., zs; V) (u).

. For the sake of a simpler
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Let us detail the cases of n = 1 and n = 2 parameters for later convenience. For a 1-parameter filtration
{X"}uen, the Koszul complex K, (x1;Vg)(u) of Vg = @,y Hy(X") at u € N is

1,u

d1= v
0— Hy (X" ) 22 H (X)) = 0.

The Betti tables at grade u are {J(u) = dim coker L};_l’“ and & (u) = dimker Lg_1>“, which correspond

respectively to the number of births and deaths of g-homology classes at u € N in the sense of persistence
[ELZ02].

For a 2-parameter filtration {X"},en2, the Koszul complex K, (z1,z2;V;)(u) of the module V; =
B ene Hy(X*) at u € N? is

0= Hy(Xv—o—e2) 22 g (xv=ery g H (X"°) L H (X") =0,

with differentials

uUu—e]p—ez, u—eq

— >

— q u—e1,u u—esz,u
do = { P ] and dy =1 Ly ]

q

The Betti tables at the grade u are
&3(u) = dim ker do, &l (u) = dim(ker d; / im ds), &d(u) = dim coker d;.

A morphism v = {v* : V¥ — W"},cnn between n-parameter persistence modules {V*, o»"} and
wenn V0 and W =@, .y W at
u € N™, the morphism between the chain modules in degree i being @\a|:i v~ with a C [n]. Moreover,

{W*, 4"} induces a chain map between the Koszul complexes of V =

since taking finite direct sums preserves short exact sequences of vector spaces, taking the Koszul complex at
any fixed u is an exact functor, meaning that a short exact sequence 0 — U £ V' 2 W — 0 of n-parameter
persistence modules induces a short exact sequence of Koszul complexes

0= Ki(z1,.. s zn; U)(u) = Ki(z1, ..., 20; V)(u) = Ki(z1, ..., 20 W) (u) — 0.

Clearly, an isomorphism between persistence modules induces an isomorphism between their Koszul
complexes. In what follows, we will apply this observation in the particular case of a multifiltration { X"}, enn
of X and the induced multifiltration {M“},cnn of its Morse complex. By virtue of Proposition 2.4, since
the modules V; := @, cyn Hy(X") and V] := @, cnn Hq(M") are isomorphic, their Koszul complexes
Ki(z1,...,20;Vy)(u) and Ky (21, ..., 2z,; V) (u) are also isomorphic, at all w € N*. As a consequence, the

q
Betti tables £/ (u) can be determined considering the Morse complex instead of the original complex.

4.2 Explicit construction via mapping cones

We now illustrate the explicit construction of the Koszul complex K, (x1, ..., zn; V) (u) of V; at grade v € N”
as an iterated mapping cone. The classical construction of the Koszul complex via mapping cones can be
found in [Eis05, § A2F] and [BH98, Ch. 1.6]; here we rephrase, adapt, and enrich it with examples, to provide
a complete and explicit treatment for Koszul complexes of persistent homology modules that conveys the
intuition of persistent homology.

Given a chain map f : B, — C,, the mapping cone Cone(f). of f is the chain complex with Cone(f); =
B,_1& Cz and differential 51 :B;_1 & Cz — B, o2& CZ',1 defined by

3i(b,¢) = (=071 (b), OF () + fi-1(b)), (4.1)

for all i, with b € B;_1,c € C; and 97,9 respectively denoting the differentials of B, and C,, see [Eis95,
§ A3.12).

Let F := { X"}, enn be an n-filtration of a cell complex X. As is evident from the definitions in Section 4.1,
the Koszul complex K. (21, ..., 2,; Vg)(u) of the associated persistent homology module V, = @, cyn Hq(X")
at the fixed grade u € N™ only depends on the subcomplexes X"~ of the filtration, with o C [n]. In other
words, to determine K. (21, . .., 2,; V) (u) it is enough to consider the smaller n-filtration F* := { X" %=}, 1y,
containing 2" subcomplexes of the original n-filtration F. We observe that, fixed any j € [n], the n-filtration
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F“ can be partitioned into 2"~ ! 1-filtrations X“~¢=~¢ C X%~ one for each o C [n] ~\ {j}. More generally,
fixed any non-empty subset J = {j1,...,J:} C [n], there is a partition of F* consisting of 2"~ t-filtrations
of the form {X“ ¢ ~¢} ;, one for each o C [n] \ J. Every such t-filtration has an associated Koszul
complex K, (xj,,...,xj; Vy)(u — eq) that intuitively only encodes information on the parameters ji,...,j;
of the n-filtration F*. Given k € [n] \ J, regarded here as an additional parameter to be taken into
account, one can consider the (¢ + 1)-filtration given by the union of two t-filtrations {X" %~} ,c; and
{Xtmeamer=er} y, for any a C [n] \ (J U {k}). Below, we will explain how the Koszul complex associated
with such (¢ + 1)-filtration can be constructed as the mapping cone of a chain map between the two Koszul
complexes associated with the t-filtrations.

We begin by illustrating in detail the first few steps of the procedure based on iterated mapping cones
to construct the Koszul complex K. (x1,...,zn; Vy)(u) starting from “1-parameter” Koszul complexes “in
direction e;”

w—e;i,w

J

K (zj; Vo) (w) = (O — Hy(X"™%) dl:bq—> Hy(X") — 0) )

for any fixed j € [n] and for w = u — e, with a C [n] \ {j}, and from specific chain maps between them.
The chain maps are those induced by inclusions “in direction e;”, for any fixed k € [n] \ {j}, that is

FFags V) (w = ex) - Ku(ags V) (w — ex) — K55 Vo) (w),
with fF(z;; Vo) (w — ex) : Ki(z4; V) (w — ex) — Ki(z;; V,)(w) defined, for degrees i = 0,1, as

Fo (@3 Vo) (w = ex) = 1 = - Hy (X7%) — Hy(X"),

P33 Vi) — ex) = 627 7em 00 (X007 0%) o5 H,(X07),

The mapping cone Cone(f*(x;; V,)(w — ex)). is the Koszul complex K., (z;, xx; V) (w), associated with the
2-filtration { X~ }vg{j,k}' Intuitively, it is obtained from the previous step, where only the jth parameter
was considered, by adding one parameter more, namely the kth parameter of the original n-filtration.
Explicitly, K, (z;, zx; V4) (w) is the chain complex

0 — Hy(XW—e—er) 225 g (XW=e) @ Hy(XV~ ) <2 Hy(X™) = 0

where the differentials, applying the definition (4.1), are
_Lw—ej—emw—e]'
dy = wq—ej—ek,w—ek and dy = [Lwiej’w Lwiek’w]'

The process we just described can be repeated, by choosing a new “direction” e, corresponding to a
new parameter ¢ € [n] \ {j, k} and constructing K, (x;, xg, z¢; V;)(w) as the mapping cone of the chain map
f(z;, 255 V) (w — ;) induced by inclusions in direction ey, for each w = u — e, with a C [n] \ {j, k, £}.
Explicitly, f*(z;,2x; Vy)(w — €;) is defined by the following maps, in degrees i = 0, 1, 2:

J—eew

fo (@, a3 Vo) (w — eg) = 1 ;
iy Vo) (w — o) = 17057600700 @ ymenmeoen
Lw—ej—ek—e[,w—c]'—ek.

L
q
fs (g, w0 Vo) (w — eg) = 1

)

If the order in which the indeterminates are added is changed, one obtains isomorphic chain complexes:
for example, K, (z;,zk, z¢; Vy)(w) is isomorphic to K, (z;,z¢, xx; Vy)(w). At the last step, one obtains

Ki(z1,...,25;Vy)(u) as the mapping cone of the chain map f™(z1,...,Zm,...,%n; Vy)(u — €y,) between
Ki(z1, .. s &my o T Vo) (u —eny) and Ku(z1, ..., &y - -+, 2 V) (0).

Thanks to the iterative nature of the process, we can provide an explicit description of Ky (x5, , ..., 2;,; V4) ()
for any u € N and any non-empty subset J := {ji,...,j:} C [n]. For each i € {0,1,...,|J|}, the chain

module in degree i is
Ki(wj,, o2, Vg (w) = @D Hy(X").

vCJ, |yl=i
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The modules K;(z;,,...,x;,; V) (u) are zero for all ¢ ¢ {0,1,...,|J|}. The differentials of the chain complex
Ku(zj,, ..., 25,5 Vy)(u) can be described as follows: the differential

di : Ky, 5,5 Vo) (w) = Kia (g, -5 25,5 Vo) (u)
is the alternating sum d; = Zi;%(—l)rdm, where d; 1 Ki(zj,, ..., 25, V) (w) = K1 (zgy, -+, 25,3 Vo) (w)
is the function mapping each summand H,(X"~) of K;(zj,,...,z;5,; Vy)(u), with v = {js1), -+ Js(i) }

and s(1) < --- < (i), to the summand H, (X"~ 6-n) in K;_y(x;,,...,z;; Vy)(u) via the function
"_5'yvu_5'y+ej3(i,r)
Lq i

For any k € [n] \ J, the Koszul complex K. (z;,,...,z;,,Zx; Vg)(u) is the mapping cone of the chain map

induced by inclusions in direction ey,
o,y V) (u—en) st K@y, Vo) (u—er) — K@y, o2 V) (w),
which for each degree i € {0,1,...,]J|} is defined by

fE@g o r V) u—en) = @ o omme

vCJ, |y|=i

In Section 5, several results will be obtained by showing certain mapping cones to be acyclic, i.e. having
vanishing homology in all degrees. We recall the following immediate consequence of [Eis95, Prop. A3.19]
(see also [Wei94, Corollary 1.5.4]), which gives an equivalent condition to the acyclicity of a mapping cone.

Proposition 4.1. A chain map f : B, — C, is a quasi-isomorphism (i.e., it induces isomorphisms
H,(B.) = Hy(Cy) in homology, for all ¢ € Z) if and only if Cone(f). is acyclic.

Corollary 4.2. Let f: B, — C, be a chain map, and let B, and C, be acyclic. Then Cone(f). is acyclic.

Proof. If B, and C, are acyclic, the chain map f must be a quasi-isomorphism. O

5 Entrance grades and support of Betti tables via Koszul com-
plexes

In this section, we resume the investigation, started in Section 3, of the relations between the set of entrance
grades of cells in a one-critical filtration {X"},enn, and the set of grades where the Betti tables of the
persistent homology module V, = @, .. Hq(X") are nonzero. The main tool of the approach we propose
is the Koszul complex. In Section 5.1 we prove a result (Theorem 5.10) on the support of Betti tables &/
of all degrees i € {0,...,n} which improves the results of Section 3. In Section 5.2, we focus on the Betti
table ¢, stating a sufficient condition for its vanishing at a given grade in terms of the submodules of cycles
and boundaries of V; (Theorem 5.14). This result can be used to better approximate the support of £7.
In Section 5.3, we explain how the presented results can be combined with reductions of the filtered cell
complex via discrete Morse theory.

Our fixed setting for the whole section will be as in Section 3. For the reader’s convenience, we briefly
recall it. Let {X"},enn be a one-critical (Section 2.2) and exhaustive n-parameter filtration of a cell complex
X, which is also graded by the dimension ¢ of cells. To study the connections with discrete Morse theory (in
Section 5.3), we consider a fixed discrete gradient vector field V consistent with the filtration (see Section
2.4), and denote by {M“},cnn the associated n-parameter filtration of the Morse complex M. Extending a
notation used in Section 3, we denote set of entrance grades (Section 2.2) of a non-empty subset ' of cells of
X by

G(T') := {entrance grades of the cells of I'} C N".

We denote by G the closure of a non-empty subset G C N with respect to the least upper bound in N”, which
istheset G:={\/ L | L C G, L # (0} C N"™. Moreover, we recall that supp &7 := {u € N" | £!(u) # 0} denotes
the support of the ith Betti table £/ : N* — N of the persistent homology module V, = @, o Hq(X™).
Lastly, we establish a notation that will be used throughout this section and state two simple results that

will be instrumental in studying the support of the Betti tables using Koszul complexes.
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Notation 5.1. Having fixed a grade u € N™, for any o C [n] we set w(a) := u — e,, where e,, := Zjea e;

Lemma 5.2. Let A, B,C,D be subspaces of a vector space V' over the field F. Suppose that B C A C C
and BC D C C, and let f : % — % be the linear map induced by the inclusion of A in C. Then there are
canonical isomorphisms

AnD . A L A4D ke f
B s 1m _AﬂD_ D s coker _A+D

ker f =

Proof. Let ¢ denote the composition A — C — % of the canonical injection and projection. The map f,

induced by ¢ on the quotient, is well defined since ker o = AN D D B, and satisfies ker f = ke”’ = 40D

B
and im f = imp = keftp’ see e.g. [AM69, p. 19]. The remaining canonical isomorphisms of the claim are
obtained via the standard isomorphism theorems [AM69, Prop. 2.1]. O

Lemma 5.3. Let AL B % ¢ ™ D% E be an exact sequence of vector spaces over the fized field F. Then
C =0 if, and only if, f is surjective and i is injective.

Proof. If f is surjective and 7 is injective, then ker g = im f = B, which implies ker h = im g = 0, and therefore
C=C/kerh=imh =keri = 0. Conversely, if C' =0, then im f = kerg = B and keri = imh = 0. O

5.1 Results on the support of all Betti tables

Our goal for this subsection is to prove that [ J;"_, supp & C 9(X,) )UQ( X4+1) and, moreover, supp &g C G(X, )
and supp&? C G(X,11), for all ¢ € N (Theorem 5.10). For &7, the result is improved in Section 5.2. We
observe that the first inclusion is clearly equivalent to the following statement: if v ¢ G(X,) U G(X4+1), then
&l(u) =0, for all ¢ € {0,1,...,n}. To start with, we prove a result that allows us to rephrase the hypothesis
of this statement.

Proposition 5.4. Let A be any subset of cells of X and let w € N™. Then u ¢ G(A) ) if and only if there
erists j € [n] such that for any subset a; C [n] \ {j} it holds (X*(@) \ Xw(@)=¢i) N A = (), where w(a;) is
defined as in Notation 5.1.

Proof. We prove the contrapositive claim, showing the equivalence of the following statements:
1. u € G(A).
2. For all j € [n], there exists a subset a; C [n] \ {j} such that (X®() \ Xw(@)=e) 0 A #£ 0.

Assume that u € G(A). If u € G(A), we are done by taking a; = 0, for all j. If u ¢ G(A), then
u=\{v1,...,v.} with r > 2 and vy,...v, € G(A). In this case, by definition of the least upper bound, for
all j € [n] there exists £(j) € [r] such that u — e; # vy(;). Therefore, taking a cell oy(;) € A with entrance
grade vy(;), we have oy(;) € (X" N\ X"7%) N A, since u — e; 7 vy(;) implies ;) ¢ X"~ by one-criticality
of the multifiltration (Section 2.2). The second statement follows again by taking «; = @, for all j.

Conversely, assume that the second statement holds. For each j € [n], let v(j) denote the entrance grade
of a cell 0; € (X))  Xw(@)=¢) N A, for some w(ay) =u — >ica, €i- Let v =\/{v(1),...,v(n)}. From
v(j) 2 w(a;) =2 u, for all j, we see that v < u. Let us show now that v = w, which concludes the proof. If
v # u, then there exists j € [n] such that v < u—e;. Since o; has entrance grade v(j) and v(j) < v X u—ej,
we have 0; € X“~%. On the other hand, we are assuming that o; € X"(%) with w(a;) = u — > ica, € and
J ¢ a. The latter condition implies that w(ca;) and u — e; are not comparable. More precisely, the greatest
lower bound of w(c;) and u — e; is w(a;) — e;. Hence, the one-criticality assumption on the multifiltration
yields a contradiction (see Remark 2.1), since we are assuming that o; ¢ X®(®)=¢. O

We underline that the one-criticality assumption on the n-filtration {X“},enn plays a key role in the
proof of Proposition 5.4.

Corollary 5.5. For any u € N, we have u ¢ §(X,) if and only if there exists j € [n] such that X‘;U(aj)_ej -
;"( J)} for all subsets o;; C [n] \ {j}.
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Proposition 5.4 also yields information on the maps of the persistent homology modules {H,(X"), 1y}
and {Hy—1(X™),¢;" } in the “vicinity” of a fixed grade u ¢ G(X,).

7q1

Corollary 5.6. If u ¢ G(X,), then there exists j € [n] such that, for all a; C [n] \ {j}, the inclusion
Xwleg)=ej «y Xw() induces a surjection

L;ﬂ(aj)*ey‘,w(aj) :Hq(XW(aj)*ej) N Hq(Xw(o‘f))

and an injection

L;ﬂ_(clvj)*ewl)(aj) ;Hq_l(X“’(O‘j)fef) N Hq_l(X“’(O‘j)).

Proof. By Proposition 5.4, if u ¢ G(X,), then there exists j € [n] such that, for all o; C [n] \ {j}, we
have X;U(aj)_ej = X;U(aj), which implies H,(X%(@), Xw(@)=¢i) = (. The claim follows from the following
portion of the long exact sequence of relative homology of (X®(®) X w(ei)=e;)

Hq(Xw(Oéj)*Ej) N Hq(Xw(Oéj)) 0 —» Hq_l(Xw(Oéj)*ej) N Hq_l(Xw(af)),

w(ay)—ej,w(oy) w(O‘J) eJ7w(aJ) O

where the first map is ¢4 and the last map is ¢,

Remark 5.7. Moving towards the proof of our main result, let us note that the hypothesis u ¢ G(X,)US(X,11)
implies, applying Corollary 5.5 twice, that the following properties hold simultaneously:

(i) there exists j € [n] such that X% = X% for all subsets a; C [n] ~ {j}.
(ii) there exists £ € [n] such that X;‘f{“{) “ = X;‘;(IX’Z) for all subsets ay C [n] \ {/}.

Clearly, the indices j and ¢ of properties (i) and (ii) in Remark 5.7 can either coincide or not. We next
prove that both cases imply the acyclicity of certain Koszul complexes, addressing the case 7 = £ in Lemma
5.8 and the case j # £ in Lemma 5.9.

Lemma 5.8. If properties (i) and (ii) in Remark 5.7 are verified with j = ¢, then the Koszul complex
Ki(z1,..., 205 Vy)(u) is acyclic.

Proof. Reasoning as in the proof of Corollary 5.6, we see that the maps
i;U(aj)—epw(aj) . Hq(Xw(aj)—ej) N Hq(Xw(Oéj))
are isomorphisms, for all subsets «; C [n] \ {j}. Therefore, the induced chain map
F@r, e @,z Vo) (u— ) t K@y, ooy 2y s V) (u—€5) = K@y, ooy 2y vy 3 V) (1)

is an isomorphism of chain complexes. Hence, the claim follows from Proposition 4.1 because K, (21, . . ., Tn; V5) ()
is the mapping cone of f7(z1,...,2,...,2n; Vy)(u —€;). O

Lemma 5.9. Let u € N™ and suppose that properties (i) and (i) of Remark 5.7 hold with j # £. Then, for
any w = w(a) =u— e, with a C [n] N {j,{}, the Koszul complex K. (z;,z¢; V) (w) is acyclic.

Proof. In order to apply Proposition 4.1, we regard K, (z;, z¢; Vy)(w) as the mapping cone of the chain map
P V) (w = eq) - Ky V) (w — eg) = K3 Vo) (w).
We want to prove that f* (x5 Vg)(w — e;) induces isomorphisms between the homology modules of

w—e;—ep,w—e
d1=Lq J £ £

Ku(zj; Vo) (w —er) = (0 — Hy(Xvme™e) Hy (X"™%) — O)

and

w—e;,w
3
d] Lq

Kai(zj; Vo) (w) = (0 — Hy(X¥™%) Hy(X"Y) — 0) .
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both Koszul complexes. Hence, we only have to show that

and tg 7" are surjective (see proof of Corollary 5.6), homology in degree 0 is zero for

[ ker g meaTeOW T ker g T

w—ej—eg,wW—e; w—e;j—eg,Ww—eyp
T 7 to kereyg Y

is an isomorphism, where f’ denotes the restriction of ¢4 . The map [’ is
—€j; —€g,W—Ej

injective because tq 7 is injective (see proof of Corollary 5.6). We now show that f’ is surjective.
We use here the notations Z,(X") and B, (X") respectively for the submodules of cycles and boundaries
of Cy(X"?), for all v € N*. By Remark 5.7(i), X; 7% = X» ¢ and X, “ = X2, which implies

q )
Zg(Xwmeimet) = Zo(X"™e) and Zy(X" %) = Zy(X™). Similarly, by Remark 5.7(ii), X\, ™% = X%
and X* = X 1, which implies By (X" ~%7%) = B,(X"~%) and B, (X" ™) = By(X"). By Lemma 5.2,
we have

Z waejfeg B waeg
ker W& —ew—er fI( ) N q( ), ker Lg;—

Zg(X"79) N By(X™)
q Bq(waejfeg) :

By(Xwe)

€j,w

Since f’ is the map induced by the inclusion of the numerators, using Lemma 5.2 and the equalities of
subspaces Z; and B, stated above, we obtain
Zy(X"79) N By(X™) By(X™)

ker f' =2 -
Cco eI‘f Zq(X“’_ej_ef)ﬁBq(Xwiel)‘i’Bq(X’w_ej) Bq(Xw)>

proving that f’ is surjective, hence an isomorphism. O

We underline that to conclude the proof we use an argument based on the equality of some subsets of
cells of X. This part of the proof cannot be replaced by using only the properties of the induced maps in
homology (as in Corollary 5.6). As a counterexample, consider the diagram

-

of vector spaces, with dim V' # 0. We can regard the rows as two chain complexes with surjective differentials,
and the vertical arrows as an injective chain map between them, as in our proof. However, the mapping

—

—

cone of this chain map is clearly not acyclic.
We can now complete the proof of our main result for this section.

Theorem 5.10. Let { X"}, ene be an n-parameter exhaustive filtration of a cell complex X. Then

U supp & € §(Xg41) U G(X,),
i=0

for all ¢ € N. Furthermore, supp & C G§(X,) and supp &L C G§(Xg41), for all g € N.

Proof. To prove that [J;_,supp&! C G(Xg41) U G(X,), let u ¢ G(X441) U G(X,). As we have seen,
properties (i) and (ii) of Remark 5.7 hold, which involve indices j,¢ € [n]. If j = ¢, the Koszul complex
Ki(z1,...,z0; Vg)(u) is acyclic by Lemma 5.8. If j # ¢, consider the Koszul complexes K, (z;, z,; V) (w), for
any w = w(a) =u— ) ;.. e with a C [n] \ {4, £}, which are acyclic by Lemma 5.9. The Koszul complex
Ky (21,...,2n; V4)(u) can be obtained from the chain complexes K, (z;,z¢; Vy)(w) by iterating the mapping
cone construction (see Section 4). At each iteration of this process, by Corollary 4.2, one obtains acyclic
Koszul complexes, hence we can conclude that K, (x1,...,z,; Vy)(u) is acyclic, that is, £/ (u) = 0 for all
i €{0,...,n}.

To prove that supp &l C §(X,), we observe that if u ¢ G(X,) then by Corollary 5.6 there exists j € [n]
such that H,(X"%"%) — H,(X") is surjective. This implies that the differential d; of the Koszul complex
Ki(21,. .., 20; Vy)(u) is surjective, hence &l (u) = dim(H,(X*)/imd;) = 0.

Similarly, to prove that supp &2 C G(X441), we observe that if u ¢ G(X,41) then by Corollary 5.6 there
exists j € [n] such that Hy(X"'™%) — Hy(X™) is injective, where w :=u — > 7,11\ ;3 €i- This implies that
the differential d,, of the Koszul complex K (z1, ..., 2n; V;)(u) is injective, hence £Z(u) = dimkerd,, =0. O

16



The following simple consequence of Theorem 5.10 gives a bound of the union of the support of the Betti
tables over all the homology degrees inside the union of the closures of the sets of entrance grades of critical
cells over all the dimensions.

Corollary 5.11. Under the assumptions of Theorem 5.10, UZJ:O supp &l C UZ:O G(X,)-

The following Example 5.12 shows that in general the right-hand side term of this inclusion cannot be
reduced to a smaller set defined in terms of the entrance grades of cells of X, making this inclusion tighter
in some sense. A more refined version of it when n = 2 will be given in the next section (cf. Corollary 6.6) in
terms of homological critical grades.

Example 5.12. Let n = 3 and let X be the following simplicial complex:

DPo

P1 b3
D2

Let us consider the following 3-filtration of X: all vertices and the edges p1p2 and pops have entry grade
0 =(0,0,0) € N3; for all j € {1,2,3}, let the edge pop; have entry grade u; == \;e;, for some positive integer
Aj. Figure 1 in Section 5.2 represents a filtration of this form. Then, all entry grades and all their least
upper bounds in N? are in supp & for some ¢ and i: £)(0) = 2, £)(u;) =1 for all j, &} (u; V ug) =1 for all
j # k, and &} (uy V ug V us) = 1. This example can be generalized to any n > 1.

5.2 A condition for the vanishing of &}

As in the rest of the section, our starting point is an n-parameter exhaustive filtration {X*},cn of a cell
complex X, of which we consider the gth persistent homology module regarded as the n-graded S-module
Vi = @yenn Hy(X"). For each u € N, we write H,(X") = gqg(u)), where Z,(X") = ker(0,: Cy(X™) —
Cy—1(X")) and By(X") = im(Jgq1: Cqy1(X") — Cg(X™)). We observe that Z, == @, . Z¢(X") and
By = @, cnu Bg(X") are n-graded S-modules, respectively given by the kernel of the n-graded ho-
momorphism 9;: @, cyn Co(X™) = PByenn Cq—1(X™) and the image of the n-graded homomorphism
g1t Duenn Cqr1(XY) = By enn Cq(X™). In this subsection, we give a condition for the vanishing of the
Betti table £ of V; at a fixed u € N in terms of B,(X") and Z,(X") at grades v € {u — €4 }ac[n) (Theorem
5.14), and we derive relations between the support of &7 and the entrance grades of cells.

Our aim is studying, for any fixed u € N™, the degree-1 homology of the Koszul complex K, (21, . .., xn; V4) (),
whose dimension is the value &f(u).

We fix u € N" and ¢ € N. We choose £ € [n] and define an n-filtered cell complex {X*},enn such that
its (¢ + 1)-cells are

q+

o, JUsetmngn Xort? v {uu—ed,
' Xo+1 otherwise,

its lower dimensional cells are )N(;’ = X for all » < ¢ and all v € N, and it does not have any cell of
dimension higher than ¢+ 1. The incidence function of X is induced (by restriction) by the incidence function
of X. We remark that, since our goal is studying the Koszul complex at u, we will only look at the grades
v € {u — €q tacn Of the filtration {X”}veNn. The gth homology of {X }uenn is the n-graded S-module V
such that

Zg(X?) .
~ ~ 5 i if ve{uu—epl,
V) = Z#e By (X"7) . t o (5.1)
H,(XV) = §2E§u§ otherwise.

For the sake of a simpler notation, we do not denote the dependence of X~/q on the fixed u € N and the
chosen £ € [n].

The module ‘7q, which coincides with V; for all grades except u and u — ey, is useful to prove the results
of this subsection. We observe that the natural n-graded homomorphism 7 : ‘7(1 — Vg is surjective, because
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pointwise it is the linear map
v . Zq(X") Zy(X")

M —>
D jre Ba(XP7%)  By(XY)
for the grades v € {u,u — e}, and it is the identity on H,(X") for all other grades. We have therefore the
following exact sequence of n-graded S-modules:

(5.2)

0 — kerm V, ==V, 0.

Since constructing the Koszul complex at u is an exact operation (see Section 4.1), we obtain the short exact
sequence of chain complexes

0 — Ku(z1,.. ., xnskerm)(u) —— Ki(z1, ..., 205 Vg)(u) — Ki(z1, ..., 20 V) (u) —— 0
and the induced long exact sequence in homology

e (Ko (V) (1)) —— Hi (K. (V) (u)) j
(5.3)

L» Ho (K, (ker 7)(u)) — Ho(K, (V) (1)) — Ho(K,(V,)(u)) — 0,

where we have suppressed the sequence (z1,...,z,) from the notation of the Koszul complexes for brevity.
The following proposition will be useful to prove the main result of this subsection.

Proposition 5.13. If By(X") = >7_| By(X"~%), then Ho(K.(ker7)(u)) = 0.

Proof. We recall that the construction of the Koszul complex K, (ker 7)(u) involves the graded pieces with
grades in {u — eq facn) of the n-graded S-module ker 7. By definition of Vi, we have (ker7)* = 0 for all v,
except for u and u — ey. We consider the linear map

B, (Xt~ g o B, (X"
q( 2,8.,‘5 g (ker 7-()“ _ Q( ) —
> jeim)~{ep Bo(XHmei7er) > jem]~{op Ba(X¥7%)
induced by the inclusion By (X"~ %) C B,(X"). Regarded as a chain complex (concentrated in homological

degrees 1 and 0), the map 7;~“* is isomorphic to the Koszul complex K. (ker 7)(u), hence coker ny =" =
Ho(Ky(ker m)(u)). We conclude the proof using Lemma 5.2 to compute coker g~

(ker m)“~¢ =

COker nu—ez,u o~ Bq (Xu) — BL] (Xu> — 0
! Ba(XU¢) + 3 sen)~qey Ba(X“7%) Z?:l By(X=ed)
where the last equality holds by assumption. O

Our main result of this subsection gives a condition for H; (K, (V,)(u)), and, equivalently, £{(u), to vanish.

Theorem 5.14. Let {X"},ene be an n-parameter exhaustive filtration of a cell complex X. Fix u € N,
and suppose that By(X") = 2?21 B, (X"~%) and that there exists a permutation p € Sym(n) such that, for
every ¢ € [n],

Z (XU ew)N Z Zy(Xvmow) | = Z Zy(XUmer) =),
Jj<t j<t

Then &l (u) = 0.

Proof. First, we prove the claim supposing that the hypothesis on the cycles is satisfied by the identity
permutation p = id,). The proof is by induction on the number n of parameters.

The base case n = 1 corresponds to the statement B,(X") = B,(X“!) implies f(u) = 0 (as the
condition on Z, is trivially satisfied), which is true because £f(u) is the dimension of the vector space

ker ;1% s Hy(X“™1) — Hy(X™) which, by Lemma 5.2, is isomorphic to (Zg(X“™') N By(X"))/By (X" 1).
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We now prove the claim for n parameters, supposing it holds for n — 1 parameters. For any chosen
¢ € [n], we can consider the module ‘7}1 associated with {X*}, defined as in Equation (5.1). Here, we
choose £ = n. Under the hypothesis that B,(X") = Z?Zl B,(X"~%), in the long exact sequence (5.3)
we have Hy(K,(ker7)(u)) = 0 by Proposition 5.13, so it is sufficient to prove that H; (K*(%)(u)) =0 to
conclude that Hi(K.(V,)(u)) = 0. We highlight that using ‘7(1 in the rest of the proof is convenient, as
it is constructed in a way that allows us to use the inductive assumption. We write the Koszul complex
K*(‘qu)(u) = Ko(21,...,2Tn; ‘N/q)(u) as the mapping cone (see Section 4.2) of the chain map induced by
inclusions in direction e,,

(2, e Vg)(u—en) : Ki(zr, .oy 2n—1; V) (u — en) = Ki(z1, ..o @n—1; V3) (v).

In the rest of this proof, for simplicity we denote this chain map and the two Koszul complexes by
K (V) (u—ep) — K2 (V, q)(u). We consider the long exact sequence of the mapping cone (see e.g. [Wei94,
§ 1.5.2]) for Cone(f™), = K. (V,)(u):

e Hy(K™(V,) (1)) —— Hy (K. (V) (u)) U

[» Ho(K2 (V) (u — en)) —— Ho(K2 (Vo) (u)) —— Ho(Ku(Vy)(w)) — 0.

The Koszul complex K(V,)(u) = K. (21, ..., 2n_1; V,)(u) is defined from the (n — 1)-parameter filtration
{f(“—ea }acCln—1], which allows us to apply the inductive assumption, since Bq(f(“) = z;:ll Bq(;("_eﬂ‘) and
the condition involving the subspaces Z, is satisfied by p = id[, restricted to [n — 1]. Therefore, by the
inductive assumption, Hy (K (V,)(u)) = 0. Thus, by Lemma 5.3, the vanishing of H; (K .(V,)(u)) is ensured
by the injectivity of the function Ho(f™): HO(K"(V Nu—ep)) — HO(K"(V )(u)) in the long exact sequence,
which is what we show to hold in the next step of the proof.

We begin by observing that H (Kf(ffq)(u)) can be written as follows:

n—1 u—eq,u L en—

HO(KZ(‘A;:])(U)) =~ coker @Hq()?u—ej) [tq
j=1

n—1

= coker | (P Zq@?“ew g~ g Z (XY
By(Xv=e) S5oi By(Xumes)

z (X"
Z] 1 ' Z (Xu € )
___Z L(X™)

ZJ 1  Z o(X¥ e’)

Similarly, there is a canonical isomorphism

~

Z(X)
Yjot Zg(Xumeimen)

Using Lemma 5.2, we see that the kernel of the map Ho(f™): Ho(K™(V,)(u—ey)) — Ho(K™(V,)(u)), induced
by the inclusion Z (X" ") C Z,(X"), is

I%

Ho(K2 (V) (u — €n))

Zq(X“_e”) ()21 Zo(X"))
S5oh Zy(Xueimen)

which is zero since the numerator coincides with the denominator by hypothesis. This concludes the proof

ker(Ho(f")) =

)

under the assumption p = id[,

Lastly, we explain how the proof in the special case of the identity permutation implies the claim for a
generic permutation p on the set [n]. Let p be a permutation for which the hypothesis of the theorem is
satisfied. Then, we can consider the filtration {L*~* },c[,) defined by L*~¢ = X"~ which satisfies
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u— eg

> <>

u—e3

L[
[

Figure 1: A 3-parameter filtration {X"“7°*},ct1,2,3} of simplicial complexes such that, for ¢ = 1, the equality
Zg(X"T) N (Zg(XM79) + Zg(X"7k)) = Zg(X"797%) + Zy, (X" %) (see hypothesis of Theorem 5.14) does

not hold, for any choice of different j, k, ¢ in {1,2,3}. Using the Koszul complex K, (V1) (u) it is easy to see, by a
dimension argument, that Hq (K. (V1)(u)) 2 F and, equivalently, £ (u) = 1.

By(L") = 377_) By(L"~%) and, for every ¢ € [n], Z,(L*~) N (Zj<é Zq(Luiej)> =D <t Zg(L"™75).
The Koszul complex of the associated gth persistent homology module at u is obtained from K, (V;)(u) =
Ki(z1,...,2n;Vy)(u) by permuting the indeterminates, and is therefore isomorphic to it (see Section 4.2).

We can therefore apply the proof for the case of the identity permutation to {L"~°*},c[,) and conclude
that & (u) = 0. O

Remark 5.15. The condition on the subspaces Z, in Theorem 5.14 amounts to n different identities of
subspaces of Z,(X™"). In the proof of the theorem we observed that, when the sum on the left-hand side
has zero summands, the corresponding inequality is trivially satisfied. It is worth noticing that the equality
corresponding to a sum on the left-hand side with exactly one summand is always satisfied too. In other words,
for any pair of distinct indices j, k € [n], the identity Z,(X" ™% )NZ (X"~ ) = Z4(X"~%~°) holds true. To
see this, we recall that Cy (X"~ )N Cy(X“ ) = Cy(X™ %) holds by one-criticality as a consequence of
XumenXumer = X4¢ ¢ (see Remark 2.1), and we observe that Z,(X") = Co(X¥)N9;*(0) for all v € N,
where 0, denotes the differential 9;: Cy(Uy, X") = Cy—1(UyX?). In particular, for 2-parameter filtrations,
the condition of Theorem 5.14 on the subspaces Z, always holds. In Figure 1, we show a 3-parameter
filtration not satisfying the hypothesis of Theorem 5.14 on the subspaces Z,,.

We now state conditions involving the fixed grade v € N™ and the sets §(X,41) and G(X,) of entrance
grades which ensure that the assumptions in Theorem 5.14 on the subspaces B, and Z, are verified.

Proposition 5.16. If u ¢ G(Xg441), then By(X") = 22‘;1 By(Xuei),

Proof. The inclusion Z?=1 By (X"7%) C By(X™) holds in general and follows from By (X"~ %) C By(X")
for every j € [n]. To see the other inclusion, we first observe that v ¢ §(Xgy1) implies Cgyq(X") =
Cyy1(Uf_; X*7%), which is equal to E;Zl Cy+1(X¥~%). The claim then follows from the equalities
9q+1(Cq+1(X")) = By(X") and 611-&-1(2?:1 Cor1(X"7%)) = 2;21 By(X"7¢7). O

Remark 5.17. The converse implication is false as can be seen, for ¢ = 0, considering a cell complex with two
vertices connected by two edges and the following 1-parameter filtration: the two vertices and one edge enter
at grade u — ey, and the other edge enters at grade u.
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Proposition 5.18. If u ¢ G(X,), then there exists a permutation p € Sym(n) such that, for every £ € [n],

Z (XU ew)N Z Zy(Xvmow) | = Z Z (XU o),
Jj<t j<t
Proof. We prove the statement by induction on the number n of parameters. By Remark 5.15, for n = 1
and n = 2 the identities involving subspaces Z; hold in general.
To prove the induction step for n parameters, we recall that by Corollary 5.5 we have u ¢ §(X,) if and
only if there exists k € [n] such that X(“¥) =% — x2(*%) for all subsets ay, C [n] ~ {k}. We take such
an index k and set p(n) = k. For any j # k, taking oy, = {j}, we get Z,(X" %) = Z,(X"~%). Hence,

S et g Za(X 75 7) = iy Za(XU), which implies Z, (X"~%) N (zje[n]\{k} Zq(X“*GJ')> -
> jein)~{k} Zq(X"797). The right-hand side is actually equal to the left-hand side, since the reverse
inclusion holds in general and follows from the fact that, for every j # k,

Zq(Xufejfek) — Zq(Xufek,) N Zq(Xufej) C Zq(Xufek) N (Zje[n}\{k} Zq(Xufej)) ,

where the first equality is by Remark 5.15. This proves the equality involving subspaces Z, for £ = n.
Lastly, we have to show that for every £ < n the remaining equalities involving subspaces Z; in the claim
hold. This is a consequence of the inductive hypothesis, observing that the remaining equalities involve the
grades in {u — €a}ag[n]\{k}, which is a portion of an (n — 1)-parameter filtration, and that u is not a least
upper bound of grades in §(X,) belonging to this filtration. By relabeling the parameters in [n] \ {k} of the
(n — 1)-parameter filtration with indices in [n — 1] and applying the inductive assumption, we see that there
exists a bijection p’ : [n — 1] — [n] . {k} such that the first n — 1 equalities of the claim hold. We complete
the proof by defining p(j) = p’(j), for all j < n. O

Remark 5.19. The converse implication is false in general: for example, even if the equalities involving
subspaces Z, are satisfied, u can be the entrance grade of a g-cell of M that does not appear in any g-cycle.

Using Proposition 5.16 and Proposition 5.18 we immediately obtain the following corollary of Theorem
5.14. We note that the same bound for the support of £ was obtained in Section 3 using multigraded
resolutions (Remark 3.5).

Corollary 5.20. Let {X"},enn be an n-parameter exhaustive filtration of a cell complex X. If u € N™ is
such that u ¢ G(Xq41) U G(X,), then £l (u) = 0. In other words, supp&] C G(Xq+1) U G(X,).

We end this subsection describing two particular cases in which the equalities involving subspaces Z; in
Theorem 5.14 are always satisfied. The first case corresponds to ¢ = 0.

Corollary 5.21. Let {X"},ene be an n-parameter exzhaustive filtration of a cell complex X, of which we
consider the associated q-th persistent homology module with ¢ = 0. If u € N™ is such that Bo(X%) =
2?21 Bo(Xu=¢), then €9(u) = 0. As a consequence, for ¢ = 0 we have the following containments:

supp&y € §(Xo),  suppé) CG(X1),  |Jsuppgl € S(X0).
i=1
Proof. Since the n-parameter filtration {X"},cnn is one-critical (see Remark 2.1), the following equalities of
(graded) sets hold for all w,vy,..., v, € N™

XY N (U§:1 X%‘) = U;?:l (X¥nN ij) - U?:l X WA

Considering cells of dimension ¢ and taking the F-linear span of the left-hand and right-hand sides one
obtains

Cy(X™) N (41 Co(X)) = Xh, Cy(Xme).

For ¢ = 0, since Zp(X") = Cp(X"V) for all v € N", all the equalities involving subspaces Z, in Theorem 5.14
are therefore always satisfied. This proves the first part of the claim and, as an immediate consequence
using Proposition 5.16, the containment supp &y C §(X;). The containment ., supp&? C §(X;) follows
from the fact that, for any n-graded S-module V, [J;, supp & (V) C supp & (V), see for example [CT15,

Remark 3.2]. Lastly, the containment supp £J C G(Xj) holds by Theorem 5.10. O
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The second particular case corresponds to n = 2, i.e. to bifiltrations of persistent homology modules.

Corollary 5.22. Let {X"},en2 be an 2-parameter exhaustive filtration of a cell complex X. If u € N? is
such that Bg(X") = 2?21 By(X"=¢), then £} (u) = 0. The following containments hold:

supp &f € G(Xy), supp & € §(Xg41), supp &3 € G(Xgi1).

Proof. The first part of the claim follows from Theorem 5.14 and Remark 5.15, and it implies supp &7 C
G(Xg+1) by Proposition 5.16. The other containments hold by Theorem 5.10. O

5.3 Morse complex and support of the Betti tables

We conclude the section by observing how the results of Section 5.1 and Section 5.2 can be applied to
the Morse complex M associated with any discrete gradient vector field V consistent with the filtration
{X"}uenn of X (see Section 2.4). By Proposition 2.4, the persistent homology module V, := @, cyn Hy(M*")
associated with {M"},enn is isomorphic to Vg, hence the Betti tables of V coincide with the Betti tables &l
of V. This can be seen for example from the fact that, as observed at the end of Section 4.1, the Koszul
complexes of Vq' and V; at any v € N™ are isomorphic. Therefore, one can bound the support of the Betti
tables of V;, using the entrance grades of the cells of M. For example, Theorem 5.10 has the following
immediate consequence.

Corollary 5.23. Let {X“},enn be an n-parameter ezhaustive filtration of a cell complex X, let V be a fized
discrete gradient vector field consistent with the filtration, and let {M"},enn be the associated n-parameter
filtration of the Morse complex M. Then

U supp&! C G(My41) U S(M,),
i=0

for all g € N. Furthermore, supp & C §(M,) and supp &L C G(My41), for all ¢ € N.

Similarly, we can summarize as follows the statements corresponding to Theorem 5.14, Corollary 5.20,
Corollary 5.21 and Corollary 5.22 applied to the Morse complex.

Corollary 5.24. Let {X"“},enn be an n-parameter exhaustive filtration of a cell complex X, let 'V be a fized
discrete gradient vector field consistent with the filtration, and let {M"},enn be the associated n-parameter
filtration of the Morse complex M. Then the following facts hold.

1. If u € N" satisfies Bo(M") = 2?21 By (M™% ) and there exists a permutation p € Sym(n) such that,
for every £ € [n],

Z, (MU0 N Z Zy(MU=) | = qu(Mu—epm—epm)’
j<t j<t

then &} (u) = 0. As a consequence, the containment supp &§ C G(My41) U G(M,) holds.

2. In the case ¢ = 0, if u € N" is such that By(M"™) = 2?21 Bo(M¥=¢), then £ (u) = 0. As a
consequence, the following containments hold:

suppé) € G(My),  supp&) C G(M1), | Jsupp&) € S(M).
=1

3. In the case n =2, if u € N? is such that B,(M") = Z?Zl By(M¥~¢), then £} (u) = 0. The following
containments hold:

supp &g C G(M,), supp &7 C §(My11), supp &3 € G(Mgq1).
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6 Homological critical grades and support of Betti tables for bi-
filtrations

In this section, we fix n = 2 and study the support of the Betti tables of persistent homology modules
associated with a one-critical bifiltration {X“},cn2 of a cell complex X. In what follows, we make use of the
notations introduced at the beginning of Section 5. Additionally, for ¢ € N, let us set

Cy(X) = {u € N? | dim H, (X", X"~ U X"~) £ 0}

and call it the set of g-homological critical grades (see [GL23]). For any fixed u € N? and any ¢ € N, let us
recall the following known inequalities (see [LS22, Corollary 1], and [GL23] for a generalization to the case
n>2):

() + €17 (u) = &7 (u) < dim Hy (X, X7 UX""2) < & (w) + 607 () &5 (w). (6.1)

To interpret the results of this section, we remark that Cq;(X) C G(X,) and, more generally, if M is the
Morse complex associated with any discrete gradient vector field consistent with the filtration {X"},cn2, by
[LS22, Prop. 1] we have C,(X) C §(M,). As we will show (Proposition 6.5 and Corollary 6.6), for bifiltrations
we are able to bound the support of the Betti tables using the sets C,(X) instead of the sets G(1M,), thus
strengthening our general results of Section 5 (cf. Corollary 5.23 and Corollary 5.24).

First, we prove a technical result that crucially depends on the one-criticality assumption (Section 2.2)
on the bifiltration.

Lemma 6.1. Let v € N? and let j # £ in {1,2}. Then, there is a short exact sequence of chain complezes
0 CL (X0, XP70e2) o O (XY, XV74) = CL(XV, X7 UX"2) -0,

Remark 6.2. The statement has to be interpreted by setting X*~¢ = () if v — e; is not in N2, and similarly
for XV7¢ and XV~ °1~°2, We use this convention throughout this section.

Proof. Without loss of generality, we prove the statement for j = 1 and £ = 2. The sequence
0 — C* (XU—€1 U X’U—CQ’XU—€1> — C* (XU7XU_61) — C* (X'U, X'U—el U XU_62) — 0

associated with the triple X?=¢ C XV~ U XV~ C X" is exact. Now we observe that, for any ¢ € N, the
relative chain modules of the pair (X¥~¢ U XV~¢ XV~¢1) are

B B B C (X’U*El U vaez) C (X’Ufel) + C (X’U*QQ)
C Xv el U X'u eg’Xv ey = q — q q
o N Ao Co(xv)

Cy(XP—2) Cy(X7=2) r e
o~ — = C (X’U EQ’X'U (51 62)7
Co(XT e N (X7—2) ~ Gy(Xemaen) 00

where we used the classical isomorphism theorem for modules and, in the penultimate equality, the fact
that Cy(XV?7¢) N Cy(XV %) = Cp(X¥~°17°2) as a consequence of the equality X V¢ N XV~¢2 = Xv-c1—ez
given by the one-criticality assumption on the filtration (see Remark 2.1). These isomorphisms between
chain modules commute with the differentials of the chain complexes C,(XV7¢ U X¥~¢ XV~¢) and
C(XV~e2, XV~ gince they are induced by the differential of C,(X). O

Corollary 6.3. Let v e N? g € N and j # ¢ in {1,2}, and suppose that H,(X"V, X"~ UX"~) = 0. Then
H,(XV, X""%) 0 implies Hy (X", XV=e17¢2) £ (.

Proof. By Lemma 6.1, the following is a portion of a long exact sequence in homology:
H (X778, XP79792) 5 Hy (X, X"7%9) - H(X°, X" U X" ).
Since H, (X", XV~¢ U XV~°2) = 0, the first map is surjective, and the claim follows immediately. O

To prove the final result of this section (Proposition 6.5), we first show directly that the support of the
Betti table £~ " is contained in C,(X).
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Lemma 6.4. For all ¢ € N, we have supp 5371 C Cq(X).

Proof. Let u € supp 5371' We prove that there exists A € N such that
Hq(Xu—Ael7Xu—()\+l)el U Xu—)\el—eg) ?é 0. (62)

If condition (6.2) holds for A = 0, then u € C,(X). Otherwise, since the same property can be proven with
the roles of e; and ey interchanged, our claim follows by observing that (u — Aej) V (u — pes) = u, for every
A peN.

Assume that (6.2) is false (i.e. it is an equality) for all A € N; then H,(X%~*e1 Xu=re1=e2) =£ () implies
Hq(X“*(/\“)el,X“*()‘H)el’e?) # 0 by Corollary 6.3 (applied with v := u — Xe1), and we can therefore use
an inductive argument. The base case of the induction is H,(X*~¢, X%~ ¢17¢2) % ( for A = 1, which holds
because the hypothesis u € supp£2~" implies that Gy 1t YT Hy g (XUTT) = Hy oy (X¥7¢) has
nonzero kernel (see Section 4.1). Since X“~*¢1 = () = X#~*¢1=¢2 for a sufficiently large A, we see that the
induction leads to a contradiction. O

Proposition 6.5. For all ¢ € N, we have supp &8 Usupp &9 Usuppéd ™! C Cq(X).

Proof. Let us assume that u ¢ C,(X). In the first inequality of (6.1), the term dim H, (X", X“~¢ U X"~ 2)
is zero by definition of C,(X). By Lemma 6.4, £5"(u) = 0, hence we have £Z(u) + £/ (u) = 0, which is
equivalent to &(u) = &9 (u) = 0. O

We observe that the inclusion supp &g C C,(X) can be proven directly, in a similar way to the proof of
Lemma 6.4. Contrarily, a direct proof of the inclusion supp §§71 C C4(X) eludes us.
In conclusion, for bifiltrations, we can bound the support of Betti tables as follows.

Corollary 6.6. For all ¢ € N, the Betti tables of degree q satisfy

supp &8 Usupp £f Usupp&d C €, (X) U Cyy1(X).

Furthermore, the union of the supports of all Betti tables satisfies

Ue(x) € Uswpel < [Je(X).

Proof. The first statement holds by Proposition 6.5 and implies the second inclusion of the second statement.
The first inclusion of the second statement follows from the second inequality of (6.1), which implies that
Cy(X) C supp&d Usupp&?™! Usupp €42, for all ¢ € N. O

We remark that the first statement of Corollary 6.6 is not a consequence of Theorem 5.10, as for
2-parameter persistent homology modules it is known that C,(X) can be strictly contained in §(M,), for
any choice of a discrete gradient vector field to determine the latter set of grades (see [LS22, p. 2369] for an
example).

For n > 2 parameters, we believe that exact sequences like those of Lemma 6.1, along with those induced
in homology, can still be useful to study the relation between Betti tables and homological critical grades.
In this case, however, these sequences assemble in much more complicated systems, and appropriately
disentangling them would require a different approach.

7 Generalization to multi-critical filtrations

In this last section, we discuss how the results of Section 5 and Section 6 can be generalized to an n-
parameter filtration {X“},en» that is not one-critical (Section 2.2). Such filtrations are called multi-critical.
As observed in Section 3, one-criticality ensures that the chain complex associated with the filtration
{X"}uenn is composed of free n-graded S-modules. More specifically, for any ¢ € N, Cy :== @, cyn Cg(X™)
is free and isomorphic to . X, S(—v,), with v, denoting the unique entrance grade of the cell o. The

persistent homology module V, = @, .y Hq(X") is then defined as the homology at the middle term of the

) d
sequence Cyq1 -, Cy — Cy—1 of free n-graded S-modules. For a multi-critical filtration {X*},enn, the
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modules of this sequence are in general not free. Using results from [CSV17], one can however present V; as

the homology at the middle term of a sequence of free n-graded S-modules A ENy; NV satisfying gf = 0,
which enables applying our results. Below, we describe the strategy to construct such a sequence starting
from a multi-critical filtration of a cell complex. For brevity, in this section we call a chain complex any
sequence of (not necessarily free) n-graded S-modules A 1. B % ¢ with gf = 0, observing that it can be
viewed for example as the chain complex --- — 0 — ker f — A ENY; JENToJIN cokerg =0 — ---.

Let X = {X"“},en» be a multi-critical n-parameter filtration of a cell complex X. We suppose the filtration
to be exhaustive, meaning that X = (J, . X*. For every fixed ¢ € N, we denote by X, = { X}/ }uen» the
induced filtration of sets of g-cells. Following [CSV17, Sect. 4], we recall how to construct a free presentation
of the n-graded S-module C; = @,y Cq(X™).

For any cell o € X, the n-parameter filtration Xy[o] = {X/[0]}uenn of sets is defined by

Xulo] = {o} if o € X7/,
Tl 0 ifog Xy

Let ent(0) = {u € N" | 0 € Xy \ U}, X4~} denote the set of entrance grades! of o. We recall that a
filtration is one-critical if and only if ent(o) has exactly one element, for every cell o of X. The F-linear span
of the filtration Xy[o] is the n-graded S-module Cy[o] = D, ,e xu

ideal (zV | v € ent(0)). As observed in [CSV17], a free presentation of the n-graded S-module C,[o] is given

by
B S(—vve) LAY 5w,

voF#v1 Eent (o) v€Eent(o)

I, which is isomorphic to the monomial

where the n-graded homomorphism 7;[o] sends the generator 1,,v,, at grade vy V vy of S(—vg V v1) to
groVviTvil, e S(—w;)%V for ¢ € {0,1}.

The n-graded S-module Cy := @, cyn Cq(X™), which is the F-linear span of the filtration X, is isomorphic
to P, x, Cqlo]. As already observed, if the filtration X is not one-critical, Cq is not free. A free presentation

of Cy is given by:
Pl P Stwve) L B 50
oc€Xy \vo#vi€ent(o) vEent (o)

In other words, C is isomorphic to the cokernel of the n-graded homomorphism mo—m1 :== @, ¢ x, (mo[o] — m1[0]).
To establish notations of modules and homomorphisms that will be used in what follows, we write this
presentation of Cj as

R, ™, q, — s ¢, (7.1)

where Gq = @UEXQ @UEent(a) S(—’U) and Rq = @{TGX(] @vo#q)leent(a) S(_UO v vl)'

Next, following [CSV17, Sect. 5] we review how the m-parameter persistent homology module V, =
D cnn Hq(X™) associated with a multi-critical filtration X = {X™"},enn» can be expressed as the homology
of an explicitly constructed chain complex of free n-graded S-modules. Although the construction of [CSV17,
Sect. 5] is for n-parameter filtrations of simplicial complexes, it can readily be adapted to n-parameter
filtrations of cell complexes, as we now explain.

Starting from the sequence of n-graded S-modules

9q+1 9q
Con1 Cy

C‘I*lv (72)

consider Cq—1 = @, cx, , Cq-1[0] and define the free n-graded S-module Dg—1 = P,cy, , 5 and the
n-graded homomorphism 7,_1 : Cy—1 — Dy_1 given by the direct sum of the inclusions C,_1[o] < S, for all
o € X4_1. Since 141 is injective, replacing d, by the composition 7,_19, in the sequence (7.2) does not
affect the homology V; at the middle term. Similarly, since the homomorphism pg41 : Gg41 —+ Cyy1 defined

n [CSV17], the notation gen(o) is used for the set here denoted by ent(c).
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as in (7.1) is surjective, replacing dq41 by the composition Jy41pg+1 in the sequence (7.2) does not affect the
homology V;. In other words, the homology at the middle term of

Ogq+1 1 _10,
Gq+1 q+1Pq+ Cq Mg q inh (73)

is isomorphic to V,. Since G411 is free (and hence projective) and p, is surjective, there exists an n-graded
homomorphism 6,441 : Gg+1 — G, such that the triangle

G C
T G iperr 4

commutes. The proof of [CSV17, Prop. 5.2] carries over, showing that V; is isomorphic to the homology at
the middle term of the following chain complex of free n-graded S-modules:

[ro—m1 dg+1] Nq—19qPq

Ry ® Gy G, Dy (7.4)

We remark that the construction of this chain complex is not canonical, as it requires choosing a lift d,;.
Now we denote by G(G,) set of grades of the generators of G4, and by G(R,) the set of grades of the
generators of Ry, for all g. Explicitly, they are the following subsets of N":

G9(Gq) = {v e N" | v € ent(o) for some o € X},

7.5
G(Ry) = {w e N* | w = vy V v1 with vy # v1 € ent(o), for some o € X,}. (7.5)

Our results of Section 5 and Section 6 can be applied to the persistent homology module V of a multi-critical
filtration X = {X“},en» by replacing the chain complex (7.2) of (not necessarily free) n-graded S-modules
by the chain complex (7.4) of free n-graded S-modules to present V, as the homology at the middle term.
In particular, this affects the sets of entrance grades of cells: in degree ¢, the set §(G,) now plays the role
of §(X,) in Section 5; similarly, G(R; ® Gg+1) = G(Ry) U G(Gy4+1) now replaces the set §(X,41). Lastly,
we observe that, with the aim of reducing the involved chain complexes, one can replace the n-filtered cell
complex X with an n-filtered Morse complex M, consider (7.2) to be the chain complex associated with M
and construct (7.4) from it.

As an example of how the results on one-critical filtrations can be adapted, we state the generalization of
Theorem 5.10 and Corollary 5.20 to the case of multi-critical filtrations.

Proposition 7.1. Let {X"},ene be a multi-critical n-parameter exhaustive filtration of a cell complex X .
Then, for all ¢ € N,

suppg € §(Gy),  suppéf € G(Ry) UG(Gra) US(Gy),  supp &l € S(Ry) U G(Gan),

and

U supp&! € G(Ry) US(Gyr1) US(Gy),

i=0
where the sets §(Gq), 9(Gq+1) and G(Ry) are as in (7.5). Furthermore, the same containments hold if the
sets §(Gy), 9(Gy+1) and G(Ry) are determined from {M"},enn instead of {X"}yenn, where {M"} enn is
the n-parameter filtration of the Morse complex M associated with any fized discrete gradient vector field
consistent with the filtration {X"}yenn.
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