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ABSTRACT

Persistent homology encodes the evolution of homological features of a multifiltered cell complex in the form
of a multigraded module over a polynomial ring, called a multiparameter persistence module, and quantifies
it through invariants suitable for topological data analysis. In this paper, we establish relations between the
Betti tables, a standard invariant for multigraded modules commonly used in multiparameter persistence, and
the multifiltered cell complex. In particular, we show that the grades at which cells of specific dimensions first
appear in the filtration reveal all positions in which the Betti tables are possibly non-zero. This result can be
used in combination with discrete Morse theory on the multifiltered cell complex originating the module to
obtain a better approximation of the support of the Betti tables. In the case of bifiltrations, we refine our results
by considering homological critical grades of a filtered chain complex instead of entrance grades of cells.

1. INTRODUCTION

One of the main concepts in topological data analysis is persistent homology, a tool to capture topological
information at multiple scales and provide meaningful topological summaries of the data, as surveyed,
for example, in [9, 14, 21]. In practice, assuming that a data set comes equipped with measurements
like functions or metrics to filter it, persistent homology transforms the filtered data into a nested family
of chain complexes that depend on as many parameters as the number of different measurements used.
Applyinghomology with coefficientsin a field [ to such a filtered chain complex produces a parametrized
family of vector spaces, connected by linear transition maps, called a persistent homology module. Algebraic
invariants of persistent homology modules provide the required summaries of the data topology.
Classically, the development of the theory of persistent homology originated from two separate roots:
Morse theory (as in, for example, [3, 13, 18, 35]) and commutative algebra (as in, for example, [8, 33,
40]). These two perspectives reconcile very elegantly in the case of one-parameter persistence, that is,
when the filtration depends on only one parameter. In this case, persistent homology modules admit a
complete invariant, the so-called barcode, encoding the lifespan of homology classes through the con-
sidered filtration. From the standpoint of Morse theory, the endpoints of bars in a persistence barcode
correspond to the cancellation of pairs of critical points of the filtering (Morse) function [13]. From the
algebraic perspective, a persistent homology module is a representation of a finite linear quiver in the
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category of vector spaces. Thus, a one-parameter persistence module admits a unique decomposition
into interval modules, that is indecomposable modules, each supported on an interval. These intervals
are exactly the bars of the persistence barcode [40].

Itis of both theoretical and practical interest to understand persistent homology in the case of multiple
parameters, yielding to the so-called multiparameter persistence. Indeed, in applications, one often needs
to filter the data using more than only one measurement, obtaining a multiparameter persistence mod-
ule. This is the case, for example, when there are different drivers for a phenomenon [4], or when one
needs to downsize the role of outliers by adding a co-density measurement to the principal, explanatory
measurement as in [5, 19].

Unfortunately, the theory of multiparameter persistence modules proves to be much more elusive than
the single-parameter one: In particular, since multigraded modules are of wild representation type [20],
more complicated indecomposables than just intervals can generally occur, and it is impossible to list
them all or characterize them via discrete invariants. Despite this difficulty, all the relevant homological
events in a multiparameter filtration are conveniently captured by the Betti tables of the multiparameter
persistent homology module [8]. However, these events cannot be paired to obtain summaries similar
to barcodes, and their mutual dependencies cannot be easily unveiled.

One of the motivations of this paper is to relate the events captured by the Betti tables of a multiparam-
eter persistent homology module to the events captured by Morse theory, considered in its combinatorial
formulation [17, 26]. This attempt to reconnect the algebraic perspective to Morse theory in the mul-
tiparameter situation is both of theoretical interest in commutative algebra and of practical advantage,
as it provides a unified perspective to study persistent homology modules together with the underlying
filtered complexes.

In this perspective, starting from the observation that for a one-parameter persistent homology mod-
ule the support of the Betti tables coincides with the set of entrance grades of critical cells in the filtration
under consideration, our goal is to understand whether and to what extent this fact can be generalized
to multiparameter persistence. An indication that this may be the case comes from the results of [22],
which establish Morse inequalities involving, on the one hand, the values of the Betti tables of a multipa-
rameter persistent homology module, and, on the other hand, the so-called homological critical numbers
of the same filtration. The latter numbers can be viewed as theoretical lower bounds of the numbers of
critical cells entering the filtration at each filtration grade for any choice of a discrete gradient vector field
consistent with the filtration.

The results of this paper delimit, in the space of parameters, the support of the Betti tables of a persis-
tent homology module in terms of the entrance grades of cells in the multiparameter filtration. Moreover,
we study the relation between the dimension of the entered cells and the degree of the persistent homol-
ogy module on which they impact. In our setting, the multiparameter filtration is defined on an abstract
cell complex, an object representing in a combinatorial way a chain complex of vector spaces with distin-
guished bases (section 2.1). To obtain our main results of sections 3, S and 6, the filtration is assumed to
be defined via the sublevel sets of measurement functions. In such filtrations, also called one-critical in
topological data analysis [7], every cell has a unique entrance grade (section 2.2).

From a different perspective, we aim to highlight how prior known results about multigraded resolu-
tions are relevant to the study of multiparameter persistence, and what can be gained in the context of
persistence by integrating them with Morse theory. Indeed, the main goal of this paper can also be stated
in the language of multigraded commutative algebra, considering n-graded modules over the polynomial
ring S := F[x1, ..., x,]. An n-parameter persistent homology module can be viewed as an n-graded S-

module V which s presented as the homology at the middle term of a sequence A EA B Cof n-graded
S-modules with g f = 0. If the n-parameter filtration is one-critical, the modules A, B and C are free. Our
goal is to study the Betti tables of V' and relate their support with the grades of the generators of the
modules A, Band C.

In section 3, we highlight how multigraded free presentations and resolutions, well studied in multi-
graded commutative algebra [30, 34], can be applied in the context of multiparameter persistence. Via
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this approach, we obtain some initial bounds on the support of the Betti tables of a persistent homol-
ogy module in terms of entrance grades of cells in the multiparameter filtration (Proposition 3.4 and
Remark 3.5).

Nevertheless, we can say more about the support of Betti tables of persistence if, instead of approaching
the problem directly using a free resolution of the multiparameter persistence module, we use the Koszul
complex associated with the persistence module, a strategy already used in [22, 25, 29]. More specifi-
cally, our technique is based on the construction of the Koszul complex via mapping cones (section 4).
Using this inductive construction, we can compute Betti tables by looking at the space of parameters
only locally, and, more importantly, we can disentangle the different parameters of the multiparameter
filtration: the Koszul complex at a fixed grade in an n-parameter space is determined by the Koszul com-
plexes at nearby grades in an (n — 1)-parameter space. This allows for explicit and direct proofs. As an
advantage, we can identify obstructions to the vanishing of Betti tables of a persistence module, which
may not be as clear using the more abstract approach via free resolutions, and get tighter bounds than
directly using resolutions.

In detail, given an n-parameter filtration {X*},en» of a finite cell complex X, we consider, forany g € N,
the set G (X, ) of entrance grades of g-cells in the filtration, as well asiits closure G (X, ) with respect to least
upper bounds, that is, the smallest set containing G (X, ) and the least upper bounds in N" of its nonempty
subsets. We denote by & : N" — N the ith Betti table of the persistent homology module obtained as
the gth homology of the filtration. In the case when the filtration is one-critical, Theorem 5.10 of section 5
states a relation between the support supp &7 := {u € N" | £!(u) # 0} of the Betti tables and the sets
of entrance grades of cells: forallg € N,

n

|Jsupp & € G(X,11) UG(X,).

i=0

This delimitation of the support of the Betti tables using the entrance grades of cells cannot be tightened
(see Example 5.12).

‘We next focus on particular Betti tables for which the containment above can be improved. Still in The-
orem 5.10, we prove thatsupp & € G (X;) and supp &ElCg (Xg+1),forallg € N. More interestingly, in
Theorem 5.14, we identify a sufficient condition on submodules of boundaries and cycles for the vanish-
ing of £ at a grade u € N". The condition for boundaries is the identity By(X*) = Z?:l By (X"~ of
submodules of C, (X*), while the condition for cycles consists, up to a permutation on the set {1, . . ., n}
enumerating the parameters, of the identities

z,x )0 [ Doz (xm) | =Dz (xrom),

j<t j<t

for every £ < n. Our result implies the bound supp &' € G(X,41) U G(X,) for the support of the 1st
Betti table (Corollary 5.20). In particular, in comparison to what can be obtained using multigraded free
resolutions of the persistent homology module as in section 3, we see that using the cone construction
of the Koszul complex, we get somehow stronger results.

To reconnect our results with Morse theory, in section 5.3 we observe that all our bounds for the sup-
port of Betti tables can be applied to the Morse complex associated with any discrete gradient vector field
consistent with the filtration. The persistent homology module of the Morse complex has the same Betti
tables as that of the original filtration, but the set of entrance grades of cells is typically much smaller.
Therefore, using Morse complexes, one can often obtain better approximations of the support of the
Betti tables.

In the endeavor to improve the bounds for the support of Betti tables, rather than considering
entrance grades of cells (either of the original complex or of an associated Morse complex), as a further
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contribution of this paper we show that, in the case of two-parameter filtrations that are one-critical,
the support of the Betti tables of a persistent homology module is contained in the closure of the set
of homological critical grades (section 6). Although limited to the case of two parameters, this result
improves our results from section 5 in two ways: It does not depend on the choice of a specific discrete
gradient vector field and establishes that all events witnessed by the Betti tables are determined by
homological criticality (Corollary 6.6).

Our results of sections 5 and 6 hold for one-critical filtrations of cell complexes. Although they cannot
be applied directly to filtrations that are not one-critical, a generalization in this direction can be obtained
using results from [11], as we explain in section 7.

2. PRELIMINARIES

Before presenting relevant background material for this article, let us establish some general notations:
N denotes the set {0, 1, ...} of natural numbers; [n] denotes the set {1, 2, .. ., n}; {e;}i=1
dard basis of N"; for any subset @ C [n], we denote e, := Zjea
the symbols A and V denote the greatest lower bound and least upper bound, respectively.

. is the stan-

.....

¢j; |J| denotes the cardinality of a set J;

2.1. Based chain complexes, cell complexes and homology
Let [ denote a field, arbitrary but fixed. A based chain complex is a chain complex C, = (Cq, Bq)qez of
vector spaces over [F, which we assume to be of finite dimension, such that each C, is endowed with a
distinguished basis X,;. Throughout this article, we assume all chain complexes to be bounded, meaning
that C; = O whenever g < 0 or g > m for some integer m. Based chain complexes can be viewed from a
combinatorial perspective, as their distinguished bases inherit the structure of an (abstract) cell complex,

in the sense of Lefschetz [28]. In this work, we call cell complex a finite graded set X = |_| ., X;, whose

eN
elements are called cells, endowed with an incidence function k : X x X — F. Acello eq X, is said to
have dimension g, denoted dim 0 = g, or to be a g-cell. The incidence function must satisfy two axioms:
(1) k(t,0) # 0 implies dim 7 = dimo + 1 and (2) ZpEXK(T’ p) - k(p,o) =0, for any pair of
cells T and 0 in X. We endow X with the order relation <, called the face partial order, generated by
the covering face relation: 0 < t ifand onlyifk (1, o) # 0. Given a cell complex X, we denote C,(X) =
(C4(X), 0g)qez the based chain complex such that X, is the fixed basis of C,, for all g, with differentials

dq : C; — C,_1 defined on each T € X, by

0y(7) = Z k(t,0)o.

0EX; 1

We observe that C, (X) is the zero chain complexif X = @.

A graded set A = |_| geN A, is called a subcomplex of X if, for all T € A, every cell o € X such that
o < t is also in A. This property makes A, endowed with the restriction of the incidence function of
X, a cell complex, and is equivalent to requiring C, (A) to be a chain subcomplex of C, (X ). We denote
by Hy(X) := ker 9,/ im 9,4, the homology [-modules of C,(X), and by Hy (X, A) the homology [ -
modules of the relative chain complex C, (X, A).

We observe that the notion of a cell complex as reviewed above, equivalent to that of a based chain
complex, is general enough to include simplicial complexes and cubical complexes, among other widely
used combinatorial objects admitting a canonically associated chain complex. If the aim is computing
homology, finite CW complexes can also be represented by cell complexes, letting k (7, o) be the degree
of the attaching map from the boundary of T to 0.

2.2. Multifiltrations and multiparameter persistence
One of the main mathematical objects of interest in topological data analysis are functors from a poset to
the category of finite dimensional vector spaces over a field . Here, we consider the indexing poset N,
for some integer n > 1, equipped with the coordinate-wise partial order: Foru = (u;), v = (v;) € N",
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we write ¥ < v if and only if u; < v;, for all 1 <i < n. In this article, an n-parameter persistence mod-
ule is a functor from the poset (N”, <) with values in finite-dimensional [ -vector spaces. Morphisms
between such functors are the natural transformations. Explicitly, an n-parameter persistence module
V consists of a family {V*},ep of F-vector spaces together with a family {¢*" : V¥ — V"},<,en of
linear maps such that ¢*"* = ¢"* o ¢"" whenever u < v < w, and ¢"* = idy«, for all u. A morphism
between two n-parameter persistence modules {V*, ¢*"} and {W*, y*"} is a family of linear maps
{v*: V¥ — W*"},enr such that v” o %" = " o v¥, for all u < vin N". A morphism v is an isomor-
phism (monomorphism, epimorphism, respectively) ifand only ifits components V" are bijective (injective,
surjective), forallu € N*.

In topological data analysis, the typical source of persistence modules are filtrations of cell complexes
associated with the data. An n-filtration of a cell complex X is a family {X“},en» of subcomplexes of
X such that u < v implies X* € X". If a cell o of X is an element of X* \ U;.lzl X"7¢, we say that u
is an entrance grade of o in the filtration. In this article, we assume, unless otherwise stated, that filtra-
tions {X"“},cnw are families of sublevel sets X* = {0 € X | h(0) < u} of some order-preserving func-
tionh : (X, <) — (N", <), with < denoting the face partial order on X. This assumption is equivalent
to requiring every cell of X to have exactly one entrance grade, and will only be lifted in section 7, where
we discuss applications to general n-filtrations.

The filtrations we are considering are usually called one-critical [7] in topological data analysis. We
want to highlight that assuming the uniqueness of entrance grades is fundamental in order to obtain the
results of sections S and 6, which are false for general filtrations of cell complexes (but can be adapted as
explained in section 7). For instance, in this article, we repeatedly use the following fact.

REMARK 2.1. Given a one-critical n-filtration {X"},cp and a finite set of filtration grades

w= A{u;}; = (min{u;};, ..., min{y; ,};) is the greatest lower bound of the subset
{u;}j=1....k in N". In particular, for each subset o C [n], we have the equality
mjea Xufe,- — Xufea.

We are interested in persistence modules obtained as the homology of an n-filtration. Given an n-
filtration {X"“},cnn and applying the gth homology functor, one obtains the n-parameter persistent qth-
homology module Vy = {V', 13" }uzvenr, with V' := Hy(X") and (" : Hy(X") — Hy(X") induced by
the inclusion maps X" < X" for u < v. We note that it is common to use the terms multifiltration and
multiparameter in place of, respectively, n-filtration and n-parameter, to indicate the generic case when
n > 1. Moreover, two-filtrations are also called bifiltrations.

The overall purpose of this work is to study the relation between the homological invariants of mul-
tiparameter persistent homology modules called Betti tables and the multifiltrations from which they
are obtained. To this aim, we adopt some tools and terminology from commutative algebra. An n-graded
module over the polynomial ring S := F[x,, ..., x,] is an S-module with a vector space decomposition
V =@, V¥ such that x; - V* € V¥t forallu € N" and i € [n]. There is a standard equivalence
[8] between the category of n-parameter persistence modules and the category of n-graded S-modules,
allowing us to view a persistence module {V*, ¢*"} as the n-graded S-module . V*, where the
action of Sis defined by x; - z = ¢““%(z), forallz € V* and i € [n]. Standard homological invariants
from commutative algebra, such as the Betti tables (also called multigraded Betti numbers, see section 2.3),
were among the first ones studied in multiparameter persistence [8, 25]. Given an n-parameter persistent
homology module {V?, (7"}, obtained as the gth homology of an n-filtration, we view it as the finitely

generated n-graded S-module V; = @, V,' and denote its ith Betti table by gl forie{0,1,...,n}.

We recall that its Betti tables are functions & : N" — N defined by

£1(u) := dim(Tor} (V,, F))*,
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for all u € N". Explicitly, £ (u) is the dimension (as an [-vector space) of the piece of grade u of the
n-graded S-module Tor? (Vg, ). In section 4, we give an equivalent definition of the Betti tables based
on the Koszul complex.

2.3. Multigraded modules and free resolutions

We now briefly review free resolutions of n-graded modules over the polynomial ring S :=
Flx1, ..., x,]. In this article, all n-graded S-modules are assumed to be finitely generated. Homomor-
phisms f : V. — W between n-graded S-modules are assumed to be n-graded, meaning that they pre-
serve grades: f(V*) C W* forallu € N". We refer to [30, Ch. 1] and to texts like [ 16, 34] for further
details.

For an n-graded S-module V and for a € Z", we denote by V (a) the module such that V (a)* = V**¢
forallu € N, called the shift of V by a. The module S(—a) is the free S-module on one generator at grade
a € N". Itisisomorphic to the principal monomial ideal (x*), where x” denotes the monomial x{" - - - x%".
An n-graded S-module is called free if it is isomorphic to @;:1 S(—a;) forsomer € Nanda; € N". For
afree module, r and {a; }:'=1 are uniquely determined.

As an example related to the multifiltrations of section 2.2, one can consider the persistence module
{Co(X™), f;’”}uﬁvewn, where the maps f;"’ : Cg(X") = C4(X") are induced by the inclusions X* <
X", and regard it as the n-graded S-module C; = @, . C;(X*). If the n-filtration {X*},c\» is one-

critical, then C, is free, isomorphic to S(—v, ), where v, denotes the unique entrance grade of

o€eX,
the g-cell 0. The differential 9, : C; — Cq_lqis an example of an n-graded homomorphism between n-
graded S-modules, whose component in grade uis 9, : Cg(X*) — C,—(X*), forallu € N".

An (n-graded) free resolution of an n-graded S-module V is a sequence

...H&ﬁﬂ,lhn-gEgFo—)O

of n-graded free S-modules and n-graded homomorphisms, which is exact at degree i (that is, ker ¢; =

im ¢;11) for all i > 0, and such that coker ¢»; = V. An exact sequence - - - ﬁ) F ﬂ) E 5V S 0is
called an augmented free resolution of V, with the n-graded homomorphism ¢ called an augmentation.
The smallest integer € (if it exists) for which F = 0 for every i > £ is called the length of the resolution.
By Hilbert’s Syzygy Theorem, every finitely generated n-graded S-module V admits a free resolution with
length £ < n.

A free resolution is called minimal if the image of each homomorphism ¢; is contained in
(%1, ..., %,)F_1, where (%, ..., x,) denotes the homogeneous maximal ideal of S. Minimal free res-
olutions are unique up to isomorphism, and they are an invariant of the isomorphism type of V. In par-
ticular, the number of summands S(—u) in F, for everyu € N" and i € {0, 1, ..., n}, is a well-defined
invariant of V, and it coincides with the value at u of the ith Betti table (or multigraded Betti number),
& (u) := dim(Tor (V, [))“ To see this, recall that, by definition, Tor’ (V, ') can be determined by ap-
plying the functor — ®s [ to a free resolution of V and taking the ith homology of the resulting chain
complex of n-graded S-modules. Choosing a minimal free resolution of V, the homomorphisms ¢; ®g I
are all zero, hence Tor} (V, F) = F ® [ has in grade u an F-vector space of dimension equal to the
number of summands S(—u) in F, forallu € N”.

A free presentation of an n-graded S-module V is an n-graded homomorphism ¢, : F; — F, between
free n-graded S-modules F; and F, such that coker ¢»; = V. In this article, we will occasionally refer to the

augmented sequence Fy ﬂ) Fy — V — 0,whichis exactat F, and V, as a free presentation of V. A free
presentation of V is called minimal if it is the portion (in degrees 1 and 0) of a minimal free resolution of V.

2.4. Discrete Morse theory and multifiltrations
Discrete Morse theory, developed by Forman [17], is an adaptation of smooth Morse theory [31] to a
combinatorial framework. In its original formulation, it allows, given a regular CW complex, to construct
ahomotopy equivalent CW complex with a smaller number of cells. Building on Forman’s work, discrete

Gz0z 1snbny gz uo 1senb Aq L 5G5ZZZ8/ L Z0seey/yiewb/ce0 L 0 L/10p/a[oie-soueApe/yrew b/woo dno-oiwspese//:sdpy wody pepeojumod



SUPPORT OF BETTI TABLES OF MULTIPARAMETER PERSISTENCE e 7

Morse theory has been formulated in purely algebraic terms for based chain complexes [26] and in more
general frameworks [23, 37]. In this algebraic setting, the aim is to decompose a chain complex into a
smaller complex and an acyclic complex. As explained in section 2.1, one can always take an equivalent
combinatorial perspective by considering the cell complexes associated with based cell complexes. We
briefly present here the main ideas of algebraic discrete Morse theory in the setting of this work.

Let C,(X) be the chain complex associated with a cell complex X = |_|q X, and let < be the cover-
ing face relation on X introduced in section 2.1. A pair of cells (0, 7) € X x X with o < 7 is called
a discrete vector. A discrete vector field ) on X is a collection of discrete vectors V = {(0}, 7;)} ;¢ such
that all cells appearing in V' (indifferently as the first or the second component of a vector) are different.
A discrete vector field V determines a partition of X into three graded subsets M, S, T, where M is the
set of unpaired cells, called critical cells, and S (respectively, T) is the set of cells appearing in V as first
(respectively, second) components of a discrete vector. The subsets M, S, T inherit the grading by di-
mension of the cells of X, so that, for example, M = |_| Mg A V-path between two cells o and ¢’ is a
sequence (0, To, 01, T1, - - - » Or—1, Tr—1, Oy ) with r > 1 such that 6y = 0, 0, = 0’, each (0}, 7;) is a
discrete vector of V, and 0,41 < T;. The V-path is called closed if 0, = 0} and trivial if r = 1. A discrete
vector field V is a discrete gradient vector field (also called an acyclic matching or a Morse matching) when
all closed V-paths are trivial.

The core result of discrete Morse theory [17] can be algebraically stated as follows [23, 24, 37].

THEOREM 2.2. Let C,(X) = (Cy(X), 0y)qez be the chain complex associated with a cell complex
X= |_|q Xy and let V = {(0, T;)} je be a discrete gradient vector field on X. Then, C,(X) is
chain homotopy equivalent to C, (M) = (C4(M), 8;‘4)qu, where M = |_|q M, is the set of
critical cells and 0™ is a differential determined by 3 and V.

We call C,.(M) the (discrete) Morse chain complex of C,,(X) associated with V. Let us stress that in
general C, (M) is not a chain subcomplex of C,(X), since its differential 3 is not simply induced by
restriction by the differential d of C,(X). The details on how 8 is (uniquely) determined by 9 and
V can be found in [23, 37]. Equivalently, a cell complex structure on the set M = | |, M, called the
(discrete) Morse complex of X associated with V, is determined by the incidence function of X and V
[24]. In general, M is not a subcomplex of X.

Discrete Morse theory of filtered chain complexes has been studied in a series of works related to one-
parameter [32] or multiparameter persistent homology [1]. In the remainder of this section, we present
the main ideas of discrete Morse theory for multifiltrations.

Consider an n-filtration {X"“},cn» of a cell complex X, which determines a filtration {C,(X*)},enr of
the chain complex C, (X). Given a discrete gradient vector field V on X, there are clearly induced fil-
trations {M"},cp on the Morse complex M and {C, (M")},cn+ on the Morse chain complex C, (M) =
(Cy(M), 82"). In general, the former is only a filtration of sets and the latter is only a filtration of graded
[F-vector spaces, as the differential 3 may fail to be compatible with the filtration. To avoid this, one can
require the discrete gradient vector field to interact nicely with the multifiltration on X.

DEFINITION 2.3. A discrete gradient vector field V on X is consistent with a multifiltration
{X*“} e if, forall (o, 7) in Vand allu € N*, 0 € X*ifand onlyift € X“.

If V is consistent with the multifiltration {X"“},epn, then {Cy (M*)},enn is a filtration of chain subcom-
plexes of C,, (M) [1, 32]. Equivalently, {M"“},cp is a filtration of subcomplexes of M. Moreover, the per-
sistent homology modules associated with the multifiltrations of X and its Morse complex are isomor-
phic (in the sense of section 2.2).

PrOPOSITION 2.4 (Lemma 3.10in [1]). Let ) be a discrete gradient vector field on a cell complex X
consistent with an n-filtration {X"},enr, and let {M"},enn be the n-filtration induced on the Morse
complex M. Then, for any q € N, the persistence modules obtained as qth homology of the
n-filtrations {X"},enn and {M*},enn are isomorphic.
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8 ¢ A.GUIDOLIN AND C. LANDI

3. ENTRANCE GRADES AND SUPPORT OF BETTI TABLES VIA FREE
RESOLUTIONS

In this section, we illustrate how methods in multigraded homological algebra based on free presen-
tations and resolutions (see section 2.3) can be used to derive relations between two different graded
subsets of N": the set of parameter grades at which new critical cells appear in the one-critical filtration
{X"“}uen of a cell complex X, on the one hand, and the set of parameter grades where the Betti tables of
the persistent homology module V; = €, .. Hy(X*) are non-zero, on the other hand. Specifically, we
obtain bounds on the support of the Oth and Ist Betti table of V; (Proposition 3.4), and we discuss the
immediate consequences of these bounds on the support of Betti tables of higher degrees (Remark 3.5).
We conclude by observing that some of the stronger results we will prove in section 5 do not immediately
follow from this approach. For this reason, we defer the discussion of how our results on the support of
Betti table can be combined with discrete Morse theory to section 5.3.

In this section, we consider the following setting. Let {X"},en be a one-critical n-filtration of a cell
complex X. We assume the multifiltration {X“},cn» to be exhaustive, that is, X = ¢, X*. Clearly,
e X;, for all ¢ € IN. The one-
criticality assumption (section 2.2) ensures that the chain complex associated with the filtration {X*},c»
is made of free n-graded modules over the polynomial ring S := F[xy, ..., x,]. More specifically, for
any q € N, the n-graded S-module C; := @, ., C;(X*) associated with the filtration is free and iso-
morphic to B, ex, S (—ve ), where v, denotes the unique entrance grade of the g-cell 0. The set of all
entrance grades (section 2.2) of g-cells is denoted by G (Xq) C N", and its closure with respect to least
upper bounds is denoted by G (X, ). Explicitly, G(X,) :== {\/L | L € G(X;),L # ¥} € N*,with \/L
denoting the least upper bound of L in (N", <).

By definition, the persistent homology module V, = €D, Hy(X") is the homology at the mid-

since X is graded by the dimension g of cells, this means that X, = [ J

dle term of the sequence C; 1, _aq:i) G, i) C,-1 of free n-graded S-modules and n-graded homomor-
phisms. Our aim is constructing a free resolution of V; that is informative of the relation between the
support of the Betti tables and the sets of entrance grades of cells. In this section, we denote by &;(V)
the ith Betti table of an n-graded S-module V, which we view as a function &;(V) : N* — N with val-
ues & (V) (u) := dim(Tor? (V, F))* defined as detailed in section 2.3. We drop the module V' from the
notation of the Betti tables when it is clear from the context. Lastly, let us recall that we use the notation
g := &(V,) for the Betti tables of the persistent homology module V; = P, ¢, Hy(X*), and that we
denote by supp & := {u € N" | £1(u) # 0} the support of /1.

We start by considering the following sequence of n-graded S-modules and #n-graded homomorphisms,

h _ kerd,
Vy

Og+1
Coqt1 — ker 0, = g1’

where } is the canonical projection. This sequence is not a free presentation of V; in general, since ker 9,
is in general not free forn > 2 and g > 0. To obtain a free presentation of V;, we consider a free presen-
tation F; — Fy — ker d; of ker d,, which we assume to be minimal. This free presentation is the second
row in the diagram of n-graded S-modules,

0 —— Cg1 == Cyp1

L P

Fl o FO c ker 8,1

I

Vq
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SUPPORT OF BETTI TABLES OF MULTIPARAMETER PERSISTENCE e 9

where the homomorphism 9 is a lift of g+1, which exists since C,1 is free (hence projective) and ¢ is
surjective. A free presentation of V; is then given by

[0 1]

Cor1 ® Fy Fy —"= V,, (1)
where [0 ¢, ] denotes the n-graded homomorphism sending (¢, x) € Cy41 @ Fito d(c) + ¢1(x) € K.
To see that coker[d ¢ ] = V;, we observe that the composition he is surjective, and that its kernel coin-
cides with im[d ¢;] = im 3 + im ¢;.

Our goal is approximating the sets of grades of the generators of the free modules F, and C;1, ® Fi,
which are the sets supp & (Fy) and supp £, (Cy41 @ F,), respectively. In Proposition 3.4, we state bounds
in terms of the sets G(X;) and G (X, +1). To prove these bounds, we need some results on free resolution
of n-graded S-modules.

First, we state a result whose proof can be found for example in [38, Lemma 2.1] o, in a slightly dif-
ferent setting, in [ 10, Corollary 4.2].

PROPOSITION 3.1. Let V be a (finitely generated) n-graded S-module. Then, the supports of its Betti
tables satisfy the containments supp &1 < supp &, foralli > 1.

Next, we need a result on the structure of free resolutions. The proofs presented in [34, Theorem 7.5]
or [16, p. 6] carry over to the multigraded case.

PROPOSITION 3.2. Every n-graded free resolution of an n-graded S-module V' is isomorphic to the
direct sum of a minimal free resolution of V' and short trivial complexes of the form

0— S(—u) LY S(—u) — 0, withu € N", possibly involving different homological degrees.
The following is a useful consequence of Propositions 3.1 and 3.2.

COROLLARY 3.3. Let K be the kernel of an n-graded homomorphism f : V.— W of n-graded
S-modules, where V. is free. Then, supp & (K) C supp & (K).

Proof. LetE, = (--- — R LN Fy, — 0) be an n-graded minimal free resolution of K. The
augmented free resolution - - - — F ﬂ) E 5 K — Ocanbe composed with the canonical

L
monomorphism K < V to form the sequence

o SsEA RSV o (2)

of free n-graded S-modules, which can be viewed as a (non-necessarily minimal) free
resolution of the module im f = V/K = coker t&. By Proposition 3.2, the free resolution (2)
of im f is isomorphic to a minimal free resolution P, = (--- — P, = P, — Py — 0) plus
a direct sum of short trivial complexes. By minimality of E, a short trivial complex

0— S(—u) LY S(—u) — 0, which is a direct summand of (2), can only have non-zero
modules in homological degreesi = 0, 1 (using indices as in P, ). Since Betti tables count the
multiplicity of free summands S(—u) at each grade u € N" and each homological degree of a
minimal free resolution (see section 2.3), this implies that supp &; (im f) C supp & (K) and
that supp &1 (im f) = supp &(K) fori > 1, which together with Proposition 3.1 gives

supp & (K) = supp & (im f) C supp&;(im f) < supp & (K).
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10 e A.GUIDOLINAND C.LANDI

We are now ready to prove bounds for the grades of the generators of the free modules appearing in
the free presentation (1).

PROPOSITION 3.4. The containments supp &(Fy) € G(X,) and

supp &0 (Cqy1 ® F) € G(X11) U G(X,) hold for the modules in the free presentation (1) of

v,

Proof. We start with an argument similar to the one used in the proof of Corollary 3.3. Let
E=(--—F ﬂ) Fy, — 0) be a minimal free resolution of ker 4. The augmented exact

4 . .
sequence - - - — F, — F 5 ker d; — 0 can be spliced with the exact sequence

9,
0 — ker 9, N G - Cy11 to form the sequence

0,
..-—>F1ﬂ>1~"of>cq—q>cq+l—>o (3)

of free n-graded S-modules, which can be viewed as a (non-necessarily minimal) free
resolution of the module coker d,. By Proposition 3.2, the free resolution (3) is isomorphic
to a minimal free resolution P, = (--- — P; — P, — P — Py —> 0) plus a direct sum of
short trivial complexes. We observe that a short trivial complex

0— S(—u) <4 S(—u) — 0 with non-zero modules in homological degrees i = 2, 3
cannot be a direct summand of (3), by minimality of the free resolution F; of ker d,. For this
reason, the containment supp & (P,) < supp & (P, ), obtained by applying Proposition 3.1
to P, with i = 1, implies the containment supp & (F) < supp & (Cq ). The first containment
of the claim follows by recalling that the set supp &,(C, ) of grades of the generators of C,
coincides with G (X, ) by definition.

We now consider the set supp £o(Cy41 @ Fi) = supp &0(Cyq1) U supp & (F; ). Again by
definition, we have supp &, (Cy41 )=¢G (Xg41 ). We therefore focus on the set supp & (F;)
and observe that

supp & (F) = supp &; (ker 8,1) C supp & (ker Bq),

where the equality is by definition of Betti tables via minimal resolutions (section 2.3), and
the containment is by Corollary 3.3. The second containment of the claim then follows from
the equality & (ker 9,) = &,(F) and from the first part of the proof. O

REMARK 3.5. Since by Proposition 3.2, the free presentation (1) of V; contains a minimal free
presentation as a direct summand, Proposition 3.4 yields the following two containments:

supp&d € G(X,), supp &/ € G(Xp11) UG(X,).

We recall that the support of the 1st Betti table determines a bound for the support of all

Betti tables of positive degree, since | J_, supp & C supp &]'. This general fact for n-graded
S-modules is observed for example in [ 12, Remark 3.2], and follows from Proposition 3.1.
Using this fact, we immediately see that

n

Usupp ‘éi_iq < g(Xq+1) U g(Xq)'

i=1
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In section S, we will obtain the containments for supp &] (Theorem 5.10) and supp &' (Corollary 5.20)
with an alternative method based on the Koszul complex, which will allow us to improve some of the
statements regarding the support of higher Betti tables. In Theorem 5.10, we will prove the stronger

statement | J?_ supp §! € G(X;41) U G(X,), together with the containment supp &, € G(X,4,) for
the support of the nth Betti table.

4. THE KOSZUL COMPLEX OF A PERSISTENCE MODULE

In this section, we describe the Koszul complex associated with an n-parameter persistence module
and illustrate some of its properties. In particular, given an n-parameter persistent homology module
{H, (x4, LZ“’} , we introduce its Koszul complex at u € IN", a chain complex whose ith homology mod-
ule has dimension equal to the Betti table value &7 (u). This chain complex can be constructed via a
repeated procedure which allows us to add one parameter of the multifiltration at a time.

In section 4.1, upon briefly recalling general definitions and results, we provide a more detailed de-
scription of Koszul complexes of multiparameter persistent homology modules. We claim no original
results in this section, as the Koszul complex is a standard tool, and the explicit description of its chain
modules and differentials in the case of persistent homology modules is included, for example, in [22,
Sect. 3]. Here, besides fixing notations, we provide further details, especially with regard to bifiltrations,
that are relevant to this work.

In section 4.2, we explain how the Koszul complex associated with an n-parameter persistence module
can be constructed as an iterated mapping cone, and we highlight the role of this construction for per-
sistent homology modules, which intuitively allows one to disentangle the different parameters of the
multifiltration and study their impact on the Betti tables. In section S, we will apply this technique to
study the support of the Betti tables.

4.1. The Koszul complex of a multigraded module
Let S denote the polynomial ring F[xy, ..., x,]. We recall that, for any subset & C [n], we set
EDS jea €j € {0, 1}". The Koszul complex K, is a chain complex of free n-graded S-modules
whose construction is standard in commutative algebra (cf. [30, Def. 1.26]): For each i, let K; :=
&b wClnl. lal=i S (—ey ), where S(—e, ) denotes the free S-module generated in grade e, by an element we
denote 1, forsome o = {j; < j, < ... < j;}. The differentials dlK : K; = K;_ are defined on gener-
ators by

i—1
d(1e) =Y (=15, - L)

r=0

Given an n-graded S-module V = @, .. V", the Koszul complex K, (x1, ..., x,; V) (u) of V at grade
u € IN"is the piece of grade u of the (n-graded) chain complex V' ®s K. This chain complex of [ -vector
spaces can be used to determine the Betti tables & (u) := dim(Tor} (V, F))* of V at grade u, for i €
{0, 1, ..., n}.Indeed, by definition, Tor; (V, ') can be determined by applying the functor — ®s F toa
free resolution of V and taking ith homology of the resulting chain complex (see section 2.3). The roles
of V and F can however be interchanged, by virtue of the isomorphism Tor? (V, F) = Tor’ (F, V') (see,
for example, [36, Thm. 7.1]); in this case, choosing K, as a (minimal) free resolution of [ (see [30,
Prop. 1.28]) yields, foralli € {0, 1, ..., n}, the equality

&(u) = dim H; (K, (21, .. ., 2,5 V) (u)).

Let us now provide a more explicit description of the Koszul complex K, (xi, ..., x,; V;)(u) of a
persistent homology module {H, (X*), Ly} associated with an n-parameter filtration {X"} e, regarded
as an n-graded S-module V; = @, Hy(X") (as reviewed in section 2.2). Even if this description of
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12 o A.GUIDOLINAND C. LANDI

the Koszul complex can be easily adapted to any n-parameter persistence module, not necessarily built
from a filtered cell complex, we prefer to focus on the case of interest for this work in order to clearly
introduce the notations we will use in what follows.

Foreachi € {0, 1, ..., n}, the chain module in degree i of K, (x1, . .., x,; V) (u) is

Ki(x1s oo s Vo) (u) = @ Hy(X"™%).

aCln], |a|=i

The definition can be easily extended if, for some fixed u € N" and some o C [n], it happens that
u — ey & N": Throughout this article, by definition, we set X" = () whenever the grade w is not in
N". Note that the modules K;(xy, . .., x,; V) (u) are zero forall i ¢ {0, 1, ..., n}. The differentials of
Ki(xr, - .oy %5 Vg) (1) are defined in terms of the maps (" : Hy(X") — Hy(X") as follows: the dif-
ferential

di : Ki(xy, . -'sxn;Vq)(u) — Koy (1, - -,xn§Vq)(U)

is defined as the alternating sum d; = Zi;;(—l)’d,v,, of functions d;, : Ki(x1, ..., x,1 V) (u) —
Kii(x1, . vy x5 Vq)(u) mapping the summand Hq(X“fe") in Ki(xy,...,x,; V,1)(u), with o =
{ji <j» <...<ji}, tothe summand Hy (X" %"%~) in Ki_; (%1, ..., x4 V;)(u), via the function

U—ey, U—ey

L i~ For the sake ofa simpler notation, we avoid denoting the grade u in the differentials d;. As
we explained, & (u) coincides with the dimension (as an [-vector space) of the ith homology module
of Ky (%1, .., x5 V) (w).

Let us detail the cases of n = 1 and n = 2 parameters for later convenience. For a one-parameter fil-
tration {X*},cy, the Koszul complex K, (x1; V,) (1) of V; = €D, Hg(X*) atu € Nis

ueN

u—1
t‘i

— dl: * u
0 — Hy(X*") —— H,(X*) — 0.

The Betti tables at grade uare £ (1) = dim coker Lgfl’“ and &](u) = dimker LZﬁl’“, which correspond
respectively to the number of births and deaths of g-homology classes at u € N in the sense of persistence
[13].

For a two-parameter filtration {X"},c)2, the Koszul complex K, (x1, x2; V;) (1) of the module V; =
D.cre Hy(X*) atu € N2is

—e1—e d u—e u—e; a4 u
0 — Hy(X"797%2) 5 Hy(X"™) @ Hy(X"*"%) = Hy(X*) — 0,

with differentials

—pma—esu—e
— q _ u—ep,u u—ey,u
d, = |: praee j| and dy = I:Lq Ly :|

The Betti tables at the grade u are
&1 (u) = dimker d,, £l (u) = dim(kerd,;/im d,), &1 (u) = dim coker d,.

A morphism v = {v* : V¥ — W"},c\» between n-parameter persistence modules {V*, ¢*"} and
{W*, y**} induces a chain map between the Koszul complexes of V. = @ ., V¥andW = P, W*
at u € N", the morphism between the chain modules in degree i being @la\:i V%, with o C [n].
Moreover, since taking finite direct sums preserves short exact sequences of vector spaces, taking the

. . 1
Koszul complex at any fixed u is an exact functor, meaning that a short exact sequence 0 — U — V 5
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W — 0 of n-parameter persistence modules induces a short exact sequence of Koszul complexes
0— Ki(xp,.oohx U)(u) = Ke(oer, .oy 20 V) (w) = Ki(xqg, ooy 20 W) (w) — 0.

Clearly, an isomorphism between persistence modules induces an isomorphism between their Koszul
complexes. In what follows, we will apply this observation in the particular case of a multifiltration
{X"}enr of X and the induced multifiltration {M"},cp» of its Morse complex. By virtue of Propo-
sition 2.4, since the modules V; := @, .. Hy (X*) and Vq’ =P, Hy (M*) are isomorphic, their
Koszul complexes K, (x1, . .., %3 Vg) (1) and K, (%1, . . ., 5 Vq’)(u) are also isomorphic, atallu € N".
As a consequence, the Betti tables & (u) can be determined considering the Morse complex instead of
the original complex.

4.2. Explicit construction via mapping cones

We now illustrate the explicit construction of the Koszul complex K, (x1, . . ., x,; \Z )(u) of V, at grade
u € N" asan iterated mapping cone. The classical construction of the Koszul complex via mapping cones
can be found in [16, § A2F] and [6, Ch. 1.6]; here, we rephrase, adapt and enrich it with examples to
provide a complete and explicit treatment for Koszul complexes of persistent homology modules that
conveys the intuition of persistent homology.

Given a chain map f: B, — C,, the mapping cone Cone(f), of f is the chain complex with
Cone(f); := B;_; @ C; and differential §; : B;_; ® C; — B;_, @ C;_, defined by

8i(b,¢) := (=82, (b), 9 () + fir (b)), (4)

for all i, with b € B;_y, ¢ € C; and 9%, 3, respectively, denoting the differentials of B, and C,, see [15,
§ A3.12].

Let F := {X"},en be an n-filtration of a cell complex X. As is evident from the definitions in sec-
tion 4.1, the Koszul complex K, (x1, - . ., x,; V; ) (u) of the associated persistent homology module V=
P, Hq(X*) at the fixed grade u € N" only depends on the subcomplexes X*~* of the filtration,
with @ C [n]. In other words, to determine K, (x, ..., x,; VCi)(u) it is enough to consider the smaller
n-filtration F* := {X""%},[,], containing 2" subcomplexes of the original n-filtration F. We observe
that, fixedany j € [n], the n-filtration J* can be partitioned into 2"~! one-filtrations X%« ~% C X“
oneforeacha C [n] \ {j}. More generally, fixed any non-empty subsetJ := {jy, ..., j;} < [n], thereis
a partition of F* consisting of 2"~ t-filtrations of the form {X“~*~*}, <}, one foreacha C [n] \ J. Ev-
ery such t-filtration has an associated Koszul complex K, (x;,, . .., x;; Vo) (u — e, that intuitively only
encodes information on the parameters jy, . . . , j; of the n-filtration F*. Givenk € [n] \ J,regarded here
as an additional parameter to be taken into account, one can consider the (¢ + 1)-filtration given by the
union of two t-filtrations {X*~*~%}, c; and {X""%~%"%},c;, foranya C [n] \ (J U {k}). Below, we
will explain how the Koszul complex associated with such (t + 1)-filtration can be constructed as the
mapping cone of a chain map between the two Koszul complexes associated with the ¢-filtrations.

We begin by illustrating in detail the first few steps of the procedure based on iterated mapping cones
to construct the Koszul complex K, (x1, . . ., x,; Vq)(“) starting from ‘1-parameter’ Koszul complexes
in direction ¢;’

w—ej.w

[K*(xj; Vq)(w) = (O — Hq(wazf) dll) Hq(Xw) — O) ,

for any fixed j € [n] and for w = u — ¢, with @ C [n] \ {j}, and from specific chain maps between
them. The chain maps are those induced by inclusions ‘in direction ¢, for any fixed k € [n] \ {j}, thatis

Fo s V) (w = e) + Ko (s V) (w — &) = K (a3 V) (w),

Gz0z 1snbny gz uo 1senb Aq L 5G5ZZZ8/ L Z0seey/yiewb/ce0 L 0 L/10p/a[oie-soueApe/yrew b/woo dno-oiwspese//:sdpy wody pepeojumod



14 o A.GUIDOLIN AND C.LANDI
with fik(x]-; Vo) (w — e) : Ki(xj; Vy) (w — ) = Ki(xj; V) (w) defined, for degreesi = 0, 1, as

o Gejs V) (w — ) = ™%« Hy(X*™%) — Hy(X"),

fG V) (w—e) =1 %" D Hy(XY97%) — Hy(X*79).

The mapping cone Cone(fk(xj; Vo) (w — ex) )y is the Koszul complex K, (x;, x¢; V) (w), associated
with the bifiltration {X"™* }, c(; 1. Intuitively, it is obtained from the previous step, where only the jth
parameter was considered, by adding one parameter more, namely the kth parameter of the original n-
filtration. Explicitly, K, (x;, x; V;) (w) is the chain complex

0 — Hy(X*™97%) 25 H,(X*) @ H, (X" ™) 2> H,(X") — 0,

where the differentials, applying the definition (4), are

Lw—ej—ek,w—ej

— w—ej,w W—ep,w

d, = qu—e,—ek,w—ek and d, = [Lq g = ]
q

The process we just described can be repeated, by choosing a new ‘direction’ ¢; corresponding to a
new parameter £ € [n] \ {j, k} and constructing K, (x;, xx, x¢; V; ) (w) as the mapping cone of the chain
map f*(x;, xi; V) (w — e¢) induced by inclusions in direction e, for each w = u — e, withar € [n] \
{j, k, €}. Explicitly, f* (%}, x5 V) (w — e¢) is defined by the following maps, in degreesi = 0, 1, 2:

FE e s V) (w — ) = 204,
ff (), e V‘Z)(W —e) = [:ﬂrq’w*ei @ lgiek*q.wfek,

w—ej—ep—eq,w—ej—eg

ff(xj, X Vo) (w —ee) = 4

If the order in which the indeterminates are added is changed, one obtains isomorphic chain complexes:
For example, K, (x]-, X, %03 Vg ) (w) is isomorphic to K, (i}, x¢, a; ' ) (w). At the last step, one obtains
Ky (o1, .-, 23 Vq)(u) as the mapping cone of the chain map f™ (x1, ..., &, - . ., X3 Vfl)(u —e,,) be-
tween Ky (x1, ..., &y - - -, Xp; quu —ep)and Ky (oer, ..o\ Ky v ey X Vq)(u).

Thanks to the iterative nature of the process, we can provide an explicit description of
Ky (xj,, - .., % Vy)(u) for any u € N and any non-empty subset J := {ji, ..., j;} S [n]. For each
ie{0,1,...,]|]|}, the chain module in degree i is

Ko 0 = @ ).

v<], lyl=i

The modules K;(xj,, ..., xj; V) (u) are zero foralli ¢ {0, 1, ..., [J|}. The differentials of the chain
complex K, (x;,, ..., x;; V) (u) can be described as follows: the differential

di : |]<,'(le, N ,x/t,Vq)(u) — [K,v_l(xh, .. .,xl'[; Vq)(u)

is the alternating sum d; = Zi;h(—l)’di’,, where  d;, : Ki(xj,, ..., x5 V) (u) —
Kioi(xj,, ..., %;:Vy)(u) is the function mapping each summand H,(X*"%) of
Ki(xj,, ... Vq)(u), with ¥ = {ji1),-- -, jsy} and s(1) <--- <s(i), to the summand

u—ey,, ufeere,S(lir)

H, (X" F 60 ) in Ki_y (%5 -+ -5 %3 Vy) (u) via the function 14
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Forany k € [n] \ ], the Koszul complex K, (xj,, ..., x;,, x5 V;) (u) is the mapping cone of the chain
map induced by inclusions in direction e,

fk(le,...,xjt;%)(u—ek) :
Ki(oejps ooy V) (u— &) = Kooy, oo V) (w),

which for each degreei € {0, 1, ..., |J|} is defined by

fik(xjn ey 'x]t’ ‘/q)(u - ek) = @ [Z_EV_ek’“_eV.

v<l, lyl=i

In section 5, several results will be obtained by showing certain mapping cones to be acyclic, that
is, having vanishing homology in all degrees. We recall the following immediate consequence of [15,
Prop. A3.19] (see also [39, Corollary 1.5.4]), which gives an equivalent condition to the acyclicity of a
mapping cone.

PrROPOSITION 4.1. A chain map f : B, — C, is a quasi-isomorphism (that is, it induces
isomorphisms Hy (B,.) = Hy(C,) in homology, for all g € Z) if and only if Cone( f ). is acyclic.

COROLLARY 4.2. Let f : B, — C, be a chain map, and let B,. and C, be acyclic. Then, Cone( f ),
is acyclic.

Proof. If B, and C, are acyclic, the chain map f must be a quasi-isomorphism. O

S. ENTRANCE GRADES AND SUPPORT OF BETTI TABLES VIA
KOSZUL COMPLEXES

In this section, we resume the investigation, started in section 3, of the relations between the set of en-
trance grades of cells in a one-critical filtration {X*},cp», and the set of grades where the Betti tables of
the persistent homology module V, = @, .. H, (X*) are non-zero. The main tool of the approach we
propose is the Koszul complex. In section S.1, we prove a result (Theorem 5.10) on the support of Betti
tables & of all degreesi € {0, ..., n}, which improves the results of section 3. In section 5.2, we focus
on the Betti table £/, stating a sufficient condition for its vanishing at a given grade in terms of the sub-
modules of cycles and boundaries of V; (Theorem 5.14). This result can be used to better approximate
the support of €. In section 5.3, we explain how the presented results can be combined with reductions
of the filtered cell complex via discrete Morse theory.

Our fixed setting for the whole section will be as in section 3. For the reader’s convenience, we briefly
recall it. Let {X"“},cp» be a one-critical (section 2.2) and exhaustive n-parameter filtration of a cell com-
plex X, which is also graded by the dimension g of cells. To study the connections with discrete Morse
theory (in section 5.3), we consider a fixed discrete gradient vector field V consistent with the filtration
(see section 2.4), and denote by {M"} <\ the associated n-parameter filtration of the Morse complex M.
Extending a notation used in section 3, we denote set of entrance grades (section 2.2) of a non-empty
subset I of cells of X by

G(I") := {entrance grades of the cells of '} € N".

We denote by G the closure of a non-empty subset G C IN" with respect to the least upper bound in
N", whichis theset G := {\/ L | L € G, L # #} C N". Moreover, we recall that supp & := {u € N" |
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16 ¢ A.GUIDOLIN AND C.LANDI

&1(u) # 0} denotes the support of the ith Betti table & : N* — N of the persistent homology mod-
ule V; = @, Hy(X*). Lastly, we establish a notation that will be used throughout this section and
state two simple results that will be instrumental in studying the support of the Betti tables using Koszul
complexes.

NotaTION S.1. Having fixed a grade u € N”, forany o C [n], we set w(a) := u — ey, where

€y ‘= Z]-Ea e]-.

LEmMMA 5.2. Let A, B, C, D be subspaces of a vector space V' over the field [. Suppose that
BCACCandB< DCC,andlet f : % — % be the linear map induced by the inclusion of
A in C. Then, there are canonical isomorphisms

AND A A+D C

~

ker f = ——, imf=® ——% —, coker f = ——.
B AND D A+D

Proof. Let ¢ denote the composition A < C —» % of the canonical injection and projection.
The map f, induced by ¢ on the quotient, is well defined sinceker¢p = AN D D B,and
satisfies ker f = lﬂ ‘% andim f = img = @, see, for example, [2, p. 19]. The
remaining canomcal isomorphisms of the claim are obtained via the standard isomorphism
theorems [2, Prop. 2.1]. O

h i
LEMMA 5.3. Let A EA B3 C> D> E bean exact sequence of vector spaces over the fixed field

F. Then C = 0 if and only if f is surjective and i is injective.

Proof. If f is surjective and i is injective, then ker g = im f = B, which implies
ker h = im g = 0, and therefore C = C/ kerh = imh = keri = 0. Conversely, if C = 0,
thenim f = kerg = Bandkeri = imh = 0. O

5.1. Results on the support of all Betti tables

Our goal for this section is to prove that UL, supp&? € G (X YUG(X,11) 4+1) and, moreover, supp & C
g(X ) and supp &1 € G(X,41). 4+1), for all g € N (Theorem $.10). For &/, the result is improved in sec-
tion 5.2. We observe that the first inclusion is clearly equivalent to the following statement: If u ¢

Q(X YUG(X,s1) 4+1), then &1 (1) = 0, foralli € {0, 1, ..., n}. To start with, we prove a result that allows
us to rephrase the hypothesis of this statement.

PROPOSITION S5.4. Let A be any subset of cells of X and let u € N". Then, u ¢ G(A) if and only if
there exists j € [n] such that for any subsetat; < [n] \ {}} it holds

(x7@)\ Xx*(4)=¢) N A = @, where w(a;) is defined as in Notation 5.1.

Proof. We prove the contrapositive claim, showing the equivalence of the following statements:

(1) ue GAa).
(2) gor all j € [n], there existsasubsetar; € [n] \ {j} suchthat (XW("‘/‘) \X"’("‘i)—ei) NA#
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Assume that u € G(A).Ifu € G(A), we are done by taking or; = ¢, forall j. If u ¢ G(A),
thenu = \/{v1, ..., v,} withr > 2and vy, ...v, € G(A). In this case, by definition of the
least upper bound, for all j € [n] there exists £(j) € [r] such thatu — e; # vy(;). Therefore,
taking a cell o (;) € A with entrance grade vy (), we have oy(;) € (X" \ X“7%) N A, since
u — ej % vy(;) implies 0y () & X"~ by one-criticality of the multifiltration (section 2.2).
The second statement follows again by taking o; = @, for all j.

Conversely, assume that the second statement holds. For each j € [n], let v(j) denote the
entrance grade of a cell ; € (X"’(“J) \ XW(“/)_ef) N A, for some w(at;) = u — Ziea, e;. Let
v="\{v(1),...,v(n)}. Fromv(j) < w(a;) < u, forall j, we see that v < u. Let us show
now that v = u, which concludes the proof. If v # u, then there exists j € [n] such that

v < u — e;. Since 0 has entrance grade v(j) and v(j) < v < u — ej, we have 5; € X"7°.

On the other hand, we are assuming that o; € X" with w(a;) =u— Ziea, e; and

j ¢ a;. The latter condition implies that w(o;) and u — e; are not comparable. More

precisely, the greatest lower bound of w(e;) and u — ¢;is w(a;) — ¢;. Hence, the
one-criticality assumption on the multifiltration yields a contradiction (see Remark 2.1),

since we are assuming that o ¢ X w(j)=e, (|

We underline that the one-criticality assumption on the n-filtration {X*},cn» plays a key role in the
proof of Proposition 5.4.

COROLLARY S.5. Foranyu € N", we have u ¢ G(X,) if and only if there exists j € [n] such that
X;V(a")fe" = w(a’ , for all subsets a; < [n] \ {j}.

Proposition 5.4 also yields information on the maps of the persistent homology modules
{Hy(X"), 15"} and {Hy—1 (X*), 1", } in the "Vicinity’ of a fixed grade u ¢ G (X,).

COROLLARY 5.6. Ifu & G(X,), then there exists j € [n] such that, for allo; € [n] \ {}}, the
inclusion X*(@)~¢% < X"(%) indyces a surjection

L;V(a/)—eij(a;) :Hq(Xw(a,)—e,) N Hq(Xw(a,))
and an injection

L:E‘)ii)*ej’w(ﬂlj) :qul(XW(aj)iei) N Hq,l(Xw(a’)).

Proof. By Proposition 5.4, if u ¢ G(X, ), then there exists j € [n] such that, for all

o € [n] \ {j}, we have X; = X;(a’),which implies H, (Xw(“l), Xw<“/)_ef) = 0. The
claim follows from the following portion of the long exact sequence of relative homology of

(Xw(aj)’ Xw(ai)fe, ),

w(a;)—e;

Hy(X¥@)74) — H (X)) — 0 — H,_, (X*@)7%) — H,_ (X¥@)),

(a;)_ejvw( ( ) €j, w(ot]) 0

where the first map is L?; and the last map is ¢,

REMARK §.7. Moving towards the proof of our main result, let us note that the hypothesis

ug g (X YUG(X, 1) g+1) implies, applying Corollary 5.5 twice, that the following properties
hold 51multaneously
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18 e A.GUIDOLINAND C.LANDI

w(o

(i) There exists j € [n] such that X — x ’), for all subsets ar; C [n] \ {j}.
J q q j J
(ii) There exists £ € [n] such that X;_S“) T = X;’_Sf‘) , for all subsets oy C [n] \ {£}.

Clearly, the indices j and £ of properties (i) and (ii) in Remark 5.7 can either coincide or not. We
next prove that both cases imply the acyclicity of certain Koszul complexes, addressing the case j = £ in
Lemma 5.8 and the case j 7 £ in Lemma 5.9.

LeMMA S.8. If properties (i) and (ii) in Remark S.7 are verified with j = £, then the Koszul complex
Ky (1, oy 05 Vi) (u) is acyclic.

Proof. Reasoning as in the proof of Corollary 5.6, we see that the maps

L;}(a,)—e,,w(a,) :Hq(Xw(a])—ej) N Hq(XW(or,))

are isomorphisms, for all subsets ar; C [n] \ {j}. Therefore, the induced chain map

fj(xl,...,ﬁj,...,xn;\/"i)(u—ej) :
KiCoors oo &y s Vo) (=€) = Kooy ooy &, s V) (w)
is an isomorphism of chain complexes. Hence, the claim follows from Proposition 4.1

because K, (x1, . . ., x,; V) (u) is the mapping cone of f/(x1, ..., &), ..., x5 Vy)(u —¢;). O

Lemma 5.9. Letu € N" and suppose that properties (i) and (ii) of Remark 5.7 hold with j # {.
Then, for any w := w(a) = u — eq witha C [n] \ {j, £}, the Koszul complex
Ky (), 05 Vo) (w) is acyclic.

Proof. In order to apply Proposition 4.1, we regard K, (x;, x¢; V; ) (w) as the mapping cone of
the chain map

S V) (w — ee) = Kooy Vi) (w — e0) — Koy V) (w).

We want to prove that f*(x j1 Vg) (w — e¢) induces isomorphisms between the homology

modules of
w—ej—eg 4 :tziejﬂ(w*% w—eg
M*(xj;%)(w—eg)z 0—>Hq(X j )—)Hq(X )—0
and

w—ej,w
J

Ku (3 V) (w) = (o —~ H,(X") "= H,(X") - 0) :

Since qu_e] M and L:;_e" " are surjective (see proof of Corollary 5.6), homology in degree
0 is zero for both Koszul complexes. Hence, we only have to show that

ej,w

w—e;—eg,w—ey w—
fikeryy — kerg
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. . . L. —e;—eg,w—e w—e;—eg,w—eg
is an isomorphism, where f” denotes the restriction of Lq ! "tokert, . The

map f’ is injective because L:;_ei TN s injective (see proof of Corollary 5.6). We now

show that f” is surjective. We use here the notations Z,(X") and B, (X"), respectively, for the
submodules of cycles and boundaries of C, (X"),forallv € N". By Remark 5.7(i),

X, T = Xy andX, 7 = = X', which implies Z, (X¥m47%) = Zg(X*™*) and
Zy(X¥79) = Zy(X"). Similarly, byRemarkS 7(ii), ;v+1e/—2g = Xw 7 andX;’_H“ =X\
‘ﬁ/hlch implies Bq(XW 47%) = By(X¥7%) and B, (X""%) = B (X“’) By Lemma 5.2, we
ave
w—ej—eg,w—eg Zq (XW—E,—E[) N Bq (Xw_e() w—ej,w Zq (Xw_ej) N Bq (Xw)
ker = B (X" ) , ker g = B (X" )
q q

Since f’ is the map induced by the inclusion of the numerators, using Lemma 5.2 and the
equalities of subspaces Z; and B, stated above, we obtain

Z,(X*=) N B,(X") _ B,(x")
Zq(Xw—e,»—eg) n Bq(xw—eg) + Bq(Xw—e,-) Bq(Xw) s

coker f' =

proving that f” is surjective, hence an isomorphism. g

‘We underline that to conclude the proof we use an argument based on the equality of some subsets of
cells of X. This part of the proof cannot be replaced by using only the properties of the induced maps in
homology (as in Corollary 5.6). As a counterexample, consider the diagram

—_—

<<¢+— o
o+—o

—

of vector spaces, with dim V' # 0. We can regard the rows as two chain complexes with surjective differ-
entials, and the vertical arrows as an injective chain map between them, as in our proof. However, the
mapping cone of this chain map is clearly not acyclic.

‘We can now complete the proof of our main result for this section.

THEOREM 5.10. Let {X"},enn be an n-parameter exhaustive filtration of a cell complex X. Then

n

Usupp&! € G(Xpa1) UG(X),

i=0

for all g € N. Furthermore, supp & C Q(X Y and supp &1 € G(X,11), 1), forallg € N.

Proof. To prove that | J_; supp & € G(X;11) U G(Xy), letu ¢ G(X,41) U G(X,). As we
have seen, properties (i) and (ii) of Remark S.7 hold, which involve indices j, £ € [n].If
j = ¢, the Koszul complex K, (x1, .. ., x,; V) (u) is acyclic by Lemma 5.8.1f j # ¢,
consider the Koszul complexes K, (xj, x5 Vq) (w), foranyw := w(a) = u — Ziea ¢; with
o C [n] \ {j, £}, which are acyclic by Lemma 5.9. The Koszul complex
Ky (1, - .., %03 V) (1) can be obtained from the chain complexes K, (x;, x¢; V) (w) by
iterating the mapping cone construction (see section 4). At each iteration of this process, by

Gz0z 1snbny gz uo 1senb Aq L 5G5ZZZ8/ L Z0seey/yiewb/ce0 L 0 L/10p/a[oie-soueApe/yrew b/woo dno-oiwspese//:sdpy wody pepeojumod



20 e A.GUIDOLINAND C.LANDI

Corollary 4.2, one obtains acyclic Koszul complexes; hence, we can conclude that
Ki(x1, .. ., %45 V) (u) is acyclic, that s, £ (u) = 0foralli € {0, ..., n}.

To prove that supp §; € G(X,), we observe thatif u ¢ G(X,), then by Corollary 5.6 there
exists j € [n] such that H,(X*~%) — H,(X") is surjective. This implies that the differential
d, of the Koszul complex K, (xy, . . . , x,; Vq)(u) is surjective; hence,

&4 (u) = dim(H,(X*)/imd,) = 0.

Similarly, to prove that supp & € G(X;1), we observe thatifu ¢ G(X,41), then by
Corollary 5.6 there exists j € [n] such that H,(X"~) — H,(X") is injective, where
wi=u— Ziem\ (j) ¢ This implies that the differential d,, of the Koszul complex

Ky (1, - . ., 205 V) (u) is injective; hence, £1(u) = dimkerd, = 0. g

The following simple consequence of Theorem 5.10 gives a bound of the union of the support of the
Betti tables over all the homology degrees inside the union of the closures of the sets of entrance grades
of critical cells over all the dimensions.

COROLLARY S.11. Under the assumptions of Theorem 5.10, ; .o supp & € Uj_o G(X,)-

The following Example 5.12 shows that in general the right-hand side term of this inclusion cannot be
reduced to a smaller set defined in terms of the entrance grades of cells of X, making this inclusion tighter
in some sense. A more refined version of it when n = 2 will be given in the next section (cf. Corollary 6.6)
in terms of homological critical grades.

ExaMPLE 5.12. Letn = 3 and let X be the following simplicial complex:

Do

P1 p3
D2

Let us consider the following three-filtration of X: all vertices and the edges p; p, and p, p;
have entry grade 0 = (0, 0, 0) € N3; forall j € {1, 2, 3}, let the edge Ppopj have entry grade
uj := Ajej, for some positive integer A ;. Figure 1 in section 5.2 represents a filtration of this
form. Then, all entry grades and all their least upper bounds in N are in supp & for some q
and i: £5(0) = 2,80 (u;) = 1forall j, £} (u; v w) = 1forall j # k,and

&l (u1 V uy V u3) = 1. This example can be generalized to any n > 1.

5.2. A condition for the vanishing of £

As in the rest of the section, our starting point is an n-parameter exhaustive filtration {X"},en» of
a cell complex X, of which we consider the gth persistent homology module regarded as the n-

graded S-module V, = @, Hy(X*). For eachu € N", we write Hy (X*) = i: g:g, where Z,(X") =
ker(9, : Co(X") = Cy—1(X*)) and By(X") = im(9y41 : Cy1(X*) — C,(X*)). We observe that
Zy = P,cpn Zg(X*) and By := P\« Bg(X") are n-graded S-modules, respectively, given by the ker-
nel of the n-graded homomorphism 9, : @, Cg(X*) = B,cpw Cg—1(X*) and the image of the n-
graded homomorphism 9,11 : P, Cor1(X*) = P,cp Co(X*). In this section, we give a condi-
tion for the vanishing of the Betti table £ of V, at a fixed u € N" in terms of B,(X") and Z,(X") at
grades v € {u — ey }yc[,] (Theorem 5.14), and we derive relations between the support of & and the
entrance grades of cells.

Our aim is studying, for any fixed u € N", the degree-1 homology of the Koszul complex
Ki(x1, ..., x5 V) (u), whose dimension is the value &/ (u).
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>
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~ >
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— <_-

Figure 1. A three-parameter filtration { XY~ },c(1 2 3) of simplicial complexes such that, for g = 1, the equality
Zg(XU=8) N (Zg(XU=60) + Zg(X U= )) = Zg(XU=8i=%) + Zy(X U=~ ) (see hypothesis of Theorem 5.14) does not

hold, for any choice of different j, k, ¢ in {1, 2, 3}. Using the Koszul complex K, (V4)(u), it is easy to see, by a
dimension argument, that H (K. (V4)(u)) = F and, equivalently, sf(u) =1.

We fixu € N"and g € N. We choose £ € [n] and define an n-filtered cell complex {f }oenn such that
its (q + 1)-cells are

v—e .
X, = Ufe["J\{f}Xq+1’ ifv e {u, u— e},
" X otherwise,

its lower dimensional cells are 5(;" := X for all ¥ < q and all v € N", and it does not have any cell of
dimension higher than g + 1. The incidence function of X is induced (by restriction) by the incidence
function of X. We remark that, since our goal is studying the Koszul complex at u, we will only look at
the grades v € {u — ey }oc[4) of the filtration {)?”}veNn. The gth homology of {)?"}%Nn is the n-graded
S-module 17q such that

_ne0 .
7o Sy velwu—al, .
! H, x") = 25—;3 otherwise.

For the sake of a simpler notation, we do not denote the dependence of \7‘1 on the fixed u € N" and the
chosen £ € [n].

The module \7,1 , which coincides with V; for all grades except uand u — e, is useful to prove the results
of this section. We observe that the natural n-graded homomorphism 7 : V; — Vj is surjective, because
pointwise it is the linear map

v, Zq(Xv) N Zq(XV)
b Zj;é[ Bq(X"‘ef) Bq(X”) (6)
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for the grades v € {u, u — e;}, and it is the identity on H, (X") for all other grades. We have therefore the
following exact sequence of n-graded S-modules:

0 —— kerm ‘7(1 sV, 0.

Since constructing the Koszul complex at u is an exact operation (see section 4.1), we obtain the short
exact sequence of chain complexes

0 — Ky(xr, ..., a0 kerm)(u) = Ky(xq, ..., %3 Vq)(u) — Ko (xp, .oy % Vq)(u) —0
and the induced long exact sequence in homology

L Hy (K. (ker m)(w)) —— Ho(K.(Vy) (1)) —— Ho(Ku(V)(u)) —— 0, (7

where we have suppressed the sequence (x1, . .., x,) from the notation of the Koszul complexes for
brevity. The following proposition will be useful to prove the main result of this section.

PROPOSITION 5.13. If By (X*) = Z?zl B (X"“7%), then Ho (K, (kerm )(u)) = 0.

Proof. We recall that the construction of the Koszul complex K, (ker 77 ) (u) involves the graded
pieces with grades in {u — ey }c[,) of the n-graded S-module ker 77. By definition of V;, we
have (ker 77 )" = 0 for all v, except for u and u — e;. We consider the linear map

Bq (Xufeg ) 77;_%“ Bq (Xu)

(kerm )"~ = — (kerm )" = —
2 jetn\(ey Ba (X 797%) 2 jetn(ey Ba(X*79)

induced by the inclusion B, (Xv—e) C B, (X “). Regarded as a chain complex (concentrated

in homological degrees 1 and 0), the map 1, " isisomorphic to the Koszul complex

K, (ker 7 ) (u), hence coker ng " = Hoy (K, (ker ) (u)). We conclude the proof using

Lemma 5.2 to compute coker n;’ef’“;

u—eg,u ~ Bq(XM) Bq(Xu)
coker nq = - e — m = U
Bq (X e) + Zje[n]\{l} Bq (X ’) Zj:l Bq (X ’)
where the last equality holds by assumption. O

Our main result of this section gives a condition for H; (K, (Vq )(u)), and, equivalently, £ (1), to van-
ish.

THEOREM 5.14. Let {X"},en» be an n-parameter exhaustive filtration of a cell complex X. Fix
u € N", and suppose that B(X*) = Z?:l By (X"~ and that there exists a permutation

0 € Sym(n) such that, for every £ € [n],
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Z,(x o) | 3z (x| = 3z, (xe0—o0),

j<t j<t

Then &} (u) = 0.

Proof. First, we prove the claim supposing that the hypothesis on the cycles is satisfied by the

identity permutation p = id[,]. The proof s by induction on the number n of
parameters.

The base case n = 1 corresponds to the statement B, (X*) = B, (X“~") implies
&!(u) = 0 (as the condition on Z, is trivially satisfied), which is true because &/ (u) is the
dimension of the vector space ker LZ’I’” : Hy(X*™') — Hy(X*) which, by Lemma 5.2, is
isomorphic to (Z,(X“') N By(X*)) /By (X 1).

We now prove the claim for n parameters, supposing it holds for n — 1 parameters. For any
chosen £ € [n], we can consider the module V, associated with {X '}, defined as in
equation (5). Here, we choose £ = n. Under the hypothesis that
B (X“) = Z'},l B (X“fef ), in the long exact sequence (7) we have
Hy (K, (ker T) (u)) = 0 by Proposition 5.13, so it is sufficient to prove that
H, (K, (V )(u)) = 0 to conclude that H; (K, (V,)(u)) = 0. We highlight that using V in
the rest of the proof is convenient, as it is constructed in a way that allows us to use the
inductive assumption. We write the Koszul complex K, (V Yu) = Ki(xy, ..., 00 V., ) (1)
as the mapping cone (see section 4.2) of the chain map induced by mcluswns in
direction e,,,

fn(xla cees Xp—1, ‘761)(” - En) :

Kaors oo a1 V) (u = ) = Kalory ooy 15 V) (u).

In the rest of this proof, for simplicity we denote this chain map and the two Koszul
complexes by f* : K (V Wu—e,) = K® (V ) (). We consider the long exact sequence of
the mapping cone (see, for example, [39, § 1.5.2]) for Cone(f"). = K, (V )(u):

e H(KT) () —— H(K. (V)W) D

L Ho(K2 (Vo) (u — €n)) —— Ho(K2(Vy) (1)) —— Ho(K.(Vy)(u)) — 0.

The Koszul complex K? ("7‘1) (u) = Ke(xqy oo vy %01 \7‘1)(14) is defined from the

(n — 1)-parameter filtration {f "%} ycn—1], which allows us to apply the inductive
assumption, since B, (i ") = Z;:ll B, ()? “~¢) and the condition involving the subspaces Z,
is satisfied by p = id[,] restricted to [n — 1]. Therefore, by the inductive assumption,

H (K? (f/; )(#)) = 0. Thus, by Lemma S.3, the vanishing of H; (K (’17‘1) (u)) is ensured by
the injectivity of the function Ho( f*) : Ho(K? (Vq) (u—e,)) > Ho(K: (Vq) (u)) in the
long exact sequence, which is what we show to hold in the next step of the proof.

23
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We begin by observing that Hy (K (\751 )(u)) can be written as follows:

“—%x—l’”]

n—1 _
N e N
Ho(K2(V,) (1)) = coker | @ H,(X*) ——"— H,(X")
j=1
n—1 Su—e: e — a4
Z Xu €j [u epou W cn_lAuJ Z Xu
= coker EB q(~u_e) E : n,lq( 37
j=1 B‘Z(X ) Zj:1 Bq(Xu “)
Z,(X*)
27;11 Zq(iuiel)
Z,(X%)

= __1 — .
Z;[:l Zq(Xu %)
Similarly, there is a canonical isomorphism

Zy(X")
Yo Zy (X

Hy(KL(Vy) (1 — &) =

Using Lemma S.2, we see that the kernel of the map
Ho(f") : Ho(KL(Vy)(u — e,)) — Ho(K}(V,)(u)), induced by the inclusion
Z, (Xu_en ) < Z, (Xu)) is

Z,(x) 0 (212 Z,(x%79))

kerlHoU) = e ey
j=1%4

’

which is zero since the numerator coincides with the denominator by hypothesis. This
concludes the proof under the assumption p = id[,).

Lastly, we explain how the proof in the special case of the identity permutation implies the
claim for a generic permutation p on the set [1]. Let p be a permutation for which the
hypothesis of the theorem is satisfied. Then, we can consider the filtration {L*™*}, [,
defined by L*~% := X"“~*), which satisfies B, (L") = Z?:1 B, (L“~%) and, for every

L e [n],Z,(L"*) N (Z;’d Zg (L )) = Z}.d Zy(L*=7*). The Koszul complex of
the associated gth persistent homology module at u is obtained from

Ky (V) (u) = Ky (w1, - .., %5 V) (1) by permuting the indeterminates, and is therefore
isomorphic to it (see section 4.2). We can therefore apply the proof for the case of the
identity permutation to {L"~*},c[,] and conclude that & I(u) =o.

REMARK 5.15. The condition on the subspaces Z, in Theorem 5.14 amounts to # different
identities of subspaces of Z;(X"). In the proof of the theorem, we observed that, when the
sum on the left-hand side has zero summands, the corresponding inequality is trivially
satisfied. It is worth noticing that the equality corresponding to a sum on the left-hand side
with exactly one summand is always satisfied too. In other words, for any pair of distinct
indices j, k € [n], the identity Z,(X*7%) N Z,(X*7%) = Z,(X*7%~%) holds true. To see
this, we recall that C, (x*=s)n G (X)) = G (X“~¢~%) holds by one-criticality as a
consequence of X“ % N X" "% = X“"%~% (see Remark 2.1), and we observe that
Z,(X") =Cy(X") N 8‘1—1 (0) forallv € N", where 9, denotes the differential

dg : Cg(U,X") = C4—1(U,X"). In particular, for two-parameter filtrations, the condition of
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Theorem S.14 on the subspaces Z, always holds. In Fig. 1, we show a three-parameter
filtration not satisfying the hypothesis of Theorem S.14 on the subspaces Z,.

We now state conditions involving the fixed grade u € N" and the sets G (X, ) and G (X, ) of entrance
grades which ensure that the assumptions in Theorem S.14 on the subspaces B, and Z, are verified.

PrOPOSITION 5.16. Ifu ¢ G(Xy41), then By(X*) = 37| By(X"~%).

Proof. The inclusion Z;’: 1 Bg(X*7%) € By(X") holds in general and follows from
B, (X“7%) € By(X*) forevery j € [n]. To see the other inclusion, we first observe that
u ¢ G(Xg11) implies Cgyy (X*) = Cyyy (U;.‘ZIX“_KI ), which is equal to Z;=1 Cor1 (XH79).
The claim then follows from the equalities dg41(Cg41(X*)) = By(X*) and
g1 (X2 Carn (X*79)) = 321, By(X*79). O

REMARK 5.17. The converse implication is false as can be seen, for ¢ = 0, considering a cell
complex with two vertices connected by two edges and the following one-parameter
filtration: the two vertices and one edge enter at grade u — e;, and the other edge enters at
grade u.

PROPOSITION 5.18. Ifu ¢ G(X,), then there exists a permutation p € Sym(n) such that, for every
£ € [n],

Zg (X T0) N ZZ‘I (x*e0) | = qu (X" 78w,

j<t j<t

Proof. We prove the statement by induction on the number n of parameters. By Remark 5.15,

for n = 1 and n = 2 the identities involving subspaces Z, hold in general.
To prove the induction step for n parameters, we recall that by Corollary 5.5, we have

u ¢ G(X,) if and only if there exists k € [n] such that qu("‘k)_e" = X‘;’(a“), for all subsets
o C [n] \ {k}. We take such an index k and set p(n) := k. For any j # k, taking oz = {j},
we get Z, (X"797%) = Z,(X"~% ). Hence,
Z].E[n]\{k} Zy(XHmo7%) = Zje[n]\{k} Z,(X*7% ), which implies
Zg(X*7%) N <Zj€[n]\{k} Zg (X4 )) - Zie[n]\{k} Z4(X747%). The right-hand side is
actually equal to the left-hand side, since the reverse inclusion holds in general and follows
from the fact that, for every j # k,

2,007 = 2,(X7) N 2,(0°74) € 2,(0") 1 (g0 2.

where the first equality is by Remark S.15. This proves the equality involving subspaces Z,
forf =n.

Lastly, we have to show that for every £ <n the remaining equalities involving subspaces Z,
in the claim hold. This is a consequence of the inductive hypothesis, observing that the
remaining equalities involve the grades in {1 — €4 }oc[a]\(k}, Which is a portion of an
(n — 1)-parameter filtration, and that u is not a least upper bound of grades in G (X )
belonging to this filtration. By relabelling the parametersin [n] \ {k} of the
(n — 1)-parameter filtration with indices in [# — 1] and applying the inductive assumption,
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we see that there exists a bijection p" : [n — 1] — [n] \ {k} such that the firstn — 1
equalities of the claim hold. We complete the proof by defining p(j) := p’(j), forall j<n. O

REMARK 5.19. The converse implication is false in general: for example, even if the equalities
involving subspaces Z, are satisfied, u can be the entrance grade of a g-cell of M that does not
appear in any g-cycle.

Using Propositions 5.16 and 5.18, we immediately obtain the following corollary of Theorem 5.14. We
note that the same bound for the support of &l was obtained in section 3 using multigraded resolutions
(Remark 3.5).

COROLLARY 5.20. Let {X"},en be an n-parameter exhaustive filtration of a cell complex X. If
u € N"issuch thatu ¢ G(Xg41) U G(X,), then § (u) = 0. In other words,

supp & € G(Xg41) UG(X,).

We end this section describing two particular cases in which the equalities involving subspaces Z, in
Theorem 5.14 are always satisfied. The first case corresponds to g = 0.

CoROLLARY 5.21. Let {X"},enn be an n-parameter exhaustive filtration of a cell complex X, of
which we consider the associated qth persistent homology module with ¢ = 0. Ifu € N" is such
that Bo(X*) = Z';zl Bo(X“74), then §)(u) = 0. As a consequence, for g = 0, we have the
following containments:

n

suppfg € G(Xo),  supp€) S G(x1), | JsuppE’ € G(X0).

i=1

Proof. Since the n-parameter filtration {X"},en- is one-critical (see Remark 2.1), the following
equalities of (graded) sets hold forall w, vy, ..., v, € N™:

X" N (U’;zl X"f) = UL, (x"nxn) = U, xvm,

Considering cells of dimension g and taking the [ -linear span of the left-hand and right-hand
sides, one obtains

Cq(XW) N (Z’;zl Cq(XV’)) = Z’]‘_zl Cq(XwAvl)‘

For g = 0, since Zo(X") = Co(X") forallv € N, all the equalities involving subspaces Z, in
Theorem 5.14 are therefore always satisfied. This proves the first part of the claim and, as an
immediate consequence using Proposition .16, the containment supp §&° € G(X;). The

containment | J_, supp & € G(X;) follows from the fact that, for any n-graded S-module
V, U, supp & (V) C supp &;(V), see, for example, [ 12, Remark 3.2]. Lastly, the
containment supp &) € G (X ) holds by Theorem 5.10. O

The second particular case corresponds to n = 2, that is, to bifiltrations of persistent homology mod-
ules.

COROLLARY 5.22. Let {X"},ene be a two-parameter exhaustive filtration of a cell complex X. If
u € N2 is such that By(X") = Z;.lzl By (X“~1), then &1(u) = 0. The following containments
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hold:

supp &y < G(X,), supp & € G(Xg41), supp & S G(Xg41).

Proof. The first part of the claim follows from Theorem 5.14 and Remark $.15, and it implies
supp & € G(X,11) by Proposition 5.16. The other containments hold by Theorem 5.10. [

5.3. Morse complex and support of the Betti tables

‘We conclude the section by observing how the results of sections 5.1 and 5.2 can be applied to the Morse
complex M associated with any discrete gradient vector field V consistent with the filtration {X*},enn of
wenn Hg (M*) asso-
ciated with {M"},cn» is isomorphic to V, hence the Betti tables of Vq’ coincide with the Betti tables &
of V,. This can be seen for example from the fact that, as observed at the end of section 4.1, the Koszul

X (see section 2.4). By Proposition 2.4, the persistent homology module Vq’ =

complexes of Vq’ and V, atany u € N" are isomorphic. Therefore, one can bound the support of the Betti
tables of V; using the entrance grades of the cells of M. For example, Theorem $.10 has the following
immediate consequence.

COROLLARY 5.23. Let {X*},enn be an n-parameter exhaustive filtration of a cell complex X, let ) be
a fixed discrete gradient vector field consistent with the filtration, and let {M"},cn» be the
associated n-parameter filtration of the Morse complex M. Then

n

U supp &1 € G(Mg11) UG(M,),

i=0

for all g € N. Furthermore, supp & C G(M,) and supp £l C G(Myy1), forallg € N.

Similarly, we can summarize as follows the statements corresponding to Theorem 5.14, Corollary 5.20,
Corollary 5.21 and Corollary 5.22 applied to the Morse complex.

COROLLARY 5.24. Let {X*},enn be an n-parameter exhaustive filtration of a cell complex X, let ) be
a fixed discrete gradient vector field consistent with the filtration and let {M"}, e\ be the associated
n-parameter filtration of the Morse complex M. Then the following facts hold.

(1) Ifu € N"satisfies B,(M*) = > "_, B,(M"~%) and there exists a permutation p € Sym(n
q j=1"4q p Y
such that, for every £ € [n],

Z,(M*~e0) N qu (M0 | = Z Zy (M e =400,

j<t j<t

then & (u) = 0. As a consequence, the containment supp & C G(M,y41) U G(M,) holds.
(2) Inthecase q = 0, ifu € N" is such that By(M") = Z?zl Bo(M*~%), then £ (u) = 0. As
a consequence, the following containments hold:

n

supp) € G(Mo),  suppky € G(My), | Jsupp&? € G(My).

i=1
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(3) Inthecasen = 2,ifu € N is such that By(M") = Z;':l B, (M"“~%), then gl (u) = 0. The
following containments hold:

supp£d CG(M,),  supp&l € G(Myy1),  supp&l € G(Mypy).

6. HOMOLOGICAL CRITICAL GRADES AND SUPPORT OF BETTI
TABLES FOR BIFILTRATIONS

In this section, we fix n = 2 and study the support of the Betti tables of persistent homology modules
associated with a one-critical bifiltration {X"},c\2 of a cell complex X. In what follows, we make use of
the notations introduced at the beginning of section 5. Additionally, for ¢ € N, let us set

Cy(X) == {u € N* | dim H, (X", X"~ UX"“"®) # 0}

and call it the set of g-homological critical grades (see [22]). For any fixed u € N* and any q € N, let us
recall the following known inequalities (see [27, Corollary 1], and [22] for a generalization to the case
n>2):

Ew) +ET (W) — & () < dimHy (X', X" UX"™) < E5(u) + & () + & (). (8)

To interpret the results of this section, we remark that C; (X)) € G(X;) and, more generally, if M is the
Morse complex associated with any discrete gradient vector field consistent with the filtration {X"},cpe,
by [27, Prop. 1], we have C;(X) € G(M,). As we will show (Proposition 6.5 and Corollary 6.6), for
bifiltrations we are able to bound the support of the Betti tables using the sets C, (X ) instead of the sets
G(M,), thus strengthening our general results of section S (cf. Corollary 5.23 and Corollary 5.24).

First, we prove a technical result that crucially depends on the one-criticality assumption (section 2.2)
on the bifiltration.

LEMMA 6.1. Letv € N* and let j # € in {1, 2}. Then, there is a short exact sequence of chain
complexes

0— C(X"™,X"™97%) > C,(X", X"9) > C,(X", X" " UX") - 0.

REMARK 6.2. The statement has to be interpreted by setting X"~ = @Jif v — e, is notin N?,
and similarly for X*~% and X"~* ~%. We use this convention throughout this section.

Proof. Without loss of generality, we prove the statement for j = 1 and £ = 2. The sequence
0= C(X"™ @ UX"™, X"™) > C(X", X)) - C(X', X" @ UX""%) - 0

associated with the triple X"7 C X"7* U X"~ C X" is exact. Now we observe that, for
any q € N, the relative chain modules of the pair (X" U X*~%, X"~ ) are

Cq (Xv—e1 U Xv—ez) _ Cq (Xv—51 ) + Cq (Xv—ez)
C,(x7—=) C,(x7)
Cq (Xv—ez ) Cq (Xv—ez )

g — = C (Xv—ez’ XV_EI_EZ),
Cu(X7a)NCy(Xra) — Cp(Xr—a—e) 1

Cq(XV7el U vaez’ vael) .=
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where we used the classical isomorphism theorem for modules and, in the penultimate

equality, the fact that C; (X"~ ) N Cy(X"™%) = C,(X"~~*) as a consequence of the

equality X"~ N X"~% = X"~“7% given by the one-criticality assumption on the filtration

(see Remark 2.1). These isomorphisms between chain modules commute with the

differentials of the chain complexes C,(X*~% U X*~%, X""%) and C, (X" ™%, X""472),

since they are induced by the differential of C, (X). O

COROLLARY 6.3. Letv € N2, g € Nand j # £ in {1, 2}, and suppose that
Hy (X", X" UX""%) = 0. Then Hy (X", X"7% ) # 0 implies Hy (X%, X"77%) 3 0.

Proof. By Lemma 6.1, the following is a portion of a long exact sequence in homology:
H, (X7, X"~47%) = Hy(X*, X"™9) — Hy(X", X" UX"™).

Since Hy (X", X"~ U X"~%) = 0, the first map is surjective, and the claim follows
immediately. g

To prove the final result of this section (Proposition 6.5), we first show directly that the support of the
Betti table “;‘2[171 is contained in C, (X).

LEMMA 6.4. For all g € N, we have supp 3;'571 C Cy(X).

Proof. Letu € supp Sj_l. We prove that there exists A € N such that
Hq (Xuf}xel , Xuf(}n+1)e1 U Xuf)»elfez) # 0. (9)

If condition (9) holds for A = 0, then u € C,(X). Otherwise, since the same property can be
proven with the roles of e; and e, interchanged, our claim follows by observing that
(u—2ey) VvV (u— pey) = u, forevery A, u € N.

Assume that (9) is false (that is, it is an equality) for all A € N; then
H, (xv*a xu—ta=e) £ 0 implies H, (xu=OADa xu-(tha—a) £ g by Corollary 6.3
(applied with v := u — Xe; ), and we can therefore use an inductive argument. The base case
of the induction is Hy (X*~*, X“77%) =£ 0 for A = 1, which holds because the hypothesis

u € supp é—‘g_l implies that i;:i‘_ez’u_el : Hp_ (X*797%) — H,_;(X*~*) has non-zero
kernel (see section 4.1). Since X“™*4 = (J = X"~*4~ for a sufficiently large A, we see that
the induction leads to a contradiction. [

PROPOSITION 6.5. Forall € N, we have supp £1 U supp &1 ' Usupp &3 C Cy(X).

Proof. Let us assume that u ¢ C,(X). In the first inequality of (8), the term
dim H, (X*, X"~ U X"~%) is zero by definition of C; (X ). By Lemma 6.4, qu_l (u) =0,
hence we have £] (1) + {,-‘lq_l (u) = 0, which is equivalent to & (u) = lq_l (u) =0. O

We observe that the inclusion supp §; € C,(X) can be proven directly, in a similar way to the proof

of Lemma 6.4. Contrarily, a direct proof of the inclusion supp & qu1 C C,(X) eludes us.
In conclusion, for bifiltrations, we can bound the support of Betti tables as follows.
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COROLLARY 6.6. For all g € N, the Betti tables of degree q satisfy
supp & Usupp &/ Usupp &) € Co(X) U Cgpr(X).

Furthermore, the union of the supports of all Betti tables satisfies

e, x) < [Jsupp! < [ JC(X0.
q q

q.i

Proof. The first statement holds by Proposition 6.5 and implies the second inclusion of the
second statement. The first inclusion of the second statement follows from the second
inequality of (8), which implies that C;(X) < supp &; U supp é}lq_l U supp Ezq_z, for all
qge N O

‘We remark that the first statement of Corollary 6.6 is not a consequence of Theorem 5.10, as for two-
parameter persistent homology modules it is known that C, (X ) can be strictly contained in G (M,), for
any choice of a discrete gradient vector field to determine the latter set of grades (see [27, p. 2369] for
an example).

For n > 2 parameters, we believe that exact sequences like those of Lemma 6.1, along with those in-
duced in homology, can still be useful to study the relation between Betti tables and homological critical
grades. In this case, however, these sequences assemble in much more complicated systems, and appro-
priately disentangling them would require a different approach.

7. GENERALIZATION TO MULTI-CRITICAL FILTRATIONS

In this last section, we discuss how the results of sections S and 6 can be generalized to an n-parameter
filtration {X"“},cn» that is not one-critical (section 2.2). Such filtrations are called multi-critical. As ob-
served in section 3, one-criticality ensures that the chain complex associated with the filtration {X*},enn
is composed of free n-graded S-modules. More specifically, forany g € N, C; := @, . C5(X*) is free
and isomorphic to €D, ex, S (—ve ), with v, denoting the unique entrance grade of the cell 0. The per-

sistent homology module V; = @, .. Hy(X") is then defined as the homology at the middle term of

g1 3
the sequence Cyy BIEN G — C,—1 offree n-graded S-modules. For a multi-critical filtration {X"},cp,
the modules of this sequence are in general not free. Using results from [11], one can however present

V; as the homology at the middle term of a sequence of free n-graded S-modules A EA B 5 C satis-
fying g f = 0, which enables applying our results. Below, we describe the strategy to construct such a
sequence starting from a multi-critical filtration of a cell complex. For brevity, in this section, we call a

chain complexany sequence of (not necessarily free) n-graded S-modules A EA B 5 Cwith gf = 0,0b-

serving that it can be viewed for example as the chain complex -+ — 0 — ker f — A EA BSCc—
cokerg — 0 — - -.

Let X = {X"},cnr be a multi-critical n-parameter filtration of a cell complex X. We suppose the filtra-
tion to be exhaustive, meaning that X = UuEW X*".For every fixed g € N, we denote by A; = {X;}ue[]\]n
the induced filtration of sets of g-cells. Following [11, Sect. 4], we recall how to construct a free presen-
tation of the n-graded S-module C; := D, cn G (x*).

Forany cello € X, the n-parameter filtration X; [0 ] = {X; [0 1}uenn of sets is defined by

) _ o} ifo eX,
Xq["]—{ 9 ifo ¢ X~
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Letent(o) :={u € N"| 0 € X\ U;Zl X, 7'} denote the set of entrance grades of 0. (In [11], the
notation gen(o') is used for the set here denoted by ent(c).) We recall that a filtration is one-critical
if and only if ent(o ) has exactly one element, for every cell o of X. The [-linear span of the filtration
X,[o]is the n-graded S-module C,[0] = P [, which is isomorphic to the monomial ideal (x” |

v € ent(0')). As observed in [11], a free presentation of the n-graded S-module C, [0 ] is given by

u\UeX;

@ S(—vo V1) —)mj[g]im[a} @ S(—v),

voF#v) €ent (o) veent(o)

where the n-graded homomorphism 77;[0'] sends the generator 1,,v,, at grade vy V v; of S(—vy V v;)
tox™¥"1 %1, € S(—v;)"V™, fori € {0, 1}.

The n-graded S-module C; := @, ). C;(X*), which is the [ -linear span of the filtration A, is iso-
morphic to P, ex, Cylo]. As already observed, if the filtration Xj is not one-critical, C is not free. A

free presentation of C, is given by

Dl B s(—vwvwn) 2L D g

o€Xy \wy#v €ent(o) veent(o)

In other words, C; is isomorphic to the cokernel of the n-graded homomorphism my — 7, :=
@D, ex, (molo] — m1[o]). To establish notations of modules and homomorphisms that will be used
in what follows, we write this presentation of C; as

T —T Pq
Ry —— Gy Cy» (10)

where G, := @Uqu Drcent(o) S(—v) and R, := @Uqu D0, cent(o) S(—v0 V 1)

Next, following [11, Sect. 5], we review how the n-parameter persistent homology module V; =
D, Hy(X*) associated with a multi-critical filtration X' = {X"“},cp» can be expressed as the homol-
ogy of an explicitly constructed chain complex of free n-graded S-modules. Although the construction of
[11, Sect. 5] is for n-parameter filtrations of simplicial complexes, it can readily be adapted to n-parameter
filtrations of cell complexes, as we now explain.

Starting from the sequence of n-graded S-modules

Oq+1 9q
Cor1 Cq

Cy-1, (11)

consider C;_; = P Cy1 [0 ] and define the free n-graded S-module Dy := P S and the
n-graded homomorphismn,_; : C;—1 — Dy given by the direct sum of the inclusions C; [0] = S,

oeX;1 oeX;1
forall o € X,_;. Since 1, is injective, replacing 9, by the composition 77,19, in the sequence (11)
does not affect the homology V, at the middle term. Similarly, since the homomorphism pg 1 : Gyy1 —
Cy+1 defined as in (10) is surjective, replacing 9,41 by the composition 9y py41 in the sequence (11)
does not affect the homology V;. In other words, the homology at the middle term of

Oq+1D Ng—10
Ggt1 Cy — Dq1, (12)
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isisomorphic to V;. Since Gy is free (and hence projective) and p, is surjective, there exists an n-graded
homomorphism 8,11 : Gg11 —> G such that the triangle

G C
o+l 0q+1Pg+1 1

commutes. The proof of [11, Prop. 5.2] carries over, showing that V is isomorphic to the homology at
the middle term of the following chain complex of free n-graded S-modules:

1q—19qPq

Gy Dg-1. (13)

[To—m1 dg+1]

Ry @ Gga

We remark that the construction of this chain complex is not canonical, as it requires choosing alift §, ;.
Now, we denote by § (Gq) the set of grades of the generators of G;, and by G (Rq ) the set of grades of the
generators of R, for all g. Explicitly, they are the following subsets of IN":

G(Gy) ={veN"|v e ent(o) forsomeo € X,},

(14)

G(Ry) ={w e N"|w=uv, Vv withvy # v; € ent(c), forsomeo € X,}.

Our results of sections 5 and 6 can be applied to the persistent homology module V; of a multi-critical fil-
tration X' = {X"},en by replacing the chain complex (11) of (not necessarily free) n-graded S-modules
by the chain complex (13) of free n-graded S-modules to present V, as the homology at the middle term.
In particular, this affects the sets of entrance grades of cells: In degree g, the set G(G,) now plays the role
of G(X;) in section S; similarly, G(R; @ Gy11) = G(R,) U G(Gyy1) now replaces the set G(X,11).
Lastly, we observe that, with the aim of reducing the involved chain complexes, one can replace the
n-filtered cell complex X with an n-filtered Morse complex M, consider (11) to be the chain complex
associated with M, and construct (13) from it.

As an example of how the results on one-critical filtrations can be adapted, we state the generalization
of Theorem 5.10 and Corollary 5.20 to the case of multi-critical filtrations.

PrOPOSITION 7.1. Let {X"},enr be a multi-critical n-parameter exhaustive filtration of a cell
complex X. Then, for all g € N,

supp&d € G(G,), supp &l € G(Ry) UG(Gyr1) UG(Gy), supp &1 € G(Ry) U G(Gygy1),

and

n

\Jsupp &’ € G(R;) UG(Gyn) U G(G,).

i=0

where the sets G(Gy), G(Ggs1) and G(R,) are as in (14). Furthermore, the same containments
hold if the sets G(G,), G(Ggt1) and G(Ry) are determined from {M"} e instead of {X"},enr,
where {M"},cnn is the n-parameter filtration of the Morse complex M associated with any fixed
discrete gradient vector field consistent with the filtration {X"},ene.
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