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A B S T R A C T  

Persistent homology encodes the evolution of homological features of a multifiltered cell complex in the form 

of a multigraded module over a polynomial ring, called a multiparameter persistence module, and quantifies 
it through invariants suitable for topological data analysis. In this paper, we establish relations between the 
Betti tables, a standard invariant for multigraded modules commonly used in multiparameter persistence, and 

the multifiltered cell complex. In particular, we show that the grades at which cells of specific dimensions first 
appear in the filtration reveal all positions in which the Betti tables are possibly non-zero. This result can be 
used in combination with discrete Morse theory on the multifiltered cell complex originating the module to 

obtain a better approximation of the support of the Betti tables. In the case of bifiltrations, we refine our results 
by considering homological critical grades of a filtered chain complex instead of entrance grades of cells. 
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1 .  I N T R O D U C T I O N  

ne of the main concepts in topological data analysis is persistent homology , a tool to capture topological
nformation at multiple scales and provide meaningful topological summaries of the data, as surveyed,
or example, in [ 9 , 14 , 21 ]. In practice, assuming that a data set comes equipped with measurements
ike functions or metrics to filter it, persistent homology transforms the filtered data into a nested family
f chain complexes that depend on as many parameters as the number of different measurements used.
pplying homology with coefficients in a field F to such a filtered chain complex produces a parametrized

amily of vector spaces, connected by linear transition maps, called a persistent homology module . Algebraic
nvariants of persistent homology modules provide the required summaries of the data topology. 

Classically, the development of the theory of persistent homology originated from two separate roots:
orse theory (as in, for example, [ 3 , 13 , 18 , 35 ]) and commutative algebra (as in, for example, [ 8 , 33 ,

0 ]). These two perspectives reconcile very elegantly in the case of one-parameter persistence, that is,
hen the filtration depends on only one parameter. In this case, persistent homology modules admit a

omplete invariant, the so-called barcode , encoding the lifespan of homology classes through the con-
idered filtration. From the standpoint of Morse theory, the endpoints of bars in a persistence barcode
orrespond to the cancellation of pairs of critical points of the filtering (Morse) function [ 13 ]. From the
lgebraic perspective, a persistent homology module is a representation of a finite linear quiver in the
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ategory of vector spaces. Thus, a one-parameter persistence module admits a unique decomposition
nto interval modules , that is indecomposable modules, each supported on an interval. These intervals
re exactly the bars of the persistence barcode [ 40 ]. 
It is of both theoretical and practical interest to understand persistent homology in the case of multiple

arameters, yielding to the so-called multiparameter persistence . Indeed, in applications, one often needs
o filter the data using more than only one measurement, obtaining a multiparameter persistence mod-
le. This is the case, for ex ample, w hen there are different drivers for a phenomenon [ 4 ], or when one
eeds to downsize the role of outliers by adding a co-density measurement to the principal, explanatory
easurement as in [ 5 , 19 ]. 
Unfortunately, the theory of multiparameter persistence modules proves to be much more elusive than

he single-parameter one: In particular, since multigraded modules are of wild representation type [ 20 ],
ore complicated indecomposables than just intervals can generally occur, and it is impossible to list

hem all or characterize them via discrete invariants. Despite this difficulty, all the relevant homological
vents in a multiparameter filtration are conveniently captured by the Betti tables of the multiparameter
ersistent homology module [ 8 ]. However, these events cannot be paired to obtain summaries similar

o barcodes, and their mutual dependencies cannot be easily unveiled. 
One of the motivations of this paper is to relate the events captured by the Betti tables of a multiparam-

ter persistent homology module to the events captured by Morse theory, considered in its combinatorial
ormulation [ 17 , 26 ]. This attempt to reconnect the algebraic perspective to Morse theory in the mul-
iparameter situation is both of theoretical interest in commutative algebra and of practical advantage,
s it provides a unified perspective to study persistent homology modules together with the underlying
ltered complexes. 
In this perspective, starting from the observation that for a one-parameter persistent homology mod-

le the support of the Betti tables coincides with the set of entrance grades of critical cells in the filtration
nder consideration, our goal is to understand whether and to what extent this fact can be generalized

o multiparameter persistence. An indication that this may be the case comes from the results of [ 22 ],
hich establish Morse inequalities involving, on the one hand, the values of the Betti tables of a multipa-

ameter persistent homology module, and, on the other hand, the so-called homological critical numbers
f the same filtration. The latter numbers can be viewed as theoretical lower bounds of the numbers of
ritical cells entering the filtration at each filtration grade for any choice of a discrete gradient vector field
onsistent with the filtration. 
The results of this paper delimit, in the space of parameters, the support of the Betti tables of a persis-

ent homology module in terms of the entrance grades of cells in the multiparameter filtration. Moreover,
e study the relation between the dimension of the entered cells and the degree of the persistent homol-
gy module on which they impact. In our setting, the multiparameter filtration is defined on an abstract
ell complex, an object representing in a combinatorial way a chain complex of vector spaces with distin-
uished bases (section 2.1 ). To obtain our main results of sections 3 , 5 and 6 , the filtration is assumed to
e defined via the sublevel sets of measurement functions. In such filtrations, also called one-critical in

opological data analysis [ 7 ], every cell has a unique entrance grade (section 2.2 ). 
From a different perspective, we aim to highlight how prior known results about multigraded resolu-

ions are relevant to the study of multiparameter persistence, and what can be gained in the context of
ersistence by integrating them with Morse theory. Indeed, the main goal of this paper can also be stated

n the language of multigraded commutative algebra, considering n -graded modules over the polynomial
ing S := F [ x1 , . . . , xn ] . An n -parameter persistent homology module can be viewed as an n -graded S -

odule V which is presented as the homology at the middle term of a sequence A
f −→ B

g −→ C of n -graded
 -modules with g f = 0 . If the n -parameter filtration is one-critical, the modules A , B and C are free. Our
oal is to study the Betti tables of V and relate their support with the grades of the generators of the
odules A , B and C. 
In section 3 , we highlight how multigraded free presentations and resolutions, well studied in multi-

raded commutative algebra [ 30 , 34 ], can be applied in the context of multiparameter persistence. Via
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his approach, we obtain some initial bounds on the support of the Betti tables of a persistent homol-
gy module in terms of entrance grades of cells in the multiparameter filtration (Proposition 3.4 and
emark 3.5 ). 
Nevertheless, we can say more about the support of Betti tables of persistence if, instead of approaching

he problem directly using a free resolution of the multiparameter persistence module, we use the Koszul
omplex associated with the persistence module, a strategy already used in [ 22 , 25 , 29 ]. More specifi-
ally, our technique is based on the construction of the Koszul complex via mapping cones (section 4 ).
sing this inductive construction, we can compute Betti tables by looking at the space of parameters
nly locally, and, more importantly, we can disentangle the different parameters of the multiparameter
ltration: the Koszul complex at a fixed grade in an n -parameter space is determined by the Koszul com-
lexes at nearby grades in an (n − 1) -parameter space. This allows for explicit and direct proofs. As an
dvantage, we can identify obstructions to the vanishing of Betti tables of a persistence module, which
ay not be as clear using the more abstract approach via free resolutions, and get tighter bounds than

irectly using resolutions. 
In detail, given an n -parameter filtration { X u }u ∈N 

n of a finite cell complex X , we consider, for any q ∈ N ,
he set G(Xq ) of entrance grades of q -cel ls in the filtration, as wel l as its closure G(Xq ) with respect to least
pper bounds, that is, the smallest set containing G(Xq ) and the least upper bounds in N 

n of its nonempty
ubsets. We denote by ξ q 

i : N 

n → N the i th Betti table of the persistent homology module obtained as
he q th homology of the filtration. In the case when the filtration is one-critical, Theorem 5.10 of section 5
tates a relation between the support supp ξ

q 
i := { u ∈ N 

n | ξ q 
i (u ) � = 0 } of the Betti tables and the sets

f entrance grades of cel ls: for al l q ∈ N , 

n ⋃ 

i =0 

supp ξ
q 
i ⊆ G(Xq +1 ) ∪ G(Xq ) . 

his delimitation of the support of the Betti tables using the entrance grades of cells cannot be tightened
see Example 5.12 ). 

We next focus on particular Betti tables for which the containment above can be improved. Sti l l in The-
rem 5.10 , we prove that supp ξ

q 
0 ⊆ G(Xq ) and supp ξ

q 
n ⊆ G(Xq +1 ) , for all q ∈ N . More interestingly, in

heorem 5.14 , we identify a sufficient condition on submodules of boundaries and cycles for the vanish-
ng of ξ q 

1 at a grade u ∈ N 

n . The condition for boundaries is the identity Bq (X u ) = ∑ n 
j=1 Bq (X u −e j ) of

ubmodules of Cq (X u ) , while the condition for cycles consists, up to a permutation on the set { 1 , . . . , n }
numerating the parameters, of the identities 

Zq (X u −e� ) ∩
⎛ ⎝ 

∑ 

j<� 

Zq (X u −e j )

⎞ ⎠ =
∑ 

j<� 

Zq (X u −e j −e� ) , 

or every � ≤ n . Our result implies the bound supp ξ
q 
1 ⊆ G(Xq +1 ) ∪ G(Xq ) for the support of the 1st

etti table (Corollary 5.20 ). In particular, in comparison to what can be obtained using multigraded free
esolutions of the persistent homology module as in section 3 , we see that using the cone construction
f the Koszul complex, we get somehow stronger results. 
To reconnect our results with Morse theory, in section 5.3 we observe that all our bounds for the sup-

ort of Betti tables can be applied to the Morse complex associated with any discrete gradient vector field
onsistent with the filtration. The persistent homology module of the Morse complex has the same Betti
ables as that of the original filtration, but the set of entrance grades of cells is typically much smaller.
herefore, using Morse complexes, one can often obtain better approximations of the support of the
etti tables. 
In the endeavor to improve the bounds for the support of Betti tables, rather than considering

ntrance grades of cells (either of the original complex or of an associated Morse complex), as a further
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ontribution of this paper we show that, in the case of two-parameter filtrations that are one-critical,
he support of the Betti tables of a persistent homology module is contained in the closure of the set
f homological critical grades (section 6 ). Although limited to the case of two parameters, this result

mproves our results from section 5 in two ways: It does not depend on the choice of a specific discrete
radient vector field and establishes that all events witnessed by the Betti tables are determined by
omological criticality (Corollary 6.6 ). 
Our results of sections 5 and 6 hold for one-critical filtrations of cell complexes. Although they cannot

e applied directly to filtrations that are not one-critical, a generalization in this direction can be obtained
sing results from [ 11 ], as we explain in section 7 . 

2 .  P R E L I M I N A  R I E  S  

efore presenting relevant background material for this article, let us establish some general notations:
 denotes the set { 0 , 1 , . . . } of natural numbers; [ n ] denotes the set { 1 , 2 , . . . , n } ; { ei }i =1 ,... ,n is the stan-

ard basis of N 

n ; for any subset α ⊆ [ n ] , we denote eα := ∑ 

j∈ α e j ; | J| denotes the cardinality of a set J;
he symbols ∧ and ∨ denote the greatest lower bound and least upper bound, respectively. 

2.1. Based chain complexes, cell complexes and homology 
et F denote a field, arbitrary but fixed. A based chain complex is a chain complex C∗ = (Cq , ∂q )q ∈Z of
ector spaces over F , which we assume to be of finite dimension, such that each Cq is endowed with a
istinguished basis Xq . Throughout this article, we assume all chain complexes to be bounded, meaning

hat Cq = 0 whenever q < 0 or q ≥ m for some integer m . Based chain complexes can be viewed from a
ombinatorial perspective, as their distinguished bases inherit the structure of an (abstract) cell complex ,
n the sense of Lefschetz [ 28 ]. In this work, we call cell complex a finite graded set X = ⊔ 

q ∈N 

Xq , whose
lements are called cells , endowed with an incidence function κ : X × X → F . A cell σ ∈ Xq is said to
ave dimension q , denoted dim σ = q , or to be a q - cell . The incidence function must satisfy two axioms:
1) κ(τ, σ ) � = 0 implies dim τ = dim σ + 1 and (2) 

∑ 

ρ∈ X κ(τ, ρ) · κ(ρ, σ ) = 0 , for any pair of
ells τ and σ in X . We endow X with the order relation ≤, called the face partial order , generated by
he covering face relation : σ < τ if and only if κ(τ, σ ) � = 0 . Given a cell complex X , we denote C∗(X ) =
Cq (X ) , ∂q )q ∈Z the based chain complex such that Xq is the fixed basis of Cq , for all q , with differentials
q : Cq → Cq −1 defined on each τ ∈ Xq by 

∂q (τ ) =
∑ 

σ∈ Xq −1 

κ(τ, σ ) σ. 

e observe that C∗(X ) is the zero chain complex if X = ∅ . 
A graded set A = ⊔ 

q ∈N 

Aq is called a subcomplex of X if, for all τ ∈ A , every cell σ ∈ X such that
≤ τ is also in A . This property makes A , endowed with the restriction of the incidence function of

 , a cell complex, and is equivalent to requiring C∗(A ) to be a chain subcomplex of C∗(X ) . We denote
y Hq (X ) := ker ∂q / im ∂q +1 the homology F -modules of C∗(X ) , and by Hq (X , A ) the homology F -
odules of the relative chain complex C∗(X , A ) . 
We observe that the notion of a cell complex as reviewed above, equivalent to that of a based chain

omplex, is general enough to include simplicial complexes and cubical complexes, among other widely
sed combinatorial objects admitting a canonically associated chain complex. If the aim is computing
omology, finite CW complexes can also be represented by cell complexes, letting κ(τ, σ ) be the degree
f the attaching map from the boundary of τ to σ . 

2.2. Multifiltrations and multiparameter persistence 
ne of the main mathematical objects of interest in topological data analysis are functors from a poset to

he category of finite dimensional vector spaces over a field F . Here, we consider the indexing poset N 

n ,
or some integer n ≥ 1 , equipped with the coordinate-wise partial order: For u = (ui ) , v = (vi ) ∈ N 

n ,
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e write u � v if and only if ui ≤ vi , for all 1 ≤ i ≤ n . In this article, an n - parameter persistence mod-
le is a functor from the poset (N 

n , �) with values in finite-dimensional F -vector spaces. Morphisms
etween such functors are the natural transformations. Explicitly, an n -parameter persistence module
 consists of a family { V u }u ∈N 

n of F -vector spaces together with a family { ϕu,v : V u → V v }u �v ∈N 

n of
inear maps such that ϕu,w = ϕv,w ◦ ϕu,v whenever u � v � w , and ϕu,u = id V u , for all u . A morphism
etween two n -parameter persistence modules { V u , ϕu,v } and { W u , ψu,v } is a family of linear maps
 νu : V u → W u }u ∈N 

n such that νv ◦ ϕu,v = ψu,v ◦ νu , for all u � v in N 

n . A morphism ν is an isomor-
hism ( monomorphism , epimorphism , respectively) if and only if its components νu are bijective (injective,
urjective), for all u ∈ N 

n . 
In topological data analysis, the typical source of persistence modules are filtrations of cell complexes

ssociated with the data. An n - filtration of a cell complex X is a family { X u }u ∈N 

n of subcomplexes of
 such that u � v implies X u ⊆ X v . If a cell σ of X is an element of X u \ ⋃ n 

j=1 X
u −e j , we say that u

s an entrance grade of σ in the filtration. In this article, we assume, unless otherwise stated, that filtra-
ions { X u }u ∈N 

n are families of sublevel sets X u = { σ ∈ X | h (σ ) � u } of some order-preserving func-
ion h : (X , ≤) → (N 

n , �) , with ≤ denoting the face partial order on X . This assumption is equivalent
o requiring every cell of X to have exactly one entrance grade, and wi l l only be lifted in section 7 , where
e discuss applications to general n -filtrations. 
The filtrations we are considering are usual ly cal led one-critical [ 7 ] in topological data analysis. We
ant to highlight that assuming the uniqueness of entrance grades is fundamental in order to obtain the

esults of sections 5 and 6 , which are false for general filtrations of cell complexes (but can be adapted as
xplained in section 7 ). For instance, in this article, we repeatedly use the following fact. 

Remark 2.1. Given a one-critical n -filtration { X u }u ∈N 

n and a finite set of filtration grades 
{ u j } j=1 ,... ,k ⊆ N 

n , with u j = (u j, 1 , . . . , u j,n ) for all j, we have 
⋂ k 

j=1 X
u j = X w , where 

w = ∧ { u j } j = (min { u j, 1 } j , . . . , min { u j,n } j ) is the greatest lower bound of the subset 
{ u j } j=1 ,... ,k in N 

n . In particular, for each subset α ⊆ [ n ] , we have the equality ⋂ 

j∈ α X u −e j = X u −eα . 

We are interested in persistence modules obtained as the homology of an n -filtration. Given an n -
ltration { X u }u ∈N 

n and applying the q th homology functor, one obtains the n - parameter persistent q th-
omology module Vq = { V u 

q , ι
u,v 
q }u �v ∈N 

n , with V u 
q := Hq (X u ) and ιu,v 

q : Hq (X u ) → Hq (X v ) induced by
he inclusion maps X u ↪→ X v for u � v . We note that it is common to use the terms multifiltration and

ultiparameter in place of, respectively, n -filtration and n -parameter, to indicate the generic case when
 > 1 . Moreover, two-filtrations are also called bifiltrations . 
The overall purpose of this work is to study the relation between the homological invariants of mul-

iparameter persistent homology modules called Betti tables and the multifiltrations from which they
re obtained. To this aim, we adopt some tools and terminology from commutative algebra. An n - graded
odule over the polynomial ring S := F [ x1 , . . . , xn ] is an S -module with a vector space decomposition
 = ⊕ 

u ∈N 

n V u such that xi · V u ⊆ V u + ei , for all u ∈ N 

n and i ∈ [ n ] . There is a standard equivalence
 8 ] between the category of n -parameter persistence modules and the category of n -graded S -modules,
llowing us to view a persistence module { V u , ϕu,v } as the n -graded S -module 

⊕ 

u ∈N 

n V u , where the
ction of S is defined by xi · z = ϕu,u + ei (z ) , for all z ∈ V u and i ∈ [ n ] . Standard homological invariants
rom commutative algebra, such as the Betti tables (also called multigraded Betti numbers , see section 2.3 ),
ere among the first ones studied in multiparameter persistence [ 8 , 25 ]. Given an n -parameter persistent
omology module { V u 

q , ι
u,v 
q } , obtained as the q th homology of an n -filtration, we view it as the finitely

enerated n -graded S -module Vq =
⊕ 

u ∈N 

n V u 
q and denote its i th Betti table by ξ q 

i , for i ∈ { 0 , 1 , . . . , n } .
e recall that its Betti tables are functions ξ q 

i : N 

n → N defined by 

ξ
q 
i (u ) := dim (Tor S i (Vq , F ))u , 



6 � A. GUIDOLIN AND C. LANDI

f  

n  

o

W  

F  

p  

s  

d
 

f  

a  

A  

a
 

{  

X  

c  

t  

g

o  

i  

c  

T  

B  

l
 

〈  

o  

t  

i  

ξ  

p  

c  

a  

n
 

f  

a  

p  

D  

c  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haaf021/8222551 by guest on 28 August 2025
or all u ∈ N 

n . Explicitly, ξ q 
i (u ) is the dimension (as an F -vector space) of the piece of grade u of the

 -graded S -module Tor S i (Vq , F ) . In section 4 , we give an equivalent definition of the Betti tables based
n the Koszul complex. 

2.3. Multigraded modules and free resolutions 
e now briefly review free resolutions of n -graded modules over the polynomial ring S :=
 [ x1 , . . . , xn ] . In this article, all n -graded S -modules are assumed to be finitely generated. Homomor-
hisms f : V → W between n -graded S -modules are assumed to be n -graded, meaning that they pre-
erve grades: f (V u ) ⊆ W u , for all u ∈ N 

n . We refer to [ 30 , Ch. 1] and to texts like [ 16 , 34 ] for further
etails. 
For an n -graded S -module V and for a ∈ Z 

n , we denote by V (a ) the module such that V (a )u = V u + a

or all u ∈ N 

n , called the shift of V by a . The module S (−a ) is the free S -module on one generator at grade
 ∈ N 

n . It is isomorphic to the principal monomial ideal 〈 xa 〉 , where xa denotes the monomial xa1 
1 · · · xan 

n .
n n -graded S -module is called free if it is isomorphic to 

⊕ r 
j=1 S (−a j ) for some r ∈ N and a j ∈ N 

n . For
 free module, r and { a j }r 

j=1 are uniquely determined. 
As an example related to the multifiltrations of section 2.2 , one can consider the persistence module

 Cq (X u ) , f u,v 
q }u �v ∈N 

n , where the maps f u,v 
q : Cq (X u ) ↪→ Cq (X v ) are induced by the inclusions X u ↪→

v , and regard it as the n -graded S -module Cq =
⊕ 

u ∈N 

n Cq (X u ) . If the n -filtration { X u }u ∈N 

n is one-
ritical, then Cq is free, isomorphic to 

⊕ 

σ∈ Xq 
S (−vσ ) , where vσ denotes the unique entrance grade of

he q -cell σ . The differential ∂q : Cq → Cq −1 is an example of an n -graded homomorphism between n -
raded S -modules, whose component in grade u is ∂q : Cq (X u ) → Cq −1 (X u ) , for all u ∈ N 

n . 
An ( n -graded) free resolution of an n -graded S -module V is a sequence 

· · · → F� 

φ� −→ F� −1 
φ� −1 −−→ · · · φ2 −→ F1 

φ1 −→ F0 → 0 

f n -graded free S -modules and n -graded homomorphisms, which is exact at degree i (that is, ker φi =
m φi +1 ) for all i > 0 , and such that coker φ1 = V . An exact sequence · · · φ2 −→ F1 

φ1 −→ F0 
ε −→ V → 0 is

alled an augmented free resolution of V , with the n -graded homomorphism ε called an augmentation .
he smallest integer � (if it exists) for which Fi = 0 for every i > � is called the length of the resolution.
y Hilbert’s Syzygy Theorem, every finitely generated n -graded S -module V admits a free resolution with

ength � ≤ n . 
A free resolution is called minimal if the image of each homomorphism φi is contained in

 x1 , . . . , xn 〉 Fi −1 , where 〈 x1 , . . . , xn 〉 denotes the homogeneous maximal ideal of S . Minimal free res-
lutions are unique up to isomorphism, and they are an invariant of the isomorphism type of V . In par-

icular, the number of summands S (−u ) in Fi , for every u ∈ N 

n and i ∈ { 0 , 1 , . . . , n } , is a well-defined
nvariant of V , and it coincides with the value at u of the i th Betti table (or multigraded Betti number ),
i (u ) := dim (Tor S i (V , F ))u . To see this, recall that, by definition, Tor S i (V , F ) can be determined by ap-
lying the functor − ⊗S F to a free resolution of V and taking the i th homology of the resulting chain
omplex of n -graded S -modules. Choosing a minimal free resolution of V , the homomorphisms φi ⊗S F
re all zero, hence Tor S i (V , F ) = Fi ⊗S F has in grade u an F -vector space of dimension equal to the
umber of summands S (−u ) in Fi , for all u ∈ N 

n . 
A free presentation of an n -graded S -module V is an n -graded homomorphism φ1 : F1 → F0 between

ree n -graded S -modules F1 and F0 such that coker φ1 = V . In this article, we wi l l occasionally refer to the

ugmented sequence F1 
φ1 −→ F0 → V → 0 , w hich is ex act at F0 and V , as a free presentation of V . A free

resentation of V is called minimal if it is the portion (in degrees 1 and 0) of a minimal free resolution of V .

2.4. Discrete Morse theory and multifiltrations 
iscrete Morse theory, developed by Forman [ 17 ], is an adaptation of smooth Morse theory [ 31 ] to a

ombinatorial framework. In its original formulation, it allows, given a regular CW complex, to construct
 homotopy equivalent CW complex with a smaller number of cells. Building on Forman’s work, discrete
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orse theory has been formulated in purely algebraic terms for based chain complexes [ 26 ] and in more
eneral frameworks [ 23 , 37 ]. In this algebraic setting, the aim is to decompose a chain complex into a
maller complex and an ac yclic complex. A s explained in section 2.1 , one can always take an equivalent
ombinatorial perspective by considering the cell complexes associated with based cell complexes. We
riefly present here the main ideas of algebraic discrete Morse theory in the setting of this work. 
Let C∗(X ) be the chain complex associated with a cell complex X = ⊔ 

q Xq , and let < be the cover-
ng face relation on X introduced in section 2.1 . A pair of cells (σ, τ ) ∈ X × X with σ < τ is called
 discrete vector . A discrete vector field V on X is a collection of discrete vectors V = { (σ j , τ j ) } j∈ J such
hat all cells appearing in V (indifferently as the first or the second component of a vector) are different.
 discrete vector field V determines a partition of X into three graded subsets M, S, T , where M is the

et of unpaired cel ls, cal led critical cells , and S (respectively, T ) is the set of cells appearing in V as first
respectively, second) components of a discrete vector. The subsets M, S, T inherit the grading by di-

ension of the cells of X , so that, for example, M = ⊔ 

q Mq . A V- path between two cells σ and σ ′ is a
equence (σ0 , τ0 , σ1 , τ1 , . . . , σr−1 , τr−1 , σr ) with r ≥ 1 such that σ0 = σ , σr = σ ′ , each (σi , τi ) is a
iscrete vector of V , and σi +1 < τi . The V-path is called closed if σr = σ1 and trivial if r = 1 . A discrete
ector field V is a discrete gradient vector field (also called an acyclic matching or a Morse matching ) when
ll closed V-paths are trivial. 
The core result of discrete Morse theory [ 17 ] can be algebraically stated as follows [ 23 , 24 , 37 ]. 
Theorem 2.2. Let C∗(X ) = (Cq (X ) , ∂q )q ∈Z be the chain complex associated with a cell complex 

X = ⊔ 

q Xq , and let V = { (σ j , τ j ) } j∈ J be a discrete gradient vector field on X . Then, C∗(X ) is 
chain homotopy equivalent to C∗(M) = (Cq (M) , ∂M 

q )q ∈Z , where M = ⊔ 

q Mq is the set of 
critical cells and ∂M is a differential determined by ∂ and V . 

We call C∗(M) the (discrete) Morse chain complex of C∗(X ) associated with V . Let us stress that in
eneral C∗(M) is not a chain subcomplex of C∗(X ) , since its differential ∂M is not simply induced by
estriction by the differential ∂ of C∗(X ) . The details on how ∂M is (uniquely) determined by ∂ and

can be found in [ 23 , 37 ]. Equivalently, a cell complex structure on the set M = ⊔ 

q Mq , called the
discrete) Morse complex of X associated with V , is determined by the incidence function of X and V
 24 ]. In general, M is not a subcomplex of X . 

Discrete Morse theory of filtered chain complexes has been studied in a series of works related to one-
arameter [ 32 ] or multiparameter persistent homology [ 1 ]. In the remainder of this section, we present
he main ideas of discrete Morse theory for multifiltrations. 

Consider an n -filtration { X u }u ∈N 

n of a cell complex X , which determines a filtration { C∗(X u ) }u ∈N 

n of
he chain complex C∗(X ) . Given a discrete gradient vector field V on X , there are clearly induced fil-
rations { Mu }u ∈N 

n on the Morse complex M and { C∗(Mu ) }u ∈N 

n on the Morse chain complex C∗(M) =
(Cq (M) , ∂M 

q ) . In general, the former is only a filtration of sets and the latter is only a filtration of graded
 -vector spaces, as the differential ∂M may fail to be compatible with the filtration. To avoid this, one can

equire the discrete gradient vector field to interact nicely with the multifiltration on X . 

Definition 2.3. A discrete gradient vector field V on X is consistent with a multifiltration 

{ X u }u ∈N 

n if, for all (σ, τ ) in V and all u ∈ N 

n , σ ∈ X u if and only if τ ∈ X u . 

If V is consistent with the multifiltration { X u }u ∈N 

n , then { C∗(Mu ) }u ∈N 

n is a filtration of chain subcom-
lexes of C∗(M) [ 1 , 32 ]. Equivalently, { Mu }u ∈N 

n is a filtration of subcomplexes of M. Moreover, the per-
istent homology modules associated with the multifiltrations of X and its Morse complex are isomor-
hic (in the sense of section 2.2 ). 

Proposition 2.4 (Lemma 3.10 in [ 1 ]). Let V be a discrete gradient vector field on a cell complex X 

consistent with an n -filtration { X u }u ∈N 

n , and let { Mu }u ∈N 

n be the n -filtration induced on the Morse 
complex M. Then, for any q ∈ N , the persistence modules obtained as q th homology of the 
n -filtrations { X u }u ∈N 

n and { Mu }u ∈N 

n are isomorphic. 
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3 .  E N T R  A N C E  G R  A D E S  A N D  S U P P O R T  O F  B E T T I  TA B L E S  V I A  F R E E  

R E S O L U T I O N S  

n this section, we i l lustrate how methods in multigraded homological algebra based on free presen-
ations and resolutions (see section 2.3 ) can be used to derive relations between two different graded
ubsets of N 

n : the set of parameter grades at which new critical cells appear in the one-critical filtration
 X u }u ∈N 

n of a cell complex X , on the one hand, and the set of parameter grades where the Betti tables of
he persistent homology module Vq =

⊕ 

u ∈N 

n Hq (X u ) are non-zero, on the other hand. Specifically, we
btain bounds on the support of the 0th and 1st Betti table of Vq (Proposition 3.4 ), and we discuss the

mmediate consequences of these bounds on the support of Betti tables of higher degrees (Remark 3.5 ).
e conclude by observing that some of the stronger results we wi l l prove in section 5 do not immediately

ollow from this approach. For this reason, we defer the discussion of how our results on the support of
etti table can be combined with discrete Morse theory to section 5.3 . 
In this section, we consider the following setting. Let { X u }u ∈N 

n be a one-critical n -filtration of a cell
omplex X . We assume the multifiltration { X u }u ∈N 

n to be exhaustive , that is, X = ⋃ 

u ∈N 

n X u . Clearly,
ince X is graded by the dimension q of cells, this means that Xq =

⋃ 

u ∈N 

n X u 
q , for all q ∈ N . The one-

riticality assumption (section 2.2 ) ensures that the chain complex associated with the filtration { X u }u ∈N 

n 

s made of free n -graded modules over the polynomial ring S := F [ x1 , . . . , xn ] . More specifically, for
ny q ∈ N , the n -graded S -module Cq := ⊕ 

u ∈N 

n Cq (X u ) associated with the filtration is free and iso-
orphic to 

⊕ 

σ∈ Xq 
S (−vσ ) , where vσ denotes the unique entrance grade of the q -cell σ . The set of all

ntrance grades (section 2.2 ) of q -cells is denoted by G(Xq ) ⊆ N 

n , and its closure with respect to least
pper bounds is denoted by G(Xq ) . Explicitly, G(Xq ) := {∨ 

L | L ⊆ G(Xq ) , L � = ∅} ⊆ N 

n , with 

∨ 

L
enoting the least upper bound of L in (N 

n , �) . 
By definition, the persistent homology module Vq =

⊕ 

u ∈N 

n Hq (X u ) is the homology at the mid-

le term of the sequence Cq +1 
∂q +1 −−→ Cq 

∂q −→ Cq −1 of free n -graded S -modules and n -graded homomor-
hisms. Our aim is constructing a free resolution of Vq that is informative of the relation between the
upport of the Betti tables and the sets of entrance grades of cells. In this section, we denote by ξi (V )
he i th Betti table of an n -graded S -module V , which we view as a function ξi (V ) : N 

n → N with val-
es ξi (V )(u ) := dim (Tor S i (V , F ))u defined as detailed in section 2.3 . We drop the module V from the
otation of the Betti tables when it is clear from the context. Lastly, let us recall that we use the notation
q 
i := ξi (Vq ) for the Betti tables of the persistent homology module Vq =

⊕ 

u ∈N 

n Hq (X u ) , and that we
enote by supp ξ

q 
i := { u ∈ N 

n | ξ q 
i (u ) � = 0 } the support of ξ q 

i . 
We start by considering the following sequence of n -graded S -modules and n -graded homomorphisms,

here h is the canonical projection. This sequence is not a free presentation of Vq in general, since ker ∂q
s in general not free for n > 2 and q > 0 . To obtain a free presentation of Vq , we consider a free presen-
ation F1 → F0 � ker ∂q of ker ∂q , which we assume to be minimal. This free presentation is the second
ow in the diagram of n -graded S -modules, 
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here the homomorphism ∂ is a lift of ∂q +1 , which exists since Cq +1 is free (hence projective) and ε is
urjective. A free presentation of Vq is then given by 

(1)

here [∂ φ1 ] denotes the n -graded homomorphism sending (c, x ) ∈ Cq +1 ⊕ F1 to ∂ (c ) + φ1 (x ) ∈ F0 .
o see that coker [∂ φ1 ] = Vq , we observe that the composition hε is surjective, and that its kernel coin-
ides with im [∂ φ1 ] = im ∂ + im φ1 . 
Our goal is approximating the sets of grades of the generators of the free modules F0 and Cq +1 ⊕ F1 ,
hich are the sets supp ξ0 (F0 ) and supp ξ0 (Cq +1 ⊕ F1 ) , respectively. In Proposition 3.4, we state bounds

n terms of the sets G(Xq ) and G(Xq +1 ) . To prove these bounds, we need some results on free resolution
f n -graded S -modules. 
First, we state a result whose proof can be found for example in [ 38 , Lemma 2.1] or, in a slightly dif-

erent setting, in [ 10 , Corollary 4.2]. 

Proposition 3.1. Let V be a (finitely generated) n -graded S -module. Then, the supports of its Betti 
tables satisfy the containments supp ξi +1 ⊆ supp ξi , for all i ≥ 1 . 

Next, we need a result on the structure of free resolutions. The proofs presented in [ 34 , Theorem 7.5]
r [ 16 , p. 6] carry over to the multigraded case. 

Proposition 3.2. Every n -graded free resolution of an n -graded S -module V is isomorphic to the 
direct sum of a minimal free resolution of V and short trivial complexes of the form 

0 → S (−u ) id −→ S (−u ) → 0 , with u ∈ N 

n , possibly involving different homological degrees. 

The following is a useful consequence of Propositions 3.1 and 3.2 . 

Corollary 3.3. Let K be the kernel of an n -graded homomorphism f : V → W of n -graded 

S -modules, where V is free. Then, supp ξ1 (K) ⊆ supp ξ0 (K) . 

Proof. Let F∗ = (· · · → F1 
φ1 −→ F0 → 0) be an n -graded minimal free resolution of K. The 

augmented free resolution · · · → F1 
φ1 −→ F0 

ε −→ K → 0 can be composed with the canonical 
monomorphism K

ι
↪→ V to form the sequence 

· · · → F1 
φ1 −→ F0 

ιε −→ V → 0 (2)

of free n -graded S -modules, which can be viewed as a (non-necessarily minimal) free 
resolution of the module im f ∼= 

V/K ∼= 

coker ιε. By Proposition 3.2 , the free resolution ( 2 ) 
of im f is isomorphic to a minimal free resolution P∗ = (· · · → P2 → P1 → P0 → 0) plus 
a direct sum of short trivial complexes. By minimality of F∗, a short trivial complex 
0 → S (−u ) id −→ S (−u ) → 0 , which is a direct summand of ( 2 ), can only have non-zero 

modules in homological degrees i = 0 , 1 (using indices as in P∗). Since Betti tables count the 
multiplicity of free summands S (−u ) at each grade u ∈ N 

n and each homological degree of a 
minimal free resolution (see section 2.3 ), this implies that supp ξ1 (im f ) ⊆ supp ξ0 (K) and 

that supp ξi +1 (im f ) = supp ξi (K) for i ≥ 1 , which together with Proposition 3.1 gives 

supp ξ1 (K) = supp ξ2 (im f ) ⊆ supp ξ1 (im f ) ⊆ supp ξ0 (K) . 

�



10 � A. GUIDOLIN AND C. LANDI

 

t

 

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haaf021/8222551 by guest on 28 August 2025
We are now ready to prove bounds for the grades of the generators of the free modules appearing in
he free presentation ( 1 ). 

Proposition 3.4. The containments supp ξ0 (F0 ) ⊆ G(Xq ) and 

supp ξ0 (Cq +1 ⊕ F1 ) ⊆ G(Xq +1 ) ∪ G(Xq ) hold for the modules in the free presentation ( 1 ) of 
Vq . 

Proof. We start with an argument similar to the one used in the proof of Corollary 3.3 . Let 

F∗ = (· · · → F1 
φ1 −→ F0 → 0) be a minimal free resolution of ker ∂q . The augmented exact 

sequence · · · → F1 
φ1 −→ F0 

ε −→ ker ∂q → 0 can be spliced with the exact sequence 

0 → ker ∂q 
ι−→ Cq 

∂q −→ Cq +1 to form the sequence 

· · · → F1 
φ1 −→ F0 

ιε −→ Cq 
∂q −→ Cq +1 → 0 (3)

of free n -graded S -modules, which can be viewed as a (non-necessarily minimal) free 
resolution of the module coker ∂q . By Proposition 3.2 , the free resolution ( 3 ) is isomorphic 
to a minimal free resolution P∗ = (· · · → P3 → P2 → P1 → P0 → 0) plus a direct sum of 
short trivial complexes. We observe that a short trivial complex 
0 → S (−u ) id −→ S (−u ) → 0 with non-zero modules in homological degrees i = 2 , 3 

cannot be a direct summand of ( 3 ), by minimality of the free resolution F∗ of ker ∂q . For this 
reason, the containment supp ξ0 (P2 ) ⊆ supp ξ0 (P1 ) , obtained by applying Proposition 3.1 

to P∗ with i = 1 , implies the containment supp ξ0 (F0 ) ⊆ supp ξ0 (Cq ) . The first containment 
of the claim follows by recalling that the set supp ξ0 (Cq ) of grades of the generators of Cq 
coincides with G(Xq ) by definition. 

We now consider the set supp ξ0 (Cq +1 ⊕ F1 ) = supp ξ0 (Cq +1 ) ∪ supp ξ0 (F1 ) . Again by 
definition, we have supp ξ0 (Cq +1 ) = G(Xq +1 ) . We therefore focus on the set supp ξ0 (F1 ) 
and observe that 

supp ξ0 (F1 ) = supp ξ1 (ker ∂q ) ⊆ supp ξ0 (ker ∂q ) , 

where the equality is by definition of Betti tables via minimal resolutions (section 2.3 ), and 

the containment is by Corollary 3.3 . The second containment of the claim then follows from 

the equality ξ0 (ker ∂q ) = ξ0 (F0 ) and from the first part of the proof. �

Remark 3.5. Since by Proposition 3.2 , the free presentation ( 1 ) of Vq contains a minimal free 
presentation as a direct summand, Proposition 3.4 yields the following two containments: 

supp ξ
q 
0 ⊆ G(Xq ) , supp ξ

q 
1 ⊆ G(Xq +1 ) ∪ G(Xq ) . 

We recall that the support of the 1st Betti table determines a bound for the support of all 
Betti tables of positive degree, since 

⋃ n 
i =1 supp ξ

q 
i ⊆ supp ξ

q 
1 . This general fact for n -graded 

S -modules is observed for example in [ 12 , Remark 3.2], and follows from Proposition 3.1 . 
Using this fact, we immediately see that 

n ⋃ 

i =1 

supp ξ
q 
i ⊆ G(Xq +1 ) ∪ G(Xq ) . 
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In section 5 , we wi l l obtain the containments for supp ξ
q 
0 (Theorem 5.10 ) and supp ξ

q 
1 (Corollary 5.20 )

ith an alternative method based on the Koszul complex, which wi l l al low us to improve some of the
tatements regarding the support of higher Betti tables. In Theorem 5.10 , we wi l l prove the stronger
tatement 

⋃ n 
i =0 supp ξ

q 
i ⊆ G(Xq +1 ) ∪ G(Xq ) , together with the containment supp ξ

q 
n ⊆ G(Xq +1 ) for

he support of the n th Betti table. 

4 .  T H E  KO S Z U L  C O M P L E X  O F  A  P E R S I S T E N C E  M O D U L E  

n this section, we describe the Koszul complex associated with an n -parameter persistence module
nd i l lustrate some of its properties. In particular, given an n -parameter persistent homology module
 Hq (X u ) , ιu,v 

q } , we introduce its Koszul complex at u ∈ N 

n , a chain complex whose i th homology mod-
le has dimension equal to the Betti table value ξ q 

i (u ) . This chain complex can be constructed via a
epeated procedure which allows us to add one parameter of the multifiltration at a time. 

In section 4.1 , upon briefly recalling general definitions and results, we provide a more detailed de-
cription of Koszul complexes of multiparameter persistent homology modules. We claim no original
esults in this section, as the Koszul complex is a standard tool, and the explicit description of its chain

odules and differentials in the case of persistent homology modules is included, for example, in [ 22 ,
ect. 3]. Here, besides fixing notations, we provide further details, especially with regard to bifiltrations,
hat are relevant to this work. 

In section 4.2 , we explain how the Koszul complex associated with an n -parameter persistence module
an be constructed as an iterated mapping cone, and we highlight the role of this construction for per-
istent homology modules, which intuitively allows one to disentangle the different parameters of the

ultifiltration and study their impact on the Betti tables. In section 5 , we wi l l apply this technique to
tudy the support of the Betti tables. 

4.1. The Koszul complex of a multigraded module 
et S denote the polynomial ring F [ x1 , . . . , xn ] . We recall that, for any subset α ⊆ [ n ] , we set
α := ∑ 

j∈ α e j ∈ { 0 , 1 }n . The Koszul complex K ∗ is a chain complex of free n -graded S -modules
hose construction is standard in commutative algebra (cf. [ 30 , Def. 1.26]): For each i , let K i :=
 

α⊆[ n ] , | α| = i S (−eα ) , where S (−eα ) denotes the free S -module generated in grade eα by an element we
enote 1α , for some α = { j1 < j2 < . . . < ji } . The differentials dK 

i : K i → K i −1 are defined on gener-
tors by 

dK 
i (1α ) =

i −1 ∑ 

r=0 

(−1)r x ji −r · 1α\{ ji −r } . 

iven an n -graded S -module V = ⊕ 

u ∈N 

n V u , the Koszul complex K ∗(x1 , . . . , xn ;V )(u ) of V at grade
 ∈ N 

n is the piece of grade u of the ( n -graded) chain complex V ⊗S K ∗. This chain complex of F -vector
paces can be used to determine the Betti tables ξi (u ) := dim (Tor S i (V , F ))u of V at grade u , for i ∈
 0 , 1 , . . . , n } . Indeed, by definition, Tor S i (V , F ) can be determined by applying the functor − ⊗S F to a
ree resolution of V and taking i th homology of the resulting chain complex (see section 2.3 ). The roles
f V and F can however be interchanged, by virtue of the isomorphism Tor S i (V , F ) ∼= 

Tor S i (F , V ) (see,
or example, [ 36 , Thm. 7.1]); in this case, choosing K ∗ as a (minimal) free resolution of F (see [ 30 ,
rop. 1.28]) yields, for all i ∈ { 0 , 1 , . . . , n } , the equality 

ξi (u ) = dim Hi (K ∗(x1 , . . . , xn ;V )(u )) . 

Let us now provide a more explicit description of the Koszul complex K ∗(x1 , . . . , xn ;Vq )(u ) of a
ersistent homology module { Hq (X u ) , ιu,v 

q } associated with an n -parameter filtration { X u }u ∈N 

n , regarded
s an n -graded S -module Vq =

⊕ 

u ∈N 

n Hq (X u ) (as reviewed in section 2.2 ). Even if this description of
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he Koszul complex can be easily adapted to any n -parameter persistence module, not necessari ly bui lt
rom a filtered cell complex, we prefer to focus on the case of interest for this work in order to clearly
ntroduce the notations we wi l l use in what follows. 

For each i ∈ { 0 , 1 , . . . , n } , the chain module in degree i of K ∗(x1 , . . . , xn ;Vq )(u ) is 

K i (x1 , . . . , xn ;Vq )(u ) =
⊕ 

α⊆[ n ] , | α| = i 

Hq (X u −eα ) . 

he definition can be easily extended if, for some fixed u ∈ N 

n and some α ⊆ [ n ] , it happens that
 − eα / ∈ N 

n : Throughout this article, by definition, we set X w = ∅ whenever the grade w is not in
 

n . Note that the modules K i (x1 , . . . , xn ;Vq )(u ) are zero for all i / ∈ { 0 , 1 , . . . , n } . The differentials of
 ∗(x1 , . . . , xn ;Vq )(u ) are defined in terms of the maps ιv,w 

q : Hq (X v ) → Hq (X w ) as follows: the dif-
erential 

di : K i (x1 , . . . , xn ;Vq )(u ) → K i −1 (x1 , . . . , xn ;Vq )(u ) 

s defined as the alternating sum di =
∑ i −1 

r=0 (−1)r di,r of functions di,r : K i (x1 , . . . , xn ;Vq )(u ) →
 i −1 (x1 , . . . , xn ;Vq )(u ) mapping the summand Hq (X u −eα ) in K i (x1 , . . . , xn ;Vq )(u ) , with α =
 j1 < j2 < . . . < ji } , to the summand Hq (X u −eα+ e ji −r ) in K i −1 (x1 , . . . , xn ;Vq )(u ) , via the function
u −eα, u −eα+ e ji −r 
q . For the sake of a simpler notation, we avoid denoting the grade u in the differentials di . As
e explained, ξ q 

i (u ) coincides with the dimension (as an F -vector space) of the i th homology module
f K ∗(x1 , . . . , xn ;Vq )(u ) . 
Let us detail the cases of n = 1 and n = 2 parameters for later convenience. For a one-parameter fil-

ration { X u }u ∈N 

, the Koszul complex K ∗(x1 ;Vq )(u ) of Vq =
⊕ 

u ∈N 

Hq (X u ) at u ∈ N is 

0 −→ Hq (X u −1 )
d1 = ιu −1 ,u 

q −−−−→ Hq (X u ) −→ 0 . 

he Betti tables at grade u are ξ q 
0 (u ) = dim coker ιu −1 ,u 

q and ξ
q 
1 (u ) = dim ker ιu −1 ,u 

q , which correspond
espectively to the number of births and deaths of q -homology classes at u ∈ N in the sense of persistence
 13 ]. 

For a two-parameter filtration { X u }u ∈N 

2 , the Koszul complex K ∗(x1 , x2 ;Vq )(u ) of the module Vq =
 

u ∈N 

2 Hq (X u ) at u ∈ N 

2 is 

0 −→ Hq (X u −e1 −e2 )
d2 −→ Hq (X u −e1 ) ⊕ Hq (X u −e2 )

d1 −→ Hq (X u ) −→ 0 , 

ith differentials 

d2 =
[−ιu −e1 −e2 ,u −e1 

q 
ιu −e1 −e2 ,u −e2 

q 

]
and d1 =

[ 
ιu −e1 ,u 

q ιu −e2 ,u 
q 

] 
. 

he Betti tables at the grade u are 

ξ
q 
2 (u ) = dim ker d2 , ξ

q 
1 (u ) = dim (ker d1 / im d2 ) , ξ

q 
0 (u ) = dim coker d1 . 

A morphism ν = { νu : V u → W u }u ∈N 

n between n -parameter persistence modules { V u , ϕu,v } and
 W u , ψu,v } induces a chain map between the Koszul complexes ofV = ⊕ 

u ∈N 

n V u andW = ⊕ 

u ∈N 

n W u 

t u ∈ N 

n , the morphism between the chain modules in degree i being 
⊕ 

| α| = i ν
u −eα , with α ⊆ [ n ] .

oreover, since taking finite direct sums preserves short exact sequences of vector spaces, taking the
oszul complex at any fixed u is an exact functor, meaning that a short exact sequence 0 → U

μ−→ V ν−→
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 → 0 of n -parameter persistence modules induces a short exact sequence of Koszul complexes 

0 → K ∗(x1 , . . . , xn ;U )(u ) → K ∗(x1 , . . . , xn ;V )(u ) → K ∗(x1 , . . . , xn ;W )(u ) → 0 . 

Clearly, an isomorphism between persistence modules induces an isomorphism between their Koszul
omplexes. In what follows, we will apply this observation in the particular case of a multifiltration
 X u }u ∈N 

n of X and the induced multifiltration { Mu }u ∈N 

n of its Morse complex. By virtue of Propo-
ition 2.4 , since the modules Vq := ⊕ 

u ∈N 

n Hq (X u ) and V ′ 
q := ⊕ 

u ∈N 

n Hq (Mu ) are isomorphic, their
oszul complexes K ∗(x1 , . . . , xn ;Vq )(u ) and K ∗(x1 , . . . , xn ;V ′ 

q )(u ) are also isomorphic, at all u ∈ N 

n .
s a consequence, the Betti tables ξ q 

i (u ) can be determined considering the Morse complex instead of
he original complex. 

4.2. Explicit construction via mapping cones 
e now i l lustrate the explicit construction of the Koszul complex K ∗(x1 , . . . , xn ;Vq )(u ) of Vq at grade

 ∈ N 

n as an iterated mapping cone. The classical construction of the Koszul complex via mapping cones
an be found in [ 16 , § A2F] and [ 6 , Ch. 1.6]; here, we rephrase, adapt and enrich it with examples to
rovide a complete and explicit treatment for Koszul complexes of persistent homology modules that
onveys the intuition of persistent homology. 
Given a chain map f : B∗ → C∗, the mapping cone Cone ( f )∗ of f is the chain complex with
one ( f )i := Bi −1 ⊕ Ci and differential δi : Bi −1 ⊕ Ci → Bi −2 ⊕ Ci −1 defined by 

δi (b, c ) := (−∂B 
i −1 (b) , ∂C 

i (c ) + fi −1 (b)
)
, (4)

or all i , with b ∈ Bi −1 , c ∈ Ci and ∂B , ∂C , respectively, denoting the differentials of B∗ and C∗, see [ 15 ,
A3.12]. 
Let F := { X u }u ∈N 

n be an n -filtration of a cell complex X . As is evident from the definitions in sec-
ion 4.1 , the Koszul complex K ∗(x1 , . . . , xn ;Vq )(u ) of the associated persistent homology module Vq =

 

u ∈N 

n Hq (X u ) at the fixed grade u ∈ N 

n only depends on the subcomplexes X u −eα of the filtration,
ith α ⊆ [ n ] . In other words, to determine K ∗(x1 , . . . , xn ;Vq )(u ) it is enough to consider the smaller
 -filtration F u := { X u −eα }α⊆[ n ] , containing 2n subcomplexes of the original n -filtration F . We observe
hat, fixed any j ∈ [ n ] , the n -filtration F u can be partitioned into 2n −1 one-filtrations X u −eα−e j ⊆ X u −eα ,
ne for each α ⊆ [ n ] \ { j} . More generally, fixed any non-empty subset J := { j1 , . . . , jt } ⊆ [ n ] , there is
 partition of F u consisting of 2n −t t-filtrations of the form { X u −eα−eγ }γ⊆J , one for each α ⊆ [ n ] \ J. Ev-
ry such t-filtration has an associated Koszul complex K ∗(x j1 , . . . , x jt ;Vq )(u − eα ) that intuitively only
ncodes information on the parameters j1 , . . . , jt of the n -filtration F u . Given k ∈ [ n ] \ J, regarded here
s an additional parameter to be taken into account, one can consider the (t + 1) -filtration given by the
nion of two t-filtrations { X u −eα−eγ }γ⊆J and { X u −eα−ek −eγ }γ⊆J , for any α ⊆ [ n ] \ (J ∪ { k} ) . Below, we
i l l explain how the Koszul complex associated with such (t + 1) -filtration can be constructed as the
apping cone of a chain map between the two Koszul complexes associated with the t-filtrations. 
We begin by i l lustrating in detail the first few steps of the procedure based on iterated mapping cones

o construct the Koszul complex K ∗(x1 , . . . , xn ;Vq )(u ) starting from ‘1-parameter’ Koszul complexes
in direction e j ’ 

K ∗(x j ;Vq )(w ) =
( 

0 −→ Hq (X w −e j )
d1 = ι

w −e j ,w 
q −−−−−→ Hq (X w ) −→ 0

) 

, 

or any fixed j ∈ [ n ] and for w = u − eα with α ⊆ [ n ] \ { j} , and from specific chain maps between
hem. The chain maps are those induced by inclusions ‘in direction ek ’, for any fixed k ∈ [ n ] \ { j} , that is

f k (x j ;Vq )(w − ek ) : K ∗(x j ;Vq )(w − ek ) → K ∗(x j ;Vq )(w ) , 
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ith f k 
i (x j ;Vq )(w − ek ) : K i (x j ;Vq )(w − ek ) → K i (x j ;Vq )(w ) defined, for degrees i = 0 , 1 , as 

f k 
0 (x j ;Vq )(w − ek ) = ιw −ek ,w 

q : Hq (X w −ek ) −→ Hq (X w ) , 

f k 
1 (x j ;Vq )(w − ek ) = ι

w −e j −ek ,w −e j 
q : Hq (X w −e j −ek ) −→ Hq (X w −e j ) . 

he mapping cone Cone ( f k (x j ;Vq )(w − ek ))∗ is the Koszul complex K ∗(x j , xk ;Vq )(w ) , associated
ith the bifiltration { X w −eγ }γ⊆{ j,k} . Intuitively, it is obtained from the previous step, where only the jth
arameter was considered, by adding one parameter more, namely the kth parameter of the original n -
ltration. Explicitly, K ∗(x j , xk ;Vq )(w ) is the chain complex 

0 −→ Hq (X w −e j −ek )
d2 −→ Hq (X w −e j ) ⊕ Hq (X w −ek )

d1 −→ Hq (X w ) −→ 0 , 

here the differentials, applying the definition ( 4 ), are 

d2 =
[ 

−ι
w −e j −ek ,w −e j 
q 

ι
w −e j −ek ,w −ek 
q 

] 

and d1 =
[ 
ι

w −e j ,w 
q ιw −ek ,w 

q 

] 
. 

The process we just described can be repeated, by choosing a new ‘direction’ e� corresponding to a
ew parameter � ∈ [ n ] \ { j, k} and constructing K ∗(x j , xk , x� ;Vq )(w ) as the mapping cone of the chain
ap f � (x j , xk ;Vq )(w − e� ) induced by inclusions in direction e� , for each w = u − eα with α ⊆ [ n ] \

 j, k, � } . Explicitly, f � (x j , xk ;Vq )(w − e� ) is defined by the following maps, in degrees i = 0 , 1 , 2 : 

f � 
0 (x j , xk ;Vq )(w − e� ) = ιw −e� ,w 

q , 

f � 
1 (x j , xk ;Vq )(w − e� ) = ι

w −e j −e� ,w −e j 
q ⊕ ιw −ek −e� ,w −ek 

q , 

f � 
2 (x j , xk ;Vq )(w − e� ) = ι

w −e j −ek −e� ,w −e j −ek 
q . 

f the order in which the indeterminates are added is changed, one obtains isomorphic chain complexes:
or example, K ∗(x j , xk , x� ;Vq )(w ) is isomorphic to K ∗(x j , x� , xk ;Vq )(w ) . At the last step, one obtains
 ∗(x1 , . . . , xn ;Vq )(u ) as the mapping cone of the chain map f m (x1 , . . . , ˆ xm 

, . . . , xn ;Vq )(u − em 

) be-
ween K ∗(x1 , . . . , ˆ xm 

, . . . , xn ;Vq )(u − em 

) and K ∗(x1 , . . . , ˆ xm 

, . . . , xn ;Vq )(u ) . 
Thanks to the iterative nature of the process, we can provide an explicit description of
 ∗(x j1 , . . . , x jt ;Vq )(u ) for any u ∈ N 

n and any non-empty subset J := { j1 , . . . , jt } ⊆ [ n ] . For each
 ∈ { 0 , 1 , . . . , | J|} , the chain module in degree i is 

K i (x j1 , . . . , x jt ;Vq )(u ) =
⊕ 

γ⊆J, | γ | = i 

Hq (X u −eγ ) . 

he modules K i (x j1 , . . . , x jt ;Vq )(u ) are zero for all i / ∈ { 0 , 1 , . . . , | J|} . The differentials of the chain
omplex K ∗(x j1 , . . . , x jt ;Vq )(u ) can be described as follows: the differential 

di : K i (x j1 , . . . , x jt ;Vq )(u ) → K i −1 (x j1 , . . . , x jt ;Vq )(u ) 

s the alternating sum di =
∑ i −1 

r=0 (−1)r di,r , where di,r : K i (x j1 , . . . , x jt ;Vq )(u ) →
 i −1 (x j1 , . . . , x jt ;Vq )(u ) is the function mapping each summand Hq (X u −eγ ) of
 i (x j1 , . . . , x jt ;Vq )(u ) , with γ = { js (1) , . . . , js (i ) } and s (1) < · · · < s (i ) , to the summand

q (X u −eγ + e js (i −r) ) in K i −1 (x j1 , . . . , x jt ;Vq )(u ) via the function ι
u −eγ , u −eγ + e js (i −r) 
q . 
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For any k ∈ [ n ] \ J, the Koszul complex K ∗(x j1 , . . . , x jt , xk ;Vq )(u ) is the mapping cone of the chain
ap induced by inclusions in direction ek , 

f k (x j1 , . . . , x jt ;Vq )(u − ek ) : 

K ∗(x j1 , . . . , x jt ;Vq )(u − ek ) → K ∗(x j1 , . . . , x jt ;Vq )(u ) , 

hich for each degree i ∈ { 0 , 1 , . . . , | J|} is defined by 

f k 
i (x j1 , . . . , x jt ;Vq )(u − ek ) =

⊕ 

γ⊆J, | γ | = i 

ι
u −eγ −ek , u −eγ

q . 

In section 5 , several results wi l l be obtained by showing certain mapping cones to be acyclic, that
s, having vanishing homology in all degrees. We recal l the fol lowing immediate consequence of [ 15 ,
rop. A3.19] (see also [ 39 , Corollary 1.5.4]), which gives an equivalent condition to the acyclicity of a
apping cone. 

Proposition 4.1. A chain map f : B∗ → C∗ is a quasi-isomorphism (that is, it induces 
isomorphisms Hq (B∗) ∼= 

Hq (C∗) in homology, for all q ∈ Z ) if and only if Cone ( f )∗ is acyclic. 

Corollary 4.2. Let f : B∗ → C∗ be a chain map, and let B∗ and C∗ be acyclic. Then, Cone ( f )∗
is acyclic. 

Proof. If B∗ and C∗ are acyclic, the chain map f must be a quasi-isomorphism. �

5 .  E N T R  A N C E  G R  A D E S  A N D  S U P P O R T  O F  B E T T I  TA B L E S  V I A  

KO S Z U L  C O M P L E X E S  

n this section, we resume the investigation, started in section 3 , of the relations between the set of en-
rance grades of cel ls in a one-critical filtration { X u }u ∈N 

n , and the set of grades where the Betti tables of
he persistent homology module Vq =

⊕ 

u ∈N 

n Hq (X u ) are non-zero. The main tool of the approach we
ropose is the Koszul complex. In section 5.1 , we prove a result (Theorem 5.10 ) on the support of Betti

ables ξ q 
i of all degrees i ∈ { 0 , . . . , n } , which improves the results of section 3 . In section 5.2 , we focus

n the Betti table ξ q 
1 , stating a sufficient condition for its vanishing at a given grade in terms of the sub-

odules of cycles and boundaries of Vq (Theorem 5.14 ). This result can be used to better approximate
he support of ξ q 

1 . In section 5.3 , we explain how the presented results can be combined with reductions
f the filtered cell complex via discrete Morse theory. 
Our fixed setting for the whole section wi l l be as in section 3 . For the reader’s convenience, we briefly

ecall it. Let { X u }u ∈N 

n be a one-critical (section 2.2 ) and exhaustive n -parameter filtration of a cell com-
lex X , which is also graded by the dimension q of cells. To study the connections with discrete Morse

heory (in section 5.3 ), we consider a fixed discrete gradient vector field V consistent with the filtration
see section 2.4 ), and denote by { Mu }u ∈N 

n the associated n -parameter filtration of the Morse complex M.
xtending a notation used in section 3 , we denote set of entrance grades (section 2.2 ) of a non-empty

ubset � of cells of X by 

G(�) := {entrance grades of the cells of �} ⊆ N 

n . 

e denote by G the closure of a non-empty subset G ⊆ N 

n with respect to the least upper bound in
 

n , which is the set G := {∨ 

L | L ⊆ G, L � = ∅} ⊆ N 

n . Moreover, we recall that supp ξ
q 
i := { u ∈ N 

n |
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q 
i (u ) � = 0 } denotes the support of the i th Betti table ξ q 

i : N 

n → N of the persistent homology mod-
le Vq =

⊕ 

u ∈N 

n Hq (X u ) . Lastly, we establish a notation that wi l l be used throughout this section and
tate two simple results that wi l l be instrumental in studying the support of the Betti tables using Koszul
omplexes. 

Notation 5.1. Having fixed a grade u ∈ N 

n , for any α ⊆ [ n ] , we set w (α) := u − eα , where 
eα := ∑ 

j∈ α e j . 

Lemma 5.2. Let A, B, C, D be subspaces of a vector space V over the field F . Suppose that 
B ⊆ A ⊆ C and B ⊆ D ⊆ C, and let f : A 

B → C 
D 

be the linear map induced by the inclusion of 
A in C. Then, there are canonical isomorphisms 

ker f = A ∩ D 

B 

, im f ∼= 

A 

A ∩ D 

∼= 

A + D 

D 

, coker f ∼= 

C 

A + D 

. 

Proof. Let ϕ denote the composition A ↪→ C � C 
D 

of the canonical injection and projection. 
The map f , induced by ϕ on the quotient, is well defined since ker ϕ = A ∩ D ⊇ B , and 

satisfies ker f = ker ϕ 
B = A ∩ D 

B and im f = im ϕ ∼= 

A 
ker ϕ , see, for example, [ 2 , p. 19]. The 

remaining canonical isomorphisms of the claim are obtained via the standard isomorphism 

theorems [ 2 , Prop. 2.1]. �

Lemma 5.3. Let A
f −→ B

g −→ C h −→ D i −→ E be an exact sequence of vector spaces over the fixed field 

F . Then C = 0 if and only if f is surjective and i is injective. 

Proof. If f is surjective and i is injective, then ker g = im f = B , which implies 
ker h = im g = 0 , and therefore C ∼= 

C/ ker h ∼= 

im h = ker i = 0 . Conversely, if C = 0 , 
then im f = ker g = B and ker i = im h = 0 . �

5.1. Results on the support of all Betti tables 
ur goal for this section is to prove that 

⋃ n 
i =0 supp ξ

q 
i ⊆ G(Xq ) ∪ G(Xq +1 ) and, moreover, supp ξ

q 
0 ⊆

(Xq ) and supp ξ
q 
n ⊆ G(Xq +1 ) , for all q ∈ N (Theorem 5.10 ). For ξ q 

1 , the result is improved in sec-
ion 5.2 . We observe that the first inclusion is clearly equivalent to the following statement: If u /∈
(Xq ) ∪ G(Xq +1 ) , then ξ

q 
i (u ) = 0 , for all i ∈ { 0 , 1 , . . . , n } . To start with, we prove a result that allows

s to rephrase the hypothesis of this statement. 

Proposition 5.4. Let A be any subset of cells of X and let u ∈ N 

n . Then, u / ∈ G(A ) if and only if 
there exists j ∈ [ n ] such that for any subset α j ⊆ [ n ] \ { j} it holds 
(X w (α j ) \ X w (α j ) −e j ) ∩ A = ∅ , where w (α j ) is define d as in Notation 5.1 . 

Proof. We prove the contrapositive claim, showing the equivalence of the following statements: 

(1) u ∈ G(A ) . 
(2) For all j ∈ [ n ] , there exists a subset α j ⊆ [ n ] \ { j} such that 

(
X w (α j ) \ X w (α j ) −e j 

) ∩ A � = 

∅ . 
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Assume that u ∈ G(A ) . If u ∈ G(A ) , we are done by taking α j = ∅ , for all j. If u / ∈ G(A ) , 
then u = ∨ { v1 , . . . , vr } with r ≥ 2 and v1 , . . . vr ∈ G(A ) . In this case, by definition of the 
least upper bound, for all j ∈ [ n ] there exists � ( j) ∈ [ r] such that u − e j �� v� ( j) . Therefore, 
taking a cell σ� ( j) ∈ A with entrance grade v� ( j) , we have σ� ( j) ∈ ( X u \ X u −e j ) ∩ A , since 
u − e j �� v� ( j) implies σ� ( j) / ∈ X u −e j by one-criticality of the multifiltration (section 2.2 ). 
The second statement follows again by taking α j = ∅ , for all j. 

Conversely, assume that the second statement holds. For each j ∈ [ n ] , let v ( j) denote the 
entrance grade of a cell σ j ∈

(
X w (α j ) \ X w (α j ) −e j 

) ∩ A , for some w (α j ) = u − ∑ 

i ∈ α j 
ei . Let 

v = ∨ { v (1) , . . . , v (n ) } . From v ( j) � w (α j ) � u , for all j, we see that v � u . Let us show 

now that v = u , which concludes the proof. If v � = u , then there exists j ∈ [ n ] such that 
v � u − e j . Since σ j has entrance grade v ( j) and v ( j) � v � u − e j , we have σ j ∈ X u −e j . 
On the other hand, we are assuming that σ j ∈ X w (α j ) with w (α j ) = u − ∑ 

i ∈ α j 
ei and 

j / ∈ α j . The latter condition implies that w (α j ) and u − e j are not comparable. More 
precisely, the greatest lower bound of w (α j ) and u − e j is w (α j ) − e j . Hence, the 
one-criticality assumption on the multifiltration yields a contradiction (see Remark 2.1 ), 
since we are assuming that σ j / ∈ X w (α j ) −e j . �

We underline that the one-criticality assumption on the n -filtration { X u }u ∈N 

n plays a key role in the
roof of Proposition 5.4 . 

Corollary 5.5. For any u ∈ N 

n , we have u / ∈ G(Xq ) if and only if there exists j ∈ [ n ] such that 
X w (α j ) −e j 

q = X w (α j ) 
q , for all subsets α j ⊆ [ n ] \ { j} . 

Proposition 5.4 also yields information on the maps of the persistent homology modules
 Hq (X u ) , ιu,v 

q } and { Hq −1 (X u ) , ιu,v 
q −1 } in the ‘vicinity’ of a fixed grade u / ∈ G(Xq ) . 

Corollary 5.6. If u / ∈ G(Xq ) , then there exists j ∈ [ n ] such that, for all α j ⊆ [ n ] \ { j} , the 
inclusion X w (α j ) −e j ↪→ X w (α j ) induces a surjection 

ι
w (α j ) −e j ,w (α j ) 
q : Hq (X w (α j ) −e j ) → Hq (X w (α j ) ) 

and an injection 

ι
w (α j ) −e j ,w (α j ) 
q −1 : Hq −1 (X w (α j ) −e j ) → Hq −1 (X w (α j ) ) . 

Proof. By Proposition 5.4 , if u / ∈ G(Xq ) , then there exists j ∈ [ n ] such that, for all 
α j ⊆ [ n ] \ { j} , we have X w (α j ) −e j 

q = X w (α j ) 
q , which implies Hq (X w (α j ) , X w (α j ) −e j ) = 0 . The 

claim follows from the following portion of the long exact sequence of relative homology of 
(X w (α j ) , X w (α j ) −e j ) , 

Hq (X w (α j ) −e j ) −→ Hq (X w (α j ) ) −→ 0 −→ Hq −1 (X w (α j ) −e j ) −→ Hq −1 (X w (α j ) ) , 

where the first map is ιw (α j ) −e j ,w (α j ) 
q and the last map is ιw (α j ) −e j ,w (α j ) 

q −1 . �

Remark 5.7. Moving towards the proof of our main result, let us note that the hypothesis 
u / ∈ G(Xq ) ∪ G(Xq +1 ) implies, applying Corollary 5.5 twice, that the following properties 
hold simultaneously: 
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(i) There exists j ∈ [ n ] such that X w (α j ) −e j 
q = X w (α j ) 

q , for all subsets α j ⊆ [ n ] \ { j} . 
(ii) There exists � ∈ [ n ] such that X w (α� ) −e� 

q +1 = X w (α� ) 
q +1 , for all subsets α� ⊆ [ n ] \ { � } . 

Clearly, the indices j and � of properties (i) and (ii) in Remark 5.7 can either coincide or not. We
ext prove that both cases imply the acyclicity of certain Koszul complexes, addressing the case j = � in
emma 5.8 and the case j � = � in Lemma 5.9 . 

Lemma 5.8. If properties (i) and (ii) in Remark 5.7 are verified with j = � , then the Koszul complex 
K ∗(x1 , . . . , xn ;Vq )(u ) is acyclic. 

Proof. Reasoning as in the proof of Corollary 5.6 , we see that the maps 

ι
w (α j ) −e j ,w (α j ) 
q : Hq (X w (α j ) −e j ) → Hq (X w (α j ) ) 

are isomorphisms, for all subsets α j ⊆ [ n ] \ { j} . Therefore, the induced chain map 

f j (x1 , . . . , ˆ x j , . . . , xn ;Vq )(u − e j ) : 

K ∗(x1 , . . . , ˆ x j , . . . , xn ;Vq )(u − e j ) → K ∗(x1 , . . . , ˆ x j , . . . , xn ;Vq )(u ) 

is an isomorphism of chain complexes. Hence, the claim follows from Proposition 4.1 

because K ∗(x1 , . . . , xn ;Vq )(u ) is the mapping cone of f j (x1 , . . . , ˆ x j , . . . , xn ;Vq )(u − e j ) . �

Lemma 5.9. Let u ∈ N 

n and suppose that properties (i) and (ii) of Remark 5.7 hold with j � = � . 
Then, for any w := w (α) = u − eα with α ⊆ [ n ] \ { j, � } , the Koszul complex 
K ∗(x j , x� ;Vq )(w ) is acyclic. 

Proof. In order to apply Proposition 4.1 , we regard K ∗(x j , x� ;Vq )(w ) as the mapping cone of 
the chain map 

f � (x j ;Vq )(w − e� ) : K ∗(x j ;Vq )(w − e� ) → K ∗(x j ;Vq )(w ) . 

We want to prove that f � (x j ;Vq )(w − e� ) induces isomorphisms between the homology 
modules of 

K ∗(x j ;Vq )(w − e� ) =
( 

0 → Hq (X w −e j −e� )
d1 = ι

w −e j −e� ,w −e� 
q −−−−−−−−→ Hq (X w −e� ) → 0

) 

and 

K ∗(x j ;Vq )(w ) =
( 

0 → Hq (X w −e j )
d1 = ι

w −e j ,w 
q −−−−−→ Hq (X w ) → 0

) 

. 

Since ιw −e j −e� ,w −e� 

q and ι
w −e j ,w 
q are surjective (see proof of Corollary 5.6 ), homology in degree 

0 is zero for both Koszul complexes. Hence, we only have to show that 

f ′ : ker ιw −e j −e� ,w −e� 

q → ker ιw −e j ,w 
q 
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is an isomorphism, where f ′ denotes the restriction of ιw −e j −e� ,w −e j 
q to ker ιw −e j −e� ,w −e� 

q . The 
map f ′ is injective because ιw −e j −e� ,w −e j 

q is injective (see proof of Corollary 5.6 ). We now 

show that f ′ is surjective. We use here the notations Zq (X v ) and Bq (X v ) , respectively, for the 
submodules of cycles and boundaries of Cq (X v ) , for all v ∈ N 

n . By Remark 5.7 (i), 
X w −e j −e� 

q = X w −e� 
q and X w −e j 

q = X w 
q , which implies Zq (X w −e j −e� ) = Zq (X w −e� ) and 

Zq (X w −e j ) = Zq (X w ) . Similarly, by Remark 5.7 (ii), X w −e j −e� 

q +1 = X w −e j 
q +1 and X w −e� 

q +1 = X w 
q +1 , 

which implies Bq (X w −e j −e� ) = Bq (X w −e j ) and Bq (X w −e� ) = Bq (X w ) . By Lemma 5.2 , we 
have 

ker ιw −e j −e� ,w −e� 

q = Zq (X w −e j −e� ) ∩ Bq (X w −e� ) 
Bq (X w −e j −e� ) 

, ker ιw −e j ,w 
q = Zq (X w −e j ) ∩ Bq (X w ) 

Bq (X w −e j ) 
. 

Since f ′ is the map induced by the inclusion of the numerators, using Lemma 5.2 and the 
equalities of subspaces Zq and Bq stated above, we obtain 

coker f ′ ∼= 

Zq (X w −e j ) ∩ Bq (X w ) 
Zq (X w −e j −e� ) ∩ Bq (X w −e� ) + Bq (X w −e j ) 

= Bq (X w ) 
Bq (X w ) 

, 

proving that f ′ is surjective, hence an isomorphism. �

We underline that to conclude the proof we use an argument based on the equality of some subsets of
ells of X . This part of the proof cannot be replaced by using only the properties of the induced maps in
omology (as in Corollary 5.6 ). As a counterexample, consider the diagram 

f vector spaces, with dim V � = 0 . We can regard the rows as two chain complexes with surjective differ-
ntials, and the vertical arrows as an injective chain map between them, as in our proof. However, the
apping cone of this chain map is clearly not acyclic. 
We can now complete the proof of our main result for this section. 

Theorem 5.10. Let { X u }u ∈N 

n be an n -parameter exhaustive filtration of a cell complex X . Then 

n ⋃ 

i =0 

supp ξ
q 
i ⊆ G(Xq +1 ) ∪ G(Xq ) , 

for all q ∈ N . Furthermore, supp ξ
q 
0 ⊆ G(Xq ) and supp ξ

q 
n ⊆ G(Xq +1 ) , for all q ∈ N . 

Proof. To prove that 
⋃ n 

i =0 supp ξ
q 
i ⊆ G(Xq +1 ) ∪ G(Xq ) , let u / ∈ G(Xq +1 ) ∪ G(Xq ) . As we 

have seen, properties (i) and (ii) of Remark 5.7 hold, which involve indices j, � ∈ [ n ] . If 
j = � , the Koszul complex K ∗(x1 , . . . , xn ;Vq )(u ) is acyclic by Lemma 5.8 . If j � = � , 
consider the Koszul complexes K ∗(x j , x� ;Vq )(w ) , for any w := w (α) = u − ∑ 

i ∈ α ei with 

α ⊆ [ n ] \ { j, � } , which are acyclic by Lemma 5.9 . The Koszul complex 
K ∗(x1 , . . . , xn ;Vq )(u ) can be obtained from the chain complexes K ∗(x j , x� ;Vq )(w ) by 
iterating the mapping cone construction (see section 4 ). At each iteration of this process, by 



20 � A. GUIDOLIN AND C. LANDI

 

B  

o

 

r  

i  

i

A  

a  

g  

k  

Z  

n  

g  

t  

g  

e
 

K

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haaf021/8222551 by guest on 28 August 2025
Corollary 4.2 , one obtains acyclic Koszul complexes; hence, we can conclude that 
K ∗(x1 , . . . , xn ;Vq )(u ) is acyclic, that is, ξ q 

i (u ) = 0 for all i ∈ { 0 , . . . , n } . 
To prove that supp ξ

q 
0 ⊆ G(Xq ) , we observe that if u / ∈ G(Xq ) , then by Corollary 5.6 there 

exists j ∈ [ n ] such that Hq (X u −e j ) → Hq (X u ) is surjective. This implies that the differential 
d1 of the Koszul complex K ∗(x1 , . . . , xn ;Vq )(u ) is surjective; hence, 
ξ

q 
0 (u ) = dim (Hq (X u ) / im d1 ) = 0 . 
Similarly, to prove that supp ξ

q 
n ⊆ G(Xq +1 ) , we observe that if u / ∈ G(Xq +1 ) , then by 

Corollary 5.6 there exists j ∈ [ n ] such that Hq (X w −e j ) → Hq (X w ) is injective, where 
w := u − ∑ 

i ∈ [ n ] \{ j} ei . This implies that the differential dn of the Koszul complex 
K ∗(x1 , . . . , xn ;Vq )(u ) is injective; hence, ξ q 

n (u ) = dim ker dn = 0 . �

The following simple consequence of Theorem 5.10 gives a bound of the union of the support of the
etti tables over all the homology degrees inside the union of the closures of the sets of entrance grades
f critical cells over all the dimensions. 

Corollary 5.11. Under the assumptions of Theorem 5.10 , 
⋃ n 

q,i =0 supp ξ
q 
i ⊆ ⋃ n 

q =0 G(Xq ) . 

The following Example 5.12 shows that in general the right-hand side term of this inclusion cannot be
educed to a smaller set defined in terms of the entrance grades of cells of X , making this inclusion tighter
n some sense. A more refined version of it when n = 2 wi l l be given in the next section (cf. Corollary 6.6 )
n terms of homological critical grades. 

Example 5.12. Let n = 3 and let X be the following simplicial complex: 

Let us consider the following three-filtration of X : all vertices and the edges p1 p2 and p2 p3 
have entry grade 0 = (0 , 0 , 0) ∈ N 

3 ; for all j ∈ { 1 , 2 , 3 } , let the edge p0 p j have entry grade 
u j := λ j e j , for some positive integer λ j . Figure 1 in section 5.2 represents a filtration of this 
form. Then, all entry grades and all their least upper bounds in N 

3 are in supp ξ
q 
i for some q 

and i : ξ 0 
0 (0 ) = 2 , ξ 0 

1 (u j ) = 1 for all j, ξ 1 
0 (u j ∨ uk ) = 1 for all j � = k, and 

ξ 1 
1 (u1 ∨ u2 ∨ u3 ) = 1 . This example can be generalized to any n ≥ 1 . 

5.2. A condition for the vanishing of ξq 
1 

s in the rest of the section, our starting point is an n -parameter exhaustive filtration { X u }u ∈N 

n of
 cell complex X , of which we consider the q th persistent homology module regarded as the n -
raded S -module Vq =

⊕ 

u ∈N 

n Hq (X u ) . For each u ∈ N 

n , we write Hq (X u ) = Zq (X u ) 
Bq (X u ) , where Zq (X u ) =

er (∂q : Cq (X u ) → Cq −1 (X u )) and Bq (X u ) = im (∂q +1 : Cq +1 (X u ) → Cq (X u )) . We observe that
q := ⊕ 

u ∈N 

u Zq (X u ) and Bq := ⊕ 

u ∈N 

u Bq (X u ) are n -graded S -modules, respectively, given by the ker-
el of the n -graded homomorphism ∂q :

⊕ 

u ∈N 

n Cq (X u ) → ⊕ 

u ∈N 

n Cq −1 (X u ) and the image of the n -
raded homomorphism ∂q +1 :

⊕ 

u ∈N 

n Cq +1 ( X u ) → ⊕ 

u ∈N 

n Cq (X u ) . In this section, we give a condi-
ion for the vanishing of the Betti table ξ q 

1 of Vq at a fixed u ∈ N 

n in terms of Bq (X v ) and Zq (X v ) at
rades v ∈ { u − eα}α⊆[ n ] (Theorem 5.14 ), and we derive relations between the support of ξ q 

1 and the
ntrance grades of cells. 
Our aim is studying, for any fixed u ∈ N 

n , the degree-1 homology of the Koszul complex
 ∗(x1 , . . . , xn ;Vq )(u ) , whose dimension is the value ξ q 

1 (u ) . 
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Figure 1. A three-parameter filtration { X u−eα }α⊆{ 1 , 2 , 3 } of simplicial complexes such that, for q = 1 , the equality 
Zq (X u−e� ) ∩ (Zq (X u−ej ) + Zq (X u−ek )) = Zq (X u−ej −e� ) + Zq (X u−ek −e� ) (see hypothesis of Theorem 5.14 ) does not 
hold, for any choice of different j, k , � in { 1 , 2 , 3 } . Using the Koszul complex K ∗(V1 )(u) , it is easy to see, by a 
dimension argument, that H1 (K ∗(V1 )(u)) ∼= 

F and, equivalently, ξq 
1 (u) = 1 . 
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We fix u ∈ N 

n and q ∈ N . We choose � ∈ [ n ] and define an n -filtered cell complex {˜ X v }v ∈N 

n such that
ts (q + 1) -cells are 

˜ X v 
q +1 :=

{ ⋃ 

j∈ [ n ] \{ � } X
v −e j 
q +1 if v ∈ { u, u − e� } , 

X v 
q +1 otherwise , 

ts lower dimensional cells are ˜ X v 
r := X v 

r for all r ≤ q and all v ∈ N 

n , and it does not have any cell of
imension higher than q + 1 . The incidence function of ̃  X is induced (by restriction) by the incidence

unction of X . We remark that, since our goal is studying the Koszul complex at u , we wi l l only look at
he grades v ∈ { u − eα}α⊆[ n ] of the filtration {˜ X v }v ∈N 

n . The q th homology of {˜ X v }v ∈N 

n is the n -graded
 -module ̃  Vq such that 

˜ V v 
q :=

⎧ ⎨ ⎩ 

Zq (X v ) ∑ 

j � = � Bq (X v −e j ) if v ∈ { u, u − e� } , 
Hq (X v ) = Zq (X v ) 

Bq (X v ) otherwise . 
(5)

or the sake of a simpler notation, we do not denote the dependence of ̃  Vq on the fixed u ∈ N 

n and the
hosen � ∈ [ n ] . 
The module ̃  Vq , which coincides with Vq for all grades except u and u − e� , is useful to prove the results

f this section. We observe that the natural n -graded homomorphism π : ˜ Vq → Vq is surjective, because
ointwise it is the linear map 

π v :
Zq (X v ) ∑ 

j � = � Bq (X v −e j ) 
�

Zq (X v ) 
Bq (X v ) 

(6)
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or the grades v ∈ { u, u − e� } , and it is the identity on Hq (X v ) for all other grades. We have therefore the
ollowing exact sequence of n -graded S -modules: 

ince constructing the Koszul complex at u is an exact operation (see section 4.1 ), we obtain the short
xact sequence of chain complexes 

0 → K ∗(x1 , . . . , xn ; ker π )(u ) → K ∗(x1 , . . . , xn ;˜ Vq )(u ) → K ∗(x1 , . . . , xn ;Vq )(u ) → 0 

nd the induced long exact sequence in homology 

(7)

here we have suppressed the sequence (x1 , . . . , xn ) from the notation of the Koszul complexes for
revity. The follow ing proposition w i l l be useful to prove the main result of this section. 

Proposition 5.13. If Bq (X u ) = ∑ n 
j=1 Bq (X u −e j ) , then H0 (K ∗(ker π )(u )) = 0 . 

Proof. We recall that the construction of the Koszul complex K ∗(ker π )(u ) involves the graded 

pieces with grades in { u − eα}α⊆[ n ] of the n -graded S -module ker π . By definition of ̃  Vq , we 
have (ker π )v = 0 for all v , except for u and u − e� . We consider the linear map 

(ker π )u −e� = Bq (X u −e� ) ∑ 

j∈ [ n ] \{ � } Bq (X u −e j −e� ) 
η

u −e� ,u 
q −−−−−→ (ker π )u = Bq (X u ) ∑ 

j∈ [ n ] \{ � } Bq (X u −e j ) 

induced by the inclusion Bq (X u −e� ) ⊆ Bq (X u ) . Regarded as a chain complex (concentrated 

in homological degrees 1 and 0), the map ηu −e� ,u 
q is isomorphic to the Koszul complex 

K ∗(ker π )(u ) , hence coker ηu −e� ,u 
q 

∼= 

H0 (K ∗(ker π )(u )) . We conclude the proof using 
Lemma 5.2 to compute coker ηu −e� ,u 

q : 

coker ηu −e� ,u 
q 

∼= 

Bq (X u ) 
Bq (X u −e� ) + ∑ 

j∈ [ n ] \{ � } Bq (X u −e j ) 
= Bq (X u ) ∑ n 

j=1 Bq (X u −e j ) 
= 0 , 

where the last equality holds by assumption. �

Our main result of this section gives a condition for H1 (K ∗(Vq )(u )) , and, equivalently, ξ q 
1 (u ) , to van-

sh. 

Theorem 5.14. Let { X v }v ∈N 

n be an n -parameter exhaustive filtration of a cell complex X . Fix 
u ∈ N 

n , and suppose that Bq (X u ) = ∑ n 
j=1 Bq (X u −e j ) and that there exists a permutation 

ρ ∈ Sym (n ) such that, for every � ∈ [ n ] , 
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Zq (X u −eρ(� ) ) ∩
⎛ ⎝ 

∑ 

j<� 

Zq (X u −eρ( j) )

⎞ ⎠ =
∑ 

j<� 

Zq (X u −eρ( j) −eρ(� ) ) . 

Then ξ
q 
1 (u ) = 0 . 

Proof. First, we prove the claim supposing that the hypothesis on the cycles is satisfied by the 
identity permutation ρ = id [ n ] . The proof is by induction on the number n of 
parameters. 

The base case n = 1 corresponds to the statement Bq (X u ) = Bq (X u −1 ) implies 
ξ

q 
1 (u ) = 0 (as the condition on Zq is trivially satisfied), which is true because ξ q 

1 (u ) is the 
dimension of the vector space ker ιu −1 ,u 

q : Hq (X u −1 ) → Hq (X u ) which, by Lemma 5.2 , is 
isomorphic to (Zq (X u −1 ) ∩ Bq (X u )) /Bq (X u −1 ) . 

We now prove the claim for n parameters, supposing it holds for n − 1 parameters. For any 
chosen � ∈ [ n ] , we can consider the module ̃  Vq associated with {˜ X v } , defined as in 

equation ( 5 ). Here, we choose � = n . Under the hypothesis that 
Bq (X u ) = ∑ n 

j=1 Bq (X u −e j ) , in the long exact sequence ( 7 ) we have 
H0 (K ∗(ker π )(u )) = 0 by Proposition 5.13 , so it is sufficient to prove that 
H1 (K ∗(˜ Vq )(u )) = 0 to conclude that H1 (K ∗(Vq )(u )) = 0 . We highlight that using ̃  Vq in 

the rest of the proof is convenient, as it is constructed in a way that allows us to use the 
inductive assumption. We write the Koszul complex K ∗(˜ Vq )(u ) = K ∗(x1 , . . . , xn ;˜ Vq )(u ) 
as the mapping cone (see section 4.2 ) of the chain map induced by inclusions in 

direction en , 

f n (x1 , . . . , xn −1 ;˜ Vq )(u − en ) : 

K ∗(x1 , . . . , xn −1 ;˜ Vq )(u − en ) → K ∗(x1 , . . . , xn −1 ;˜ Vq )(u ) . 

In the rest of this proof, for simplicity we denote this chain map and the two Koszul 
complexes by f n : K 

n 
∗(˜ Vq )(u − en ) → K 

n 
∗(˜ Vq )(u ) . We consider the long exact sequence of 

the mapping cone (see, for example, [ 39 , § 1.5.2]) for Cone ( f n )∗ = K ∗(˜ Vq )(u ) : 

The Koszul complex K 

n 
∗(˜ Vq )(u ) = K ∗(x1 , . . . , xn −1 ;˜ Vq )(u ) is defined from the 

(n − 1) -parameter filtration {˜ X u −eα }α⊆[ n −1] , which allows us to apply the inductive 
assumption, since Bq (˜ X u ) = ∑ n −1 

j=1 Bq (˜ X u −e j ) and the condition involving the subspaces Zq 

is satisfied by ρ = id [ n ] restricted to [ n − 1] . Therefore, by the inductive assumption, 
H1 (K 

n 
∗(˜ Vq )(u )) = 0 . Thus, by Lemma 5.3 , the vanishing of H1 (K ∗(˜ Vq )(u )) is ensured by 

the injectivity of the function H0 ( f n ) : H0 (K 

n 
∗(˜ Vq )(u − en )) → H0 (K 

n 
∗(˜ Vq )(u )) in the 

long exact sequence, w hich is w hat we show to hold in the next step of the proof. 
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We begin by observing that H0 (K 

n 
∗(˜ Vq )(u )) can be written as follows: 

H0 (K 

n 
∗(˜ Vq )(u )) ∼= 

coker 

⎛ ⎝ 

n −1 ⊕ 

j=1 

Hq (˜ X u −e j )
[ ιu −e1 ,u 

q ··· ι
u −en −1 ,u 
q ] −−−−−−−−−−→ Hq (˜ X u )

⎞ ⎠ 

= coker 

⎛ ⎝ 

n −1 ⊕ 

j=1 

Zq (˜ X u −e j ) 
Bq (˜ X u −e j ) 

[ ιu −e1 ,u 
q ··· ι

u −en −1 ,u 
q ] −−−−−−−−−−→ 

Zq (˜ X u ) ∑ n −1 
j=1 Bq (˜ X u −e j ) 

⎞ ⎠ 

∼= 

Zq (˜ X u ) ∑ n −1 
j=1 Zq (˜ X u −e j ) 

= Zq (X u ) ∑ n −1 
j=1 Zq (X u −e j ) 

. 

Similarly, there is a canonical isomorphism 

H0 (K 

n 
∗(˜ Vq )(u − en )) ∼= 

Zq (X u −en ) ∑ n −1 
j=1 Zq (X u −e j −en ) 

. 

Using Lemma 5.2 , we see that the kernel of the map 

H0 ( f n ) : H0 (K 

n 
∗(˜ Vq )(u − en )) → H0 (K 

n 
∗(˜ Vq )(u )) , induced by the inclusion 

Zq (X u −en ) ⊆ Zq (X u ) , is 

ker (H0 ( f n )) ∼= 

Zq (X u −en ) ∩ (
∑ n −1 

j=1 Zq (X u −e j )) ∑ n −1 
j=1 Zq ( X u −e j −en ) 

, 

which is zero since the numerator coincides with the denominator by hypothesis. This 
concludes the proof under the assumption ρ = id [ n ] . 

Lastly, we explain how the proof in the special case of the identity permutation implies the 
claim for a generic permutation ρ on the set [ n ] . Let ρ be a permutation for which the 
hypothesis of the theorem is satisfied. Then, we can consider the filtration { Lu −eα }α⊆[ n ] 
defined by Lu −eα := X u −eρ(α) , which satisfies Bq (Lu ) = ∑ n 

j=1 Bq (Lu −e j ) and, for every 

� ∈ [ n ] , Zq (Lu −e� ) ∩
(∑ 

j<� Zq (Lu −e j )
)

= ∑ 

j<� Zq (Lu −e j −e� ) . The Koszul complex of 
the associated q th persistent homology module at u is obtained from 

K ∗(Vq )(u ) = K ∗(x1 , . . . , xn ;Vq )(u ) by permuting the indeterminates, and is therefore 
isomorphic to it (see section 4.2 ). We can therefore apply the proof for the case of the 
identity permutation to { Lu −eα }α⊆[ n ] and conclude that ξ q 

1 (u ) = 0 . �

Remark 5.15. The condition on the subspaces Zq in Theorem 5.14 amounts to n different 
identities of subspaces of Zq (X u ) . In the proof of the theorem, we observed that, when the 
sum on the left-hand side has zero summands, the corresponding inequality is trivially 
satisfied. It is worth noticing that the equality corresponding to a sum on the left-hand side 
with exactly one summand is always satisfied too. In other words, for any pair of distinct 
indices j, k ∈ [ n ] , the identity Zq (X u −e j ) ∩ Zq (X u −ek ) = Zq (X u −e j −ek ) holds true. To see 
this, we recall that Cq (X u −e j ) ∩ Cq (X u −ek ) = Cq (X u −e j −ek ) holds by one-criticality as a 
consequence of X u −e j ∩ X u −ek = X u −e j −ek (see Remark 2.1 ), and we observe that 
Zq (X v ) = Cq (X v ) ∩ ∂−1 

q (0) for all v ∈ N 

n , where ∂q denotes the differential 
∂q : Cq (∪v X v ) → Cq −1 (∪v X v ) . In particular, for two-parameter filtrations, the condition of 
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Theorem 5.14 on the subspaces Zq always holds. In Fig. 1 , we show a three-parameter 
filtration not satisfying the hypothesis of Theorem 5.14 on the subspaces Zq . 

We now state conditions involving the fixed grade u ∈ N 

n and the sets G(Xq +1 ) andG(Xq ) of entrance
rades which ensure that the assumptions in Theorem 5.14 on the subspaces Bq and Zq are verified. 

Proposition 5.16. If u / ∈ G(Xq +1 ) , then Bq (X u ) = ∑ n 
j=1 Bq (X u −e j ) . 

Proof. The inclusion 

∑ n 
j=1 Bq (X u −e j ) ⊆ Bq (X u ) holds in general and follows from 

Bq (X u −e j ) ⊆ Bq (X u ) for every j ∈ [ n ] . To see the other inclusion, we first observe that 
u / ∈ G(Xq +1 ) implies Cq +1 (X u ) = Cq +1 (∪n 

j=1 X
u −e j ) , which is equal to 

∑ n 
j=1 Cq +1 (X u −e j ) . 

The claim then follows from the equalities ∂q +1 (Cq +1 (X u )) = Bq (X u ) and 

∂q +1 (
∑ n 

j=1 Cq +1 (X u −e j )) = ∑ n 
j=1 Bq (X u −e j ) . �

Remark 5.17. The converse implication is false as can be seen, for q = 0 , considering a cell 
complex with two vertices connected by two edges and the following one-parameter 
filtration: the two vertices and one edge enter at grade u − e1 , and the other edge enters at 
grade u . 

Proposition 5.18. If u / ∈ G(Xq ) , then there exists a permutation ρ ∈ Sym (n ) such that, for every 
� ∈ [ n ] , 

Zq (X u −eρ(� ) ) ∩
⎛ ⎝ 

∑ 

j<� 

Zq (X u −eρ( j) )

⎞ ⎠ =
∑ 

j<� 

Zq (X u −eρ( j) −eρ(� ) ) . 

Proof. We prove the statement by induction on the number n of parameters. By Remark 5.15 , 
for n = 1 and n = 2 the identities involving subspaces Zq hold in general. 

To prove the induction step for n parameters, we recall that by Corollary 5.5 , we have 
u / ∈ G(Xq ) if and only if there exists k ∈ [ n ] such that X w (αk ) −ek 

q = X w (αk ) 
q , for all subsets 

αk ⊆ [ n ] \ { k} . We take such an index k and set ρ(n ) := k. For any j � = k, taking αk = { j} , 
we get Zq (X u −e j −ek ) = Zq (X u −e j ) . Hence, ∑ 

j∈ [ n ] \{ k} Zq (X u −e j −ek ) = ∑ 

j∈ [ n ] \{ k} Zq (X u −e j ) , which implies 

Zq (X u −ek ) ∩
(∑ 

j∈ [ n ] \{ k} Zq (X u −e j )
)

⊆ ∑ 

j∈ [ n ] \{ k} Zq (X u −e j −ek ) . The right-hand side is 
actually equal to the left-hand side, since the reverse inclusion holds in general and follows 
from the fact that, for every j � = k, 

Zq (X u −e j −ek ) = Zq (X u −ek ) ∩ Zq (X u −e j ) ⊆ Zq (X u −ek ) ∩
(∑ 

j∈ [ n ] \{ k} Zq (X u −e j )
)

, 

where the first equality is by Remark 5.15 . This proves the equality involving subspaces Zq 
for � = n . 

Lastly, we have to show that for every �< n the remaining equalities involving subspaces Zq 
in the claim hold. This is a consequence of the inductive hypothesis, observing that the 
remaining equalities involve the grades in { u − eα}α⊆[ n ] \{ k} , which is a portion of an 

(n − 1) -parameter filtration, and that u is not a least upper bound of grades in G(Xq ) 
belonging to this filtration. By relabelling the parameters in [ n ] \ { k} of the 
(n − 1) -parameter filtration with indices in [ n − 1] and applying the inductive assumption, 
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we see that there exists a bijection ρ ′ : [ n − 1] → [ n ] \ { k} such that the first n − 1 

equalities of the claim hold. We complete the proof by defining ρ( j) := ρ ′ ( j) , for all j< n . �

Remark 5.19. The converse implication is false in general : for ex ample, even if the equalities 
involving subspaces Zq are satisfied, u can be the entrance grade of a q -cell of M that does not 
appear in any q -cycle. 

Using Propositions 5.16 and 5.18 , we immediately obtain the following corollary of Theorem 5.14 . We
ote that the same bound for the support of ξ q 

1 was obtained in section 3 using multigraded resolutions
Remark 3.5 ). 

Corollary 5.20. Let { X v }v ∈N 

n be an n -parameter exhaustive filtration of a cell complex X . If 
u ∈ N 

n is such that u / ∈ G(Xq +1 ) ∪ G(Xq ) , then ξ
q 
1 (u ) = 0 . In other words, 

supp ξ
q 
1 ⊆ G(Xq +1 ) ∪ G(Xq ) . 

We end this section describing two particular cases in which the equalities involving subspaces Zq in
heorem 5.14 are always satisfied. The first case corresponds to q = 0 . 

Corollary 5.21. Let { X v }v ∈N 

n be an n -parameter exhaustive filtration of a cell complex X , of 
which we consider the associated q th persistent homology module with q = 0 . If u ∈ N 

n is such 

that B0 (X u ) = ∑ n 
j=1 B0 (X u −e j ) , then ξ 0 

1 (u ) = 0 . As a consequence, for q = 0 , we have the 
following containments: 

supp ξ 0 
0 ⊆ G(X0 ) , supp ξ 0 

1 ⊆ G(X1 ) ,
n ⋃ 

i =1 

supp ξ 0 
i ⊆ G(X1 ) . 

Proof. Since the n -parameter filtration { X v }v ∈N 

n is one-critical (see Remark 2.1 ), the following 
equalities of (graded) sets hold for all w, v1 , . . . , vk ∈ N 

n : 

X w ∩
(⋃ k 

j=1 X
v j 

)
= ⋃ k 

j=1 ( X
w ∩ X v j ) = ⋃ k 

j=1 X
w ∧ v j . 

Considering cells of dimension q and taking the F -linear span of the left-hand and right-hand 

sides, one obtains 

Cq (X w ) ∩
(∑ k 

j=1 Cq (X v j )
)

= ∑ k 
j=1 Cq (X w ∧ v j ) . 

For q = 0 , since Z0 (X v ) = C0 (X v ) for all v ∈ N 

n , all the equalities involving subspaces Zq in 

Theorem 5.14 are therefore always satisfied. This proves the first part of the claim and, as an 

immediate consequence using Proposition 5.16 , the containment supp ξ 0 
1 ⊆ G(X1 ) . The 

containment 
⋃ n 

i =1 supp ξ 0 
i ⊆ G(X1 ) follows from the fact that, for any n -graded S -module 

V , 
⋃ n 

i =1 supp ξi (V ) ⊆ supp ξ1 (V ) , see, for example, [ 12 , Remark 3.2]. Lastly, the 
containment supp ξ 0 

0 ⊆ G(X0 ) holds by Theorem 5.10 . �

The second particular case corresponds to n = 2 , that is, to bifiltrations of persistent homology mod-
les. 

Corollary 5.22. Let { X v }v ∈N 

2 be a two-parameter exhaustive filtration of a cell complex X . If 
u ∈ N 

2 is such that Bq (X u ) = ∑ n 
j=1 Bq (X u −e j ) , then ξ

q 
1 (u ) = 0 . The following containments 
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hold: 

supp ξ
q 
0 ⊆ G(Xq ) , supp ξ

q 
1 ⊆ G(Xq +1 ) , supp ξ

q 
2 ⊆ G(Xq +1 ) . 

Proof. The first part of the claim follows from Theorem 5.14 and Remark 5.15 , and it implies 
supp ξ

q 
1 ⊆ G(Xq +1 ) by Proposition 5.16 . The other containments hold by Theorem 5.10 . �

5.3. Morse complex and support of the Betti tables 
e conclude the section by observing how the results of sections 5.1 and 5.2 can be applied to the Morse

omplex M associated with any discrete gradient vector field V consistent with the filtration { X u }u ∈N 

n of
 (see section 2.4 ). By Proposition 2.4 , the persistent homology module V ′ 

q := ⊕ 

u ∈N 

n Hq (Mu ) asso-
iated with { Mu }u ∈N 

n is isomorphic to Vq , hence the Betti tables of V ′ 
q coincide with the Betti tables ξ q

i 
f Vq . This can be seen for example from the fact that, as observed at the end of section 4.1 , the Koszul
omplexes of V ′ 

q and Vq at any u ∈ N 

n are isomorphic. Therefore, one can bound the support of the Betti
ables of Vq using the entrance grades of the cells of M. For example, Theorem 5.10 has the following
mmediate consequence. 

Corollary 5.23. Let { X u }u ∈N 

n be an n -parameter exhaustive filtration of a cell complex X , let V be 
a fixed discrete gradient vector field consistent with the filtration, and let { Mu }u ∈N 

n be the 
associated n -parameter filtration of the Morse complex M. Then 

n ⋃ 

i =0 

supp ξ
q 
i ⊆ G(Mq +1 ) ∪ G(Mq ) , 

for all q ∈ N . Furthermore, supp ξ
q 
0 ⊆ G(Mq ) and supp ξ

q 
n ⊆ G(Mq +1 ) , for all q ∈ N . 

Similarly, we can summarize as follows the statements corresponding to Theorem 5.14 , Corollary 5.20 ,
orollary 5.21 and Corollary 5.22 applied to the Morse complex. 

Corollary 5.24. Let { X u }u ∈N 

n be an n -parameter exhaustive filtration of a cell complex X , let V be 
a fixed discrete gradient vector field consistent with the filtration and let { Mu }u ∈N 

n be the associated 

n -parameter filtration of the Morse complex M. Then the following facts hold. 

(1) If u ∈ N 

n satisfies Bq (Mu ) = ∑ n 
j=1 Bq (Mu −e j ) and there exists a permutation ρ ∈ Sym (n ) 

such that, for every � ∈ [ n ] , 

Zq (Mu −eρ(� ) ) ∩
⎛ ⎝ 

∑ 

j<� 

Zq (Mu −eρ( j) )

⎞ ⎠ =
∑ 

j<� 

Zq (Mu −eρ( j) −eρ(� ) ) , 

then ξ
q 
1 (u ) = 0 . As a consequence, the containment supp ξ

q 
1 ⊆ G(Mq +1 ) ∪ G(Mq ) holds. 

(2) In the case q = 0 , if u ∈ N 

n is such that B0 (Mu ) = ∑ n 
j=1 B0 (Mu −e j ) , then ξ 0 

1 (u ) = 0 . As 
a consequence, the following containments hold: 

supp ξ 0 
0 ⊆ G(M0 ) , supp ξ 0 

1 ⊆ G(M1 ) ,
n ⋃ 

i =1 

supp ξ 0 
i ⊆ G(M1 ) . 
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(3) In the case n = 2 , if u ∈ N 

2 is such that Bq (Mu ) = ∑ n 
j=1 Bq (Mu −e j ) , then ξ

q 
1 (u ) = 0 . The 

following containments hold: 

supp ξ
q 
0 ⊆ G(Mq ) , supp ξ

q 
1 ⊆ G(Mq +1 ) , supp ξ

q 
2 ⊆ G(Mq +1 ) . 

6 .  H O M O L O G I C  A L  C R I T I C  A L  G R A D E S  A N D  S U P P O R T  O F  B E T T I  

TA  B L E  S  F O R  B I F I LT R AT I O N S  

n this section, we fix n = 2 and study the support of the Betti tables of persistent homology modules
ssociated with a one-critical bifiltration { X u }u ∈N 

2 of a cell complex X . In what follows, we make use of
he notations introduced at the beginning of section 5 . Additionally, for q ∈ N , let us set 

Cq (X ) := { u ∈ N 

2 | dim Hq (X u , X u −e1 ∪ X u −e2 ) � = 0 } 

nd call it the set of q -homological critical grades (see [ 22 ]). For any fixed u ∈ N 

2 and any q ∈ N , let us
ecall the following known inequalities (see [ 27 , Corollary 1], and [ 22 ] for a generalization to the case
 ≥ 2 ): 

ξ
q 
0 (u ) + ξ

q −1 
1 (u ) − ξ

q −1 
2 (u ) ≤ dim Hq (X u , X u −e1 ∪ X u −e2 ) ≤ ξ

q 
0 (u ) + ξ

q −1 
1 (u ) + ξ

q −2 
2 (u ) . (8)

To interpret the results of this section, we remark that Cq (X ) ⊆ G(Xq ) and, more generally, if M is the
orse complex associated with any discrete gradient vector field consistent with the filtration { X u }u ∈N 

2 ,
y [ 27 , Prop. 1], we have Cq (X ) ⊆ G(Mq ) . A s we w i l l show (Proposition 6.5 and Corollary 6.6 ), for
ifiltrations we are able to bound the support of the Betti tables using the sets Cq (X ) instead of the sets
(Mq ) , thus strengthening our general results of section 5 (cf. Corollary 5.23 and Corollary 5.24 ). 
First, we prove a technical result that crucially depends on the one-criticality assumption (section 2.2 )

n the bifiltration. 

Lemma 6.1. Let v ∈ N 

2 and let j � = � in { 1 , 2 } . Then, there is a short exact sequence of chain 

complexes 

0 −→ C∗(X v −e� , X v −e1 −e2 ) −→ C∗(X v , X v −e j ) −→ C∗(X v , X v −e1 ∪ X v −e2 ) −→ 0 . 

Remark 6.2. The statement has to be interpreted by setting X v −e1 = ∅ if v − e1 is not in N 

2 , 
and similarly for X v −e2 and X v −e1 −e2 . We use this convention throughout this section. 

Proof. Without loss of generality, we prove the statement for j = 1 and � = 2 . The sequence 

0 −→ C∗(X v −e1 ∪ X v −e2 , X v −e1 ) −→ C∗(X v , X v −e1 ) −→ C∗(X v , X v −e1 ∪ X v −e2 ) −→ 0 

associated with the triple X v −e1 ⊆ X v −e1 ∪ X v −e2 ⊆ X v is exact. Now we observe that, for 
any q ∈ N , the relative chain modules of the pair (X v −e1 ∪ X v −e2 , X v −e1 ) are 

Cq (X v −e1 ∪ X v −e2 , X v −e1 ) := Cq (X v −e1 ∪ X v −e2 ) 
Cq (X v −e1 ) 

= Cq (X v −e1 ) + Cq (X v −e2 ) 
Cq (X v −e1 ) 

∼= 

Cq (X v −e2 ) 
Cq (X v −e1 ) ∩ Cq (X v −e2 ) 

= Cq (X v −e2 ) 
Cq (X v −e1 −e2 ) 

=: Cq (X v −e2 , X v −e1 −e2 ) , 



SUPPORT OF BETTI TABLES OF MULTIPARAMETER PERSISTENCE � 29

 

B

 

 

o

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/advance-article/doi/10.1093/qm
ath/haaf021/8222551 by guest on 28 August 2025
where we used the classical isomorphism theorem for modules and, in the penultimate 
equality, the fact that Cq (X v −e1 ) ∩ Cq (X v −e2 ) = Cq (X v −e1 −e2 ) as a consequence of the 
equality X v −e1 ∩ X v −e2 = X v −e1 −e2 given by the one-criticality assumption on the filtration 

(see Remark 2.1 ). These isomorphisms between chain modules commute with the 
differentials of the chain complexes C∗(X v −e1 ∪ X v −e2 , X v −e1 ) and C∗(X v −e2 , X v −e1 −e2 ) , 
since they are induced by the differential of C∗(X ) . �

Corollary 6.3. Let v ∈ N 

2 , q ∈ N and j � = � in { 1 , 2 } , and suppose that 
Hq (X v , X v −e1 ∪ X v −e2 ) = 0 . Then Hq (X v , X v −e j ) � = 0 implies Hq (X v −e� , X v −e1 −e2 ) � = 0 . 

Proof. By Lemma 6.1 , the following is a portion of a long exact sequence in homology: 

Hq (X v −e� , X v −e1 −e2 ) −→ Hq (X v , X v −e j ) −→ Hq (X v , X v −e1 ∪ X v −e2 ) . 

Since Hq (X v , X v −e1 ∪ X v −e2 ) = 0 , the first map is surjective, and the claim follows 
immediately. �

To prove the final result of this section (Proposition 6.5 ), we first show directly that the support of the
etti table ξ q −1 

2 is contained in Cq (X ) . 

Lemma 6.4. For all q ∈ N , we have supp ξ
q −1 
2 ⊆ Cq (X ) . 

Proof. Let u ∈ supp ξ
q −1 
2 . We prove that there exists λ ∈ N such that 

Hq (X u −λe1 , X u −(λ+1) e1 ∪ X u −λe1 −e2 ) � = 0 . (9)

If condition ( 9 ) holds for λ = 0 , then u ∈ Cq (X ) . Otherwise, since the same property can be 
proven with the roles of e1 and e2 interchanged, our claim follows by observing that 
(u − λe1 ) ∨ (u − μe2 ) = u , for every λ, μ ∈ N . 

Assume that ( 9 ) is false (that is, it is an equality) for all λ ∈ N ; then 

Hq (X u −λe1 , X u −λe1 −e2 ) � = 0 implies Hq (X u −(λ+1) e1 , X u −(λ+1) e1 −e2 ) � = 0 by Corollary 6.3 

(applied with v := u − λe1 ), and we can therefore use an inductive argument. The base case 
of the induction is Hq (X u −e1 , X u −e1 −e2 ) � = 0 for λ = 1 , which holds because the hypothesis 
u ∈ supp ξ

q −1 
2 implies that iu −e1 −e2 ,u −e1 

q −1 : Hq −1 (X u −e1 −e2 ) → Hq −1 (X u −e1 ) has non-zero 

kernel (see section 4.1 ). Since X u −λe1 = ∅ = X u −λe1 −e2 for a sufficiently large λ, we see that 
the induction leads to a contradiction. �

Proposition 6.5. For all q ∈ N , we have supp ξ
q 
0 ∪ supp ξ

q −1 
1 ∪ supp ξ

q −1 
2 ⊆ Cq (X ) . 

Proof. Let us assume that u / ∈ Cq (X ) . In the first inequality of ( 8 ), the term 

dim Hq (X u , X u −e1 ∪ X u −e2 ) is zero by definition of Cq (X ) . By Lemma 6.4 , ξ q −1 
2 (u ) = 0 , 

hence we have ξ q 
0 (u ) + ξ

q −1 
1 (u ) = 0 , which is equivalent to ξ

q 
0 (u ) = ξ

q −1 
1 (u ) = 0 . �

We observe that the inclusion supp ξ
q 
0 ⊆ Cq (X ) can be proven directly, in a similar way to the proof

f Lemma 6.4 . Contrarily, a direct proof of the inclusion supp ξ
q −1 
1 ⊆ Cq (X ) eludes us. 

In conclusion, for bifiltrations, we can bound the support of Betti tables as follows. 
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Corollary 6.6. For all q ∈ N , the Betti tables of degree q satisfy 

supp ξ
q 
0 ∪ supp ξ

q 
1 ∪ supp ξ

q 
2 ⊆ Cq (X ) ∪ Cq +1 (X ) . 

Furthermore, the union of the supports of all Betti tables satisfies ⋃ 

q 

Cq (X ) ⊆
⋃ 

q,i 

supp ξ
q 
i ⊆

⋃ 

q 

Cq (X ) . 

Proof. The first statement holds by Proposition 6.5 and implies the second inclusion of the 
second statement. The first inclusion of the second statement follows from the second 

inequality of ( 8 ), which implies that Cq (X ) ⊆ supp ξ
q 
0 ∪ supp ξ

q −1 
1 ∪ supp ξ

q −2 
2 , for all 

q ∈ N . �

We remark that the first statement of Corollary 6.6 is not a consequence of Theorem 5.10 , as for two-
arameter persistent homology modules it is known that Cq (X ) can be strictly contained in G(Mq ) , for
ny choice of a discrete gradient vector field to determine the latter set of grades (see [ 27 , p. 2369] for
n example). 
For n > 2 parameters, we believe that exact sequences like those of Lemma 6.1 , along with those in-

uced in homology, can sti l l be useful to study the relation between Betti tables and homological critical
rades. In this case, however, these sequences assemble in much more complicated systems, and appro-
riately disentangling them would require a different approach. 

7 .  G E N E R A L I Z AT I O N  T O  M U LT I - C R I T I C A L  F I LT R AT I O N S  

n this last section, we discuss how the results of sections 5 and 6 can be generalized to an n -parameter
ltration { X u }u ∈N 

n that is not one-critical (section 2.2 ). Such filtrations are called multi-critical . As ob-
erved in section 3 , one-criticality ensures that the chain complex associated with the filtration { X u }u ∈N 

n 

s composed of free n -graded S -modules. More specifically, for any q ∈ N , Cq := ⊕ 

u ∈N 

n Cq (X u ) is free
nd isomorphic to 

⊕ 

σ∈ Xq 
S (−vσ ) , with vσ denoting the unique entrance grade of the cell σ . The per-

istent homology module Vq =
⊕ 

u ∈N 

n Hq (X u ) is then defined as the homology at the middle term of

he sequence Cq +1 
∂q +1 −−→ Cq 

∂q −→ Cq −1 of free n -graded S -modules. For a multi-critical filtration { X u }u ∈N 

n ,
he modules of this sequence are in general not free. Using results from [ 11 ], one can however present

q as the homology at the middle term of a sequence of free n -graded S -modules A
f −→ B

g −→ C satis-
ying g f = 0 , which enables applying our results. Below, we describe the strategy to construct such a
equence starting from a multi-critical filtration of a cell complex. For brevity, in this section, we call a

hain complex any sequence of (not necessarily free) n -graded S -modules A
f −→ B

g −→ C with g f = 0 , ob-

erving that it can be viewed for example as the chain complex · · · → 0 → ker f → A
f −→ B

g −→ C →
oker g → 0 → · · · . 
Let X = { X u }u ∈N 

n be a multi-critical n -parameter filtration of a cell complex X . We suppose the filtra-
ion to be exhaustive, meaning that X = ⋃ 

u ∈N 

n X u . For every fixed q ∈ N , we denote by Xq = { X u 
q }u ∈N 

n 

he induced filtration of sets of q -cells. Following [ 11 , Sect. 4], we recall how to construct a free presen-
ation of the n -graded S -module Cq := ⊕ 

u ∈N 

n Cq (X u ) . 
For any cell σ ∈ Xq , the n -parameter filtration Xq [ σ ] = { X u 

q [ σ ] }u ∈N 

n of sets is defined by 

X u 
q [ σ ] =

{{ σ } if σ ∈ X u 
q , 

∅ if σ / ∈ X u 
q . 
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et ent (σ ) := { u ∈ N 

n | σ ∈ X u 
q \

⋃ n 
j=1 X

u −e j 
q } denote the set of entrance grades of σ . (In [ 11 ], the

otation gen( σ ) is used for the set here denoted by ent( σ ).) We recall that a filtration is one-critical
f and only if ent (σ ) has exactly one element, for every cell σ of X . The F -linear span of the filtration

q [ σ ] is the n -graded S -module Cq [ σ ] = ⊕ 

u | σ∈ X u 
q 
F , which is isomorphic to the monomial ideal 〈 xv |

 ∈ ent (σ ) 〉 . As observed in [ 11 ], a free presentation of the n -graded S -module Cq [ σ ] is given by 

⊕ 

v0 � = v1 ∈ent (σ ) 

S (−v0 ∨ v1 )
π0 [ σ ] −π1 [ σ ] −−−−−−−→ 

⊕ 

v ∈ent (σ ) 

S (−v ) , 

here the n -graded homomorphism πi [ σ ] sends the generator 1v0 ∨v1 at grade v0 ∨ v1 of S (−v0 ∨ v1 )
o xv0 ∨v1 −vi 1vi ∈ S (−vi )v0 ∨v1 , for i ∈ { 0 , 1 } . 

The n -graded S -module Cq := ⊕ 

u ∈N 

n Cq (X u ) , which is the F -linear span of the filtration Xq , is iso-
orphic to 

⊕ 

σ∈ Xq 
Cq [ σ ] . As already observed, if the filtration Xq is not one-critical, Cq is not free. A

ree presentation of Cq is given by 

⊕ 

σ∈ Xq 

⎛ ⎝ 

⊕ 

v0 � = v1 ∈ent (σ ) 

S (−v0 ∨ v1 )
π0 [ σ ] −π1 [ σ ] −−−−−−−→ 

⊕ 

v ∈ent (σ ) 

S (−v )

⎞ ⎠ . 

n other words, Cq is isomorphic to the cokernel of the n -graded homomorphism π0 − π1 :=
 

σ∈ Xq 
( π0 [ σ ] − π1 [ σ ]) . To establish notations of modules and homomorphisms that wi l l be used

n what follows, we write this presentation of Cq as 

(10)

here Gq := ⊕ 

σ∈ Xq 

⊕ 

v ∈ent (σ ) S (−v ) and Rq := ⊕ 

σ∈ Xq 

⊕ 

v0 � = v1 ∈ent (σ ) S (−v0 ∨ v1 ) . 
Next, following [ 11 , Sect. 5], we review how the n -parameter persistent homology module Vq =
 

u ∈N 

n Hq (X u ) associated with a multi-critical filtration X = { X u }u ∈N 

n can be expressed as the homol-
gy of an explicitly constructed chain complex of free n -graded S -modules. Although the construction of
 11 , Sect. 5] is for n -parameter filtrations of simplicial complexes, it can readily be adapted to n -parameter
ltrations of cell complexes, as we now explain. 
Starting from the sequence of n -graded S -modules 

(11)

onsider Cq −1 ∼= 

⊕ 

σ∈ Xq −1 
Cq −1 [ σ ] and define the free n -graded S -module Dq −1 := ⊕ 

σ∈ Xq −1 
S and the

 -graded homomorphism ηq −1 : Cq −1 → Dq −1 given by the direct sum of the inclusions Cq −1 [ σ ] ↪→ S ,
or all σ ∈ Xq −1 . Since ηq −1 is injective, replacing ∂q by the composition ηq −1 ∂q in the sequence ( 11 )
oes not affect the homology Vq at the middle term. Similarly, since the homomorphism pq +1 : Gq +1 →
q +1 defined as in ( 10 ) is surjective, replacing ∂q +1 by the composition ∂q +1 pq +1 in the sequence ( 11 )
oes not affect the homology Vq . In other words, the homology at the middle term of 

(12)
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s isomorphic to Vq . Since Gq +1 is free (and hence projective) and pq is surjective, there exists an n -graded
omomorphism δq +1 : Gq +1 → Gq such that the triangle 

ommutes. The proof of [ 11 , Prop. 5.2] carries over, showing that Vq is isomorphic to the homology at
he middle term of the following chain complex of free n -graded S -modules: 

(13)

e remark that the construction of this chain complex is not canonical, as it requires choosing a lift δq +1 .
ow, we denote by G(Gq ) the set of grades of the generators of Gq , and by G(Rq ) the set of grades of the

enerators of Rq , for all q . Explicitly, they are the following subsets of N 

n : 

G(Gq ) = { v ∈ N 

n | v ∈ ent (σ ) for some σ ∈ Xq } , 
G(Rq ) = { w ∈ N 

n | w = v0 ∨ v1 with v0 � = v1 ∈ ent (σ ) , for some σ ∈ Xq } . 
(14)

ur results of sections 5 and 6 can be applied to the persistent homology module Vq of a multi-critical fil-
ration X = { X u }u ∈N 

n by replacing the chain complex ( 11 ) of (not necessarily free) n -graded S -modules
y the chain complex ( 13 ) of free n -graded S -modules to present Vq as the homology at the middle term.
n particular, this affects the sets of entrance grades of cells: In degree q , the set G(Gq ) now plays the role
f G(Xq ) in section 5 ; similarly, G(Rq ⊕ Gq +1 ) = G(Rq ) ∪ G(Gq +1 ) now replaces the set G(Xq +1 ) .
astly, we observe that, with the aim of reducing the involved chain complexes, one can replace the
 -filtered cell complex X with an n -filtered Morse complex M, consider ( 11 ) to be the chain complex
ssociated with M, and construct ( 13 ) from it. 
As an example of how the results on one-critical filtrations can be adapted, we state the generalization

f Theorem 5.10 and Corollary 5.20 to the case of multi-critical filtrations. 

Proposition 7.1. Let { X u }u ∈N 

n be a multi-critical n -parameter exhaustive filtration of a cell 
complex X . Then, for all q ∈ N , 

supp ξ
q 
0 ⊆ G(Gq ) , supp ξ

q 
1 ⊆ G(Rq ) ∪ G(Gq +1 ) ∪ G(Gq ) , supp ξ q 

n ⊆ G(Rq ) ∪ G(G

and 

n ⋃ 

i =0 

supp ξ
q 
i ⊆ G(Rq ) ∪ G(Gq +1 ) ∪ G(Gq ) , 

where the sets G (Gq ) , G (Gq +1 ) and G (Rq ) are as in ( 14 ). Furthermore, the same containments 
hold if the sets G(Gq ) , G(Gq +1 ) and G(Rq ) are determined from { Mu }u ∈N 

n instead of { X u }u ∈N 

n , 
where { Mu }u ∈N 

n is the n -parameter filtration of the Morse complex M associated with any fixed 

discrete gradient vector field consistent with the filtration { X u }u ∈N 

n . 
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