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1 Introduction

Exploring unknown regions of the moduli space of world-sheet conformal field theories is
an important part of collective efforts to understand quantum gravity at a fundamental
level. Even when supersymmetry is fully preserved and powerful tools are available, there are
loci in the moduli space which have remained hidden from the light of traditional methods.
Some of these loci include heterotic vacua with reduced rank of the gauge group, whose
world-sheet descriptions are not yet known. The extreme case of such vacua are called ‘islands’
because they have no massless vector multiplets, and therefore no continuous moduli except
for the dilaton [1]. The goal of this work is to formulate a world-sheet description of fully
supersymmetric compactifications of heterotic strings with rank reduction, including islands,
within the framework of toroidal asymmetric orbifolds [2, 3]. To this end we will build on
our approach developed earlier in heterotic non-supersymmetric setups [4]. Although the
emphasis will be on heterotic compactifications with 16 supercharges, our formalism can be
applied to compactifications with less supersymmetry, and to type II strings.

String vacua with 16 supercharges and reduced rank were originally discovered in type
I toroidal compactifications [5]. In the heterotic case such vacua were first obtained in the
fermionic formulation and came to be known as CHL strings [6]. The moduli space component
with rank reduced by eight was later realized in the bosonic formulation in terms of TD/Z2
asymmetric orbifolds in [7] and analyzed in more detail in [8], see also [9–13]. Generalizations
to other TD/Zn asymmetric orbifolds have been considered e.g. in [9, 11, 14–16]. Vacua
with 16 supercharges and rank reduction can also be devised as type II compactifications
on toroidal asymmetric orbifolds. Examples include rank 1 theories in 9 dimensions [17, 18]
and the rank-0 Dabholkar-Harvey island in 6 dimensions [1]. Further interesting progress on
asymmetric orbifold constructions in string theory in the last years may be found in [19–40].
For relevant earlier studies, see [41–43].

An important feature of supergravity theories with 16 supercharges is that the rank of
the gauge group is restricted by quantum consistency conditions such as anomaly cancellation
and unitarity of the theory on string or brane probes. Notably, in 10 dimensions it has been
shown that only rank 16 is allowed [44, 45]. Furthermore, in (10− D) dimensions the upper
bound (16+D) was established in [46], and when D = 1, 2, it has been argued that only ranks
(16+D), (8+D) and D can occur [47–49]. In this work we do not directly address the question
of allowed ranks, except for remarking that our results align with the empirical observation
that in (10− D) dimensions, with D > 2, the rank is even (odd) when D is even (odd).

This paper rather aims at populating the landscape of heterotic string compactifications
with 16 supercharges by providing explicit models with different ranks in diverse dimensions.
In particular, we will present T4/Z2m asymmetric orbifolds, with m = 1, 3, 5, and rank 8,2,0
respectively. The existence of such orbifolds in the moduli space of six-dimensional theories
with 16 supercharges was conjectured in [13], but to the best of our knowledge, their string
theory realization has been lacking until now. The main outcome of this work will be a
general formalism for constructing heterotic compactifications with 16 supercharges and rank
reduction in terms of TD/Zn asymmetric orbifolds. The specific 6d orbifolds mentioned above,
including the island case of rank-0, will be concrete examples within this approach. We
will also describe a group or ‘archipelago’ of heterotic islands in four dimensions, emerging
from a T6/Z22 orbifold.
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An essential component of heterotic asymmetric orbifolds TD/Zn is the even self-dual
lattice Γ with signature (16 + D, D), which encodes the values of the left- and right-moving
momenta of the compact bosons. The generator of the orbifold group Zn acts on these
momenta, leaving invariant a sublattice of Γ that we denote by I. Consequently, vectors
in the orthogonal complement of I in Γ, called normal or coinvariant lattice and denoted
N , are rotated under the action of Zn. Since we assume that all supersymmetries are
unbroken this normal lattice will have definite signature, concretely purely left-moving in
our conventions. From the formalism of asymmetric orbifolds we can already draw several
important conclusions about the resulting theory in (10− D) dimensions. To begin we notice
that the spectrum in the orbifold untwisted sector will not contain massless gauge multiplets
from bosonic oscillator modes along the rotated N directions. However, this does not imply
that the rank of the gauge group will be reduced, as massless gauge multiplets can still arise
from invariant combinations of roots in N . Hence, a necessary condition for rank reduction is
that N does not have roots, i.e. vectors with length squared equal to 2. Another immediate
upshot is that for rank-0 islands without gauge multiplets, the invariant lattice must have
definite signature (0, D), since invariant left-moving directions would give rise to massless
gauge multiplets from oscillator excitations. Therefore, for rank-0 both I and N are rigid, i.e.
they do not have geometric moduli as expected for an island. These are actually necessary but
not sufficient conditions for rank reduction. We also have to study whether extra conditions
must be satisfied to remove massless states in the twisted sectors.

The result that rank reduction requires absence of root vectors in the normal lattice
motivates us to base our analysis on sublattices of the Leech lattice, which is the unique
definite even self-dual lattice of rank 24 without any roots. The Leech lattice has a large
group of automorphisms, the Conway group Co0. The classification of invariant sublattices
under the action of Co0 done by Höhn and Mason [50] will play a central role in our approach
to constructing heterotic asymmetric orbifolds with rank reduction. The Leech lattice has
appeared previously in various contexts within string theory and conformal field theory.
Specifically, reference [51] discussed 2d heterotic models involving cyclic orbifolds of the
Leech lattice and proposed decompactification to higher dimensions. In [52], the Leech
lattice was instrumental in the classification of supersymmetry-preserving symmetries of
non-linear sigma-models on K3. The authors of [25, 27] utilized sublattices of the Leech
lattice to study discrete symmetries and dualities of heterotic strings compactified on tori
and orbifolds. In this work we will construct reduced-rank theories in (10− D) spacetime
dimensions by implementing automorphisms and sublattices of the Leech lattice into TD/Zn
asymmetric orbifolds of the heterotic string.

Once the momentum lattice Γ and the Zn automorphism are set up from Leech lattice
data, we will compute the partition function of the asymmetric orbifold. The untwisted sector
terms depend on the action of the orbifold generator on the original TD, which typically
involves a translation in Γ by a constant shift along the invariant directions. The twisted
sector terms are derived by applying modular transformations. When the order n is odd,
modular invariance just gives a condition on the constant shift. However, when n is even
there are additional constraints as stated in [2, 3], and discussed more recently in [24, 53].
We will specialize to the case n = 2m, where m is an odd prime number, which is of interest
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and affords a general treatment. We will find that modular invariance can be achieved when
the orbifold action on Γ takes into account a vector that characterizes the Z2 conjugacy
classes of I∗/I with half-integer squared norm.

The plan of this paper is as follows. In section 2 we describe the class of asymmetric
orbifolds that enable rank reduction. We first explain how the underlying even self-dual
lattice Γ and the automorphism defining the orbifold are determined from Leech lattice
data. We then deduce key properties of the sublattices of Γ that are left invariant by Z2m
automorphisms and their powers. In section 3 we explicitly compute the partition function
of heterotic TD/Z2m asymmetric orbifolds. To streamline the analysis we focus on the case
in which the invariant lattice under the Z2m automorphism has definite signature, which is
actually a necessary condition for islands in our setup. The case of invariant lattice with
indefinite signature is left for an appendix. We will first discuss the contribution of the
untwisted sector to the partition function and then apply modular transformations to obtain
the twisted sector terms. The constraints implied by modular invariance in each sector are
derived and summarised in subsection 3.6.

In section 4 we examine the operator interpretation of the partition function in all
twisted sectors. We obtain the complete set of consistency conditions and confirm that they
are satisfied, thereby ensuring the positive integer multiplicity of states. Additionally, we
verify that the untwisted sector partition function also entails positive integer multiplicities.
Section 5 presents specific examples of heterotic compactifications with reduced rank, including
islands. In subsection 5.1 we discuss two islands in 6 dimensions, constructed as T4/Z10
orbifolds with different invariant lattices. In subsection 5.2 we consider a T6/Z22 orbifold
leading to a 4d archipelago. Subsection 5.3 reports a T4/Z10 orbifold giving rise to a 6d

theory with reduced rank equal to four. We close in section 6 by outlining our findings
and reflecting on future directions.

There are several appendices accompanying the main text. In appendix A we give a
constructive proof of the existence of the characteristic vector of I∗/I. Appendices B–D
contain intermediate results, as well as proofs of various lattice properties and identities,
needed in sections 3 and 4. In appendix E we comment on the requirements on constant shift
vectors to lead to non-equivalent models. In appendix F we discuss T4/Z2m orbifolds, with
m = 1, 3, in which the invariant lattice is indefinite and the rank is reduced as proposed in [13].

2 A class of heterotic asymmetric orbifolds

In this section we first briefly review the basics of asymmetric orbifolds [2, 3], introducing
conventions and notation along the way. We will then describe a class of models with unbroken
supersymmetry and reduced rank of the gauge group. The main elements needed to construct
explicit examples will be presented in detail.

We start with the 10-dimensional supersymmetric heterotic string. For the left-moving
and right-moving sectors we respectively take the bosonic string and the superstring degrees
of freedom. The right-moving world-sheet fermions will be described in terms of SO(8) bosons,
with the GSO projection selecting weights in the vector (V ) and the spinor (Sp) classes.

In the next step we compactify the theory on TD and mod out by an action that treats
left and right movers differently. According to the formalism of asymmetric orbifolds [2, 3],
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we need to define the action of the orbifold generator on the left- and right-moving momenta
taking values in the even self-dual lattice Γ(16 + D, D) ≡ Γ, as we now discuss.

The action on Γ is given by some automorphism Θ of order n which does not mix
left and right movers, i.e. Θ = (ΘL,ΘR). In general Θ only exists at a slice in the moduli
space of Γ, parametrized by the background values of the TD metric, the Kalb-Ramond
B field and the Wilson lines. In order to describe its action, it is convenient to introduce
the sublattice I left invariant by Θ, i.e.

I =
{
P ∈ Γ ||ΘP = P

}
. (2.1)

We also introduce the normal sublattice N , defined as the orthogonal complement of I

in Γ, namely

N =
{
P ∈ Γ ||P · X = 0, ∀X ∈ I

}
. (2.2)

N is also known as the coinvariant lattice. The dual lattices of I and N are denoted I∗ and
N∗. The invariant and the normal lattice are even.

Any vector P ∈ Γ may be written as P = (PN , PI), with PN ∈ N∗ and PI ∈ I∗ [2].
Furthermore, using that Γ is even self-dual it can be shown that

N∗/N ∼= I∗/I , qI ◦ ς = −qN , (2.3)

where qL is the discriminant form1 of lattice L, and ς is a one to one pairing of the cosets.
This means that for a coset representative w ∈ N∗/N there exists ς(w) ∈ I∗/I such that
qI(ς(w)) = −qN (w). The lattice Γ itself can be constructed adding the correlated classes [54].
Schematically,

Γ = (N, I) +
∐

w∈N∗/N

(w, ς(w)) . (2.4)

The glue vectors (w, ς(w)) have even norm and integer scalar product with each other. A
more detailed expression for Γ is given in (2.13).

The decomposition of Γ into the direct sum of normal and invariant lattices plus correlated
classes will be a key ingredient in our construction of asymmetric orbifolds. One important
reason is that it encodes the momenta of untwisted and twisted string states. Hence it has
implications for the modular invariance of the partition function. Moreover, as we will explain
shortly, it enters in the prescription to choose the automorphism Θ.

Let us now specialize to heterotic asymmetric orbifolds TD/Zn preserving all supersym-
metries. In this case the Zn automorphism of Γ(16 + D, D) does not act on the D right
movers but only on some number s of left movers. This means ΘR = 1 and ΘL = Θ.
Therefore, the invariant lattice I has signature (16 + D − s, D), whereas the normal lattice
N has signature (s, 0), with 0 ≤ s ≤ 16 + D.

In the purely toroidal compactification, massless fields of the resulting (10−D)-dimensional
theory arrange into the supergravity multiplet, which includes D U(1) graviphotons, and
(16 + D) U(1) vector multiplets at generic points of moduli space. At special points there
can be enhancement to some non-Abelian group of rank (16 + D). In the asymmetric

1For an even lattice L, the discriminant form is a map qL : L∗/L → Q/2Z, x + L 7→ x2 mod 2.
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orbifolds the rank can be reduced. For instance, at a point in moduli space such that
Γ(16 + D, D) ∼ E8 ⊕ E8 ⊕ DU , where U denotes the even self-dual (1, 1) lattice, we can
perform a Z2 orbifold that acts by exchange of the 2 E8’s and translation by half a period
along one of the circles. This setup gives CHL models with gauge group of rank (8 + D),
excluding graviphotons [7].

We are interested in generic features and explicit construction of models with rank
reduction. The formalism of asymmetric orbifolds already leads to the simple observation that
a necessary requirement for rank reduction is that the normal lattice N does not have roots,
i.e. vectors of length squared 2. To understand this statement it is useful to recall the structure
of massless states in the untwisted sector. By GSO projection, the right-moving piece consists
of 8v and 8s decomposed under SO(8−D). On the other hand, the left-moving piece includes
oscillator modes with occupation number NL = 1 or momentum states with P 2

L = 2. Now,
since the s directions along N are not invariant under the action of Θ, the corresponding
left moving oscillators cannot give massless states belonging to vector multiplets. Thus,
naively we would conclude that the rank is reduced by s. However, if N has root vectors
then we could construct invariant combinations that give additional massless vectors thereby
increasing the rank. The condition that N has no roots is necessary but not sufficient for
rank reduction of the gauge group because massless vectors could arise in twisted sectors. As
we will explain, extra massless twisted states might or might not be avoided by including
appropriate constant translations in the lattice which are compatible with modular invariance.

In the CHL models described above, the normal lattice is2 E8(2), which indeed does not
have root vectors. This is also the case in other known examples in 7 dimensions constructed
as heterotic asymmetric orbifolds T2 × S1/Zn, n = 3, 4, 5, 6 [9, 11]. The T2 is chosen to be
rectangular, the B field is set to zero, and two specific Wilson lines are turned on. The full
orbifold action includes an order n translation along the S1, together with an explicit Zn
automorphism of Γ(18, 2). Given this automorphism and the momenta in Γ(18, 2) we can find
the invariant sublattices and show that the associated normal lattices do not have roots. For
instance, for n = 3 the normal lattice turns out to be the 12-dimensional Coxeter-Todd lattice.
This result is known in the Mathematics literature [55, 56]. In fact, these 7-dimensional
models can be equivalently realized as heterotic asymmetric orbifolds T3/Zn, where Zn is an
automorphism of the Γ(19, 3) lattice. Abelian automorphisms of Γ(19, 3) with invariant lattice
of signature (19 − s, 3) and normal lattice of signature (s, 0) without roots, correspond to
symplectic automorphisms of K3 surfaces which have been classified [57]. Besides n = 2, . . . , 6,
such Zn automorphisms exist for n = 7, 8, but in these cases in the corresponding T3/Zn
asymmetric orbifolds, massless states in twisted sectors cannot be avoided. However, for
n = 7, 8, it is possible to construct T3 × S1/Zn asymmetric orbifolds with rank reduction by
combining the Γ(19, 3) automorphism with an order n translation along the circle.

2.1 Choice of Γ and automorphism

Our strategy to specify the automorphism Θ is adapted to our motivation to construct theories
with rank reduction, in particular string islands without vector multiplets. As already argued,
this requires that the normal lattice does not have vectors of length squared equal to 2. We

2L(j) means lattice L with Gram matrix rescaled by a factor j.
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are then led to consider automorphisms of the Leech lattice, denoted Λ, which is the unique
24-dimensional even self-dual lattice without root vectors. The idea to embed the normal
lattice in Λ was previously used to study symmetries of K3 sigma models, which involve
the Γ(20, 4) lattice [52]. Heterotic compactifications with rank reduction based on orbifolds
by automorphisms of Λ had been explored earlier [51].

The automorphism group of Λ is the Conway group Co0 [58]. It has been shown by Höhn
and Mason that there are 290 classes of sublattices of Λ that are left fixed by elements of
Co0 [50]. In appendix A of the published version, they have also supplied the basis for the
corresponding invariant and coinvariant lattices in Magma format [59]. We will refer to the
classes as HM#, where # is the row number in table 1 of [50].

The invariant and coinvariant lattices listed by Höhn and Mason, which we denote Ĩ

and N , are both Euclidean, i.e. they have signatures (24− s, 0) and (s, 0) respectively. In
our language N is the normal lattice that we want to use to construct an even self-dual
lattice Γ of signature (16 + D, D). To this end we have to search for another lattice I of
signature (16 + D − s, D) such that N∗/N ∼= I∗/I, qI ◦ ς = −qN , and the classes of I∗/I

can be correlated with the classes of N∗/N . The discriminant group N∗/N , as well as a
basis of generators, can be obtained from the Smith decomposition of the Gram matrix of
N , as summarized e.g. in proposition 3 of [27]. For the candidate invariant lattice I the
procedure is similar. A complete set of even and mutually integral glue vectors is obtained by
pairing combinations of generators iteratively. In this way we assemble the lattice Γ with the
structure in (2.4). In [25, 27] the authors also applied this scheme to construct Γ, developing
a systematic procedure to find I when s ≥ 16 by first looking for embeddings of Ĩ in E8 and
then taking for I the orthogonal complement of Ĩ in E8 with reversed signature. For the
particular case D = 4 and s = 20, we find that it is also possible to choose the invariant
lattice I to be Ĩ with reversed signature.

Let us now explain how the automorphism Θ is obtained. For a given pair (N, I) from
which Γ is constructed by adding correlated classes, we use the package Magma [59] to
look for automorphisms of N of order n, where Zn is one of the factors in the discriminant
group N∗/N . We impose the conditions that the automorphism does not have eigenvalues
equal to one and that it preserves the classes in N∗/N . The latter is necessary to keep
the correlations of conjugacy classes of N∗/N with those of I∗/I which are invariant. This
then gives an automorphism Θ of order n of the full Γ such that I is the invariant lattice
and N is the normal lattice.

Conjugacy classes of the automorphism group Co0 of Λ have also been studied in [60],
which lists the invariant lattice and the associated frame shape that encodes the characteristic
polynomial of the particular class [61]. The non-trivial eigenvalues computed from the
frame shape coincide with those computed from the explicit Θ found as explained above.
These eigenvalues determine the orbifold action on the internal bosonic coordinates and
will be needed to compute the partition function. In general they are of the form e±2πita ,
a = 1, . . . , s2 , where s is the dimension of N . It is convenient to choose the ta such that
0 < ta ≤ 1

2 , and to package them as the components of a vector t = (t1, t2, . . . , t s
2
). Actually,

since Θ acts crystallographically on N , the eigenvalues must satisfy known conditions [62].
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For instance, for a Zp action with p prime

t = 1
p

(
1, 2, . . . , p−1

2

)n1
, (2.5)

where the positive integer n1 in the exponent indicates the multiplicity and satisfies n1(p−
1) = s. We will be mostly interested in Z2m automorphisms with m prime different from
2. In this case we have

t = 1
2m

(
[1, 3, . . . , m − 2]n1 , [2, 4, . . . , m − 1]n2 , [m]nm

)
. (2.6)

The exponents are non-negative integers that indicate multiplicity and satisfy the relation
(n1 + n2)(m − 1) + 2nm = s. Note that the non-trivial eigenvalues of Θm are −1. From the
eigenvalues we can easily evaluate the quantities det′(1 − Θk), k = 1, . . . , m, where det′

excludes eigenvalues equal to 1, which will enter in the partition function.
The lattice Γ formed from the pair (N, I) and correlated classes of N∗/N ∼= I∗/I, together

with the Zn automorphism Θ are the basic ingredients to construct the heterotic asymmetric
orbifold TD/Zn. In particular, the known heterotic models with rank reduction T3/Zn, for
n = 2, . . . , 6, can be built starting with the normal lattices of the HM2, HM4, HM9, HM20
and HM18 respectively. Based on the HM52 we can also construct a heterotic asymmetric
orbifold T4/Z7 with gauge group of rank 2. In this model the normal lattice of signature
(18, 0) is isomorphic to the Ω7 lattice in [55], whereas the invariant lattice of signature (2, 4)
can be chosen to be I = U(7)⊕ K(−1)⊕ U , where K is a 2-dimensional lattice with Gram
matrix

( 4 1
1 2
)
. The component U in I is the lattice corresponding to a circle and the orbifold

can be understood as T3 × S1/Z7, as mentioned before.
Other examples with rank reduction will be presented in section 5 and appendix F after

we discuss in more detail the orbifold partition function.

2.2 Invariant lattices and modular invariance

In the standard asymmetric orbifold construction the orbifold group has a generator g defined
to act on P = (PN , PI) ∈ Γ as g|PN , PI⟩ = e2πiP ·v|ΘPN , PI⟩, where v is a constant shift
vector that can be taken along the I directions without loss of generality. This is actually
the action of g in the known untwisted Hilbert space H0. The twisted Hilbert space H1,
where strings close up to the action of g, is deduced by applying modular transformations.
To explain how this works, let us consider the partition function in the untwisted sector with
the insertion of g, i.e. TrH0

(
g qL0 q̄L̄0

)
. The action of g on Γ implies that only momenta with

PN = 0 survive the trace. In other words, the contribution of momentum states to the trace
will only include a sum over the invariant lattice. Schematically,

TrH0

(
g qL0 q̄L̄0

)
⊃
∑
P∈I

q
1
2P

2
L q̄

1
2P

2
R e2iπP ·v . (2.7)

We can now do a modular transformation τ → −1/τ , which changes the boundary conditions
on the world-sheet, to obtain TrH1

(
qL0 q̄L̄0

)
. Poisson resummation leads to

TrH1

(
qL0 q̄L̄0

)
⊃
∑
P∈I∗

q
1
2 (P+v)2

L q̄
1
2 (P+v)2

R . (2.8)

This shows that strings states in the g-twisted sector will have momenta lying in I∗ + v.
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From (2.8) we can also infer necessary conditions for modular invariance because if g

has order n, the modular transformation τ → τ + n must leave the trace invariant. This will
put restrictions on the shift v that will be spelled out shortly. Now we are more interested
in additional requirements on P ∈ I∗ because the transformation also gives a phase eiπnP

2

inside the sum. Below we will show that when n is a an odd number, nP 2 is always even
for P ∈ I∗ so that the phase is equal to one. However, for n even it is not guaranteed. In
this work we will study the case n = 2m, with m prime, different from 2. We will see that
it is possible to achieve modular invariance with g of order 2m.

We will compute the full partition function of the theory in section 3. In the rest of this
subsection we will study properties of I∗ in more detail, focusing on the case Θ2m = 1 for m

prime, different from 2. In this setup we also need to analyze the invariant lattices under Θ2

and Θm, denoted I2 and Im respectively, and their corresponding dual lattices.

2.2.1 Conjugacy classes in the dual invariant lattices

To begin consider Θn = 1 and apply (1 + Θ + .. +Θn−1) on a generic element (PN , PI) ∈ Γ,
where PN ∈ N∗ and PI ∈ I∗. It results in (0, nPI) ∈ I. Thus, nPI ∈ I for all PI ∈ I∗.
This in turn implies that nPI · PI ∈ Z and (nPI)2 ∈ 2Z for all PI ∈ I∗. Hence, if n is odd
it must be nP 2

I ∈ 2Z as claimed before.
Let us now set n = 2m with m prime, different from 2. We again obtain that 2mPI ∈ I

for all PI in I∗, but we cannot conclude that and 2mP 2
I is even. Nonetheless we can still

extract some useful information because now we can write PI ∈ 1
2mI = (a2 + b

m)I, since there
exist pairs of coprime integers a and b such that ma + 2b = 1. The upshot is that I∗/I

generically contains Z2, Zm and Z2m factors, i.e.

I∗/I ∼= N∗/N ∼= Zℓ
′
2
2 × Zℓ

′
m
m × Zℓ

′
2m
2m

∼= Zℓ22 × Zℓmm , (2.9)

where we used that Z2m ∼= Z2×Zm. It will be convenient to work with Z2 and Zm generators,
whose numbers are respectively the non-negative integers ℓ2 and ℓm. We observe that the
invariant lattice for Θk, with (k, 2m) = 1, is also I.

We can now state a result that will be central to our construction of Z2m asymmetric
orbifolds. From the previous arguments it follows that PI ∈ I∗ can be written as PI = X +Y ,
for some X ∈ Z2 classes and Y ∈ Zm classes of I∗/I. The vectors X clearly satisfy 2X2 ∈ Z.
Although less obvious, it can also be shown that there always exists a constant vector w

in Z2 classes of I∗/I such that

X2 = X · w ∀ X ∈ Z2 classes of I∗/I . (2.10)

A constructive proof of existence of w is given in appendix A. It can further be shown that

e2πimP
2
I = e2πiPI ·w ∀ PI ∈ I∗ . (2.11)

To prove this, notice that X · Y ∈ Z because 2X · Y ∈ Z, X · mY ∈ Z, and m is prime.
Similarly, mY 2 ∈ 2Z because Y · mY ∈ Z and m2Y 2 ∈ 2Z. Thus, mP 2

I = mX2 mod 2. To
arrive at (2.11) we use 4X2 ∈ 2Z, Y · w ∈ Z, and eq. (2.10). The characteristic vector
Wg introduced in [24] has analogous properties as our w, being related by Wg = 2w mod 2.
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The vector w was included in the T3/Z2 orbifolds constructed in [4] where it was shown
that Milgram’s theorem [63, appendix 4] relates w2 to lattice data as we will also discuss
in appendix C.1.

Let us now turn to the invariant sublattices Im and I2 under Θm and Θ2 respectively.
Clearly I is contained in Im and I2. Consider first Im. Any vector in the even self-dual
lattice Γ can be expressed as (PI⊥m , PIm), where I⊥m is the orthogonal complement of Im in
Γ. Moreover, Γ projected along the directions of Im and I⊥m is respectively I∗m and I⊥∗

m .
Now, acting with (1 + Θm) on (PI⊥m , PIm) gives (0, 2PIm) ∈ Im, which means that only Z2
classes appear in I∗m/Im. Since the Zm classes that were in I∗/I have disappeared, it must
be that all the Zm classes in N∗/N have some representatives that are invariant under Θm,
so that they correlate with Zm classes of I∗/I and become part of Im. For this to happen,
necessarily the dimension of Im must be bigger than that of I (in other words, some of the
directions in N must be invariant under Θm).

Similarly, for I2 one may apply (1+Θ2+Θ4+ . . .+Θ2(m−1)) on (PI⊥2 , PI2). The result is
that I∗2/I2 contains only Zm classes and the Z2 classes that appeared in I∗/I are correlated
with some representatives of Z2 classes appearing in N∗/N that are invariant under Θ2.

From the above discussion we have learned that the we can choose generators of the Z2
classes of N∗ that are Θ2-invariant. Let us denote them by fN2,i, i = {1, . . . , ℓ2}. Likewise,
we can pick generators of Zm classes of N∗ that are Θm-invariant and denote them by fNm,j ,
j = {1, . . . , ℓm}. These generators satisfy

Θ2fN2,i = fN2,i , ΘmfNm,j = fNm,j . (2.12)

Any vector in N∗ can be expressed as
∑

aif
N
2,i +

∑
bjf

N
m,j modulo N , where ai = {0, 1}

and bj = {0, 1, . . . , m − 1}. Let f I2,i and f Im,j be the corresponding correlated Z2 and Zm
generators of I∗/I. The vectors of Γ are then of the form

Γ =
ℓ2∑
i=1

ai(f I2,i, fN2,i)+
ℓm∑
j=1

bj(f Im,j , fNm,j)+(I, N) , ai = {0, 1} , bj = {0, 1, . . . , m−1} . (2.13)

The preceding arguments also indicate that the sublattices Im and I2 have the form

Im = (I, Nm) +
ℓm∑
j=1

bj(f Im,j , fNm,j) , I2 = (I, N2) +
ℓ2∑
i=1

ai(f I2,i, fN2,i) , (2.14)

where Nm and N2 consist of vectors in N that are respectively invariant under Θm and Θ2.
The corresponding dual lattices I∗m and I∗2 will be the projection of Γ into the respective
invariant directions.

The relevant projectors on the invariant subspaces are

Πm = 1
2(1 + Θm) , Π2 =

1
m
(1 + Θ2 +Θ4 + . . . +Θ2(m−1)) . (2.15)

It is easy to show that fNm,j and fN2,i have the properties

Π2f
N
m,j = 0 , ΠmfN2,i = 0 . (2.16)
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We now apply the projector Π2 on Γ given in eq. (2.13) and find

I∗2 = Π2Γ =
ℓ2∑
i=1

ai(f I2,i, fN2,i) +
ℓm∑
j=1

bj(f Im,j , 0) + (I,Π2N) , (2.17)

where we have used (2.12) and (2.16). Comparing with I2 in eq. (2.14) shows that

I∗2/I2 =
ℓm∑
j=1

bj(f Im,j , 0) + (0,Π2N mod N2) . (2.18)

Note that these Zm classes are uncorrelated and that the Zm classes coming from N -directions
are just Π2N modulo Θ2-invariant part of N . We note that the invariant lattice under Θ2l,
1 < l < m, is also I2.

Let us next apply the projector Πm to Γ given in eq. (2.13). Using (2.12) and (2.16)
we obtain

I∗m = ΠmΓ =
ℓ2∑
i=1

ai(f I2,i, 0) +
ℓm∑
j=1

bj(f Im,j , fNm,j) + (I,ΠmN) . (2.19)

From the form of Im given in eq. (2.14) we then conclude that

I∗m/Im =
ℓ2∑
i=1

ai(f I2,i, 0) +
(
0,ΠmN mod Nm

)
. (2.20)

Again these are uncorrelated Z2 classes. We also observe that the Z2 classes that come from
N -directions are just ΠmN modulo Θm-invariant part of N . Moreover, the length square
of the latter Z2 classes are integers. This is(1

2(1 + Θm)P
)2

= P · 12(1 + Θm)P = 1
2(P

2 + P ·ΘmP ) ∈ Z ∀ P ∈ N . (2.21)

In the last step we have used that P ·ΘmP is even ∀ P ∈ N , which in turn can be shown
starting with P · (1+Θ+Θ2+ . . .+Θ2m−1)P = 0. We will use the property (2.21) in section 3
when we study the modular invariance of the asymmetric orbifold partition function.

To summarize, the invariant lattices I, I2 and Im have discriminant groups

I∗/I ∼= Zℓ22 × Zℓmm , I∗2/I2 ∼= Zℓm+ℓNm
m , I∗m/Im ∼= Zℓ2+ℓ

N
2

2 . (2.22)

Here ℓN2 is the number of Z2 generators along Θm-invariant directions of N . Similarly, ℓNm
is the number of Zm generators arising from Θ2-invariant directions along N .

An important piece of the partition function will be the degeneracy factors in the
gk-twisted sectors defined as

Fk :=

√√√√det′(1−Θk)
|I∗k/Ik|

. (2.23)
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These factors have been shown to be integers [2, 64]. From the eigenvalues of the automorphism
in (2.6) and the quotient groups in eq. (2.22) we readily obtain

Fk =


m

1
2 (n2−ℓm)2

1
2 (2nm−ℓ2), k = 1

m
1
2 (n1+n2−ℓm−ℓNm), k = 2

2
1
2 ((m−1)n1+2nm−ℓ2−ℓN2 ), k = m

. (2.24)

The fact that the Fk are integers then implies

n2 − ℓm ∈ 2Z≥0 , 2nm − ℓ2 ∈ 2Z≥0 , ℓ2 ∈ 2Z≥0 ,

n1 + n2 − ℓm − ℓNm ∈ 2Z≥0 , (m − 1)n1 + 2nm − ℓ2 − ℓN2 ∈ 2Z≥0 , ℓN2 ∈ 2Z≥0 .
(2.25)

Notice also that if n2 = 0 then necessarily ℓm = 0, and if nm = 0 then necessarily ℓ2 = 0. All
these conditions are satisfied by the Leech lattice automorphisms considered in this work.

3 Partition function of the TD/Z2m asymmetric orbifolds

We want to study heterotic asymmetric orbifolds TD/Z2m preserving all sixteen supercharges.
As we already explained, in this case the Z2m automorphism Θ of Γ(16 + D, D) leaves
invariant all D right directions and acts non-trivially on s left directions. This further means
that the orbifold generator, denoted g, does not act on the right-moving internal bosons,
nor on right-moving fermions in order to maintain world-sheet supersymmetry. The action
of g on the left-moving internal bosons is instead dictated by the eigenvalues of Θ. The
action on P ∈ Γ depends on Θ and additional phases as will be discussed shortly. As in
the previous section we take m > 2 to be prime.

To describe the propagation of strings in orbifolds we consider the partition function, or
one loop vacuum amplitude, that may be written as Z =

∫
F
d2τ
τ2

2
Z, where F is the fundamental

region of SL(2,Z). In the orbifolds preserving all supersymmetries the integrand factorizes as

Z(τ, τ̄) = ZX(τ, τ̄) Zψ(τ̄) ZΓ(τ, τ̄) , (3.1)

where ZX and Zψ are respectively the contributions of the uncompactified light-cone world-
sheet bosons and the right-moving world-sheet fermions given by

ZX(τ, τ̄) = 1(√
τ2ηη̄

)8−D , Zψ(τ̄) =
1
2η̄4 (ϑ̄

4
3− ϑ̄4

4− ϑ̄4
2+ ϑ̄4

1) =
1
η̄4

∑
r∈V

−
∑
r∈Sp

 q̄
1
2 r

2
. (3.2)

The conventions for the Jacobi ϑ-functions are those of [65]. The ZΓ(τ, τ̄) due to the internal
bosons in the (16 + D, D) lattice Γ can be written as

ZΓ(τ, τ̄) =
2m−1∑
ℓ=0

[
1
2m

2m−1∑
k=0

Z(gℓ, gk)
]

, (3.3)

where Z(gℓ, gk) = TrHℓ

(
gk qL0 q̄L̄0

)
, and Hℓ is the Hilbert space of the gℓ-twisted sector. The

sum over ℓ is a sum over untwisted (ℓ = 0) and twisted (ℓ > 0) sectors whereas the sum
over k enforces the orbifold projection. The twisted sector contributions Z(gℓ, gk), ℓ > 0,

– 12 –



J
H
E
P
0
8
(
2
0
2
5
)
0
8
3

may be computed from untwisted sector terms Z(1, gk) by applying modular transformations
generated by the S-transformation τ → −1/τ and the T -transformation τ → τ + 1. Validity
of operator interpretation might impose extra constraints on the conformal field theory.

In the following subsections we compute the explicit form of Z(gℓ, gk) in untwisted and
twisted sectors. From now on we will focus on automorphisms which act on all left-moving
directions, i.e. s = 16 + D, and leave invariant a purely right lattice with signature (0, D).
This is a necessary condition for islands, as they do not have any vector multiplets in the
spectrum. In this section we will provide general expressions for the partition function for
this choice of s. Nonetheless, in appendix F, we construct two asymmetric orbifolds with rank
reduction, for T4/Z2 and T4/Z6 heterotic compactifications, in which the invariant lattice
has both left and right directions. Since in all examples D is an even number, hereafter
we will set D = 2d to simplify expressions.

3.1 Untwisted sector

The purely untwisted term is

Z(1,1) = 1
η16+2dη̄2d

∑
P ∈Γ

q
1
2P

2
L q̄

1
2P

2
R , (3.4)

where Γ is the (16 + 2d, 2d) even self-dual compactification lattice.
Let us know consider Z(1, g). We will assume that the action of g on P ∈ Γ is such the

trace over the untwisted Hilbert space is as in eq. (2.7), where v is a constant shift vector
along the I directions. We argued before that this might not lead to a modular invariant
partition function because it is not guaranteed that 2mP 2 is even for all P in I∗. The problem
arises when there are Z2 classes of I∗/I with lengths squared 1/2 mod integers. In this case
we have shown that there exists a constant vector w, with w ∈ I∗ and 2w ∈ I, such that
2mP 2 = 2P · w mod 2. Now, since the phase that appears upon τ → τ + 2m inside the sum
in (2.8) is actually e2iπm(P+v)2 , we observe that the momentum dependent piece is nothing
but e2iπP ·(2mv+w). To ensure that this piece is equal to one for all P ∈ I∗ it suffices to require

(2mv + w) ∈ I . (3.5)

In the following we will impose this condition on the shift v. Notice that v has order 4m,
i.e. 4mv ∈ I.

The action of g on the left-moving world-sheet bosons along the N directions is

gXa = e2πitaXa , a = 1, . . . , 8 + d (no sum in a) , (3.6)

where Xa are complex, and ta are given in eq. (2.6). It is well known that the contribution
of the Xa to the partition function can be expressed in terms of Jacobi Theta functions,
see e.g. [65]. As discussed before, taking into account the action of the orbifold on the
lattice then leads to

Z(1, g) = 1
η16+2dη̄2d

8+d∏
a=1

2 sin(πta) η3

ϑ
[ 1

21
2 − ta

] ∑
P ∈ I

q
1
2P

2
L q̄

1
2P

2
R e2πiP ·v . (3.7)
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To avoid confusion with the notation we remark that scalar products are with Lorentzian
metric, unless the subscripts L or R are explicitly written. For instance, P 2 = P 2

L − P 2
R,

whereas P · v = PL · vL − PR · vR.
In Z(1, g2) the momentum sum will be over I2, which is the lattice invariant under

Θ2. The action of g2 on Γ also involves a phase that is fixed by consistency with modular
invariance. Specifically, in subsection 3.4 we will apply a ST 2S transformation to the above
Z(1, g) to obtain Z(g2, g−1). The result in eq. (3.30) shows that the lattice momenta are
shifted by 2v + w. Hence, according to the operator interpretation, the same shift must
also occur in Z(g2,1), which follows by applying an S transformation to Z(1, g2). The
conclusion is that g2 must pick up a phase e2iπP ·(2v+w) when acting on P ∈ I2. Altogether,
for the Z(1, g2) term the result is

Z(1, g2) = 1
η16+2dη̄2d

8+d∏
a=1
2ta ̸=1

2 sin(2πta) η3

ϑ
[ 1

21
2 − 2ta

] ∑
P ∈ I2

q
1
2P

2
L q̄

1
2P

2
R e2πiP ·(2v+w) . (3.8)

Notice that now the product excludes the a for which 2ta = 1. Along such a direction the
complex boson just contributes 1/η2.

More generally, in Z(1, gℓ) there will be a lattice sum over P ∈ Iℓ, which by definition is
the invariant lattice under Θℓ. From modular transformations we infer that the gℓ action on
P ∈ Iℓ includes the phase e2πiP ·(ℓv+wδℓ,2 mod4). We may then write the general expression

Z(1, gℓ) = 1
η16+2dη̄2d

8+d∏
a=1
ℓta /∈Z

2 sin(ℓπta) η3

ϑ
[ 1

21
2 − ℓta

] ∑
P ∈ Iℓ

q
1
2P

2
L q̄

1
2P

2
R e2πiP ·(ℓv+wδℓ,2 mod 4) . (3.9)

The structure of the invariant lattices Iℓ is explained in subsection 2.2. Recall that Iℓ = I1
for (ℓ, 2m) = 1, whereas I2j = I2 for 1 < j < m.

For Z(1, gm) the oscillator contribution is actually simpler because the non-trivial
eigenvalues of Θm are −1. We find

Z(1, gm) = 1
η16+2dη̄4

(
2η3

ϑ2

)sm
2 ∑
P ∈ Im

q
1
2P

2
L q̄

1
2P

2
R e2πiP ·mv . (3.10)

Here sm is defined to be the number of −1 eigenvalues of Θm. It is explicitly given by

sm = (m − 1)n1 + 2nm , (3.11)

as follows from the general form of the eigenvalues in (2.6).
Some additional comments are in order. Upon an S-transformation, we learn that in

the g2(2j−1)-twisted sector, the lattice that appears is I∗2 shifted by 2(2j − 1)v + w, while in
the g2(2j)-sector the shift will be just 2(2j)v, for some positive integer j. Consider now the
OPE of a state in the g2l-twisted sector with another state in the inverse g2(m−l)-twisted
sector. If l is even, then (m − l) is odd, and vice versa. Hence, one of these two twisted
states will come with w, and the total shift will be 2mv + w, which is in I, as it should
since the OPE gives a state in the untwisted sector.
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3.2 g-twisted sector and modular invariance

Applying an S-modular transformation, followed by T -transformations, to Z(1, g) we obtain
the twisted sector terms

Z(g, gj) = F1
η16+2dη̄2d

8+d∏
a=1

eiπ(
1
2−ta)eiπjt

2
aη3

ϑ
[ 1

2 − ta
1
2 − jta

] ∑
P ∈ I∗

q̄
1
2 (P+v)2

Reiπj(P+v)2
, (3.12)

where we have taken into account that I has only right-moving directions. The degeneracy
factor F1 is defined in (2.23), see also (2.24). To simplify the expressions, it is convenient
to define

ϑ̂
[α
β

]
= e−2iπαβϑ

[
α
β

]
. (3.13)

The advantage of using the ϑ̂’s is that the overall phase depending on the eigenvalues of Θ
simplifies considerably. Indeed, eq. (3.12) can be rewritten as

Z(g, gj) = F1e
2πijE1

η16+2dη̄2d

8+d∏
a=1

η3

ϑ̂
[ 1

2 − ta

1
2 − jta

] ∑
P ∈ I∗

q̄
1
2 (P+v)2

Reiπj(P+v)2
. (3.14)

Here E1 is the zero point shift given by

E1 =
1
2

8+d∑
a=1

ta(1− ta) . (3.15)

From the explicit form of the ta’s in (2.6) we easily compute

E1 =
(m − 1)
48m

(
(2m − 1)n1 + 2(m + 1)n2

)
+ nm

8 , (3.16)

which will be needed later. Notice that (n1 + n2)(m − 1) + 2nm = 16 + 2d.
Modular invariance requires that Z(g, g2m) = Z(g,1). Now, the result in (2.11) in-

forms us that

eiπ2m(P+v)2 = e2iπP ·(2mv+w)e2iπmv
2
, ∀P ∈ I∗ . (3.17)

Thus, as already argued, the momentum dependent piece drops out imposing condition (3.5),
namely (2mv + w) ∈ I. In the end, requiring Z(g, g2m) = Z(g,1) yields the level matching
condition

4mE1 + 2mv2 ∈ 2Z . (3.18)

Note in particular that when 4mE1 is odd, the trivial shift v = 0 is not a solution.
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3.3 g2j+1-twisted sectors 2j + 1 ̸= m

Let us now look at the g(2j+1)-twisted sectors, with j={0, . . . , m − 1}, excluding j = m−1
2

(the case j=0 was considered in the previous subsection). To simplify the expressions, in
the following we denote ℓ = (2j + 1). Similar to the g-twisted sector, these sectors have a
single orbit under the T transformation τ → τ + 1.

The starting point is Z(1, gℓ) obtained from eq. (3.9). It is helpful to define

8+d∏
a=1

2 sin(πℓta) := eiπµ
∣∣∣∣ 8+d∏
a=1

2 sin(πℓta)
∣∣∣∣ = eiπµ

√
det′(1−Θℓ) = eiπµ

√
det′(1−Θ) . (3.19)

where the phase eiπµ can be easily evaluated and clearly equals ±1. Applying an S-
transformation τ → −1/τ to Z(1, gℓ) leads to

Z(gℓ, 1) = F1e
iπµ

η16+2dη̄2d

8+d∏
a=1

eiπ(
1
2−ℓta) η3

ϑ
[1

2 − ℓta
1
2

] ∑
P ∈ I∗

q̄
1
2 (P+ℓv)2

R . (3.20)

Notice that the degeneracy factor F1 in the gℓ-sector is the same as in the g-sector.
To extract the actual overall factor it is convenient to define

ℓ̃ta := ℓta − ⌊ℓta⌋ . (3.21)

Recall that ⌊x⌋ is the greatest integer less than or equal to x, so that 0 < ℓ̃ta < 1. Using
the definition (3.13), we arrive at the final expression

Z(gℓ,1) = F1
η16+2dη̄2d

8+d∏
a=1

η3

ϑ̂
[1

2 − ℓ̃ta

1
2

] ∑
P ∈ I∗

q̄
1
2 (P+ℓv)2

R . (3.22)

The modified ϑ functions directly give the oscillator expansion in positive powers of q,
assuring that the overall factor is the degeneracy F1.

Other terms in the gℓ-sector are obtained performing T -transformations. For example

Z(gℓ, gℓ) = F1e
2πiEℓ

η16+2dη̄2d

8+d∏
a=1

η3

ϑ̂
[1
2 − ℓ̃ta

1
2 − ℓ̃ta

] ∑
P ∈ I∗

q̄
1
2 (P+ℓv)2

Reiπ(P+ℓv)2
. (3.23)

Here Eℓ is the zero point energy in the gℓ-sector, namely Eℓ = 1
2
8+d∑
a=1

ℓ̃ta(1− ℓ̃ta). One can
show that Eℓ = E1.

Performing a τ → τ + 2m transformation, we find the modular invariance condition

4mE1 + 2mℓ2v2 ∈ 2Z . (3.24)

Given the general form of the eigenvalues ta (2.6), and the fact that ℓ = (2j+1), it follows that
the above modular invariance condition reduces to that in the g-sector, i.e. 4mE1+2mv2 ∈ 2Z.
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3.4 g2j-twisted sectors

We will compute the g2-sector partition function explicitly. Other even-twisted sector partition
functions are computed in a similar way, and the corresponding expressions will be presented
at the end. It is convenient to consider separately the orbits under T -transformations of
Z(g2,1) and Z(g2, g−1).

3.4.1 Orbit Z(g2, 1)

Applying modular transformations to Z(1, g2) in (3.8) gives

Z(g2, g2k) = F2e
iπ2kE2

η16+2dη̄2d

8+d∏
a=1
2ta ̸=1

η3

ϑ̂
[1
2 − 2ta

1
2 − 2kta

] ∑
P ∈ I∗2

q
1
2 (P+2v+w)2

L q̄
1
2 (P+2v+w)2

Reiπk(P+2v+w)2
,

(3.25)
where the degeneracy factor F2 is defined in eq. (2.23), see also (2.24). The zero point
shift E2 is defined by

E2 =
1
2

8+d∑
a=1

2ta(1− 2ta) =
(m2 − 1)
24m

(n1 + n2) , (3.26)

where for the second equality we inserted the specific ta’s in (2.6).
Modular invariance requires Z(g2, g2m) = Z(g2,1). Consider eq. (3.25) with k = m.

We first show

eiπm(P+2v+w)2 = eiπm(2v+w)2 ∀ P ∈ I∗2 . (3.27)

To prove this, note that I∗2 has uncorrelated Zm classes — see eq. (2.18). Thus, mP 2 ∈ 2Z
for all P ∈ I∗2 . Furthermore, P · 2mv ∈ Z and P ·w ∈ Z because 2mv and w are in Z2 classes
of I∗. Therefore, modular invariance results in the level matching condition

2mE2 + m(2v + w)2 ∈ 2Z . (3.28)

Using conditions (3.5) and (3.18), together with eq. (3.26), one can show that the above
equation reduces to

w2 + ϵ − 1
2 n1 + nm ∈ 2Z , (3.29)

where m = ϵ mod 4 and ϵ2 = 1. Note that the above requires w2 ∈ Z. In appendix C.1
we show that actually w2 ∈ Z is a property of a (0, 2d) lattice invariant under a Z2m
automorphism of Γ.

3.4.2 Orbit Z(g2, g−1)

We apply an S-transformation to Z(g, g2) in eq. (3.12). The lattice part of the Z(g2, g−1)
orbit is more involved and is computed in appendix B, via performing Poisson resummation
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— the final result is eq. (B.12). Combining with the oscillator piece, we obtain

Z(g2, g−1) = ei
π
2 (8+d)eiπθ

1
m
F ′
2e

−iπE2

η16+2dη̄2d

(
2η3

ϑ2

)nm 8+d∏
a=1
2ta ̸=1

η3

ϑ̂
[1

2 − 2ta

1
2 + ta

]
× e2πiv

2
m−1∑
bi=0

∑
P ∈ I

q̄
1
2 (P+2bifi+2v+w)2

Re−2iπ(P+2bifi+2v+w)·ve−2πi(bifi)2
,

(3.30)

where the degeneracy factor is

F ′
2 = m

1
2 (n2−ℓm) . (3.31)

To simplify expressions we have defined

bifi :=
ℓm∑
i=1

bifi , bi = {0, . . . , m − 1} , (3.32)

where fi are the ℓm generators of Zm classes of I∗/I. The phase eiπθ
1
m is defined through

Cm(1) = eiπθ
1
m

√
mℓm =

m−1∑
bi=0

e2iπ(bifi)2 (3.33)

(see eq. (B.11) and appendix B.1 for details).
Let us emphasize that to obtain the lattice part of Z(g2, g−1) we performed a Poisson

resummation over a lattice larger than I, as explained in appendix B. There is an alternative
way of obtaining the lattice part that is briefly discussed in appendix D. However, the
procedure followed here has the great advantage of making the spectrum manifest. Concretely,
in eq. (3.30) we clearly see that the momenta that enter are (P ′ + 2v + w) with P ′ ∈ Zm
classes of I∗. Moreover, (2.17) shows that such P ′ are precisely the g-invariant part of I∗2 ,
which is the momentum lattice that appears in Z(g2,1). This is a basic requirement for the
operator interpretation of Z(g2, g−1) as arising from TrH2

(
g−1 qL0 q̄L̄0

)
, since the trace only

keeps the g-invariant states in the H2 Hilbert space that appears in Z(g2,1).
After a τ → τ + k transformation we find

Z(g2, g2k−1) = ei
π
2 (8+d)eiπθ

1
m
F ′
2e
iπ(2k−1)E2

η16+2dη̄2d

(
2η3

ϑ2

)nm 8+d∏
a=1
2ta ̸=1

η3

ϑ̂
[ 1

2 − 2ta

1
2 − (2k − 1)ta

]

× e2πiv
2
m−1∑
bi=0

∑
P ∈ I

q̄
1
2 (P+2bifi+2v+w)2

Reiπk(P+2bifi+2v+w)2
e−2iπ(P+2bifi+2v+w)·ve−2πi(bifi)2

.

(3.34)

Recall that I has only right-moving directions and that scalar products and norms are
computed with Lorentzian metric.

Applying τ → τ + 2m to Z(g2, g−1) does not give rise to additional modular invariance
conditions beyond eq. (3.29) obtained from Z(g2,1) = Z(g2, g2m). The basic reason is that,
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as mentioned above, the momenta that enter in (3.30) are a subset of I∗2 , which is the
momentum lattice in Z(g2,1).

It is important to stress that e.g. Z(g2, g−1) is obtained by a chain of modular transforma-
tions starting from Z(1, g). Thus, to arrive at (3.30) we only needed to know that the rotation
part of g restricts momenta to lie in the invariant lattice I and that g|P ⟩ = e2iπP ·v|P ⟩ for all
P ∈ I. On the other hand, Z(g2, g−1) must properly include the action of g in the Hilbert
space of the g2-twisted sector which we can read from Z(g2,1) in eq. (3.25). As observed
already, the momenta entering in Z(g2, g−1) are (P ′ + 2v + w) with P ′ belonging to the
g-invariant subset of the momentum lattice I∗2 in Z(g2,1). Now we want to remark that the
fact that the momenta in Z(g2, g−1) are shifted by (2v+w) tells us that the same shift should
occur in Z(g2,1), which in turn is obtained by S-transformation from Z(1, g2). This then
requires that g2|P ⟩ = e2iπP ·(2v+w)|P ⟩ for all P in I2, which is the lattice invariant under Θ2.
We thus see that we are forced to include the additional shift by w in the action of g2 on I2.

3.4.3 Other even-twisted sectors

A similar analysis may be done for other g2j-twisted sectors, 1 < j < m. For the Z(g2j ,1)
orbit we find

Z(g2j , g2jk) = F2e
iπ2kE2

η16+2dη̄2d

8+d∏
a=1
2ta ̸=1

η3

ϑ̂
[1
2 − 2̃jta

1
2 − k2̃jta

] ∑
P ∈ I∗2

q
1
2 (P+2jv+jw)2

L q̄
1
2 (P+2jv+jw)2

Reiπk(P+2jv+jw)2
.

(3.35)
For the Z(g2j , g−1) orbit the result is

Z(g2j , g2jk−1) = ei
π
2 (8+d+(j−1)nm)eiπθ

j
m
F ′
2e
iπ2kE2

η16+2dη̄2d

8+d∏
a=1
2ta ̸=1

eiπ⌊2jta⌋eiπ(2̃jta−⌊2jta⌋−1)ta

×
(2η3

ϑ2

)nm 8+d∏
a=1
2ta ̸=1

η3

ϑ̂
[ 1

2 − 2̃jta

1
2 −k 2̃jta+ ta

]

×e2πijv
2
m−1∑
bi=0

∑
P ∈I

q̄
1
2 (P+2jbifi+2jv+jw)2

Reiπk(P+2jbifi+2jv+jw)2
e−2iπ(P+2jbifi+2jv+jw)·ve−2πij(bifi)2

.

(3.36)

Note that E2j = E2, and that the degeneracy factors F2 and F ′
2 are the same as those in the

g2 sector. The level matching condition is also the same as that of the g2-twisted sector (3.28).

3.5 gm-twisted sector

The gm-twisted sector has m T -orbits. It is convenient to choose basis Z(gm,1) and
(gm, g−(2j+1)), with j = {0, . . . , m − 1}, excluding 2j + 1 = m. The reason for this choice
is that the basis elements are obtained by a single S-transformation, either from Z(1, gm)
or from Z(g2j+1, gm). For each element of the basis we can then apply a T -transformation
to derive the remaining Z(gm, gk) terms.

– 19 –



J
H
E
P
0
8
(
2
0
2
5
)
0
8
3

3.5.1 Orbit Z(gm, 1)

From an S-transformation of Z(1, gm) in eq. (3.10) we obtain

Z(gm,1) = Fm
η16+2dη̄2d

(
η3

ϑ4

)sm
2 ∑

P ∈ I∗m

q
1
2 (P+mv)2

L q̄
1
2 (P+mv)2

R . (3.37)

Here sm is the number of eigenvalues of Θm equal to −1, given in eq. (3.11). The degeneracy
factor Fm is defined and evaluated in eqs. (2.23) and (2.24).

Doing τ → τ + 1 gives

Z(gm, gm) = Fme2πiEm

η16+2dη̄2d

(
η3

ϑ3

)sm
2 ∑
P ∈ I∗m

q
1
2 (P+mv)2

L q̄
1
2 (P+mv)2

R eiπ(P+mv)2
, (3.38)

where Em = sm
16 is the zero point shift in the gm-sector. For future use we record the

explicit value

Em = 1
16
(
(m − 1)n1 + 2nm

)
. (3.39)

Recall that n1 and nm refer to multiplicities of Θ eigenvalues in (2.6).
Modular invariance requires that Z(gm,1) returns to itself under τ → τ + 2. Applying

this transformation to eq. (3.37) will clearly produce a phase e2iπ(P+mv)2 inside the sum over
P ∈ I∗m, but the momentum dependent piece equals 1, i.e.

e2πi(P
2+P ·2mv) = e2πiP ·(w+2mv) = 1 ∀ P ∈ I∗m . (3.40)

To show this, we recall that I∗m has uncorrelated Z2 classes. More precisely, eq. (2.20) tells us
that P ∈ I∗m can be decomposed as P = X + Y , where X is in a Z2 class along I-directions
and Y is in a Z2 class along gm-invariant directions of N . Furthermore, in eq. (2.21) we
proved that Y 2 ∈ Z. Using also eq. (2.10), and the fact X · Y = 0, in particular w · Y = 0,
then implies that P 2 = P · w mod integers. The second equality in (3.40) follows from
2mv + w ∈ I. In conclusion, Z(gm, g2m) = Z(gm,1) gives the level matching condition

2Em + m2v2 ∈ Z . (3.41)

It can be shown that this constraint is contained in the level matching condition in the
g-twisted sector (3.18).

3.5.2 Orbits Z(gm, g−(2j+1))

To work out the Z(gm, g−(2j+1)) orbits, with j = 0, . . . , (m − 1), excluding j = m−1
2 , we

start with Z(g(2j+1),1), in which it is important to take into account eq. (3.19). Next we
do a Tm-transformation, to reach Z(g(2j+1), gm), after using g2mj = 1. An S-transformation
then gives Z(gm, g−(2j+1)).

Proceeding as explained above leads to

Z(gm, g−(2j+1)) = F1e
iπµ

η16+2d

8+d∏
a=1

eiπ(1−m(2j+1)ta−m(2j+1)2t2a)η3

ϑ
[ 1

2 − mta
1
2 + (2j + 1)ta

] Zlat(gm, g−(2j+1)) , (3.42)
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where eiπµ = ±1 is the phase defined in (3.19), and F1 is given in eq. (2.24). The lattice part
Zlat is computed in appendix C — eq. (C.5) is the final result. It is given by

Zlat(gm, g−(2j+1)) = C2
volm

eiπm(2j+1)2v2

η̄2d

∑
P ∈Z2

classes of I∗

q̄
1
2 (P+mv)2

Re−2iπ(P+mv)·(2j+1)ve−iπϵ(P−jw)2
,

(3.43)
where volm and C2 are defined in eqs. (C.3) and (C.6), and the quantity ϵ is ±1 according to
m = ϵ mod 4. As usual, norms and scalar products are evaluated with Lorentzian metric.
For future purposes we record an alternative form of the lattice part

Zlat(gm, g−(2j+1))= C2
volm

eimπ(2j+1)2v2

η̄2d e−iπϵj
2w2 ∑

P ∈Z2
classes of I∗

q̄
1
2 (P+mv)2

Re−2iπ(P+mv)·(2j+1)ve−iϵπ(2j+1)P 2
,

(3.44)
which is obtained using that for all P ∈ Z2 classes of I∗ there are identities e2iπP

2 = e2iπP ·w

and e4iπP
2 = 1.

Before inserting eq. (3.44) into (3.42) to compute the full partition function, we define
the phase

eiπ∆(m,j) :=
8+d∏
a=1

eiπ(1−m(2j+1)ta−m(2j+1)2t2a) , (3.45)

and the phase eiπν(m,j) through

8+d∏
a=1
mta∈Z

−2 sin
(
(2j + 1)πta

)
=: eiπν(m,j)

√
mn2 , (3.46)

where ν(m, j) equals 0 or 1. Eq. (3.46) may be derived using the structure of the eigenvalues
given in eq. (2.6). Furthermore, using the eigenvalue structure, it can be shown that
eiπ∆(m,j)eiπν(m,j)eiπµ is independent of j. We can then evaluate at j = 0 to obtain

eiπ∆(m,0)eiπν(m,0)eiπµ = e−i
π
24 (m−1)(4m−17)n1e−i

π
6 (m

2−1)n2e−i
π
4 (3m−4)nm . (3.47)

We have now laid out all the ingredients that enter in Z(gm, g−(2j+1)). Starting with
eq. (3.42), we obtain

Z(gm, g−(2j+1)) = F ′
meiπχm

η16+2dη̄2d

8+d∏
a=1
mta∈Z

−2 sin
(
(2j + 1)πta

)
η3

ϑ
[ 1

21
2 + (2j + 1)ta

] 8+d∏
a=1

mta∈ 1
2+Z

η3

ϑ
[ 0
1
2 + (2j + 1)ta

]
× eiπm(2j+1)2v2

e−iπϵj
2w2 ∑

P ∈Z2
classes of I∗

q̄
1
2 (P+mv)2

Re−2iπ(P+mv)·(2j+1)ve−iπϵ(2j+1)P 2
.

(3.48)

The numerical factor in front is given by

F ′
m = 2nm− ℓ2

2 (3.49)
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for all j excluding j = m−1
2 . The overall phase is the combination

eiπχm := eiπθ2eiπ∆(m,0)eiπν(m,0)eiπµ , (3.50)

where eiπθ2 is the phase of C2 defined in eq. (C.7).
It is crucial to notice that the momentum sum in the above result for Z(gm, g−(2j+1)) is

over Z2 classes of I∗. As shown in eq. (2.19), such classes precisely belong to the g-invariant
subset of I∗m, which is the momentum lattice in Z(gm,1). Thus, the result fulfills a basic
requirement to arise as Trg−(2j+1) over the Hilbert space in the gm-twisted sector implicit
in Z(gm,1). We will shortly analyze whether phases and multiplicities are also consistent
with operator interpretation.

3.6 Summary

In this section we have determined the full partition function of T2d/Z2m orbifolds by applying
modular transformations to untwisted sector terms and have derived the constraints due to
modular invariance. In the g-twisted sector we have deduced that Z(g,1) = Z(g, g2m) requires

2mv + w ∈ I , 4mE1 + 2mv2 ∈ 2Z. (3.51)

Here the shifts v and w are constant vectors along the directions of Γ(16 + 2d, 2d) which
are invariant under the Z2m automorphism. The zero point energy E1 , given in eq. (3.16),
depends on the eigenvalues of the automorphism. In the g2-twisted sector modular invariance
reduces to the condition in eq. (3.29) which involves w and the eigenvalues. Modular invariance
in other twisted sectors do not introduce additional requirements. In the next section we
will examine whether there are further constraints arising from the operator interpretation
of the terms in the partition function.

The shift w is intrinsic to the invariant lattice and can be obtained systematically as
explained in appendix A. It satisfies w ∈ I∗ and 2w ∈ I. Concerning the shift v, in principle
there can be several solutions to the modular invariance conditions (3.51) as discussed
in section 5, where we will also determine additional requisites to avoid massless states
in twisted sectors. One relevant observation is that when w is non-trivial, the condition
2mv + w ∈ I implies v /∈ I∗ and mv /∈ I∗, as can be shown using that I∗/I only has Z2
and Zm conjugacy classes.

4 Operator interpretation

In the preceding section we obtained the full partition function of a class of T2d/Z2m
asymmetric orbifolds by applying modular transformations to terms in the untwisted sector
where the orbifold action g was defined. In this section we verify validity of the operator
interpretation in our asymmetric orbifolds. We focus on ZΓ(τ, τ̄) for the internal bosons,
cf. (3.3). The task is to show that Z(gℓ, gk) can be understood as TrHℓ

(
gk qL0 q̄L̄0

)
, where

Hℓ is the Hilbert space in the gℓ-twisted sector. A basic check is that all gk act on the same
spectrum that appears in Z(gℓ,1). In particular, the momenta that appear in Z(gℓ, gk) must
be a subset of the momentum lattice I∗ℓ that occurs in Z(gℓ,1). For the twisted sectors
with (ℓ, 2m) = 1 this is satisfied because the lattice sum is over I∗ for all k, as seen for
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instance in eq. (3.14). For the twisted sectors with ℓ even and ℓ = m we checked it explicitly
in subsections 3.4 and 3.5 respectively.

Another necessary condition for a valid operator interpretation is that there is a consistent
group action. This means that for any state which appears in both Z(gℓ, g) and Z(gℓ, gk),
the phase of the state in the (gℓ, gk) sector must be the kth power of the phase of the state in
the (gℓ, g) sector. Furthermore, the action of gk on the degeneracy factor Fℓ of Z(gℓ,1) must
be defined to match the degeneracy factor in Z(gℓ, gk). When the operator interpretation is
valid, the phases and degeneracy factors are such that states surviving the orbifold projection
via 1

2m
∑2m−1
k=0 Z(gℓ, gk) are guaranteed to have integer multiplicities.

In gℓ-twisted sectors with one orbit, i.e. (ℓ, 2m) = 1, both criteria are satisfied. This can
be understood by considering the g-twisted sector partition functions Z(g, gj) in eq. (3.14),
and noticing the j-dependence of phases, and that the degeneracy factor is F1, given in
eq. (2.24), for all values of j. The same result holds for other sectors with a single orbit. Thus
we need to check consistency of operator interpretation in the remaining twisted sectors.

Summarising, we will show in detail that consistency of operator interpretation in all
twisted sectors imposes the following conditions

θ2+
1− ϵ

4 n1+
ϵ

2nm ∈ 2Z , m
1
2 (n1−ℓNm)−1 ∈ 2Z≥0 , 2

m−1
2 (n1−

ℓN
2

m−1 )−1 ∈ mZ≥0. (4.1)

Remarkably, all these conditions are satisfied for Leech sublattices we use in this work. It
would be interesting if they could be proven as general lattice properties.

In the untwisted sector we introduced the action of g on Γ guided by modular invariance.
However, we have not proved that vertex operators satisfy consistent operator product
expansions. As advised in [24], it is then reassuring to verify that untwisted sector states
have integer multiplicities.

4.1 g2j-twisted sectors

The discussion is split in two parts. We first study the conditions arising from consistency
of phases due to the action of the orbifold generator on momenta and oscillator modes. We
then analyze the action on the degeneracy factors.

4.1.1 Phase

There are 2 T -orbits in the g2j-twisted sectors. Let us start from the group action on phases
in the g2-sector. Consider the partition function Z(g2, g2) in eq. (3.25). The action of g2

on momenta in the g2-twisted sector reads

g2|P + 2v + w⟩ = e2πiE2 eiπ(P+2v+w)2 |P + 2v + w⟩ , (4.2)

for P ∈ I∗2 . Next consider the (g2, g−1) orbit. From eq. (3.30), we obtain that in the g2

sector the action of g−1 on momenta is given by

g−1|P + 2bifi + 2v + w⟩ = (4.3)
e

iπd
2 eiπθ

1
me−iπE2 e2πiv

2
e−2iπ(P+2bifi+2v+w)·v e−2πi(bifi)2 |P + 2bifi + 2v + w⟩ ,

– 23 –



J
H
E
P
0
8
(
2
0
2
5
)
0
8
3

for P ∈ I. By consistency, the square of the right hand side of the above times the right
hand side of eq. (4.2) must be equal to 1, i.e.

eiπde2πiθ
1
me4πiv

2
e−4iπ(P+2bifi+2v+w)·ve−4πi(bifi)2

eiπ(P̂+2v+w)2 = 1 , (4.4)

for all P in I. Here P̂ ∈ I∗2 and it must be P̂ = (P + 2bifi) because these are the vectors
of I∗2 which are invariant under g. To simplify the left hand side notice that P̂ belongs to
a Zm class of I∗, and recall also that w is in a Z2 class of I∗. Therefore P̂ · w ∈ Z because
mP̂ · w ∈ Z, P̂ · 2w ∈ Z, and m is odd. Moreover

P̂ 2 = P 2 + 2P · (2bifi) + (2bifi)2 = 4(bifi)2 mod 2 ∀ P ∈ I . (4.5)

Eq. (4.4) then reduces to

w2 + 2θ1m + d ∈ 2Z . (4.6)

In appendix C.1 we prove that this condition always holds for the lattice I∗. Following the
same steps one may verify consistency of the g2j−1-action in the g2 sector.

A similar analysis for g2j-twisted sectors, 0 < j < m, gives the condition

j2w2 + 2jθjm + jd ∈ 2Z . (4.7)

However, from properties of the θjm shown in appendix B.1 and eq. (4.6), it follows that
this requirement does not lead to additional constraints. For j = 2l it is always satisfied
noting that 2w ∈ I and that 4θ2lm ∈ 2Z, cf. (B.25). For odd values j = (2l + 1) we also need
to use that 2θ2l+1

m = 2θ1m mod 2 and 4θ1m ∈ 2Z.

4.1.2 Action on degeneracy factors

We now consider the modulus of the overall constants that appears in Z(g2, gl), 0 ≤ l < 2m.
These numbers have the interpretation of traces of g to various powers over the set of F2
degenerate states, where F2 is given in eq. (2.24). In the (g2,1) sector, this constant is
just Tr of 1 over the degeneracy factor, which gives F2. Then in the (g2, g) sector, the
overall constant will be Tr (g) over F2 degenerate states. Since the order of g is 2m, the
eigenvalues of the g-action on F2 will in general be some ω, with ω2m = 1. However, there
is a constraint. Since in (g2, g2) sector the modulus of the overall constant is again F2 (as
can be seen from T -transformation), then g2 on all the F2 states must give the same phase,
say ω2. This means that g must act as ±ω on these degenerate states. Suppose there are
F+
2 eigenvalues that are +ω, and F−

2 = F2 −F+
2 eigenvalues that are −ω. Then Tr (g) over

the F2 states will give (F+
2 − F−

2 )ω. We can continue this argument for other (g2, g2k+1)
sectors (0≤k≤m − 1) and the result is (F+

2 + (−1)kF−
2 )ω2k+1. Thus, by consistency, the

modulus of the constant appearing in Z(g2, g), which we denoted as F ′
2 in eq. (3.30), must

be F2 minus some non-negative even number (this is because F+
2 − F−

2 = F2 − 2F−
2 ).

From eqs. (2.24) and (3.31) we find

F2 −F ′
2 = m

1
2 (n2−ℓm)(m

1
2 (n1−ℓNm) − 1) . (4.8)
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Since n2 − ℓm ∈ 2Z≥0 — cf. eq. (2.25) — and m is odd, the consistency condition F2 −
F ′
2 ∈ 2Z≥0 requires

m
1
2 (n1−ℓNm) − 1 ∈ 2Z≥0 , (4.9)

i.e. n1 − ℓNm ∈ 2Z≥0. The same result holds for other g2j-twisted sectors, 0 < j < m.

4.2 gm-twisted sector

We again discuss separately consistency of phases and proper action on degeneracy factors.

4.2.1 Phase

The gm-twisted sector has m orbits. For the (gm,1) orbit, from eq. (3.38), we deduce that
the action of gm on momenta is

gm|P + mv⟩ = e2πiEme−iπm
2v2

e2πi(P+mv)·mv eiπP
2 |P + mv⟩ , (4.10)

for P ∈ I∗m. For other orbits (gm, g−(2j+1)), from eq. (3.48), we notice that the momenta
are shifted by mv as in Z(gm,1). Moreover, the insertion of g−(2j+1) forces the momenta
to be in uncorrelated Z2 classes of I∗, which precisely form the g-invariant part of I∗m. We
thus find that the action of g−(2j+1) on these momenta is

g−(2j+1)|P + mv⟩ = eiπχmeiπm(2j+1)2v2
e−iπϵj

2w2
e−2πi(P+mv)·(2j+1)ve−iπϵ(2j+1)P 2 |P + mv⟩ .

(4.11)
We are now ready to check the operator interpretation.

Setting j = 0 in eq. (4.11) shows that the g−1-action in the gm-sector is given by

g−1|P + mv⟩ = eiπχmeiπmv
2
e−2iπ(P+mv)·ve−iπϵP

2 |P + mv⟩ . (4.12)

Consistency of the group action requires that the mth power of the above right hand phase
times the phase in the right hand side of gm|P + mv⟩ in eq. (4.10), must be equal to one, i.e.[

eiπχmeiπmv
2
e−2iπ(P+mv)·ve−iπϵP

2]m [
e2πiEme−iπm

2v2
e2iπ(P+mv)·mveiπP

2] = 1 , (4.13)

for all P in Z2 classes of I∗. Simplifying gives

eiπmχme2πiEm = 1 , (4.14)

where we used that eiπ(1−ϵm)P 2 = 1, since m = ϵ mod 4, ϵ2 = 1, and 4P 2 = even for P in
Z2 classes of I∗. Substituting eqs. (3.39) and (3.50), and using (3.47), then implies that
consistency requires

θ2 +
1− ϵ

4 n1 +
ϵ

2nm ∈ 2Z . (4.15)

Notice that this constraints 2θ2 to be integer. We remark that eq. (4.15) is stronger than
the level matching condition in the even-twisted sectors, given in eq. (3.29). Indeed, the
latter can be written as

2θ2 +
1− ϵ

2 n1 + ϵnm ∈ 2Z , (4.16)

by virtue of the relation w2 = 2ϵθ2 mod 2, proven in appendix C.1.
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Consistency of the operator interpretation also requires that the (2j + 1)th power of the
phase in g−1|P +mv⟩ action, cf. eq. (4.12), must be equal to the phase in the g−(2j+1)|P +mv⟩
action, cf. eq. (4.11). This condition is satisfied provided that

e2πi jχme−2πi j(2j+1)mv2
eiπϵj

2w2 = 1 . (4.17)

We may use the relation w2 = 2ϵθ2 mod 2, cf. eq. (C.10), and the g-twisted sector level
matching condition (3.18) together with eq. (3.16), to express w2 and v2 in terms of eigenvalue
multiplicities. The above condition then reduces to 2θ2 ∈ Z. This is however not a new
constraint, as it is already required to hold by the consistency condition (4.15).

4.2.2 Action on degeneracy factors

The same argument used in subsection 4.1.2 now asserts that if Fm and F ′
m are the degeneracy

factors in the (gm,1) and (gm, g) sectors, then Fm − F ′
m must be a multiple of m, i.e.

Fm −F ′
m = bm (4.18)

for some non-negative integer b. Then g has a cyclic Zm action on b copies of m-plet states,
and these bm states drop out of the Tr(g) over Fm states. The remaining number will then be
Fm−bm = F ′

m. The modulus of the overall constants that appear in Z(g2, g2j+1) sectors, for
0 ≤ j < m and 2j + 1 ̸= m, are all the same, and so the same result holds for action of g2j+1.

From eqs. (2.24) and (3.49) we find

Fm −F ′
m = 2nm− ℓ2

2
(
2

1
2 ((m−1)n1−ℓN2 ) − 1

)
. (4.19)

The condition (4.18), with b ∈ Z≥0, is then satisfied provided

2
m−1

2 (n1−
ℓN
2

m−1 ) − 1 ∈ mZ≥0 . (4.20)

The possible odd prime numbers m which appear in Z2m automorphisms of the Leech lattice
are m = {3, 5, 7, 11, 13, 23} (they divide the order of the automorphism group of the lattice,
i.e. the Conway group Co0). It turns out that the above condition is valid if

n1 −
1

m − 1 ℓN2 ∈ 2Z≥0 , m ̸= {7, 23} , n1 −
1

m − 1 ℓN2 ∈ Z≥0 , m = {7, 23} .

(4.21)
Note that this means ℓN2 ∈ (m − 1)Z≥0.

4.3 Untwisted sector

In Z(1, gk), the action of g on oscillator modes is captured in ϑ functions and is clearly
consistent with the group law. On the other hand, the action on momenta manifests in
phases and lattice sums that depend on k. Then, in the following we only pay attention to
the action on momenta. The phases depend on the constant shifts v and w which satisfy
2mv + w ∈ I, w ∈ I∗ and 2w ∈ I.

In the beginning there is Z(1,1) in which the momentum lattice is the full Γ. It helps
to recall that a generic P ∈ Γ has components (PI , PN ) with PI ∈ I∗ and PN ∈ N∗. More
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precisely, as shown in eq. (2.13), Γ can be decomposed as the direct sum of (I, N) plus
correlated Z2 classes and Zm classes.

Let us first consider momenta with PN = 0, which means P ∈ I. Since I is a subset of I2
and Im, states with P ∈ I will appear in all Z(1, gk), k = 0, . . . , (2m − 1), and with a phase
e2iπP ·kv. Here w drops out because P · w ∈ Z for P ∈ I. Notice also that

(
e2iπP ·v)2m = 1,

since 2mv = w mod I. But then 1
2m
∑2m−1
k=0 e2iπP ·kv equals 0 unless e2iπP ·v = 1. Therefore,

only states with P · v ∈ Z survive the orbifold projection and do so with multiplicity 1.
Next we check states with PI = 0, so that P ∈ N . Since v and w only have components

along invariant directions, these states will not pick up momentum dependent phases under g.
There are 3 possibilities. First take P along invariant directions of Θ2, i.e. P ∈ N2 which also
occurs in the invariant sublattice I2, cf. (2.14). Then such P ∈ N2 will appear in Z(1, g2j),
j = 0, · · · , (m − 1), and the orbifold projection gives a factor 1

2 . But there are precisely 2
elements in the orbit, since Θ2P = P for P ∈ N2, and we can form the invariant combination
|P ⟩+ |−P ⟩. To continue take P such that ΘmP = P , so that P ∈ Nm ⊂ Im, as seen in (2.14).
Thus, P ∈ Nm enters in Z(1,1) and Z(1, gm), the orbifold projection gives a factor 1

m , as
expected for an orbit of length m, and there is an invariant combination

∑m−1
j=1 Θj |P ⟩. The

third case is when P ∈ N is in a generic orbit with 2m elements. These states only appear in
Z(1,1) and we can form an invariant combination

∑2m−1
k=0 Θk|P ⟩.

Finally we look at states with PI ̸= 0 and PN ̸= 0. Since we already treated the cases
P ∈ I and P ∈ N , we will restrict to momenta that belong to the correlated classes to
simplify the discussion. The decomposition of Γ in eq. (2.13) indicates that there are 3
cases that we now analyze in turn.

Case 1. P in Z2 correlated classes, i.e. P =
ℓ2∑
i=1

ai(f I2,i, fN2,i).

Notice that these P belong to I2, as shown in eq. (2.14). Thus, these states will appear in
all Z(1, g2j), j = 0, . . . , (m− 1), with phase e2iπjP ·(2v+w), using 2w ∈ I. But e2iπmP ·(2v+w) =
1, since m(2v + w) ∈ I by assumption. Hence, 1

2m
∑m−1
j=0 e2iπjP ·(2v+w) vanishes unless

e2iπP ·(2v+w) = 1. Thus, only states with P · (2v +w) ∈ Z are not projected out. There will be
a factor 1

2 which just means that only a symmetric combination of the states |
∑
i ai(f I2,i, fN2,i)⟩

and |
∑
i ai(f I2,i,−fN2,i)⟩ actually survives. Recall that Θ2fN2,i = fN2,i and ΘfN2,i = −fN2,i.

Case 2. P in Zm correlated classes, i.e. P =
ℓm∑
j=1

bj(f Im,j , fNm,j).

According to eq. (2.14), these momenta also belong to Im and the corresponding states arise
in Z(1, glm), l = 0, 1. Now g acts with phase e2iπlP ·mv and e2iπP ·mv is clearly ±1. Summing
over l then gives that only states with P · mv ∈ Z survive with a factor 1

m . But in this case
the orbit of Θ has precisely m elements, since ΘmfNm,j = fNm,j . Thus, the fractional factor
means that only the invariant combination

∑m−1
n=0 |

∑
j bj(f Im,j ,ΘnfNm,j)⟩ will survive.

Case 3. P in a combination of Z2 and Zm correlated classes.
States with these momenta will only show up in Z(1,1). The factor 1

2m in the orbifold
projection is due to the fact that the orbit of P has length 2m and instructs us to form
the invariant combination in the obvious way.
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In conclusion, we have verified that all multiplicities in the untwisted sector are positive
integers.

5 Examples

In this section we construct heterotic asymmetric orbifolds with rank reduction, including
islands, in the framework developed in the preceding sections. Each model is identified as
HM#, where # is the entry number in table 1 of [50]. The normal lattice N is taken to be
the coinvariant lattice corresponding to the entry. We will specify the invariant lattice I

which we glue with N to construct Γ(16 + 2d, 2d). The automorphism Θ of order 2m, with
m prime different from 2, is obtained as explained in subsection 2.1. For each model, we find
the characteristic vector w associated to I∗ and then determine shift vectors v that satisfy
the modular invariance conditions summarized in eq. (3.51).

In all examples the lattice I is purely right-moving, i.e. with signature (0, 2d), whereas
N is purely left, with signature (16 + 2d, 0). In appendix F we describe two models with
rank reduced gauge groups and with indefinite invariant lattices.

The spectrum of the theory is obtained from the full partition function given in eqs. (3.1)–
(3.3). We discuss first the untwisted sector. The masses of states, read from eq. (3.9),
are given by

m2
L = 1

2P 2
L + NL − 1 , m2

R = 1
2P 2

R + NR + 1
2r2 − 1

2 , (5.1)

where NL and NR are left- and right-moving oscillator numbers, r2 ≥ 1 and r is in vector
or spinor classes of SO(8). A massless state has m2

L = m2
R = 0. In the right-moving sector

this requires PR = 0, NR = 0 and r2 = 1. In the left-moving sector, either P 2
L = 2 or

NL = 1 must hold. Since the normal lattice N is purely left and is a sublattice of the
Leech lattice, it has no root vectors, i.e. P 2

L ̸= 2. It is however possible to have NL = 1.
The oscillators along spacetime directions are g-invariant and combine with right-moving
g-invariant modes to give the gravity multiplet. The 16 + d oscillators along N -directions
are projected out under the orbifold action and do not give massless states. Thus there
are no vector multiplets in the untwisted sector.

In the twisted sectors the spectrum follows from eqs. (3.14), (3.35), (3.36), (3.37)and (3.48).
The masses are determined by

m2
L = 1

2P 2
L + NL + Eℓ − 1 , m2

R = 1
2(P + ℓv + wδℓ,2mod 4)2R + NR + 1

2r2 − 1
2 , (5.2)

where Eℓ is the zero point energy in the gℓ-twisted sector and P is in I∗ℓ . It is shown in
appendix A that the shift vector w is non-trivial only if there exist vectors P ∈ Z2 classes
of I∗ such that P 2 is 1/2 mod integers.

Let us first consider theories with non-trivial w. In this case 2mv = w mod I. In gℓ-
twisted sectors with (ℓ, 2m) = 1, the right-moving momentum is P + ℓv, where P ∈ I∗. Since
ℓv /∈ I∗, P + ℓv ̸= 0 and so there are no massless states in these sectors. In the gm sector, the
right-moving momentum is P +mv, where P is in Z2 classes of I∗. Since mv is not in I∗, there
are no massless states in the gm-twisted sector either. In g2j-twisted sectors (0 < j < m), the
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right-moving momentum is P +2jv+wδ2j,2mod 4, where P is in Zm classes of I∗. Therefore, to
avoid massless states in even-twisted sectors, shift vectors must satisfy 2jv+wδ2j,2mod 4 /∈ Zm
classes of I∗. Since 2mv + w ∈ I, w ∈ I∗, and 2w ∈ I, this condition simplifies to 2v /∈ I∗.

All in all, when w is non-trivial and 2v /∈ I∗, the resulting theory has massless states only
in the gravity multiplet in the untwisted sector, and thus constitutes a heterotic island. We
construct two island models in subsections 5.1 and 5.2. These are Z10 and Z22 orbifolds in
respectively 6 and 4 dimensions. They correspond to Leech sublattices HM149 and HM251.
In fact, for each model, there might be non-equivalent shift vectors v, satisfying all modular
invariance conditions and 2v /∈ I∗, for which the massive spectra of the orbifolds are different,
and so lead to different islands. As explained in appendix E, by non-equivalent shift vectors
we mean vectors v1 and v2 such that

zv1 − θv2 /∈ I∗, (z, 2m) = 1, z ∈ Z , (5.3)

for all point automorphisms θ of I (i.e. automorphisms which fix the origin and leave the
Gram matrix of I invariant). When there are inequivalent shifts there will rather be an
archipelago instead of an island.

We next consider theories which have a trivial shift vector w, i.e. P 2 ∈ Z ∀P ∈ Z2 classes
of I∗. In this case 2mv ∈ I. Following the above arguments, there are no vector multiplets
in the untwisted sector. If 4mE1 is even, then v = 0 is a solution to the level matching
condition 4mE1 + 2mv2 ∈ 2Z, and with no shift there will be massless states in all twisted
sectors. For appropriate choices of v ̸= 0 one can eliminate some of the massless states in
twisted sectors. The resulting theory is therefore not an island, but can have gauge group
of reduced rank. Model HM100 in subsection 5.3 provides such an example.

Other potential rank-reduced (but not island) T2d/Z2m orbifolds, which we do not discuss
further, correspond to HM122 (Z10), HM129 (Z14), HM159 (Z10) and HM232 (Z14).

5.1 6d Islands HM149

The first example is a Z10 orbifold in 6 dimensions, i.e. the normal lattice N and invariant
lattice I have respectively signature (20, 0) and (0, 4). The eigenvalue distribution (2.6) of Θ
is t = 1

10(1, 1, 2, 2, 3, 3, 4, 4, 5, 5), which means n1 = n2 = n5 = 2, which also follow from the
frame shape 22 · 102 [60]. The zero point energies are then found to be

E1 =
19
20 , E2 =

4
5 , E5 =

3
4 . (5.4)

Consider the normal lattice N and the invariant lattice Ĩ of entry HM149 in [50, table 1].
The normal lattice has discriminant group N∗/N ∼= Z2

2 × Z2
10. To construct the even self-

dual lattice Γ(20, 4), we may glue the lattice N with either I = Ĩ(−1), i.e. Ĩ with reversed
signature, or with the orthogonal complement of Ĩ in the root lattice of E8, denoted by
Ĩ ′, with reversed signature. Reference [27] provides a Mathematica package which, among
other things, finds a primitive embedding of all Ĩ with dimension smaller than 5 in E8, and
computes their orthogonal complements Ĩ ′. We have used this package to compute the Gram
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matrix of Ĩ ′. The Gram matrices are

GĨ =


4 0 0 2
0 4 2 0
0 2 6 0
2 0 0 6

 , GĨ′ = diag (2, 2, 10, 10) . (5.5)

The two lattices Ĩ and Ĩ ′ are not isometric. Notice also that Ĩ ′ = 2A1 + 2A1(5). Besides,
it can be checked that Ĩ is isomorphic to

( 6 4
4 6
)⊕2.

The discriminant groups of invariant lattices I, I2 and I5 are given by

I∗/I ∼= Z2
2 × Z2

10
∼= Z4

2 × Z2
5 , I∗2/I2 ∼= Z4

5 , I∗5/I5 ∼= Z12
2 . (5.6)

From eq. (2.22), we find ℓ2 = 4, ℓN2 = 8, ℓ5 = 2 and ℓN5 = 2. The degeneracy factors, given
in eqs. (2.24), (3.31) and (3.49), are then found to be

F1 = 1 , F2 = F ′
2 = 1 , F5 = F ′

5 = 1 . (5.7)

The quantities C2 (C.6) and C5(1) (B.11) have values

C2 = −4 , C5(1) = 5 , (5.8)

which, using eqs. (C.7) and (B.13), yield θ2 = 1 and θ15 = 0. Notice that while we have
proved in appendix B.1 that |C2| =

√
2ℓ2 and |Cm(a)| =

√
mℓm , we do not have general

formulae for the phases θ2 and θ1m, but rather compute them case by case. We observe that
the consistency conditions of operator interpretation (4.1) are all satisfied.

The dual lattice I∗ has Z2 classes with half-integer length squared and thus admits a
non-trivial shift vector w that can be found as explained in appendix A. For I = Ĩ ′(−1) with
the diagonal Gram matrix given in eq. (5.5), we find that w = 1

2(1, 1, 1, 1) in the basis of
I. For I = Ĩ(−1), the result is w = 1

2(1, 1, 0, 0). In both cases w2 is even and the modular
invariance condition (3.28) is satisfied.

We next determine the shift vectors v that satisfy the modular invariance conditions (3.51),
as well as the condition 2v /∈ I∗ to avoid massless states in twisted sectors. For both choices
of invariant lattice we find only one possible shift up to equivalences. The unique solution
can be taken to be v = 1

20(1, 3, 1, 1) for I = Ĩ ′(−1) and v = 1
20(3, 1, 0, 0) for I = Ĩ(−1).

An important question is whether the models obtained from the two non-isometric
invariant lattices I and I ′ are actually equivalent. It is possible that this is the case, since
in [13] it is argued, based on the uniqueness of the charge lattice genus, that there is only
one T4/Z10 heterotic island. However, we have verified, by computing the expansion of the
corresponding partition functions in powers of qq̄, that the massive spectra do not agree and,
therefore, there are two six dimensional heterotic islands. As indicated in [66], uniqueness
can be recovered by adding an extra circle to obtain a compactification to five dimensions. In
this case the two invariant lattices become indefinite of signature (1, 5) and the two models
are connected by a SO(1, 5) T-duality transformation. This follows from the fact that the
two indefinite invariant lattices have the same genus and the determinant is such that there
is only one isometry class — see Corollary 22 in chapter 15 of [58].
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5.2 4d Archipelago HM251

The second example is a Z22 orbifold in 4 dimensions, where the signature of N and I is respec-
tively (22, 0) and (0, 6). The eigenvalues of Θ have distribution t= 1

22(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
i.e. n1=n2=n11=1, in agreement with the frame shape 2 ·22 [60]. The zero point energies are

E1 =
43
44 , E2 =

10
11 , E11 =

3
4 . (5.9)

The normal lattice has discriminant group N∗/N ∼= Z2 × Z22. The invariant lattice I is
chosen to be the orthogonal complement of Ĩ in the root lattice of E8 with reversed signature,
and its Gram matrix is given by

GI = −



2 0 0 0 0 0
0 2 0 0 0 1
0 0 2 1 1 1
0 0 1 2 0 1
0 0 1 0 2 0
0 1 1 1 0 4


, (5.10)

which was obtained using the package provided in [27].
The discriminant groups of invariant lattices are

I∗/I ∼= Z2 × Z22 ∼= Z2
2 × Z11 , I∗2/I2 ∼= Z2

11 , I∗11/I11 ∼= Z12
2 , (5.11)

which lead to ℓ2 = 2, ℓN2 = 10, ℓ11 = 1 and ℓN11 = 1. The degeneracy factors are

F1 = 1 , F2 = F ′
2 = 1 , F11 = F ′

11 = 1 , (5.12)

and the values of C2 and C11(1) are

C2 = 2 , C11(1) = −i
√
11 , (5.13)

i.e. θ2 = 0 and θ111 = −1
2 . Consistency conditions (4.1) are again all satisfied.

For the characteristic vector we obtain w = 1
2(1, 1, 0, 1, 1, 0) in the basis of I. For shift

vectors that satisfy conditions (3.51) and 2v /∈ I∗, we find that there are 232 non-equivalent
solutions leading to theories without vector multiplets. We have therefore located a populated
Z22 archipelago in 4 dimensions, formed by islands corresponding to inequivalent shifts. A
natural question is whether the massive spectra of the islands is the same or not. Since
now the I lattice is the same, the question is whether two inequivalent shifts v1 and v2, i.e.
satisfying condition (5.3), give the same spectrum or not. As argued in appendix E, in this
case it follows that v1 and v2 will lead to different projections in the untwisted sector and
also to different massive states in each sector. As a further check we have computed the
power expansions in qq̄ of the partition function corresponding to some inequivalent shifts
and found that they are indeed different.

Other 4d string vacua with 16 supercharges and no vector multiplets are known in the
literature. In [1] a 4d island was constructed as a T6/Z9 asymmetric orbifold of type II. It
would be interesting to check whether the shift necessary for modular invariance is unique
up to isometries of the underlying (0, 6) invariant lattice. On the other hand, a heterotic
island was identified in [6] using the fermionic formulation.
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5.3 6d rank-reduced HM100

The last example is a Z10 orbifold in 6 dimensions, i.e. N and I have signatures (20, 0) and
(0, 4). The automorphism Θ has eigenvalues determined by t = 1

10(1, 1, 1, 2, 3, 3, 3, 4, 5, 5), i.e.
n1 = 3, n2 = 1 and n5 = 2, which are also obtained from the frame shape 12 · 2 · 103/5 [60].
The zero point energies are

E1 =
9
10 , E2 =

4
5 , E5 = 1 . (5.14)

The normal lattice has discriminant group N∗/N ∼= Z3
2 × Z10. As for the invariant lattice,

we may again choose I = Ĩ(−1) or Ĩ ′(−1). The Gram matrices are

GĨ =


4 −2 −2 2
−2 4 0 0
−2 0 4 −2
2 0 −2 4

 , GĨ′ =


4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

 . (5.15)

The two lattices are isometric. In fact, Ĩ ∼= Ĩ ′ ∼= A4(2).
The discriminant groups of invariant sublattices are

I∗/I ∼= Z3
2 × Z10 ∼= Z4

2 × Z5 , I∗2/I2 ∼= Z4
5 , I∗5/I5 ∼= Z8

2 , (5.16)

which give ℓ2 = 4, ℓN2 = 4, ℓ5 = 1 and ℓN5 = 3. The degeneracy factors are

F1 = 1 , F2 = F ′
2 = 1 , F5 = 16 , F ′

5 = 1 . (5.17)

Note that g acts cyclically on 3 copies of 5-plet degenerate states in (g5,1) sector, i.e. b = 3
in eq. (4.18), and leaves one state invariant (F ′

5 = 1). The coefficients C2 and C5(1) are

C2 = −4 , C5(1) = −
√
5 , (5.18)

and θ2 = θ15 = 1. All consistency conditions (4.1) are satisfied.
Next we consider the lattice I = Ĩ(−1). Since P 2 ∈ Z for all P ∈ I∗, we can set

w = (0, 0, 0, 0). In other words, for the particular I of this model, all generators of Z2 classes
have integer norm. Concerning the shift v, the modular invariance conditions (3.51) require
10v ∈ I and 5v2 ∈ Z. These are obviously satisfied by v = 0, but to eliminate massless states
in twisted sectors we have to choose a non-trivial shift. Concretely, for absence of massless
states in gℓ-twisted sectors with (ℓ, 10) = 1, it must be v /∈ I∗. With this choice, 2jv /∈ I∗ as
well, which guarantees no massless states in g2j-twisted sectors. However, for the invariant
lattice of this model there will always be massless vectors in the g5-twisted sector. The reason
is that P · P ′ ∈ 2Z for P, P ′ ∈ I, as seen from the Gram matrix in eq. (5.15). Thus, for any
v satisfying modular invariance, necessarily 5v ∈ I∗. This means that 5v is always in a Z2
class of I∗ and the momenta in the g5-twisted sector are effectively not shifted.

Up to automorphisms of I and translations in I∗ there is a unique choice of v /∈ I∗, which
can be taken to be v = 1

10(0, 1, 3, 0) in the I basis. With this shift there are no massless
states in all gk-twisted sectors, except k = 5. In the g5-twisted sector, with E5 = 1, there
are massless states when PL = PR = 0, NL = NR = 0, r2 = 1, and their multiplicity is
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2
10(F5 + 4F ′

5) = 4. All in all, the theory has 4 vector multiplets coming from twisted sectors,
and its gauge group has a reduced rank 4.

Let us stress that this Z10 orbifold with rank reduced by 16 does not give a new component
of the moduli space of 6d theories with 16 supercharges. The reason is that the Z2 generator
acts trivially. Indeed, as mentioned above, due to properties of the invariant lattice, any
modular invariant shift satisfies e2πiP ·5v = 1 for all P ∈ I. It then follows that the model
can be recast as a Z5 orbifold which is known to reduce the rank by 16 [9].

It is important to note that one can further compactify the theory on an extra circle and
add an appropriate shift vector along that circle to eliminate all massless states in twisted
sectors. In this situation one obtains a theory of rank 1 (with one vector multiplet in the
untwisted sector) in 5 dimensions.

6 Final remarks

We have developed a systematic formalism to construct heterotic string vacua with 16
supercharges and reduced rank as TD/Zn asymmetric orbifolds. The key observation is that
rank reduction requires absence of roots in the normal sublattice under the Zn automorphism
of the (16+D, D) momentum lattice Γ. To fulfill this requirement we simply chose to assemble
Γ from sublattices of the Leech lattice. Another possibility, considered e.g. in [14, 16], is
to engineer Γ from a Niemeier lattice with repeated factors and take the Zn to be a cyclic
permutation.3

The derivation of the full orbifold partition function for order n = 2m, with m an odd
prime, was given in detail. Unlike the case of n odd, when the order is even in general it is
necessary to modify the standard orbifold action on Γ in order to satisfy modular invariance.
Instead of doubling the order, as proposed e.g. in [3, 24], we were able to obtain a modular
invariant partition function keeping an action of order 2m. This was achieved by introducing
a vector characterizing the Z2 conjugacy classes of the dual invariant sublattice. Although we
did not define the orbifold action globally on the full Γ, nor verified proper operator product
expansions of vertex operators, we did check that untwisted sector states have positive integer
multiplicities. We also proved that the partition function in all twisted sectors is consistent
with the operator interpretation, which in turn ensures positive integer multiplicities. To
simplify expressions we specialized to invariant lattice of definite signature, but the extension
to indefinite signature is straightforward and was considered in appendix F.

Besides absence of root vectors in the normal sublattice of Γ, rank reduction requires
additional conditions to avoid massless states in twisted sectors. We found that in some cases
it was not possible to satisfy these conditions once modular invariance was imposed. However,
the problem can be evaded, i.e. twisted states can be made massive, by adjoining a spectator
circle and including an order n translation along it in the orbifold action. Altogether, our
formalism allows to construct fully supersymmetric heterotic vacua with diverse ranks in
various dimensions. In particular, we presented T4/Z2m orbifolds, with rank 1

2(5− m)2 for
m = 1, 3, 5, that had been conjectured in [13]. For the rank-0 case we actually encountered
two distinct realizations, depending on the choice of invariant sublattice, which do differ

3Starting with a Niemeier lattice, a more general procedure to obtain a normal sublattice without roots is
to use an automorphism that does not belong to the Weyl group [54, proposition 1.14.8].
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in the structure of massive states. Starting with a T6/Z22 orbifold, we also discovered a
heterotic archipelago in four dimensions, formed by islands without massless vector multiplets
but with different massive matter content.

It would be interesting to further study the 6d heterotic islands, also in connection with
the known 6d island [1], and others constructed as type II asymmetric orbifolds [13, 66].
For the 4d archipelago it could be worthwhile to consider aspects of S-duality, as has been
done in other CHL models [15, 67].

A natural follow-up is to examine dualities between the heterotic asymmetric orbifolds
that we have constructed and compactifications of M-/F-theory. In some cases the strong
coupling description is already known. For instance, the T4/Z7 with rank 2, outlined at
the end of subsection 2.1, has a dual realization as M-theory on K3 × S1/Z7. In fact, other
rank-reduced heterotic orbifolds T4/Zn, n = 2, . . . , 8, are known to be dual to M-theory on
K3 × S1/Zn, or type IIA on K3 with fluxes [9, 14, 51, 68]. It is an open problem to find a
concrete dual realization for the T4/Z2 with rank 8 and the T4/Z6 with rank 2. As indicated
in [1], for the 6d and 4d islands the strong coupling limit is expected to be again an island,
possibly differing in the massive spectrum.

Finally, our formalism may be applied to heterotic compactifications with less amount
of supersymmetry by considering automorphisms of Γ that act on some or all right-moving
directions. The corresponding action on world-sheet fermions will break supersymmetry
partially or completely. To achieve modular invariance for automorphisms of even order, the
orbifold action on Γ might have to be modified as done in this work, or in our previous study of
non-supersymmetric T3/Z2 orbifolds [4]. We hope to report on this program in the near future.
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A Existence of w

Consider the sublattice I invariant under a Z2m automorphism of the even self-dual lattice Γ.
We have seen that I∗ has a number 2ℓ2 of Z2 and a number mℓm of Zm conjugacy classes —
cf. eq. (2.9). We will assume that ℓ2 is not zero. If P ∈ Z2 class, then 2P 2 ∈ Z as 2P ∈ I,
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therefore P 2 can be integer or half-integer. We want to show that there exists a characteristic
vector w with w ∈ I∗ and 2w ∈ I, such that P 2 = P · w mod integer for all P in a Z2 class.
To this end, let us split the Z2 classes as Ze2 and Zo2, such that if P ∈ Ze2, then P 2 is integer,
and if P ∈ Zo2, then P 2 is 1

2 mod integer. If there are no Zo2 classes then P 2 ∈ Z and w can
be chosen to be zero. Then we will further assume henceforth that some Zo2 class exists.

It is easy to show that there is an additive structure in the Ze2 and Zo2 classes, namely

P1, P2 ∈ Ze2 ⇒ P1 + P2 ∈ Ze2, P1, P2 ∈ Zo2 ⇒ P1 + P2 ∈ Ze2,
P1 ∈ Ze2, P2 ∈ Zo2 ⇒ P1 + P2 ∈ Zo2 .

(A.1)

This shows that the number of Zo2 and Ze2 classes will be equal. Let us denote by Po an
element of some Zo2 class. Now consider a sublattice I∗e of I∗ which consists of all the Zm
classes, as well as Ze2 classes, and this implies that it also contains I. Clearly I∗e is a sublattice
of I∗ and indeed, I∗/I∗e is Z2 and is explicitly given by (0, Po). Then I, which is (I∗)∗, will
be a proper subset of (I∗e )∗, because I∗e is smaller than I∗. Furthermore, (I∗e )∗ is a proper
subset of I∗ because I is contained in I∗e . Thus, I ⊂ (I∗e )∗ ⊂ I∗, where both subsets are
proper subsets. Now we can take w to be an element of (I∗e )∗ such that it is not in I. Indeed,
Po · w cannot be integer, since if it was so, then w ∈ I. If it is not integer, then Po · w must
be 1

2 mod integer, since 2Po ∈ I and w ∈ (I∗e )∗ ⊂ I∗.
In the case of Z2 automorphisms a similar construction of w was presented in [4]. A simple

instructive example is I = A1, in which w can be taken to be the fundamental weight of SU(2).

B Z(g2, g−1)

In this appendix we compute the contribution of the right-moving compact directions to
Z(g2, g−1). We start from Z(g,1) and obtain the Z(g, g2) sector by 2 T -transformations, as
given in eq. (3.14). We denote this contribution to the partition function by

Zlat(g, g2) := 1
η̄2d

∑
P ∈ I∗

q̄
1
2 (P+v)2

Re2iπ(P+v)2
. (B.1)

Recall that I is purely right-moving and has dimension 2d. Next we write P = X + Y for
some X ∈ Z2 class and Y ∈ Zm class of I∗/I. It is convenient to expand Y in a basis of
generators which can be taken to be the f Im,i introduced in the decomposition of Γ in (2.13).
To simplify notation we define fi := f Im,i and write

Y =
ℓm∑
i=1

bifi , (B.2)

where ℓm is the number of Zm generators and bi for each i runs from 0 to (m − 1). The sum
over P becomes a double sum over X and Y . The sum over Y , which is actually over the
bi, is finite. On the other hand, the sum over X will include all of I and the Z2 generators
of I∗/I, and is then an infinite sum. Next consider P 2 = X2 + Y 2 + 2X · Y . Since 2X ∈ I,
2X · Y ∈ Z. Furthermore, X2 = X · w mod integers — see eq. (2.10) and appendix A.
Therefore, P 2 = X ·w+Y 2 mod integers. Thus, the lattice part in (g, g2) can be expressed as

Zlat(g, g2) = 1
η̄2d

∑
Y

F (Y )e2πiY 2
e2πiv

2
, (B.3)
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where
F (Y ) :=

∑
X∈Z2

classes of I∗

q̄
1
2 (X+Y+v)2

R e2πi(2v+w)·(X+Y ) . (B.4)

In the above we dropped e−2πiY ·w because Y · w ∈ Z for all Y . The reason is that w is in
a Z2 class while Y is in a Zm class of I∗/I, and m is odd.

We next perform a Poisson resummation on F (Y ). The dual lattice is the lattice of
Zm classes of I∗ and we obtain

F (Y ) = 1
vol2

1
(iτ̄)2d

∑
P ′∈Zm

classes of I∗

q̄′
1
2 (P

′+2v+w)2
Re−2πiP ′·Y e−2πi(2v+w+P ′)·v , (B.5)

where q̄′ = e2πi/τ̄ . The volume vol2 of a basic cell of Z2 classes in I∗ will be evaluated
shortly. Substituting eqs. (B.5) in eq. (B.3), and doing τ → −1/τ , we find that in Z(g2, g−1)
the lattice part is

Zlat(g2, g−1) = 1
vol2

1
η̄2d

∑
P ′∈Zm

classes of I∗

q̄
1
2 (P

′+2v+w)2
Re−2πi(P ′+2v+w)·ve2πiv

2 ∑
Y ∈Zm

classes of I∗/I

e−2πiP ′·Y e2πiY
2
. (B.6)

Recall that sum over Y means finite sums from 0 to (m − 1) for each bi in (B.2).
We now evaluate vol2. The volume of a cell in I is

√
|I∗/I| =

√
2ℓ2mℓm — cf. eq. (2.9).

Since in a given cell of I there are 2ℓ2mℓm basic cells of I∗, the volume of a basic cell of I∗ will
be 1/

√
2ℓ2mℓm . The basic cell of Z2 classes in I∗ must include mℓm basic cells of I∗. Therefore

vol2 =
mℓm

√
2ℓ2mℓm

=

√
mℓm

2ℓ2 . (B.7)

We can repeat the same steps and obtain the lattice part of the partition function for
(g2j , g−1) sectors, where 1 ≤ j ≤ m − 1. The result is

Zlat(g2j , g−1) = 1
vol2

1
η̄2d

∑
P ′∈Zm

classes of I∗

q̄
1
2 (P

′+2jv+jw)2
Re−2πi(P ′+2jv+jw)·ve2πijv

2 ∑
Y ∈Zm

classes of I∗/I

e−2πiP ′·Y e2πijY
2
.

(B.8)
This expression may be simplified further to remove the double sum as we now explain.

Consider the sum
∑
Y e−2πiP ′·Y e2πijY

2 appearing above. We will try to determine its
P ′-dependence. Since P ′ is in a Zm classes of I∗, to begin it can be expanded as

∑
i bifi

mod I, where the fi are the same generators used in eq. (B.2) and each bi takes values in
{0, 1, . . . , m − 1}. But then we can equally well choose a different basis where fi are replaced
by any even number times fi, so long as this even number is coprime with m. In particular,
we can choose the basis where fi is replaced by 2jfi, for j = {1, 2, . . . , m − 1}. What this
means is that P ′ can be expressed as 2j

∑
i bifi mod I. For conciseness we define

bifi :=
ℓm∑
i=1

bifi , bi ∈ {0, . . . , m − 1} . (B.9)

– 36 –



J
H
E
P
0
8
(
2
0
2
5
)
0
8
3

Then ∑
Y

e−2πiP ′·Y e2πijY
2 =

∑
Y

e−2πi(2j bifi·Y )eiπ2jY
2 = e−2πij(bifi)2 ∑

Y

e2jπi(Y−bifi)2

= e−2πij(bifi)2 ∑
Y

e2πijY
2 = Cm(j)e−2πij(bifi)2

, (B.10)

where in the last line we shifted Y → Y + bifi, which is just a redefinition of the coefficients
in (B.2), and

Cm(j) :=
∑
Y ∈Zm

classes of I∗/I

e2πijY
2

. (B.11)

Thus eq. (B.8) becomes

Zlat(g2j , g−1)

= 1
vol2

Cm(j)e2πijv
2

η̄2d

m−1∑
bi=0

∑
P∈I

q̄
1
2 (P+2jbifi+2jv+jw)2

Re−2πi(P+2jbifi+2jv+jw)·ve−2πij(bifi)2
.

(B.12)

We next compute Cm(j).

B.1 Cm(j)

We can compute Cm(j) up to a phase. Consider |Cm(j)|2 (in the following P and P ′ are
in Zm classes of I∗/I)

|Cm(j)|2 =
∑
P ′

∑
P

e2πijP
2
e−2πijP ′2 =

∑
P ′

∑
P

e2πij(P+P ′)(P−P ′) =
∑
P

e2πijP
2 ∑
P ′

e−4πijP ·P ′
,

(B.13)
where in the last equality we have redefined P → P − P ′. Now let us look at the term∑
P ′ e−4πijP ·P ′ above. Suppose P is a non-trivial element in Zm classes (i.e. it is not in I). If

P /∈ I, then there must be some element in, say P1 ∈ Zm class, such that P · P1 is not an
integer (otherwise P will be trivial, i.e. in I, since P being in a Zm class will have integer dot
products with all the Z2 classes also, which would imply that P dotted with any element
of I∗ is integer). As before we now choose a basis fi, i = 1, . . . , ℓm, for the Zm generators
and expand P ′ =

∑ℓm
i=1 bifi, where bi ∈ {0, . . . , m − 1}. Then, if P /∈ I

∑
P ′

e−4πijP.P ′ =
ℓm∏
i=1

m−1∑
bi=0

e−4πijbiP ·fi . (B.14)

Since P · f1 is not an integer, it must be k/m for some nonzero integer k coprime with m.
We also know that j is coprime with m, since 1 ≤ j ≤ (m − 1) and m is odd prime. Then∑m−1

b1=0 e4πijb1
k
m = 0. Hence, in eq. (B.13), P must be trivial and hence the sum over P just

collapses to just one term namely P = 0 , but then the sum over P ′ gives mℓm . We then
conclude that Cm(j) =

√
mℓm up to a phase, i.e.

Cm(j) := eiπθ
j
m
√

mℓm . (B.15)
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A quantity that will appear in partition functions is

Cm(j)
vol2

= eiπθ
j
m
√
2ℓ2 , (B.16)

where we used eq. (B.7).
We next define two auxiliary sums which will be useful in our computations. Consider

an invariant lattice of signature (dL, dR) and I∗/I = Zℓ22 × Zℓmm . Milgram’s theorem gives [63,
appendix 4]

C =
∑

P∈I∗/I
eiπP

2 =
√
2ℓ2 mℓme

iπ
4 (dL−dR) . (B.17)

We next write P = X + Y , with X ∈ Z2 class and Y ∈ Zm class. Using X · Y ∈ Z, we find

C =
∑

X ∈Z2
classes of I∗/I

eiπX
2 ∑

Y ∈Zm
classes of I∗/I

eiπY
2 = B2 Bm , (B.18)

where we have defined

B2 :=
∑

X ∈Z2
classes of I∗/I

eiπX
2
, Bm :=

∑
Y ∈Zm

classes of I∗/I

eiπY
2
. (B.19)

Following the same arguments we had above for Cm(j), we can prove that |B2|2 = 2ℓ2 and
|Bm|2 = mℓm . We can then write

B2 := eiπϕ2
√
2ℓ2 , Bm := eiπϕm

√
mℓm . (B.20)

According to Milgram’s theorem, cf. (B.17), the phases in B2 and Bm then satisfy

eiπϕ2 = e
iπ
4 (dL−dR)e−iπϕm . (B.21)

This relation will be helpful later.
The auxiliary quantity Bm turns out to be related to the Cm(1) entering in Z(g2, g−1)

according to Cm(1)2 = B2
m. To prove this we substitute the expansion of Y in (B.2) into

eqs. (B.11) and (B.19) to obtain

Cm(1) =
m−1∑
b1=0

· · ·
m−1∑
bℓm=0

e2πi(bifi)2
, Bm =

m−1∑
b1=0

· · ·
m−1∑
bℓm=0

eiπ(bifi)2
. (B.22)

with the convention in (B.9). We will also use the short hand notation
∑
bi
:=
∑m−1
b1=0 · · ·

∑m−1
bℓm=0.

Then

Cm(1)2 =
∑
bi

∑
b′i

e2πi(bifi)2+2πi(b′ifi)2 =
∑
bi

∑
b′i

eiπ
(
(bi+b′i)fi

)2

eiπ
(
(bi−b′i)fi

)2

. (B.23)

Now call li := bi − b′i. Then bi + b′i = li + 2b′i =: l′i. Clearly as bi and b′i vary between
0 and (m − 1), li will span all integers 0 to (m − 1) mod m. Then for a fixed li, l′i will
range over all integers mod m that are li mod even numbers 2b′i. But for m odd, which
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is the case we are considering, 2b′i will span all integers modulo m. Thus, for odd m, the
original sums over bi and b′i from 0 to (m − 1) reduce to independent sums over li and l′i
from 0 to (m − 1) and in the end

Cm(1)2 =
∑
li

∑
l′i

eiπ(lifi)2
eiπ(l

′
ifi)2 = B2

m . (B.24)

Likewise it can be shown that Cm(2l)2 = Cm(1)2. It then follows that

2θ1m = 2θ2lm mod 2 = 2ϕm mod 2 , (B.25)

where we used the definitions of Cm(j) and Bm in eqs. (B.15) and (B.20).
From the definition of Cm(j) in eq. (B.11), and the fact that mY 2 ∈ 2Z for all Y in

Zm classes of I∗/I, we deduce that Cm(m − 1) = C∗
m(1). But since (m − 1) is even this

then implies Cm(1)2 = C∗
m(1)

2, and in turn

4θ1m ∈ 2Z, 4θ2lm ∈ 2Z, 4ϕm ∈ 2Z . (B.26)

Similarly, Cm(m − 2k) = C∗
m(2k) yields θm−2k

m = −θ2km mod 2. Using that (m − 2k) is odd
we can then show that 2θ2l+1

m = 2θ1m mod 2.

C Z(gm, g−(2j+1)), 2j + 1 ̸= m

Consider Z(gℓ, 1), for ℓ an odd number not equal to m, as computed in eq. (3.22). Performing a
Tm-transformation leads to Z(gℓ, gm) in which the contribution of the right-moving compact
directions is

Zlat(gℓ, gm) := 1
η̄2d

∑
P ∈ I∗

q̄
1
2 (P+ℓv)2

Reiπm(P+ℓv)2
. (C.1)

For P in I∗ we again write P = X + Y , but now we expand X in a way similar to eq. (B.2),
namely X =

∑
i aif

I
2,i, where f I2,i are the Z2 generators of I∗/I introduced in the decomposition

of Γ, i = {1, · · · , ℓ2}, and ai runs from values 0 to 1. Thus the sum over X will be finite.
On the other hand, the sum over Y will include all the vectors of I and Zm classes of I∗/I,
and will be infinite. In the phase eiπm(P+ℓv)2 the momentum dependent exponent involves
m(X2 + Y 2 + 2X · Y ), which reduces to mX2 mod 2, because mY ∈ I and therefore X · mY

is integer, and mY 2 is even. Doing the Poisson resummation as before, the lattice part of
the (gm, g−ℓ) sector is found to be

Zlat(gm, g−ℓ) = 1
volm

1
η̄2d

∑
P ′∈Z2

classes of I∗

q̄
1
2 (P

′+mℓv)2
Re−2πi(P ′+mℓv)·ℓv ∑

X∈Z2
classes of I∗/I

e−2πiP ′·XeiπmX
2
eiπmℓ

2v2
.

(C.2)
The volume of the basic cell of Zm classes in I∗ can be evaluated as explained earlier for
vol2. We find

volm =

√
2ℓ2

mℓm
. (C.3)
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Since ℓ is odd, i.e. ℓ = 2j + 1 (excluding ℓ = m) and 2mv ∈ Z2 class of I∗, and since
P ′ ∈ Z2 class of I∗, we can absorb 2mv in P ′ by shifting P ′ → P ′ − 2jmv to recast (C.2) as

Zlat(gm, g−(2j+1))

= 1
volm

1
η̄2d

∑
P ′∈Z2

classes of I∗

q̄
1
2 (P

′+mv)2
Re−2πi(P ′+mv)·ℓveπim(2l+1)2v2 ∑

X∈Z2
classes of I∗/I

e−2πi(P ′−jw)·XeiπmX
2
.

(C.4)

Here we used that e2πij2mv·X = e2πijw·X , since 2mv = w mod I.
Now we want to express the above double sum involving P ′ and X as disentangled sums.

Since m is odd, we can always express it as m = ϵ mod 4, where ϵ = ±1, and so ϵ is determined
by m. Then eiπmX

2 = eiπϵX
2 , since 2X2 is integer because X is in a Z2 class. In the sum over

X we can then complete squares in the exponent and shift X → X+ϵ(P ′−jw) since ϵ(P ′−jw)
is also in Z2 classes. In the end the two sums in eq. (C.4) decouple and the final result is

Zlat(gm, g−(2j+1)) = C2
volm

eiπm(2j+1)2v2

η̄2d

∑
P ′∈Z2

classes of I∗

q̄
1
2 (P

′+mv)2
Re−2πi(P ′+mv)·(2j+1)ve−iπϵ(P

′−jw)2
,

(C.5)
where

C2 :=
∑
X∈Z2

classes of I∗/I

eiπϵX
2

. (C.6)

We can repeat the arguments in appendix B.1 and prove that C2 =
√
2ℓ2 up to a phase, i.e.

C2 := eiπθ2
√
2ℓ2 . (C.7)

Below we will show that θ2 can be related to w2.

C.1 θ2

Recall the definition (2.10), i.e.

e2iπX
2 = e2πiX·w ∀X ∈ Z2 classes of I∗ , (C.8)

where w itself is in a Z2 class of I∗. Thus, we may write C2 in eq. (C.6) as

C2 =
∑

X ∈Z2
classes of I∗/I

eiπϵ(X−w)2 = eiπϵw
2
C∗
2 , (C.9)

where we used (C.8) in the second equality. But C2 = eiπθ2
√
2ℓ2 . Therefore eiπϵw

2 = e2iπθ2 .
A similar computation for B2 in (B.20) yields eiπw

2 = e2iπϕ2 . Thus

w2 = 2ϵ θ2 mod 2 , w2 = 2ϕ2 mod 2 . (C.10)

Now, notice that eq. (B.21) requires ϕ2 + ϕm + dR−dL
4 ∈ 2Z. This then implies

w2 + 2θ1m + dR − dL
2 ∈ 2Z , (C.11)

after inserting the identities (B.25) and (C.10). In the case discussed in the main text the
invariant lattice has signature (0, 2d), i.e. dL = 0 and dR = 2d. Since 2θ1m ∈ Z, cf. (B.26), we
then conclude that w2 ∈ Z is a property of I of signature (0, 2d).
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D Another form for Zlat(gj, g−1)

In this appendix we want to consider again the contribution of the right-moving compact
directions to Z(g, gj) in eq. (3.14), now for generic j. It reads

Zlat(g, gj) := 1
η̄2d

∑
P ∈ I∗

q̄
1
2 (P+v)2

Reiπj(P+v)2
. (D.1)

To derive Zlat(gj , g−1) we need to do a τ → −1/τ transformation but Poisson resummation
of the lattice sum cannot be done directly because the exponent in the phase involves P 2.
In the preceding appendices we proceeded by decomposing P ∈ I∗ in a way suited to the
case where I∗ only has Z2 and Zm conjugacy classes. More generally we can just make the
change of variables P = P ′ + Q, then sum P ′ over I and Q over I∗/I so that the original
P is summed over all of I∗. The simplification arises because P 2 = Q2 mod 2, and then we
can do Poisson resummation over P ′ in the standard way (see e.g. appendix 9.6 in [65]).
In this manner we arrive at

Zlat(gj , g−1) = eiπjv
2

η̄2d

∑
P ∈ I∗

q̄
1
2 (P+jv)2

Re−2iπ(P+jv)·vL(j, P ) , (D.2)

where
L(j, P ) = 1√

|I∗/I|
∑

Q∈ I∗/I
eiπjQ

2
e−2iπP ·Q . (D.3)

The sum over I∗ in eq. (D.2) can again be traded by an infinite sum over I and a finite
sum over I∗/I. In the end we obtain

Zlat(gj , g−1) = eiπjv
2

η̄2d

∑
Q̃∈ I∗/I

L(j, Q̃)
∑
P ∈ I

q̄
1
2 (P+Q̃+jv)2

Re−2iπ(P+Q̃+jv)·v . (D.4)

Notice that the sum in L(j, Q̃) is finite and for a given I it can be evaluated explicitly.
The disadvantage of the final expression in eq. (D.4) is that the spectrum is not im-

mediately visible. It is revealed only after doing the finite sum in L(j, Q̃). For instance,
when I∗ only has Z2 and Zm classes, we find that L(j, Q̃) for j = m is different from zero
only if Q̃ belongs to Z2 classes of I∗/I, in agreement with our previous result in eq. (C.4).
For j = 2 we instead find that L(j, Q̃ + w) is different from zero only if Q̃ belongs to Zm
classes of I∗/I, as obtained before, cf. eq. (B.12). For particular examples the full expressions
can be matched in detail.

E Non-equivalent shift vectors

In this appendix we comment about the requirement (5.3) for two shift vectors to be non-
equivalent and thus lead to different models. For simplicity let us denote θv2 = v′2.

Notice first that for z = 1, if v1 − v′2 = Q ∈ I∗, then the untwisted sectors will be
the same since the only difference resides in the projectors, cf. eq. (3.7). Namely, in the
(1, gℓ) subsector we will have e2iπP ·ℓv1 = e2iπP ·ℓ(v′2+Q) = e2iπP ·ℓv′2 , since P ∈ I and therefore
P · Q ∈ Z. However, it could happen that even if eq. (5.3) is satisfied for z = 1, we can still
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have z ̸= 1 such that zv1−v′2 = Q ∈ I∗. The full effect is a reordering of the different terms in
the sum over ℓ = 0, . . . 2m− 1. Namely, ℓv′2 → (ℓz mod 2m)v1 and therefore the sum remains
invariant. Notice that for ℓ = m, mv′2 = mzv1 − mQ = m(z − 1)v1 + mv1 − mQ = mv1 + Q′

with Q′ ∈ I∗, since 2mv ∈ I∗ and therefore the sector (1, gm) is the same for both shifts.
A similar situation occurs for twisted sectors. In a (gℓ, gk) subsector the shift dependent

term is of the form q̄
1
2 (P+ℓv+wδℓ,2 mod 4)2

e2iπ
1
2 (P+ℓv+wδℓ,2 mod4)2 . For z = 1 and v1 − v′2 = Q ∈ I∗

the difference can be absorbed in a redefinition of P in the corresponding dual lattice. In the
second situation the gℓ and gℓzmod 2m sectors will be exchanged but the sum over ℓ will be
invariant. In particular it can be seen that an ℓ even sector is exchanged with an ℓmod4
sector and that the gm sector remains invariant.

F Examples with indefinite invariant lattices

In this appendix we consider T4/Z2m asymmetric orbifolds in which the automorphism leaves
invariant some left-moving, as well as all the right-moving, directions of Γ. The analysis in
sections 3 and 4 can be generalized making necessary changes that do no alter the main
points. We present two models which correspond to entries HM5 and HM63 of [50, table 1],
with respectively Z2 and Z6 automorphisms. In both cases Γ has signature (20, 4), the normal
lattice is a sublattice of the Leech lattice with signature (s, 0), and the invariant lattice has
signature (20− s, 4), where s = 12 and s = 18 for the HM5 and HM63, respectively.

Since now the invariant lattice has left-moving directions, there are massless states in
vector multiplets in the untwisted sector, and so these orbifolds are not islands. However, we
show that there are no massless states in the twisted sectors and hence, the rank of the gauge
group is reduced from 20 to 20− s. The existence of T4/Z2 and T4/Z6 heterotic orbifolds
with gauge group of reduced rank 8 and 2 respectively, was conjectured in [13], where they
were associated to the genus D and genus J of the classification in [69]. To our knowledge,
the construction of these orbifolds is not known in the literature. In the following we will
show how they can be built in the formalism developed in this paper.

F.1 HM5

This is a Z2 asymmetric orbifold in 6 dimensions. The normal lattice N has rank s = 12
and the automorphism Θ in the basis of N is just minus the identity matrix. The eigenvalue
distribution of Θ is then t = 1

2([1]
6), corresponding to frame shape 212 [60]. The zero point

energy is E1 = s
16 = 3

4 .
In the HM5, the normal and invariant lattices of the Leech lattice happen to be isometric,

specifically N ∼= Ĩ ∼= D+
12(2), where D+

12 is the odd self-dual lattice of rank 12 obtained
adjoining the spinor class to D12. The invariant lattice I, which is correlated with N to
construct the even self-dual lattice Γ(20, 4), must have signature (8, 4) and

I∗/I ∼= N∗/N ∼= Z12
2 . (F.1)

Hence, ℓ2=s =12, and the degeneracy factor is F1 = 1. Note that since N∗ has vectors with
half-integer length squared, I∗ must also have Z2 classes with half-integer length squared to
correlate with N to form Γ(20, 4). This means that in this HM5 there will be a characteristic
vector w with the crucial property in eq. (2.10).
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It is known that indefinite even 2-elementary lattices of same signature, same discriminant
group, and such that P 2 is not an integer for all P ∈ I∗, are all isometric [54]. In our case
this means that for the I of signature (8, 4) there are infinite choices related by O(8, 4)
transformations. Indeed, a generic I will have 32 moduli that take continuous values. For
example, we find that the lattice I0 = 7A1 ⊕ U(2) ⊕ 3A1(−1), with I∗/I ∼= Z12

2 , can be
correlated with N . This I0 corresponds to a particular point of the moduli space of the
generic I. It is easy to guess other possibilities at different points of moduli space, e.g.
I1 = 8A1 ⊕ 4A1(−1), which was proposed in [15, table 1]. In this example we can actually do
better because in [4, eq. (5.34)] it was explicitly shown that 7A1⊕U(2) is in the moduli space
of a Υ(8, 1) lattice whose moduli are a radius and a 7-dimensional Wilson line. Moreover, it
was proven that at special values of these moduli the (8, 1) lattice becomes Υ1 = 8A1⊕A1(−1)
or Υ2 = E8(2)⊕ A1(−1). The above mentioned I1 is thus recovered and we also learn that
I2 = E8(2)⊕ 4A1(−1) is yet another (8, 4) lattice that can be correlated with N ∼= D+

12(2).
Below we will consider these two specific choices of I.

F.1.1 Partition function

The partition function can be readily obtained from the general expressions in section 3. We
can equally adapt the detailed results of [4] for asymmetric Z2 orbifolds. In either way we
find that in the untwisted sector the lattice pieces simply read

Z(1,1) = 1
η20η̄4

∑
P∈Γ

q
1
2P

2
L q̄

1
2P

2
R , Z(1, g) = 1

η20η̄4

(
2η3

ϑ2

)s
2 ∑
P∈I

q
1
2P

2
L q̄

1
2P

2
R e2πiP ·v . (F.2)

Modular transformations then give the twisted sector terms

Z(g, 1) = 1
η20η̄4

(
η3

ϑ4

)s
2 ∑
P∈I∗

q
1
2 (P+v)2

L q̄
1
2 (P+v)2

R , (F.3)

Z(g, g) = 1
η20η̄4

(
η3

ϑ3

)s
2

eiπ(v
2+ s

8 )
∑
P∈I∗

q
1
2 (P+v)2

L q̄
1
2 (P+v)2

R e2πiP ·veiπP
2

,

where s = 12. The contribution due to uncompactified light-cone world-sheet bosons and right-
moving world-sheet fermions is the same in both untwisted and twisted sector, cf. eq. (3.2).

Applying τ → τ + 1 to Z(g, g) will bring in a phase e2πiP
2 inside the sum that could

spoil modular invariance. However, again we can show that there exists a characteristic
vector w, with w ∈ I∗, 2w ∈ I, such that e2πiP

2 = e2πiP ·w for all P ∈ I∗. Modular invariance
Z(g, g2) = Z(g,1) can then be fulfilled if

2v + w ∈ I , 2v2 + s

4 ∈ 2Z , (F.4)

which, as expected, agrees with the conditions in eq. (3.51) upon setting m = 1 and E1 = s/16.
Note that necessarily v must be different from zero and moreover v /∈ I∗. In the examples
below we will determine explicit solutions for v.

From the full partition function we can obtain the spectrum of massless and massive
states in the emerging 6d theory with 16 supercharges. To this end we remark that eqs. (F.2)
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and (F.3) entail integer multiplicity of states. For the untwisted sector the same analysis
of subsection 4.3 applies. In the twisted sector all level-matched states survive the orbifold
projection with multiplicity one.

Generic features of the spectrum were already discussed in section 5. Let us concentrate
on massless states and discuss first the simpler twisted sector. From the Z(g, gk) terms we
see that there are no massless states since v /∈ I∗. In the untwisted sector the massless
matter includes the gravity multiplet and a number of vector multiplets. At generic points
of moduli space of I there are no momenta with P 2

L = 2, massless vectors only arise from
the 8 oscillator modes along the left-moving invariant directions, and the gauge group will
be U(1)8. At special points of moduli space there can be enhancement to a non-Abelian
group of rank 8, as exemplified below.

F.1.2 Example 1

In this example we take invariant lattice I1=8A1 ⊕ 4A1(−1). The characteristic vector w

can obtained as explained in appendix A, see also [4]. In the I1 basis it is given by

w = 1
2(1, 1, 1, 1, 1, 1, 1, 1; 1, 1, 1, 1) , (F.5)

where the semicolon separates the left- and right-moving components. Note that w2 is even.
In fact, Milgram’s theorem (B.17) leads to w2 + s

2 ∈ 2Z for an invariant lattice of signature
(20− s, 4). The unique choice for the shift vector satisfying the conditions (F.4) is

v = 1
4(1, 1, 1, 1, 1, 1, 1, 1; 1, 1, 1, 1) . (F.6)

Since v /∈ I∗, there are no massless vector multiplets in the twisted sector.
We next look at the untwisted sector. We already know that there are 8 massless vectors

arising from oscillator modes. To look for additional states we write vectors P ∈ Γ as
(PN , PIL, PIR), where PIL and PIR are respectively the left and right components of PI .
For massless states it must be PR = PIR = 0 and P 2

L = P 2
N + P 2

IL = 2. If PN = 0, then
PI ∈ I and there could be massless states with PI = (n1, · · · , n8; 0, 0, 0, 0), n2

1 + · · ·+ n2
8 = 1

and ni ∈ Z. They are all projected out because all have e2iπPI ·v = −1. If PIL = 0 then
PN ∈ N and by construction there are no solutions of P 2

N = 2. However, when PN ̸= 0, there
might be additional massless states because in principle it is possible to have P 2

N + P 2
IL = 2,

where PN ∈ N∗ and PIL ∈ I∗. Examining the correlated classes of N∗/N and I∗/I shows
that there are 128 solutions with PIR = 0, P 2

N + P 2
IL = 2 and PN ̸= 0. For each (PN , PIL)

there appears the corresponding (−PN , PIL). We can then form 64 invariant combinations
that give extra massless vector multiplets. These happen to divide into two orthogonal
sets each of 32 elements. Besides, in each set of 32 there are 8 with (P 2

N , P 2
I ) = (32 , 1

2) and
24 with (P 2

N , P 2
I ) = (1, 1).

Let us finally discuss the possible gauge group. Recall that there are 8 vectors from
the oscillators along I which in principle correspond to Cartan generators, i.e. the vertex
operators that involve derivatives dXi, where Xi denote world-sheet bosons along I. Then
there are 64 generators that split into two orthogonal sets. In fact, one set has components
different from zero only along X1, . . . , X4, while for the other the non zero components are
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along X5, . . . , X8. Moreover, as mentioned above, in each set of 32 elements there are 8 with
P 2
I = 1

2 and 24 with P 2
I = 1. Interpreting these as short and long roots suggests that the

full gauge group is SO(9) × SO(9). Indeed, appearance of SO(9)2 in 6d is expected from
the results of [12] and [13]. Moreover, a model with group SO(9)2, with each factor realized
at Kac-Moody level 2, was found in the fermionic formulation [6]. Although we have not
proved that each SO(9) appears at level 2 in our construction, it might be expected since
invariant states are combinations of (PN , PIL) and (−PN , PIL).

F.1.3 Example 2

The invariant lattice is taken to be I2=E8(2)⊕4A1(−1). For all P belonging to E∗
8(2)=E8(12),

it happens that e2iπP
2 =1. Thus, the characteristic vector has no components along left-

moving directions. There is a unique shift satisfying the modular invariance conditions.
In the I2 basis we have

w = 1
2(0

8; 14) , v = 1
4(0

8; 14) . (F.7)

Since v /∈ I∗, there are no massless states in the twisted sector. In the untwisted sector
there are no solutions with PN = 0, PIR = 0 and P 2

IL = 2. There are instead 144 solutions
with PIR = 0, P 2

N + P 2
IL = 2 and PN ̸= 0. It turns out that we can form 72 invariant

combinations which all have P 2
I = 1 and cannot be subdivided into smaller orthogonal sets.

Thus, it appears that the group has rank 8, from the dXi Cartan generators, and 72 roots
of equal length. This suggests that the gauge group is SU(9) realized at Kac-Moody level
2. According to results of [12] and [13], the group SU(9) can appear in a 6d theory with 16
supercharges. A model with SU(9) at level 2 was also reported in [6].

F.2 HM63

We next consider a Z6 asymmetric orbifold in 6 dimensions. The normal lattice N has rank
s = 18 and the invariant lattice I has signature (2, 4). The automorphism has an eigenvalue
distribution t = 1

6(1, 1, 1, 2, 2, 2, 3, 3, 3), i.e. n1 = n2 = n3 = 3. The corresponding frame
shape is 2363 [60]. The zero point energies are

E1 =
11
12 , E2 =

2
3 , E3 =

3
4 . (F.8)

The normal lattice N has discriminant group N∗/N ∼= Z3
2 × Z3

6, and there are vectors in
Z2 classes of N∗ that have half-integer length squared. Therefore, the lattice I must have
I∗/I ∼= Z3

2 × Z3
6 and must contain Z2 classes with half-integer length squared, in order to

correlate with N to form Γ(20, 4). We found that it is possible to correlate N with

I = A1 ⊕ A1(3)⊕ 2A1(−1)⊕ 2A1(−3) , (F.9)

which will be considered in our analysis below. We also checked that another possible choice4

is I ′ = A1 ⊕ A1(3)⊕ 2A2(−2). The generic invariant lattice has 8 moduli. For instance, in
the above I we can easily boost A1 ⊕ A1(−1) to a generic (1, 1) lattice with one modulus.

4Note that there are also lattices with signature (2, 4) and I∗/I ∼= Z3
2 ×Z3

6, such that P 2 ∈ Z for all P ∈ Z2

classes of I∗. Examples of this type are U(2)⊕ U(6)⊕ A2(−2) and also A2(2)⊕ 2A2(−2) which was proposed
in [15, table 1]. However, since there are no vectors with half-integer length squared in their Z2 classes, it is
not possible to correlate these lattices with N to form Γ(20, 4).
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The invariant lattices I, I2 and I3 have

I∗/I ∼= Z3
2 × Z3

6
∼= Z6

2 × Z3
3 , I∗2/I2 ∼= Z6

3 , I∗3/I3 ∼= Z12
2 . (F.10)

Hence, ℓ2 = 6, ℓN2 = 6, ℓ3 = 3 and ℓN3 = 3. The degeneracy factors are

F1 = 1 , F2 = F ′
2 = 1 , F3 = F ′

3 = 1 . (F.11)

The values of C2 and C3(1) are

C2 = 23 , C11(1) = 3i
√
3 , (F.12)

i.e. θ2 = 0 and θ13 = 1
2 . Consistency conditions (4.1) are all satisfied.

The partition function of the T 4/Z6 asymmetric orbifold in this example can be obtained
from the general results in section 3. We just need to set m = 3 and take into account that I,
I2 and I3, as well as the shifts v and w, have left- and right-moving directions.

The characteristic vector w is determined as explained in appendix A and is displayed
below. On the other hand, the shift vector v must satisfy the modular invariance constraints
6v + w ∈ I and 4mE1 + 2mv2 ∈ 2Z, as well as the condition 2v /∈ I∗, to avoid massless
states in the twisted sectors. We find that up to equivalences there is a unique solution
for v. The concrete results for the shifts are

w = 1
2(1, 1; 1, 1, 1, 1) , v = 1

12(1, 1; 3, 1, 1, 1) , (F.13)

written in the basis of I.
With the above v there are no massless vectors in the twisted sectors. In the untwisted

sector, m2
R = 0 requires PR = 0, NR = 0 and r2 = 1, cf. eq. (5.1). Solutions to m2

L = 0
which are of the type PL = 0 and NL = 1 give 2 vector multiplets from the two oscillators
along the left-moving directions of I. For solutions of the type P 2

N + P 2
IL = 2 and NL = 0,

there are no solutions with PIL = 0, there are 2 solutions with PN = 0, i.e. with PI ∈ I but
they are projected out. There are 22 solutions with PN ̸= 0 and PIL ̸= 0 which come from
correlated classes. They are precisely of the general form described in cases 1,2 and 3 in
subsection 4.3. We find that the 4 solutions of type 1 and the 6 of type 2 are projected out.
Only the 12 solutions of type 3 survive the orbifold projection and give rise to 2 invariant
states. Altogether there are 4 vector multiplets pointing to gauge group SU(2)× U(1). At
generic points of moduli space the group is just U(1)2.
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