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CrossMark
Abstract

The Teukolsky equation describes perturbations of Kerr spacetime and is cent-
ral to the study of rotating black holes and gravitational waves. In the frequency
domain, the Teukolsky equation separates into radial and angular ordinary dif-
ferential equations (ODEs). Mano, Suzuki, and Takasugi (MST) found semi-
analytic solutions to the homogeneous radial Teukolsky equation in terms of
series of analytic special functions. The MST expansions hinge on an auxiliary
parameter known as the renormalized angular momentum v, which one must
calculate to ensure the convergence of these series solutions. In this work, we
present a method for calculating v via monodromy eigenvalues, which capture
the behavior of ODEs and their solutions in the complex domain near their
singular points. We directly relate the monodromy data of the radial Teukolsky
equation to the parameter v and provide a numerical scheme for calculating v
based on monodromy. With this method we evaluate v in different regions of
parameter space and analyze the numerical stability of this approach. We also
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highlight how, through v, monodromy data are linked to scattering amplitudes
for generic (linear) perturbations of Kerr spacetime.

Keywords: Kerr spacetime, Teukolsky equation, perturbation theory,
scattering, monodromy

1. Introduction

The Teukolsky equation is a linearized field equation that governs the evolution and propaga-
tion of perturbations in a background Kerr spacetime [1]. From the Teukolsky equation, one
can calculate the quasinormal mode ringdowns of merged compact object binaries, the radi-
ative backreaction experienced by small perturbing bodies inspiraling towards rotating black
holes, and the gravitational signal radiated by a system and measured by a distant observer.
Thus, the Teukolsky equation has been central to the development of gravitational wave
science.
In Boyer-Lindquist coordinates (z,r,8, ¢), the Teukolsky equation takes the form,

a5, ., ) 4Mar a’ 1 )
|: A — a” sin 9:| 8[ \IJS + T@,&b \Ijs + |:A - 51[129:| 84)\1/;
_ 1 . a(r—M) . cosf
— AT, (A9, W) — — U,)—2 U,
o ( AR Sinaag (sinf9pWy) — 2s { A +i sinzﬁ} AR
M(rz_az) . 2.2
—2s T—r—mcos@ W+ (s°cot® 0 — 5) Uy = 47 T, (D)

where M and a are the Kerr mass and spin parameters, A = 2 —2Mr+ a2, Y = r* + a*cos?é,
s is the spin-weight of the perturbing field Wy, and T is the source of the perturbation. (See
table I in [1] for exact definitions of ¥, and T;.) By altering the spin-weight parameter, the
Teukolsky equation can describe scalar (s = 0), neutrino (s = :I:%), electromagnetic (s = +1),
and gravitational (s = £2) perturbations of rotating Kerr black holes. In this work, we focus
our attention on the vacuum case of Ty = 0.

The Teukolsky equation is amenable to separation of variables in the frequency-domain via
the mode decomposition Wy = Vg, (1, 7,60, 0) = Rymeo () Ssimeo ()P " [2, 3]. With this
ansatz, equation (1) decouples into two ordinary differential equations (ODEs),

2 J— 1 —
A= (et Wy (KEZHSCZMK L it N ) R =0, )
dr dr A
2 i 2
d j;g" = :)I:g dS(;ZM — <a2w2 sin®0 + % + 2awscosh — s — 2maw — /\ST,,M)

X Ssime = 07 (3)

where K = (r* +a*)w — ma, and A, is the spheroidal eigenvalue (or separation constant).
Solutions to equation (3) are known as spin-weighted spheroidal harmonics, which are gen-
eralizations of the spin-weighted spherical harmonics Y, (6, ). For aw — 0, the two sets
of harmonics are equivalent, with Sy, (0)e™? — [ Y;,(0,¢) and XL, — 1(I+1) —s(s+1).
The numerical calculation of Sy, (€) is well understood [4, 5], and several open-source tools
are available for producing these harmonics (e.g. [6-9]).

The construction of the homogeneous radial solutions Ry, has also been extensively stud-

ied in the literature [4, 10-14]. Mano, Suzuki, and Takasugi (MST) devised one commonly
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used method [11], in which the homogeneous radial solutions are represented as semi-analytic
series of hypergeometric functions. To evaluate these series, one must first solve for an aux-
iliary parameter known as the renormalized angular parameter v, which controls whether or
not each series solution converges. Consequently, finding a ‘convergent’ value of v is critical
to solving the Teukolsky equation with series of analytic functions.

MST found that their series converge when v is a root of a particular three-term continued
fraction equation (see equation (123) in reference [15]). Therefore, many researchers have
relied on sophisticated root-finding methods to numerically determine v [14, 16], but these
procedures can struggle at high frequencies (w > 1) and for large values of the spheroidal
mode number /, particularly when v becomes complex. Alternatively, recent codes (e.g. [17])
have employed a new algorithm inspired by the work of Castro et al [18, 19], which determines
v based on the monodromy data that capture the behavior of the radial Teukolsky solutions as
they circle the irregular singular point at r = oo.

While this monodromy approach has proven to be highly successful, there is little written
about its application to the MST solutions. Reference [20] hints at the connection between v
and monodromy theory in their post-Newtonian expansions of the MST solutions, while ref-
erences [21, 22] identify the connection between v and the monodromy eigenvalues of the
Teukolsky equation, but they do not provide an exact relationship. Reference [23] found that
their gauge modulus parameter a (which is directly related to monodromy eigenvalues) satis-
fies the relation a = —v — 1/2, but this result was only verified up to 9th post-Minkowskian
order. references [24, 25] also found a relationship between v and monodromy data when
extending the MST solutions to the Teukolsky equation in Kerr—de Sitter spacetime; however,
these results were not generalized to Kerr. In this work, we derive an exact relationship between
the monodromy eigenvalues of the Teukolsky equation in Kerr spacetime (for arbitrary values
of the spin-weight s) and the renormalized angular momentum v used in the MST solutions.
We also provide numerical methods for calculating © based on monodromy theory.

1.1. Paper outline

In section 2 we review both asymptotic and MST series solutions to the homogeneous radial
Teukolsky equation in Kerr spacetime. In section 3 we summarize the works of [18, 19, 26],
which outline how monodromy methods are used to describe the solutions of ODEs as they
‘run around’ singular points in the complex domain. As an example, we apply these methods
to determine the monodromy eigenvalues of confluent hypergeometric functions. In section 4
we use these results to connect the monodromy eigenvalues of the Teukolsky equation to the
renormalized angular momentum r. We then present new numerical methods for calculating
the monodromy eigenvalues of the Teukolsky equation and v in section 5. We also highlight the
numerical advantages and limitations of solving for v via monodromy methods. We end with
a discussion of our results in section 6. For this paper we use the metric signature (— + ++),
the sign conventions, where applicable, of [27], and units such that c = G = 1.

2. Series solutions of the radial Teukolsky equation

It is often advantageous to characterize solutions of an ODE in terms of the equation’s singular
points. The radial Teukolsky equation possesses three: two regular singular points at the inner
and outer horizons r4+ = M £ +/M? — a? and one irregular singular point (of Poincaré rank one)
at infinity. In this work we primarily focus on homogeneous radial solutions that are defined
on the physical domain r € [ry,00] and, consequently, by their behavior at the points r =r

3
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and r = oo. For radiative modes (w # 0), four common solutions are,

in in,trans A —s —1]<r* up up,trans _(254,_1 iwr*

ime (P = 1) ~ Ry OEA , R, (r—=00)~R 5 “r Je (4a)
out out,trans _ikr,, down down,trans _ —1 _ —iwr,

slmw (r - r+) ,R’Almw € ’ RAlmw ( — OO) Rglmw r ¢ 9 (4b)

where k = w —m€4, Qy =a/(2Mr,.), and r, is the tortoise coordinate defined by the differ-
ential relation dr, /dr = (r* + a*)/A. For scattering problems, it is also useful to consider the
additional asymptotic behaviors,

S (r = 00) v RE™ B Delers 4 RS~ leier, (5a)
R (r = 00) ~ RSy~ (o Delers 4 R lemior, (5b)
R (1= ri) ~ RO + REEIA e, (50)
R (r = 1) ~ ROl RO AT (5d)

where Rﬁyxm, Rﬁﬂlff, and R}},;Zf are transmission, incidence, and reflection scattering amp-
litudes for A = {in, up, out, down}.

In the remainder of this section, we review different series solutions of the radial Teukolsky
equation for w % 0 modes. First we outline series expansions around the singular points of the
Teukolsky equation, » = r and r = 0o, and the simplification of these series in confluent Heun
form. We then summarize the semi-analytic series solutions provided by MST. To condense

notation, we define the dimensionless parameters,

X =a/M, k=1v1-x2 €e=2Muw,

T = (e —myx) /k, & =s—Ie, ex =(ex7)/2,
which will be used throughout the rest of this paper.

2.1. Frobenius-Fuch and asymptotic series

Because r = r, is a regular singular point, R™™ and R can be approximated by the Frobenius-
Fuch series,

R (r—r ) ~RIE(r) = (r—ry) Zaz’n(r— ) (6a)
n=0
R (r—ry) =~ RT[ (r)=(r— r_;.)iEJr Zal,n(r— ry)", (6b)

where we have suppressed the (slmw) subscripts for brevity. On the other hand, R* and R%*"
are typically approximated in terms of the asymptotic series,
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R™ (r — 00) ~ RE (r) = elwry1725Hie Zblﬁnr_”, (7a)
n=0
Rdown (r— o00) ~ R% (r)= g lwrp—l-ie sz.’nrﬂ'. (7b)
n=0

The horizon series (6) have radii of convergence |r — ri.| < 2M+/1 — x?, while the infin-
ity series (7) are formally non-convergent, making both expansions poor representations for
much of the radial domain. Nonetheless these series are particularly useful for numerically
approximating solutions near the boundaries, providing important initial data for numerical
ODE solvers.

The calculation of these series expansions is further simplified by putting the Teukolsky
equation into confluent Heun form,

d*w YcH | OcH > dw  acuZ—qgcu
— + — 4 — +e —+————w=0, 8
dz? < I R AT 2(z—1) ®

via the transformations,

eki=w(r—r_), ex(G—1D=wlr—ry), RE=20E¢-1)"cw(), )
where
2a=—s+n,(s+2e_), 2b=—s+ny(s+2iey), c=incex, (10)

n, = *£1, np = £1, n, = £1, and the confluent Heun parameters are given by

Yeu = 1 + 5+ 2a, ocu =1+s+2b, €cu = 2c, (11a)
acy =2¢(l+s+a-+b) + 2iekE, (11b)
gen=—(a+b+c)(s+1)—2ab+ X —2ere_+e[my—i& (1 —k)]+2ac. (11c)

Note that this transformation is not unique. Due to our freedom in choosing n,, n,, and
n., equation (10) provides eight different combinations of a, b, and ¢ that will transform the
Teukolsky solutions into solutions of equation (8). In the remainder of this section, we will
make use of different transformation choices when examining the asymptotic behavior of w(z).

Equation (8) has singular points at Z = {0, 1,00}, with the latter two corresponding to the
relevant physical boundaries at the horizon and infinity. Near the horizon, solutions take the
asymptotic forms,

Witz o D)l (2) = 2 — 1) D an(z—1), (12a)
k=0

WU ) (2) = (- DM S a1, (12b)
k=0

with indices /\?" =0 and )\3" =1 —dcn, and the coefficients satisfy the three-term recurrence
relation,

A1+ B+ Cliajai = 0. (13)
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A common choice of initial conditions is d; = 1, and g;, _; = 0. See appendix A for exact
definitions of AM, Bl and CJ%. Choosing (ng,ny,n.) = (—1,41,—1), w'" and w" transform
to R™ and R°", respectively, via equation (9).*

Near infinity we have,

o0
WP (2= 00) ~wF (8) = TN S by e (14a)
k=0
a pa i
WiV (2 = 00) v W] (2) = e Y by, (14b)
k=0
where pF =0, uf = —ecu, AT = —acu/ecn, and A = acy/ecn — Yycu — dcn; and the coef-

ficients satisfy the three-term recurrence relation,
I Z7 I7
Aibjj—1 + Biibjk + Ciibji1 =0, (15)

with I;j,o =1, and Ej,_l = 0. Again, see appendix A for the forms of A] © ,k» and ka.
Choosing (n4,np,n.) = (+1,+1,41), w* and wd" transform to R*P and R%"", respectively,
via equation (9).

2.2. MST series

The MST Teukolsky solutions are defined in terms of the dimensionless variables,

_r_,.—r - .
X= o z=w(r—r_), (16)

leading to the series expansions,

Rin (X) — eienx (_x)—s—i€+ (1 _x)is,
X > flaFi(n+v4l—ir, —n—v—ir;1 - {—irx), (17a)
i (y+1+i7‘) (v+1+8),
Mt (v+1—ir) (y—l—l E)n
><f,’l’2F](n—l—y—|—1—|—i7',—n—u—|—i7';1+§—|—i7';x), (17b)
R'P (Z) — 21/6—171”(1/—1-l-ﬁ-&)eizzu-i-i@r (Z _ 6I{)fsfiar

Rout( ) elemc( x)iE+ (1 _x)fsfief «

— (v+1+ .
x Z Z+1 g;"ﬁl(ZIZ) Un+v+14¢€2n+20+2; =2iz),  (17¢)

4 Meanwhile, switching the sign of n; swaps this relationship, so that w™ and w°" transform to R°" and R™, respect-
ively. Changing the signs of n. and n, simply affect the overall normalization of the solutions.
5 Changing the sign of n. leads to w'P and w°*" transforming to R%¥" and R'P, respectively. Altering the signs of n,

and n;, does not affect the asymptotic relationship at infinity.



Class. Quantum Grav. 42 (2025) 165001 Z Nasipak

_s_i€+r(l/+1ff)

Rdown z :zVeiﬂ(V+1*E)e*iZZV+i6+ 7 — €k
(2) ( ) F'(v+1+¢)

X > QR Un+v+1-¢ 2n+20+2;2iz), (17d)

n=—oo

where ,F(a, b, c;x) is the Gauss hypergeometric function, U(a, b;z) is the irregular confluent
hypergeometric function, f; are series coefficients (to be further defined later), and v is the
aforementioned renormalized angular momentum parameter. Alternatively, R™ and R°" can
be expressed by the sums,

R™(x) =Ry (x) + Ry "~ (x),  R™ (x) = ByRy (x) + By "~ 'Ry" ™' (x), (18)

where By is a (v-dependent) constant defined in appendix B and,

i 4 ‘ L(1—&—i
Rg — eléK,x(_x)—.S’—l€+ (1 _x)y+|e+ ( : 5 lT)
F(V—‘rl—lT)F(V—‘rl—@
> I'2n+2v+1) _ 1
"oF (—n—v—iT,—n—v—§&—2n—2v;
X Z l/+1—l’7’) (V—‘,—] @fn( X)21(l’l vV—IT,—n—Vv 57 n V71_x)7

19)

is also a solution to the Teukolsky equation. Likewise, R" and R"" can be expressed as sums
of two other independent solutions,

R (2) = ﬁ [e7 49 sinm (v — ) RE (2) — e ™ sinm (v + )R ()] (20)
down _ sin7r(1/+§) im(v—E&) pr . —imé p—r—1
R (@) = SRS [T ORE () e TR ()] (20b)
where,

izt i, T(v+1=9)
Rl/ — 2y 1z y+15+ _ s—1€4
¢l2) =27 (2~ en) T (2v+2)

1+ o .
x Z V2V+2§"fn( 2i2)"M(n+v+1— €20+ 2n+2;2iz), 1)

and M(a,b;z) is the confluent hypergeometric function that is regular at z=0. (See

section 3.2.3 for more details about M(a,b;z) and U(a,b;z)). One can relate the solutions

at infinity and the horizon via the relation Ry = K”R{., where K is defined in appendix B.
The series coefficients satisfy three-term recurrence relations of the form,

i1 + Bk + k-1 =0, (22)
where o, 8/, and v,/ are given in appendix B. The MST series converge if v is chosen so that

v forms a minimal solution to equation (22) as |n| — oo. To obtain v, one can construct the
continued fractions,
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R = ij _ Tn _ (23a)
n—1 Br’lj—l—arI{RnJrl
R e @3h)
fn+1 Bn +rynLn—l
which together form an implicit equation for v,
RLY |, =1. 24)

If v satisfies equation (24) for any value of 7, then f is a minimal solution, because R only
converges when f; is minimal as n — oo and L}/ only converges when f is minimal as n —
—o0. Note that rather than dealing with equation (24) directly, researchers often determine v
from the analogous equation,

By + oy R+ Ly =0 (25)

Numerical algorithms for extracting v from equation (25) can be found in [14, 16]. Given a
value of v that satisfies (24) or (25), the series expansions for R™ and R°™ ((17a) and (17b)) are
formally convergent on the domain —oo < x < 0, while expansions for R* and R%*" ((17¢)
and (17d)) converge for ex < z < 0.

From the MST solutions, one can also construct the scattering amplitudes defined in
equations (4) and (5). For example, the transmission coefficients are given by,

Rin,trans — (2MI€)2X eine+(1+21$:) Z f;;/7 (26a)

JRouttrans _ e—ine+(l+f1+"—:) i (V+ 1+ iT)n (V +1 +€)n ;1/7 (26b)
= (l—ir), (v+1-9),

RUPstrans _ W72571Alieie(lneflfT")7 (26C)

R down,trans _ w—lAie*iE(mE* 'E"), (264d)

where AY is defined in appendix B. For completeness, the incidence and reflection amplitudes
are also provided in appendix B.

3. Monodromy eigenvalues of singular points

In general, monodromy theory focuses on the behavior of mathematical objects as they ‘run
around’ singular points in the complex plane. For this work, we are interested in the application
of monodromy theory to the solutions of second-order ODEs. This was previously studied by
Castro et al [18, 19] in the context of scalar waves and black hole scattering, and we will
ultimately connect their work on Teukolsky monodromy data to MST’s renormalized angular
momentum. In this section, we summarize key points from [18, 19] to provide background
and establish notation.

3.1. Background
Following the work of [18, 19], we consider ODEs of the form,

0, [U(Z) o (Z)] —V(2)¥(z) =0, 27)

8



Class. Quantum Grav. 42 (2025) 165001 Z Nasipak

though this discussion can be extended to more generic homogeneous ODEs,
026 (2) +f(2) 9.0 (2) +g(2) 9 (2) =0, (28)

via the transformation ¢(z) = Ul/z(z)e_%fzf(z,)dzlz/)(z). Note that the radial Teukolsky
equation (2) already takes the form of equation (27). Defining ¥ = and II = U(z)0,¢,
equation (27) can also be represented in reduced-order form by the first-order matrix equation,

o{2)=(y i) 8o

where U is a vector composed of W and II, and the poles of A(z) define the equation’s singular
points z;. Next, let ¥1) and ¥ be vectors that correspond to two independent solutions )
and 1,. Together these vectors form the fundamental matrix,

(¥ U = /(/) ,(/J
2(2) = (0 §) = <U(z) o1 U aw) w

Conveniently, the determinant of this fundamental matrix is related to the constant (weighted)
Wronskian of 1, and v,: det(®) = W(ty,¢2) = U(z) (¢010:002 — 120;1).

Next we consider the behavior of any solution T as it follows a closed loop 7y (in the pos-
itive direction) in the complex domain. For the differential equations considered in this work,
A(z) is meromorphic (single-valued) and the operator 9, — A(z) will always return to itself
after following +. In contrast, the fundamental matrix ® may not return to its original value
due to branch cuts of the solutions. Nonetheless, the new fundamental matrix generated by
following -y, which we denote as ®.,, also satisfies [0, — A(z)]®- = 0 and represents a solution
to equation (30). Consequently, ® and $., must be related by some invertible constant matrix
M., such that,

D, (2) = @ (2) My, €29

or more explicitly,

(1/11 (Zi +e™i (2 —zl-)) ) (Zi +e™i (2 _Zi)) )

(¥1(2) ¥2(2))|,,, M (32)

Zi

Z

for z; # oo. For points at infinity, we must first perform a change of variable £ = 1/z to bring
the singular point to & =0. Circling this point is then given by & — e>™i¢ or, equivalently,
z—e 27y,

If M., does not enclose a singular point, then -y does not cross any branch cuts, and ® will
return to itself, leading to M., =1, where 1 is the identity matrix. On the other hand, if ~y
encloses one of the equation’s singular points, then M., will form a nontrivial transformation
matrix, which we refer to as the monodromy matrix or monodromy data of that singular point.
Crucially, the form of M; depends on the chosen basis of independent radial solutions v,
and 9.0

6 Furthermore, there is residual gauge freedom in our differential equation, which will affect the values of M;. In this
work we work with the minimal form described in [19] (see section 2.1 of [19] in for more details).

9
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A convenient property of the monodromy matrices is that, for an equation with »n singular
points 21,22, .. .,2, and n monodromy matrices defined about these points M|, M>,...,M,, we
have

MMM, =1. (33)

This identity arises from connecting the individual paths around each singular point into a
single loop 7/, so that outside v’ no singular points are enclosed, leading to M{M, ---M,, =
M, =1.

3.2. Calculating monodromy data

We now summarize relevant methods for calculating the monodromy matrices of second-
order ODEs. We highlight the difference when extracting monodromy data for regular sin-
gular points (see section 3.2.1) versus an irregular singular point (of rank one) at infinity (see
section 3.2.2). Using these methods, we then construct the monodromy matrices associated
with the singular points of the confluent hypergeometric equation (see section 3.2.3). These
results will be leveraged in section 4 to connect the monodromy matrices of the Teukolsky
equation to the renormalized angular momentum.

3.2.1. Regular singular points. Consider solutions to equation (27). Based on Fuchs—
Frobenius theory [28], one can define the behavior of these solutions near a regular singular
point z, in terms of the indices ] 2 given by,

2N =1—flo— /(1 =) —4g}, 2N =1—fo+/(1—f0) —4g;,  (34a)
r oy (z—2)0.U(2) . (z—2)°V(2)
fomI ™ ue o= U (340)

If ] — X, ¢ Z, then there exists two independent solutions of equation (27), ¥ (z) and
¥5(z), with series expansions,

Wi (e z) =) (2) = -2V Y gulz—2z), (35)
k=0

which are convergent in a neighborhood around z,. Note that j = {1,2}. Thus, we can use the
series in (35) to evaluate ¢; after following a loop ~y around z, in the complex plane,

U 2+ (2= 2)) =N (2). (36)
Combining equation (36) with equation (32), it is then straightforward to deduce the mono-
dromy data at z,,

) eZ‘n’i)\q 0’
M,:Mf:< o o) (37)

demonstrating that ¢/ form the basis of solutions that diagonalize M, with eigenvalues ™Y
In the notation above, M, represents the monodromy matrix at z, in any basis of solutions, while
M? specifically refers to the form of M, in the basis of solutions with series expansions given
by (35) and normalized so that ¢j o = 1. A similar notation will also be used when representing
the monodromy matrices of irregular singular points.

10
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3.2.2. Irregular singular points.  Near an irregular singular point at infinity, we characterize
the asymptotic behavior of solutions in terms of the characteristic roots 1 and the indices
A7°, given by,

2puf° = —f5° - (f($°)2—48807 2p3 :—f(?o+\/ (f($°)2—48807 )‘j :_W7 (38)
0 J

with,

m=im | ] e -] >

Again, j = {1,2} for our two independent homogeneous solutions. From these coefficients,
one can define the series expansions,

D (2) = e (2u)™ Y djazh, (40)
k=0

where 241 = 15° — uf°, and the series are formally non-convergent unless the series coeffi-
cients d; ; vanish for all k above some finite k = kpax. Provided 7 0, then there exists two
independent solutions to equation (27), ¢7* and 3, which are asymptotic to ¢ (z) in sectors

S’j of the complex plane [26, 28],

U (2= 00) ~ U (), z€S). (41)

These wedges S’j are defined by the (anti-)Stokes lines, such that,

S}{Z:(j;)W+5<ph(2uz)<(j+;)7r5}, (42)

where ph(z) is the phase of z, and 0 < § < 1. (See figure 1.1 in [26] for a visualization of
the related subsectors S;, which are connected to those in equation (42) by S; = §;_, US;_ U
S;.) To analytically continue solutions around z = 0o, one can make use of the connection
formulae’ [26, 28, 29],

PP (z) = ¥ MY (e7HiZ) — C19b5° (2) (43a)
P5° (2) = e 7™M (e271z) + G (2), (43b)

where C; and C, are the well-known Stokes multipliers,8 which can be determined from the
limits,

amieu)P e L (=2p)" dia C2_727ri(2u)’2* i (20)" o

C, = =
! d2,0 ninolo 1B (n + 2)\) ’ dl’() n—o0 F(}’l — 2)\) ’

(44)

7 See appendix C for alternate forms.

8 See [26, 28, 29] for further discussion on the role of Stokes multipliers in second-order ODEs. Note that we use
notation similar to that of [28, 29] but with Cy replaced by (— l)"Ck. This differs from the notation in [26], as described
in footnote 4 of [26]. Therefore, C; and C; in this work are equivalent to C and Cy, respectively, in [26].

1



Class. Quantum Grav. 42 (2025) 165001 Z Nasipak

with 2\ = A5° — A{® and the coefficients d;; defined by the series expansion in (41).
Consequently, the terms on the right-hand side of equation (43a) are asymptotic to the
series (40) for z € 5‘2 ﬂ3’3, while the terms in equation (43b) are asymptotic to (40) for
zE So NS 1

We then combine these results to evaluate the solutions 1 after circling z = oo

U (e77Miz) = e TN [U° (2) + C1ys® (2)], (45a)
hs° (_2”‘)—6_2”‘)‘§C [Coe* ™27 (2) + (14 C1Coe* ™) 5° (2)] . (45D)

From (45), the monodromy matrix M, then takes the form (in the basis of solutions w‘l’f’z),

S (AR AR) s —mi(azgase) [ €7 e

Mo = S, — T S _ i) (C . clczeW]) . e
where for convenience we have defined the normalized matrix M5, with determinant
det(Mgo) = 1. Similar to M, and M® in section 3.2.1, M, represents the monodromy matrix
at infinity for any basis of solutions, while M3 is the specific form of the monodromy matrix
for the solutions zﬁioz, which are asymptotic to the series expansions (40) with normalizations
dip=1.

Inspecting equation (46), we immediately observe that ¢ does not diagonalize M des-
pite 17 being the natural basis for describing the asymptotic behavior of solutions. However,
one can still construct solutions that diagonalize M, which we refer to as 45, by relating
them to 97 using the eigenvectors and eigenvalues of equation (46). To solve for the mono-
dromy elgenvalues we follow [18, 19] and consider that, in the basis of 157, the monodromy
matrix takes the form,

ML, =

oo

. - e - 2T iVoo
e iy )Mgo — e TiWT 4y )(e 0 e—27(3il/oo>ﬂ (47)

—2miv®

where e are the monodromy eigenvalues of 15", 210, = 1;° — v°, and again we define
.

the normalized matrix M2, with unit determinant. Because M. is equivalent to M5_ up to a
change of basis, we equate the determinants and traces of both matrices, leading to,

e 2miTH1T) = o 2mIATTAAT) 2008 27Va0 = 2¢0827\ + A C C, (48)

from which one can calculate 1/ given the combination C;C;. Note that equation (48) is par-
ticularly useful for extracting the eigenvalues, because the combination C; C, does not depend
on the overall normalizations of ¢{° and 1$° even though C; and C, do, individually. [This
is evident from equation (44).]

3.2.3. Monodromy data of confluent hypergeometric functions. ~ Now we apply these meth-
ods to extract the monodromy data of the confluent hypergeometric equation,’

d>w dw
Zﬁ+(b7 )d—zfaW:O, (49)

9 Instead of bringing equation (49) into the form of equation (27), for example via the transformation w(z) =
ee/277b/2 W(z), we simplify our calculations by directly applying the methods from section 3.2.1 and equation (3.2.2)
to the solutions w(z). One can verify that performing this analysis for W(z) or w(z) leads to consistent results for the
monodromy data.
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which possesses a regular singular point at z= 0 and irregular point at z = oco. Standard solu-
tions to equation (49) include the regular and irregular confluent hypergeometric functions,
M(a,b;z) and U(a,b;z), first introduced in section 2.2. As their names suggest, M(a,b;z) is
regular at z=0 and is represented by the series solution,

M(a,b,z) =) == (50)
; b) k

which is entire in z € C, while U(a, b;z) is associated with the irregular singular point and is
defined by its asymptotic behavior as z — oo,

Ula,b,2) ~2*> (- —)z . 51

k!
k=0

First we analyze the monodromy matrix at z=0. Solutions near the regular singular point
are defined by the indices A\ = 0 and \) = 1 — b, with series representations,

w (z = 0) ~ W ( ch W2 Wl (z— 0) W (z) :zlbec;kzk. (52)

In the case of the hypergeometric functions, the series coefficients take the compact forms,

(a); (a—b+1),
- = 53
Clk ), C2r= "5 DR (53)
from which one can identify w9(z) = w)(z) = M(a,b;z) and w9(z) =W3(z) =z' "M(a— b+

1,2 — b;z). From equation (37), it is straightforward to assemble the monodromy matrix at

z=0,
1o,
My = (0 ezmh> . (54

To construct the monodromy matrix of the irregular singular point M., we consider that
the solutions near z = oo are defined by the characteristic roots u{° = 0 and u5° =1 and the
indices A{® = —a and AS° = a — b, with asymptotic solutions,

Wi® (2= 00) MW () =2 D digzF, Wit (2 00) st (2) =Y duzh (55)

Once again, the series coefficients have the compact forms,

(@) la—b+1) (b—a) (1 —a),

k
dij=(=1) k! : k! ’

dox = (56)

leading to w°(z) = U(a,b;z) and ws®(z) = e*™(@=DetU(b — a,b,eTi"z).
Because we have analytic expressions for the asymptotic coefficients of w® and w5°, we
can directly evaluate the Stokes multipliers using (44), leading to

—mi(2a—b) 2ri

=T p—aT(—a) 7)

2mie
F'@T(a—b+1)’

Cr=-
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and

472

CICZGZWi)\:_F(a)F(l _a)r(b_a)r(l—b‘i'a)

= —4sinwasint (b—a). (58)

Combining equations (57) and (58) with the fact that 2\ = 2a — b and A\{° + A\3° = —b, it is

straightforward to read-off the monodromy matrix via equation (46). As expected, we observe

that U(a, b, z) and e*U(b — a,b,—z) do not diagonalize M., as discussed in section 3.2.2.
Similarly, we can calculate the eigenvalues with equation (48), yielding

e 2mintrn) — o =2miATT AT , COS2TVs, = COST D, 59)
or

v+ =—b+n', V5°—v®=+(b+2k"), (60)
for arbitrary integers k' and n’. Choosing k' = n’ = 0, we have v{° = 0 and v5° = —b, leading
to the diagonalized monodromy matrix,

M2, = ((1) ez?w) : (61)

We can also derive (61) using the identity equation (33). When both monodromy matrices share
a common basis, MoM, =1 or Mo = M, I Comparing equations (61) and (54), we find that
MP = (M5)~!. Thus they share the same basis, and the solutions M(a,b,z) and z' ~*M(a —
b+ 1,2 — b,z) diagonalize both matrices'°.

4. Monodromy eigenvalues of the Teukolsky equation and their relation to
renormalized angular momentum

We now apply the monodromy methods of section 3 to the radial Teukolsky equation (2). First
we construct the monodromy matrix at r = r, which we denote by M+,. In the basis of R™
and R°", the monodromy matrix is explicitly defined by the transformation,

M.

I'*)IZF

(Rin [r.,_ +e™ i (r— r+)} , R [r+ +e™ i (r— r+)} )

= (R"() . R

r~>r+

Here we continue the notation established in section 3 and use Mﬁi to represent the form of My
in this natural choice of basis. From the expansions in (6), we observe that these horizon solu-
tions possess the singular indices A%, =ie, and \}{ = —s —ie, . Thus e*>" <+ are the mono-
dromy eigenvalues at the horizon, leading to the representation Mg_[ = diag(e?™+ e 2T ¢+),
Next we examine the monodromy matrix at infinity, which we refer to as Mz. From the

expansions in (14), we can read-off the characteristic roots Z;LUIP =0and 247, = —2ike and
the indices A, = —1 —2s and A],,, = —1 — 2ie for the infinity solutions R"(z) and R*""(z).

10 Furthermore, because the series representation (50) of M(a,b;z) is entire in z, we can use (50) to directly evalu-
ate M(a,b;e=2™1z). This also makes it apparent that w9 (z) and w9(z) diagonalize the monodromy matrices of both
singular points.
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This leads to ;1 = —ike and A = £.!' By calculating the associated Stokes multipliers C; and
C,, one can also construct M% via equation (46), leading to,

(Rup (e—Zﬂ'iZ) , RdOWn (e—ZTriZ) ) M%, (62)

— (R"() , R™(2))

Z— 00 Z—00

where we now use the MST radial coordinate defined in equation (16) to study the infinity-side
solutions.

Because the MST expansions are composed of analytic functions, we can also use
them to directly evaluate R (e~2"iz) and R©°""(e~2"!z) and extract the monodromy eigen-
values at infinity. To simplify this calculation, we first investigate the monodromy data
of RY(z) and Rz”"'(z). In section 3.2.3, we demonstrated that M(a,b;z)—rather than
U(a,b;z)—diagonalizes the monodromy matrix at infinity for the confluent hypergeometric
equation. Thus, we might expect that R%(z) and R” ™' (z)—which depend on M(a,b;z) (see
equation (21))—form a natural basis for examining the monodromy data of the Teukolsky
equation. Because the series (21) is analytic and convergent at z = o0, it is straightforward to
evaluate R%(e~2™iz) as 7 — oo,

RZ‘ (efzﬂ’iz) _ 6727riVRE (Z) , REV*I (6727riz) — CZWiuREV71 (Z), (Z N OO) . (63)

Immediately, we see that RY. and Rz”~" do in fact form a basis the diagonalizes Mz, and
e 2™ are their monodromy eigenvalues. Thus, (up to some arbitrary integer) the renormalized
angular momentum v is the (logarithm of the) monodromy eigenvalue at infinity (as well as its
reflected value —v — 1), i.e. v = £ + Ny for Ny, € Z.

Combining equation (63) with (20), we can extract M% from equation (62),

(64)

MS e—2mig 2iefi7r(u+.£)Blrans sin (I/ _ g))
z )

- <2iei”(”_5) (Bs) sinr (v 4 €) 2cos2my — e AmE
where BUans = Rdown.trans /pup.trans Thig eads to the Stokes multipliers,
C) = 2ie MW H3E) Brans ip 7 (1) — ), Cy = 2™ (B sinm (v +£). (65)

Furthermore, from these solutions we can verify that det(M>) = 1 and Tr(M5.) = 2cos27v =
2c0s 27V, as expected.

5. Numerical methods for calculating the monodromy eigenvalues of the
radial Teukolsky equation

We now highlight numerical methods for extracting v via the monodromy eigenvalue
equation (48). In section 5.1, we outline a numerical procedure for calculating the combin-
ation C;C,e2™* based on the work of Daalhuis and Olver [26]. In section 5.2 we provide
numerical calculations of v, which are obtained with these monodromy methods, and we com-
pare our numerical calculations against those reported in [19]. Then in section 5.3, we discuss
the numerical stability of equation (48) and highlight regions of parameter space where (48)
experiences catastrophic cancellations. We also propose methods for mitigating these numer-
ical issues.

1 Alternatively, from the r-coordinate expansions in (7), we have roots Zuuzp =ie and 2u§0wn = —ie and indices
AL =—1—2s+icand AL = —1—ie, leading to 2 = —ie and 2X = 2¢.

down
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5.1 Calculating Stokes multipliers for the Teukolsky equation

Unlike the case of the confluent hypergeometric functions in section 3.2.3, we cannot dir-
ectly evaluate C; and C, from equation (44), because we do not have analytic expressions
for the series coefficients that define the asymptotic behavior of the MST solutions R"(z)
and R%""(z). Instead, we approximate the Stokes multipliers using the results derived in [26],
leading to the expressions,

m—1 -1
Ci = —2miby, (2p)" e ™A {Z —2p)" " by T (s+2)\n)} +0(s™),  (66a)
n=0
m—1 -1
Cy = —2miby, (2p) {Z (21)" " byl (s —2X — n)} +0(s™), (66b)
n=0

for fixed integers s and m.'> Here, l;m represent the asymptotic series coefficients for R*P(z)
and R%""(z).

To simplify the calculation of C; and C,, we make two adjustments to equation (66). First,
rather than calculating the Stokes multipliers for R"?(z) and R%""(z), we instead solve for those
associated with the confluent Heun solutions w" (%) and wi°*"(2). Recall that these functions
are related to the MST solutions via (9). The advantage of the confluent Heun solutions is that
the coefficients of their asymptotic expansions (see equation (14)) satisfy simple three-term
recurrence relations given in (15). Thus they are much more efficient to numerically calcu-
late. Furthermore, as shown in appendix C, the transformation (9) preserves the values of C,
and C, (provided both sets of solutions are normalized to the same values at the boundar-
ies). Therefore, by calculating C; and C, for w*P(%) and w9°""(Z), we also obtain the Stokes
multipliers for the Teukolsky solutions.

Second, we introduce the auxiliary coefficients,

= (20)" " bra(—2N),_,, S =(—21)""b2u(2N),_,,  (67)

which, when combined with equation (66), leads to,

—1
27ri(2p)2)‘e*27”)‘ 27r1(2u 2/\czé
e P

12

=0
(63)
This provides a compact expression for the combination C; Cre?*™ 1A in equation (48),
my— 1 nmy— 1 -1
CCpe>™ 1 — 8w Asin2mAcy (€5 { Z Z cshkcin} . (69)
n=0 k=0

Note that the coefficients ¢; , also satisfy three-term recurrence relations, but they are numer-

ically unstable. Instead one can alternate between the recurrence equation for I;M givenin (15)

12 Note that as s — 0o, the n =0 term dominates each sum, and equation (66) reduces to equation (44). In fact, [26]
uses equation (66) to derive (44), rather than first defining the Stokes multipliers in terms of these asymptotic limits,
as we have done in this work.
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and the stepping relation,

o (s
R e e T 10)
to simultaneously construct BJ- nand ¢; , for 0 < n < s. For large values of s, it is also advant-

ageous to normalize the weighted coefﬁ01ents Cjpqat each step in the recurrence so that cJ =1.
This avoids numerical overflow issues when takmg the ratio ¢j ;/c}, due to ¢} ; and ¢j, both
growing as ~ I'(s). One can then vary m and s until (69) converges to a numerlcally satlsfactory
value. A simple approach is to set m = ceil[s/2]—where ceil[x] is the closest integer greater
than x—and increase s until the value of C;C,e2™* does not change within some numerical
tolerance. Alternatively, one can choose m so that the sum truncates at the coefficient ¢} , with
the smallest magnitude (for fixed s).

5.2. Extracting the renormalized angular momentum

We present numerical results for the renormalized angular momentum v based on the compu-
tation of the monodromy parameter v, in equation (48). Because v is not uniquely defined
by the MST constraint equations (24) and (25)'® and due to branch cuts in arccosz, there is
residual freedom in relating v and v,. In this work, we relate the two parameters via,

v=I1—Avy, Av = arccos (cos 2TV ) (71)

where arccos z takes its principal values as defined in [28]. Through this choice, (71) is consist-
ent with low-frequency expansions of v reported in the post-Newtonian literature (e.g., [15,
20, 301).

First, we reproduce the monodromy eigenvalues for the various quasinormal mode frequen-
cies reported in tables B1 and B2 of [19].* In table 1, we report the monodromy eigenvalue,

ugé), based on the frequencies w;ﬁanM(l) used in [19]. We also report the relative difference

between u&lj) and the values given in [19]. Because these quasinormal mode frequencies are

less accurate in the near-extremal limit (a 2 0. 999) in table 2 we compute a second value

) based on the quasinormal frequencies wlmn M®)

[31] as a comparison.

We find that our monodromy eigenvalues are consistent with those computed in [19]. Most
values agree with a fractional difference < 10>, which is approximately the level of precision
to which the data are reported in [19]. However, our results significantly differ at the level of
~ 1072 in two instances: (a/M,l,m,n) = (0,0,0,2) and (a/M,l,m,n) = (0.2,0,0,0). In the
first case, the disagreement is reduced to ~ 1073 if we replace the dimensionless frequency
Mwé%‘l\",vl 0.075742 — 0.600080i given in table B1 of [19] with the slightly more accurate
quasinormal mode frequency 0.075742 — 0.601 080i. Therefore, we use both frequencies in

table 1. For (a/M,l,m,n) = (0.2,0,0,0), the source of the disagreement is less clear. While

our comparison does indicate which result is more accurate, we find that our value z/éo) is

produced by the Python package gqnm

13 One has the freedom to shift the value of v by an integer or flip its sign, and it will still lead to convergent MST
series solutions.

14 Reference [19] calculates the eigenvalue air, Which is related to our monodromy eigenvalue by Voo = —iCtir.
Additionally, their spheroidal eigenvalue K; is related to the eigenvalue in equation (2) via Al =K, + d?w? —
2maw.

slmw
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Table 1. Monodromy eigenvalues for the quasinormal mode frequencies reported in
tables B1 and B2 of [19]. We label overtones n using the conventions of gqnm [31].

The frequencies Mo.)lQNM<l>

o are the quasinormal mode frequencies published in [19].

The monodromy eigenvalues produced by these frequencies are given by v In the
last column we give the relative difference |1 — cos 27r1/c(le> / cosh 27|, where iy 18

the monodromy eigenvalue reported in [19]. The values of Mw

cated below 10~° for brevity.

QNM(1)
Imn

1)

and v5,’ are trun-

a/M 1 m n M M) v Rel. diff [19]
0.0 0 0 0 0.110455—0.104896;i —0.004894 —0.106880i 1.1 x 10~°
0.0 0 0 1 0.086117—0.348052i —0.395024 —0.184325i 2.3 x 1076
0.0 0 0 2 0.075742—0.600080i —0.141796+0.196084i 1.3 x 10~2
0.0 0 0 2 0.075742—0.601080i —0.139820+0.196497i 2.1 x 1073
0.2 0 0 0 0.110768—0.104512i —0.004188 —0.106923i 3.1 x 102
0.4 0 0 0 0.111699—0.103253i —0.001950 —0.106939 1.4 x 106
0.6 0 0 0 0.113171 —0.100698; —0.002224+0.106438; 1.8 x 10~°
0.8 0 0 0 0.114537—0.095701i —0.008975+0.103590i 1.1 x 10~
096 0 0 0 0.111452—0.089387;i —0.012920+0.094805; 4.0 1077
098 0 0 0 0.110616—0.089481i —0.012110+0.094050i 8.4 x 1077
099 0 0 0 0.110447 —0.089499i —0.011954+0.093895i 8.1 x 1077
0999 0 0 0 0.110384—0.089398; —0.012009+0.093741i 1.0 x 10~°
09999 0 0 0 0.109263 —0.090699; —0.009743+0.093760i 1.0 x 1076
09999 2 2 0 0.993235—0.003525; 1.501539+0.944336i 1.2x 1075
0.9999 2 2 1 0.993220—0.010597;  1.504795+0.946068i 4.9 x 106
09999 2 2 2 0.993175—0.017657i  1.508539+0.949417i 1.0 x 1073

Table 2. Monodromy eigenvalues for the quasinormal mode frequencies reported in

tables B2 of [19] for a/M = 0.9999. We label overtones n using the conventions of qnm
QNM(2)

[31]. The frequencies Mw

Imn

refer to the quasinormal mode frequencies calculated

by gnm. The monodromy eigenvalues produced by these frequencies are given by v,
a/M l m n Mwl?nliM(z) yé?

0.9999 0 0 0 0.110244 — 0.178865i —0.011852 + 0.093632i
0.9999 2 2 0 0.993234 —0.007051i 1.501539 +0.944 334
0.9999 2 2 1 0.993222 —0.021 193 1.504794 4 0.946 068i
0.9999 2 2 2 0.993112 — 0.049388i 1.513023 +0.954197i

much closer to the monodromy eigenvalues for neighboring spin values, i.e. (a/M,l,m,n) =
(0,0,0,0) and (a/M,l,m,n) = (0.4,0,0,0). Therefore, our value is consistent with nearby and
verified results. Furthermore, we find that, in the near-extremal limit a/M = 0.9999, some of
the frequencies computed by qnm differ from those used in [19], and thus lead to slightly
different monodromy eigenvalues, as evidenced in table 2.

Next, in figure 1, we plot Av (left) and cos 27v (right) as functions of (dimensionless) fre-
quency Mw for the Teukolsky parameters (s,l,m, x) = (—2,5,2,0.9). As recognized in pre-
vious works (e.g. [14]), v evolves on and off the real axis as the frequency increases. This is
one reason why root-finding methods have struggled to efficiently compute v: it is not always
clear where in the complex plane the zeros of equation (25) are located for arbitrary values of

18
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Figure 1. The monodromy eigenvalue as a function of (normalized) frequency Mw for
the Teukolsky parameters (s,,m, x) = (—2,5,2,0.9). The left plot tracks the frequency
evolution of v, while the right plot tracks cos27v. While cos27v remains real for all
real frequencies, v jumps on and off the real-axis as we increase Mw.
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Figure 2. The monodromy eigenvalue as a function of (normalized) frequency Mw for
the fixed Teukolsky parameters (s,m) = (—2,2). The left plot demonstrates the effect
of varying [ with x = 0.1 fixed, while x = 0.9 on the right.

(s,1,m,x,w). While v can be complex, we observe in our numerical calculations that cos 27v
is always real for the radial Teukolsky equation when (s,l,m, x,w) are real.

The evolution of cos27v is also highly dependent on the value of /. In figure 2, we plot
cos27v as a function of Mw for the Teukolsky parameters (s,m,x) = (—2,2,0.1) (left) and
(s,m,x) =(—2,2,0.9) (right) but with varying values of I. As we increase [ or , v remains
on the real axis over a larger range of frequencies. On the other hand, in figure 3 we plot
cos27v versus Mw for the Teukolsky parameters (s,/, x) = (—2,12,0.1) (left) and (s,1,x) =
(—2,12,0.9) (right) but with varying values of m. Because m only appears in the Teukolsky
equation through the combination my, the m-dependence is very weak at low spin values (see
the left panel of figure 3), while at higher spins varying m can either suppress or enhance
the critical frequency at which cos27v exponentially grows with Mw (see the right panel of
figure 3). However, the effect is not as dramatic as increasing /, and the dependence of cos27v
on my is much more complicated. For example, as we initially increase m, v remains real (e.g.
|cos2mr| < 1) for a larger range of frequencies in figure 3. Then, the trend reverses for m > 9,
and cos 27v exponentially grows at lower and lower frequencies. This suggests that the value
of cos 27v is primarily impacted by the values of / (more specifically the spheroidal eigenvalue
A7) and w, while the values of y and my have subdominant effects.
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Figure 3. The monodromy eigenvalue as a function of (normalized) frequency Mw for
the fixed Teukolsky parameters (s,/) = (—2,12). The left plot demonstrates the effect
of varying m with x =0.1 fixed, while x = 0.9 on the right.
1044 — | 2cos2nv | l()[)’
]()34 """ | 2cos2av, | , § 4
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Figure 4. The left panel plots 2cos27 v (red solid line), 2cos2w\ = 2cos27€ (yel-
low solid line), and C;C,¢*™* (dashed purple line) as functions of (normalized)
frequency Mw for the fixed Teukolsky parameters (s,/,m,x) = (—2,20,2,0.9). A
machine-precision calculation of the monodromy eigenvalue 2cos2mv. (dot-dashed
blue line) is also plotted to demonstrate the effects of catastrophic cancellation. The
right panel then displays the fractional error between cos 27 v and cos 27 ve.

5.3. Numerical stability of the monodromy approach

One numerical limitation of this monodromy approach is that equation (48) suffers from cata-
strophic cancellation for larger values of both / and Mw. In the left panel of figure 4, we plot
2cos 27\ (yellow solid line), C;C,e*™ ™ (dashed purple line), and 2cos 27 v (red solid line)
as functions of Mw for the Teukolsky parameters (s,l,m,x) = (—2,20,2,0.9). As the fre-
quency increases, 2cos 2\ and C; C,e*™* grow exponentially, while the monodromy eigen-
value remains bounded by |cos27v| < 1 up until Mw ~ 4.5. Therefore cos 2w can only be
extracted after subtracting off several orders of magnitude between 2cos27\ and C;Cre?™ A,
We can estimate the precision loss by the fractional difference |1 — cos2m\/ cos27v| ~ ™
for cos2wv ~ 1. For frequencies Mw = 2.75, one loses over 15 digits of precision due to cata-
strophic cancellations in (48).

To highlight the impact of this catastrophic cancellation, we plot two different numerical
values for the monodromy eigenvalue in figure 4. The first value, which we denote as cos 27y
(solid red line), is accurately calculated using arbitrary-precision arithmetic. The second value,
which we refer to as cos2nv, (dot-dashed blue line), is calculated using machine-precision
arithmetic, leading to inaccurate results at higher frequencies. The fractional error between
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Figure 5. The same as figure 4 but for the Teukolsky parameters (s,/,m,x) =
(-2,2,2,0.9).

these two calculations, i.e. |1 — cos27v/ cos27v|, is plotted in the right panel of figure 4. As
expected, the fractional error becomes larger than unity for frequencies Mw 2 2.75, indicat-
ing that cos27v, is completely dominated by numerical noise. This is also evident in the left
panel of figure 4: cos2wv, grows exponentially with the numerical noise for the same range
of frequencies.

The degree of catastrophic cancellation is also heavily impacted by the value of /, as one
might expect based on figure 2 and the discussion in section 5.2. In figure 5 we repeat this ana-
lysis for [ =2. We observe a much smaller degree of cancellation, because, for smaller values
of [, | cos 2zv| is much closer in magnitude to cos 27\ across frequency space. In other words,
little cancellation occurs in (48). On the other hand, as demonstrated in figures 2 and 5, cos 2w
remains bounded over a larger range of frequencies for higher -modes. Thus the cancellations
grow to be more and more catastrophic as both Mw and [ increase.

To partially circumvent this issue at large / values, we make use of the asymptotic beha-
vior of cos2mv. In particular, when |cos2mv| < 1 but Al >> 1, we expect that cos2mv ~
—cos2m VT, Defining, A\c = AT + s(s + 1), we form the ansatz,

cos2mw ~ —cos2m A2+ A2 4 AP 4 v P 0 (0] 72)

We then numerically calculate cos 27 v at large values of \” and extract the following coef-
ficients,

vy ==+ (m )5—1(15+ 2)i (73a)
1= X 2 4 X 47
1 1 L,\e 1[13 _, 30 3m® L)\ L] é
YT T8 mx(8 S)2+2[16 3s+<16 AR
3 4 4
mx n € LIS a0 ) €
+ (35+X)8 32< 5 35x* + ) 16 (73b)

while vs and v are given in appendix E.

There are several limitations to this expansion. First of all, the series is asymptotic and
not guaranteed to converge for arbitrary values of A¢ and € = 2Mw. In particular, the terms
have the frequency scaling v ~ €¥*!. Consequently, ;| will not decay as k — oo for large
enough values of e. Additionally, the expansion assumes |cos 27| < 1, but we do not know
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Figure 6. Comparing exact calculations of cos 27v (blue crosses) to the values predicted
by the asymptotic expansion in (72) (red circles) as functions of / > |m| for various

values of (m,Mw) but with (s, x) = (—2,0.9) fixed.

a priori whether or not this is true for arbitrary values of (s,/,m,y,w). However, when
Vok+1Ac, this indicates the asymptotic expansion is breaking down and that cos 27y is

Vakt3 2
growing exponentially with frequency rather than oscillating with the value of A¢. In figure 6,

we compare the asymptotic expansion in (72) (red circles) to an ‘exact’ calculation of cos27v
(blue crosses) via equation (48). We plot both the exact and asymptotic values as functions
of I > |m| for various combinations of m and Mw. Taking the ‘exact’ calculation to be the
true value, in figure 7, we plot the absolute errors of the asymptotic results. As we expect,
the asymptotic expansion is most accurate at small frequencies and large values of . At the
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Figure 7. The absolute error between an exact calculation of cos 27 and the asymptotic
expansion in (72) as a function of / for the same values of (s,/,m, x,Mw) as displayed

in figure 6.

frequency Mw ~ 2.75—where we expect to lose all machine-precision information due to cata-
strophic cancellation—the asymptotic expansion is able to recover cos 27 within a few digits
of accuracy for / 2 16. Thus the asymptotic expansion struggles at low [ but high Mw, where
cos2mv is transitioning to its exponential growth with frequency. Ultimately, this asymptotic
approach may work better as an initial guess for the value of v, which can be combined with
previous root-finding algorithms that rely on the MST constraint equation (24) or (25) to
extract v.
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Alternatively, one could resum or reexpand (72) to also take into account the asymptotic
behavior v ~ —ie for Mw > 1. One choice is to expand in (A¢c — €2)~!. This would lead to the
correct behavior in the two asymptotic limits A\¢c — oo and € — oo, but the expansion would
break down for A¢ = €2. Thus, one would still require a different series representation for the
transition between the two regimes. We leave further investigations of these expansions for
future work.

6. Conclusion

In this work we demonstrated that MST’s renormalized angular momentum parameter v is
not merely an auxiliary parameter, but is directly related to the monodromy eigenvalues of
the irregular singular point of the radial Teukolsky equation in Kerr spacetime. To establish
this relationship, we first recognized that the Teukolsky solutions RY. and Rz"~" described in
equation (21) (and likewise Rj and R, ¥~!in equation (19)) diagonalize the monodromy mat-
rix at infinity and provide a natural basis for studying the behavior of the Teukolsky solutions
near this singular point. In section 5 we outlined practical numerical methods for obtaining v
from the Stokes multipliers and monodromy eigenvalues of the Teukolsky equation by combin-
ing equations (48), (69), and (71). Using these methods, we then calculated the renormalized
angular momentum across the parameter space and found that cos27v is always real when
the Teukolsky parameters (s,l,m, x, Mw) are real. This is in contrast to v, which can be real or
complex even when (s, [, m, x, Mw) are real. We also highlighted limitations to this monodromy
approach, particularly issues of catastrophic cancellation when evaluating equation (48), and
proposed potential methods for mitigating these problems, which make use of new asymptotic
expansions of cos27v in (72).

Naturally, one can use these numerical methods to calculate v and evaluate the MST series
solutions. Alternatively, due to the relationship between the Teukolsky and confluent Heun
equations, one can also construct radial Teukolsky solutions by leveraging software pack-
ages that now include confluent Heun solutions within their special function libraries, such
as MATHEMATICA’s HeunC function. Combining these special functions with the MST amp-
litudes in equations (26) and (B5)—all of which depend on v—one can obtain any independent
set of radial Teukolsky functions.

One can also make use of the MST amplitudes (see appendix B) and v to construct scat-
tering data in Kerr spacetime, such as greybody factors or tidal Love numbers. Furthermore,
over the past decade, there has been a flurry of research connecting monodromy data, con-
formal blocks, supersymmetric gauge theory, and the Painlevé VI transcendent to obtain ana-
lytic expansions of black hole quasinormal modes and scattering amplitudes (e.g. [18, 23,
25, 32, 33]). Connecting v to monodromy also connects it to these various approaches. For
example, our results verify that equation (3.6) in [23] (i.e. a = —1/2 — v) is exact.'> Thus this
work further elucidates the rich relationship between the MST solutions and scattering theory.

Data availability statement

The data cannot be made publicly available upon publication because they are not available in
a format that is sufficiently accessible or reusable by other researchers. The data that support
the findings of this study are available upon reasonable request from the authors.

15 Reference [23] only establishes this equality to 9th post-Minkowskian order.
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Appendix A. Recurrence relations for expansions of confluent Heun functions

Solutions to the confluent Heun equation (8) can be approximated by the series expansion
around z = 1, as expressed in equation (12). The coefficients d; ; in (12) satisfy the three-term
recurrence relation (13) with,

All=oacu+ecu (n+ Nt —1), (Ala)
B =n?+n(ycu + dcu + ecn + 2701 — 1)

+ M (ven + Ocu +ecu + A — 1) — gen + ac, (AlD)
Cli=(n+1+ M) (n+dcu+ ). (Alc)

Similarly confluent Heun solutions are asymptotic to series expansions around z = 0o, as
given in equation (14). The coefficients b;; in (14) satisfy the three-term recurrence rela-
tion (15) with,

AT, = — [acu + i (e +8cn +2k—2) + (k= 1) ecu]

X [OéCH — Ycu (,u,I + ECH) + Senp! +k <2/4/I + ECH)] ) (A2a)

Bfk = M,-I8CH (ven — (yeu + Scu)? 4 dcu (1 +ecn) — 2k (Yen + dcn — 3ecn — 2k —2) — 4qcn)
- (MJI) ’ ((ven + dcn —2) (veu + Scn) — 4 (Scnecn + & + 3kecu + k) + 4qcn)
+acu (ECH (—’YCH —dcn +2k+ 4;1/-1 + 1) + 4sz <k+ M,I> + ZMjI + 5%1-[)
+4 (ujz>3 (Scu + 2k) + €2y (k(—vyeu — dcu + k+ecu+ 1) — gen) + oy, (A2b)

Ch=— G+ 1) (2F + sCH)3 : (A2¢)

Appendix B. MST methods

The recurrence relation (22) for the MST series coefficients f, is defined in terms of recurrence

coefficients o) =A,4n, By = Byyn, and vy, =A_,_,_1, wWhere,

e (L4 148) (L+1+&) (L+ 1 +iT)
N (L+1)(2L+3) ’

L (Bla)

By =L(L+1)—Ac+é +err [H—L(Lfil)} (B1b)

Recall that A\c = AT+ s(s + 1).
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We also define the following coefficients to condense notation when relating the different
homogeneous solutions in equations (18) and (26),

, TA+&+in)P(1+v =T (1+v—ir)
T =i T (1+v+ (A +v+ir)

-1
KY = e (er)' ™" 27" (ch,n_r> ( > Dn,r_n> , (B2b)

(B2a)

n—=——oo
7r1 F l/+1_
A =2 1+§ (v+1=g - \¥ T2 S) B2
L(v+1+¢) ,;mf"’ (B2)
i +14¢)
AV = 1€ FwHIHO) )" Vin , B2d
PR e ®20

where,

T(1—€—ir)T2nt2v+1) (-n—v=E§) (~n—v—ir)m
T(ntv+1—&T(ntv+1—ir) (—2n—2v), i

CnJ = (6'%) o

(B3)

i Lntv+1-6) (4148, (ntrv+1-8,p

Duj = (0" T e, @n+2v+2), I

(B4)

and K¥ can be computed using any integer » in equation (B2b).
By matching to the asymptotic behavior of the MST solutions to equation (5), we also
provide their reflection and incidence scattering amplitudes,

ginine _ [ g i oimw sinm (v — &) SINT(V = &) vt ] godownmans. (B5a)
sinm (v + &)
m gef |:Ku + lel'/ru —v— I:| Rup tran% (B5b)
out inc __ BVKIJ 717r1/ Sll’lﬂ'( 5) Bfufleufl Rdown,lrans’ (BSC)
sinm (v + &)
out jref |:B K + lel‘n'l/B—l/ IK—V 1] ,R/up,trans7 (B5d)
i D™V [sinm(v—£&)e ™+ sing (v +€)ie ™ e
RuPine _ Rout;trans B5
BYsin2mw [ K” ke ’ (BSe)
1 D¥sinm (v —§€)e ™+ pvTlging (b4 €)ie ™)
up,ref in,trans
R = v { Kv B K—v-! R ' (B3
Rdown,ine _ pv! sinm (v + &) et _ ie ' ROu rans (B5g)
N BYsin2mv K K-v-1 ’ &
X : +£) Dueiﬂ'(lz—f) D—u—lie—iwf . )
Rdown,ret _ sm7m (V Rinstrans B5h
sin27v K + K-v—1 ’ (BSh)
with,
. B! _ _sinw (v—&)sinm (v — 17') (B6)
B—v-1_pv sin2rsinm (€ + i)
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Appendix C. Connection formulae

Consider a solution 1/7°(z) to equation (27). Recall from equation (41) that 1)>°(z) is asymp-
totic to the series expansion 12)100 (2) (see equation (40)) in the wedge y ; of the complex domain

(see equation (42)). Solutions in neighboring sectors {Sj+2,§j+1,§j} are then related via the
connection formula,

,(/}joiz (Z) = Cﬂb]oil (Z) + ,(/JJOO (Z) i (C])
where,
%O-fzk (Z) _ e27rik)\jf’° wjg)o (6727rikz) , (C2)

with A>° = AT if j is odd and A\7® = A3® if j is even. From this, one can derive (43).

Appendix D. Equivalence of Stokes multipliers

We briefly demonstrate the Stokes multipliers associated with the MST solutions R'P/4°%" (7)
defined in equations (17¢) and (17d) are equivalent to the transformed radial functions
wUP/down () “which satisfy the confluent Heun equation (8). Using the transformation defined
in equation (9), along with connection formulae (43), leads to the relations,

e TR (e721Z) = R (2) + CLRM (2) (Dla)
_ iie_ (2 _ l)ie+ [Wup (2) + Clwdown (2)] ’ (D1b)
e 2RIV (e2T17) = RIV (2) — CLR™P (2) (Dlc)
= (2 1) Wi () — G (2)], (D1d)

where C; and C, are the Stokes multipliers associated with R'P/9°""(z). Furthermore, as we
approach infinity, equation (9) also yields,

Rup/down (e$2ﬂ-i2) — e:|:27rezie, (2 _ l)ie+ eieniwup/down (e$27r12) ,(Z N OO) (DZ)
Combining equation (D1) with (D2) then leads to,

Wup (6727ri2) _ Wup (2) + Clwdown (2) ; (D3)

e—47rewdown (627Ti2) _ Wdown (2) _ CzWuP (2) , (D4)

which holds for all z, since w'P/9°%" (e =2715) and w"P/4°%"(3) are all independent homogeneous
solutions of (8). Because equation (D3) is equivalent to the connection equations (43), C; and
C, must also be the Stokes multipliers for w'P/4%" (7).

Appendix E. Higher-order coefficient for asymptotic fit of the monodromy
eigenvalue

The higher-order fitting coefficients v5 and v; for the asymptotic expansion of cos27v in
equation (72) are given by,

W= (5 = (5)
n=0
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with subterms,

o _ 1
Y5 T 1024

a_mx (3 2

YsTTR (16 S)’

@_ 65 37 (3 5\ X[17T $(5 .o 2 L _
T Tsn T r (4 C) e 2 et ) (e
pP = X {% ( 72 ) [38 (3 - 852) _sz] }

o = 105 (5 965 ) X {Z (119+96s ) —945m2} +§—; {116 (13—96s2) - ISmZ} ,

512 32
(s)_ mx (9009 ) %
vs = 3 (—2 189x~ + 2
©__ 1 _ _
= - (51051 9009y> — 63" +5x)
and,
o___5
Y1 T T 30768
ay_ mx (5 5261s* 855" 17s°
v, =——"S | — — — +
7 64 \ 16 3598 1799 ' 1799
@ 51 51s* 155 2| 131 6357 155
V. = — —_— _— 7—74-7
7 4096 256 32 2 |2048 128 16

2 (3 226758 | 3170558 492550
256 ' 43176 ' 10794 5397

2 1256 " 28784 T 14302 T 14302 X |256 T 28784 14392 14392
L (35201 85 17
16 3598 ' 1799 1799 ’

L 5{5481 1055 105s* 2{1481 515 95"
@ _

L Smx{IZS 38005 252795 7897 xz[” 57458 8313s*  26555°
{

42048 3 s 102416 T4

64 514 257 257

4[ 653 178 95t o (53 5261 855t 17s°  35m
64 3598 1799 1799 16 |J’

- 2(245 263055> | 425s* 85s6)]

X

10240 32 + 8

() _ Smx [3003 868065v 140255*  28055°
7 1 32 1028 514 514
2 (1463 693m 263055 | 4255 85s°
X\ 16 514 257 257
4 (13 m2 3 15783s2 2555 5150
REC 7196 3598 ' 3598

28



Class. Quantum Grav. 42 (2025) 165001 Z Nasipak

6) _ _i 27027 2 2 33033 _ M 2
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We can also extrapolate the leading-order behavior of even higher-order coefficients by first
recognizing that in the w — 0 limit, we also have cos2nv — 1 or v — [ [along with A¢ —
[(I4+ 1)]. Thus, our expansion must have the following behavior in the zero-frequency limit,

Agrune — 1
1 trunc 1
Vet s+ Y v AT sl S p o (PPet) (w2 0). (E2)

n=1

By expanding the lefthand side as an asymptotic series in /, and requiring that all terms O(I~")
and higher vanish, we can extract the static (zero-frequency) contribution to the higher-order
terms. For example, we have,

1 1
_ — _ E
g 8‘1'0(‘0), V3 1284—0(w)7 (E3a)
1 5
=100y TOW) M= T HO0W), (E3b)
7 21
= 567144 = . E
ORcIDiD "~ 262144 0@ Y=~ iga3ps TOW) (E3¢)
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