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Abstract
The Teukolsky equation describes perturbations of Kerr spacetime and is cent-
ral to the study of rotating black holes and gravitational waves. In the frequency
domain, the Teukolsky equation separates into radial and angular ordinary dif-
ferential equations (ODEs). Mano, Suzuki, and Takasugi (MST) found semi-
analytic solutions to the homogeneous radial Teukolsky equation in terms of
series of analytic special functions. The MST expansions hinge on an auxiliary
parameter known as the renormalized angular momentum ν, which one must
calculate to ensure the convergence of these series solutions. In this work, we
present a method for calculating ν via monodromy eigenvalues, which capture
the behavior of ODEs and their solutions in the complex domain near their
singular points. We directly relate the monodromy data of the radial Teukolsky
equation to the parameter ν and provide a numerical scheme for calculating ν
based on monodromy. With this method we evaluate ν in different regions of
parameter space and analyze the numerical stability of this approach. We also
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highlight how, through ν, monodromy data are linked to scattering amplitudes
for generic (linear) perturbations of Kerr spacetime.

Keywords: Kerr spacetime, Teukolsky equation, perturbation theory,
scattering, monodromy

1. Introduction

The Teukolsky equation is a linearized field equation that governs the evolution and propaga-
tion of perturbations in a background Kerr spacetime [1]. From the Teukolsky equation, one
can calculate the quasinormal mode ringdowns of merged compact object binaries, the radi-
ative backreaction experienced by small perturbing bodies inspiraling towards rotating black
holes, and the gravitational signal radiated by a system and measured by a distant observer.
Thus, the Teukolsky equation has been central to the development of gravitational wave
science.

In Boyer–Lindquist coordinates (t,r,θ,ϕ), the Teukolsky equation takes the form,[
r2 + a2

∆
− a2 sin2 θ

]
∂2t Ψs+

4Mar
∆

∂t∂ϕΨs+

[
a2

∆
− 1

sin2 θ

]
∂2ϕΨs

−∆−s∂r
(
∆s+1∂rΨs

)
− 1

sinθ
∂θ (sinθ∂θΨs)− 2s

[
a(r−M)

∆
+ i

cosθ

sin2 θ

]
∂ϕΨs

− 2s

[
M
(
r2 − a2

)
∆

− r− iacosθ

]
∂tΨs+

(
s2 cot2 θ− s

)
Ψs = 4πΣTs, (1)

whereM and a are the Kerr mass and spin parameters,∆= r2 − 2Mr+ a2,Σ= r2 + a2 cos2 θ,
s is the spin-weight of the perturbing field Ψs, and Ts is the source of the perturbation. (See
table I in [1] for exact definitions of Ψs and Ts.) By altering the spin-weight parameter, the
Teukolsky equation can describe scalar (s= 0), neutrino (s=± 1

2 ), electromagnetic (s=±1),
and gravitational (s=±2) perturbations of rotating Kerr black holes. In this work, we focus
our attention on the vacuum case of Ts = 0.

The Teukolsky equation is amenable to separation of variables in the frequency-domain via
the mode decomposition Ψs = ψslmω(t,r,θ,ϕ) = Rslmω(r)Sslmω(θ)eimϕe−iωt [2, 3]. With this
ansatz, equation (1) decouples into two ordinary differential equations (ODEs),

∆−s d
dr

(
∆s+1 dRslmω

dr

)
+

(
K2 − 2is(r−M)K

∆
+ 4isωr+λTslmω

)
Rslmω = 0, (2)

d2Sslmω
dθ2

+
cosθ
sinθ

dSslmω
dθ

−

(
a2ω2 sin2 θ+

(m+ scosθ)2

sin2 θ
+ 2aωscosθ− s− 2maω−λTslmω

)
× Sslmω = 0, (3)

where K= (r2 + a2)ω−ma, and λTslmω is the spheroidal eigenvalue (or separation constant).
Solutions to equation (3) are known as spin-weighted spheroidal harmonics, which are gen-
eralizations of the spin-weighted spherical harmonics sYlm(θ,ϕ). For aω→ 0, the two sets
of harmonics are equivalent, with Sslmω(θ)eimϕ → sYlm(θ,ϕ) and λTslmω → l(l+ 1)− s(s+ 1).
The numerical calculation of Sslmω(θ) is well understood [4, 5], and several open-source tools
are available for producing these harmonics (e.g. [6–9]).

The construction of the homogeneous radial solutions Rslmω has also been extensively stud-
ied in the literature [4, 10–14]. Mano, Suzuki, and Takasugi (MST) devised one commonly
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used method [11], in which the homogeneous radial solutions are represented as semi-analytic
series of hypergeometric functions. To evaluate these series, one must first solve for an aux-
iliary parameter known as the renormalized angular parameter ν, which controls whether or
not each series solution converges. Consequently, finding a ‘convergent’ value of ν is critical
to solving the Teukolsky equation with series of analytic functions.

MST found that their series converge when ν is a root of a particular three-term continued
fraction equation (see equation (123) in reference [15]). Therefore, many researchers have
relied on sophisticated root-finding methods to numerically determine ν [14, 16], but these
procedures can struggle at high frequencies (ω> 1) and for large values of the spheroidal
mode number l, particularly when ν becomes complex. Alternatively, recent codes (e.g. [17])
have employed a new algorithm inspired by the work of Castro et al [18, 19], which determines
ν based on the monodromy data that capture the behavior of the radial Teukolsky solutions as
they circle the irregular singular point at r=∞.

While this monodromy approach has proven to be highly successful, there is little written
about its application to the MST solutions. Reference [20] hints at the connection between ν
and monodromy theory in their post-Newtonian expansions of the MST solutions, while ref-
erences [21, 22] identify the connection between ν and the monodromy eigenvalues of the
Teukolsky equation, but they do not provide an exact relationship. Reference [23] found that
their gauge modulus parameter a (which is directly related to monodromy eigenvalues) satis-
fies the relation a=−ν− 1/2, but this result was only verified up to 9th post-Minkowskian
order. references [24, 25] also found a relationship between ν and monodromy data when
extending the MST solutions to the Teukolsky equation in Kerr–de Sitter spacetime; however,
these results were not generalized to Kerr. In this work, we derive an exact relationship between
the monodromy eigenvalues of the Teukolsky equation in Kerr spacetime (for arbitrary values
of the spin-weight s) and the renormalized angular momentum ν used in the MST solutions.
We also provide numerical methods for calculating ν based on monodromy theory.

1.1. Paper outline

In section 2 we review both asymptotic and MST series solutions to the homogeneous radial
Teukolsky equation in Kerr spacetime. In section 3 we summarize the works of [18, 19, 26],
which outline how monodromy methods are used to describe the solutions of ODEs as they
‘run around’ singular points in the complex domain. As an example, we apply these methods
to determine the monodromy eigenvalues of confluent hypergeometric functions. In section 4
we use these results to connect the monodromy eigenvalues of the Teukolsky equation to the
renormalized angular momentum ν. We then present new numerical methods for calculating
themonodromy eigenvalues of the Teukolsky equation and ν in section 5.We also highlight the
numerical advantages and limitations of solving for ν via monodromy methods. We end with
a discussion of our results in section 6. For this paper we use the metric signature (−+++),
the sign conventions, where applicable, of [27], and units such that c= G= 1.

2. Series solutions of the radial Teukolsky equation

It is often advantageous to characterize solutions of an ODE in terms of the equation’s singular
points. The radial Teukolsky equation possesses three: two regular singular points at the inner
and outer horizons r± =M±

√
M2 − a2 and one irregular singular point (of Poincaré rank one)

at infinity. In this work we primarily focus on homogeneous radial solutions that are defined
on the physical domain r ∈ [r+,∞] and, consequently, by their behavior at the points r= r+
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and r=∞. For radiative modes (ω ̸= 0), four common solutions are,

Rin
slmω (r→ r+)∼Rin,trans

slmω ∆−se−ikr∗ , Rup
slmω (r→∞)∼Rup,trans

slmω r−(2s+1)eiωr∗ , (4a)

Rout
slmω (r→ r+)∼Rout,trans

slmω eikr∗ , Rdown
slmω (r→∞)∼Rdown,trans

slmω r−1e−iωr∗ , (4b)

where k= ω−mΩ+, Ω+ = a/(2Mr+), and r∗ is the tortoise coordinate defined by the differ-
ential relation dr∗/dr= (r2 + a2)/∆. For scattering problems, it is also useful to consider the
additional asymptotic behaviors,

Rin
slmω (r→∞)∼Rin,ref

slmω r
−(2s+1)eiωr∗ +Rin,inc

slmω r
−1e−iωr∗ , (5a)

Rout
slmω (r→∞)∼Rout,inc

slmω r−(2s+1)eiωr∗ +Rout,ref
slmω r−1e−iωr∗ , (5b)

Rup
slmω (r→ r+)∼Rup,inc

slmω eikr∗ +Rup,ref
slmω ∆−se−ikr∗ , (5c)

Rdown
slmω (r→ r+)∼Rdown,ref

slmω eikr∗ +Rdown,inc
slmω ∆−se−ikr∗ , (5d)

where RA,trans
slmω , RA,inc

slmω , and RA,ref
slmω are transmission, incidence, and reflection scattering amp-

litudes for A = {in, up, out, down}.
In the remainder of this section, we review different series solutions of the radial Teukolsky

equation for ω ̸= 0 modes. First we outline series expansions around the singular points of the
Teukolsky equation, r= r+ and r=∞, and the simplification of these series in confluent Heun
form. We then summarize the semi-analytic series solutions provided by MST. To condense
notation, we define the dimensionless parameters,

χ = a/M, κ=
√
1−χ2, ϵ= 2Mω,

τ = (ϵ−mχ)/κ, ξ = s− iϵ, ϵ± = (ϵ± τ)/2,

which will be used throughout the rest of this paper.

2.1. Frobenius-Fuch and asymptotic series

Because r= r+ is a regular singular point, Rin and Rout can be approximated by the Frobenius-
Fuch series,

Rin (r→ r+)≃ RH
2 (r) = (r− r+)

−s−iϵ+
∞∑
n=0

a2,n(r− r+)
n
, (6a)

Rout (r→ r+)≃ RH
1 (r) = (r− r+)

iϵ+
∞∑
n=0

a1,n(r− r+)
n
, (6b)

where we have suppressed the (slmω) subscripts for brevity. On the other hand, Rup and Rdown

are typically approximated in terms of the asymptotic series,
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Rup (r→∞)∼ RI
1 (r) = eiωrr−1−2s+iϵ

∞∑
n=0

b1,nr
−n, (7a)

Rdown (r→∞)∼ RI
2 (r) = e−iωrr−1−iϵ

∞∑
n=0

b2,nr
−n. (7b)

The horizon series (6) have radii of convergence |r− r+|< 2M
√

1−χ2, while the infin-
ity series (7) are formally non-convergent, making both expansions poor representations for
much of the radial domain. Nonetheless these series are particularly useful for numerically
approximating solutions near the boundaries, providing important initial data for numerical
ODE solvers.

The calculation of these series expansions is further simplified by putting the Teukolsky
equation into confluent Heun form,

d2w
dẑ2

+

(
γCH
ẑ

+
δCH
ẑ− 1

+ εCH

)
dw
dẑ

+
αCHẑ− qCH
ẑ(ẑ− 1)

w= 0, (8)

via the transformations,

ϵκẑ= ω (r− r−) , ϵκ(ẑ− 1) = ω (r− r+) , R(ẑ) = ẑa (ẑ− 1)b ecẑw(ẑ) , (9)

where

2a=−s+ na (s+ 2iϵ−) , 2b=−s+ nb (s+ 2iϵ+) , c= incϵκ, (10)

na =±1, nb =±1, nc =±1, and the confluent Heun parameters are given by

γCH = 1+ s+ 2a, δCH = 1+ s+ 2b, εCH = 2c, (11a)

αCH = 2c(1+ s+ a+ b)+ 2iϵκξ, (11b)

qCH =−(a+ b+ c)(s+ 1)− 2ab+λ− 2ϵ+ϵ− + ϵ [mχ− iξ (1−κ)]+ 2ac. (11c)

Note that this transformation is not unique. Due to our freedom in choosing na, nb, and
nc, equation (10) provides eight different combinations of a, b, and c that will transform the
Teukolsky solutions into solutions of equation (8). In the remainder of this section, we will
make use of different transformation choices when examining the asymptotic behavior ofw(z).

Equation (8) has singular points at ẑ= {0,1,∞}, with the latter two corresponding to the
relevant physical boundaries at the horizon and infinity. Near the horizon, solutions take the
asymptotic forms,

win (ẑ→ 1)≃ wH
2 (ẑ) = (ẑ− 1)λ

H
2

∞∑
k=0

â2,k (ẑ− 1)k , (12a)

wout (ẑ→ 1)≃ wH
1 (ẑ) = (ẑ− 1)λ

H
1

∞∑
k=0

â1,k (ẑ− 1)k , (12b)

with indices λH1 = 0 and λH2 = 1− δCH, and the coefficients satisfy the three-term recurrence
relation,

AH
j,kâj,k−1 +BH

j,kâj,k+CH
j,kâj,k+1 = 0. (13)
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A common choice of initial conditions is âj,0 = 1, and âj,−1 = 0. See appendix A for exact
definitions of AH

j,k, B
H
j,k, and C

H
j,k. Choosing (na,nb,nc) = (−1,+1,−1), win and wout transform

to Rin and Rout, respectively, via equation (9).4

Near infinity we have,

wup (ẑ→∞)∼ wI
1 (ẑ) = eµ

I
1 ẑẑλ

I
1

∞∑
k=0

b̂1,kẑ
−k, (14a)

wdown (ẑ→∞)∼ wI
2 (ẑ) = eµ

I
2 ẑẑλ

I
2

∞∑
k=0

b̂2,kẑ
−k, (14b)

where µI
1 = 0, µI

2 =−εCH, λI1 =−αCH/εCH, and λI2 = αCH/εCH − γCH − δCH; and the coef-
ficients satisfy the three-term recurrence relation,

AI
j,kb̂j,k−1 +BI

j,kb̂j,k+CI
j,kb̂j,k+1 = 0, (15)

with b̂j,0 = 1, and b̂j,−1 = 0. Again, see appendix A for the forms of AI
j,k, B

I
j,k, and CI

j,k.
Choosing (na,nb,nc) = (+1,+1,+1), wup and wdown transform to Rup and Rdown, respectively,
via equation (9).5

2.2. MST series

The MST Teukolsky solutions are defined in terms of the dimensionless variables,

x=
r+ − r
2Mκ

, z= ω (r− r−) , (16)

leading to the series expansions,

Rin (x) = eiϵκx (−x)−s−iϵ+ (1− x)iϵ−

×
∞∑

n=−∞
fνn 2F1

(
n+ ν+ 1− iτ,−n− ν− iτ ; 1− ξ̄− iτ ; x

)
, (17a)

Rout (x) = eiϵκx (−x)iϵ+ (1− x)−s−iϵ− ×
∞∑

n=−∞

(ν+ 1+ iτ)n
(
ν+ 1+ ξ̄

)
n

(ν+ 1− iτ)n
(
ν+ 1− ξ̄

)
n

× fνn 2F1
(
n+ ν+ 1+ iτ,−n− ν+ iτ ; 1+ ξ̄+ iτ ; x

)
, (17b)

Rup (z) = 2νe−iπ(ν+1+ξ)eizzν+iϵ+ (z− ϵκ)
−s−iϵ+

×
∞∑

n=−∞

(ν+ 1+ ξ)n
(ν+ 1− ξ)n

fνn (2iz)
nU(n+ ν+ 1+ ξ, 2n+ 2ν+ 2;−2iz) , (17c)

4 Meanwhile, switching the sign of nb swaps this relationship, so that win and wout transform to Rout and Rin, respect-
ively. Changing the signs of nc and na simply affect the overall normalization of the solutions.
5 Changing the sign of nc leads to wup and wdown transforming to Rdown and Rup, respectively. Altering the signs of na
and nb does not affect the asymptotic relationship at infinity.
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Rdown (z) = 2νeiπ(ν+1−ξ)e−izzν+iϵ+ (z− ϵκ)
−s−iϵ+ Γ(ν+ 1− ξ)

Γ(ν+ 1+ ξ)

×
∞∑

n=−∞
fνn (2iz)

nU(n+ ν+ 1− ξ, 2n+ 2ν+ 2; 2iz) , (17d)

where 2F1(a,b,c;x) is the Gauss hypergeometric function, U(a,b;z) is the irregular confluent
hypergeometric function, fνn are series coefficients (to be further defined later), and ν is the
aforementioned renormalized angular momentum parameter. Alternatively, Rin and Rout can
be expressed by the sums,

Rin (x) = Rν
0 (x)+R−ν−1

0 (x) , Rout (x) = Bν
0R

ν
0 (x)+B−ν−1

0 R−ν−1
0 (x) , (18)

where Bν
0 is a (ν-dependent) constant defined in appendix B and,

Rν0 = eiϵκx (−x)−s−iϵ+ (1− x)ν+iϵ+
Γ
(
1− ξ̄− iτ

)
Γ(ν+ 1− iτ)Γ

(
ν+ 1− ξ̄

)
×

∞∑
n=−∞

Γ(2n+ 2ν+ 1)

(ν+ 1− iτ)n
(
ν+ 1− ξ̄

)
n

fνn (1− x)n 2F1

(
−n− ν− iτ,−n− ν− ξ̄;−2n− 2ν;

1

1− x

)
,

(19)

is also a solution to the Teukolsky equation. Likewise, Rup and Rdown can be expressed as sums
of two other independent solutions,

Rup (z) =
1

sin2πν

[
e−iπ(ν+ξ) sinπ (ν− ξ)Rν

C (z)− ie−iπξ sinπ (ν+ ξ)R−ν−1
C (z)

]
, (20a)

Rdown (z) =
sinπ (ν+ ξ)

sin2πν

[
eiπ(ν−ξ)Rν

C (z)+ ie−iπξR−ν−1
C (z)

]
, (20b)

where,

Rν
C (z) = 2νe−izzν+iϵ+ (z− ϵκ)

−s−iϵ+ Γ(ν+ 1− ξ)

Γ(2ν+ 2)

×
∞∑

n=−∞

(ν+ 1+ ξ)n
(2ν+ 2)2n

fνn (−2iz)nM(n+ ν+ 1− ξ,2ν+ 2n+ 2;2iz) , (21)

and M(a,b;z) is the confluent hypergeometric function that is regular at z= 0. (See
section 3.2.3 for more details about M(a,b;z) and U(a,b;z)). One can relate the solutions
at infinity and the horizon via the relation Rν

0 = KνRν
C, where K

ν is defined in appendix B.
The series coefficients satisfy three-term recurrence relations of the form,

αν
n f

ν
n+1 +βν

n f
ν
n + γνn f

ν
n−1 = 0, (22)

where αν
n ,β

ν
n , and γ

ν
n are given in appendix B. The MST series converge if ν is chosen so that

fνn forms a minimal solution to equation (22) as |n| →∞. To obtain ν, one can construct the
continued fractions,

7



Class. Quantum Grav. 42 (2025) 165001 Z Nasipak

Rν
n =

fνn
fνn−1

=− γνn
βν
n +αν

nR
ν
n+1

(23a)

Lνn =
fνn
fνn+1

=− αν
n

βν
n + γνn L

ν
n−1

, (23b)

which together form an implicit equation for ν,

Rν
nL

ν
n−1 = 1. (24)

If ν satisfies equation (24) for any value of n, then fνn is a minimal solution, because Rν
n only

converges when fνn is minimal as n→∞ and Lνn only converges when fνn is minimal as n→
−∞. Note that rather than dealing with equation (24) directly, researchers often determine ν
from the analogous equation,

βν
n +αν

nR
ν
n+1 + γνn L

ν
n−1 = 0. (25)

Numerical algorithms for extracting ν from equation (25) can be found in [14, 16]. Given a
value of ν that satisfies (24) or (25), the series expansions for Rin and Rout ((17a) and (17b)) are
formally convergent on the domain −∞< x⩽ 0, while expansions for Rup and Rdown ((17c)
and (17d)) converge for ϵκ < z⩽∞.

From the MST solutions, one can also construct the scattering amplitudes defined in
equations (4) and (5). For example, the transmission coefficients are given by,

Rin,trans = (2Mκ)2s eiκϵ+(1+
2 lnκ
1+κ )

∞∑
n=−∞

fνn , (26a)

Rout,trans = e−iκϵ+(1+ 2 lnκ
1+κ )

∞∑
n=−∞

(ν+ 1+ iτ)n
(
ν+ 1+ ξ̄

)
n

(ν+ 1− iτ)n
(
ν+ 1− ξ̄

)
n

fνn , (26b)

Rup,trans = ω−2s−1Aν
−e

iϵ(lnϵ− 1−κ
2 ), (26c)

Rdown,trans = ω−1Aν
+e

−iϵ(lnϵ− 1−κ
2 ), (26d)

where Aν
± is defined in appendix B. For completeness, the incidence and reflection amplitudes

are also provided in appendix B.

3. Monodromy eigenvalues of singular points

In general, monodromy theory focuses on the behavior of mathematical objects as they ‘run
around’ singular points in the complex plane. For this work, we are interested in the application
of monodromy theory to the solutions of second-order ODEs. This was previously studied by
Castro et al [18, 19] in the context of scalar waves and black hole scattering, and we will
ultimately connect their work on Teukolsky monodromy data to MST’s renormalized angular
momentum. In this section, we summarize key points from [18, 19] to provide background
and establish notation.

3.1. Background

Following the work of [18, 19], we consider ODEs of the form,

∂z [U(z)∂zψ (z)]−V(z)ψ (z) = 0, (27)

8
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though this discussion can be extended to more generic homogeneous ODEs,

∂2z ϕ(z)+ f(z)∂zϕ(z)+ g(z)ϕ(z) = 0, (28)

via the transformation ϕ(z) = U1/2(z)e−
1
2

´
z f(z

′)dz ′ψ(z). Note that the radial Teukolsky
equation (2) already takes the form of equation (27). Defining Ψ = ψ and Π = U(z)∂zψ,
equation (27) can also be represented in reduced-order form by the first-order matrix equation,

∂z

(
Ψ
Π

)
=

(
0 U−1 (z)

V(z) 0

)(
Ψ
Π

)
≡ A(z)Ψ⃗, (29)

where Ψ⃗ is a vector composed ofΨ andΠ, and the poles of A(z) define the equation’s singular
points zi. Next, let Ψ⃗(1) and Ψ⃗(2) be vectors that correspond to two independent solutions ψ1

and ψ2. Together these vectors form the fundamental matrix,

Φ(z) =
(
Ψ⃗(1) Ψ⃗(2)

)
=

(
ψ1 ψ2

U(z)∂zψ1 U(z)∂zψ2

)
. (30)

Conveniently, the determinant of this fundamental matrix is related to the constant (weighted)
Wronskian of ψ1 and ψ2: det(Φ) = Ŵ(ψ1,ψ2) = U(z)(ψ1∂zψ2 −ψ2∂zψ1).

Next we consider the behavior of any solution Ψ⃗ as it follows a closed loop γ (in the pos-
itive direction) in the complex domain. For the differential equations considered in this work,
A(z) is meromorphic (single-valued) and the operator ∂z−A(z) will always return to itself
after following γ. In contrast, the fundamental matrix Φ may not return to its original value
due to branch cuts of the solutions. Nonetheless, the new fundamental matrix generated by
following γ, which we denote asΦγ , also satisfies [∂z−A(z)]Φγ = 0 and represents a solution
to equation (30). Consequently, Φ and Φγ must be related by some invertible constant matrix
Mγ , such that,

Φγ (z) = Φ(z)Mγ , (31)

or more explicitly,(
ψ1

(
zi + e2π i (z− zi)

)
ψ2

(
zi + e2π i (z− zi)

) )∣∣∣
z→zi

= ( ψ1 (z) ψ2 (z) )|z→zi
Mi, (32)

for zi ̸=∞. For points at infinity, we must first perform a change of variable ξ = 1/z to bring
the singular point to ξ= 0. Circling this point is then given by ξ → e2π iξ or, equivalently,
z→ e−2π iz.

If Mγ does not enclose a singular point, then γ does not cross any branch cuts, and Φ will
return to itself, leading to Mγ = 1, where 1 is the identity matrix. On the other hand, if γ
encloses one of the equation’s singular points, then Mγ will form a nontrivial transformation
matrix, which we refer to as the monodromy matrix or monodromy data of that singular point.
Crucially, the form of Mi depends on the chosen basis of independent radial solutions ψ1

and ψ2.6

6 Furthermore, there is residual gauge freedom in our differential equation, which will affect the values ofMi. In this
work we work with the minimal form described in [19] (see section 2.1 of [19] in for more details).
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A convenient property of the monodromy matrices is that, for an equation with n singular
points z1,z2, . . . ,zn and n monodromy matrices defined about these pointsM1,M2, . . . ,Mn, we
have

M1M2 · · ·Mn = 1. (33)

This identity arises from connecting the individual paths around each singular point into a
single loop γ ′, so that outside γ ′ no singular points are enclosed, leading to M1M2 · · ·Mn =
Mγ ′ = 1.

3.2. Calculating monodromy data

We now summarize relevant methods for calculating the monodromy matrices of second-
order ODEs. We highlight the difference when extracting monodromy data for regular sin-
gular points (see section 3.2.1) versus an irregular singular point (of rank one) at infinity (see
section 3.2.2). Using these methods, we then construct the monodromy matrices associated
with the singular points of the confluent hypergeometric equation (see section 3.2.3). These
results will be leveraged in section 4 to connect the monodromy matrices of the Teukolsky
equation to the renormalized angular momentum.

3.2.1. Regular singular points. Consider solutions to equation (27). Based on Fuchs–
Frobenius theory [28], one can define the behavior of these solutions near a regular singular
point zr in terms of the indices λr1,2, given by,

2λr1 = 1− f r0 −
√
(1− f r0)

2 − 4gr0, 2λr2 = 1− f r0 +
√
(1− f r0)

2 − 4gr0, (34a)

f r0 = lim
z→zr

(z− zr)∂zU(z)
U(z)

, gr0 = lim
z→zr

− (z− zr)
2V(z)

U(z)
. (34b)

If λr1 −λr2 /∈ Z, then there exists two independent solutions of equation (27), ψr1(z) and
ψr2(z), with series expansions,

ψrj (z→ zr)≃ ψ̂rj (z) = (z− zr)
λr
j

∞∑
k=0

cj,k (z− zr)
k
, (35)

which are convergent in a neighborhood around zr. Note that j = {1,2}. Thus, we can use the
series in (35) to evaluate ψrj after following a loop γ around zr in the complex plane,

ψrj
(
zr+ e2π i (z− zr)

)
= e2π iλr

jψrj (z) . (36)

Combining equation (36) with equation (32), it is then straightforward to deduce the mono-
dromy data at zr,

Mr
.
=MS

r =

(
e2π iλr

1 0,
0 e2π iλr

2

)
, (37)

demonstrating that ψrj form the basis of solutions that diagonalizeMr with eigenvalues e
2π iλr

j .
In the notation above,Mr represents themonodromymatrix at zr in any basis of solutions, while
MS
r specifically refers to the form of Mr in the basis of solutions with series expansions given

by (35) and normalized so that cj,0 = 1. A similar notation will also be used when representing
the monodromy matrices of irregular singular points.
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3.2.2. Irregular singular points. Near an irregular singular point at infinity, we characterize
the asymptotic behavior of solutions in terms of the characteristic roots µ∞

j and the indices
λ∞j , given by,

2µ∞
1 =−f∞0 −

√
( f∞0 )2 − 4g∞0 , 2µ∞

2 =−f∞0 +

√
( f∞0 )2 − 4g∞0 , λ∞

j =−
f∞1 µ∞

j + g∞1
f∞0 + 2µ∞

j

, (38)

with,

f∞i = lim
z→∞

∂iz

[
∂zU(z)
U(z)

]
, g∞i =− lim

z→∞
∂iz

[
V(z)
U(z)

]
. (39)

Again, j = {1,2} for our two independent homogeneous solutions. From these coefficients,
one can define the series expansions,

ψ̂∞
j (z) = eµ

∞
j z (2µz)λ

∞
j

∞∑
k=0

dj,kz
−k, (40)

where 2µ= µ∞
2 −µ∞

1 , and the series are formally non-convergent unless the series coeffi-
cients dj,k vanish for all k above some finite k= kmax. Provided µ ̸= 0, then there exists two
independent solutions to equation (27),ψ∞

1 andψ∞
2 , which are asymptotic to ψ̂∞

j (z) in sectors

Ŝj of the complex plane [26, 28],

ψ∞
j (z→∞)∼ ψ̂∞

j (z) , z ∈ Ŝj. (41)

These wedges Ŝj are defined by the (anti-)Stokes lines, such that,

Ŝj =

{
z :

(
j− 5

2

)
π + δ ⩽ ph(2µz)⩽

(
j+

1
2

)
π − δ

}
, (42)

where ph(z) is the phase of z, and 0< δ≪ 1. (See figure 1.1 in [26] for a visualization of
the related subsectors Sj, which are connected to those in equation (42) by Ŝj = Sj−2 ∪ Sj−1 ∪
Sj.) To analytically continue solutions around z=∞, one can make use of the connection
formulae7 [26, 28, 29],

ψ∞
1 (z) = e2π iλ∞

1 ψ∞
1

(
e−2π iz

)
−C1ψ

∞
2 (z) , (43a)

ψ∞
2 (z) = e−2π iλ∞

2 ψ∞
2

(
e2π iz

)
+C2ψ

∞
1 (z) , (43b)

where C1 and C2 are the well-known Stokes multipliers,8 which can be determined from the
limits,

C1 =−2π i(2µ)2λ e−2π iλ

d2,0
lim
n→∞

(−2µ)n d1,n
Γ(n+ 2λ)

, C2 =−2π i(2µ)−2λ

d1,0
lim
n→∞

(2µ)n d2,n
Γ(n− 2λ)

, (44)

7 See appendix C for alternate forms.
8 See [26, 28, 29] for further discussion on the role of Stokes multipliers in second-order ODEs. Note that we use
notation similar to that of [28, 29] but withCk replaced by (−1)kCk. This differs from the notation in [26], as described
in footnote 4 of [26]. Therefore, C1 and C2 in this work are equivalent to C1 and C0, respectively, in [26].
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with 2λ= λ∞2 −λ∞1 and the coefficients dj,k defined by the series expansion in (41).
Consequently, the terms on the right-hand side of equation (43a) are asymptotic to the
series (40) for z ∈ Ŝ2 ∩ Ŝ3, while the terms in equation (43b) are asymptotic to (40) for
z ∈ Ŝ0 ∩ Ŝ1.

We then combine these results to evaluate the solutions ψ∞
j after circling z=∞,

ψ∞
1

(
e−2π iz

)
= e−2π iλ∞

1 [ψ∞
1 (z)+C1ψ

∞
2 (z)] , (45a)

ψ∞
2

(
e−2π iz

)
= e−2π iλ∞

2
[
C2e

4π iλψ∞
1 (z)+

(
1+C1C2e

4π iλ
)
ψ∞
2 (z)

]
. (45b)

From (45), the monodromymatrixM∞ then takes the form (in the basis of solutions ψ∞
1,2),

M∞
.
=MS

∞ = e−π i(λ∞
1 +λ∞

2 )M̂S
∞ = e−π i(λ∞

1 +λ∞
2 )

(
e2π iλ e2π iλC1

e2π iλC2 e−2π iλ [1+C1C2e4π iλ]
)
, (46)

where for convenience we have defined the normalized matrix M̂S
∞ with determinant

det(M̂S
∞) = 1. Similar to Mr and MS

r in section 3.2.1, M∞ represents the monodromy matrix
at infinity for any basis of solutions, whileMS

∞ is the specific form of the monodromy matrix
for the solutions ψ̂∞

1,2, which are asymptotic to the series expansions (40) with normalizations
dj,0 = 1.

Inspecting equation (46), we immediately observe that ψ∞
j does not diagonalize M∞ des-

pite ψ∞
j being the natural basis for describing the asymptotic behavior of solutions. However,

one can still construct solutions that diagonalize M∞, which we refer to as ψ∞
D,j, by relating

them to ψ∞
j using the eigenvectors and eigenvalues of equation (46). To solve for the mono-

dromy eigenvalues, we follow [18, 19] and consider that, in the basis of ψ∞
D,j, the monodromy

matrix takes the form,

MD
∞ = e−π i(ν∞

1 +ν∞
2 )M̂D

∞ = e−π i(ν∞
1 +ν∞

2 )

(
e2π iν∞ 0

0 e−2π iν∞

)
, (47)

where e−2π iν∞
j are themonodromy eigenvalues ofψ∞

D,j, 2ν∞ = ν∞2 − ν∞1 , and again we define

the normalized matrix M̂D
∞ with unit determinant. Because MD

∞ is equivalent to MS
∞ up to a

change of basis, we equate the determinants and traces of both matrices, leading to,

e−2π i(ν∞
1 +ν∞

2 ) = e−2π i(λ∞
1 +λ∞

2 ), 2cos2πν∞ = 2cos2πλ+ e2π iλC1C2, (48)

from which one can calculate ν∞j given the combination C1C2. Note that equation (48) is par-
ticularly useful for extracting the eigenvalues, because the combination C1C2 does not depend
on the overall normalizations of ψ∞

1 and ψ∞
2 even though C1 and C2 do, individually. [This

is evident from equation (44).]

3.2.3. Monodromy data of confluent hypergeometric functions. Now we apply these meth-
ods to extract the monodromy data of the confluent hypergeometric equation,9

z
d2w
dz2

+(b− z)
dw
dz

− aw= 0, (49)

9 Instead of bringing equation (49) into the form of equation (27), for example via the transformation w(z) =
ez/2z−b/2W(z), we simplify our calculations by directly applying the methods from section 3.2.1 and equation (3.2.2)
to the solutions w(z). One can verify that performing this analysis for W(z) or w(z) leads to consistent results for the
monodromy data.
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which possesses a regular singular point at z= 0 and irregular point at z=∞. Standard solu-
tions to equation (49) include the regular and irregular confluent hypergeometric functions,
M(a,b;z) and U(a,b;z), first introduced in section 2.2. As their names suggest, M(a,b;z) is
regular at z= 0 and is represented by the series solution,

M(a,b,z) =
∞∑
k=0

(a)k
(b)k

zk

k!
, (50)

which is entire in z ∈ C, while U(a,b;z) is associated with the irregular singular point and is
defined by its asymptotic behavior as z→∞,

U(a,b,z)∼ z−a
∞∑
k=0

(−1)k
(a)k (a− b+ 1)k

k!
z−k. (51)

First we analyze the monodromy matrix at z= 0. Solutions near the regular singular point
are defined by the indices λ01 = 0 and λ02 = 1− b, with series representations,

w0
1 (z→ 0)≃ ŵ0

1 (z) =
∞∑
k=0

c1,kz
k, w0

2 (z→ 0)≃ ŵ0
2 (z) = z1−b

∞∑
k=0

c2,kz
k. (52)

In the case of the hypergeometric functions, the series coefficients take the compact forms,

c1,k =
(a)k
(b)k k!

, c2,k =
(a− b+ 1)k
(2− b)k k!

, (53)

from which one can identify w0
1(z) = ŵ0

1(z) =M(a,b;z) and w0
2(z) = ŵ0

2(z) = z1−bM(a− b+
1,2− b;z). From equation (37), it is straightforward to assemble the monodromy matrix at
z= 0,

MS
0 =

(
1 0,
0 e−2π ib

)
. (54)

To construct the monodromy matrix of the irregular singular point M∞, we consider that
the solutions near z=∞ are defined by the characteristic roots µ∞

1 = 0 and µ∞
2 = 1 and the

indices λ∞1 =−a and λ∞2 = a− b, with asymptotic solutions,

w∞
1 (z→∞)∼ ŵ∞

1 (z) = z−a
∞∑
k=0

d1,kz
−k, w∞

2 (z→∞)∼ ŵ∞
2 (z) = ezza−b

∞∑
k=0

d2,kz
−k. (55)

Once again, the series coefficients have the compact forms,

d1,k = (−1)k
(a)k (a− b+ 1)k

k!
, d2,k =

(b− a)k (1− a)k
k!

, (56)

leading to w∞
1 (z) = U(a,b;z) and w∞

2 (z) = e±iπ(a−b)ezU(b− a,b,e∓iπz).
Because we have analytic expressions for the asymptotic coefficients of w∞

1 and w∞
2 , we

can directly evaluate the Stokes multipliers using (44), leading to

C1 =− 2π ie−π i(2a−b)

Γ(a)Γ(a− b+ 1)
, C2 =− 2π i

Γ(b− a)Γ(1− a)
(57)
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and

C1C2e
2π iλ =− 4π2

Γ(a)Γ(1− a)Γ(b− a)Γ(1− b+ a)
=−4sinπasinπ (b− a) . (58)

Combining equations (57) and (58) with the fact that 2λ= 2a− b and λ∞1 +λ∞2 =−b, it is
straightforward to read-off the monodromy matrix via equation (46). As expected, we observe
that U(a,b,z) and ezU(b− a,b,−z) do not diagonalize M∞, as discussed in section 3.2.2.

Similarly, we can calculate the eigenvalues with equation (48), yielding

e−2π i(ν1+ν2) = e−2π i(λ∞
1 +λ∞

2 ), cos2πν∞ = cosπb, (59)

or

ν1 + ν2 =−b+ n ′, ν∞2 − ν∞1 =±(b+ 2k ′) , (60)

for arbitrary integers k′ and n′. Choosing k ′ = n ′ = 0, we have ν∞1 = 0 and ν∞2 =−b, leading
to the diagonalized monodromy matrix,

MD
∞ =

(
1 0
0 e2π ib

)
. (61)

We can also derive (61) using the identity equation (33).When bothmonodromymatrices share
a common basis,M0M∞ = 1 orM∞ =M−1

0 . Comparing equations (61) and (54), we find that
MD

∞ = (MS
0)

−1. Thus they share the same basis, and the solutions M(a,b,z) and z1−bM(a−
b+ 1,2− b,z) diagonalize both matrices10.

4. Monodromy eigenvalues of the Teukolsky equation and their relation to
renormalized angular momentum

We now apply the monodromy methods of section 3 to the radial Teukolsky equation (2). First
we construct the monodromy matrix at r= r+, which we denote by MH. In the basis of Rin

and Rout, the monodromy matrix is explicitly defined by the transformation,(
Rin
[
r+ + e2π i (r− r+)

]
, Rout

[
r+ + e2π i (r− r+)

] )∣∣∣
r→r+

=
(
Rin (r) , Rout (r)

)∣∣∣
r→r+

MS
H.

Here we continue the notation established in section 3 and useMS
H to represent the form ofMH

in this natural choice of basis. From the expansions in (6), we observe that these horizon solu-
tions possess the singular indices λHout = iϵ+ and λHin =−s− iϵ+. Thus e±2πϵ+ are the mono-
dromy eigenvalues at the horizon, leading to the representation MS

H = diag(e2πϵ+ ,e−2πϵ+).
Next we examine the monodromy matrix at infinity, which we refer to as MI . From the

expansions in (14), we can read-off the characteristic roots 2µI
up = 0 and 2µI

down =−2iκϵ and
the indices λIup =−1− 2s and λIdown =−1− 2iϵ for the infinity solutions Rup(z) and Rdown(z).

10 Furthermore, because the series representation (50) of M(a,b; z) is entire in z, we can use (50) to directly evalu-
ate M(a,b;e−2π iz). This also makes it apparent that w0

1(z) and w
0
2(z) diagonalize the monodromy matrices of both

singular points.
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This leads to µ=−iκϵ and λ= ξ.11 By calculating the associated Stokes multipliers C1 and
C2, one can also construct MS

I via equation (46), leading to,(
Rup
(
e−2π iz

)
, Rdown

(
e−2π iz

) )∣∣
z→∞ =

(
Rup (z) , Rdown (z)

)∣∣
z→∞MS

I , (62)

where we now use theMST radial coordinate defined in equation (16) to study the infinity-side
solutions.

Because the MST expansions are composed of analytic functions, we can also use
them to directly evaluate Rup(e−2π iz) and Rdown(e−2π iz) and extract the monodromy eigen-
values at infinity. To simplify this calculation, we first investigate the monodromy data
of Rν

C(z) and R−ν−1
C (z). In section 3.2.3, we demonstrated that M(a,b;z)—rather than

U(a,b;z)—diagonalizes the monodromy matrix at infinity for the confluent hypergeometric
equation. Thus, we might expect that Rν

C(z) and R
−ν−1
C (z)—which depend on M(a,b;z) (see

equation (21))—form a natural basis for examining the monodromy data of the Teukolsky
equation. Because the series (21) is analytic and convergent at z=∞, it is straightforward to
evaluate Rν

C(e
−2π iz) as z→∞,

Rν
C

(
e−2π iz

)
= e−2π iνRν

C (z) , R−ν−1
C

(
e−2π iz

)
= e2π iνR−ν−1

C (z) , (z→∞) . (63)

Immediately, we see that Rν
C and R−ν−1

C do in fact form a basis the diagonalizes MI , and
e∓2π iν are their monodromy eigenvalues. Thus, (up to some arbitrary integer) the renormalized
angular momentum ν is the (logarithm of the) monodromy eigenvalue at infinity (as well as its
reflected value −ν− 1), i.e. ν =±ν∞ +N∞ for N∞ ∈ Z.

Combining equation (63) with (20), we can extract MS
I from equation (62),

MS
I =

(
e−2π iξ 2ie−iπ(ν+ξ)Btrans sinπ (ν− ξ)

2ieiπ(ν−ξ) (Btrans)
−1 sinπ (ν+ ξ) 2cos2πν− e−2iπξ

)
, (64)

where Btrans =Rdown,trans/Rup,trans. This leads to the Stokes multipliers,

C1 = 2ie−iπ(ν+3ξ)Btrans sinπ (ν− ξ) , C2 = 2ieiπ(ν−3ξ)
(
Btrans

)−1
sinπ (ν+ ξ) . (65)

Furthermore, from these solutions we can verify that det(MS
I) = 1 and Tr(MS

I) = 2cos2πν =
2cos2πν∞, as expected.

5. Numerical methods for calculating the monodromy eigenvalues of the
radial Teukolsky equation

We now highlight numerical methods for extracting ν via the monodromy eigenvalue
equation (48). In section 5.1, we outline a numerical procedure for calculating the combin-
ation C1C2e2π iλ based on the work of Daalhuis and Olver [26]. In section 5.2 we provide
numerical calculations of ν, which are obtained with these monodromy methods, and we com-
pare our numerical calculations against those reported in [19]. Then in section 5.3, we discuss
the numerical stability of equation (48) and highlight regions of parameter space where (48)
experiences catastrophic cancellations. We also propose methods for mitigating these numer-
ical issues.

11 Alternatively, from the r-coordinate expansions in (7), we have roots 2µI
up = iϵ and 2µI

down =−iϵ and indices
λI
up =−1− 2s+ iϵ and λI

down =−1− iϵ, leading to 2µ=−iϵ and 2λ= 2ξ.
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5.1. Calculating Stokes multipliers for the Teukolsky equation

Unlike the case of the confluent hypergeometric functions in section 3.2.3, we cannot dir-
ectly evaluate C1 and C2 from equation (44), because we do not have analytic expressions
for the series coefficients that define the asymptotic behavior of the MST solutions Rup(z)
and Rdown(z). Instead, we approximate the Stokes multipliers using the results derived in [26],
leading to the expressions,

C1 =−2π ib̂1,s (2µ)
2λ e−2π iλ

{
m−1∑
n=0

(−2µ)n−s b̂2,nΓ(s+ 2λ− n)

}−1

+O
(
s−m
)
, (66a)

C2 =−2π ib̂2,s (2µ)
−2λ

{
m−1∑
n=0

(2µ)n−s b̂1,nΓ(s− 2λ− n)

}−1

+O
(
s−m
)
, (66b)

for fixed integers s and m.12 Here, b̂j,n represent the asymptotic series coefficients for Rup(z)
and Rdown(z).

To simplify the calculation of C1 and C2, we make two adjustments to equation (66). First,
rather than calculating the Stokesmultipliers forRup(z) andRdown(z), we instead solve for those
associated with the confluent Heun solutions wup(ẑ) and wdown(ẑ). Recall that these functions
are related to the MST solutions via (9). The advantage of the confluent Heun solutions is that
the coefficients of their asymptotic expansions (see equation (14)) satisfy simple three-term
recurrence relations given in (15). Thus they are much more efficient to numerically calcu-
late. Furthermore, as shown in appendix C, the transformation (9) preserves the values of C1

and C2 (provided both sets of solutions are normalized to the same values at the boundar-
ies). Therefore, by calculating C1 and C2 for wup(ẑ) and wdown(ẑ), we also obtain the Stokes
multipliers for the Teukolsky solutions.

Second, we introduce the auxiliary coefficients,

cs1,n = (2µ)n−s b̂1,n (−2λ)s−n , cs2,n = (−2µ)n−s b̂2,n (2λ)s−n , (67)

which, when combined with equation (66), leads to,

C1 ≃−
2π i(2µ)2λ e−2π iλ cs1,s

Γ(2λ)

{
m1−1∑
n=0

cs2,n

}−1

, C2 ≃−
2π i(2µ)−2λcs2,s

Γ(−2λ)

{
m2−1∑
k=0

cs1,k

}−1

.

(68)

This provides a compact expression for the combination C1C2e2π iλ in equation (48),

C1C2e
2π iλ = 8πλsin2πλcs1,sc

s
2,s

{
m1−1∑
n=0

m2−1∑
k=0

cs1,kc
s
2,n

}−1

. (69)

Note that the coefficients csj,n also satisfy three-term recurrence relations, but they are numer-

ically unstable. Instead one can alternate between the recurrence equation for b̂j,n given in (15)

12 Note that as s→∞, the n= 0 term dominates each sum, and equation (66) reduces to equation (44). In fact, [26]
uses equation (66) to derive (44), rather than first defining the Stokes multipliers in terms of these asymptotic limits,
as we have done in this work.
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and the stepping relation,

cs+1
j,n = (−1)j+1

(
(−1)j 2µ+ s− n

2λ

)
csj,n, (70)

to simultaneously construct b̂j,n and csj,n for 0⩽ n⩽ s. For large values of s, it is also advant-
ageous to normalize the weighted coefficients csj,n at each step in the recurrence so that c

s
j,s = 1.

This avoids numerical overflow issues when taking the ratio csj,s/c
s
j,0 due to c

s
j,s and c

s
j,0 both

growing as∼ Γ(s). One can then varym and s until (69) converges to a numerically satisfactory
value. A simple approach is to set m= ceil[s/2]—where ceil[x] is the closest integer greater
than x—and increase s until the value of C1C2e2π iλ does not change within some numerical
tolerance. Alternatively, one can choose m so that the sum truncates at the coefficient csj,n with
the smallest magnitude (for fixed s).

5.2. Extracting the renormalized angular momentum

We present numerical results for the renormalized angular momentum ν based on the compu-
tation of the monodromy parameter ν∞ in equation (48). Because ν is not uniquely defined
by the MST constraint equations (24) and (25)13 and due to branch cuts in arccosz, there is
residual freedom in relating ν and ν∞. In this work, we relate the two parameters via,

ν = l−∆ν, ∆ν = arccos(cos2πν∞) , (71)

where arccosz takes its principal values as defined in [28]. Through this choice, (71) is consist-
ent with low-frequency expansions of ν reported in the post-Newtonian literature (e.g., [15,
20, 30]).

First, we reproduce the monodromy eigenvalues for the various quasinormal mode frequen-
cies reported in tables B1 and B2 of [19].14 In table 1, we report the monodromy eigenvalue,
ν
(1)
∞ , based on the frequencies ωQNM(1)

lmn used in [19]. We also report the relative difference

between ν(1)∞ and the values given in [19]. Because these quasinormal mode frequencies are
less accurate in the near-extremal limit (a≳ 0.999), in table 2 we compute a second value
ν
(2)
∞ based on the quasinormal frequencies ωQNM(2)

lmn produced by the Python package qnm
[31] as a comparison.

We find that our monodromy eigenvalues are consistent with those computed in [19]. Most
values agree with a fractional difference≲ 10−5, which is approximately the level of precision
to which the data are reported in [19]. However, our results significantly differ at the level of
∼ 10−2 in two instances: (a/M, l,m,n) = (0,0,0,2) and (a/M, l,m,n) = (0.2,0,0,0). In the
first case, the disagreement is reduced to ∼ 10−5 if we replace the dimensionless frequency
MωSchw

QNM = 0.075742− 0.600080i given in table B1 of [19] with the slightly more accurate
quasinormal mode frequency 0.075742− 0.601080i. Therefore, we use both frequencies in
table 1. For (a/M, l,m,n) = (0.2,0,0,0), the source of the disagreement is less clear. While
our comparison does indicate which result is more accurate, we find that our value ν(1)∞ is

13 One has the freedom to shift the value of ν by an integer or flip its sign, and it will still lead to convergent MST
series solutions.
14 Reference [19] calculates the eigenvalue αirr, which is related to our monodromy eigenvalue by ν∞ =−iαirr.
Additionally, their spheroidal eigenvalue Kl is related to the eigenvalue in equation (2) via λTslmω = Kl + a2ω2 −
2maω.
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Table 1. Monodromy eigenvalues for the quasinormal mode frequencies reported in
tables B1 and B2 of [19]. We label overtones n using the conventions of qnm [31].
The frequencies MωQNM(1)

lmn are the quasinormal mode frequencies published in [19].

The monodromy eigenvalues produced by these frequencies are given by ν(1)∞ . In the
last column we give the relative difference |1− cos2πν(1)∞ /cosh2παirr|, where αirr is
the monodromy eigenvalue reported in [19]. The values ofMωQNM(1)

lmn and ν(1)∞ are trun-
cated below 10−6 for brevity.

a/M l m n MωQNM(1)
lmn ν

(1)
∞ Rel. diff [19]

0.0 0 0 0 0.110455− 0.104896i −0.004894− 0.106880i 1.1× 10−6

0.0 0 0 1 0.086117− 0.348052i −0.395024− 0.184325i 2.3× 10−6

0.0 0 0 2 0.075742− 0.600080i −0.141796+ 0.196084i 1.3× 10−2

0.0 0 0 2 0.075742− 0.601080i −0.139820+ 0.196497i 2.1× 10−5

0.2 0 0 0 0.110768− 0.104512i −0.004188− 0.106923i 3.1× 10−2

0.4 0 0 0 0.111699− 0.103253i −0.001950− 0.106939i 1.4× 10−6

0.6 0 0 0 0.113171− 0.100698i −0.002224+ 0.106438i 1.8× 10−6

0.8 0 0 0 0.114537− 0.095701i −0.008975+ 0.103590i 1.1× 10−7

0.96 0 0 0 0.111452− 0.089387i −0.012920+ 0.094805i 4.0× 10−7

0.98 0 0 0 0.110616− 0.089481i −0.012110+ 0.094050i 8.4× 10−7

0.99 0 0 0 0.110447− 0.089499i −0.011954+ 0.093895i 8.1× 10−7

0.999 0 0 0 0.110384− 0.089398i −0.012009+ 0.093741i 1.0× 10−6

0.9999 0 0 0 0.109263− 0.090699i −0.009743+ 0.093760i 1.0× 10−6

0.9999 2 2 0 0.993235− 0.003525i 1.501539+ 0.944336i 1.2× 10−5

0.9999 2 2 1 0.993220− 0.010597i 1.504795+ 0.946068i 4.9× 10−6

0.9999 2 2 2 0.993175− 0.017657i 1.508539+ 0.949417i 1.0× 10−5

Table 2. Monodromy eigenvalues for the quasinormal mode frequencies reported in
tables B2 of [19] for a/M= 0.9999. We label overtones n using the conventions of qnm
[31]. The frequencies MωQNM(2)

lmn refer to the quasinormal mode frequencies calculated

by qnm. The monodromy eigenvalues produced by these frequencies are given by ν(2)∞ .

a/M l m n MωQNM(2)
lmn ν

(2)
∞

0.9999 0 0 0 0.110244− 0.178865i −0.011852+ 0.093632i
0.9999 2 2 0 0.993234− 0.007051i 1.501539+ 0.944334i
0.9999 2 2 1 0.993222− 0.021193i 1.504794+ 0.946068i
0.9999 2 2 2 0.993112− 0.049388i 1.513023+ 0.954197i

much closer to the monodromy eigenvalues for neighboring spin values, i.e. (a/M, l,m,n) =
(0,0,0,0) and (a/M, l,m,n) = (0.4,0,0,0). Therefore, our value is consistent with nearby and
verified results. Furthermore, we find that, in the near-extremal limit a/M≳ 0.9999, some of
the frequencies computed by qnm differ from those used in [19], and thus lead to slightly
different monodromy eigenvalues, as evidenced in table 2.

Next, in figure 1, we plot∆ν (left) and cos2πν (right) as functions of (dimensionless) fre-
quency Mω for the Teukolsky parameters (s, l,m,χ) = (−2,5,2,0.9). As recognized in pre-
vious works (e.g. [14]), ν evolves on and off the real axis as the frequency increases. This is
one reason why root-finding methods have struggled to efficiently compute ν: it is not always
clear where in the complex plane the zeros of equation (25) are located for arbitrary values of
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Figure 1. The monodromy eigenvalue as a function of (normalized) frequency Mω for
the Teukolsky parameters (s, l,m,χ) = (−2,5,2,0.9). The left plot tracks the frequency
evolution of ν, while the right plot tracks cos2πν. While cos2πν remains real for all
real frequencies, ν jumps on and off the real-axis as we increase Mω.

Figure 2. The monodromy eigenvalue as a function of (normalized) frequency Mω for
the fixed Teukolsky parameters (s,m) = (−2,2). The left plot demonstrates the effect
of varying l with χ= 0.1 fixed, while χ= 0.9 on the right.

(s, l,m,χ,ω). While ν can be complex, we observe in our numerical calculations that cos2πν
is always real for the radial Teukolsky equation when (s, l,m,χ,ω) are real.

The evolution of cos2πν is also highly dependent on the value of l. In figure 2, we plot
cos2πν as a function of Mω for the Teukolsky parameters (s,m,χ) = (−2,2,0.1) (left) and
(s,m,χ) = (−2,2,0.9) (right) but with varying values of l. As we increase l or χ, ν remains
on the real axis over a larger range of frequencies. On the other hand, in figure 3 we plot
cos2πν versus Mω for the Teukolsky parameters (s, l,χ) = (−2,12,0.1) (left) and (s, l,χ) =
(−2,12,0.9) (right) but with varying values of m. Because m only appears in the Teukolsky
equation through the combination mχ, the m-dependence is very weak at low spin values (see
the left panel of figure 3), while at higher spins varying m can either suppress or enhance
the critical frequency at which cos2πν exponentially grows with Mω (see the right panel of
figure 3). However, the effect is not as dramatic as increasing l, and the dependence of cos2πν
onmχ is much more complicated. For example, as we initially increasem, ν remains real (e.g.
|cos2πν|⩽ 1) for a larger range of frequencies in figure 3. Then, the trend reverses for m⩾ 9,
and cos2πν exponentially grows at lower and lower frequencies. This suggests that the value
of cos2πν is primarily impacted by the values of l (more specifically the spheroidal eigenvalue
λT ) and ω, while the values of χ and mχ have subdominant effects.
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Figure 3. The monodromy eigenvalue as a function of (normalized) frequency Mω for
the fixed Teukolsky parameters (s, l) = (−2,12). The left plot demonstrates the effect
of varying m with χ= 0.1 fixed, while χ= 0.9 on the right.

Figure 4. The left panel plots 2cos2πν (red solid line), 2cos2πλ= 2cos2πξ (yel-
low solid line), and C1C2e2π iλ (dashed purple line) as functions of (normalized)
frequency Mω for the fixed Teukolsky parameters (s, l,m,χ) = (−2,20,2,0.9). A
machine-precision calculation of the monodromy eigenvalue 2cos2πνϵ (dot-dashed
blue line) is also plotted to demonstrate the effects of catastrophic cancellation. The
right panel then displays the fractional error between cos2πν and cos2πνϵ.

5.3. Numerical stability of the monodromy approach

One numerical limitation of this monodromy approach is that equation (48) suffers from cata-
strophic cancellation for larger values of both l and Mω. In the left panel of figure 4, we plot
2cos2πλ (yellow solid line), C1C2e2π iλ (dashed purple line), and 2cos2πν (red solid line)
as functions of Mω for the Teukolsky parameters (s, l,m,χ) = (−2,20,2,0.9). As the fre-
quency increases, 2cos2πλ and C1C2e2π iλ grow exponentially, while the monodromy eigen-
value remains bounded by |cos2πν|⩽ 1 up until Mω ∼ 4.5. Therefore cos2πν can only be
extracted after subtracting off several orders of magnitude between 2cos2πλ and C1C2e2π iλ.
We can estimate the precision loss by the fractional difference |1− cos2πλ/cos2πν| ≈ e4πω

for cos2πν ∼ 1. For frequenciesMω ≳ 2.75, one loses over 15 digits of precision due to cata-
strophic cancellations in (48).

To highlight the impact of this catastrophic cancellation, we plot two different numerical
values for the monodromy eigenvalue in figure 4. The first value, which we denote as cos2πν
(solid red line), is accurately calculated using arbitrary-precision arithmetic. The second value,
which we refer to as cos2πνϵ (dot-dashed blue line), is calculated using machine-precision
arithmetic, leading to inaccurate results at higher frequencies. The fractional error between
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Figure 5. The same as figure 4 but for the Teukolsky parameters (s, l,m,χ) =
(−2,2,2,0.9).

these two calculations, i.e. |1− cos2πν/cos2πνϵ|, is plotted in the right panel of figure 4. As
expected, the fractional error becomes larger than unity for frequencies Mω ≳ 2.75, indicat-
ing that cos2πνϵ is completely dominated by numerical noise. This is also evident in the left
panel of figure 4: cos2πνϵ grows exponentially with the numerical noise for the same range
of frequencies.

The degree of catastrophic cancellation is also heavily impacted by the value of l, as one
might expect based on figure 2 and the discussion in section 5.2. In figure 5 we repeat this ana-
lysis for l= 2. We observe a much smaller degree of cancellation, because, for smaller values
of l, |cos2πν| is much closer in magnitude to cos2πλ across frequency space. In other words,
little cancellation occurs in (48). On the other hand, as demonstrated in figures 2 and 5, cos2πν
remains bounded over a larger range of frequencies for higher l-modes. Thus the cancellations
grow to be more and more catastrophic as both Mω and l increase.

To partially circumvent this issue at large l values, we make use of the asymptotic beha-
vior of cos2πν. In particular, when |cos2πν|⩽ 1 but λT ≫ 1, we expect that cos2πν ∼
−cos2π

√
λT. Defining, λC = λT+ s(s+ 1), we form the ansatz,

cos2πν ∼−cos2π
[
λ
1/2
C + ν1λ

−1/2
C + ν3λ

−3/2
C + ν5λ

−5/2
C + ν7λ

−7/2
C +O

(
λ
−9/2
C

)]
. (72)

We then numerically calculate cos2πν at large values of λT and extract the following coef-
ficients,

ν1 =
1
8
+(mχ)

ϵ

2
− 1

4

(
15+χ2

) ϵ2
4
, (73a)

ν3 =− 1
128

−mχ

(
1
8
− s2

)
ϵ

2
+

1
2

[
13
16

− 3s2 +

(
3
16

− 3m2

2
− s2

)
χ2

]
ϵ2

4

+
mχ
4

(
35+χ2

) ϵ3
8
− 1

32

(
1155
2

− 35χ2 +
3χ4

2

)
ϵ4

16
, (73b)

while ν5 and ν7 are given in appendix E.
There are several limitations to this expansion. First of all, the series is asymptotic and

not guaranteed to converge for arbitrary values of λC and ϵ= 2Mω. In particular, the terms
have the frequency scaling νk ∼ ϵk+1. Consequently, ν2k+1 will not decay as k→∞ for large
enough values of ϵ. Additionally, the expansion assumes |cos2πν|⩽ 1, but we do not know
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Figure 6. Comparing exact calculations of cos2πν (blue crosses) to the values predicted
by the asymptotic expansion in (72) (red circles) as functions of l⩾ |m| for various
values of (m,Mω) but with (s,χ) = (−2,0.9) fixed.

a priori whether or not this is true for arbitrary values of (s, l,m,χ,ω). However, when
ν2k+3 ≳ ν2k+1λC, this indicates the asymptotic expansion is breaking down and that cos2πν is
growing exponentially with frequency rather than oscillating with the value of λC. In figure 6,
we compare the asymptotic expansion in (72) (red circles) to an ‘exact’ calculation of cos2πν
(blue crosses) via equation (48). We plot both the exact and asymptotic values as functions
of l⩾ |m| for various combinations of m and Mω. Taking the ‘exact’ calculation to be the
true value, in figure 7, we plot the absolute errors of the asymptotic results. As we expect,
the asymptotic expansion is most accurate at small frequencies and large values of l. At the
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Figure 7. The absolute error between an exact calculation of cos2πν and the asymptotic
expansion in (72) as a function of l for the same values of (s, l,m,χ,Mω) as displayed
in figure 6.

frequencyMω ∼ 2.75—wherewe expect to lose all machine-precision information due to cata-
strophic cancellation—the asymptotic expansion is able to recover cos2πν within a few digits
of accuracy for l≳ 16. Thus the asymptotic expansion struggles at low l but high Mω, where
cos2πν is transitioning to its exponential growth with frequency. Ultimately, this asymptotic
approach may work better as an initial guess for the value of ν, which can be combined with
previous root-finding algorithms that rely on the MST constraint equation (24) or (25) to
extract ν.
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Alternatively, one could resum or reexpand (72) to also take into account the asymptotic
behavior ν ∼−iϵ forMω≫ 1. One choice is to expand in (λC− ϵ2)−1. This would lead to the
correct behavior in the two asymptotic limits λC →∞ and ϵ→∞, but the expansion would
break down for λC = ϵ2. Thus, one would still require a different series representation for the
transition between the two regimes. We leave further investigations of these expansions for
future work.

6. Conclusion

In this work we demonstrated that MST’s renormalized angular momentum parameter ν is
not merely an auxiliary parameter, but is directly related to the monodromy eigenvalues of
the irregular singular point of the radial Teukolsky equation in Kerr spacetime. To establish
this relationship, we first recognized that the Teukolsky solutions Rν

C and R−ν−1
C described in

equation (21) (and likewise Rν
0 and R−ν−1

0 in equation (19)) diagonalize the monodromy mat-
rix at infinity and provide a natural basis for studying the behavior of the Teukolsky solutions
near this singular point. In section 5 we outlined practical numerical methods for obtaining ν
from the Stokesmultipliers andmonodromy eigenvalues of the Teukolsky equation by combin-
ing equations (48), (69), and (71). Using these methods, we then calculated the renormalized
angular momentum across the parameter space and found that cos2πν is always real when
the Teukolsky parameters (s, l,m,χ,Mω) are real. This is in contrast to ν, which can be real or
complex evenwhen (s, l,m,χ,Mω) are real.We also highlighted limitations to this monodromy
approach, particularly issues of catastrophic cancellation when evaluating equation (48), and
proposed potential methods for mitigating these problems, which make use of new asymptotic
expansions of cos2πν in (72).

Naturally, one can use these numerical methods to calculate ν and evaluate the MST series
solutions. Alternatively, due to the relationship between the Teukolsky and confluent Heun
equations, one can also construct radial Teukolsky solutions by leveraging software pack-
ages that now include confluent Heun solutions within their special function libraries, such
as Mathematica’s HeunC function. Combining these special functions with the MST amp-
litudes in equations (26) and (B5)—all of which depend on ν—one can obtain any independent
set of radial Teukolsky functions.

One can also make use of the MST amplitudes (see appendix B) and ν to construct scat-
tering data in Kerr spacetime, such as greybody factors or tidal Love numbers. Furthermore,
over the past decade, there has been a flurry of research connecting monodromy data, con-
formal blocks, supersymmetric gauge theory, and the Painlevé VI transcendent to obtain ana-
lytic expansions of black hole quasinormal modes and scattering amplitudes (e.g. [18, 23,
25, 32, 33]). Connecting ν to monodromy also connects it to these various approaches. For
example, our results verify that equation (3.6) in [23] (i.e. a=−1/2− ν) is exact.15 Thus this
work further elucidates the rich relationship between the MST solutions and scattering theory.

Data availability statement

The data cannot be made publicly available upon publication because they are not available in
a format that is sufficiently accessible or reusable by other researchers. The data that support
the findings of this study are available upon reasonable request from the authors.

15 Reference [23] only establishes this equality to 9th post-Minkowskian order.
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Appendix A. Recurrence relations for expansions of confluent Heun functions

Solutions to the confluent Heun equation (8) can be approximated by the series expansion
around z= 1, as expressed in equation (12). The coefficients âj,k in (12) satisfy the three-term
recurrence relation (13) with,

AH
j,k = αCH + εCH

(
n+λHj − 1

)
, (A1a)

BH
j,k = n2 + n

(
γCH + δCH + ϵCH + 2λHj − 1

)
+λHj

(
γCH + δCH + εCH +λHj − 1

)
− qCH +αCH, (A1b)

CH
j,k =

(
n+ 1+λHj

)(
n+ δCH +λHj

)
. (A1c)

Similarly confluent Heun solutions are asymptotic to series expansions around z=∞, as
given in equation (14). The coefficients b̂j,k in (14) satisfy the three-term recurrence rela-
tion (15) with,

AIj,k =−
[
αCH +µI

j (γCH + δCH + 2k− 2)+ (k− 1)εCH
]

×
[
αCH − γCH

(
µI
j + εCH

)
+ δCHµ

I
j + k

(
2µI

j + εCH
)]

, (A2a)

BIj,k = µI
j εCH

(
γCH − (γCH + δCH)

2 + δCH (1+ εCH)− 2k(γCH + δCH − 3εCH − 2k− 2)− 4qCH
)

−
(
µI
j

)2 (
(γCH + δCH − 2)(γCH + δCH)− 4

(
δCHεCH + k2 + 3kεCH + k

)
+ 4qCH

)
+αCH

(
εCH

(
−γCH − δCH + 2k+ 4µI

j + 1
)
+ 4µI

j

(
k+µI

j

)
+ 2µI

j + ε2CH

)
+ 4

(
µI
j

)3
(δCH + 2k)+ ε2CH (k(−γCH − δCH + k+ εCH + 1)− qCH)+α2

CH, (A2b)

CI
j,k =−(k+ 1)

(
2µI

j + εCH
)3

. (A2c)

Appendix B. MST methods

The recurrence relation (22) for theMST series coefficients fνn is defined in terms of recurrence
coefficients αν

n = Aν+n, βν
n = Bν+n, and γνn = A−ν−n−1, where,

AL =
iϵκ
(
L+ 1+ ξ̄

)
(L+ 1+ ξ)(L+ 1+ iτ)

(L+ 1)(2L+ 3)
, (B1a)

BL = L(L+ 1)−λC+ ϵ2 + ϵκτ

[
1+

ξ ξ̄

L(L+ 1)

]
. (B1b)

Recall that λC = λT+ s(s+ 1).
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We also define the following coefficients to condense notation when relating the different
homogeneous solutions in equations (18) and (26),

Bν
0 =

Γ
(
1+ ξ̄+ iτ

)
Γ
(
1+ ν− ξ̄

)
Γ(1+ ν− iτ)

Γ
(
1− ξ̄− iτ

)
Γ
(
1+ ν+ ξ̄

)
Γ(1+ ν+ iτ)

, (B2a)

Kν = eiϵκ (ϵκ)s−ν 2−ν

( ∞∑
n=r

Cn,n−r

)(
r∑

n=−∞
Dn,r−n

)−1

, (B2b)

Aν
+ = 2−1+ξe

π i
2 (ν+1−ξ)Γ(ν+ 1− ξ)

Γ(ν+ 1+ ξ)

∞∑
n=−∞

fνn , (B2c)

Aν
− = 2−1−ξe−

π i
2 (ν+1+ξ)

∞∑
n=−∞

(−1)n
(ν+ 1+ ξ)n
(ν+ 1− ξ)n

fνn , (B2d)

where,

Cn,j = (ϵκ)
−n+j Γ

(
1− ξ̄− iτ

)
Γ(2n+ 2ν+ 1)

Γ
(
n+ ν+ 1− ξ̄

)
Γ(n+ ν+ 1− iτ)

(
−n− ν− ξ̄

)
j
(−n− ν− iτ)j

(−2n− 2ν)j

fνn
j!
,

(B3)

Dn,j = (−1)n (2i)n+j
Γ(n+ ν+ 1− ξ)

Γ(2n+ 2ν+ 1)
(ν+ 1+ ξ)n
(ν+ 1− ξ)n

(n+ ν+ 1− ξ)j
(2n+ 2ν+ 2)j

fνn
j!
, (B4)

and Kν can be computed using any integer r in equation (B2b).
By matching to the asymptotic behavior of the MST solutions to equation (5), we also

provide their reflection and incidence scattering amplitudes,

Rin,inc =

[
Kν − ie−iπν sinπ (ν− ξ)

sinπ (ν+ ξ)
K−ν−1

]
Rdown,trans, (B5a)

Rin,ref =
[
Kν + ieiπνK−ν−1

]
Rup,trans, (B5b)

Rout,inc =

[
BνKν − ie−iπν sinπ (ν− ξ)

sinπ (ν+ ξ)
B−ν−1K−ν−1

]
Rdown,trans, (B5c)

Rout,ref =
[
BνKν + ieiπνB−ν−1K−ν−1

]
Rup,trans, (B5d)

Rup,inc =
D−ν−1

Bν sin2πν

[
sinπ (ν− ξ)e−iπ(ν+ξ)

Kν
+

sinπ (ν+ ξ) ie−iπξ

K−ν−1

]
Rout,trans, (B5e)

Rup,ref =
1

sin2πν

[
Dν sinπ (ν− ξ)e−iπ(ν+ξ)

Kν
− D−ν−1 sinπ (ν+ ξ) ie−iπξ

K−ν−1

]
Rin,trans, (B5f )

Rdown,inc =
D−ν−1 sinπ (ν+ ξ)

Bν sin2πν

[
eiπ(ν−ξ)

Kν
− ie−iπξ

K−ν−1

]
Rout,trans, (B5g)

Rdown,ref =
sinπ (ν+ ξ)

sin2πν

[
Dνeiπ(ν−ξ)

Kν
+
D−ν−1ie−iπξ

K−ν−1

]
Rin,trans, (B5h)

with,

Dν =
B−ν−1

B−ν−1 −Bν
=−

sinπ
(
ν− ξ̄

)
sinπ (ν− iτ)

sin2πν sinπ
(
ξ̄+ iτ

) . (B6)
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Appendix C. Connection formulae

Consider a solution ψ∞
k (z) to equation (27). Recall from equation (41) that ψ∞

j (z) is asymp-

totic to the series expansion ψ̂∞
j (z) (see equation (40)) in the wedge Ŝj of the complex domain

(see equation (42)). Solutions in neighboring sectors {Ŝj+2, Ŝj+1, Ŝj} are then related via the
connection formula,

ψ∞
j+2 (z) = Cjψ

∞
j+1 (z)+ψ∞

j (z) , (C1)

where,

ψ∞
j+2k (z) = e2π ikλ∞

j ψ∞
j

(
e−2π ikz

)
, (C2)

with λ∞j = λ∞1 if j is odd and λ∞j = λ∞2 if j is even. From this, one can derive (43).

Appendix D. Equivalence of Stokes multipliers

We briefly demonstrate the Stokes multipliers associated with the MST solutions Rup/down(z)
defined in equations (17c) and (17d) are equivalent to the transformed radial functions
wup/down(z), which satisfy the confluent Heun equation (8). Using the transformation defined
in equation (9), along with connection formulae (43), leads to the relations,

e−2πϵRup
(
e−2π iẑ

)
= Rup (ẑ)+C1R

down (ẑ) (D1a)

= ẑiϵ− (ẑ− 1)iϵ+
[
wup (ẑ)+C1w

down (ẑ)
]
, (D1b)

e−2πϵRdown
(
e2π iẑ

)
= Rdown (ẑ)−C2R

up (ẑ) (D1c)

= ẑiϵ− (ẑ− 1)iϵ+
[
wdown (ẑ)−C2w

up (ẑ)
]
, (D1d)

where C1 and C2 are the Stokes multipliers associated with Rup/down(z). Furthermore, as we
approach infinity, equation (9) also yields,

Rup/down
(
e∓2π iẑ

)
= e±2πϵẑiϵ− (ẑ− 1)iϵ+ eiϵκẑwup/down

(
e∓2π iẑ

)
,(z→∞) . (D2)

Combining equation (D1) with (D2) then leads to,

wup
(
e−2π iẑ

)
= wup (ẑ)+C1w

down (ẑ) , (D3)

e−4πϵwdown
(
e2π iẑ

)
= wdown (ẑ)−C2w

up (ẑ) , (D4)

which holds for all z, sincewup/down(e−2π iẑ) andwup/down(ẑ) are all independent homogeneous
solutions of (8). Because equation (D3) is equivalent to the connection equations (43), C1 and
C2 must also be the Stokes multipliers for wup/down(z).

Appendix E. Higher-order coefficient for asymptotic fit of the monodromy
eigenvalue

The higher-order fitting coefficients ν5 and ν7 for the asymptotic expansion of cos2πν in
equation (72) are given by,

ν5 =
6∑

n=0

ν
(n)
5

( ϵ
2

)n
, ν7 =

8∑
n=0

ν
(n)
7

( ϵ
2

)n
, (E1)
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with subterms,

ν
(0)
5 =

1
1024

,

ν
(1)
5 =

mχ
8

(
3
16

− s2
)
,

ν
(2)
5 =− 65

512
+

3s2

4

(
3
4
− s2

)
+
χ2

2

[
17
256

− s2

2

(
5
4
+ 3s2

)
+m2

(
1
16

− 3s2
)]

,

ν
(3)
5 =−mχ

4

{
5
8

(
7− 72s2

)
+χ2

[
38
(
3− 8s2

)
− 5m2

]}
,

ν
(4)
5 =

105
512

(
5− 96s2

)
+
χ2

32

[
5
8

(
119+ 96s2

)
− 945m2

]
+
χ4

32

[
1
16

(
13− 96s2

)
− 15m2

]
,

ν
(5)
5 =

mχ
32

(
9009
2

− 189χ2 +
9χ4

2

)
,

ν
(6)
5 =− 1

256

(
51051− 9009χ2 − 63χ4 + 5χ6

)
,

and,

ν
(0)
7 =− 5

32768
,

ν
(1)
7 =−mχ

64

(
5
16

− 5261s2

3598
− 85s4

1799
+

17s6

1799

)
,

ν
(2)
7 =−

{
51

4096
− 51s2

256
+

15s4

32
− χ2

2

[
131
2048

− 63s2

128
+

15s4

16

−m2
(

93
256

+
22675s2

43176
+

31705s4

10794
+

4925s6

5397

)]}
,

ν
(3)
7 =

5mχ
2

{
125
256

+
3809s2

28784
+

25279s4

14392
+

7897s6

14392
−χ2

[
17
256

+
5745s2

28784
− 8313s4

14392
− 2655s6

14392

−m2
(

3
16

+
5261s2

3598
+

85s4

1799
− 17s6

1799

)]}
,

ν
(4)
7 =−5

4

{
5481
2048

− 105s2

32
+

105s4

8
−χ2

[
1481
1024

+
51s2

16
+

9s4

4

−m2
(
245
64

+
26305s2

514
+

425s4

257
− 85s6

257

)]

+χ4
[

653
10240

− 17s2

32
+

9s4

8
−m2

(
53
64

− 5261s2

3598
− 85s4

1799
+

17s6

1799

)
+

35m4

16

]}
,

ν
(5)
7 =

5mχ
16

[
3003
32

+
868065s2

1028
+

14025s4

514
− 2805s6

514

−χ2
(
1463
16

− 693m2

2
+

26305s2

514
+

425s4

257
− 85s6

257

)
−χ4

(
13
32

− 7m2

2
− 15783s2

7196
− 255s4

3598
+

51s6

3598

)]
,
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ν
(6)
7 =− 5

128

[
27027
16

+ 9009s2 −χ2
(
33033
16

− 45045m2

2
+ 2079s2

)
+χ4

(
889
16

− 693m2 − 21s2
)
− a6

(
3
16

− 21m2

2
− 3s2

)]
,

ν
(7)
7 =

5mχ
256

(
138567− 19305χ2 − 99χ4 + 5χ6

)
,

ν
(8)
7 =− 5

4096

(
9561123

4
− 692835χ 2 +

19305χ 4

2
− 99χ 6 +

35χ 8

4

)
.

We can also extrapolate the leading-order behavior of even higher-order coefficients by first
recognizing that in the ω→ 0 limit, we also have cos2πν→ 1 or ν→ l [along with λC →
l(l+ 1)]. Thus, our expansion must have the following behavior in the zero-frequency limit,

√
λC+

1
2
+

ntrunc−1∑
n=1

ν2n−1λC
(−2n+1)/2 → l+

1
2
+O

(
l−2ntrunc+1

)
, (ω→ 0) . (E2)

By expanding the lefthand side as an asymptotic series in l, and requiring that all termsO(l−1)
and higher vanish, we can extract the static (zero-frequency) contribution to the higher-order
terms. For example, we have,

ν1 =
1
8
+O(ω) , ν3 =− 1

128
+O(ω) , (E3a)

ν5 =
1

1024
+O(ω) , ν7 =− 5

32768
+O(ω) , (E3b)

ν9 =
7

262144
+O(ω) , ν11 =− 21

4194304
+O(ω) . (E3c)
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