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Abstract
We compute the gravitational radiation–reaction (RR) force on a compact bin-
ary source at the fourth-and-a-half post-Newtonian (4.5PN) order of general
relativity, i.e. 2PN order beyond the leading 2.5PN radiation reaction. The
calculation is valid for general orbits in a general frame, but in a particu-
lar coordinate system which is an extension of the Burke–Thorne coordinate
system at the lowest order. With the RR acceleration, we derive (from first
principles) the flux-balance laws associated with the energy, the angular and
linear momenta, and the center-of-mass (CM) position, in a general frame
and up to 4.5PN order. Restricting our attention to the frame of the center of
mass, we point out that the equations of motion (EOM) acquire a non-local-
in-time contribution at the 4.5PN order, made of the integrated flux of linear
momentum (responsible for the recoil of the source) together with the instant-
aneous flux of CM position. The non-local contribution was overlooked in the
past literature, which assumed locality of the RR force in the center of mass
frame at 4.5PN order. We discuss the consequences of this non-local effect and
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obtain consistent non-local EOM and flux balance laws at 4.5PN order in the
CM frame.

Supplementary material for this article is available online

Keywords: equations of motion, post-Newtonian,
gravitational radiation reaction, gravitational recoil, gravitational kick,
center-of-mass frame, flux-balance laws

1. Introduction

1.1. Overview

Our goal is to compute the gravitational radiation–reaction (RR) force acting on an orbiting
compact binary system through the fourth-and-a-half post-Newtonian (4.5PN) approximation
of general relativity (GR), i.e. at orderO(9)≡O(c−9), whereas the dominant, lowest order RR
occurs at the 2.5PN ∼O(5) order [1–9] (see [10] for a review). We thus intend to control the
RR force through 2PN order beyond the dominant level. More precisely, we shall compute the
2.5PN, 3.5PN and 4.5PN contributions, which have odd-parity powers of 1/c, and correspond
to purely dissipative RR effects. We do not address the 4PN tail term, which contains both
conservative and dissipative contributions, because it has been computed elsewhere [11, 12].

As is well known [13, 14], the RR force takes different expressions depending on the
choice of coordinate system. A very interesting choice is the Burke–Thorne (BT) coordin-
ate system [2, 3, 15], in which the 2.5PN RR force (density) takes the simple scalar form
F i

RR = ρ∂iVRR +O(7). Here, ρ is the Newtonian mass density in the source and the scalar
RR potential is explicitly given by4

VRR (x, t) =− G
5c5

xixj
d5Mij

dt5
+O (7) , (1.1)

where Mij is the trace-free mass quadrupole moment of the source, reducing at lowest order to
the usual Newtonian quadrupole moment of the Newtonian mass density,

Mij (t) =
ˆ
source

d3x
[
xixj− 1

3
δijx2

]
ρ(x, t)+O (2) . (1.2)

Despite the linear-in-G character of the RR force in BT coordinates, its derivation requires
the control of the non-linear effects to justify that they do not play any role in this coordinate
system [9] (see also [16] for discussions on non-linear effects taking place in other coordinate
systems). Of course, equations (1.1) and (1.2) reproduce the known fluxes (in particular the
energy flux given by the Einstein quadrupole formula) computed asymptotically far from the
source.

At the 3.5PN order (or 1PN relative order) and in the case of compact binaries, the RR
force has been derived in an arbitrary coordinate system, but only in the center-of-mass (CM)
frame [17, 18], by assuming the validity of the flux-balance equations for energy and angular
momentum at the relative 1PN order. We shall refer to the latter approach for computing the
RR as the ‘flux-balance’ method. Since it is restricted to the frame of the CM, only the fluxes

4 See section 1.2 for the notations.
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for energy and angular momentum are needed5. By contrast, a ‘first-principle’ approach is to
perform the direct calculation of the RR at 1PN order by integrating the field equations in the
source’s near zone, i.e. without a priori assuming the validity of the flux-balance laws. The
first-principle approach proves, at some given order, that the RR force implies the flux-balance
laws, where the fluxes are given by their values as computed at future null infinity. It has been
implemented at 1PN order in various coordinate systems [20–24], with results consistent with
the balance laws, which means that the RR corresponds to a unique determination of the Iyer-
Will gauge parameters [17, 18]. On the other hand, some general investigations of RR and the
balance laws in the case of isolated systems (not restricted to compact binaries) were performed
up to relative 1.5PN order beyond the leading RR force [25–27], at which the gravitational
wave tails first appear (this corresponds to 4PN beyond the Newtonian acceleration [11, 12]).
In particular, the works [25, 26] introduced the extension to 1.5PN order of the leading-order
BT scalar RR potential (1.1).

The flux-balance method, still restricted to the CM frame, has been extended to 4.5PN order
(namely 2PN relative order) by Gopakumar et al in [28], henceforth referred to as ‘GII’. To
date, the only calculation of the RR to relative 2PN order using the first-principle approach
(i.e. not relying on balance equations) was done using effective field theory (EFT) [29]. In
[29], the computations were performed in a general frame, but only the CM frame results were
published; moreover, [29] claimed agreement with GII but only the case of circular orbits was
shown to be consistent with them.

In the present paper, we shall follow the first-principle approach as well, but the results
presented are valid in a general frame, and only subsequently restricted to the CM frame.
Moreover, they are valid in a different coordinate system, namely a specific extension of the
BT coordinates at the 4.5PN order. At that order and in that coordinate system, the RR is
described by some specific scalar, vector, and tensor RR potentials,

Vαβ
RR ≡

(
VRR,V

i
RR,V

ij
RR

)
, (1.3)

where VRR generalizes (1.1), V i
RR appears only at 1PN relative order as a generalization of

the vector RR introduced in [25, 26], and the tensor V ij
RR appears at 2PN order. Since our

calculation will not be restricted to the CM frame, it will enable us to check (and, actually, to
prove) the flux-balance laws, not only for the energy and the angular momentum, but also for
the linear momentum and the CM position. We shall thus recover from the RR force the energy
and angular momentum fluxes to 2PN relative order (i.e. 2.5PN + 3.5PN + 4.5PN), as well
as the linear momentum and CM fluxes to 1PN relative order (3.5PN + 4.5PN). In particular,
we shall recover and confirm to 1PN order the flux associated with the CM position obtained
in [27, 30–33].

Next, we consider the problem of the definition of the CM frame. Here, by CM, we mean
the barycenter not only of the matter distribution, but also of the radiation, therefore taking into
account the linear momentum kick or recoil of the source by the GW emission. As a result,
we find that the relation between the positions of the bodies in the CM frame and the relative
positions and velocities acquires a non-local-in-time contribution at the 3.5PN order, which
is given by the time integral of the flux of linear momentum. We refer to such a contribution
as ‘semi-hereditary’, by which we mean that it is given by the integral in time of some local
or ‘instantaneous’ term [34], and thus its time-derivative is entirely instantaneous (conversely,
‘hereditary’ terms such as tails are non-local-in-time, as well as their iterated time-derivatives).

5 The flux-balance method in the CM frame has been extended to include spin–orbit RR effects at 3.5PN order [19].
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In turn, we find that the RR force itself acquires in the CM frame a non-local (semi-hereditary)
contribution at the 4.5PN order, which involves the gravitational recoil of the system as well as
the flux of CM. We conclude that at the 4.5PN order in the CM frame, it becomes impossible
(in any coordinate system) to express the RR and equations of motion (EOM) as local or
instantaneous functionals of the source’s parameters.

On this point, we are in conflict with the flux-balance approach extended to 4.5PN order
in [28], which assumed as a basic hypothesis that the RR and EOM in the CM frame are
local, thereby missing the physical consequence of the binary’s GW recoil. We prove that our
EOM in the CM frame preserve the correct flux-balance laws in the CM frame for the energy
and the angular momentum at 2PN order, despite these quantities not being in the local form
postulated in [28]. We shall provide the formulas correcting GII [28] (i.e. incorporating the
gauge invariant non-local effect) which will allow us to uniquely determine the GII gauge
parameters that correspond to our extended BT gauge at the 4.5PN order. Finally, we discuss
the interesting case of quasi-circular orbits.

The plan of this paper is as follows. In section 2, we recall the general structure of the PN
metric in the near zone of a general isolated source and the RR terms therein. In section 3,
we introduce the extended BT coordinate system and define the scalar, vector, and tensor RR
potentials (1.3) up to 4.5PN order. In section 4, we obtain the EOM with RR terms included
up to 4.5PN order in a general frame and in extended BT coordinates. In section 5, we prove
that all the flux balance equations (energy, angular and linear momenta, CM) are satisfied
to the required order. In section 6, we solve the problem of the passage to the CM frame,
taking into account the physical effects of GW recoil and displacement of the CM position. In
section 7, we show how to modify the flux-balance approach at 2PN order [28] to include the
recoil and CM displacement, and we compute the set of GII gauge parameters corresponding
to our chosen coordinate system. In section 8, we obtain the RR contributions in the case of
quasi-circular orbits. The paper ends by a short conclusion in section 9. The appendix A deals
with the control of certain required terms in the metric, the technical appendix B discusses
dimensional identities, and the appendix C contains the expressions of Schott-like terms.

1.2. Notation

1. The Einstein field equations in a general coordinate system are denoted

□hαβ − ∂Hαβ =
16πG
c4

ταβ , (1.4)

where hαβ ≡
√
−ggαβ − ηαβ is the gothic-type metric deviation; g≡ det(gαβ) and ηαβ ≡

diag(−1,1,1,1);□≡□η is the flat d’Alembertian operator;Hα ≡ ∂βhαβ denotes the ‘har-
monicity’ and we pose ∂Hαβ ≡ ∂αHβ + ∂βHα − ηαβ∂γHγ , so that ∂β∂Hαβ =□Hα; ταβ

is the matter + gravitation pseudo-tensor,

ταβ = |g|Tαβ + c4

16πG
Λαβ [h] , (1.5)

with Tαβ being thematter tensor andΛαβ the gravitational non-linear part, at least quadratic
in hαβ and its space-time derivatives; we have ∂βταβ = 0 as a consequence of the field
equations (1.4).

2. Multi-spatial indices are denoted L= i1i2 · · · iℓ, made of ℓ (spatial) indices ranging from 1
to 3; it is always understood that contracted multi-indices L involve ℓ summations (over
the indices they contain); the multi-derivative operator ∂L is a short-hand for ∂i1 · · ·∂iℓ ;
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the symmetric-trace-free (STF) operation is denoted with a hat or sometimes by angu-
lar brackets surrounding indices, e.g. ∂̂L = ∂⟨L⟩ = STF [∂L]; similarly xL = xi1 · · ·xiℓ is a
multi-spatial vector and x̂L = x⟨L⟩ = STF [xL]; nL = xL/rℓ with r= |x| and n̂L = STF [nL];
The Levi–Civita antisymmetric symbol is denoted εijk (with ε123 = 1); parenthesis refer to
symmetrization, T(ij) =

1
2 (Tij+Tji).

3. Superscripts (q) indicate q time differentiations; time derivatives are also sometimes indic-
ated by dots; time antiderivatives are denoted by superscripts (−q) or by an explicit integral
sign, e.g.

´
f(t)≡ f (−1) (t) =

ˆ t

−∞
dt ′f(t ′) ;

´´
f(t)≡ f (−2) (t) =

ˆ t

−∞
dt ′
´
f(t ′) . (1.6)

We assume a matter system which is stationary in the remote past [35], thus all time varying
functions are zero for any time before some finite instant −T .

4. For any smooth function of time f (t) we use the specific notation for the antisymmetric,
i.e. half-retarded minus half advanced, combination of homogeneous waves (beware of the
factor 1

2 included)

{f}(t,r)≡ f(t− r/c)− f(t+ r/c)
2r

, (1.7)

where r= |x|. This corresponds to a monopolar wave, and by applying repeatedly STF spa-
tial derivatives ∂̂L we obtain corresponding multipolar waves, given in closed form as [25]

∂̂L {f}=− x̂L
c2ℓ+1 (2ℓ+ 1)!!

ˆ 1

−1
dzδℓ (z) f

(2ℓ+1) (t+ zr/c) , (1.8)

where we pose δℓ(z) =
(2ℓ+1)!!
2ℓ+1ℓ!

(1− z2)ℓ, so that
´ 1
−1 dzδℓ(z) = 1. Performing the PN expan-

sion or equivalently the near-zone expansion (r/c→ 0) of such antisymmetric multipolar
wave one obtains the regular expansion

∂̂L {f}=− x̂L
c2ℓ+1

+∞∑
k=0

r2k

c2k (2k)!! (2k+ 2ℓ+ 1)!!
f (2ℓ+2k+1) (t) . (1.9)

The multipolar antisymmetric wave is smaller by a factorO(2ℓ+ 1) =O(c−2ℓ−1) than the
corresponding symmetric or retarded wave (as seen in the near zone, when r→ 0).

5. The usual small post-Newtonian remainder is denoted O(n)≡O(c−n), and O(n,p)≡
O(c−n,c−p) means a PN remainder which is at once of order O(n) for conservative even-
parity contributions, and O(p) for dissipative odd-parity (RR) contributions.

2. Post-Newtonian iteration in the near zone

2.1. General structure of the PN metric

We provide some necessary reminders on the construction of the PN metric in the near zone
of an isolated system. We shall indicate the formal PN expansion with an overbar. The general
expression of the PN metric in the near zone (valid up to any PN order) has been obtained by

5
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asymptotic matching to the multipolar-post-Minkowskian [35] metric in the zone exterior to
the system. In harmonic coordinates, i.e. H

α
= ∂β hαβ = 0, the result is [36–38]

hαβ ≡ uαβ + uαβRR . (2.1)

The first term corresponds to the standard PN iteration using the ‘symmetric’ inverse
d’Alembertian operator,

uαβ ≡ 16πG
c4

□̃−1
sym

[
ταβ

]
, (2.2)

where τ αβ is the PN expansion of the stress-energy pseudo-tensor (1.5). The symmetric inverse
d’Alembertian □̃−1

sym must be endowed with a crucial infrared (IR) regularization based on
Hadamard’s finite part (FP). The regularization accounts for the divergence of Poisson-like
integrals at spatial infinity (r→+∞), known to occur at high PN orders. In detail, we explicitly
have

□̃−1
sym

[
ταβ

]
≡ FP

B=0
□−1

sym

[̃
rB ταβ

]
=

+∞∑
k=0

(
∂

c∂t

)2k
FP
B=0

∆−k−1
[̃
rB ταβ

]
, (2.3)

where r̃B = (r/r0)B is the IR regularization factor (r0 is an arbitrary length scale), and FPB=0

denotes the FP, i.e. the coefficient of B0 in the Laurent expansion when B→ 0. By definition
of the Hadamard FP, any pole in 1/B is discarded. The kth iteration of the Poisson operator
in (2.3) is given by

∆̃−k−1
[
ταβ

]
≡ FP

B=0
∆−k−1

[̃
rB ταβ

]
=− 1

4π
FP
B=0

ˆ
d3x ′ |x− x ′|2k−1

(2k)!
r̃ ′B ταβ (x ′, t) . (2.4)

The first term in (2.1) represents a particular solution of the (PN-expanded) d’Alembertian
equation which is sourced by the (PN-expanded) pseudo-tensor, i.e. we have

□uαβ =
16πG
c4

ταβ . (2.5)

To the particular solution, one must add a specific homogeneous solution, such that the
matching equation is satisfied [37]. Furthermore, the homogeneous solution must be regular all
over the source’s near zone, i.e. be of the ‘retarded-minus-advanced’ type. The homogeneous
solution is associated with RR effects occuring in the source’s near zone. This is the second
term in (2.1), given by

uαβRR =−4G
c4

+∞∑
ℓ=0

(−)
ℓ

ℓ!
∂̂L

{
Aαβ
L

}
. (2.6)

It is parametrized by the multipole-moment functionsAαβ
L (t), which are STF in their ℓ indices

L. We use the notation (1.7) and (1.8) for antisymmetric type homogeneous solutions (which
are regular in the source, when r→ 0). As shown in [37] the multipole moment functions
in (2.6) are actually composed of two distinct contributions:

Aαβ
L (t) = Fαβ

L (t)+Rαβ
L (t) . (2.7)

6
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The first one represents the multipole moments of the source as seen from the exterior region,
and is given by

Fαβ
L (t) = FP

B=0

ˆ
d3x r̃Bx̂L

ˆ 1

−1
dzδℓ (z) τ

αβ (x, t+ zr/c) . (2.8)

The function δℓ(z) is defined in section 1.2. Note that the integral in (2.8) is symmetric under
time reversal and the argument t+ zr/c can be indifferently replaced by t− zr/c. The second
term in (2.7) corresponds to the so-called radiation modes due to tails and higher non-linear
effects occuring in the GW propagation. Those effects start at the 4PN order in the near-zone
metric and the source’s dynamics [11, 25]. The general expression is

Rαβ
L (t) =−2 FP

B=0

ˆ
d3x r̃Bx̂L

ˆ +∞

1
dzδℓ (z)M

(
ταβ

)
(x, t− zr/c) , (2.9)

where M(ταβ) is the multipole expansion of the pseudo-tensor, and the integral in (2.9) is
truly retarded. In the following, we shall mostly consider the term Fαβ

L , since the other term
Rαβ
L contributes only at the 4PN order, and we are only interested in the odd parity 4.5PN term.

However, although the 4PN tail in (2.9) has a formal even parity, it corresponds to genuine RR
effects, so we shall briefly discuss it following [25, 26], see equations (5.3).

2.2. Explicit nonlinear iteration of the metric

We take advantage of the fact that the PN solution (2.1) satisfies the harmonic coordinate
condition Hα = 0 by construction. Computing the divergence of the first term (2.2) using the
conservation law of the pseudo-tensor ∂βταβ = 0, we obtain

∂βu
αβ = FP

B=0
□−1

sym

[
Br̃B

ni

r
Λiα

]
. (2.10)

We observe that the result comes entirely from the differentiation of the regularization factor
r̃B, and consequently that there is an explicit factor B in the integrand. This factor B kills the
matter contribution to the pseudo-tensor, since the regularization applies only to the portion
of the integral at spatial infinity from the matter source. On the other hand, the harmonicity
condition also implies

∂βu
αβ =−∂βuαβRR =

4G
c4
∂β

[
+∞∑
ℓ=0

(−)
ℓ

ℓ!
∂̂L

{
Aαβ
L

}]
, (2.11)

which can be transformed following the procedure of equations (4.4)–(4.7) in [36]. Defining

Bα
L ≡ 1

c
Ȧ0α
L − ℓAα⟨iℓ

L−1⟩ −
1

(2ℓ+ 3)c2
Äiα
i L , (2.12)

whereAα⟨iℓ
L−1⟩ denotes the STF part ofA

αiℓ
L−1, and where the overdot refers to the time derivative,

we obtain

∂βu
αβ =

4G
c4

+∞∑
ℓ=0

(−)
ℓ

ℓ!
∂̂L {Bα

L } . (2.13)

7
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Next, we construct from (2.13) a related object vαβ , which is not only an antisymmetric homo-
geneous solution of the wave equation (□vαβ = 0 and vαβ is regular when r→ 0), but also
has the property that its divergence cancels out the divergence of uαβ , namely

∂β

(
uαβ + vαβ

)
= 0 . (2.14)

The definition of vαβ (and of some alternative forms) is relegated to appendix A, where we
shall prove that it does not contribute to RR up to the 4.5PN level.

The above construction allows us to define what will appear to be a ‘linearized’ approx-
imation (of order G) for the PN near-zone metric. To this end, we notice that by defining
vαβRR ≡−vαβ , the quantity

GhαβRR1 ≡ uαβRR + vαβRR (2.15)

happens to be a linearized vacuum solution of the field equations in harmonic coordinates,
i.e. □hαβRR1 = 0 and ∂βh

αβ
RR1 = 0, which is associated with the RR effects at the linear level—

hence the explicit factor G introduced into the definition (2.15), which we will use as a formal
bookkeeping parameter. Still, we have to add the conservative effects, and this results in the
following ‘linear’ approximation for both conservative and RR effects,

hαβ1 ≡ 16π
c4

□−1
sym

[
T αβ

]
+ hαβRR1 , (2.16)

where the first term is the symmetric d’Alembertian operator applied to the PN expansion of
the matter tensor Tαβ . Since the matter part is of compact support, we do not need the FP
regularization in this term. Beware that in this set up (following [36]), we are considering
that the components of the matter tensor T αβ are of order G0 in the non-linear G-expansion.
Similarly the multipole moment functions Aαβ

L and Bα
L are considered to be of order G0. The

linear solution (2.16) obeys the expected linear-looking field equation

□hαβ1 ≡ 16π
c4

T αβ . (2.17)

However, it does not separately satisfy the harmonic coordinate condition, and the complete
solution (which does satisfy the harmonic coordinate condition) can be rewritten as the sum
of the latter linearized solution and non-linear corrections, in the following form:

hαβ = Ghαβ1 + □̃−1
sym

[
Σ

αβ
]
+ vαβ . (2.18)

The second and third terms represent the non-linear corrections (of order G2, G3, and so on)
to be added to the linear solution in order to have the complete metric. In the second term, the
gravitational source term is given by

Σαβ = Λαβ +
16πG
c4

(|g| − 1)T αβ = Λαβ +(|g| − 1)□
(
Ghαβ1

)
, (2.19)

and is indeed at least quadratic in h, hence of orderG2 at least; the third term is also of orderG2

at least since it is generated by equation (2.10). The non-linear iteration starting from the linear

8



Class. Quantum Grav. 42 (2025) 065015 L Blanchet et al

solution (2.16) can be justified using a reasoning along the lines given around equations (4.15)–
(4.17) in [36]6.

An important point, which we shall extensively use in this paper, is that once the linear solu-
tion hαβ1 is specified, the non-linear iteration ‘automatically’ follows through order by order.
Suppose that we change the linear solution by adding a linear gauge transformation, i.e. of the
type ∂ξαβ ≡ ∂αξβ + ∂βξα − ηαβ∂γξ

γ for some vector ξα (of order G0). The non-linear iter-
ation will proceed automatically from the new linear approximation and generate non-linear
corrections, such that in the end the new solution will be valid in a different coordinate system,
including all non-linear orders beyond the linear gauge transformation. This solution will evid-
ently be as legitimate as the original one. In the next section, we shall play with this freedom
to define the RR terms in a particularly interesting coordinate system (coined the extended BT
coordinate system), differing from the standard harmonic coordinates by a well chosen linear
gauge transformation at the linear level.

3. The RR potentials

The RR potentials we shall use in the present paper come from the specific multipolar structure
of the linearized antisymmetric solution of the Einstein field equations in vacuum defined by
equation (2.15). Following previous works [36, 39, 40], we can perform the iteration in two
equivalent ways: a general way, where the linear metric is parametrized by ‘source’ moments
(IL,JL) and ‘gauge’ moments (WL,XL,YL,ZL), and a canonical way where it is parametrized
by ‘canonical’ moments (ML,SL). The relations between these sets of moments have been
elucidated in previous papers [40–42]. Since the two constructions differ at linear level by a
linear gauge transformation we are free to adopt either construction (see the argument at the
end of section 2.2). Choosing the canonical version, we parametrize the linear antisymmetric
metric (2.15) by the STF mass and current canonical moments as

h00RR1 =− 4
c2

+∞∑
ℓ=0

(−)
ℓ

ℓ!
∂L {ML} , (3.1a)

h0iRR1 =
4
c3

+∞∑
ℓ=1

(−)
ℓ

ℓ!

[
∂L−1

{
M(1)

iL−1

}
+

ℓ

ℓ+ 1
εiab∂aL−1 {SbL−1}

]
, (3.1b)

hijRR1 =− 4
c4

+∞∑
ℓ=2

(−)
ℓ

ℓ!

[
∂L−2

{
M(2)

ijL−2

}
+

2ℓ
ℓ+ 1

∂aL−2

{
εab(iS

(1)
j)bL−2

}]
, (3.1c)

following the notation (1.7) and (1.8) for antisymmetric multipolar waves. Note that, in fact,
the expressions (3.1) involve only dynamical (time-varying) moments ML(t) and SL(t) with
ℓ⩾ 2. On the linear metric (3.1), we perform a linear gauge transformation with vector ξα1
given by

6 We have defined the linear approximation with the matter tensor Tαβ , rather than with |g|Tαβ , because the iteration,
which is implicit in (2.18), is then very close to the explicit iteration we have performed withMathematica using the
potentials in section 4.1.

9
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ξ01 =
2
c

+∞∑
ℓ=2

(−)
ℓ

ℓ!

2ℓ+ 1
ℓ(ℓ− 1)

∂L

{
M(−1)

L

}
, (3.2a)

ξi1 =−2
+∞∑
ℓ=2

(−)
ℓ

ℓ!ℓ(ℓ− 1)

[
(2ℓ+ 1)(2ℓ+ 3) ∂̂iL

{
M(−2)

L

}
− ℓ(2ℓ− 1)

c2
∂L−1 {MiL−1}

]

+
4
c2

+∞∑
ℓ=2

(−)
ℓ
ℓ

(ℓ+ 1)!
2ℓ+ 1
ℓ− 1

εiab∂aL−1

{
S(−1)
bL−1

}
. (3.2b)

We have introduced some time anti-derivatives of the multipole moments, e.g. M(−1)
L (t), but

such anti-derivatives will always disappear when PN expanded following the formula (1.9),
as shown in equations (3.5) below. Under the linear gauge transformation ∂ξαβ1 ≡ ∂αξβ1 +

∂βξα1 − ηαβ∂γξ
γ
1 , the RR part of the metric hαβRR1 is transformed into

hαβRR1 + ∂ξαβ1 ≡



− 4
Gc2

VRR

− 4
Gc3

V i
RR

− 4
Gc4

V ij
RR

. (3.3)

This allows us to define some scalar, vector, and tensor RR potentials Vαβ
RR ≡ (VRR,V i

RR,V
ij
RR)

from, respectively, the 00, 0i, and ij components of the new linearized metric, as described
in (3.3). The explicit expressions of the RR potentials for any multipolarity ℓ is [25]

VRR = G
+∞∑
ℓ=2

(−)
ℓ

ℓ!

(ℓ+ 1)(ℓ+ 2)
ℓ(ℓ− 1)

∂L {ML} , (3.4a)

V i
RR =−c2G

+∞∑
ℓ=2

(−)
ℓ

ℓ!

ℓ+ 2
ℓ− 1

[
2ℓ+ 1
ℓ

∂̂iL

{
M(−1)

L

}
− ℓ

(ℓ+ 1)c2
εiab∂aL−1 {SbL−1}

]
, (3.4b)

V ij
RR = c4G

+∞∑
ℓ=2

(−)
ℓ

ℓ!

2ℓ+ 1
ℓ− 1

[
2ℓ+ 3
ℓ

∂̂ijL

{
M(−2)

L

}
− 2ℓ

(ℓ+ 1)c2
εab(i∂̂j)aL−1

{
S(−1)
bL−1

}]
.

(3.4c)

The crucial point about choosing the RR potentials is that, when computing the PN expansion
using (1.9), one finds that the PN orders of each of the potentials is dominantly O(5). This
means that, taking into account the factors of 1/c in equation (3.3), VRR starts contributing
at 2.5PN order [see the leading 2.5PN term (1.1)], while V i

RR affects the RR dominantly at
the 3.5PN order, and V ij

RR starts only at the 4.5PN order. This is to be contrasted with the
situation in standard harmonic coordinates, where all components of the corresponding RR
potentials (scalar, vector, and tensor) contribute dominantly to the 2.5PN order. Expanding
equations (3.4) up to 2PN relative order, i.e. corresponding to leading 2.5PN, next-to-leading
3.5PN and next-to-next-to-leading 4.5PN terms, one finds

10
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VRR =− G
5c5

xabM(5)
ab +

G
c7

[
1

189
xabcM(7)

abc−
1
70
r2xabM(7)

ab

]
+
G
c9

[
− 1
9072

xabcdM(9)
abcd+

1
3402

r2xabcM(9)
abc−

1
2520

r4xabM(9)
ab

]
+O (11) ,

(3.5a)

V iRR =
G
c5

[
1
21
x̂iabM(6)

ab − 4
45

εiabx
acS(5)bc

]
+
G
c7

[
− 1
972

x̂iabcM(8)
abc+

1
378

r2x̂iabM(8)
ab +

1
336

εiabx̂
acdS(7)bcd−

2
315

εiabr
2x̂acS(7)bc

]
+O (9) ,

(3.5b)

V ijRR =
G
c5

[
− 1
108

x̂ijabM(7)
ab +

2
63

εab(ix̂
j)acS(6)bc

]
+O (7) . (3.5c)

The coordinate system in which the previous RR potentials hold (after non-linear iteration)
generalizes the BT coordinate system [2, 3] to 2PN relative order and will be referred to as the
‘extended BT’ coordinate system.

4. The RR acceleration at 4.5PN order

4.1. Metric and EOM in terms of symmetric and RR potentials

We shall write the metric in extended BT coordinates for the RR contributions, and in the usual
harmonic coordinates for the conservative contributions. It is convenient to use the same nota-
tion as in previous works in harmonic coordinates for the PN elementary potentials V, Vi, Ŵij,
X̂, and R̂i (see the full definition in appendix A of [43]), but beware that the RR contributions
will not have the same meaning as in standard harmonic coordinates. We thus define the metric
in extended BT coordinates as

g00 =−1+
2
c2
V− 2

c4
V2 +

8
c6

[
X̂+ViVi +

1
6
V3

]
+O (8,13) , (4.1a)

g0i =− 4
c3
Vi −

8
c5
R̂i +O (7,12) , (4.1b)

gij = δij

[
1+

2
c2
V+

2
c4
V2

]
+

4
c4
Ŵij+O (6,11) . (4.1c)

The PN accuracy of the metric is defined for both the conservative (time-even) and dissipative
(time-odd, RR) parts: recall the notation O(p,q), which means that we neglect even terms
O(p) and odd terms O(q). Thus, equation (4.1) is accurate to relative order 2PN for both the
conservative and RR terms, as can be seen from the fact that the symbols O(p,q) in (4.1)
have q− p= 5, which reflects the fact that O(5) is the leading order of RR. In extended BT
coordinates, the definition of the potentials is as follows. The leading scalar, vector, and tensor
potentials V, Vi, and Ŵij contain the RR potentials given by (3.5),

V= Vsym +VRR , (4.2a)

Vi = Visym +V i
RR , (4.2b)

Ŵij = Ŵij
sym +V ij

RR , (4.2c)

11
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while the subleading ones R̂i and X̂ do not contain them explicitly,

R̂i = R̂isym , (4.3a)

X̂= X̂sym . (4.3b)

In (4.2) and (4.3), the subscript ‘sym’ refers to the way the potentials are defined, i.e. by means
of the (regularized) symmetric propagator given by equation (2.3), in contrast with other works
in harmonic coordinates where they are defined using the retarded operator (see [43]). This is
because the RR parts of the potentials, which would generally arise from the odd powers in
the 1/c expansion of the retardations, are now included separately in the form of the poten-
tials (3.5). We thus have

Vsym = □̃−1
sym [−4πGσ] , (4.4a)

Visym = □̃−1
sym [−4πGσi ] , (4.4b)

Ŵij
sym = □̃−1

sym [−4πG(σij− δijσkk)− ∂iV∂jV] , (4.4c)

R̂isym = □̃−1
sym

[
−4πG(Vσi −Viσ)− 2∂kV∂iVk−

3
2
∂tV∂iV

]
, (4.4d)

X̂sym = □̃−1
sym

[
−4πGVσkk+ Ŵij∂ijV+ 2Vi ∂t∂iV+V∂2t V+

3
2
(∂tV)

2 − 2∂iVj∂jVi

]
. (4.4e)

Very importantly in this approach, the ‘symmetric’ potentials actually involve some RR con-
tributions, because their sources in the right-hand sides of (4.4) are defined with the complete
potentials (4.2). Thus, the RR terms in the metric (4.1) are to be computed by iteration (see
section 4.2). The iteration of the RR terms in the metric, with the RR potentials Vαβ

RR intro-
duced linearly in the scalar, vector, and tensor potentials V, Vi, and Ŵij (see (4.2)), is justified
by the investigation of section 2.2, which constructs the RR part of the metric by iteration of
the linear approximation (2.15) parametrized (linearly) by the potentials Vαβ

RR .
In the case of compact binary systems of non-spinning point-particles, the matter source

takes the form

σ = µ̃1δ1 +(1↔ 2) , (4.5a)

σi = µ1v
i
1 δ1 +(1↔ 2) , (4.5b)

σij = µ1v
i
1 v

j
1δ1 +(1↔ 2) , (4.5c)

where δ1 ≡ δ(3)(x− y1) is the three-dimensional delta-function at the location of the particle
1, vi1 ≡ dyi1/dt is the coordinate velocity of the particle (with t≡ x0/c the coordinate time), and
(1↔ 2) refers to the corresponding contribution for the particle 2. The effective masses µ̃1(t)
and µ1(t) are just functions of time and are defined from the regularization of the stress-energy
tensor of point particles as

µ̃1 =

(
1+

v21
c2

)
µ1 , (4.6a)

µ1 =

 m1c√
ggαβ vα1 v

β
1


1

, (4.6b)

12
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wherem1 andm2 are the constant PN masses (we neglect the black hole absorption), where we
pose vα1 ≡ (c,vi1), and where the metric gαβ and its determinant g are evaluated at the location
of the particle 1 following the regularization. In principle, the ultraviolet (UV) dimensional
regularization scheme should be systematically applied, but at the relatively low 2PN order,
the Hadamard regularization is sufficient in practice. The explicit expression of µ̃1 is given by
equation (4.2) of [44], and reads

µ̃1 = m1

(
1+

1
c2

[
−V+ 3

2
v21

]
+

1
c4

[
−2Ŵ+

1
2
V2 +

1
2
Vv21 − 4Vi v

i
1 +

7
8
v41

])
1

+O (6,11) ,

(4.7)

where V, Vi, and Ŵij (as well as Ŵ= Ŵii) are given by (4.2), and the notation (. . .)1 refers to
the UV regularization applied to compute the potentials at the location of the particle 1. We
see that the explicit expressions of µ1 and µ̃1 include the contribution of the potentials V

αβ
RR .

The EOM follow from the conservation of the matter tensor∇βTαβ = 0. For non-spinning
point particles, they are conveniently written as

dPi1
dt

= Fi1 , (4.8)

where Pi1 and F
i
1 result from the geodesic equations on the metric generated by the particles

themselves as

Pi1 =

 giα cvα1√
−gβγ vβ1 v

γ
1


1

, (4.9)

Fi1 =

 c
2
∂i gαβ vα1 v

β
1√

−gγδ vγ1 vδ1


1

. (4.10)

With the metric (4.1) written in terms of potentials in ‘standard’ form, we can directly import
known formulas for the 2PN-accurate EOM in terms of elementary potentials [44]. These
formulas will be valid for both the conservative and dissipative effects up to the PN remainder
O(6,11). We have7

Pi1 = vi1 +

(
1
c2

[
1
2
v21v

i
1 + 3Vvi1 − 4Vi

]

+
1
c4

[
3
8
v41v

i
1 +

7
2
Vv21v

i
1 − 4Vjv

i
1 v

j
1 − 2Vi v

2
1 +

9
2
V2vi1 − 4VVi + 4Ŵijv

j
1 − 8R̂i

])
1

+O
(
6,11

)
,

(4.11a)

7 We also notice that Fi1 can be written in the form of a spatial gradient:

Fi1 =

(
∂i

{
V+

1

c2

[
−
1

2
V2 +

3

2
Vv21 − 4Vjv

j
1

]
+

1

c4

[
7

8
Vv41 − 2Vjv

j
1v

2
1 +

9

4
V2v21 + 2Ŵjkv

j
1v
k
1

−4VjVv
j
1 − 8R̂jv

j
1 +

1

6
V3 + 4VjVj + 4X̂

]})
1

+O (6,11) .

13
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Fi1 =

(
∂iV+

1
c2

[
−V∂iV+

3
2
∂iVv

2
1 − 4∂iVjv

j
1

]
+

1
c4

[
7
8
∂iVv

4
1 − 2∂iVjv

j
1v

2
1 +

9
2
V∂iVv

2
1 + 2∂i Ŵjkv

j
1v
k
1

−4Vj∂iVv
j
1 − 4V∂iVjv

j
1 − 8∂i R̂jv

j
1 +

1
2
V2∂iV+ 8Vj∂iVj+ 4∂i X̂

])
1

+O(6,11) .

(4.11b)

Alternatively, the acceleration ai1 = Fi1 − dQi
1/dt (with Q

i
1 ≡ Pi1 − vi1) can be written in fully

expanded form as

ai1 =

(
∂iV +

1
c2

[(
v21 − 4V

)
∂iV+ 4∂tVi − 8v j1∂[iVj] − 3vi1 ∂tV− 4vi1 v

j
1∂jV

]
+

1
c4

[
4vi1Vj∂jV+ 4vi1 v

j
1v
k
1∂jVk+ 8v j1Vi ∂jV+ 8∂tR̂i + vi1 v

2
1∂tV+ 4Vi ∂tV

− 8V∂tVi − 4v j1∂tŴij+ 8v j1∂jR̂i − 8Vv j1∂jVi − 4Ŵij∂jV− 4v j1v
k
1∂kŴij

−8v j1∂i R̂j+ 8V2∂iV+ 8Vv j1∂iVj+ 8Vj∂iVj+ 2v j1v
k
1∂i Ŵjk+ 4∂i X̂

])
1
+O (6,11) .

(4.12)

We can compute the expression of the acceleration ai1 in terms of the positions (yi1, y
i
2) and

velocities (vi1, v
i
2) in two ways. The first one consists in using the formulation (4.11) and com-

puting the time derivative of Qi
1 with the ‘convective’ time derivative, namely

d
dt

(F)1 =
(
∂tF+ vi1 ∂iF

)
1
. (4.13)

The second method, used at 1PN order in [18], resorts to the expanded form (4.12). This
involves the partial time derivative ∂tF of some potentials, and the equivalence with the first
method is guaranteed by the formula (4.13). In practice, we prefer following the first method,
i.e. computing the quantities (4.11) and applying the convective time derivative (4.13). Finally,
to avoid possible confusion, we remind the reader that the regularization of a product of (deriv-
atives of) potentials should be equal to the product of the regularizations of these potentials.
This is the so-called ‘distributivity’ property of the regularization, (FG)1 = (F)1(G)1, which
holds with dimensional regularization but is violated by the Hadamard regularization (this is
the main source of ambiguities with the Hadamard regularization, see [45]). In the present
work, we use Hadamard’s regularization supplemented by the prescription that, e.g. (V∂iV)1
should be computed as (V)1(∂iV)1. This corresponds to the ‘pure Hadamard–Schwartz’ regu-
larization, which is equivalent to dimensional regularization at the low relative PN orders we
are working at [45].

4.2. RR contributions arising from symmetric potentials

In this section, we determine the RR contributions to the acceleration that are hidden in the
symmetric potentials defined by equations (4.4). In order to compute them, a certain number of
tools will be handy. First, most inverse Laplace regularized operators defined by equation (2.4)
reduce to

∆̃−1
[
rλ1 n̂

L
1

]
= FP

B=0
∆−1

[
rBrλ1 n̂

L
1

]
, (4.14)
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where we have set r0 = 1 for convenience. When computing (4.14), we have to worry about
the presence of possible poles∝ 1/B. As we can argue that there cannot be double poles [45],
it is sufficient to expand rB around rB1 to first order in B, i.e. rB = rB1

[
1+B (n1y1)

r1
+O(B2)

]
.

Hence, the formula used in our calculations is

∆̃−1
[
rλ1 n̂

L
1

]
= FP

B=0

{
∆−1

[
rB+λ
1 n̂L1

]
+Byi1∆

−1
[
rB+λ−1
1 n̂L1n

i
1

]
+O

(
B2

)}
, (4.15)

together with the Matthieu formula valid in the absence of poles,

∆−1
[
rB+λ
1 n̂L1

]∣∣∣∣
B=0

=
rλ+2
1 n̂L1

(λ− ℓ+ 2)(λ+ ℓ+ 3)
. (4.16)

We have explicitly found that no poles 1/B occur in our 2PN-accurate calculation; hence we
just use (4.16) in all cases.

In addition to the Matthieu formula, we also require the solutions of more complicated
Poisson equations, in the form of a hierarchy of elementary ‘kernel’ functions, themost famous
one being the Fock [46] kernel function gFock = ln(r1 + r2 + r12). The Poisson equations we
need to solve for the present purpose are

∆g=
1
r1r2

, ∆f = g ,

∆f12 =
r1
2r2

, ∆f21 =
r2
2r1

,

∆h12 =
r31

24r2
, ∆h21 =

r32
24r1

. (4.17)

Particular solutions of those equations can be constructed starting from gFock, and to these
we must add some specific homogeneous solutions, which ensure the matching between the
near zone and the exterior zone. The general procedure to obtain the homogeneous solutions
is described in section V C 2 of [43] (see also [47–49]). Posing S≡ r1 + r2 + r12, the required
‘matched’ solutions to equation (4.17) (valid in the sense of distribution theory) are

g= ln

(
S
2r0

)
− 1 , (4.18a)

f =
1
12

[(
r21 + r22 − r212

)(
ln

(
S
2r0

)
+

1
6

)
+ r1r12 + r2r12 − r1r2 + 2(xy1)+ 2(xy2)− 3r2

]
,

(4.18b)

f12 =
1
12

[(
r21 + r212 − r22

)(
ln

(
S
2r0

)
+

1
6

)
+ r1r2 + r12r2 − r1r12 + 2(xy1)+ 2(y1y2)− 3y21

]
,

(4.18c)

h12 =
1

360

[
9
8

(
r41 + r412 − 2r212r

2
2 + r42 +

2
3
r21r

2
12 − 2r21r

2
2

)
ln

(
S
2r0

)
+

69
160

r41 +
69
160

r412 +
15
8
r312r2

− 69
80
r212r

2
2 −

9
8
r12r

3
2 +

69
160

r42 + r31

(
−9
8
r12 +

15
8
r2

)
+ r21

(
63
80
r212 +

9
8
r12r2 −

69
80
r22

)
+

9
8
r1
(
−r312 + r212r2 + r12r

2
2 − r32

)
+ 3

(
yi2 − 2yi1

)
yj1x̂

ij− 4(xy1)(y1y2)+ 3(xy2)(y1y2)

−6(y1y2)
2 +

19
2

(xy1)y
2
1 −

9
2
(xy2)y

2
1 +

19
2

(y1y2)y
2
1 −

25
4
y41 − (xy1)y

2
2 + 2y21y

2
2

]
,

(4.18d)
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where we denote scalar products by, for instance, (xy1) = x · y1. From (4.18), the expressions
for f 21 and h21 are simply obtained by exchanging the particle labels 1 and 2. For the present
application, we have found that the aforementioned homogeneous solutions do not contribute
to the end results.

We compute the inverse Laplace operators thanks to (4.16) and the above elementary ker-
nels, and obtain the RR parts in the symmetric type potentials. Those can appear in four ways:
(i) through the explicit dependence on the canonical moments ML and SL or on the RR poten-
tials Vαβ

RR ; (ii) from the expressions (4.6) of µA and µ̃A, which explicitly contain V
αβ
RR ; (iii) from

the symmetric potentials entering µA and µ̃A, which implicitly depend on the RR terms; (iv)
from the expressions of the accelerations arising from the time derivatives hitting on rA, viA, µA
and µ̃A (only the 3.5PN acceleration is needed, and given by (3.11) of [18]). The results are

Vsym

∣∣∣
RR

= G

(
µ̃1

r1
+

1
2c2

d2

dt2
[µ̃1r1] +

1
24c4

d4

dt4
[
µ̃1r

3
1

])∣∣∣
RR

+(1↔ 2)+O (6,11) , (4.19a)

Visym

∣∣∣
RR

= G

(
µ1vi1
r1

+
1
2c2

d2

dt2
[
µ1v

i
1 r1

])∣∣∣
RR

+(1↔ 2)+O (4,9) , (4.19b)

Ŵij
sym

∣∣∣
RR

=
G2m1

5c5
M(5)

a(i (2n
j)
1 y

a
1 + r1n

j)
1 n

a
1 − r1δj)a)+ (1↔ 2)+O(2,7) , (4.19c)

R̂isym
∣∣∣
RR

=
Gm1

r1

(
vi1VRR −V iRR

)
1
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Here, we have discarded terms that are low order conservative contributions which do not
belong to the RR piece. To finish, wewill now discuss the origin of the different terms in (4.19).
In the potential Ŵij

sym|RR, all terms shown come from the non-compact part of the source of the
type ‘symmetric×RR’. In R̂isym|RR: (i) the first line comes from the compact part of the source;
(ii) the other terms come from the non-compact part of the source of type ‘symmetric × RR’.
In X̂sym|RR: (i) the first term comes from the compact part of the source; (ii) the second and
third terms come from the non-compact Vsym × ∂2t Vsym part of the source which involves a
replacement of acceleration; (iii) the second line comes from the non-compact Ŵij

sym × ∂ijVsym

part; (iv) the third line comes from the non-compact Ŵij
sym × ∂ijVRR part of the source; (v) all

the other terms come from the other non-compact source terms of the type ‘symmetric× RR’.

4.3. Final expression for the EOM

Once all the contributions are accounted for, we find that the RR part of the acceleration of
body 1 through 4.5PN order in extended BT coordinates reads

aiRR1 = ai2.5PN1 + ai3.5PN1 + ai4.5PN1 +O (11) , (4.20)

where all the PN pieces are given by (see also the supplemental material)

ai2.5PN1 =− 2G
5c5

ya1M
(5)
ia , (4.21a)

ai3.5PN1 =
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+
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. (4.21b)

17



Class. Quantum Grav. 42 (2025) 065015 L Blanchet et al

ai4.5PN1 =
G

c9

{
−

19
3780

yj1M
(9)
ij y41 +

17
1890

yibj1 y
2
1M

(9)
bj −

46
945

yj1M
(8)
ij (v1y1)y21 +

2
945

va1M
(8)
ia y41 +

71
1890

vi1M
(8)
bj y

2
1y
bj
1

+
26
945

yij1y
2
1v
a
1M

(8)
aj +

1
27
yibj1 (v1y1)M

(8)
bj +

(
−

23
756

nabi12 m2r312 −
13

1890
m2yabi1

)
GM(7)

ab

r12

+
GM(7)

jk

r12

(
−

1
630

nijk12m2r12 (n12y1)
2 −

1
105

m2n
ijk
12 (n12y1)y

2
1 −

1
315

nijk12
m2

r12
y41

)
+
GM(7)

ia

r12

(
2629
3780

m2na12r
3
12 +

359
945

m2na12r12y
2
1 −

2629
3780

m2r212y
a
1

)
+M(7)

ib

(
8

945
(v1y1)y21v

b
1 +

G

r12

[
−

47
189

m2nb12r
2
12 (n12y1)−

227
945

m2r12yb1 (n12y1)

+m2

(
−

4
945

nb12 (n12y1)y
2
1 +

16
945

y21y
b
1

)])
+M(7)

ij

[
G

r12

(
−

13
1890

m2n
j
12r12(n12y1)

2 +
11
378

m2y
j
1(n12y1)

2
)
−

11
189

(v1y1)2y
j
1 −

32
945

v21y
2
1y
j
1

]
+
GM(7)

ab

r12

[
m2r212

( 23
270

yi1n
ab
12 −

5
756

nbi12y
a
1

)
+m2r12

(
−

26
135

ybi1 n
a
12 +

17
135

ni12y
ab
1

)]

+
GM(7)

jk

r12

[
1
42
nik12m2y

j
1(n12y1)

2 +
m2

r12

( 2
63
nik12(n12y1)y

2
1y
j
1 −

1
18
ni12(n12y1)

2yjk1

)]
+

(
2
27
yij1(v1y1)v

b
1 −

2
135

yi1y
2
1v
bj
1 +

14
135

vij1y
2
1y
b
1 +

14
135

vi1(v1y1)y
bj
1

+
G

r12

[
m2r12

( 1
135

yi1n
bj
12(n12y1)−

61
945

nij12(n12y1)y
b
1

)
−

4
63

m2ni12
r12

y21y
bj
1

+m2

(
−

1
27
yij1n

b
12(n12y1)+

1
135

yi1n
bj
12y

2
1 −

4
945

nij12y
2
1y
b
1 +

127
1890

ni12(n12y1)y
bj
1

)])
M(7)

bj

+

[
13
945

ybij1 v
2
1 +

G

r12

(
−

1
378

nbij12m2r212(n12y1)+
37

1890
nbij12m2r12y21

)]
M(7)

bj

+
Gm2M

(6)
aj

r212

( 16
105

ni12v
a
1y
j
1y

2
1 +

8
105

na12v
i
1y
j
1y

2
1 −

8
105

na12v
i
2y
j
1y

2
1

)
+
GM(6)

jk

r12

(
−

4
105

nijk12m2r12(n12v2)(n12y1)−
4
35
m2n

ijk
12(n12v2)y

2
1

)
+
GM(6)

ia

r12

[
m2r12

( 8
15
na12(v1y1)+

64
45
na12(v2y1)

)
+m2r212

(4
5
va1 −

35
18
va2
)]

+
GM(6)

ib

r12

[
m2r212

(4
3
nb12(n12v1)−

119
45

nb12(n12v2)
)

+m2r12
(
−
44
45

(n12y1)vb2 −
12
5
(n12v1)yb1 +

79
45

(n12v2)yb1
)]

+
GM(6)

ij

r12

[
m2r12

(
−

8
15
nj12(n12v1)(n12y1)+

4
9
nj12(n12v2)(n12y1)

)
+m2

(16
15

(n12v1)(n12y1)y
j
1 −

4
5
(n12v2)(n12y1)y

j
1

)]
+
GM(6)

ab

r12

[
m2r212

( 23
126

vi2n
ab
12 −

8
15
nbi12v

a
1 +

53
90
nbi12v

a
2

)
+m2r12

(4
5
ni12v

a
1y
b
1 +

3
5
na12v

i
1y
b
1 +

2
9
ni12v

a
2y
b
1

−
332
315

na12v
i
2y
b
1 −

8
15
na12v

b
1y
i
1 −

4
9
na12v

b
2y
i
1

)
+m2

(
−
3
5
vi1y

ab
1 +

127
210

vi2y
ab
1

)]

+
GM(6)

jk

r12

[
12
35
nik12m2y

j
1(n12v2)(n12y1)+

m2

r12

( 8
35
nik12(n12v2)y

2
1y
j
1 −

4
7
ni12(n12v2)(n12y1)y

jk
1

)]
18



Class. Quantum Grav. 42 (2025) 065015 L Blanchet et al

+

(
8
35
vij1(v1y1)y

b
1 −

1
105

vi1v
2
1y
bj
1 +

G

r12

[
m2r12

( 8
15
yi1n

bj
12(n12v1)−

4
9
yi1n

bj
12(n12v2)+

4
315

vi2n
bj
12(n12y1)

+
8
15
nij12(n12y1)v

b
1 −

28
45
nij12(n12y1)v

b
2 −

124
315

nij12(n12v2)y
b
1

)
+m2

(
−
16
15
yij1n

b
12(n12v1)+

4
5
yij1n

b
12(n12v2)−

16
15
ni12v

b
1y
j
1(n12y1)+

16
15
ni12v

b
2y
j
1(n12y1)

−
4
35
nb12v

i
2y
j
1(n12y1)+

4
105

vi2n
bj
12y

2
1 +

16
15
nij12(v1y1)y

b
1 −

16
15
nij12(v2y1)y

b
1 +

27
70
ni12(n12v2)y

bj
1

)
+
m2

r12

(
−

4
21
vi1(n12y1)y

bj
1 +

4
21
vi2(n12y1)y

bj
1 −

8
21
ni12(v1y1)y

bj
1

)])
M(6)

bj

+

(
G

r12

[
1

126
nbij12m2r212(n12v2)+m2r12

(
−

8
15
nbij12(v1y1)+

28
45
nbij12(v2y1)

)]
−

8
105

vbij1 y
2
1

)
M(6)

bj

+
(47
30
m1m2nabi12 − 2m2

2n
abi
12

)G2M(5)
ab

r12
− nijk12Gm2M

(5)
jk (n12v2)2 +Gm2M

(5)
bj

(
−
8
5
nbij12(v1v2)+

26
15
nbij12v

2
2

)
+M(5)

ia

(
Gm2

(
−
8
5
na12(v1v2)+

1
5
na12v

2
1 +

44
15
na12v

2
2

)
+
G2

r212

[
r12

(
−
97
15
m1m2na12 −

14
5
m2

2n
a
12

)
+

3
5
m1m2ya1 −

4
5
m2

2y
a
1

])

+
GM(5)

ib

r12

[
m2r12

(4
5
(n12v1)vb1 −

4
5
(n12v2)vb1 −

16
5
(n12v1)vb2 +

5
3
(n12v2)vb2

)
+m2

(4
5
(v1v2)yb1 −

3
5
v21y

b
1 −

2
5
v22y

b
1

)]

+
GM(5)

ij

r12

[
m2r12

(
−
2
5
nj12(n12v1)

2 +
4
5
nj12(n12v1)(n12v2)−

31
30
nj12(n12v2)

2
)

+m2

(4
5
(n12v1)2y

j
1 −

7
10

(n12v2)2y
j
1

)]

+
GM(5)

bj

r12

[
m2r12

(8
5
vi2n

bj
12(n12v1)+

6
5
vi1n

bj
12(n12v2)−

38
15
vi2n

bj
12(n12v2)−

4
15
nij12(n12v2)v

b
2

)
+m2

(
−
4
5
nb12v

i
1y
j
1(n12v1)−

12
5
nb12v

i
2y
j
1(n12v1)−

8
5
ni12v

b
1y
j
1(n12v2)−

3
5
nb12v

i
1y
j
1(n12v2)

+
9
5
ni12v

b
2y
j
1(n12v2)+ 3nb12v

i
2y
j
1(n12v2)+

12
5
nij12(v1v2)y

b
1 +

1
5
nij12v

2
1y
b
1 −

14
5
nij12v

2
2y
b
1

)
+
m2

r12

(4
5
vi1(n12v1)y

bj
1 −

4
5
vi2(n12v1)y

bj
1 −

3
5
vi1(n12v2)y

bj
1 +

3
5
vi2(n12v2)y

bj
1

+
4
5
ni12(v1v2)y

bj
1 −

1
5
ni12v

2
1y
bj
1 −

2
5
ni12v

2
2y
bj
1

)]

+
GM(5)

jk

r12

(3
2
nik12m2y

j
1(n12v2)

2 +
3
10

m2ni12
r12

(n12v2)2y
jk
1

)
+

(
G

r12

[
m2r12

(4
5
vbi1 n

a
12 +

4
15
vbi2 n

a
12 −

4
5
ni12v

ab
1 +

12
5
ni12v

a
1v
b
2 −

8
5
na12v

i
1v
b
2 −

12
5
na12v

b
1v
i
2 −

1
15
ni12v

ab
2

)
+m2

(
−
4
5
vbi1 y

a
1 +

3
5
vbi2 y

a
1 −

3
5
vi1v

a
2y
b
1 +

4
5
va1v

i
2y
b
1

)]
+
G2

r212

[
−
22
5
nbi12m1m2ya1 +

4
5
nbi12m

2
2y
a
1 +

1
r12

(
6m1m2ni12y

ab
1 +

24
5
m2

2n
i
12y

ab
1

)])
M(5)

ab +
1

378
M(9)

ibj y
2
1y
bj
1

−
2

567
yiabj1 M(9)

abj +
1
63

M(8)
ibj (v1y1)y

bj
1 +

(
−

1
63
ybij1 v

a
1 −

1
63
vi1y

abj
1

)
M(8)

abj +
1

378
niabj12 Gm2r12M

(7)
abj

+
GM(7)

iab

r12

( 1
18
m2r212n

ab
12 −

1
9
m2na12r12y

b
1 −

1
126

m2yab1
)
+

1
63

M(7)
ibj v

2
1y
bj
1

19



Class. Quantum Grav. 42 (2025) 065015 L Blanchet et al

+

[
−

4
63
vai1 y

bj
1 +

G

r12

(
−

1
126

m2nai12y
bj
1 +

5
189

m2ni12
r12

yabj1

)]
M(7)

abj

−
1

2268
M(9)

iabjy
abj
1 −

8
315

εijkS
(8)
bk y

2
1y
bj
1 −

4
315

εijkva1y
j
1S

(7)
ak y

2
1 +

4
105

εajkva1y
j
1S

(7)
ik y21 −

16
315

εiakva1y
j
1S

(7)
jk y21

−
4
35

εijkS
(7)
bk (v1y1)y

bj
1 +

4
315

εabky
ijk
1 v

a
1S

(7)
bj +

2
21
nijk12Gm2εabkya1S

(6)
bj

+
GεbjlS

(6)
jk

r12

(
−

2
35
nikl12m2yb1(n12y1)−

4
105

nikl12
m2yb1
r12

y21
)

+ S(6)ik

(
−

2
45

Gm2εkbjnb12y
j
1

r12
(n12y1)+

4
45

εkbj(v1y1)vb1y
j
1

)
+
GεibjS

(6)
aj

r12

(
−

88
315

m2r212n
ab
12 +

40
63
m2na12r12y

b
1 +

2
63
m2yab1

)
+

4
21
nib12

Gm2εbklS
(6)
jl

r212
(n12y1)y

jk
1 +

( 2
45

Gm2εkbj

r12
yij1n

ab
12 −

4
45

εkbjy
ij
1v

ab
1

)
S(6)ak −

2
63
Gm2εiajna12y

b
1S

(6)
bj

+

[
G

r12

(
εijk

[
−

2
105

m2r12n
bj
12(n12y1)+m2

(
−

4
315

nbj12y
2
1 +

2
105

nb12(n12y1)y
j
1

)]
−

2
21
m2εkajnia12y

bj
1

)
+εijk

( 8
315

y21v
bj
1 −

4
105

(v1y1)vb1y
j
1 −

4
63
v21y

bj
1

)]
S(6)bk +

2
3
Gm2εabjna12y

b
1S

(6)
ij

+
(
−

4
63

Gm2εikbnb12y
j
1

r12
(n12y1)+

8
63

εikbvb1y
j
1(v1y1)

)
S(6)jk −

8
15
nikl12

Gm2εbjlyb1S
(5)
jk

r12
(n12v2)

+Gm2εiajS
(5)
bj

(16
45
na12v

b
1 −

16
45
na12v

b
2

)
+Gm2εibjS

(5)
aj

(32
45
na12v

b
1 +

56
45
na12v

b
2

)
+Gm2εabjS

(5)
ij

(16
45
na12v

b
1 +

8
5
na12v

b
2

)
+
Gm2εbjkS

(5)
ak

r12

(
−
32
45
nij12v

a
1y
b
1 +

32
45
nij12v

a
2y
b
1

)
+
Gm2εbjkS

(5)
ik

r12

(
−
32
45
nb12(n12v1)y

j
1 +

8
15
nb12(n12v2)y

j
1

)
+
GS(5)jk

r12

[
m2εabk

(
−
32
45
nij12v

a
1y
b
1 +

32
45
nij12v

a
2y
b
1

)
+m2εibk

(64
45
nb12(n12v1)y

j
1 −

16
15
nb12(n12v2)y

j
1

)]
+
GS(5)bk

r12

(
εijk

[
m2r12

(
−
16
15
nbj12(n12v1)+

8
9
nbj12(n12v2)

)
+m2

(32
45
nb12(n12v1)y

j
1 −

8
15
nb12(n12v2)y

j
1

)]
+ εajk

[
m2

(
−

8
45
vi2y

a
1n

bj
12 −

64
45
nij12v

a
1y
b
1 +

64
45
nij12v

a
2y
b
1

)
+
m2

r12

(32
45
ni12v

a
1y
bj
1 +

16
45
na12v

i
1y
bj
1 −

16
45
na12v

i
2y
bj
1

)])
+
16
15
nib12

Gm2εbklS
(5)
jl

r212
(n12v2)y

jk
1

+

[
Gm2εabk

(
−
16
15
nijk12v

a
1 +

56
45
nijk12v

a
2

)
+

16
45

εbakv
ijk
1 y

a
1

]
S(5)bj +

1
84

εiabS
(8)
bjk y

ajk
1 +

1
42

εibkva1S
(7)
ajk y

bj
1

+
1
42

εiakva1S
(7)
bjk y

bj
1 −

1
42

εabkva1S
(7)
ijk y

bj
1

}
. (4.21c)

We deliberately keep the canonical moments ML and SL of the compact binary sources in
‘unexpanded’ form, but of course they contain all their PN corrections consistent with the
approximation. In particular, the mass quadrupole moment Mij is accurate through 2PN order
(and its time derivatives are computed consistently with the 2PN conservative EOM), the mass
octupole and current quadrupole Mijk and Sij are accurate through 1PN order, while the other
moments are Newtonian. The expression of the acceleration after replacing the moments by
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their explicit expressions in terms of the particles is extremely lengthy, and relegated to the
supplemental material.

5. Flux balance laws

In this section, we shall prove that the RR part of the acceleration obtained in (4.20) and (4.21)
enables us to recover the flux-balance equations for the energy, the angular and linearmomenta,
and the CM position, up to the 2PN relative (next-to-next-to-leading) order. The calculation
constitutes therefore a proof of the flux-balance laws, since they are derived from the RR force
in the near-zone EOM, and the fluxes are found to agree with the fluxes computed at future null
infinity from the source. Thus, we shall prove that there exists some local energy E, angular
momentum Ji, linear momentum Pi and CM position Gi (which can be attributed to the matter
system) such that

dE
dt

=−FE , (5.1a)

dJi

dt
=−F i

J , (5.1b)

dPi

dt
=−F i

P , (5.1c)

dGi

dt
= Pi −F i

G , (5.1d)

where the fluxes are given up to 2PN relative order (corresponding to 4.5PN RR order)
by [27, 50]
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+
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(5.2b)
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45
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εijkM
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klm

])
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(5.2c)

F i
G =

G
c7

(
2
21

M(3)
ijk M

(3)
jk +

1
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[
2
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M(4)

ijklM
(4)
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4
21

S(3)ijk S
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+O (10) . (5.2d)

Again, the multipole moments are left in unexpanded form, but they include all relevant PN
corrections.

The expressions (5.2) concern the local-in-time effects, but there are also some non-local-
in-time terms arising at the 4PN order due to gravitational-wave tails. To 4PN order, only the
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tails in the energy and angular momentum fluxes have to be taken into account, and we have

FE

∣∣∣
tail

=
2G2M
5c8

M(1)
ij

ˆ +∞

0
dτ ln

( τ
P

)[
M(7)

ij (t− τ)+M(7)
ij (t+ τ)

]
+O (10) , (5.3a)

F i
J

∣∣∣
tail

=
4G2M
5c8

εijkMjl

ˆ +∞

0
dτ ln

( τ
P

)[
M(7)

kl (t− τ)+M(7)
kl (t+ τ)

]
+O (10) , (5.3b)

where M is the constant (ADM) mass monopole, and the time scale P in the logarithm actually
drops from the result. The non-local tail terms come from the dissipative part of the tail integral
in the acceleration at the 4PN order, as given by equation (6.2) in [51]. In addition to the
dissipative part, there is also a conservative part of the tail integral in the acceleration, which
contributes to the left-hand sides of the balance laws; both dissipative and conservative non-
local 4PN tail terms are discussed in [51].

In equations (5.2), we have written the fluxes in ‘canonical’ form (see e.g. [50]), but of
course one is free to define the fluxes differently, i.e. by using the Leibniz rule to transfer some
total time derivatives to the left-hand sides of the balance laws (5.1). For instance, the flux
of CM position was derived in [27] in the canonical form (5.2d), but [31, 33] obtained the
alternative form

F̂ i
G =
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c7

(
1
21

(
M(3)

ijk M
(3)
jk −M(4)

ijk M
(2)
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)
+

1
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21
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S(3)ijk S
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jk −S(4)ijk S
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)])
+O (10) . (5.4)

Since the two forms differ only by a total time derivative, the balance law stays physically
the same, with just a redefinition of the CM position Gi into some Ĝi, and a different split
between what we interpret as the contribution of the matter system versus what we attribute to
the radiation field.

Let us now show how we derived the flux balance laws (5.1) from the 4.5PN RR
acceleration, the latter being expressed in terms of the unexpanded multipole moments by
equations (4.20) and (4.21). In our approach, it is important not to replace the moments by
their expressions in terms of the binary’s parameters, so as to have a better control over the
structure of the acceleration and avoid handling extremely long expressions. See, however,
appendix B for an alternative method manageable at 3.5PN order.

First, for illustration purposes, we take the simple example of the balance equation for the
energy E at lowest order O(0,5). We form the combination m1vi1 a

i
1 +m2vi2 a

i
2 and readily

obtain

d
dt

(
1
2
m1v

2
1 +

1
2
m2v

2
2
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i
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i
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i
2 a

i
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(
Gm1m2

r12

)
− G

5c5
M(1)

ij M(5)
ij +O (2,7) .

(5.5)

where we have recognized in the right-hand side the Newtonian expression for M(1)
ij =

2m1y
⟨i
1 v

j⟩
1 + 2m2y

⟨i
2 v

j⟩
2 +O(2). It is then trivial to transform the latter equation into the canon-

ical flux balance law

d(Econs +ERR)

dt
=−FE , (5.6)
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where we recover the usual quadrupole flux FE =
G
5c5M

(3)
ij M(3)

ij +O(7), where the Newtonian

conservative energy is Econs =
1
2m1v21 +

1
2m2v22 − Gm1m2

r12
+O(2), and where ERR represents

some Schott-like terms [52] given by

ERR =
G
5c5

(
M(2)

ij M(3)
ij −M(1)

ij M(4)
ij

)
+O (7) . (5.7)

In this approach, note that we neglected many higher order terms in the following oper-
ations: replacement of the accelerations by their expressions, identification of total derivat-
ives, and recognition of the expression of M(1)

ij . These terms must crucially be controlled
and accounted for when deriving the flux-balance laws at the relative 1PN and 2PN orders.
Moreover, due to these terms, it will be increasingly difficult in higher order calculations to
identify total time derivatives ‘by eye’. Thus, in order to treat the full 2PN problem, a system-
atic approach is needed.

To this end, the first step is to express the flux in an adequate form that is linear in the unex-
panded multipole moments (rather than quadratic), but nonetheless preserves some symmetry
between multipole moments. We constructed such a flux by replacing in equations (5.2) all
quadratic combinations of moments by the symmetric product of one unexpanded moment
times the other in expanded form. That is8,

A(n)
L B(m)

L′ −→ 1
2

(
A(n)
L B̃(m)

L′ + Ã(n)
L B(m)

L′

)
, (5.8)

where AL and BL can stand for eitherML or SL, andwhere the tildemeans that we have replaced
the multipole moment by its explicit expression in terms of the particles (i.e. expanded form in
terms of m1, yi1, v

i
1, etc), while the moments without a tilde are not replaced (i.e. unexpanded

form). We then have the generic structure

dHcons

dt
+FH =

+∞∑
ℓ=2

 pmax(ℓ)∑
p=pmin(ℓ)

CLM(p)
L +

qmax(ℓ)∑
q=qmin(ℓ)

DLS
(q)
L

 , (5.9)

where H stands for either E, Ji, Pi, or Gi, and CL and DL are explicitly given in terms of
the particles. Note that in the previous expression, the time derivative d/dt is taken using the
full acceleration (conservative and dissipative); therefore the conservative sector vanishes by
construction, and dHcons/dt is purely composed of terms arising from the RR sector of the
acceleration, which gives rise to terms that are explicitly linear in the multipole moments via
the expressions (4.21). It is then straightforward to integrate by parts (up to a controlled total
time derivative) in a way that reduces the number of time derivatives on the multipole moments
and increases it on the coefficients CL and DL (the conservative 2PN EOM are needed in this
operation). Then, it is easy to express the previous equation with some new coefficients C ′

L and
D ′
L as

dHcons

dt
+FH =

+∞∑
ℓ=2

[
C ′
LM

(pmin)
L +D ′

LS
(qmin)
L

]
− dHRR

dt
, (5.10)

8 It would have been possible to assume amore general, a priori non-symmetric split of terms, but it turns out that (5.8)
does work.
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where the Schott term HRR is explicitly constructed through the integration by parts.
Remarkably, we have found that the new coefficients in fact all identically vanish at this order9:

C ′
L ≡D ′

L ≡ 0 , (5.11)

which means that the left-hand side of (5.10) is explicitly expressed as a total time deriv-
ative. Thus, the balance equation is proven through 4.5PN order, once the Schott term has
been incorporated into the definition ofH, namelyH= Hcons +HRR. The previous method has
been successfully applied to all the balance equations for H= {E,Ji,Pi,Gi} at 4.5PN order.
The conservative parts are required at 2PN order and are given in harmonic coordinates in
section IV A of [53]. We have therefore obtained the Schott terms for all these quantities, such
that

E= Econs +ERR , (5.12a)

Ji = Jicons + JiRR , (5.12b)

Pi = Picons +PiRR , (5.12c)

Gi = Gi
cons +Gi

RR , (5.12d)

and proved that the flux-balance equations (5.1) are satisfied to the required order. The RR
Schott terms are composed of 2.5PN, 3.5PN and 4.5PN terms, namely

ERR = E2.5PN +E3.5PN +E4.5PN +O (11) , (5.13a)

JiRR = Ji2.5PN + Ji3.5PN + Ji4.5PN +O (11) , (5.13b)

PiRR = Pi3.5PN +Pi4.5PN +O (11) , (5.13c)

Gi
RR = Gi

3.5PN +Gi
4.5PN +O (11) . (5.13d)

The 2.5PN and 3.5PN terms are given in appendix C, but the explicit expressions of the 4.5PN
terms are very lengthy (even when the moments are left unexpanded), so they are relegated to
the supplemental material. Moreover, we provide the expanded form of the RR Schott terms in
the supplemental material, and we have verified that the balance equations also hold directly at
that level, once the dimensional identities are correctly identified (see appendix B for details).

6. Reduction to the frame of the center of mass

6.1. Definition of the CM frame

We have established in a general frame at 4.5PN order the flux balance laws for linear
momentum and CM position (5.1), which we repeat here:

dPi

dt
=−F i

P , (6.1a)

dGi

dt
= Pi −F i

G , (6.1b)

9 Two subtleties can arise here. First, it can happen that C ′
L andD ′

L are not zero, but for example constants of motion.
It is then sufficient to take a lower value of pmin to reach the same conclusions. Secondly, when dealing with balance
laws for the vectorial quantities Ji, Pi, and Gi, it can happen that these coefficients are not manifestly zero, but can be

proven to vanish by computing the Hodge duals of the vectors C ′
LM

(pmin)
L and D ′

LS
(qmin)
L ; see (B7) for details.
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where Pi and Gi are made of a conservative part and a RR part following (5.12)–(5.13). We
emphasize that Pi and Gi correspond to the linear momentum and CM position of the matter
system (the compact binary) while the right-hand sides of equations (6.1) are attribuable to the
radiation. Evidently, as we have already discussed, this split between matter and radiation is
somewhat arbitrary, since we can rewrite the flux in non-canonical form and transfer a total
time derivative to the left-hand side (see for instance equation (5.4)).

We integrate the equations (6.1) in the case where the source is stationary before some
initial instant t0, and emits gravitational waves starting from t0. The solution of the balance
laws at any time t⩾ t0 reads

Pi (t) = Pi0 −
ˆ t

t0

dt ′F i
P (t

′) , (6.2a)

Gi (t) = Pi0 (t− t0)+Gi
0 −
ˆ t

t0

dt ′
ˆ t′

t0

dt ′ ′F i
P (t

′ ′)−
ˆ t

t0

dt ′F i
G (t

′) , (6.2b)

where Pi0 andG
i
0 denote two integration constants, namely the initial values of Pi andGi at the

initial time t0.
We can always apply a constant Lorentz boost so that we are initially (at t= t0) in the

rest frame of the system, for which Pi0 = 0. Furthermore, we can always apply a constant
spatial translation to choose the origin of the coordinate system to coincide with the CM,
hence Gi

0 = 0. These choices define the frame of the CM, and by CM we mean the one of
the total matter plus radiation system. From now on, we assume that t0 =−∞ (recall that the
matter system is stationary in the remote past), and we introduce the special notation for the
non-local-in-time (or semi-hereditary10) integrated fluxes in (6.2):

Πi (t)≡
ˆ t

−∞
dt ′F i

P (t
′) , (6.3a)

Γi (t)≡
ˆ t

−∞
dt ′
ˆ t′

−∞
dt ′ ′F i

P (t
′ ′)+

ˆ t

−∞
dt ′F i

G (t
′) =

ˆ t

−∞
dt ′

[
(t− t ′) F i

P (t
′)+F i

G (t
′)
]
,

(6.3b)

which verify the identities dΠi /dt= F i
P and dΓ

i /dt=Πi +F i
G. Thus, the CM frame is defined

by

Gi +Γi = 0 , (6.4a)

which implies

Pi +Πi = 0 . (6.4b)

Using the expression for Gi in (5.12d), made of conservative and RR terms, where the Schott
terms Gi

RR are given in appendix C, it is straightforward to obtain the formulas for the passage
to the CM frame by solving iteratively the equation Gi +Γi = 0. In this way, we find that the
CM positions (extending the usual notation, see e.g. [51]) read

yi1 = xi (X2 + ν∆P)+ ν∆Qvi +Ri , (6.5a)

10 Following the terminology of [34], we may refer to these terms as ‘semi-hereditary’, as they are given by some
time anti-derivative of local terms; thus applying multiple time derivatives to a semi-hereditary term reduces it to be
local.

25



Class. Quantum Grav. 42 (2025) 065015 L Blanchet et al

yi2 = xi (−X1 + ν∆P)+ ν∆Qvi +Ri , (6.5b)

where xi = yi1 − yi2 and vi = vi1 − vi2 = dxi/dt are the relative position and velocity, and we
pose m= m1 +m2, X1 = m1/m, X2 = m2/m, along with the symmetric mass ratio ν = X1X2

and the mass difference ∆= X1 −X2.
Here, the quantities P and Q are local and can be computed up to 4.5PN order, with the

time-odd contributions at 2.5PN, 3.5PN and 4.5PN orders corresponding to the extended BT
coordinates (see (6.7)). In our convention, P and Q correspond to the contribution of matter,
by which we mean that they are obtained by solving Gi = 0. The novel feature is the sup-
plementary term Ri introduced in (6.5), which corresponds to the contribution of radiation.
This radiation term is defined in such a way that the full equations for the passage to the CM
frame (6.5) solve the full equation Gi +Γi = 0, rather than Gi = 0. This term is non-local-in-
time and directly linked to the integrated fluxes (6.3). It arises at the 3.5PN order followed by
a 4.5PN term which can also be controlled with the present accuracy. Taking into account the
1PN corrections inGi as well as those in P andQ (actually the latter is zero asQ starts at 2PN
order) we obtain

Ri =−Γi

m
+

ν

mc2

[(
v2

2
− Gm

r

)
Γi + vj

(
Πj+F j

G

)
xi
]
+O (11) , (6.6)

where we recall that Γi is of order 3.5PN with the next-to-leading 4.5PN correction included.
Therefore, we already see that the definition of the CM frame is altered at the 3.5PN order by
a non-local (semi-hereditary) contribution which accounts for the recoil of the source and the
displacement of the CM due to the GW emission.

Now, let us give the local-in-time contributionsP andQ to the formulas for the passage (6.5)
to the CM frame. Actually, the even parity contributions (i.e. 1PN, 2PN, 3PN and 4PN) have
been already given elsewhere, see equations (B5) and (B6) of [51]. Furthermore, as proven in
section IV of [51], the tails at 4PN order do not affect the definition of the CM frame. Thus,
we only display the dissipative half-integers contributions, i.e. the RR terms corresponding to
the extended BT coordinates. We obtain

PRR =
G2m2ν ṙ
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{
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ṙ2
(
569552
6615

+
98926
6615

ν

)
+
Gm
r
v2
(
−91513

735
+

5448
245

ν

)
+ v4

(
10321
2205

− 8402
147

ν
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+O (11) , (6.7a)

QRR = Gmν

{
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]

26



Class. Quantum Grav. 42 (2025) 065015 L Blanchet et al

+
1
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+O (11) . (6.7b)

Note that in extended BT coordinates, the 2.5PN contribution vanishes, unlike in harmonic
coordinates. For explicitness, we also provide the expressions of the fluxes of linear and angular
momentum to 4.5PN order in the CM frame for two-particle systems, which enter the semi-
hereditary quantities Πi and Γi:

F i
P =

G3m4∆ν2

c7r4

{
ṙni
(
32Gm
35r

−
24
7
ṙ2 +
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21
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)
+ vi
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105r
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)

+
1
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ṙ4
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ν
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+ ṙ2v2
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ν

)
+ v4

(
6808
315

−
6232
315

ν
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Gmṙ2

r
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ν

)
+
Gmv2

r

(
−
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+
3824
315

ν

)
+
G2m2

r2

(
−
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+
16
315

ν

))
+ vi

(
ṙ4
(
−
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315

+
5576
315

ν

)
+ ṙ2v2

(
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9

−
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63

ν

)
+ v4

(
−
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+
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45

ν

)
+
Gmṙ2

r

(
−
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315

−
8
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ν

)
+
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r

(
3628
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−
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35

ν

)
+
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r2

(
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5

+
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945

ν

))]}
+O (11) ,

(6.8a)

F i
G =

G2m3∆ν2

c7r2

{
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(
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735
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)
+
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(
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+
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)
+
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r2

(
−
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−
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+O(11) .

(6.8b)

The 2PN-accurate fluxes of energy and angular momentum in the CM frame are given
by equations (2.14) in [28]. Finally, note that all these expressions are also provided in the
supplemental material.
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6.2. 4.5PN acceleration in the CM frame

First, we construct the relative acceleration ai ≡ ai1 − ai2, which contains both the conservative
terms (up to 2PN order is sufficient here) and the RR contributions given by equations (4.20)
and (4.21). Our task is to reduce this relative acceleration in the CM frame by replacing
(y1,y2,v1,v2) with the help of equations (6.5), which contain in particular the time-odd non-
local term (6.6). We find that two contributions arise. The first, direct, contribution comes from
considering the dissipative terms (4.20) in the acceleration, to which one straightforwardly
applies the formulas for the passage to the CM at 2PN order. The second, indirect, contribu-
tion arises when considering the conservative terms in the relative acceleration, to which one
applies the dissipative sector of the passage to the CM described by equations (6.6) and (6.7).

As is well known, the Newtonian piece of the relative acceleration is not modified when
going to the CM frame. Moreover, there is no 2.5PN term in the formula for the passage to
the CM in extended BT coordinates, so the 2PN term in the relative acceleration contributes
only beyond the current 4.5PN accuracy. Thus, only the 1PN piece of the relative acceleration
yields an indirect (in the previous sense) contribution. In particular, we find that the 3.5PN
non-local term Ri [given by (6.6)] in the passage to the CM frame produces a non-local term
in the acceleration reduced to the CM at the 4.5PN order. Thus, at 4.5PN order, the CM accel-
eration cannot be local in time, because it acquires a contribution due to the integrated linear
momentum flux (or recoil) of the source. However, this extra contribution does not affect the
3.5PN-accurate expression for the mass-type quadrupole moment in the CM frame [see (A1)
of [54]], since only the 2.5PN accurate formula for the passage to the CM frame is needed,
thanks to the particular structure of the Newtonian term in the quadrupole moment.

We now split the RR piece of the relative acceleration into PN contributions,

aiRR = ai2.5PN + ai3.5PN + ai4.5PN +O (11) . (6.9)

The 2.5PN and 3.5PN pieces are readily obtained as

ai2.5PN =
8G2m2ν

c5r3

[
vi
(2Gm

5r
+ 3ṙ2 − 6

5
v2
)
+ niṙ

(2Gm
15r

− 5ṙ2 +
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5
v2
)]
, (6.10a)

ai3.5PN =
8G2m2ν

c7r3

[
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((
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)G2m2
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− 35
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)
ṙ4 +

(
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ṙ2v2

+
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[(
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ṙ2 +
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+
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+
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)G2m2
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+
(
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+
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2
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ṙ4 +
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+
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ṙ2 +

(
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+
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70
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5
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. (6.10b)

The 4.5PN piece can be naturally decomposed into a ‘matter’ and a ‘radiation’ part, namely

ai4.5PN = ai4.5PN

∣∣∣
mat

+ ai4.5PN

∣∣∣
rad
. (6.11)

Formally, the matter piece of this split is defined as the acceleration one would obtain if we
were going to set Ri = 0, i.e. if we were just solving Gi = 0. The radiation part is thus a
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correction to be added thereto. A straightforward calculation yields

ai4.5PN

∣∣∣∣
rad

=
G∆
r2c2

(
2nivj+ njvi

) dΓj
dt

=
G∆
r2c2

(
2nivj+ njvi

)[
Πj+F j

G

]
. (6.12)

This piece of the acceleration contains the non-local piece Πi, i.e. the integral of the linear
momentum flux [recall our definitions (6.3)], which is a consequence of the GW recoil of the
source. Previous results at 3.5PN order [17, 18, 20–24] are unaffected, but more recent results
at 4.5PN order [28, 29] have neglected this effect and need to be corrected. In particular, [28]
(GII) assumed from the start that the 4.5PN term in the CM acceleration is local in time. Using
this hypothesis, they could derive the RR contribution at 4.5PN order using the balance laws for
energy and angular momentum (since they work in the CM frame, they do not account for the
balance laws for linear momentum and CM position). However, by the previous reasoning, the
assumption regarding the local structure of the CM EOM at 4.5PN order ignores the recoil of
the source and the displacement of the CM, so the expression for the 4.5PN acceleration in [28]
cannot be correct. The correct CM acceleration at 4.5PN order can only be obtained starting
from a general frame and then using the full set of flux-balance laws, i.e. not only for energy
and angular momentum, but also for linear momentum and CM position. The approach [28]
was also adopted in [29], but they defined the CM frame as the solution to Gi = 0, whilst we
have here shown that it should instead be defined as the solution to Gi +Γi = 0. Thus, [29]
also neglects the recoil of the source and does not find any non-local contribution, in contrast
with our analysis; moreover, they claim agreement with [28] for the limiting case of circular
orbits, but in the case of the full acceleration in the CM frame, they do not give the values of the
GII parameters corresponding to their choice of coordinates. We shall show in section 7 how
to correct for the flux-balance approach of [28] so as to finally compute the GII parameters
corresponding to our coordinate system.

Finally, we report that the matter piece of the CM acceleration reads

ai4.5PN

∣∣∣
mat

=
8G2m2ν

c9r3

{
ni ṙ
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Note that all these expressions are also provided in the supplemental material.

6.3. Flux-balance laws for energy and angular momentum in the CMs frame

An important check is that our CM acceleration (derived by CM reduction of the general accel-
eration) still implies the energy and angular momentum balance equations in the CM frame.
For this, we first compute the energy E= Econs +ERR and angular momentum Ji = Jicons + JiRR
in the CM frame by applying the formulas (6.5) for the passage to the CM to the full expressions
of the energy and angular momentum including the RR Schott terms (5.13) [as given explicitly
in appendix C]. The conservative parts of these conserved quantities of course agree with the
known conservative results (see e.g. [51], which also contains the discussion concerning the
fate of dissipative and conservative 4PN tail effects). Moreover, the odd dissipative terms have
a direct contribution, that arises by passing ERR and JiRR to the CM frame, as well as indirect
contributions arising from applying (6.5) to the even terms in Econs and Jicons. As previously,
we split E and Ji into ‘matter’ and ‘radiation’ contributions:

E= E
∣∣∣
mat

+E
∣∣∣
rad
, Ji = Ji

∣∣∣
mat

+ Ji
∣∣∣
rad
. (6.14)

The radiation contributions in the 4.5PN terms of the energy and angular momentum in the
CM frame are given by

E4.5PN

∣∣∣
rad

=
ν∆

c2
v2vi

[
Πi +F i

G

]
, (6.15a)

Ji4.5PN

∣∣∣
rad

=
ν∆

c2
εijkx

jvkvl
[
Πl+F l

G

]
. (6.15b)

The fluxes F i
P and F i

G are needed here at 3.5PN order, and can be found at 4.5PN order in
equations (6.8). Again, these terms are interesting because they contain non-local contributions
starting at 4.5PN order. We then find that the full expressions of the ‘matter’ RR contributions
to the energy and angular momentum in the CM frame read
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+O (11) ,

(6.16a)
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JiRR
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(6.16b)

Note that all these expressions are also provided in the supplemental material.
We now take the time derivative of the total energy and angular momentum in the CM frame,

using the relative acceleration in the CM frame given by (6.9) and (6.10). The non-local con-
tributions from the energy, angular momentum and EOM cancel out perfectly, and we exactly
recover the corresponding instantaneous fluxes in the CM frame. Therefore, we have construc-
ted an acceleration at 4.5PN order, in the CM frame, which satisfies the energy and angular
momentum flux-balance laws, although it does not fit into the general framework of [28]. In
the next section, we provide the modification of this framework that correctly accounts for the
recoil-induced non-local terms.

7. The flux-balance approach to radiation reaction

The framework of [28] (referred to as ‘GII’), building on previous work by Iyer and Will [17,
18], applies the flux-balance method, restricted to the frame of the CM, to determine the dis-
sipative RR contributions in the EOM of compact binaries. The end result of GII is the CM
relative acceleration at orders 2.5PN, 3.5PN and 4.5PN which is of the form

aiGIIRR =−8
5
G2m2ν

c3r3

[
−(A2.5PN +A3.5PN +A4.5PN) ṙn

i +(B2.5PN +B3.5PN +B4.5PN)v
i
]
+O (11) ,

(7.1)

where the coefficients AnPN and BnPN are given by equations (2.8), (2.9), (2.11) and (2.16)
in [28]. Remembering that RR is intrinsically gauge-dependent, the coefficients depend on a
number of arbitrary gauge parameters reflecting the arbitrariness in the choice of a coordinate
system, and denoted

{α3,β2, ξ1, ξ2, ξ3, ξ4, ξ5,ρ5,ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ9,χ6,χ8,χ9} . (7.2)

At 2.5PN order, the two parametersα3 and β2 are sufficient, while at 3.5PN order, onemust add
six more parameters ξi=1,··· ,5 and ρ5. At 4.5PN order, there are twelve additional parameters
ψi=1,··· ,9 and χi=6,8,9, thus totalizing twenty gauge parameters for the most general coordinate
transformation up to 4.5PN order [28].

With the RR acceleration (7.1), the flux-balance laws for energy and angular momentum
restricted to the frame of the CM are satisfied [for any set of the gauge parameters (7.2)],
namely

dEGII

dt
=−FE ,

dJiGII
dt

=−F i
J , (7.3)
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where FE and F i
J are the gauge invariant (relative 2PN-accurate) energy and angular

momentum fluxes in the CM frame, and the time derivatives are performed with consistent
order reduction of the accelerations using equation (7.1). The energy and angular momentum
in the left-hand sides take the form

EGII = Econs +EGII
RR , (7.4a)

JiGII = Jicons + JiGIIRR , (7.4b)

whereEcons and Jicons denote the standard conservative pieces at the 2PN order (say, in harmonic
coordinates), which are conserved in absence of RR, and augmented by the RR contributions
in the form of some 2.5PN, 3.5PN and 4.5PN Schott-like correction terms,

EGII
RR = (E2.5PN +E3.5PN +E4.5PN)GII +O (11) , (7.5a)

JiGIIRR =
(
Ji2.5PN + Ji3.5PN + Ji4.5PN

)
GII

+O (11) . (7.5b)

In contrast to the right-hand sides of (7.3), the Schott terms are gauge-dependent and paramet-
rized up to 4.5PN order by the gauge parameters (7.2); see (2.12) and (2.17) in [28].

The computations of GII are perfectly consistent, but they are based on a fundamental ansatz
that the 4.5PN CM acceleration (7.1) is local-in-time, i.e. all the variables r, ṙ, ni, vi in (7.1)
depend only on the current time t, without hereditary or semi-hereditary dependence on earlier
times t ′ < t. Yet, we have proved in section 6 that this cannot be correct, because the definition
of the CM frame must take into account not only the matter contribution but also the radiation
contribution, and this implies the presence at the 4.5PN order of the non-local integral of
the flux of linear momentum, which contains the important physical effect of gravitational
recoil. Let us show how to correct the end result of GII in order to consistently include the
radiation contribution and the non-local effect. We shall then be able to prove that our chosen
extended BT coordinate system for RR indeed corresponds to a unique set of the GII gauge
parameters (7.2).

First of all, we establish the necessary and sufficient conditions under which the flux-
balance laws (7.3) are preserved despite a modification of the CM acceleration (7.1),

ãiRR = aiGIIRR + δaiRR , (7.6a)

together with the corresponding modifications of the RR Schott terms (7.5),

ẼRR = EGII
RR + δERR , (7.6b)

J̃iRR = JiGIIRR + δJiRR . (7.6c)

If the modifications δaiRR, δERR and δJiRR are local, the answer is easy because they should
simply correspond to a redefinition of the gauge parameters (7.2). However, we want to con-
sider the case where these modifications involve a non-local part. We readily obtain, in the
case where δaiRR, δERR and δJiRR are at the highest 4.5PN order, the two equations

dδERR

dt
+mνvi δaiRR = 0 , (7.7a)

dδJiRR
dt

+mνεijkx
jδakRR = 0 . (7.7b)

From section 6, we know that in order to be physically acceptable, the correction terms δaiRR,
δERR and δJiRR must include the non-local radiation contributions. Furthermore, we are allowed
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to add some purely local contribution to the CM acceleration, which is to be determined by
imposing that the equations (7.7) are satisfied. Using equations (6.12) and (6.15), we thus pose

δaiRR =
G∆
r2c2

(
2nivj+ njvi

)[
Πj+F j

G

]
+ δlocaiRR , (7.8a)

δERR =
ν∆

c2
v2vi

[
Πi +F i

G

]
, (7.8b)

δJiRR =
ν∆

c2
εijkx

jvkvl
[
Πl+F l

G

]
, (7.8c)

where δlocaiRR is a local modification of the acceleration that is yet to be determined, and we
have used the fact that, up to a redefinition of the parameters (7.2), we can always set potential
local terms δlocERR and δlocJiRR to zero. Plugging equations (7.8) into (7.7), we find that the
supplementary local acceleration δlocaiRR must satisfy the two equations (recall Π̇i = F i

P),

viδlocaiRR =− ∆

mc2
v2vi

[
F i
P + Ḟ i

G

]
, (7.9a)

εijkx
jδlocakRR =− ∆

mc2
εijkx

jvkvl
[
F l
P+ Ḟ l

G

]
. (7.9b)

The non-local terms have cancelled out, consistently with the fact that GII could obtain the
balance laws (7.3) with purely local acceleration and Schott terms. The unique solution of the
two equations (7.9) is

δlocaiRR =− ∆

mc2
vi vj

[
F j
P+ Ḟ j

G

]
. (7.10)

Finally, we have obtained a new CM acceleration with related quantities at 4.5PN order, given
by equations (7.6) and (7.8), together with the explicit determination of δaiRR in (7.10), such
that it (i) satisfies the flux balance laws for energy and angular momentum; (ii) includes the
radiation contributions (with the non-local terms therein) in the definition of the CM; and (iii)
is as general as the GII acceleration as it depends on the complete set of gauge parameters (7.2).

The local term (7.10) plays a crucial role in ensuring the correctness of the result. Using
the expressions of the linear momentum and CM fluxes given by (6.8) (and restricted to the
dominant 3.5PN order) we obtain

δlocaiRR =− 8
105

G2m2∆2ν2

c9r3

[
2G2m2

r2
(
23ṙ2 − 9v2

)
+
Gm
r

(
−240ṙ4 + 391ṙ2v2 − 141v4

)
+3v2

(
45ṙ4 − 60ṙ2v2 + 11v4

)]
vi . (7.11)

We notice that δaiRR is proportional to the velocity vi. Therefore, it is to be combined with
the coefficient B4.5PN in equation (7.1), where it causes some extra contributions to all the
coefficients ki in equation (2.11b) of [28] (except k7 and k10, which do not receive extra con-
tributions).

Finally, by comparing our CM acceleration obtained in equations (6.9) and (6.10) to
the modified general acceleration ãiRR in an arbitrary coordinate system, as defined in
equations (7.6)–(7.11), we obtain a unique set of gauge parameters (7.2) which correspond
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to our chosen extended BT coordinates, namely

α3 = 5 , β2 = 4 ,

ξ1 =−99
14

+ 27ν , ξ2 = 5− 20ν ,

ξ3 =
274
7

+
67
21
ν , ξ4 =

5
2
− 5

2
ν ,

ξ5 =−292
7

− 57
7
ν , ρ5 =

51
28

+
71
14
ν ,

ψ1 =−94
63

+
4325
168

ν− 1663
12

ν2 , ψ2 =−2347
42

+
13649
56

ν− 925
84

ν2 ,

ψ3 =
2746
21

− 80723
252

ν+
148
3
ν2 , ψ4 =

870
7

− 12725
24

ν+
1730
7

ν2 ,

ψ5 =−541
14

− 4885
42

ν+
803
21

ν2 , ψ6 =−50263
189

+
110122
189

ν+
18832
189

ν2 ,

ψ7 =−1145
18

+
9395
36

ν− 8815
72

ν2 , ψ8 =
7856
63

− 58025
252

ν− 947
9
ν2 ,

ψ9 =
9101
126

+
1831
12

ν− 9103
189

ν2 , χ6 =−16309
504

+
11315
84

ν− 827
56

ν2 ,

χ8 =
5465
126

− 11075
84

ν+
4175
168

ν2 , χ9 =−191
756

− 5167
378

ν+
36499
252

ν2 .

(7.12)

At the 3.5PN level, we recover the parameters corresponding to the extended BT coordinates
computed in [18, 26]. Our unique determination of the parameters at the 4.5PN level constitues
a non-trivial check on the physical soundness of the RR potentials (3.4) and (3.5) and the
perfect consistency with the flux balance method [17, 18, 28]. Finally, note that we provide
the corrected parametrized acceleration (7.6a) in the supplemental material, as well as the
values of the parameters (7.12) corresponding to our choice of coordinate system.

8. Circular orbits

The expression we have found for the 4.5PN acceleration in the CM frame features a novel
non-local term Πi, which introduces a practical difficulty because it a priori depends on the
whole past history of the binary. In this section, we show that specifying the orbit allows
us to ‘localize’ these terms, in a way similar to other non-local effects like tails or memory.
We consider the case of circular orbits and focus on the dominant 3.5PN contribution to the
fluxes. For circular orbits, the fluxes of linear momentum and CM position read (see section VI
of [27])

F i
P =−464

105
G4m5

c7r5
∆ν2 vi +O (9) , (8.1a)

F i
G =−544

105
G4m5

c7r4
∆ν2 ni +O (9) , (8.1b)
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where the orbital separation is denoted by r and the unit vector along the binary’s separation
is ni. When performing the integrations in equations (6.3) for Πi and Γi, we find that there are
no DC terms—only oscillatory AC terms. Since the radial velocity ṙ= O(5) is negligible at
2PN, we can thus perform the integration by assuming that the orbit was perfectly circular in
the past [55]. This entails integrating using dni/dt= vi/r and dvi /dt=−ω2xi in the circular
case [with orbital frequency ω =

√
Gm/r3 +O(2)], all other quantities staying constant. We

find11

Πi =−464
105

G4m5

c7r4
∆ν2 ni +O (9) , (8.2a)

Γi =
48
5
G3m4

c7r2
∆ν2 vi +O (9) . (8.2b)

The main difficulty having been treated with (8.1) and (8.2), we readily obtain the radiation
contribution (6.12) to the acceleration in the circular case as

ai4.5PN

∣∣∣∣
rad

=−32G3m3ν

5c5r4
vi
[
γ2

(
3
2
ν− 6ν2

)
+O

(
γ3
)]
. (8.3)

Then, we can take the full expression (6.13) of the acceleration, and reduce it for circular
orbits using v2 = r2ω2 + ṙ2 and ṙ=O(5); this is the direct contribution, and we obtain, after
including also the radiation contribution (8.3),

aicirc
∣∣∣RR
direct

=−32G3m3ν

5c5r4
vi
[
1+ γ

(
−3431

336
+

5
4
ν

)
+ γ2

(
794369
18144

+
26095
2016

ν− 7
4
ν2
)
+O

(
γ3
)]

.

(8.4)

This result is in perfect agreement with equation (5.2) of [28], which points out that it is actually
‘gauge invariant’, since any gauge ambiguity is proportional to ṙ and plays no role in this
case. We notice that the agreement with [28] occurs because the local correction term (7.10)
happens to exactly cancel the non-local radiation term (8.3) in the circular orbit case. This can
immedialely be verified with equation (7.11).

On top of the direct expression, we need to account for an indirect expression, arising
from replacing ṙ in the conservative piece of the acceleration by its expression given by
equation (372a) of [57]. It reads

aicirc

∣∣∣RR
indirect

=−32G3m3ν

5c5r4
vi
[
γ (8− 4ν)+ γ2

(
−1919

42
− 1609

84
ν+ 3ν2

)
+O

(
γ3
)]
. (8.5)

Finally, the total RR acceleration for circular orbits is the sum of (8.4) and (8.5). Adding to
it the hitherto neglected dissipative 4PN tail term [which originates from equation (5.3a)], we

11 These results provides reassurance about the following concern. The 4.5PN piece of the energy flux was obtained in
the limiting case of circular orbits in equation (5.11) of [56], and is due to the hereditary tail-of-tail-of-tails propagating
in the wave zone. The argument that was used to compute it was that any local term vanishes in the flux at 4.5PN order
for circular orbits, and only the non-local terms survive. But this argument does not a priori rule out a non-vanishing
contribution from the non-local terms in the formulas (6.5) and (6.6). Indeed, when inserting (6.5) and (6.6) into the
energy flux at 1PN order in a general frame, we do find some contributions at the 4.5PN level containing the non-local
term Ri. Fortunately, now that Ri =− 1

m
Γi +O(9) is explicitly given by (8.2b) in the case of circular orbits, we

readily check that the argument of [56] still applies to this case and that these terms vanish for circular orbits in the
4.5PN flux.
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find that the full acceleration at 4.5PN order for circular orbits reads

aicirc =−ω2xi − 32G3m3ν

5c5r4
vi
[
1+ γ

(
−743
336

− 11
4
ν

)
+ 4πγ3/2

+γ2
(
−34639
18144

− 12521
2016

ν+
5
4
ν2
)
+O

(
γ5/2

)]
, (8.6)

where the orbital frequency ω encodes the conservative PN terms (and is given at 4PN order
in [51]), and where the dissipative RR terms to 4.5PN order correspond to the extended BT
coordinate system. This expression is in agreement with (371) of [57] up to 4PN relative order,
and the 4.5PN term is new.

9. Conclusion

In this paper, we have computed the RR force on the orbit of non-spinning compact binary
systems up to 2PN relative order, i.e. including the leading 2.5PN effect followed by the next-
to-leading 3.5PN and next-to-next-to-leading 4.5PN corrections. Previous calculations at 1PN
order were performed in [20–24]. Our calculation is valid for general binary orbits and in a
general frame. The coordinate system is an extension to 2PN order of the BT [2, 3] coordinate
system, and greatly simplifies the calculations. In this coordinate system, the RR is described
by specific scalar, vector, and tensor potentials parametrized bymultipolemoments and defined
in section 3. The end result for the 4.5PN RR terms is given by equations (4.21). The EOM of
compact binary systems are now completely known up to 4.5PN order, since the conservative
part up to 4PN order was derived previously, in both ADM [49, 58] and harmonic [51, 59–61]
coordinates.

With the expression of the RR force in a general frame, we prove (in section 5) the flux
balance laws for the energy, the angular and linearmomenta, and the CMposition to 2PN (next-
to-next-to-leading) order. Besides the extended BT coordinate system, a simplifying feature of
our derivation is that we keep asmuch as possible themultipolemoments of the compact binary
source in ‘unexpanded’ form, i.e. without replacing the moments (and their time derivatives)
by explicit expressions in terms of the particles’ positions and velocities. Such a strategy saves
a lot of calculations and is crucial in our derivation of the flux balance laws. The RR Schott-
like terms [52] that we find in the left-hand sides of the balance laws, which depend on the
chosen coordinate system and whose existence constitutes our proof of these laws, are very
lengthy and could be presented in appendix C only up to 3.5PN order; at the full 4.5PN order,
we provide them in the supplemental material.

Next, we have addressed the problem of the definition of the frame of the CM and the
reduction of the EOM to this frame. In GR, for an isolated gravitating system, the position
of the CM (and likewise the other Poincaré invariants) should be defined as the sum of the
contribution due to the matter and the one due to the radiation. At 3.5PN order, the total linear
momentum is thus given by the one of the matter system plus the correction from the radiation,
the latter being the time integral of the linear momentum flux, i.e. the GW recoil. Therefore,
at the 3.5PN order, the definition of the CM frame fundamentally involves a non-local-in-
time contribution. In turn, such a contribution implies that the EOM at the 4.5PN order, when
reduced to the CM frame, involve a non-local term linked with the GW recoil, as detailed in
section 6.
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An important approach to the problem of RR for compact binaries is the flux-balance
method pioneered in [17, 18]. The ansatz used in this method is that the RR acceleration is
local in the frame of the CM, and the RR is then determined by imposing the flux-balance laws
for energy and angular momentum. The result is not unique but depends on a set of arbitrary
gauge parameters reflecting precisely the arbitrariness in the choice of a coordinate system.
The point we make in section 7 is that, when the flux-balance method is extended to 2PN
relative order [28], the ansatz on the locality of the RR acceleration breaks down due to the
non-local contributions of the source’s recoil and CM displacement by GWs. Nevertheless,
we find that a careful modification of the ansatz (adding the contribution of radiation to the
CM definition) allows us to reconcile the flux-balance method with the present ‘first-principle’
calculation, and to uniquely determine the gauge parameters corresponding to our extended
BT coordinate system.
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Appendix A. Controlling the vµν term in the harmonicity algorithm

A.1. Different forms of the harmonicity algorithm

In section 2, we have introduced the object vαβ from the so-called ‘harmonicity’ algorithm,
say vαβ =Hαβ [w], acting on the components of the divergencewα ≡ ∂βuαβ of the object, and
which is given by (2.10), but also admits the form (2.13). In this appendix, we give more details
on the definition of this object, and also present new alternative expressions, which differ from
the former only by a linear gauge transformation.

We decompose the components of the multipole moments Bµ
L , see equations (2.12)

and (2.13), into irreducible moments12 as

B0
L = cPL , (A1a)

Bi
L =Q(+)

iL + εai⟨iℓQ
(0)
L−1⟩a+ δi⟨iℓQ

(−)
L−1⟩ , (A1b)

12 Not to be confused with P and Q defined in equations (6.7).
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where the irreducible STF tensors are defined by the inverse formulas as

PL ≡
1
c
B0
L , (A2a)

Q(+)
L+1 ≡ B⟨iℓ+1

L⟩ , (A2b)

Q(0)
L ≡ ℓ

ℓ+ 1
Ba
b⟨L−1εiℓ⟩ab , (A2c)

Q(−)
L−1 ≡

2ℓ− 1
2ℓ+ 1

Ba
aL−1 . (A2d)

The moments PL,Q(+)
L ,Q(0)

L , andQ(−)
L (in which the tail piece is discarded, see below) coin-

cide with the corresponding moments in [36], except for a rescaling of PL by a factor 1/c
aimed at making this quantity ‘Newtonian’ (in the sense that its expression in terms of the
sources has a non-zero finite limit when c→+∞). In terms of this irreducible decomposition,
the components of the divergence wα become

w0 =
4G
c3

∑
ℓ⩾0

(−)
ℓ

ℓ!
∂L {PL} , (A3a)

wi =
4G
c4

∑
ℓ⩾0

(−)
ℓ

ℓ!
∂L

{
Q(+)
iL

}
+
∑
ℓ⩾1

(−)
ℓ

ℓ!

(
∂̂iL−1

{
Q(−)
L−1

}
+ εiab∂aL−1

{
Q(0)
bL−1

}) .

(A3b)

Then, the precise definition of vαβ following the ‘standard’ harmonicity algorithm of [35, 63]
is

v00 =
4G
c2

{
−{
´
P}+ ∂a

(
{
´
Pa}+

{´´
Q(+)
a

}
− 5

3c2

{
Q(−)
a

})}
, (A4a)

v0i =
4G
c3

−
{´

Q(+)
i

}
+

5
3c2

Q̇(−)
i + ∂a

(
εiab

{´
Q(0)
b

})
−
∑
ℓ⩾2

(−)
ℓ

ℓ!
∂L−1 {PiL−1}

 ,

(A4b)

vij =
4G
c4

{
δij

{
Q(−)

}
+
∑
ℓ⩾2

(−)
ℓ

ℓ!

(
2δij∂L−1

{
Q(−)
L−1

}
− 6∂L−2(i

{
Q(−)
j)L−2

}
− 2∂aL−2

(
εab(iQ

(0)
j)bL−2

)
+∂L−2

[{
ṖijL−2

}
− (7ℓ+ 3)

(ℓ+ 1)(2ℓ+ 1) c2

{
Q̈(−)
ijL−2

}
+ ℓ

{
Q(+)
ijL−2

}])}
.

(A4c)

Recall the notation (1.7) for antisymmetric waves, and (1.6) for time anti-derivatives. Themain
property of this object is that ∂β uαβ =−wα, easily checked from the expressions (A4), and
of course that uαβ is an antisymmetric homogeneous solution of the wave equation (hence,
regular when r→ 0).
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Next, we present two forms which are alternative to equations (A4), i.e. which differ from
it by some linear gauge transformations. Such forms are interesting because they enable us to
simplify the RR calculations at 4.5PN order. The idea is to choose the gauge transformation in
such a way that it reduces the number of multipole moments to be computed at the considered
approximation level. Because ℓth order STF spatial derivatives of the type ∂̂L{f} are of order
O(2ℓ+ 1) by virtue of equation (1.9), we see that high-ℓmultipole moments, which also come
with high-order STF differentiation, constitute small PN corrections—and generally can be
discarded.

A first strategy thus consists in maximizing the number of spatial STF derivatives entering
the analogue of the object (A4) after a linear gauge transformation. With this choice we obtain

(
v00

) ′
=

4G
c2

+∞∑
ℓ=2

(−)
ℓ

ℓ(ℓ− 1)ℓ!
∂̂L

(
2(2ℓ+ 1){

´
PL}+ ℓ(ℓ+ 1)(2ℓ+ 1)

{´´
Q(+)
L

}
−2(2ℓ+ 3)

c2

{
Q(−)
L

})
,

(A5a)

(
v0i

) ′
=

4G
c3

{
− c2∂̂i {

´´
P}+ 3c2

2
∂̂ia {
´´

Pa}+
+∞∑
ℓ=2

(−)
ℓ
(2ℓ+ 1)

ℓ(ℓ− 1)(ℓ+ 1)!

×
[
∂̂iL

(
(ℓ+ 1)(ℓ+ 2) c2 {

´´
PL}+ ℓ(ℓ+ 1)(2ℓ+ 1) c2

{´´´
Q(+)
L

}
−2(2ℓ+ 3)

{´
Q(−)
L

})
− ℓ(ℓ+ 1) ∂̂aL−1

(
εiab

{´
Q(0)
bL−1

})]}
,

(A5b)

(
vij
) ′

=
4G
c4

{
−3c2δij∂̂a

{´´
Q(+)
a

}
+

3
2
∂̂ij

(
c4 {
´´´

P}+ c2
{´´

Q(−)
})

+ 2c2∂̂a(i
(
εj)ab

{´´
Q(0)
b

})
+ ∂̂ija

(
−5c4

2
{
´´´

Pa}+ 5c4
{´´´´

Q(+)
a

}
− 5c2

6

{´´
Q(−)
a

})
+

+∞∑
ℓ=2

(−)
ℓ

ℓ!

[
(2ℓ+ 3)(2ℓ+ 1)

ℓ(ℓ− 1)
∂̂ijL

(
c4 {
´´´

PL}+ ℓc4
{´´´´

Q(+)
L

}
− (7ℓ+ 3) c2

(ℓ+ 1)(2ℓ+ 1)

{´´
Q(−)
L

})
+δij (2ℓ+ 1) c2∂̂L

{´´
Q(+)
L

}
+

2(2ℓ+ 1) c2

(ℓ− 1)
∂̂L−1a(i

(
εj)ab

{´´
Q(0)
bL−1

})]}
.

(A5c)

Another convenient choice of linear gauge transformation is obtained by demanding that
the 00 and 0i components of the object be as simple as possible. We obtain

(
v00

) ′ ′
=−4G

c2
{
´
P} , (A6a)(

v0i
) ′ ′

=
6G
c
∂̂ia {
´´

Pa} , (A6b)
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(
vij
) ′ ′

=
4G
c4

{
− 9c2

5
∂̂⟨i

{´´
Q(+)
j⟩

}
+

3c2

2
∂̂ij

{´´
Q(−)

}
+ 2c2∂̂a(i

(
εj)ab

{´´
Q(0)
b

})
+ ∂̂ija

(
−5c4

2
{
´´´

Pa}+
c4

2

{´´´´
Q(+)
a

}
− 5c2

6

{´´
Q(−)
a

})
+

+∞∑
ℓ=2

(−)
ℓ

ℓ!

[
c4

2
∂̂ijL {
´´´

PL}− 3∂̂L−1⟨i

(
(ℓ+ 2) c2

(2ℓ+ 3)

{´
Pj⟩L−1

}
− 2

(ℓ+ 1)
Q(−)
j⟩L−1

)
+ ∂̂L−2

(
(ℓ+ 1)(ℓ+ 2)

2(2ℓ+ 1)(2ℓ− 1)

{
ṖijL−2

}
+ ℓ

{
Q(+)
ijL−2

}
− (2ℓ+ 3)
(2ℓ+ 1)(2ℓ− 1) c2

{
Q̈(−)
ijL−2

})
− 2∂̂aL−2

(
εab(i

{
Q(0)
j)bL−2

})]}
.

(A6c)

We have found that the two previous forms (A5) and (A6) drastically simplify the control
(made in section A.2) of all the terms at 4.5PN order with respect to the standard form (A4).

In both cases the linear gauge transformation ∂ψαβ ≡ ∂αψβ + ∂βψα − ηαβ∂γψ
γ is of the

form

ψ0 =
+∞∑
ℓ=0

∂L {AL} ,

ψi =
+∞∑
ℓ=0

∂iL {BL}+
+∞∑
ℓ=1

[∂L−1 {CiL−1}+ ∂aL−1 (εiab {DbL−1})] , (A7)

where, for the two cases respectively,

A ′ =
G
c3

[
−c2
´´

P + 3
´
Q(−)

]
,

A ′
i =

G
c3

[
c2
´´

Pi + 10c2
´´´

Q(+)
i − 5

3

´
Q(−)
i

]
,

A ′
L =

2G(−)ℓ (2ℓ+ 1)
ℓ(ℓ− 1)ℓ!c3

[
−c2
´´

PL− (2ℓ− 1)ℓc2
´´´

Q(+)
L +

(2ℓ+ 3)
(2ℓ− 1)

´
Q(−)
L

]
for ℓ⩾ 2 ,

B ′ =
3G
c2

[
c2
´´´

P +
´´

Q(−)
]
,

B ′
i =

G
c2

[
−5c2

´´´
Pi + 10c2

´´´´
Q(+)
i − 5

3

´´
Q(−)
i

]
,

B ′
L =

2G(−)ℓ (2ℓ+ 3)(2ℓ+ 1)
ℓ(ℓ− 1)ℓ!c4

[
c4
´´´

PL+ ℓc4
´´´´

Q(+)
L − (7ℓ+ 3) c2

(2ℓ+ 1)(ℓ+ 1)

´´
Q(−)
L

]
for ℓ⩾ 2 ,

C ′
i =

4G
c4

[
c2

2

´
Pi − c2

´´
Q(+)
i +

5
3
Q(−)
i

]
,

C ′
L =

4G(−)ℓ

(ℓ− 1)ℓ!c4

[
−(2ℓ+ 1)c2

´
PL− (2ℓ+ 1)ℓc2

´´
Q(+)
L +

2(2ℓ+ 3)
(ℓ+ 1)

Q(−)
L

]
for ℓ⩾ 2 ,

D ′
i =

4G
c2
´´

Q(0)
i ,

D ′
L =

4G(−)ℓ(2ℓ+ 1)
(ℓ− 1)ℓ!c2

´´
Q(0)
L for ℓ⩾ 2 , (A8a)
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A ′ ′ =−3G
c3
´
Q(−) ,

A ′ ′
i =

G
c3

[
c2
´´

Pi + c2
´´´

Q(+)
i − 5

3

´
Q(−)
i

]
,

A ′ ′
L =

G(−)
ℓ

ℓ!c

´´
PL for ℓ⩾ 2 ,

B ′ ′ =
3G
c2
´´

Q(−) ,

B ′ ′
i =

G
c4

[
−5c4

´´´
Pi + c4

´´´´
Q(+)
i − 5c2

3

´´
Q(−)
i

]
,

B ′ ′
L =

G(−)
ℓ

ℓ!

´´´
PL for ℓ⩾ 2 ,

C ′ ′
i =

4G
c4

[
c2

2

´
Pi − c2

´´
Q(+)
i +

5
3
Q(−)
i

]
,

C ′ ′
L =

4G(−)
ℓ+1

ℓ!c2
´
PL for ℓ⩾ 2 ,

D ′ ′
i =

4G
c2
´´

Q(0)
i ,

D ′ ′
L = 0 for ℓ⩾ 2 .

(A8b)

A.2. Controlling the harmonicity terms at the 4.5PN order

The functions Bα
L [of which the tensors PL, Q(+)

L , Q(0)
L , and Q(−)

L are the irreducible com-
ponents] were defined by (2.12) from the multipole moments Aαβ

L , which are themselves the
sum of the Fαβ

L ’s and Rαβ
L ’s, see (2.7). However, we pointed out that Rαβ

L represents the tail
contribution, whose leading 4PN order has been already computed in previous works [51],
and can be ignored henceforth. Therefore, we shall consider all the previous formulas with
the replacement Aαβ

L −→Fαβ
L together with Bα

L −→Gα
L , where Gα

L is related to Fαβ
L by the

equivalent of (2.12), i.e.

Gα
L =

1
c
Ḟ0α
L − ℓFα⟨iℓ

L−1⟩ −
1

(2ℓ+ 3)c2
F̈ iα
i L . (A9)

We shall use a different form of the function Gα
L which reads (see section 1.2 for the notation)

Gα
L = FP

B=0

ˆ
d3xBr̃Br−2xi x̂L

ˆ 1

−1
dzδℓ (z) τ

αi (x, t+ zr/c) . (A10)

There is an explicit factor B, so the range of integration over x is limited to the neighbourhood
of spatial infinity. Hence, we see that this function is the same as the one constructed in the
exterior zone in [36]. More generally, the above construction is very similar to the one in the
exterior zone; simply, all the retarded waves are replaced by their antisymmetric counterparts{
Gα
L

}
. Note that from the irreducible decomposition (A1) (with Bα

L −→Gα
L ), we see that PL

is built with the mixed components of the stress-energy tensor,Σi = τ 0i/c, while the moments
Q(+)
L , Q(0)

L , and Q(−)
L involve its space components Σij = τ ij.
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There remains to compute the function Gµ
L given by equation (A10). The integration over z

is achieved using

ˆ 1

−1
dzδℓ (z) τ

αi (x, t+ zr/c) =
+∞∑
j=0

αjℓ
r2j

c2j
∂2jt

[
ταi (x, t)

]
, (A11a)

where

αjℓ =
(2ℓ+ 1)!!

(2j)!! (2ℓ+ 2j+ 1)!!
. (A11b)

When we insert this expression into (A10) and commute the integration and summation sym-
bols, all the resulting integrals have the form

Ip ,L
[
F i
]
= FP

B=0
B
ˆ

d3x r̃B
xi

r2
x̂Lr2jF i (x, t) , (A12)

which may be thus regarded as the master integral of the problem. More precisely, we find

(
PL,G iL

)
=

+∞∑
j=0

αjℓ

(
d
cdt

)2j

[Ip,L [Σαa]] , (A13)

where α= 0 for the source term of PL and α= i for the source term of G iL, with Σ0a =Σa and
we recall that Σa = τ 0a/c and Σia = τ ia.

The master integral (A12) vanishes when the function F i(x, t) is locally integrable and has
compact support, since the integration volume is limited to spatial infinity and the limit B→ 0
and the summation symbol commute in that case. However, the latter condition does not hold
for the source functions that arise when solving field equations within the PN iteration scheme.
Instead, near r→+∞, the source in harmonic coordinates, say Fi, behaves as

F i (x, t) ∼
r→+∞

∑
p⩽pmax,q

rp lnq r̃
+∞∑
ℓ=0

f ip,q,L (t) n̂
L , (A14)

where the f ip,q,L(t)’s are time-dependent STF coefficients, with p and q integers. The power
index p is bounded from above by pmax and, for given values of p and ℓ, only a finite number
of f ip,q,L(t) do not vanish. Potential divergences ensuing from the asymptotic expansion (A14)
of the source function Fi of the integral (A12) are cured by Hadamard’s FP regularization.
Since those occur at large r, we may assume r larger than some cutoff radius R and restrict
the integration domain to r>R without any incidence on the result.

Inserting the asymptotic expansion (A14) into the master integral (A12), we swap the sum
and the integral, and express the latter in spherical coordinates. For a given value of p and q,
this yields the radial integral

B
ˆ +∞

R
dr
rB+ℓ+1+2j+p

rB0
lnq

(
r
r0

)
=−B

(
d
dB

)q [ RB+ℓ+2+p+2j

rB0 (B+ ℓ+ 2+ p+ 2j)

]
, (A15)

where we have used that, for large enough real parts of B, the quantity rB+ℓ+2+p+2j tends
towards zero at infinity. By analytic continuation, we see that this quantity vanishes in the limit
B→ 0whenever p ̸=−ℓ− 2− 2j. If p=−ℓ− 2− 2j, only terms for which q= 0 contain single
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poles, leading to a contribution −1. It remains to perform the angular integration, resorting to
the formula

f ip,q,L ′ (t)
ˆ

d2Ω
4π

n̂Ln̂L
′
= δℓ,ℓ ′

ℓ!

(2ℓ+ 1)!!
f ip,q,L (t) . (A16)

Combining equations (A14)–(A16), we obtain an explicit expression for Ip,L[F i] in terms of
the coefficients f ip,q,L(t), namely

Ip,L
[
F i
]
=− 4πℓ!

(2ℓ+ 3)!!

[
(ℓ+ 1) f i−ℓ−2j−2,0,Li+(2ℓ+ 3) f i−ℓ−2j−2,0,⟨L δ

iℓ⟩i
]
. (A17)

Since Ip,L[F a] vanishes when Fa has compact support, the compact parts of F a =Σa and
F a =Σia do not contribute. As for their non-compact parts, they are non-linear in G, and thus
of orderO(2) (or higher). Therefore, all momentsPL,Q(+)

L ,Q(0)
L , andQ(−)

L are 1PN quantities
at least. We will now prove that they are in fact of order 2PN at least, by showing that the non-
compact support terms entering the 1PN piece of the sources, which are all quadratic, cannot
produce any contribution to the multipole-moment functions Gα

L .
To this end, it will be useful to consider, for monomials proportional to rpn̂L, with p ∈ Z,

such as those entering the asymptotic expansion (A14), the ‘parity’ of the sum ℓ+ p, and
introduce the function π defined on the set of such monomials by: π(rpn̂L) = 0 if ℓ+ p is
even, π(rpn̂L) = 1 if ℓ+ p is odd. The bit π(rpn̂L) will be referred to as the π-value of rpn̂L.
This concept can be extended to more general functions F(x) in the following way. If the
asymptotic expansion of F when r→+∞ is made of terms that all have the same π-value,
this common value is assigned to π(F) by definition. For arbitrary functions F, no π-value may
be assigned to F in general, but it is often possible to split the asymptotic expansion of F into
two pieces, each having a definite π-value. The main point here is that for any source function
Fi of π-value 0, we have that Ip,L[F i] = 0, since all the coefficients entering equation (A17)
are themselves equal to zero.

An important class of functions with definite π-values are monomials rpnL, where the
angular factor nL is not STF anymore. Due to the fact that the STF decomposition of nL

only contains terms n̂L−2J, with 0⩽ j ⩽ [ℓ/2] of the same parity as ℓ, we see that π(rpnL)
is indeed well defined and equal to π(rpn̂L). Similarly, the π-value of the derivative of rpn̂L,
as a sum of monomials rp

′
n̂L

′
, with p ′ = p− 1 and parity(ℓ ′) = parity(ℓ)+ 1 (mod 2), is

π(∂i[rpn̂L]) = π(rpn̂L), i.e. space derivatives preserve π-values. At last, from the trivial iden-
tity (rpnL)(rp

′
nL

′
) = rp+p

′
nLL

′
, it follows that the π-value of a product of functions is the sum

(modulo 2, in the set {0,1}) of the π-value of each function whenever it exists.
With those tools in hands, we are in the position to evaluate the π-value of potentials whose

sources have compact support. In the near zone, a symmetric potential P̄= □̃−1
symS̄ sourced by

S̄ is given by equations (2.3) and (2.4), with ταβ replaced by S̄. When S̄ is locally integrable
with compact support, no regularization is required. Moreover, if we perform the asymptotic
expansion of the integrand near r→+∞, we can commute the sum and integration symbols,
so that the multipole expansion of P̄ outside the source support is given by

P̄=
+∞∑
k=0

1
(2k)!

+∞∑
ℓ=0

(−)
ℓ

ℓ!
∂L

(
r2k−1

)( d
cdt

)2kˆ
d3xx ′LS(x ′, t) . (A18)

Now, because π(∂Lr2k−1) = π(r2k−1) = 1, the π-value of P̄ (or its derivatives) exists and is
equal to 1. This immediately entails that ‘direct’ quadratic terms ∂P̄∂P̄ ′, precisely those that
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arise at 1PN in Σαa, have a π-value of zero, which prevents them to contribute to Gµ
L at any

PN order.
We have thus shown that PL =O(4) and also any of the Q(+,0,−)

L =O(4). From this, it
is straightforward to list the multipole moments contributing to either of the expressions (A5)
or (A6) for vαβBT in well chosen gauges at the 4.5PN approximation. Those areP (i.e. with ℓ= 0)

at the 3PN order andPi,Pij,Q(+)
i , andQ(+)

ij at the 2PN order.With the help of equation (A13),
we checked (with Mathematica) that all those quantities vanish when discarding negligible
remainders. This leads us to the important conclusion that vαβ , in whatever coordinate system
(recall from section 2.2 that linear gauge transformations have no incidence on the result), does
not contribute to the present work at 4.5PN order.

Appendix B. Balance equations and dimensional identities

The method described in section 5 has been supplemented, up to 3.5PN, by an alternat-
ive approach that consists in forming, for each of the integrals of motion H= {E,Ji,Pi,Gi}
expressed in terms of the configuration variables (y1, y2, v1, v2), the most general ansätze for
the Schott terms of (p+ 1/2)PN order (with p= 2,3,4), say δH(2p+1), that are compatible with
the symmetries of the problem, are polynomial in the twomasses and of course have the correct
physical dimension. The coefficients of the various monomials therein are initially unknown.
However, they must satisfy, for the balance equations to hold, a set of linear equations that
result from identifying the left- and right-hand sides of the explicit form of the balance laws.
Solving this simple system provides the desired Schott terms δH(2p+1).

This approach, whose principle is straightforward, is not as easy as it may seem to imple-
ment in practice, for two different reasons. First, the monomials that compose the original
ansätze are not a priori independent. This can be understood by looking at their structure.
They are made of elementary factors, which may be taken to be dimensionless for conveni-
ence. The scalar factors are

X1 =
Gm1

r12c2
, X2 =

Gm2

r12c2
, X3 =

(n12v1)
c

, X4 =
(n12v2)

c
, X5 =

v21
c2

,

X6 =
(v1v2)
c2

, X7 =
v22
c2

, X8 =
(n12y1)
r12

, X9 =
y21
r212

, X10 =
(y1v1)
r12c

, X11 =
(y1v2)
r12c

.

(B1)

Due to the relation yi2 = yi1 − r12ni12, there is no need to include quantities that depend expli-
citly on the position vector yi2. For axial quantities such as the angular momentum, mixed
products may appear, but they can be eliminated by means of the following identity, valid for
any four vectors Ui

1, U
i
2, U

i
3, and U

i:

(U1,U2,U3)U
i = (U3U)(U1 ×U2)

i
+(U1U)(U2 ×U3)

i
+(U2U)(U3 ×U1)

i
, (B2)

where (U1,U2,U3) = εjklU
j
1U

k
2U

l
3 and (U1 ×U2)

i = εijkU
j
1U

k
2 denote the mixed and cross

products, respectively.
The monomials appearing in the ansatz for a given Schott term δH(2p+1) also contain an

isolated vector-like factor that bears the free index, namely, for polar vectors:

X(p)
12 = ni12 , X(p)

13 =
vi1
c
, X(p)

14 =
vi2
c
, X(p)

15 =
yi1
r12

, (B3)
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and for the axial vector Ji:

X(a)
12 =

(n12 × v1)
i

c
, X(a)

13 =
(n12 × v2)

i

c
, X(a)

14 =
(v1 × v2)

i

c2
,

X(a)
15 =

(n12 × y1)
i

r12
, X(a)

16 =
(y1 × v1)

i

r12c
, X(a)

17 =
(y1 × v2)

i

r12c
. (B4)

Up to the orders that have been investigated, all Schott terms δH(2p+1) are polynomials in
the variables {XA}1⩽A⩽11. Moreover, δPi(2p+1) and δG

i
(2p+1) depend on the set of variables

{X(p)
A }12⩽A⩽15, while δJi(2p+1) depends on {X(a)

A }12⩽A⩽17. In principle, the power of the scalar
variables X8 and X9, which do not contain any 1/c factor, can be arbitrary high at fixed PN
order. However, we constrain our ansätze for the δH(2p+1)’s, regarded again as functions of
(yi1, n

i
12, v

i
1, v

i
2), by requiring that the degree in the variable yi1 of a given Schott term should

never exceed that of the acceleration and the corresponding flux at the same PN order.
The polynomials defined by the Schott terms are thus made of a finite number of monomi-

als XA1 · · ·XAr ×X(p/a)
B1

· · ·X(p/a)
Bs , with 1⩽ r⩽ 11 and other bounds for s depending on the con-

sidered Schott term, which are not all independent from each other. Indeed, in three space
dimensions, any of the four vectors of the problems, (ni12, y

i
1, v

i
1, v

i
2), is linked to the three others

by means of the fundamental identity n[i12y
j
1v
k
1v
l]
2 = 0, stating that there cannot be antisymmet-

ric n-forms for n> 3. Contracted with four different vectors, it leads to the scalar dimensional
identity

PS (X1, · · · ,X11)≡
24
r212c

4
n[i12y

j
1v
k
1v
l]
2n

i
12y

j
1v
k
1v
l
2 = 0 , (B5)

where the prefactor 24/(r212c
4) makes the polynomial PS(X1, · · · ,X11) dimensionless and

removes the global antisymmetrization factor 1/4!. In addition, contracting the fundamental
identity with three different vectors yield one vector identity for each of the four choices
of vector triplets. The resulting four vector identities n[i12y

j
1v
k
1v
l]
2U

j
1U

k
2U

l
3, with U

i
1, U

i
2, U

i
3 ∈

{ni12,yi1,vi1,vi2}, define four polynomials, which are zero on the configuration space:

P(p)
1

(
X1, · · · ,X11,X

(p)
12 , · · · ,X

(p)
15

)
≡ 24
r12c4

n[i12y
j
1v
k
1v
l]
2n

j
12v

k
1v
l
2 = 0 , (B6a)

P(p)
2

(
X1, · · · ,X11,X

(p)
12 , · · · ,X

(p)
15

)
≡ 24
r212c

4
n[i12y

j
1v
k
1v
l]
2v

j
1v
k
2y
l
1 = 0 , (B6b)

P(p)
3

(
X1, · · · ,X11,X

(p)
12 , · · · ,X

(p)
15

)
≡ 24
r212c

3
n[i12y

j
1v
k
1v
l]
2v

j
2y
k
1n

l
12 = 0 , (B6c)

P(p)
4

(
X1, · · · ,X11,X

(p)
12 , · · · ,X

(p)
15

)
≡ 24
r212c

3
n[i12y

j
1v
k
1v
l]
2y

j
1n

k
12v

l
1 = 0 . (B6d)

For δJi(2p+1), it is always possible to write the original ansatz in such a way that
the free index i is held by a cross product. The dimensional identities involving cross
products are found by contracting n[j12y

k
1v
l
1v
m]
2 = 0 with the Levi–Civita εijk (i playing

here the role of free index) and any of the six pairs of tensors, Ul
1U

m
2 , with Ul

1 ,U
l
2 ∈

{nl12,yl1,vl1,vl2}. The identities εijkn
[j
12y

k
1v
l
1v
m]
2 U

l
1U

m
2 = 0 imply the vanishing of six new polyno-

mials P(a)
s (X1, · · · ,X11,X

(a)
12 , · · · ,X

(a)
17 ). All other dimensional identities relevant for our problem

amount to equation (B2), which has been already taken into account. This specific relation
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Table 1. For each conserved quantities, we specify the polynomial ring A it belongs to, where the vari-
ables XA, X

(a)
A and X(p)

A are defined by (B1) and (B3)–(B4). In Ji, it is understood that all mixed products
are eliminated in favor of cross products by means of (B2). We indicate, in each case, the corresponding
dimensional identities defined by (B5)–(B6) and in the text.

Integrals of motion E Ji Pi and Gi

Ring of polynomials A K[X1, · · · ,X11] K[X1, · · · ,X11,X
(a)
12 , · · · ,X

(a)
17 ] K[X1, · · · ,X11,X

(p)
12 , · · · ,X

(p)
15 ]

Generators of the ideal I PS PS, P
(a)
1 , . . . ,P(a)

6 PS, P
(p)
1 , . . . ,P(p)

4

is actually straightforward to handle thanks to the Hodge dual, defined in our case for some
vector vi by

[∗v]jk =
1
2
εijkvi . (B7)

After taking the Hodge dual of both members, and using the relation εiabεijk = δaj δ
b
k − δbj δ

a
k , it

becomes a trivial identity. We resorted to this Hodge dual technique, applied to the case where
the fundamental objects comprise tensors of higher ranks in addition to vectors, namely the
multipole moments, to prove the vanishing of the coefficients entering equation (5.11).

Once those dimensional identities are in hands, an efficient manner to take them into
account is to perform all calculations in the quotient space of the relevant ring of polynomials
by the ideal I generated by the corresponding dimensional identities, as shown in table 1.

The reduction of a polynomial of A modulo I, i.e. modulo combinations of dimensional
identities, may be achieved efficiently by building an appropriate set of generators for I,
referred to as a Gröbner basis (see [64] for a precise definition). Introducing those particular
generators requires the setting of some monomial order. Any polynomial may then be reduced
with respect to the chosen basis by subtracting repeatedly multiples of basis elements so as
to replace, at each step, a monomial of P by several smaller monomials (in the sense of the
considered order relation). As it turns out, the reduction chain P0, P1, …, Pi, …, constructed
with this procedure is always finite, due to the particular properties of Gröbner basis and its
last element can be regarded as a ‘fully reduced’ version of P. If P belongs to the ideal I
generated by some dimensional identities, its fully reduced version vanishes. In other words,
the reduction algorithm recognizes that P is zero when dimensional identities are taken into
account. In practice, to show that two polynomials are equal, under the constraints that ele-
ments of I must vanish, we compute their difference, and check that the reduction procedure
yields zero. This reduction, for a given Gröbner basis B1, …, Bn of the variables X1, …, Xm,
can be achieved with the help of the command PolynomialReduce[polynomial, {B1, · · · ,
Bn}, {X1, · · · , Xm}] within Mathematica.

Thanks to this powerful tool, we first reduce the monomials used in our ansätze for the
Schott terms. The number of mononials entering the reduced expressions is always lower than
the number of original monomials. We then compute the combination dH/dt+FH, where
FH represents the flux of H, reduce it through the procedure discussed above, and equate the
resulting polynomial to zero. The ensuing system of equations for the ansatz coefficients is
however extremely large, unless we use additional physical information (e.g. the minimum
power of G that can enter the Schott terms) to forbid certain types of terms in the ansätze.
Solving those systems is the second difficulty of this approach. If we insist in being agnostic
about the structure of the Schott terms, the computation of δJi(3.5), for instance, implies solving

about 5× 104 equations for about 2.5× 104 unknows. The computational time is reasonably
long (less than 24 h in this case), but the required memory is of the order of O(1Tb).
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The quantities δE(3.5), δJi(3.5), and δP
i
(3.5) constructed with the previous procedure have

been checked to be the same, modulo dimensional identities, as their counterparts obtained
in section 5, after replacing the multipole moments by their explicit expressions (we provide
the latter in the supplemental material). For the CM integral, we found a net difference, but
it turns out to be a mere constant, so that only the initial value of the CM vector, namely
Gi

0 = (Gi +Γi)− (Pi +Πi)t, is modified,

Gi
0section 5 −Gi

0appendix B =
2GPi

15c5

[
4E+

13
14mν2c2

((
1+

380
13

ν

)
E− P2

2m

)(
E− P2

2m

)]
+O (9) .

(B8)

Note that the right-hand side vanishes at the considered approximation level when Gi is set
to zero, thus the CM frame is defined unambiguously. At the 4.5PN order, the energy has
been computed by means of both methods, leading to identical results. The other Schott terms
provided by the algorithm described in section 5 have been verified, by checking that, after
incorporating them to the corresponding integrals of motion, the latter do satisfy the balance
equations (5.1) at the 4.5PN order when dimensional identities are properly taken into account.

Appendix C. Results for the Schott terms up to 4.5PN order

We have proven in section 5 that the balance laws (5.1) are satisfied at the required order, where
the fluxes (5.2) agree with the known expressions computed at future null infinity. Evidently,
the proof must be accompanied by the explicit expressions for the terms in the left-hand sides
of the balance laws, and notably the RR contributions or Schott terms [52] therein, whose
structure was given in (5.13). First, the complete expressions of the Schott terms for the energy,
the angular and linear momenta, and the CM position are provided in extended BT coordinates
at the 2.5PN, 3.5PN, and 4.5PN orders in the supplemental material, in the form of linear
expressions in the unreplaced multipole moments, which conform to the procedure described
in equation (5.8). Secondly, we provide hereafter the explicit expressions of the Schott terms
at 2.5PN and 3.5PN orders in a more compact form, which allows for quadratic expressions
in the unreplaced multipole moments (the 4.5PN piece was too lengthy to present). Of course,
these two forms are strictly equivalent. They read:

E2.5PN =
G

c5

(
6

5
M(2)

ab M(3)
ab +

2

5
M(1)

ab M(4)
ab

)
, (C1a)

E3.5PN =
G

c7

[
25

189
M(3)

abiM
(4)
abi +

16

189
M(2)

abiM
(5)
abi +

2

63
M(1)

abiM
(6)
abi

+M(6)
bi

[
17

105
nbi12m2r312 (n12v2)+m2r12

(
17

105
ybi1 (n12v2)

−
22

105
vb2y

i
1 (n12y1)

)
−

17

105
m1ybi1 (v1y1)−

17

105
m2ybi1 (v2y1)+m2r212

(
−

34

105
nb12y

i
1 (n12v2)

+
22

105
nb12v

i
2 (n12y1)−

17

105
nbi12 (v2y1)

)]
+M(6)

ai

(
34

105
m2na12r12y

i
1 (v2y1)+

11

105
m1va1y

i
1y

2
1

+
11

105
m2va2y

i
1y

2
1

)
+

(
−

11

105
m2na12r12v

b
2y

2
1 −

11

105
m2na12r

3
12v

b
2 +

11

105
m2r212v

a
2y
b
1

)
M(6)

ab

+m2r12M
(5)
ai

(
−

4

35
na12v

i
2 (v2y1)+

92

105
na12y

i
1v

2
2

)
+M(5)

bi

(
m2r12

(
−

4

35
vb2y

i
1(n12v2)+

22

105
vbi2 (n12y1)

)
+m2r212

( 4

35
nb12v

i
2(n12v2)−

46

105
nbi12v

2
2

)
+m1

( 4

35
vb1y

i
1(v1y1)−

46

105
ybi1 v

2
1 −

11

105
vbi1 y

2
1

)
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+m2

( 4

35
vb2y

i
1(v2y1)−

46

105
ybi1 v

2
2 −

11

105
vbi2 y
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. (C1h)

Finally, we refer to the supplemental material for the RR Schott terms at 4.5PN order in expan-
ded form.
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