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Abstract. In modern urban transportation networks, multiple self-
interested travel providers (public transit, micromobility providers,
ride-sharing platforms and toll roads) compete for heterogenous
transportation users that wish to balance time and cost. Tradi-
tional congestion models assume fixed, exogenous costs, while
dynamic-pricing frameworks typically focus on a single operator,
overlooking the rich strategic interplay among decentralised trans-
portation providers. This paper introduces the Multi-Market Routing
Problem (MMRP), a game-theoretic model in which each provider
utilises adaptive pricing to maximise profit and heterogeneous trans-
portation users aim to minimise their travel time and cost.

We present the MMRP as an extension of traditional congestion
games, and extend it to consider online instances for adaptive pric-
ing under dynamic and stochastic congestion. We demonstrate the
computational complexity for game-theoretic and exact solutions to
the MMREP, reflecting the computational complexity of coordinat-
ing routing in dynamic and uncertain settings. To address this, we
propose the use of independent Proximal Policy Optimisation as a
decentralised and effective solution to the online MMRP, demon-
strating reduced travel times and more equitable and fair outcomes
for transportation users, and increased profitability for transportation
providers. The MMRP framework and learning algorithms offer a
principled foundation for competitive, multimodal routing in mod-
ern urban transportation networks.

1 Introduction

Urban transportation networks closely resemble multi-provider
marketplaces, where transportation users can select from a va-
riety of available transportation options, such as public transit,
micro-mobility services, toll roads, and ride-sharing platforms, to
traverse the network to their destination. Transportation users vary
in their sensitivity to time and cost, leading to heterogeneous
route-choice behaviour that classical congestion models, such as
Congestion Games (CGs) [21], which assume fixed exogenous costs
and homogeneous users, cannot capture accurately. Moreover, tradi-
tional frameworks assume a passive cost structure that scales only
with aggregate flow, neglecting the fact that each provider could
strategically set its own pricing to influence demand and incen-
tivise the use of their transportation method. Therefore, existing CG
models fail to consider the competitive interdependencies among
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providers that characterise real-world, multimodal transportation net-
works.

Furthermore, CGs model a setting in which non-atomic players
choose resources such as network routes and incur costs dependent
on aggregate usage [21]. While this framework guarantees the exis-
tence of pure-strategy equilibria under fixed, exogenous cost func-
tions, it assumes homogeneous users and passive cost structures that
scale only with flow. Extensions such as atomic and weighted con-
gestion games [13, 1] accommodate player heterogeneity and mul-
tiple origin-destination pairs but still treat delays or tolls as a pre-
determined, monotonic function of the total flow rather than a deci-
sion variable controlled by a strategic provider. Bilevel and Stack-
elberg [2] models introduce tolling but assume a single, monopo-
listic paradigm, where route prices are determined by a single cen-
tralised operator. However, in real-world transportation systems, tolls
are set by multiple autonomous operators with limited information
and without a central coordinator, so bilevel and Stackelberg formu-
lations cannot capture the asynchronous, strategic interplay and in-
formation constraints inherent in truly decentralised and competitive
markets. Real-time dynamic tolling frameworks [30, 10, 24, 14, 29]
and multiagent reinforcement learning approaches capture online
pricing under uncertainty but focus on a centralised pricing mech-
anism or assume communication across pricing agents.

To address these gaps, we introduce the Multi-Market Routing
Problem (MMRP), a novel game-theoretic framework in which each
route provider is a strategic agent utilising tolling to maximise its
own profit while a heterogenous population of transportation users
(or players) travel through the network, selecting routes based on de-
lay, toll and individual value of time. The MMRP is defined as both
an offline problem that combines route pricing strategy and delay
function, and player strategy spaces and preferences, and an online
problem which extends the problem to include decision-making un-
der uncertainty, allowing routes to adapt to evolving congestion and
competitive behaviour through adaptive tolling. To this end, this pa-
per provides the following contributions:

1. We rigorously define the MMRP as both an online and offline
problem, and provide a game-theoretic framework for modelling
the MMRP to understand the strategic interactions and competi-
tive dynamics, including a proof of its NP-Hard nature in the prob-
lem’s offline form.

2. As there exists an inherent complexity associated with developing

efficient algorithms for solving the offline MMRP, we evaluate



heuristic-based solutions for the offline MMRP, utilising offline
solutions as a baseline for the online MMRP.

3. We proposed a modified variant of Proximal Policy Optimisa-
tion, adapted for use in competitive multiagent scenarios to en-
sure reliable learning in dynamic and uncertain environments as a
learning-based solution for the online MMRP.

4. We conduct extensive empirical evaluations encompassing both
offline and online instances of the MMRP, demonstrating im-
proved travel time and equality outcomes for players and prof-
itability for route providers, suggesting that our PPO-based
method effectively manages congestion and competition between
providers

2 The Multi-Market Routing Problem

Classical CGs [21] model a setting where non-atomic users indepen-
dently select routes to minimise travel delay, reaching an equilibria
in which no-one can unilaterally improve their outcome. In contrast,
the Multi-Market Routing Problem elevates each route to the sta-
tus of a strategic transportation provider: every provider sets tolls
or prices to maximise their own profit, while a heterogeneous pop-
ulation of transportation users choose routes based on the combined
delay and price. We begin by formalising the MMRP as a six-tuple
that brings together provider pricing strategies, user strategy spaces,
flow-dependent delay functions, and value-of-time heterogeneity.

Following Roughgarden and Tardos [22]’s definition of non-
atomic congestion games, we formally define the Multi-Market
Routing Problem (MMRP) as a 6-tuple:

Definition 1. An instance of the MMRP M is defined by the 6-tuple:
M = (R,V,(®;)jev,(0;)jev, (Di)icr, ()icr)

The set R = {R1, Ra,..., Ry} is the set of available routes in
the network. The set V. = {V1,Va,..., Var} represents the set of
players or transportation users in the game. In contexts where a net-
work graph is available, each route R; corresponds to a connected
link in the network. For each route R; € R, the delay function
D; : {0,...,5} — R™" assigns a travel delay based on the num-
ber of players on the route. That is, if f; players select route R;, the
travel time for R; is D;(f:) ' We define delay functions as non-
negative, continuous and non-decreasing. For each route R;, there is
a toll function 2; : C; — R, where C; denotes the conditions rel-
evant to the route (e.g. current flow, historical toll values, or other
dynamic factors). In many practical settings, this toll may evolve
over time, and consider temporal factors as well as spatial ones (i.e.
Qi(t) =g: (Ci, Qi(t— 1))). The toll function §2; allows the routes to
incorporate pricing strategies that could be used to manage conges-
tion whilst generating revenue, and its dynamic form is particularly
amenable to time-dependent analyses.

Each player V; is associated with an origin—destination (OD) pair
(0j,d;); this specifies the starting point and desired destination. © ;
denotes the Value of Time (VoT) of player V;, a value capturing the
heterogeneity in players and their amenability to incur a higher toll
for arriving at their destination sooner. For every player V;, the strat-
egy space is defined as ®; C R'(o;,d;), where R'(0;,d;) is the
set of routes connecting player V;’s origin o; to destination d;. We
define x = (w1, 2, ...,TMm) as a strategy profile such that x; € ®;
is the route chosen by player V;. The induced flow on any route
R; € R is then given by f; = #{j | ©; = R;}. We define the
utility of a route R; for player V; as a combination of the travel

1 Examples of delay functions include volume delay functions [25, 17].

time of the route and the associated price of the route. Formally,
ur;,v; = Qi(Ci) + 0;Di(fi).

In this formulation of the MMRP, each problem instance requires
a pricing strategy for every available route as input. Each route
provider utilises the respective pricing strategy, and the objective is to
select the combination of pricing strategies that maximises the total
profit across all routes. However, profit maximisation alone does not
capture the full picture of network performance. In addition to route
profit, it is crucial to consider the travel time experienced by players,
the price they pay, and the fairness and equality in costs among them.
Consequently, the best solutions are those that not only optimise the
routes’ profit margins but also balance efficiency and equity for the
players, leading to improved overall network performance.

The MMRP extends classical non-atomic congestion games by
incorporating competition amongst routes, OD-specific strategy
spaces, heterogeneity in players and dynamic toll mechanisms. In
real-world scenarios, however, network conditions and demand pat-
terns evolve over time. Consequently, tolls and travel delays cannot
be assumed to remain constant; they respond dynamically to con-
gestion levels and players’ route selections. To capture this tempo-
ral evolution and allow for adaptive tolling strategies, we extend the
MMREP, as described by Definition 1 from an offline framework to an
online one. In this dynamic setting, toll decisions are made repeat-
edly in real time, reflecting the instantaneous state of the network
and the current distribution of traffic flows.

3 The Online MMRP and Definition as a Markov
Decision Process

Building on the definition of the MMRP as an offline problem, we
extend this definition to capture the evolving and stochastic nature
of real-world transportation networks. Extending Definition 1 to a 7-
tuple OM captures the dynamic evolution of the transportation net-
work by incorporating a state space that reflects real-time toll levels
and traffic flows.

Definition 2. We define an online instance of the MMRP OM as
OM = (R,V,(®;)jev, (05)jev, (Aj)jev, (Di)icr, (2i)icr)

The variables (R, V, ®) from the offline 6-tuple definition are not
changed. In the online definition, A; represents the entry time of
a player V;. The delay and toll functions become time-dependent
strategies, denoted D;(x,t) and Q;(z,t), which allow the model
to capture the network dynamics as traffic flows and toll decisions
evolve over time.

Building on this extended framework, we illustrate the granular
decisions within the online MMRP by defining the problem as a
Markov Decision Process (MDP). This definition isolates a single
route within the MMRP and models how its state evolves over time
in response to toll adjustments and subsequent player behaviour.

Definition 3. We use an MDP M, to represent the environment in
which a sequential decision-making agent is operating for route R;

as M = (Si, Ai, Pi, Res, )

Here, each state s;,; € S; attime tis atuple s; ; = (Q:(t), fi(t)),
where €;(t) is the toll level on route R; at time ¢ and f;(t) is the
corresponding traffic flow. The action a;; € A; available to route
R; is an adjustment AQ;(¢) to the current toll, and the set A; in-
cludes all feasible toll adjustments. The new route toll is updated
via Qi(t + 1) = Qi(t) + AQ;(t). The state transition probabil-
ity Pi(Sit4+1 | Sit, i) captures how the local state evolves in



response to a toll adjustment. This evolution reflects both the de-
terministic update of the toll and the stochastic response of play-
ers. The reward function Re; encourages each route to maximise
their profit per timestep: R;(si,¢, @i, Sije+1) = Qi(t+ 1) fi(t +1)
where Q;(t + 1) fi(t + 1) represents the total revenue collected
on route R; at time ¢t + 1. As each route provider acts as a self-
interested agent focused solely on maximising its own profit. Since
players are more likely to choose a route with reduced travel time, a
provider can improve its performance by minimising delays, thereby
attracting more players. This increased throughput directly boosts
the provider’s revenue as reducing travel time serves as a competi-
tive advantage that ultimately maximises profit through higher player
counts on the route. The scalar v € [0, 1] is the discount factor that
weights future rewards relative to immediate ones.

Within the MMRP, each route independently determines its pric-
ing strategy based solely on its local state metrics without direct co-
ordination with competing providers. Although the overall system is
multiagent, modeling each route provider’s decision problem as an
individual MDP is appropriate because the competitive effects (such
as shifts in player flows resulting from competitors’ toll changes)
are encapsulated in the observed environmental dynamics. This ap-
proach allows each provider to perceive the problem as a sequential,
single-agent decision task where the impact of other agents is re-
flected in the state transitions. We can apply single-agent reinforce-
ment learning techniques to optimise pricing strategies, reducing the
computational complexity associated with joint multiagent formula-
tions like Dec-POMDPs or stochastic games. This independent MDP
formulation preserves the decentralized decision-making and com-
petitive interactions, while remaining tractable and directly focused
on the optimisation of local pricing strategies.

The decentralised MDP formulation not only illustrates how each
route provider optimises its pricing strategy based on local dynamics
but also captures the competitive interactions indirectly through the
observed state transitions. The broader MMRP framework lays the
groundwork for an exploration of exact solutions to the MMRP to
tackle the complexity inherent in decentralised, multiagent environ-
ments.

4 Feasibility of Game-Theoretic Solutions

Through existing analysis of congestion games, the formal represen-
tation of the MMRP, we consider game theoretic approaches to un-
derstand strategic competition among route providers. In this anal-
ysis, we define an instance of the 6-tuple MMRP with a simple
two-route instance analogous to a parallel two-link network from the
literature [28, 13].

We define R = {R1, Rz}, where D; is defined by the Bureau of
Public Roads volume delay function [20]:

Di(a) =Fo- (1 +a(5)")
Fe.

where x is the number of vehicles on the road at timestep ¢, Fo is the
free flow travel time of the route, F. is the route capacity and «, 3 are
calibration parameters to align the function behaviour to real-world
road characteristics. In our abstract example, we align our example
with calibrated values from literature of o = 0.68, 8 = 2.73 [17].

In this example, our population of players, V, are defined with a
strategy space {®; }v; v as a probability distribution over the possi-
ble routes ?; € R. The probability that a player V; will take a route
R; is determined through Quantal Response Equilibria (QRE) [12], a
framework for modelling bounded rationality in strategic interactions

that captures the probabilistic nature of human decision-making and
accounts for the possibility that players may not always play their
exact best responses. Formally, we define QRE as

exp(Aur,,v;)
(R;) = ;
ZR’eRexp(AuRi,Vj)

)

where u;(R;) is the utility of taking route R; for player v; at
timestep ¢. For our theoretical and empirical analysis, we used a value
of A = 1 for our application of QRE.

To model the heterogeneity of player preferences, we assume
player VoT, O, is drawn from the uniform distribution U(0, 1). To
align our player arrival distribution with real-world conditions, we
model A using a Beta distribution [16]. This distribution introduces
variability in congestion levels throughout the simulation, similar to
traffic peaks observed in real-world traffic systems.

We adopt three assumptions for R; in this instance of the MMRP.
Firstly, the pricing function for each route remains fixed each game,
Qi(-) = p; where p; is set at the start of the simulation. Secondly,
routes have infinite capacity (travel time is constant regardless of
users). Formally, we assume that for this instance of the MMRP, for
(Fo,F¢), we set Ry as (15, 00) and R; as (30, co). Thirdly, the to-
tal number of players is known in advance. These conditions allow
us to identify a Pure Nash Equilibrium (PNE), where no route can
unilaterally increase its profit by altering prices.

Table 1. Pure Nash Equilibrium in the Offline MMRP with Infinite Route

Capacity.
MMRP-PPO Nash Equilibrium
Players p; P2 Profit p1 P2 Profit
500 17.66 1056 677792 | 11.00 6.00  4642.60
600 12.66 7.46 6049.10 | 11.00 6.00 5571.13
750 1247  17.62 7399.64 | 11.00 6.00 6963.91
900 13.08 7.84 9324.62 | 11.00 6.00 8356.70
1000 12.10  7.40 9588.02 | 11.00 6.00 9285.22

Table 1 presents the pure-strategy PNE for varying player pop-
ulations |V[, illustrating that there exists a pair of tolls (p1,p2) at
which neither route provider can unilaterally increase its revenue.
However, this equilibrium relies on infinite route capacities. Under
these assumptions, finding a PNE in the MMRP becomes a tractable
problem as the interactions between route providers are simplified.
Furthermore, the fixed pricing paradigm ensures that the number of
calculations is limited.

Introducing finite capacities creates discontinuities in the
best-response mappings due to nonlinear congestion effects, which
destroy the underlying potential-game structure guaranteed by
Rosenthal’s theorem [21]. Furthermore, allowing providers to adjust
tolls in a continuous, dynamic fashion introduces further complex-
ities, yielding a non-cooperative game with no general equilibrium
guarantees. Together, these challenges highlight the limitations of
exact, static solution methods and motivate the development of adap-
tive, learning-based approaches for dynamic, competitive routing en-
vironments.

5 Computational Complexity

Given the dynamic and real-time decision-making requirements of
the MMREP, it is essential to understand the computational challenges
posed by the offline version, where all players and routes are known
in advance. Where in Section 4 we assumed that the route prices
are fixed for the instance of the MMRP and found the existence of



Table 2. PSO and PPO results for the online and offline MMRP at variable congestion levels.

Number of Players 500 600 650 700 750 800 900 1000
Constant Travel Time 2003 2175 2253 2404 3066 5698 40442 1244.19

Profit 5355 6271 6016 8318 6115 6681 5001 5437

, : Travel Time 072 2142 2204 2307 2774 4932 35329 T168.15
Offline MMRP Flow-Linear ./ 5024 47.13 4741 4367 5532 5731 7454  89.84
Timondex Travel Time 3100 2187 2274 2444 3050 5803 4040 124795

Profit 6675 6691 7011 7534 7485 6090 5844 5885

Travel Time 7666 3085 3624 5158 1170 25565 46912 173988

MMRP-PPO  Gini Coef. 014 014 017 026 033 025 018 0.3

Profit 1338 2465 3667 4754 6604 7791 8678 9041

Travel Time 3045 3518 3834 6605 10831 25713 79183 186387

Online MMRP  PPO Gini Coef. 015 014 017 044 044 033 025 0.5
Profit 3408 2995 2095 3187 3016  30.16 3988  40.94

Travel Time 3250 3487 3487 4014 15183 201.61 55388 2083.49

Random Gini Coef. 018 015 018 039 044 037 020 0.4

Profit 4613 5080 46.64 4061 4728 4994 4864 4655

a PNE, relaxing this constraint to allow adaptive pricing functions
leads to increased complexity in finding a PNE.

The theoretical confirmation of the offline MMRP’s NP-Hardness
serves as a foundation, informing our algorithmic strategies for both
offline and online scenarios, and justifies the necessity for the use of
heuristic and learning-based approaches to address offline and online
instances of the MMRP.

Definition 4. We cast the MMRP as defined in Definition 1 to a de-
cision problem, MMRP-Decision, where:

MMRP-Decision

Input: An instance of the offline MMRP M over two
routes (R = (R1, R2)) and a target revenue K €
B.

Question:  Does there exist {§2; }icr such that:

1. {Qi}icr is a Nash equilibrium where both
routes have strictly positive flow (i.e. neither
route encounters no demand).

2. The total pI'Oﬁt Qlfl =+ ngg > K?

Theorem 1. MMRP-Decision is NP-Hard.

Proof. We reduce from the NP-Complete Partition problem to an
instance of the MMRP:

Partition

Input: A multiset of positive integers {a1, ..., a,} with
total sum S = 3 a;.

Question: Does there exist an equal-sum subset [ C

a,...

Given an instance of {a;} of Partition, we construct a polyno-
mial time reduction to an instance of the MMRP with two routes
R = {R1, Rz} and S players. The set V has [V| = 377, a; = S,
where for each integer a;, we introduce a group of exactly a; iden-
tical players to V' with ©; = 1. We define our delay functions to
be equal, D1(f) = D2(f) = 0,Vf, and therefore player route
choices is wholly and entirely dependent on pricing strategies. We
define the pricing function for each route to be constrained within
{0,1,...,S}, and our total profit K = 572

In the instance where Partition has an equal-sum subset, there is
I'C{l,....,n}with} . ;a; = 5/2. Weset (1 = Qy = 5/2.
Then at equilibrium exactly S/2 players go on each route, and each
route collects profit of (S/2) x (S/2) = S2/4. Hence, total profit
=2.(S?/4) = S?/2 = K. This is only feasible if the instance of
Partition has an equal-sum subset.

,n}suchthat}>,  a; = s

In the instance where total profit > K is achievable in the MMRP,
any toll assignment (Q1,€2) with Q; # Qo causes all players to
choose the cheaper route, yielding revenue max (21, 2) x S. Since
max(;) < S, this profit is at most S2, but for any strict inequality
Quax > S/2 the profit S - Quax > S2/2, which exceeds S?/2. The
only way to exactly achieve total profit in [K, S?/2] and have an
equilibrium split is to set Q21 = Q2 = S/2 and have exactly half the
players on each route. This even split in turn corresponds to a choice
of which S/2 players go on route 1, which is a partition of the a;
into two subsets each summing to .S/2.

Therefore, the computation of whether the total profit > K is
attainable is equivalent to solving Partition. As Partition is NP-
Complete, MMRP-Decision is NP-Hard. O

The reduction from Partition to MMRP shows that even in a highly
simplified setting, selecting profit-maximising pricing strategies en-
capsulates the NP-Complete Partition problem. Therefore, comput-
ing exact equilibrium pricing strategies for the MMRP is intractable
in the general case. To address more complex and stochastic in-
stances of the MMRP that present in real-world settings, we must
utilise scalable, approximation-based techniques to produce effective
pricing strategies in realistic and large-scale environments.

6 Particle Swarm Optimisation for Offline MMRP

Given the computational complexity of finding exact revenue-
maximising tolls under user equilibrium in instances of the MMRP
with infinite capacity, we turn to heuristic optimisation to obtain ef-
fective solutions for the offline MMRP with constrained capacity. For
this, Particle Swarm Optimisation (PSO) [7] is utilised as it explores
complex and non-convex search spaces with few hyperparameters.
Relaxing assumptions of infinite capacity and static tolls better re-
flects real-world conditions, as dynamic toll-setting heightens com-
petition by forcing providers to continually adapt their prices in re-
sponse to congestion and competitor actions. Formally, for (Fo, F.)
of our volume-delay functions, we set Ry as (15,20) and R» as
(30, 20). We evaluated three families of static pricing strategies, each
differing in expressiveness and complexity of search space:

1. Constant Toll: Q;(f) = p;, with a single parameter p; per route.
This policy serves as a baseline and has the least complex search
space.

2. Flow-Linear Toll: Q;(f) = a; + B; fi, introducing two parame-
ters (v, B;) per route. This policy provides adaptive tolls in pro-
portion to congestion levels while maintaining a low-dimensional
search space.



3. Time-Index Toll: Each route R; has an initial price p; o and a
sequence of timestep deltas {d;1,...,d;7}. Prices evolve via
DPit = Dit—1 + di, and the policy has T + 1 parameters per
route. This class offers the greatest flexibility, allowing for distinct
and dynamic pricing profiles, but at the cost of a high dimensional
search for optimal solutions.

For each pricing policy, the mean travel time is used as the fit-
ness metric. Each pricing policy was evaluated over 50 randomised
instances, where player count and value-of-time distributions were
sampled to reflect realistic demand variability. In this evaluation, we
recorded the average travel time and average profit per player. Table 2
shows the mean travel time and profit per player, revealing a modest
improvement for adaptive approaches (flow-linear and time-index)
compared to constant pricing.

7 Empirical Methodology for the Online MMRP

Despite the insight provided by the offline MMRP and PSO-based
adaptive pricing solutions, their assumptions of full knowledge of
future demand fall short of real-world variability and stochasticity.

In this instance of the online MMRP, we use Definition 3 of
the MDP of the MMRP to define our environment. For each
route R;, we model each route provider’s dynamic pricing prob-
lem as M; = (S;, A;, P;, Re;, ). At each timestep ¢, s;+ €
Si, agent i’s observation, is a 12-dimensional vector s;;: =
(ni(t)a pi(t)v ai(t)7 Ti(t)v n—i(t)v p—i(t)v T—i(t)7 12 ai(t_
1), a—i(t — 1), Viem(t), Von(t)) where:

e n;(¢): number of players queued on route 7,

e p;(t): current price on route 3,

e a;(t): number of new arrivals to route ¢ at ¢,

e 7;(%): current travel time on route i,

e n_;(t), p—i(t), 7—i(t): same for the competing route(s),

e a;(t —1), a—;(t — 1): the previous pricing behaviour of agents,
e Viem(¢): number of players still to arrive,

e Von(¢): total number of players currently in-system (queued or en-

route).

Our routes have the action space A; = {—1,0,+1} so that Q; (¢ +
1) = Q(t) + A;+. The next state s;; is generated by our simu-
lation environment, which given the current route prices, previous
actions and new arrivals into the environment, updates the queue
lengths, travel times and player counts for all routes. Algorithm 1
provides a high-level simulation loop used during PPO training. At
each timestep, agents construct their local observations, sample their
policy for an action, and the environment then progresses through the
timestep to simulate the impacts of the chosen actions.

Each route maintains the same reward function as defined in Defi-
nition 3. We set our discount factor as v = 0.99.

For evaluation of adaptive pricing solutions for the online MMRP,
we utilise two additional complex environments (coupled with our
two-route environment introduced in Section 6), using volume-delay
functions with parameters calibrated from real-world measurements
in London, United Kingdom [3].

For Scenario 2, we focus on a five-route network defined in Ta-
ble 3, with |V ranging over {5000, 6000, . ..,9000}. In this sce-
nario, vehicle arrival times are sampled from a uniform distribution
over the simulation horizon, ensuring consistent temporal random-
ness and allowing us to evaluate policy robustness under steady but
unpredictable demand patterns. In Scenario 3, we utilise a subsection
of the Sioux Falls network [27], specifically nodes 10, 11, 14, 15, 16,

Table 3. Selected VDF parameters from Casey et al. [3].

Route o S fe fo

1 1 2 22300 2538
2 1 2  309.80 32.81
3 1 2 27690 44.05
4 1 2 31430 40.83
5 1 2 358.80 44.05

17, and 19. We model demand in this scenario from the provided
trips and network data provided.

Our chosen three empirical evaluation settings are such that we
can understand the MMRP under escalating levels of complexity and
realism. The two-route synthetic parallel-link benchmark, referred
to as Scenario 1, isolates the competitive element of the problem
to two agents, allowing us to compare our chosen solution with the
calculated equilibrium tolls in an analytically tractable context. The
five-route parallel benchmark, referred to as Scenario 2, introduces
multiple providers and a broader set of choices for players, using
calibrated volume-delay functions to rest policy stability and gen-
eralisation as the non-stationarity in the problem increases. Finally,
the Sioux Falls subnetwork applies our solution in a realistic urban
topology with heterogenous origin-destination flows and varying link
capacities within a network where agents’ incoming observations are
impacted by the chosen policy of other agents.

Algorithm 1 Environment Loop for Online MMRP
1: Input

OM = (R,V,®;,0;,A;,D;,Q)

wheret € R,j €V

3

4: for each route ¢ do

5 toll[i] < initial_price

6: queueli] + 0

7: vehicles_rem < total_vehicles
8: for t = 1to Tiax do

9

for R; € Rdo
10: Observe state for each route :
11: obs|i] < get_observation(7)
12: Agents select actions:
13: action[i] < m;(obs[i]) € {—1,0,+1}
14: Update tolls:
15: toll[i] < toll[i] + action]i]
16: Sample arrivals & update remaining vehicles:
17: arrivals < sample_arrivals()
18: vehicles_rem < vehicles_rem — Y arrivals
19: Update queues & compute departures:
20: queueli] < queueli] + arrivals|i]
21: departed|i] < compute_departures(queueli])
22: queueli] < queueli] — departed]i]
23: Update travel times via VDF:
24: travel_timeli] < VDF(queueli])
25: Compute rewards (revenue):
26: reward[i] < toll[i] x departed]i]
27: Observe next state & store transition:
28: next_obs[i] < (as in step 4 with updated variables)
29: store_transition(obs[i], action|i], reward[i], next_obs[i])




Table 4. Mean travel time, social cost and combined cost for MMRP-PPO and Random agents in Scenario 2. We define the social cost as the ®; - D;(f;)
(player j VoT multiplied by the travel time of the route) and the combined cost as ;(C;) + ©;.D;(f;), the specific utility of the chosen route for the player.

MMRP-PPO Random
\ Travel Time  Social Cost Combined Cost | Travel Time Social Cost Combined Cost
5000 | 28.22 13.08 17.17 34.99 15.82 27.32
6000 | 29.76 13.70 18.26 38.97 17.15 29.81
7000 | 31.47 14.51 19.17 40.51 17.77 29.70
8000 | 39.25 17.45 26.85 45.21 19.31 33.21
9000 | 41.65 18.18 27.97 49.21 20.75 36.35

Table 5. Adaptive Pricing Results for the Online MMRP in the reduced Sioux Falls scenario. Social cost and combined cost are defined the same as in Table 4

Minimum Q1 Median Mean Q3 Maximum  Gini. Coef
Travel Time 6.343 6.643 6.749 6.734 6.889 7.14 0.016
MMRP-PPO  Social Cost 0.141 0.307 0.424 0.416 0.54 0.694 0.192
Combined Cost ~ 86.058 97.519  99.982 100.056  104.134  111.561 0.033
Travel Time 6.619 7.267 7.59 7.55 7.898 8.682 0.032
Random Social Cost 0.156 0.345 0.475 0.483 0.625 0.774 0.19
Combined Cost ~ 23.03 28.271  31.793 31.092 34.843 39.435 0.079

Table 6. Hyperparameters used in our PPO implementation. All other
hyperparameters are as seen in [23, 6].

Hyperparameter [23] [6] This paper
Num. Epochs 3 3 2
Minibatch Size 256 256 128
Num. Minibatches 4 8 16
GAE Parameter (\)  0.95 0.95 0.95
Number of Actors 8 32 64
Clip Parameter (€) 0.1* 0.2 0.1

VF Coeff. (c1) 1 0.5 0.1
Action Masking No Yes Yes
Separate Networks No Yes Yes
Reward Norm. No Yes Yes
Prior Reward Norm.  No No Yes
Episode Length 128 128 1000
Total Steps 1x107  1x107 1x107

8 Proximal Policy Optimisation for Online MMRP

In the stochastic and uncertain environments presented by the on-
line MMRP, each route provider is part of a highly non-stationary
landscape where updates to competitors policies continually reshape
observed congestion dynamics and rewards. To achieve stable, scal-
able learning under these conditions while preserving the compet-
itive and independent nature of the routes within our problem, we
deploy independent Proximal Policy Optimisation (PPO). Although
PPO was originally designed for single-agent settings, recent stud-
ies have shown its surprising robustness and convergence properties
in independent multi-agent deployments [31, 4]. The use of a clipped
surrogate objective in PPO to bound each update’s deviation from the
current policy prevents destructive policy swings and balancing ex-
ploration with reliable improvement [23]. This clipping is critical in
multi-agent contexts, where aggressive updates by one provider can
destabilise others and amplify environmental non-stationarity [19, 8].

To stabilise learning in our highly non-stationary setting, we apply
reward normalisation so that policy and value networks see consis-
tent signal scales across training. Since the true reward distribution is
unknown a priori, we first execute a series of random-policy rollouts
to collect a sample of raw rewards { R; }, from which we compute the
empirical mean pr and standard deviation o g. During PPO training,
each observed reward is then standardised as R; = R*;R“R, en-
suring that the agent’s updates operate on zero-mean, unit-variance
targets. This simple normalisation prevents runaway gradients and

divergent value estimates, yielding more stable convergence even as
multiple providers continuously adapt their tolling strategies.

To improve sample efficiency and stabilise learning in our appli-
cation of PPO, we extend the single-agent PPO setup by running
simulation environments in parallel. Each parallel actor instance ex-
ecutes all route-provider agents simultaneously under different ran-
dom seeds and demand scenarios, collecting trajectories for every
policy update. By aggregating experiences across these vectorised
rollouts, we obtain a richer, more diverse batch of transitions, reduc-
ing gradient variance, accelerating convergence, and yielding more
robust policy updates in the inherently non-stationary, competitive
pricing environment.

In scenarios 1 and 2, we trained our PPO agents for 1 x 10 steps,
with each episode lasting 1000 steps and a full list of hyperparame-
ters used, alongside the two reference implementations guiding our
agent design is provided in Table 6. In scenario 3, we trained our
PPO agents for 7.2 x 107 steps, and an episode length of 1800 steps.
All other hyperparameters were kept as described in Table 6.

9 Empirical Evaluation and Results

This section presents the empirical findings from our experiments
evaluating the performance of PPO strategies under different pric-
ing functions in the MMRP. The results of our experiments provide
valuable insights into the effectiveness of PPO in addressing the on-
line MMRP, demonstrating increased route profitability, and reduced
travel time and more equitable outcomes for players.

Reduced Travel Time in Synthetic, High Demand Settings: Our
PPO-based strategy consistently outperformed the Random Agent
baseline across most metrics and player numbers. Table 2 repre-
sents the travel time, Gini coefficient and profit results for Sce-
nario 1. Specifically, Our PPO achieved significantly lower average
travel times compared to the Random Agent in the 2-route synthetic
environment, with reductions from 26.66 timesteps at 500 players
to 1739.88 timesteps at 1000 players, in contrast to the Random
Agent’s 32.5 to 2083.49 timesteps, respectively. Additionally, our
PPO agent consistently outperformed the original PPO in both av-
erage travel time and profit metrics. For instance, at 500 players, our
PPO achieved an average travel time of 21.09 timesteps, compared to
the original PPO’s 32.5 timesteps, resulting in a 35% reduction. This
indicates that our PPO pricing strategies effectively mitigate conges-
tion, enhancing overall traffic flow efficiency. When our PPO-based



agents are trained on a modified Scenario 1 but with routes of in-
finite capacity, as seen in table 1, our agents tend towards strate-
gies near the computed PNE, suggesting that the model converges
to stable pricing decisions consistent with classical game-theoretic
predictions. This alignment reinforces the applicability of reinforce-
ment learning for effectively capturing equilibrium-like behaviour,
even under simplified infinite-capacity assumptions. In terms of the
Gini coefficient, our PPO agent maintained lower values (0.13-0.33)
across varying player counts, whereas the Random agent reached a
peak of 0.44 at 750 players before a slight decline, indicating that
PPO strategies promote a more equitable congestion distribution. Re-
garding route profit, PPO’s earnings rose consistently from 13.38 (in-
come per car) at 500 players to 90.41 at 1000 players, surpassing the
Random agent, which plateaued between 46.13 and 46.55, by ap-
proximately 800 players. Moreover, PPO’s profitability aligns with
the PSO-based baselines in the offline setting, underscoring its effec-
tiveness under heightened congestion.

Effective Management of Congestion under Increased Competi-
tion: Across the tested vehicle volumes in Scenario 2, shown in
Table 4, our PPO-based approach yields lower travel times than the
Random agent, demonstrating its effectiveness in managing conges-
tion under increasing traffic loads. Notably, at 5000 vehicles, PPO
records an average travel time of 28.22, compared to 34.99 with Ran-
dom. Similarly, at 6000 and 7000 vehicles, PPO achieves travel times
of 29.76 and 31.47, respectively, outperforming the Random agent
by 9.21 and 9.04 timesteps in each case. The results in this scenario
demonstrate the ability of our PPO-based solution to adapt in scenar-
ios with greater environment complexity.

Reduced Inequality and Travel Time in Complex, Sequential Ap-
plications: On the reduced Sioux Falls network, as seen in Table 5,
MMRP-PPO consistently outperforms random tolling across all key
metrics. Median travel time drops from 7.59 under random pricing to
6.749 with PPO, and the variability shows a marked reduction (range
of travel time narrows from 6.62-8.68 to 6.34—7.14 and the Gini co-
efficient halves from 0.032 to 0.016). These improvements demon-
strate that independent PPO agents yield smoother traffic flows and
more equitable outcomes for users, validating the MMRP’s ability to
drive emergent equilibrium pricing in a fully decentralised, competi-
tive routing setting.

10 Related Work

The MMRP intersects three areas of research; game-theoretic ap-
proaches to congestion modelling, algorithmic pricing in transporta-
tion networks and decentralised multiagent learning for real-time
control. Classical CG literature provides foundational insights into
equilibrium existence under fixed costs [21, 13, 1] and enable the
simulation of user behaviours and decision-making processes in con-
gested environments [32, 11], while bilevel and Stackelberg formu-
lations [2] provide explore centralised pricing and toll optimisation,
and recent multiagent RL literature demonstrates the promise of de-
centralised learning in non-stationary environments [31, 4, 8].
Dynamic tolling research has largely focused on centralised or
monopolistic settings, in contrast to our fully decentralised MMRP
approach. Sharon et al. [24] introduced A-tolling, which adaptively
adjusts link tolls based on marginal latency changes to improve net-
work throughput in a simulation environment. Mirzaei et al. [14, 15]
extended A-tolling with policy-gradient RL, demonstrating reduced
average travel times in empirical studies. Pandey and Boyles [18] in-
troduced a multiagent RL algorithm for dynamic pricing, utilising

a joint action space to attain revenue gains under varied entry-exit
configurations. Zhu and Ukkusuri [33] applied R-Markov Average
Reward Technique, an off-policy RL algorithm which combines ob-
served experiences into a unified trajectory with distance-based re-
wards, to learn tolls under uncertainty. Wang et al. [29] applied deep
RL to utilise signal control and toll adjustments within a cooperative
RL setting to outperform existing adaptive baselines. Unlike these
works, which assume a single decision-maker or cooperative agents,
the MMRP places each route provider in a non-cooperative, self-
interested MDP, resulting in equilibrium pricing behaviours driven
solely by local observations and reward signals.

Extending beyond single decision-making frameworks for adap-
tive tolling, Stier-Moses and Acemoglu [26] explore atomic games
with market-power players demonstrate the benefit of coordination
or regulation in instances where centralised control is not feasible.
Harks et al. [5] analyse price-cap regulation in privatised road net-
works, limited to parallel networks, and derive bounds on the in-
efficiency induced by uniform caps under affine latencies. This has
further been extended to a sequential decision making problem and
formulated as MDP congestion games [9], where tolls can be utilised
as reward signals to steer equilibria towards social objectives. While
these works address equilibrium existence, efficiency and regulatory
intervention, they do not consider adaptive and decentralised learning
by self-interested providers. A comprehensive review of congestion
pricing can be found in [10]. In contrast, the MMRP embeds each
route owner’s pricing problem within its own MDP, employing inde-
pendent learning agents to converge towards effective pricing strate-
gies to maximise provider profitability whilst reducing travel time
and increasing fairness and equitability outcomes for players.

11 Conclusion

In this work, we introduced the Multi-Market Routing Prob-
lem (MMRP), a dynamic extension of classical congestion games
that captures decentralised, competitive pricing by multiple route
providers under demand from heterogeneous players. We gave a
six-tuple offline formulation and its seven-tuple online counterpart,
including a definition as an MDP, enabling rigorous analysis of adap-
tive route pricing and micro-tolling in real time. Our NP-hardness
proof for offline profit maximisation underscores the intrinsic com-
putational challenges, motivating the development of scalable, ap-
proximate methods. Finally, we demonstrated that decentralised
deep-RL agents, each solving its local MDP, learn near-equilibrium
pricing policies, providing improvements in profit and travel-time ef-
ficiency across synthetic and real-world benchmark scenarios.

We extended independent PPO to improve stability and sample ef-
ficiency while mitigating the problem of non-stationarity through re-
ward normalisation, action masking, clipped policy updates and par-
allelised rollouts. Our results showed marked improvements when
compared to single-agent implementation of PPO, and demonstrate
that RL-based adaptive pricing and micro-tolling can balance profit,
efficiency and equity in competitive routing markets through real-
time control, offering a path towards responsive, scalable traffic man-
agement solutions aligned with evolving transportation demands.

While our enhanced PPO method has significantly improved con-
gestion management and profitability in the MMRP, further work
could explore scalability with more agents, reduced training costs,
and integration with advanced techniques (e.g. opponent modelling).
To ensure practical applicability, it is also vital to enhance explain-
ability; interpretable models that clarify pricing adjustments can fos-
ter trust and support informed decision-making among stakeholders.
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