
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Predicting transonic flofields in non–homogeneous unstructured

grids using autoencoder graph convolutional networks

Gabriele Immordino a,b, ,∗, Andrea Vaiuso b, Andrea Da Ronch a, Marcello Righi b

a Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
b School of Engineering, Zurich University of Applied Sciences ZHAW, Winterthur, Switzerland

A B S T R A C T

This paper addresses the challenges posed by non-homogeneous unstructured grids, which are commonly used in computational fluid dynamics. The
prevalence of these grids in fluid dynamics scenarios has driven the exploration of innovative approaches for generating reduced-order models. Our
approach leverages geometric deep learning, specifically through the use of an autoencoder architecture built on graph convolutional networks. This
architecture enhances prediction accuracy by propagating information to distant nodes and emphasizing ifluential points. Key innovations include
a dimensionality reduction module based on pressure-gradient values, fast connectivity reconstruction using Mahalanobis distance, optimization
of the network architecture, and a physics-informed loss function based on aerodynamic coefficient. These advancements result in a more robust
and accurate predictive model, achieving systematically lower errors compared to previous graph-based methods. The proposed methodology is
validated through two distinct test cases—wing-only and wing-body configurations—demonstrating precise reconstruction of steady-state distributed
quantities within a two-dimensional parametric space.

1. Introduction

In recent years, addressing problems characterized by non-homogeneous and unstructured grids has become a central topic of
research in the field of aerospace engineering. A pertinent example lies within the Computational Fluid Dynamics (CFD) field, where
the initial step involves mesh generation, entailing the discretization of the fluid domain through the finite volume method. This
mesh serves as a computational grid that enables the simulation of fluid flow and related phenomena within a dfined space. A
non-homogeneous unstructured grid is characterized by irregularly shaped elements (such as triangles or tetrahedras) connected in a
non-regular pattern. The spacing between grid points varies across the domain, providing greater resolution in areas of interest, such
as regions with complex geometries or flow features, while optimizing computational resources in less critical areas.

The complexities inherent in non-homogeneous unstructured geometries, especially when predicting intricate fluid flow scenarios,
have driven the need for innovative approaches in generating reduced–order models (ROMs). Traditionally, methods based on classical
numerical analysis, such as Proper Orthogonal Decomposition, Isomap and manifold learning [1--4], have been extensively employed
due to their computational efficiency and reliability. However, as the complexity of grids increased, these traditional methods proved
inadequate in capturing nonlinear dynamics, handling irregular geometries, and scaling to high-dimensional data.

In response to these challenges, machine learning emerged as a promising avenue, offering new ways to handle complex, non

traditional data structures. Initial efforts focused on deep neural networks, which demonstrated significant success in capturing
intricate patterns and relationships within the fluid dynamics domain [5--7]. Despite these successes, the unique challenges posed by

* Corresponding author at: Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.

E-mail address: G.Immordino@soton.ac.uk (G. Immordino).

https://doi.org/10.1016/j.jcp.2024.113708

Received 26 April 2024; Received in revised form 11 October 2024; Accepted 24 December 2024

Journal of Computational Physics 524 (2025) 113708

Available online 2 January 2025
0021-9991/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://orcid.org/0000-0003-2718-0120
mailto:G.Immordino@soton.ac.uk
https://doi.org/10.1016/j.jcp.2024.113708
https://doi.org/10.1016/j.jcp.2024.113708
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113708&domain=pdf
http://creativecommons.org/licenses/by/4.0/

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Nomenclature

Acronyms

GB-AE-GCN gradient-based autoencoder graph convolu

tional network

CFD computational fluid dynamics

GCN graph convolutional network

GNN graph neural network

LHS Latin Hypercube Sampling

ML machine–learning

MAE mean absolute error

MAPE mean absolute percentage error

MSE mean squared error

MWLSI moving weighted least squares interpolation

ROM reduced–order model

Symbols

𝐴𝑜𝐴 angle of attack, deg

𝑐 mean chord, m
𝐶𝐷 drag coefficient

𝐶𝐹 skin friction coefficient

𝐶𝐿 lift coefficient

𝐶𝑀𝑦 pitching moment coefficient

𝐶𝑃 pressure coefficient

𝑀 Mach number

𝑅𝑒 Reynolds number

Fig. 1. Visual comparison between pixelwise convolution on a 2D digital image and graph convolution on a 3D mesh.

non-homogeneous unstructured grids—such as irregular node spacing, varying connectivity, and high dimensionality—necessitated
the development of more sophisticated architectures to fully leverage the potential of machine learning in this field.

This need for advanced architectures led to the concept of geometric deep learning, which emerged around 2017 [8]. This approach
introduced the use of graph-structured data prediction through graph neural network (GNN) architectures [9], specifically designed
for applications involving interconnected entities. GNNs excel in capturing intricate relationships and dependencies within graph
nodes and their connections [10--12]. The ability of GNNs to consider both local and global context through neighborhood aggregation
mechanisms makes them well-suited for tasks where topological information is critical. These versatile networks have found extensive
application as a foundation for solving classical artficial intelligence tasks and addressing various challenges in data science and
analysis [13--17,10]. Notably, it has been shown that GNNs outperform traditional approaches in handling local nonlinearities [18].
They have demonstrated precise predictions for aerodynamic performances [19] and flofield properties [20]. Additionally, they
are effective in addressing complex time-dependent problems [21] and have proven successful in diverse aerospace applications,
including data fusion tasks [22], uncertainty quantification [23], and multi-objective optimization [24].

While Convolutional Neural Networks (CNNs) have demonstrated remarkable accuracy across various domains [25--29], they
rely on the assumption that inputs exhibit a Cartesian grid structure. This assumption allows CNNs to leverage three fundamental
properties—sparse connection, parameter sharing, and translation invariance—to achieve accurate results. However, this limitation
cofines CNNs to regular grid data, such as images (2D grids) and texts (1D sequences) [30]. Consequently, our approach involves
the adoption of Graph Convolutional Networks [31], which harness the convolutional operation of CNNs and extend it to non--

homogeneous unstructured data. It involves a single-element filter swept across the connected nodes and being weighted by the
corresponding edge weights, hence the convolutional analogy (refer to Fig. 1). This idea enables the application of convolutional
operations to data structures without the regular grid assumption, broadening our predictive capabilities and allowing direct input
of raw 3D model mesh data to GCNs. This approach avoids unnecessary pre–computation or feature extraction methods that may
introduce bias or loss of information.

In addition to handling unstructured data, reduced space modeling is crucial for large grids, as not only it manages computational
resources but also improves accuracy by addressing the curse of dimensionality. High-dimensional data can lead to ovefitting and poor
generalization, while the autoencoder architecture can help to capture the most important features, enhancing the model performance.
Conventional autoencoders are generally designed for structured, regular grid data, and thus are not ideally suited for predictions
on irregular or unstructured grids, they have nonetheless been applied to aerodynamic predictions with varying degrees of success.
Researchers have adapted these frameworks using various techniques, such as interpolation, grid regularization, and hierarchical
models, to extend their applicability to unstructured data [32--35,29]. Although these adaptations can be effective in certain scenarios,
they often introduce additional complexities and loss of information.

With the challenges outlined before, our architecture has been specifically designed to address the limitations of traditional meth

ods. We incorporate GCN layers, complemented by pooling and unpooling layers to effectively reduce and expand the dimensionality

Journal of Computational Physics 524 (2025) 113708

2

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 2. Schematic of the graph autoencoder architecture.

of the latent spaces while propagating information to more distant nodes. This combination enhances the network ability to identify
and emphasize key features, resulting in a more robust and accurate predictive model. We rfined our methodology by building on
the architecture introduced by Massegur et al. [36], incorporating more complex approaches to improve model accuracy. Our model
employs an autoencoder GCN architecture and stands out from other graph-based approaches by introducing several innovations:
a dimensionality reduction module based on pressure-gradient values, fast connectivity reconstruction using Mahalanobis distance,
Bayesian optimization of the network architecture, and a physics-informed loss function that includes a penalty term for the pitch

ing moment coefficient. Collectively, these enhancements lead to a systematically lower error compared to previous graph-based
studies [36] and traditional technique. Two test cases characterized by distinct physical phenomena are proposed to validate the
developed methodology: wing–only model and wing–body cofiguration.

The structure of the paper is as follows: Section 2 outlines the methodology implemented, where a comprehensive explanation
of the architecture and its blocks is given, Section 3 presents the results obtained on examples of steady–state prediction of aircraft
wing cofigurations, and Section 4 summarizes the conclusions drawn from the study.

2. Methodology

This section explains the methodology that guided the creation of the model at hand. Initially, the general autoencoder graph
convolutional network architecture is introduced, followed by a detailed explanation of each component that constitutes every module
of the model.

2.1. Graph autoencoder architecture

The steady–state prediction ROM developed in this work uses freestream conditions and mesh coordinates as input, and is designed
to predict specific values for each point in the graph. Scalar freestream conditions are assigned to each node of the surface along

side their respective coordinates. A Gradient-Based Autoencoder GCN model (GB-AE-GCN) with two custom levels of dimensional
reduction/expansion was implemented. The output of the model is generated by four parallel GCN layers. The whole architecture is
finally trained for the pointwise prediction of the four desired output 𝐶𝑝,𝐶𝑓𝑥

,𝐶𝑓𝑦
and 𝐶𝑓𝑧

. A schematic of the model architecture is
illustrated in Fig. 2.

The use of an Encoder-Decoder based architecture aims to reduce the computational effort by reducing the size of the data during
the prediction, increasing the scalability of the system, and also allows the model to consider the connection between more distant
points of the mesh, which are not directly connected initially. This step has been taken in order to reproduce the CNN behavior used
in AI-based computer vision tasks [37,38], with the addition of the information about the distances and connections between the
points given by the graph structure.

The pooling module implemented in our approach is a gradient–based point selection and connection reconstruction. The pressure
gradient–based point selection task involves two key steps. Firstly, we compute the gradients for each sample and subsequently iden

tify the regions of interest across all samples. This process enables us to pinpoint areas where pressure gradients exhibit significant
disparities, thereby identifying points characterized by heightened nonlinearity. Once these critical points are identfied, we imple

ment a Moving Weighted Least Squares Interpolation (MWLSI) algorithm [39,40] to seamlessly interpolate values from the source
points (fine grid) to the destination points (coarse grid). To reconstruct connections and calculate Euclidean distances between the
remaining points, a Mahalanobis distance [41] based method was implemented. This method re-establishes connections of each point
with its 5 neighbors in the destination space based on Mahalanobis distances calculated in the original space.

Journal of Computational Physics 524 (2025) 113708

3

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 3. Visual representation of a graph diagram and its connectivity matrix.

The aim of the unpooling module is to reconstruct the original structure of the input to generate an output with the same dimension
of the input, but this operation requires a new interpolation matrix computed with the MWLSI algorithm (refer to Section 2.3 for
details) to calculate the missing data of the new nodes, moving from a coarser grid back to the finer one. The pooling and unpooling
modules are pre-computed in order to save computational resources. An on demand version could be implemented for adding learnable
capabilities of space reduction/expansion, especially on time–variant problems.

To enhance the predictive capacity of the model, we adopted two strategies: a Bayesian optimization and a custom loss function.
The Bayesian approach has been employed for optimizing the neural network hyperparameters, such as number of layers per block,
units per layers and compression ratio of encoding/decoding operations. By leveraging Bayesian optimization, the model systemati

cally explores and adapts these hyperparameters to maximize performance and predictive accuracy. The custom loss function aims
to optimize the distribution of 𝐶𝑃 and 𝐶𝐹 components across the grid by minimizing the mean squared error (MSE) between the
model predictions and the ground truth. Factors like shock waves and boundary layer separation introduce complexity to predictions,
affecting force resultant and, therefore, moment calculation. Incorporating physics-based penalty terms in loss functions has proven
effective in improving aerodynamic prediction accuracy [42]. Therefore, a penalty term for the pitching moment coefficient 𝐶𝑀𝑦

has been introduced into the MSE loss function. This addition, represented as 𝐿𝑜𝑠𝑠 = MSE + 𝜆 ⋅ 𝐶𝑀𝑦
, with 𝜆 = 0.01 for dimensional

consistency, guides the model towards more precise predictions, particularly in terms of shock wave positioning.

2.2. Graph deep–learning model

Graph Neural Networks (GNNs) are a class of neural networks designed to work with graph-structured data, where graphs consist
of nodes and edges—nodes representing entities and edges representing relationships or connections between these entities. GNNs
have gained popularity for their effectiveness in tasks involving graph-structured data, such as generating node embeddings that
capture essential structural information.

A graph 𝐺 consists of nodes 𝑁 and edges 𝐸. An edge (𝑖, 𝑗) denotes a directional connection from node 𝑖 to node 𝑗, differing from
(𝑗, 𝑖) when 𝑖 ≠ 𝑗. Self-loops are possible if (𝑖, 𝑖) ∈ 𝐸. Graphs are often illustrated with circles for nodes and arrows for connections.
In the graph 𝐺 shown in Fig. 3, with nodes 𝑁 = {𝑖, 𝑗, 𝑘,𝑤}, edges are represented by one-way arrows. These connections can be
expressed using an adjacency matrix 𝐀, where 𝐀𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸, and 𝐀𝑖𝑗 = 0. Graphs can also carry edge costs, denoted as 𝑒𝑖𝑗 ,
representing distances or other values. In an adjacency matrix with costs, replace 1 with the cost and use ∞ for absent connections.
A path 𝑝(𝑖 → 𝑗) in a graph is a finite series of steps ⟨𝑛𝑘, 𝑛𝑘+1⟩ from 𝑖 to 𝑗. A graph 𝐺 is acyclic if there are no paths 𝑝(𝑖 → 𝑗) where
𝑖 = 𝑗; otherwise, it is cyclic. Examples of cyclic and acyclic graphs are shown in Fig. 3(a) and 3(b).

In our context, the mesh could be considered as a cyclic graph 𝐺 wherein each grid point 𝑖 in the surface mesh 𝐺 is a node
characterized by variables (features), which are positional coordinates 𝐱𝑖 , pressure coefficient 𝐶𝑃𝑖

and three components of skin
fiction coefficient 𝐶𝐹𝑖

. The connections between grid points form the edges of the graph, linking target node 𝑖 with grid points 𝑗 ∈ 𝑆 .
The nodes features are denoted as 𝑦𝑖, and the weights on edges are denoted as 𝑒𝑖𝑗 .

Graph connectivity is expressed through the adjacency matrix 𝐀, where each entry 𝑒𝑖𝑗 represents the weight on the edge connecting
node 𝑗 to node 𝑖. The weights are determined by the Euclidean distance between adjacent grid points: 𝑒𝑖𝑗 = ‖𝐱𝑖 − 𝐱𝑗‖2. To normalize
the edge weights within the range (0,1], including self-loops with 𝑒𝑖𝑖 = 1, the adjacency matrix is augmented by the identity matrix:
𝐀̂ = 𝐀 + 𝐈. Additionally, since ∀(𝑖, 𝑗) ∈ 𝐸 ∃(𝑗, 𝑖) ∈ 𝐸 and 𝑒𝑖𝑗 = 𝑒𝑗𝑖, the adjacency matrix results symmetric: 𝐀̂ = 𝐀̂𝑇 . The adjacency
matrix may become sparse as the number of nodes increases, and there are efficient techniques for storing such matrices.

Considering the sparsity of both the graph connectivity and the adjacency matrix, a more memory-e˙icient organization in Coor

dinate List (COO) format is adopted. The edge-index matrix has dimensions 𝑛𝑒 ×2 (pairs of node indices), and the edge-weight matrix
is 𝑛𝑒 × 1, where 𝑛𝑒 represents the number of edges in the mesh.

To extract meaningful features from the graph, we employ Graph Convolutional Networks (GCNs), which leverage the graph con

volutional operator. This operator was introduced by Duvenaud et al. in 2015 [31] for extracting features from molecular fingerprints.
Kipf et al. extended this work in 2016 [43], providing the foundation for the current implementation in the PyTorch-Geometric
Library [44] used in this paper. GCNs are renowned for their ability to generate node embeddings that capture essential structural
information on a graph. This is particularly benficial for tasks that necessitate an understanding of relationships and connections
between entities. GCNs utilize a convolutional operation similar to classical CNNs to aggregate information from neighboring nodes,
while also incorporating distance information from the local neighborhood. The scalability of GCNs is facilitated by parameter sharing,
as the parameters are uniformly shared across all nodes.

The GCN operator follows the layer-wise propagation rule that is dfined by:

𝐻 (𝑙+1) = 𝜎(𝐃̃− 1
2 𝐀̃𝐃̃− 1

2 𝐻 (𝑙)𝑊 (𝑙)) (1)

Journal of Computational Physics 524 (2025) 113708

4

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Table 1
Hyperparameters design space.

Hyperparameter Value Step size
Compression ratio 1/4 - 1/3 - 1/2 --
Number of Hidden Layers per Block 1 to 3 1
Number of Neurons per Hidden Layer 32 to 512 16

where 𝐻 (𝑙) and 𝐻 (𝑙+1) represent the input and output graphs at layers 𝑙 and 𝑙 + 1, respectively. The matrix 𝐀̃ = 𝐀 + 𝐈𝑁 is the
adjacency matrix with added self-loops, and 𝐃̃ is a diagonal matrix called degree matrix of the graph, dfined as 𝐃̃𝑖𝑖 =

∑
𝑗 𝐀̃𝑖𝑗 . 𝑊 (𝑙)

is the trainable matrix for layer 𝑙, and 𝜎 is the activation function. This equation allows the network to capture local graph structure
and propagate information between nodes.

Next, the concept of spectral convolution is introduced, which applies a graph filter 𝑔𝜃 to the input graph in the Fourier do

main [43]. By expressing the filter in terms of Chebyshev polynomials, the convolution is simplfied to a computationally efficient
form. To prevent ovefitting and reduce complexity, the Chebyshev order is limited to 𝐾 = 1 [45], resulting in a simplfied convolution
operation:

𝑔𝜃 ∗ 𝑥 ≈ 𝜃(𝐈𝑁 +𝐃− 1
2𝐀𝐃− 1

2)𝑥

However, repeated application of this operator can lead to issues like exploding or vanishing gradients. To address this, a renor

malization trick is applied [43], stabilizing the gradient flow during training.

Through successive application of pooling operations, information from a node is propagated through increasingly distant neigh

borhoods. For instance, with 𝑘𝑙 concatenated GCN layers, we extend ifluence to the 𝑘𝑡ℎ
𝑙

-order neighborhood surrounding node
𝑖.

Lastly, the output of the GCN layer is fed through an activation function 𝜎 to introduce nonlinearities. Thus, the operation at
each layer 𝑙 consists of the GCN operator in Equation (1) with the Rectfied Linear Unit (PReLU) [46] operator used as an activation
function. A neural network model based on graph convolutions can therefore be built by stacking multiple convolutional layers
dfined as before.

ADAptive Moment estimation (Adam) [47] was adopted during the back–propagation phase for optimizing neural network weights
and minimizing MSE loss function. An adaptable learning rate has been used, starting from 0.001 and applying a learning rate decay
of a factor of 0.9 every 30 epochs. A batch size equals to 1 led to the most accurate results.

Bayesian optimization for hyperparameters tuning

To enhance the predictive accuracy of our model, we employed Bayesian optimization [48] to fine-tune the hyperparameters, fol

lowing the approach by Immordino et al. [7]. Bayesian optimization iteratively rfines the hyperparameters by balancing exploration
and exploitation through probabilistic modeling, thus efficiently navigating large design spaces.

We utilized the Optuna library [49], which integrates seamlessly with the PyTorch framework, to perform this optimization.
The primary hyperparameters targeted in this process were the number of layers per block, the number of units per layer, and the
dimensionality compression/expansion value. The number of layers per block dfines a group of layers before or after a spatial
reduction operation in the encoding module, with the decoding module mirroring this structure to save computational resources.
The number of units per layer refers to the number of neurons in a single GCN module, optimized initially for the encoding phase
and then mirrored for the decoding phase, ensuring both dimensional compatibility and minimized computational cost. Lastly, the
dimensionality compression/expansion value controls the ratio between the number of points in coarser and finer meshes during the
compression phase, and vice versa during expansion.

The design space for these hyperparameters is presented in Table 1, with ranges carefully selected to allow sufficient exploration
while ensuring convergence to optimal values.

To ensure sufficient convergence towards the optimal set of hyperparameters, we conducted 30 trials, each limited to 500 epochs to
manage computational costs. Upon completion of the optimization phase, we executed the training procedure for the rfined encoder

decoder architecture that minimizes the loss function for 2000 epochs. For a detailed overview of the final optimized architecture,
please refer to Table A.6 in Appendix A.

2.3. Dimensionality reduction/expansion

The core idea behind the use of space reduction/expansion operations is to minimize non–influential information from nodes that
do not contribute to the nonlinearity of the system. The aim is to streamline the complexity of hidden layer operations and eliminate
redundant information that could potentially mislead the model. The pooling and unpooling modules entail different concepts, which
are herein explained. An overview is presented in Fig. 4, where it is possible to distinguish all the processes used for construct and
reconstruct hidden spaces. During encoding, we select points based on pressure gradients, creating a reduced–point cloud. We then use
a Mahalanobis distance–based method to reconstruct connectivity, resulting in a connected reduced graph. Node values are computed
through grid interpolation using the moving weighted least squares method. In decoding, we interpolate on the original fine point
map and connectivity using the same method with a new interpolation matrix.

Journal of Computational Physics 524 (2025) 113708

5

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 4. Pooling and unpooling modules architecture.

Pressure gradient–based point selection

The goal of gradient–based point selection is to find the optimal approach for implementing a pooling phase. During this phase,
points are chosen for removal from the mesh graph in the space reduction operation. The general idea is to employ a more advanced
point selection method instead of relying solely on the simplistic density–based approach [36]. By doing so, the pooling phase can
more effectively consider the primary region where nonlinear phenomena occur.

This method entails two fundamental steps. Initially, gradients on pressure value are computed for each sample. Then, the value
of gradient for each example is used for the identfication of regions of interest across the entire dataset. This approach facilitates
the detection of areas where pressure gradients display notable differences on pressure, thereby identifying points characterized by
heightened nonlinearity.

Spatial gradients are computed for each point by considering the pressure value at each node of the graph. To calculate gradients
in unstructured grids, it is assumed that the pressure variable varies linearly in all dimensions, yielding:

𝑝− 𝑝0 = Δ𝑝 =Δ𝑥𝑝𝑥 +Δ𝑦𝑝𝑦 +Δ𝑧𝑝𝑧 (2)

Where 𝑝0 is the pressure in the node. Then, a matrix equation is constructed using the pressure differences among all nodes neighboring
the current node. With five connections, the matrix equation results in:

⎡⎢⎢⎢⎢⎢⎣

Δ𝑥1 Δ𝑦1 Δ𝑧1
Δ𝑥2 Δ𝑦2 Δ𝑧2
Δ𝑥3 Δ𝑦3 Δ𝑧3
Δ𝑥4 Δ𝑦4 Δ𝑧4
Δ𝑥5 Δ𝑦5 Δ𝑧5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
𝑝𝑥

𝑝𝑦

𝑝𝑧

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Δ𝑝1
Δ𝑝2
Δ𝑝3
Δ𝑝4
Δ𝑝5

⎤⎥⎥⎥⎥⎥⎦
(3)

Equation (3) is then inverted via the least-squares method to compute the gradient vector.

Starting from the value of the gradients calculated for all the points in the graph, a suitable probability distribution has been
employed to determine the number of points retained in the reduced space. The challenge arises in regions of the original mesh with
low gradients, potentially resulting in an inadequate number of nodes at the coarsened level and leading to an irreversible loss of
information. Conversely, excessive node removal in regions of originally high gradients may result in insufficient accuracy recon

struction of complex physics phenomena. Thus, an appropriate node selection strategy is essential to ensure the proper representation
of both high and low gradient regions in the coarsened domain. This is obtained using a probability function applied on the gradient
value of each mesh element (node):

𝑝(𝑖) = 1 + 1 − 𝑒−2𝑖∕𝑛

1 − 𝑒−2
(𝑝1 − 𝑝𝑛) + 𝑝1 for 𝑖 = 1,… , 𝑛 (4)

Here, 𝑖 represents the mesh node index, sorted by pressure gradient value in descending order, and 𝑛 is the total number of nodes.
The probabilities 𝑝1 and 𝑝𝑛 denote the choices for the highest and lowest gradients, respectively, set to 0.2 and 1.

After each space reduction, an unconnected point cloud is obtained, therefore it is essential to restore the connectivity between
neighbors.

Mahalanobis connection reconstruction

To identify the neighbors of each node in the point cloud after the reduction process and thereby restore connectivity, we use
a reconstruction method based on the Mahalanobis distance [41], that is widely used in clustering problems and other statistical
classfication techniques [50,51]. The Mahalanobis distance is a measure of the distance between points in a distribution. Unlike
the simple Euclidean distance, the Mahalanobis distance takes into account the spread of points in different directions through the

Journal of Computational Physics 524 (2025) 113708

6

G. Immordino, A. Vaiuso, A. Da Ronch et al.

covariance matrix of the distribution of points. Using this type of distance, it is possible to connect each point to its neighbors by
following the distribution of points in the finer mesh by using the covariance matrix calculated in the original space. This method
minimizes false connections between opposite faces of the mesh which are considered close according to the simple Euclidean distance.
Therefore, the distance between points is calculated using the following equation:

𝐷𝑀 (𝑥, 𝑦) =
√
(𝑥− 𝑦)𝑇 𝑆−1(𝑥− 𝑦) (5)

Where 𝑥 and 𝑦 are two points of the reduced space and 𝑆 is the covariance matrix of the distribution of the points in the finer
mesh. Additionally, to reduce the searching field of nearest neighbors on the reduced space, we used the K-d tree algorithm [52] to
determine for each point a subset of 250 elements using Euclideian distance, and then selected the nearest neighbors by following
the Mahalanobis distance calculated only in that subset.

Building on this process, we tested the accuracy of connection reconstruction by removing all connections from the fine grid
and using Mahalanobis and Euclidean distances to identify the nearest neighbors for each node, creating new connections. These
reconstructed connections were compared to the original grid and the percentage of incorrect or false connections was calculated
for each node. The average error across all nodes assessed overall accuracy. For the BSCW model, we observed that the Mahalanobis
distance resulted in only 0.4% false connections, compared to 48.6% when using Euclidean distance. Similarly, for the CRM model,
Mahalanobis distance led to 1.5% false connections, while Euclidean distance produced 58.4%. These false connections can signif

icantly impact the model performance by introducing noise into the learning process, linking unrelated nodes, and misguiding the
model, which reduces its capacity to accurately capture the physical phenomena accurately. This can result in poorer generalization
and lower prediction accuracy, particularly in regions with complex flow dynamics.

Moving weighted least squares for grid interpolation

Efficient information transfer between grids is a critical aspect in the proposed methodology. While one option involves using
a neural network with learnable weights, this approach could significantly escalate computational requirements. On the contrary,
traditional interpolation techniques may yield inaccuracies that are not suitable for our purposes [36]. Consequently, we opted for the
Moving Weighted Least Squares (MWLS) technique [39,40], which has proven to deliver accurate results in similar problems [36].
This decision aims to strike a balance between accuracy and computational efficiency, while also ensuring the conservation of the
integrated quantity across both grids and maintaining continuity across the domain [39]. MWLS assigns varying weights to neigh

boring data points based on their proximity to the interpolation point, allowing for a more adaptive and accurate representation of
the underlying data. The approach involves fitting a local polynomial to a subset of nearby points, with the ifluence of each point
weighted according to its distance. This adaptability ensures that closer points have a more significant impact on the interpolated
value, while those farther away contribute less.

The core idea of MWLS is to generate an interpolation matrix 𝐼𝑆𝑠→𝑆𝑑
that maps features 𝐲𝑖 from the source grid 𝑆𝑠 with 𝑛𝑠 nodes

to the destination grid 𝑆𝑑 with 𝑛𝑑 nodes:

𝐲𝑗 = 𝐼𝑆𝑠→𝑆𝑑
𝐲𝑖 ∀𝑗 ∈ 𝑆𝑑, ∀𝑖 ∈ 𝑆𝑠

To accomplish this, we construct a shape function 𝑢(𝐱) = 𝐩𝑇 (𝐱) 𝐚 that approximates the grid data 𝑦𝑖 by minimizing the least squares
error:

min𝐿 =
∑
𝑖∈𝑆𝑠

(
𝐩𝑇 (𝐱𝐢) 𝐚− 𝑦𝑖

)2
𝑤(𝐱𝑖)

where 𝑤(𝐱𝑖) = 𝑒−‖𝐱−𝐱𝑖‖2 is the Gaussian weight function that ensures nodes closer to the interpolation point have a greater ifluence,
𝐩(𝐱) is a second-order polynomial basis function, and 𝐚 is the vector of coefficients. The coefficients 𝚽(𝐱𝑗) for each destination node
are calculated by:

𝚽(𝐱𝑗) = 𝐩𝑇 (𝐱𝑗)(𝐏𝑇𝐖𝐏)−1𝐏𝑇𝐖

The design matrix 𝐏 and the weight matrix 𝐖 are formed based on the source nodes, where 𝐖 is diagonal with Gaussian weights.
The interpolation matrix 𝐼𝑆𝑠→𝑆𝑑

is then constructed as:

𝐼𝑆𝑠→𝑆𝑑
=
⎡⎢⎢⎢⎣

𝚽(𝐱1)
𝚽(𝐱2)
⋮

𝚽(𝐱𝑛𝑑
)

⎤⎥⎥⎥⎦
To reduce computational complexity, a local interpolation is applied by considering only the 𝑘𝑛 nearest neighbors for each desti

nation node. The optimal number of neighbors was found to be 𝑘𝑛 = 10, striking a balance between minimizing reconstruction errors
and managing computational requirements efficiently.

It is worth remarking that this interpolated matrix is of non-square size 𝑛𝑠 × 𝑛𝑑 and largely sparse, with only 𝑘𝑛 non-zero values
in each row. Consequently, with regards to executing the inverse interpolation in the decoder phase, this matrix is not invertible.
Thus, it is necessary to compute two independent interpolation matrices: 𝐼𝑆𝑠→𝑆𝑑

and 𝐼𝑆𝑑→𝑆𝑠
. The entire interpolation process, from

fine grid to coarse grid and back, yields an average error of 1.9%. However, this error does not accumulate during these steps, as the

Journal of Computational Physics 524 (2025) 113708

7

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 5. Training, validation and test samples for Mach number and angle of attack.

subsequent network layers learn to mitigate any potential accumulation, preserving accuracy throughout the process. Introducing
errors during training can also act as a regularization technique that enhances the model generalization capabilities, and prevents
ovefitting to specific patterns.

Proper orthogonal decomposition

One of the models used to benchmark our GB-AE-GCN framework is the Proper Orthogonal Decomposition with interpolation
(POD-I), a classic dimensionality reduction approach. Despite its linear formulation, POD has been applied to study nonlinear prob

lems [53--55] as it resulted particularly effective in extracting dominant patterns from high-dimensional data by identifying a set
of orthonormal modes that minimize the error between the original data and its projection onto a lower-dimensional space. This is
achieved by applying Singular Value Decomposition (SVD) to the snapshot matrix 𝐗, yielding:

𝐗 =𝐔𝚺𝐕∗ =
𝑛 ∑

𝑖=1
𝜎𝑖𝑢𝑖𝑣

∗
𝑖

Here, 𝐔 represents the spatial modes, 𝚺 contains the singular values, and 𝐕 comprises the temporal modes. We truncate the basis to
retain the 𝑘 modes that capture 95% of the system energy. Subsequently, the POD coefficients are interpolated in the reduced space
using radial basis functions (RBF) across the parameter space, resulting in the POD-I method.

3. Test cases

Two test cases, characterized by different physics and complexity, were employed for assessing the model prediction capability.
Angle of attack and Mach number were chosen as the two independent parameters for the ROM. The chosen ranges for the angle
of attack (𝐴𝑜𝐴) and Mach number (𝑀) are [0,5] [deg] and [0.70,0.84], respectively. These ranges are specifically chosen for the
transonic regime, where shock wave formation occurs on the wing, and high angles of attack, that lead to boundary–layer separation.
To generate the required number of samples, Latin hypercube sampling (LHS) [56] is employed, resulting in a total of 70 points as
illustrated in Fig. 5. Sixty percent of these samples (40 flight conditions denoted by circles) are designated for training, 20% (15 flight
conditions marked with squares) for validation, and the remaining 20% (15 conditions represented by diamonds) are reserved for
testing.

The dataset has been generated through CFD simulations. Reynolds-averaged Navier–Stokes (RANS) equations are discretized
using SU2 v7.5.1 [57] software. The closure of RANS equations is achieved using the one–equation Spalart–Allmaras turbulence
model. Convergence method is set to Cauchy method, specifically applied to the lift coefficient, considering a variation of 10−7 across
the last 100 iterations. A 1𝑣 multigrid scheme is adopted for accelerating the convergence of CFD simulations. The discretization
of convective flows involves the use of the Jameson-Schmidt-Turkel (JST) central scheme with artficial dissipation. Flow variable
gradients are computed through the Green Gauss method. The selected linear solver is the biconjugate gradient stabilization, with an
ILU preconditioner.

Following dataset generation, preprocessing and normalization to the range [−1,1] were performed before inputting the data into
the GB-AE-GCN model. The rest of the section explores the model predictive capabilities for distributed quantities and integral loads
across different test cases. Optimized architectures are detailed in Appendix A.

3.1. Wing–only model

The first test case is the Benchmark Super Critical Wing (BSCW), which is a transonic rigid semi–span wing with a rectangular
planform and a supercritical airfoil shape from the AIAA Aeroelastic Prediction Workshop [58]. This wing is elastically suspended
on a flexible mount system with two degrees of freedom, pitch and plunge, and it has been developed for flutter analysis. However,
for our case study, we focus solely on the wing, excluding the aeroelastic system. The BSCW is characterized by shock wave motion,

Journal of Computational Physics 524 (2025) 113708

8

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 6. Impression of the BSCW CFD grid.

Fig. 7. Mean absolute error (MAE) of 𝐶𝑃 and 𝐶𝐹 computed across every point in the mesh of the test set for BSCW test case using the GB-AE-GCN model. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

shock–induced boundary–layer separation and interaction between shock wave and detached boundary–layer. These three types of
nonlinearity are challenging for the ROM predictions.

An unstructured grid cofiguration with 8.4 ⋅106 elements and 86,840 surface elements was generated. A 𝑦+ = 1 is adopted, after a
preliminary mesh convergence study that ensured an adequate resolution of the boundary–layer and shock wave. The computational
domain extends 100 chords from the solid wall to the farfield. An impression of the grid can be obtained from Fig. 6.

The performance of the GB-AE-GCN model on the BSCW test case is shown through the Mean Absolute Error (MAE) calculated for
𝐶𝑃 and 𝐶𝐹 at each surface point in the test set mesh. As depicted in Fig. 7, the errors for both predictions are considerably small,
with the selected ranges serving solely to offer a visual depiction of areas where the model faces challenges in prediction. The errors
are minimal across the entire surface, except for a localized region near the shock wave.

Fig. 8 illustrates the percentage errors in [𝐶𝐿,𝐶𝐷,𝐶𝑀𝑦] across different Mach numbers and angles of attacks. Remarkably, the
GB-AE-GCN model predictions exhibit high accuracy for all coefficients, even for data points located far from the training set. This
indicates the model robustness in extrapolating beyond the provided data points. Aerodynamic coefficients were calculated using a
reference chord length of 0.4064 m and surface of 0.3303 m2, and derived by integrating the pressure coefficient distribution and the
skin friction coefficient distribution over the entire wing surface. 𝐶𝑀𝑦 was calculated with respect to 30% of the chord, accounting
for the rigid mounting system of the BSCW, which induces pitch oscillations around this specific location.

The comparison of pressure coefficient contours between the CFD data and the GB-AE-GCN predictions, along with the POD-I
results, is presented in Fig. 9. This comparison is for the test case with the highest error of the GB-AE-GCN model at 𝑀 = 0.714
and 𝐴𝑜𝐴 = 2.807 [deg]. The GB-AE-GCN model demonstrates excellent agreement with CFD, particularly in predicting the position
and intensity of shock waves. Minor discrepancies are visible near the low-pressure regions, but overall, the GB-AE-GCN captures the
nonlinearities more effectively than POD-I, especially in complex shock-dominated areas. Similarly, Fig. 10 compares the skin friction
contours, where again the GB-AE-GCN model outperforms POD-I, particularly in boundary layer regions where high gradients occur.
The POD-I method tends to oversmooth the flow features, missing key aerodynamic phenomena like boundary layer separation,

Journal of Computational Physics 524 (2025) 113708

9

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 8. Errors % in [𝐶𝐿,𝐶𝐷,𝐶𝑀𝑦] on the test samples across varying Mach numbers and angle of attacks for BSCW test case using the GB-AE-GCN model.

Fig. 9. Prediction of the pressure coefficient contour on the upper surface for BSCW test case at 𝑀 = 0.714 and 𝐴𝑜𝐴 = 2.807 [deg].

whereas GB-AE-GCN maintains more accurate fidelity to the CFD data, rflecting its enhanced capability in capturing fine-scale
aerodynamic phenomena.

Figs. 11 and 12 show detailed pressure and skin friction distributions at various sections along the wing span, evaluated at 𝑀 =
0.714 and 𝐴𝑜𝐴 = 2.807 [deg]. The GB-AE-GCN model consistently captures the peaks and variations with high precision, particularly
around the 20% wing span where the shock occurs. In contrast, the POD-I model exhibits larger deviations, failing to reproduce the
sharp gradients and flow complexities, especially near the shock and separation regions.

To provide a quantitative evaluation of the models, we computed Mean Absolute Percentage Error (MAPE) and 𝑅2 scores on the
test set, which are reported in Table 2 for the GB-AE-GCN and POD-I models. The MAPE was computed by averaging the absolute error
of each prediction calculated by our GB-AE-GCN architecture within the test set. This prediction error was determined by weighted
averaging the errors at each grid point, considering the corresponding cell area and normalizing with respect to it. The results show
the good performance of the GB-AE-GCN model, with low MAPE values of 0.7712 for 𝐶𝑃 and 0.3828 for 𝐶𝐹 . In comparison, the
POD-I method produced higher errors of 0.8958 for 𝐶𝑃 and 2.2753 for 𝐶𝐹 . The high 𝑅2 scores for GB-AE-GCN (0.9728 for 𝐶𝑃 and
0.9745 for 𝐶𝐹) further cofirm its accuracy in predicting flow features on unstructured grids. This superior performance is attributed

Journal of Computational Physics 524 (2025) 113708

10

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 10. Prediction of the skin friction magnitude coefficient contour on the upper surface for BSCW test case at 𝑀 = 0.714 and 𝐴𝑜𝐴= 2.807 [deg].

Fig. 11. Pressure coefficient sections of BSCW at 𝑀 = 0.714 and 𝐴𝑜𝐴 = 2.807 [deg].

Fig. 12. Skin friction coefficient sections of BSCW at 𝑀 = 0.714 and 𝐴𝑜𝐴 = 2.807 [deg].

Journal of Computational Physics 524 (2025) 113708

11

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Table 2
MAPE [%] and 𝑅2 on the test set for wing-only model.

GB-AE-GCN POD-I
MAPE 𝑅2 MAPE 𝑅2

𝐶𝑃 0.7712 ± 0.011 0.9728 ± 0.0039 0.8958 0.9039
𝐶𝐹 0.3828 ± 0.008 0.9745 ± 0.0031 2.2753 0.8909

Fig. 13. Impression of the CRM CFD grid.

to the ability of the GB-AE-GCN to capture nonlinearities in complex flow fields more effectively than the linear-based POD-I method,
particularly in regions with shock waves and boundary layer separations.

To ensure the robustness of the results, we studied the ifluence of random initialization of the network weights on the variance
of MAPE and 𝑅2 scores. The GB-AE-GCN model was trained 30 times with the same hyperparameters, and the resulting variance was
minimal, with 0.011 for MAPE on 𝐶𝑃 and 0.008 for 𝐶𝐹 . The variance for 𝑅2 was similarly low, at 0.0039 for 𝐶𝑃 and 0.0031 for 𝐶𝐹 .
These results indicate that the model performance is stable and consistent across different initializations.

3.2. Wing–body model

The second test case is the NASA Common Research model (CRM), a transonic wing–body model featured in the AIAA CFD
Drag Prediction Workshop [59]. This model encompasses a conventional low–wing cofiguration and a fuselage typical of wide--

body commercial aircraft. The computational grid utilized for this case was adapted from the DLR grid developed for the AIAA Drag
Prediction Workshop [60]. This unstructured grid comprises 8.8×106 elements, including 78,829 surface elements. The computational
domain extends 100 chords from the fuselage to the farfield. A 𝑦+ = 1 condition is employed. For a visual representation of the grid,
refer to Fig. 13.

This test case poses a complex challenge for our GB-AE-GCN model due to the complex geometry, physics and grid cofiguration.
The MAE of 𝐶𝑃 and 𝐶𝐹 computed across every point in the mesh of the test set is depicted in Fig. 14. This visualization provides
insight into the regions where the model struggles most to accurately represent the flow physical behavior. Interestingly, the errors
are generally minimal across the entire surface, except for a localized region near the wing-fuselage junction and between the kink of
the wing and its tip. Nonetheless, the broadly distributed small errors suggest that the model effectively captures the nonlinearities
inherent in the system.

Fig. 15 shows the percentage errors in [𝐶𝐿,𝐶𝐷,𝐶𝑀𝑦] on the test samples across varying Mach numbers and angle of attacks.
Notably, the predictions demonstrate overall accuracy across all coefficients, even for points distant from the training samples. This
suggests a robust performance of the model in extrapolating beyond the known data points. A chord of 0.1412 m and a scaling area
of 0.1266 m2 were considered for aerodynamic coefficients calculation. 𝐶𝑀𝑦 was computed with respect to 25% of the wing mean
aerodynamic chord.

To provide a comparative analysis, Figs. 16 and 17 present the surface pressure and skin friction contours for the test set with
the highest prediction error in the GB-AE-GCN model at 𝑀 = 0.839 and 𝐴𝑜𝐴 = 4.975 [deg]. For reference, the results from Massegur
model (AE-MM-GCN) [21] are also included, providing a useful comparison of performance across models. Despite being the worst

performing case, the GB-AE-GCN model still shows excellent agreement with the CFD data, capturing the flow features across the

Journal of Computational Physics 524 (2025) 113708

12

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 14. Mean absolute error (MAE) of 𝐶𝑃 and 𝐶𝐹 computed across every point in the mesh of the test set for CRM test case using the GB-AE-GCN model.

Fig. 15. Errors % in [𝐶𝐿,𝐶𝐷,𝐶𝑀𝑦] on the test samples across varying Mach numbers and angle of attacks for CRM test case using the GB-AE-GCN model.

aircraft with high accuracy. In contrast, the POD-I method shows notable discrepancies, especially in regions with sharp gradients like
shock waves and boundary layer separations, where it struggles to capture complex flow phenomena. The AE-MM-GCN model [21]
offers better performance than POD-I but still falls short of the accuracy achieved by GB-AE-GCN, particularly in high-gradient regions.

Figs. 18 and 19 further explore the pressure and skin friction distributions across several spanwise sections of the CRM wing
at 𝑀 = 0.839 and 𝐴𝑜𝐴 = 4.975 [deg]. The GB-AE-GCN model consistently aligns closely with the reference CFD data, especially in
shock-dominated regions. In comparison, both POD-I and AE-MM-GCN show limitations. While AE-MM-GCN [21] performs better
than POD-I, it still lags behind GB-AE-GCN in terms of capturing sharp flow gradients and complex features. The methodological
advancements in our model, particularly the use of pressure-gradient-based coarsening and a physics-informed loss function, enable
it to handle nonlinearities more effectively, leading to higher overall accuracy in these complex flow conditions.

Building on this detailed analysis of our model performance under its most challenging prediction, we now provide an overview
of the performance across the entire test set. To evaluate the models comprehensively, we computed MAPE and 𝑅2 scores exclusively
for the wing region, where the flow exhibits strong nonlinearities. The CRM model includes large areas with mostly linear flow,
particularly over the fuselage, which we excluded from the analysis. Table 3 presents the MAPE and 𝑅2 results for the GB-AE-GCN,
POD-I, and AE-MM-GCN [21] models. The GB-AE-GCN model achieved a MAPE of 0.8876 for 𝐶𝑃 and 0.2402 for 𝐶𝐹 , outperforming
both the POD-I and AE-MM-GCN [21] models. The lower MAPE for 𝐶𝐹 is especially significant, indicating the model ability to
capture skin friction details more accurately, particularly in regions with complex flow gradients. The 𝑅2 values further cofirm this
performance, with the GB-AE-GCN obtaining 𝑅2 scores of 0.9353 for 𝐶𝑃 and 0.9650 for 𝐶𝐹 , rflecting its precision in predicting
aerodynamic features. In comparison, the POD-I and AE-MM-GCN [21] models show lower 𝑅2 values, highlighting their struggles in
capturing sharp flow features.

To further assess the robustness of the GB-AE-GCN model, we evaluated how random initialization affects the variance in MAPE
and 𝑅2 scores. After training the model 30 times with the same hyperparameters, we observed a variance of 0.07 in MAPE for 𝐶𝑃 and

Journal of Computational Physics 524 (2025) 113708

13

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 16. Prediction of the pressure coefficient contour on the upper surface for CRM test case at 𝑀 = 0.839 and 𝐴𝑜𝐴 = 4.975 [deg].

Fig. 17. Prediction of the skin friction magnitude coefficient contour on the upper surface for CRM test case at 𝑀 = 0.839 and 𝐴𝑜𝐴 = 4.975 [deg].

Table 3
MAPE [%] and 𝑅2 on the test set for wing-body model.

GB-AE-GCN GCN-MM-AE [21] POD-I
MAPE 𝑅2 MAPE 𝑅2 MAPE 𝑅2

𝐶𝑃 0.8876 ± 0.07 0.9674 ± 0.014 1.4051 0.9353 3.7136 0.8740
𝐶𝐹 0.2402 ± 0.05 0.9737 ± 0.019 0.5737 0.9550 1.2142 0.9202

0.05 for 𝐶𝐹 . For 𝑅2, the variance was 0.014 for 𝐶𝑃 and 0.019 for 𝐶𝐹 . These results indicate that, despite the inherent randomness
in initialization, the model consistently produces reliable and accurate predictions, reinforcing its robustness across different training
runs.

Journal of Computational Physics 524 (2025) 113708

14

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. 18. Pressure coefficient sections of CRM at 𝑀 = 0.839 and 𝐴𝑜𝐴= 4.975 [deg].

Fig. 19. Skin friction coefficient sections of CRM at 𝑀 = 0.839 and 𝐴𝑜𝐴 = 4.975 [deg].

Table 4
Computing cost comparison between GB-AE-GCN model and CFD for the two test cases.

Test case CFD (CPU hours) GB-AE-GCN (GPU hours)
Simulation Optimization Training Prediction
(70 runs) (1 run) (30 trials) (1 model) (1 sample)

BSCW 35,000 500 27 1.4 0.0003 (∼ 1𝑠)
NASA CRM 28,000 400 28 1.5 0.0003 (∼ 1𝑠)

3.3. Computing cost saving

A detailed computational cost analysis was conducted to evaluate the efficiency of the implemented GB-AE-GCN model in com

parison to the high–order approach, as outlined in Table 4. Each CFD simulation was performed on a high-performance computing
system with an Intel Skylake-based architecture utilizing 3 nodes with 40 CPU cores each, typically consuming around 450 CPU
hours per run, with the entire dataset generation requiring approximately 31,500 CPU hours. Conversely, employing the ROM en

ables prediction for a single sample in approximately 1 second on a local machine, resulting in a computational saving exceeding
99%.

Therefore, it is essential to consider the high computational cost associated with each hig–fidelity simulation used for generating
the dataset. Adopting a philosophy aimed at minimizing the amount of training data necessary for developing an accurate model is
crucial.

The training process was executed on an Intel XEON W-2255 CPU with a NVIDIA RTX A4000 GPU, ensuring efficient utilization
of computational resources.

Journal of Computational Physics 524 (2025) 113708

15

G. Immordino, A. Vaiuso, A. Da Ronch et al.

4. Conclusions

This study highlighted the effectiveness and robustness of the implemented GB-AE-GCN model in delivering precise predictions
within a parameter space for various test scenarios, featuring complex geometries and diverse physical phenomena. Through convo

lutional and pooling operations, the model efficiently ifluences predictions at individual nodes based on their neighbors, while also
enabling information propagation to distant nodes during spatial reduction. Additionally, the model can directly process input grids
without requiring preprocessing, greatly simplifying the modeling process.

In terms of performance, the GB-AE-GCN model consistently outperformed both the POD-I approach and AE-MM-GCN model from
Massegur et al. [21] across various test cases, particularly in capturing complex nonlinear flow phenomena such as shock waves and
boundary layer separations. The GB-AE-GCN superior ability to handle sharp flow gradients and complex geometries, especially in
high-gradient regions, is rflected in its lower MAPE and higher 𝑅2 scores compared to the other models. The pressure-gradient-based
coarsening, fast connectivity reconstruction, physics-informed loss function, and network optimization played key roles in enabling
our model to better capture nonlinearities and critical flow features that the other methods struggled with.

A key strength of GCNs is their inherent flexibility to handle various graph structures, extending them beyond aerospace ap

plications to any non-homogeneous, unstructured data. This flexibility is driven by features like local neighborhood aggregation,
parameter sharing, and invariance to node ordering, ensuring consistent performance across a wide variety of graph cofigurations.
Since each input graph is represented by an adjacency matrix and node attributes, the model can theoretically process graphs with
any arrangement of nodes. However, when trained on a fixed mesh, as in this study, applying the model to new spatial structures may
result in unexpected behavior. To address this, the network could be trained on meshes with varying features or sizes using methods
like subgraph splitting or padding, similar to those used in traditional convolutional neural networks.

In addition to flexibility, the model is designed to ensure scalability, enabling it to efficiently operate on larger grids due to
the localized nature of GCN operations. As the grid size increases, certain adjustments become necessary, particularly regarding the
number of layers in the network. Larger grids may demand deeper networks to capture the complex interactions across the expanded
spatial domain. Additionally, increasing the number of pooling operations is crucial to ensure information propagation across more
distant nodes, enabling them to communicate more effectively. This increased pooling facilitates the model ability to capture long

range dependencies, but it also requires careful tuning to balance computational efficiency with model accuracy.

Looking ahead, integrating temporal dynamics into the framework would further improve the model ability to capture transient
behaviors and dynamic changes over time. This extension would broaden its applicability, making it highly relevant for analyzing
dynamical systems where time-dependent phenomena are crucial.

CRediT authorship contribution statement

Gabriele Immordino: Writing -- review & editing, Writing -- original draft, Visualization, Validation, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Andrea Vaiuso: Writing -- original draft, Methodology, Conceptualization. Andrea
Da Ronch: Writing -- review & editing, Supervision, Resources, Project administration. Marcello Righi: Writing -- review & editing,
Supervision, Resources, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
ifluence the work reported in this paper.

Acknowledgement

This work was supported by Digitalization Initiative of the Zurich Higher Education Institutions (DIZH) grant 9710.Z.12.P.0003.05
from Zurich University of Applied Sciences (ZHAW). The authors also acknowledge the University of Southampton for granting access
to the IRIDIS High Performance Computing Facility and its associated support services.

Appendix A. Optimized GB-AE-GCN architecture

This section provides a comprehensive overview of the optimized architectures and highlights the systematic reduction of loss
throughout the optimization trials for each test case.

Table A.5 provides detailed information about the optimized architecture designed specifically for the wing–only test case. This
architecture consists of 17 layers and a total of 711,493 parameters, carefully balanced to capture the complexities of this aerodynamic
setup. Similarly, Table A.6 displays the optimized architecture for the wing–fuselage test case. With 15 layers and a total of 633,731
parameters, this cofiguration is tailored to accurately model the interaction between the wing and fuselage, capturing the subtle
aerodynamic interactions between these components.

Fig. A.20 illustrates the optimization history of GB-AE-GCN hyperparameters using Bayesian optimization. Each trial is represented
by a set of transparent points indicating the MSE at the end of training. The dashed black line indicates the trend of error reduction
during optimization. The graph underscores a continual decrease in error during the optimization, underscoring the efficacy of the
tuning process in discovering the hyperparameters combination that minimizes MSE on the validation dataset.

Journal of Computational Physics 524 (2025) 113708

16

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Table A.5

Optimal architecture for Test Case I - Wing–Only Model.

Block Layer Activation Output Size
Input m × 86840 × 5

Encoding

Block 0 GCN PReLU m × 86840 × 64

Block 1
GCN PReLU m × 86840 × 112
GCN PReLU m × 86840 × 192
GCN PReLU m × 86840 × 256

Pooling 1 m × 28600 × 256

Block 2 GCN PReLU m × 28600 × 256
GCN PReLU m × 28600 × 288

Pooling 2 m × 9600 × 288

Reduced Space Block 3 GCN PReLU m × 9600 × 496
GCN PReLU m × 9600 × 288

Decoding

Unpooling 2 m × 28600 × 288

Block 4 GCN PReLU m × 28600 × 256
GCN PReLU m × 28600 × 256

Unpooling 1 m × 86840 × 256

Block 5
GCN PReLU m × 86840 × 256
GCN PReLU m × 86840 × 192
GCN PReLU m × 86840 × 160

Output

Block 6
GCN PReLU m × 86840 × 1
GCN PReLU m × 86840 × 1
GCN PReLU m × 86840 × 1
GCN PReLU m × 86840 × 1

Concatenate Block 6
Prediction m × 86840 × 4

Table A.6

Optimal architecture for Test Case II - Wing–Fuselage Model.

Block Layer Activation Output Size
Input m × 78829 × 5

Encoding

Block 0 GCN PReLU m × 78829 × 224

Block 1 GCN PReLU m × 78829 × 192
GCN PReLU m × 78829 × 192

Pooling 1 m × 26000 × 192

Block 2 GCN PReLU m × 26000 × 240
GCN PReLU m × 26000 × 304

Pooling 2 m × 8000 × 304

Reduced Space Block 3 GCN PReLU m × 8000 × 432
GCN PReLU m × 8000 × 304

Decoding

Unpooling 2 m × 26000 × 304

Block 4 GCN PReLU m × 26000 × 240
GCN PReLU m × 26000 × 192

Unpooling 1 m × 78829 × 192

Block 5 GCN PReLU m × 78829 × 192
GCN PReLU m × 78829 × 64

Output

Block 6
GCN PReLU m × 78829 × 1
GCN PReLU m × 78829 × 1
GCN PReLU m × 78829 × 1
GCN PReLU m × 78829 × 1

Concatenate Block 6
Prediction m × 78829 × 4

Journal of Computational Physics 524 (2025) 113708

17

G. Immordino, A. Vaiuso, A. Da Ronch et al.

Fig. A.20. Hyperparameter optimization history of the GB-AE-GCN model for each test case.

Data availability

Data will be made available on request.

References

[1] R. Zimmermann, A. Vendl, S. Görtz, Reduced-order modeling of steady flows subject to aerodynamic constraints, AIAA J. 52 (2014) 255--266, https://doi.org/

10.2514/1.J052208.

[2] T. Franz, R. Zimmermann, S. Görtz, N. Karcher, Interpolation-based reduced-order modelling for steady transonic flows via manifold learning, Int. J. Comput.
Fluid Dyn. 28 (2014) 106--121, https://doi.org/10.1080/10618562.2014.918695.

[3] T. Franz, Reduced-order modeling for steady transonic flows via manifold learning, Ph.D. thesis, Deutsches Zentrum für Luft-und Raumfahrt, 2016.

[4] M. Ripepi, M.J. Verveld, N. Karcher, T. Franz, M. Abu-Zurayk, S. Görtz, T. Kier, Reduced-order models for aerodynamic applications, loads and mdo, CEAS
Aeronaut. J. 9 (2018) 171--193, https://doi.org/10.1007/s13272-018-0283-6.

[5] C. Sabater, P. Stürmer, P. Bekemeyer, Fast predictions of aircraft aerodynamics using deep-learning techniques, AIAA J. 60 (2022) 5249--5261, https://doi.org/

10.2514/1.J061234.

[6] R. Castellanos, J.B. Varela, A. Gorgues, E. Andrés, An assessment of reduced-order and machine learning models for steady transonic flow prediction on wings,
in: ICAS 2022, 2022.

[7] G. Immordino, A. Da Ronch, M. Righi, Steady-state transonic flofield prediction via deep-learning framework, AIAA J. (2024) 1--17, https://doi.org/10.2514/

1.J063545.

[8] M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric deep learning: going beyond Euclidean data, IEEE Signal Process. Mag. 34 (2017)
18--42, https://doi.org/10.1109/MSP.2017.2693418.

[9] M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph domains, in: Proceedings, 2005 IEEE International Joint Conference on Neural Networks,
2005, vol. 2, IEEE, 2005, pp. 729--734.

[10] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (2020) 4--24,
https://doi.org/10.1109/TNNLS.2020.2978386.

[11] Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: a survey, IEEE Trans. Knowl. Data Eng. 34 (2020) 249--270, https://doi.org/10.1109/TKDE.2020.2981333.

[12] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Graph neural networks: a review of methods and applications, AI Open 1 (2020) 57--81,
https://doi.org/10.1016/j.aiopen.2021.01.001.

[13] E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, Gram: graph-based attention model for healthcare representation learning, in: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787--795.

[14] J. Kawahara, C.J. Brown, S.P. Miller, B.G. Booth, V. Chau, R.E. Grunau, J.G. Zwicker, G. Hamarneh, Brainnetcnn: convolutional neural networks for brain
networks; towards predicting neurodevelopment, NeuroImage 146 (2017) 1038--1049, https://doi.org/10.1016/j.neuroimage.2016.09.046.

[15] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang, Deepinf: social ifluence prediction with deep learning, in: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 2110--2119.

[16] T. Nguyen, R. Grishman, Graph convolutional networks with argument-aware pooling for event detection, Proc. AAAI Conf. Artif. Intell. 32 (2018), https://

doi.org/10.1609/aaai.v32i1.12039.

[17] D. Zügner, A. Akbarnejad, S. Günnemann, Adversarial attacks on neural networks for graph data, in: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 2847--2856.

[18] D. Hines, P. Bekemeyer, Graph neural networks for the prediction of aircraft surface pressure distributions, Aerosp. Sci. Technol. 137 (2023) 108268, https://

doi.org/10.1016/j.ast.2023.108268.

[19] P. Juangphanich, J. Rush, N. Scannell, Predicting Two-Dimensional Airfoil Performance Using Graph Neural Networks, Technical Report, NASA, 2023.

[20] F. Ogoke, K. Meidani, A. Hashemi, A.B. Farimani, Graph convolutional networks applied to unstructured flow field data, Mach. Learn.: Sci. Technol. 2 (2021)
045020, https://doi.org/10.1088/2632-2153/ac1fc9.

[21] D. Massegur Sampietro, A. Da Ronch, Recurrent multi-mesh convolutional autoencoder framework for spatio-temporal aerodynamic modelling, in: AIAA AVIA

TION 2023 Forum, 2023, p. 3845.

[22] J. Li, Y. Li, T. Liu, D. Zhang, Y. Xie, Mult-fidelity graph neural network for flow field data fusion of turbomachinery, Energy 285 (2023) 129405, https://

doi.org/10.1016/j.energy.2023.129405.

[23] J. Li, T. Liu, G. Zhu, Y. Li, Y. Xie, Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods, Energy
273 (2023) 127289, https://doi.org/10.1016/j.energy.2023.127289.

[24] T. Li, J. Yan, X. Chen, Z. Wang, Q. Zhang, E. Zhou, C. Gong, J. Liu, Accelerating aerodynamic design optimization based on graph convolutional neural network,
Int. J. Mod. Phys. C 35 (2024) 2450007, https://doi.org/10.1142/S0129183124500074.

[25] X. Jin, P. Cheng, W.-L. Chen, H. Li, Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural
networks based on pressure on the cylinder, Phys. Fluids 30 (2018) 047105, https://doi.org/10.1063/1.5024595.

[26] K. Fukami, K. Fukagata, K. Taira, Super-resolution reconstruction of turbulent flows with machine learning, J. Fluid Mech. 870 (2019) 106--120, https://

doi.org/10.1017/jfm.2019.238.

[27] N. Omata, S. Shirayama, A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder, AIP Adv. 9 (2019)
015006, https://doi.org/10.1063/1.5067313.

[28] J.-Z. Peng, S. Chen, N. Aubry, Z.-H. Chen, W.-T. Wu, Time-variant prediction of flow over an airfoil using deep neural network, Phys. Fluids 32 (2020) 123602,
https://doi.org/10.1063/5.0022222.

Journal of Computational Physics 524 (2025) 113708

18

https://doi.org/10.2514/1.J052208
https://doi.org/10.2514/1.J052208
https://doi.org/10.1080/10618562.2014.918695
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib4DE27F096DF961B848CD21B3AB7928F5s1
https://doi.org/10.1007/s13272-018-0283-6
https://doi.org/10.2514/1.J061234
https://doi.org/10.2514/1.J061234
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibE44A99596D85830DF7240A23669F1D30s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibE44A99596D85830DF7240A23669F1D30s1
https://doi.org/10.2514/1.J063545
https://doi.org/10.2514/1.J063545
https://doi.org/10.1109/MSP.2017.2693418
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib34BFC885B3B6C7C47FAB0CD6A544C82Ds1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib34BFC885B3B6C7C47FAB0CD6A544C82Ds1
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1016/j.aiopen.2021.01.001
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib6720ECCB82F0B1A74C74FF9128E63E52s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib6720ECCB82F0B1A74C74FF9128E63E52s1
https://doi.org/10.1016/j.neuroimage.2016.09.046
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibC11BAA0D8D6B742A5B6B152338428E86s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibC11BAA0D8D6B742A5B6B152338428E86s1
https://doi.org/10.1609/aaai.v32i1.12039
https://doi.org/10.1609/aaai.v32i1.12039
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib9B9DD2BFDDB57BA97C3BB84766762571s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib9B9DD2BFDDB57BA97C3BB84766762571s1
https://doi.org/10.1016/j.ast.2023.108268
https://doi.org/10.1016/j.ast.2023.108268
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib8AA05C66EABF2C1BCD0B653B9F210777s1
https://doi.org/10.1088/2632-2153/ac1fc9
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibA9C383173FC2A33D460B91855D53641Es1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibA9C383173FC2A33D460B91855D53641Es1
https://doi.org/10.1016/j.energy.2023.129405
https://doi.org/10.1016/j.energy.2023.129405
https://doi.org/10.1016/j.energy.2023.127289
https://doi.org/10.1142/S0129183124500074
https://doi.org/10.1063/1.5024595
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1063/1.5067313
https://doi.org/10.1063/5.0022222

G. Immordino, A. Vaiuso, A. Da Ronch et al.

[29] V. Rozov, C. Breitsamter, Data-driven prediction of unsteady pressure distributions based on deep learning, J. Fluids Struct. 104 (2021) 103316, https://

doi.org/10.1016/j.jfluidstructs.2021.103316.

[30] Q. Zhao, X. Han, R. Guo, C. Chen, A computationally efficient hybrid neural network architecture for porous media: integrating cnns and gnns for improved
permeability prediction, arXiv preprint arXiv:2311.06418, 2023, https://doi.org/10.48550/arXiv.2311.06418.

[31] D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular
fingerprints, Adv. Neural Inf. Process. Syst. 28 (2015), https://doi.org/10.48550/arXiv.1509.09292.

[32] X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady flow approximation, in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 481--490.

[33] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, S. Kaushik, Prediction of aerodynamic flow fields using convolutional neural networks, Comput. Mech. 64 (2019)
525--545, https://doi.org/10.1007/s00466-019-01740-0.

[34] R. Han, Y. Wang, Y. Zhang, G. Chen, A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network, Phys. Fluids 31
(2019), https://doi.org/10.1063/1.5127247.

[35] K. Fukami, T. Nakamura, K. Fukagata, Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data, Phys.
Fluids 32 (2020), https://doi.org/10.1063/5.0020721.

[36] D. Massegur Sampietro, A. Da Ronch, Graph convolutional multi-mesh autoencoder for steady transonic aircraft aerodynamics, Mach. Learn.: Sci. Technol.
(2023), https://doi.org/10.1088/2632-2153/ad36ad.

[37] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, et al., Recent advances in convolutional neural networks, Pattern
Recognit. 77 (2018) 354--377, https://doi.org/10.1016/j.patcog.2017.10.013.

[38] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neural networks: analysis, applications, and prospects, in: IEEE Transactions on Neural Networks
and Learning Systems, 2021.

[39] G. Quaranta, P. Masarati, P. Mantegazza, A conservative mesh-free approach for fluid structure problems in coupled problems, in: International Conference for
Coupled Problems in Science and Engineering, Santorini, Greece, 2005, pp. 24--27.

[40] G.R. Joldes, H.A. Chowdhury, A. Wittek, B. Doyle, K. Miller, Modfied moving least squares with polynomial bases for scattered data approximation, Appl. Math.
Comput. 266 (2015) 893--902, https://doi.org/10.1016/j.amc.2015.05.150.

[41] R. De Maesschalck, D. Jouan-Rimbaud, D.L. Massart, The Mahalanobis distance, Chemom. Intell. Lab. Syst. 50 (2000) 1--18, https://doi.org/10.1016/j.patcog.

2008.05.018.

[42] M.D. Ribeiro, M. Stradtner, P. Bekemeyer, Unsteady reduced order model with neural networks and flight-physics-based regularization for aerodynamic appli

cations, Comput. Fluids 264 (2023) 105949, https://doi.org/10.1016/j.compfluid.2023.105949.

[43] T.N. Kipf, M. Welling, Semi-supervised classfication with graph convolutional networks, arXiv preprint arXiv:1609.02907, 2016, https://doi.org/10.48550/

arXiv.1609.02907.

[44] M. Fey, J.E. Lenssen, Fast graph representation learning with pytorch geometric, https://doi.org/10.48550/arXiv.1903.02428, arXiv:1903.02428, 2019.

[45] D.K. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory, Appl. Comput. Harmon. Anal. 30 (2011) 129--150, https://

doi.org/10.1016/j.acha.2010.04.005.

[46] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectfiers: surpassing human-level performance on imagenet classfication, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1026--1034.

[47] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014, https://doi.org/10.48550/arXiv.1412.6980.

[48] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, in: F. Pereira, C. Burges, L. Bottou, K. Weinberger (Eds.),
Advances in Neural Information Processing Systems, vol. 25, Curran Associates, Inc., 2012.

[49] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: a next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2623--2631.

[50] S. Xiang, F. Nie, C. Zhang, Learning a Mahalanobis distance metric for data clustering and classfication, Pattern Recognit. 41 (2008) 3600--3612, https://

doi.org/10.1016/j.patcog.2008.05.018.

[51] H. Ghorbani, Mahalanobis distance and its application for detecting multivariate outliers, Facta Univ., Ser. Math. Inform. (2019) 583--595, https://doi.org/10.

22190/FUMI1903583G.

[52] J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches in logarithmic expected time, ACM Trans. Math. Softw. 3 (1977) 209--226, https://

doi.org/10.1145/355744.355745.

[53] T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza, Model order reduction in fluid dynamics: challenges and perspectives, in: Reduced Order Methods for Modeling
and Computational Reduction, 2014, pp. 235--273.

[54] D.J. Lucia, P.S. Beran, W.A. Silva, Reduced-order modeling: new approaches for computational physics, Prog. Aerosp. Sci. 40 (2004) 51--117, https://doi.org/

10.1016/j.paerosci.2003.12.001.

[55] R. Zimmermann, S. Görtz, Improved extrapolation of steady turbulent aerodynamics using a non-linear pod-based reduced order model, Aeronaut. J. 116 (2012)
1079--1100, https://doi.org/10.1017/S0001924000007491.

[56] W.-L. Loh, On Latin hypercube sampling, Ann. Stat. 24 (1996) 2058--2080, https://doi.org/10.1214/aos/1069362310.

[57] T.D. Economon, F. Palacios, S.R. Copeland, T.W. Lukaczyk, J.J. Alonso, Su2: an open-source suite for multiphysics simulation and design, AIAA J. 54 (2016)
828--846, https://doi.org/10.2514/1.J053813.

[58] J. Heeg, Overview of the aeroelastic prediction workshop, in: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,
2013, p. 783.

[59] J.C. Vassberg, E.N. Tinoco, M. Mani, O.P. Brodersen, B. Eisfeld, R.A. Wahls, J.H. Morrison, T. Zickuhr, K.R. Laflin, D.J. Mavriplis, Abridged summary of the third
aiaa computational fluid dynamics drag prediction workshop, J. Aircr. 45 (2008) 781--798, https://doi.org/10.2514/1.30572.

[60] J. Vassberg, E. Tinoco, M. Mani, O. Brodersen, B. Eisfeld, R. Wahls, J. Morrison, T. Zickuhr, K. Laflin, D. Mavriplis, Summary of dlr-f6 wing-body data from the
third aiaa cfd drag prediction workshop, RTO AVT-147 Paper 57, https://doi.org/10.2514/6.2007-260, 2007.

Journal of Computational Physics 524 (2025) 113708

19

https://doi.org/10.1016/j.jfluidstructs.2021.103316
https://doi.org/10.1016/j.jfluidstructs.2021.103316
https://doi.org/10.48550/arXiv.2311.06418
https://doi.org/10.48550/arXiv.1509.09292
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib1EFF13AB437E372366465AE576966212s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib1EFF13AB437E372366465AE576966212s1
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1063/1.5127247
https://doi.org/10.1063/5.0020721
https://doi.org/10.1088/2632-2153/ad36ad
https://doi.org/10.1016/j.patcog.2017.10.013
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibB9F05AABD59E25883EAB20D2D2F0A81Bs1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibB9F05AABD59E25883EAB20D2D2F0A81Bs1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib9B58DADC740BA1ED3BF488ADA2613634s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib9B58DADC740BA1ED3BF488ADA2613634s1
https://doi.org/10.1016/j.amc.2015.05.150
https://doi.org/10.1016/j.patcog.2008.05.018
https://doi.org/10.1016/j.patcog.2008.05.018
https://doi.org/10.1016/j.compfluid.2023.105949
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib4367FD9C17EA8F0310AA489697E82CD8s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib4367FD9C17EA8F0310AA489697E82CD8s1
https://doi.org/10.48550/arXiv.1412.6980
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib60751049E44CC4A3D58A3BF6D4B02160s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib60751049E44CC4A3D58A3BF6D4B02160s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib8D2D89543522017EEE9E3F3FFF4135DCs1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib8D2D89543522017EEE9E3F3FFF4135DCs1
https://doi.org/10.1016/j.patcog.2008.05.018
https://doi.org/10.1016/j.patcog.2008.05.018
https://doi.org/10.22190/FUMI1903583G
https://doi.org/10.22190/FUMI1903583G
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib1B5393A37A275AFF8C8C06D425B14A63s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bib1B5393A37A275AFF8C8C06D425B14A63s1
https://doi.org/10.1016/j.paerosci.2003.12.001
https://doi.org/10.1016/j.paerosci.2003.12.001
https://doi.org/10.1017/S0001924000007491
https://doi.org/10.1214/aos/1069362310
https://doi.org/10.2514/1.J053813
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibA9EDB926C793F60F37D08F1FCD59CB37s1
http://refhub.elsevier.com/S0021-9991(24)00956-2/bibA9EDB926C793F60F37D08F1FCD59CB37s1
https://doi.org/10.2514/1.30572
https://doi.org/10.2514/6.2007-260

	Predicting transonic flowfields in non--homogeneous unstructured grids using autoencoder graph convolutional networks
	1 Introduction
	2 Methodology
	2.1 Graph autoencoder architecture
	2.2 Graph deep--learning model
	Bayesian optimization for hyperparameters tuning

	2.3 Dimensionality reduction/expansion
	Pressure gradient--based point selection
	Mahalanobis connection reconstruction
	Moving weighted least squares for grid interpolation
	Proper orthogonal decomposition

	3 Test cases
	3.1 Wing--only model
	3.2 Wing--body model
	3.3 Computing cost saving

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Optimized GB-AE-GCN architecture
	Data availability
	References

