
Aerospace Science and Technology 163 (2025) 110301

Available online 9 May 2025
1270-9638/© 2025 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Aerospace Science and Technology

journal homepage: www.elsevier.com/locate/aescte

Multifidelity transonic aerodynamic loads estimation using Bayesian 

neural networks with transfer learning

Andrea Vaiuso a, , Gabriele Immordino a,b, ,∗, Marcello Righi a, Andrea Da Ronch b,

a School of Engineering, Zurich University of Applied Sciences ZHAW, Winterthur, 8400, Switzerland
b Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom

A R T I C L E I N F O A B S T R A C T 

Communicated by Mehdi Ghoreyshi Multifidelity surrogate models are of particular interest in aerospace applications, as they combine the 
computational efficiency of lowfidelity simulations with the accuracy of highfidelity models. This methodology, 
often implemented via data fusion, aims to reduce the cost of data generation while preserving predictive 
accuracy. Despite the widespread use of traditional machine learning techniques to improve surrogates and 
perform data fusion tasks, there remains a need for novel approaches that further improve predictive reliability�-

particularly in terms of uncertainty quantification—without substantially increasing the computational cost 
of generating highfidelity training samples. In this study, we propose a Bayesian neural network framework 
designed for multifidelity prediction of transonic aerodynamic data, employing transfer learning to integrate 
computational fluid dynamics data of varying fidelities. The probabilistic nature of the model allows also 
quantification of the uncertainty in the input space, making it well suited for analyzing the inherently complex 
and nonlinear behavior of the transonic aerodynamic responses under investigation. Our results demonstrate 
that the proposed multifidelity Bayesian model outperforms classical data fusion Co-Kriging method, both in 
accuracy and generalization capabilities on unseen data.

1. Introduction

In aerospace engineering, the accurate prediction of aerodynamic 
loads is extremely important for the design and optimization of aircraft. 
In particular, the transonic regime is characterized by complex flow 
phenomena, such as shock wave formation and boundary-layer sepa

ration, which introduce significant nonlinearities into the aerodynamic 
behavior of aircraft components. These nonlinearities pose challenges 
for traditional modeling techniques, which often struggle to balance ac

curacy with computational efficiency.

To address these challenges, there is increasing interest in combin

ing data from models of different fidelities. By leveraging the strengths 
of both low- and highfidelity models, this approach enhances predic

tive accuracy while reducing computational costs, making it valuable 
not only for aerodynamic load estimation but also for applications in 
aeroelasticity, flight dynamics, and so forth [64,18,1,62].

In general, lowfidelity (LF) models are employed to calculate phys

ical quantities of interest in complex systems with a cost-effective ap

proach in situations where rapid assessments are required [8,4,57]. This 
is achieved through the identification of the key physical phenomena, 
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the application of simplifying assumptions to reduce degrees of free

dom, and the use of basic mathematical models or empirical data to ap

proximate the behavior of the system [36,29,60,40,38]. These models, 
such as simplified vortex approaches [51,63] and reduced-order meth

ods [36,30,31,14], provide essential aerodynamic characteristics with

out incurring the significant computational demands of highfidelity 
(HF) Computational Fluid Dynamics (CFD) simulations [48]. However, 
these LF models often struggle to achieve sufficient accuracy when pre

dicting regions of the flight envelope that exhibit a highly nonlinear 
behavior [17,65].

To bridge this gap, a valid approach is represented by Data Fusion 
(DF) techniques, which aim to leverage the strengths of models based on 
different fidelities to create a multifidelity surrogate model [23,49]. A 
common DF approach involves combining a data-driven model based on 
LF samples with a small number of HF points, with the goal of improving 
the overall prediction accuracy without incurring the prohibitive costs of 
fully HF studies [41,34,45,61]. This approach is particularly beneficial 
when the generation of HF data at specific physical conditions is com

putationally prohibitive, yet LF and inexpensive models are available. 
A traditional and widely used DF technique, Co-Kriging (CK), utilizes 
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Gaussian Process to correct LF predictions using correlations between 
different fidelity levels, thereby improving precision and quantifying 
uncertainty effectively [35,45]. Forrester et al. [19] demonstrated CK 
capability in multifidelity wing optimization, highlighting its utility in 
integrating diverse data sources. This method is still prevalent in recent 
aerodynamic studies and airfoil optimizations [9,22,35]. Other recent 
popular strategies include Recursive Cokriging [61], extended hierar

chical Kriging [45], and multifidelity Gaussian processes [41], which 
have been applied to a wide range of aerospace problems such as high

pressure compressor rotors, eVTOL aircraft, and the NASA Common 
Research Model in transonic conditions.

The integration of machine learning (ML) has significantly advanced 
the DF field, offering rapid and accurate predictions despite the costs 
associated with the initial training, particularly with Deep Learning 
(DL) [53,56] and more novel and emergent solutions such as graph 
neural networks [54]. The demand for large quantities of high-quality 
training data, often limited and costly to obtain through CFD, under

scores the importance of DF techniques for leveraging multifidelity 
sources. Transfer Learning (TL) is a frequently employed approach in DL 
networks for DF tasks, involving initial training with LF data followed 
by fine-tuning with sparse HF samples to enhance precision [66,32]. 
In Chakraborty study [6], a multifidelity physics-informed deep neu

ral network uses TL to predict reliability analysis outcomes effectively, 
surpassing standalone models, while in Liao et al. approach [33], TL in

tegrates LF and HF data to improve a CNN-based model accuracy for 
aerodynamic optimization.

Despite these advances, many ML-based DF surrogate models still 
lack direct mechanisms for robust uncertainty quantification—a crit

ical aspect for ensuring prediction reliability in many aerospace ap

plications. Although ML-based approaches have shown superior per

formance over traditional methods like CK in capturing data nonlin

earity [17,21,46], they typically do not provide inherent measures of 
how confident they are in their predictions. Bayesian Neural Networks 
(BNNs) address this limitation by incorporating Bayesian inference to es

timate distributions over network weights [58], providing probabilistic 
interpretations of predictions that capture both model and data un

certainties [26]. This is particularly useful in conceptual design and 
optimization workflows. By examining the confidence intervals around 
predicted quantities, it is possible to assess the reliability of these es

timates and identify regions of the flight envelope that require further 
refinement. In addition, these uncertainty bounds play an important role 
in robust optimization, where they help avoid solutions that appear op

timal under a single deterministic prediction, but carry a high risk of 
underperformance when potential variations and modeling inaccuracies 
are considered. Recent research, such as Meng et al. [39] and Sharma 
et al. [52], explores BNNs in multifidelity models, highlighting chal

lenges in computational complexity and data integration mismatches. 
Kerleguer et al. [28] propose a hybrid approach combining Gaussian 
process regression and BNNs to mitigate these challenges, demonstrat

ing promising avenues for integrating diverse data sources effectively. 
Multifidelity frameworks with BNNs have demonstrated robust and re

liable uncertainty estimates for complex problems—even in scenarios 
where HF data are scarce [39,52,28].

The aim of our paper is to develop a ML-based multifidelity sur

rogate model that predicts integrated aerodynamic loads, using exclu

sively BNN layers, and integrating TL for the data fusion process. This 
approach has led to the design of a more straightforward architecture, 
solely based on the DL paradigm, capable of capturing the complex 
nonlinearities of transonic flows. This framework is implemented us

ing open-source code to ensure replicability and accessibility for further 
research and applications.

This paper is structured as follows: Section 2 introduces the con

cepts of Bayesian Neural Networks and Transfer Learning, and presents 
the Multi-Fidelity Bayesian Neural Network with Transfer Learning 
(MF-BayNet) model. Section 3 focuses on the Benchmark Super Criti

cal Wing (BSCW) test case, describing how the transonic aerodynamic 

loads were generated at multiple fidelities and demonstrating that in

tegrating numerous LF samples with a limited number of mid- to high

fidelity CFD points improves both predictive accuracy and uncertainty 
quantification. Section 4 extends the methodology to a more complex 
full–configuration aircraft, highlighting how multifidelity data fusion 
captures complex rotor–wing interactions more effectively than classi

cal surrogate approaches. Finally, Section 5 summarizes the conclusions 
drawn from these studies and outlines avenues for future research.

2. Methodology

This section details the steps involved in creating the surrogate 
model. We implemented a multifidelity framework integrating BNNs 
with TL technique to harness diverse data sources and enhance model 
generalization. The approach includes quantification of uncertainty to 
ensure reliable predictions, along with systematic optimization of model 
hyperparameters for optimal performance. CK model is introduced in or

der to perform a comparative analysis, benchmarking the efficacy of our 
proposed method.

2.1. Bayesian neural networks and variational inference

Bayesian Neural Networks (BNNs) extend standard neural networks 
by incorporating a Bayesian inference to estimate uncertainty in model 
predictions. Instead of learning a single set of weights, BNNs place a 
prior distribution over the network weights 𝜃, denoted by 𝑝(𝜃), which is 
considered a model hyperparameter and is usually randomly initialized. 
Given a training dataset  = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, the objective is to compute the 
posterior distribution of the weights,

𝑝(𝜃 ∣) = 𝑝( ∣ 𝜃) 𝑝(𝜃)
𝑝() 

, (1)

where 𝑝( ∣ 𝜃) =
∏𝑁

𝑖=1 𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝜃) is the likelihood of the data under the 
weights 𝜃, and 𝑝() is the marginal likelihood (or evidence).

For a regression task, the predictive distribution at a new input 𝑥∗
marginalizes out the uncertainty in the weights:

𝑝(𝑦∗ ∣ 𝑥∗,) = ∫ 𝑝(𝑦∗ ∣ 𝑥∗, 𝜃) 𝑝(𝜃 ∣) 𝑑𝜃. (2)

This integral is typically intractable due to the complexity of 𝑝(𝜃 ∣ ). 
Hence, approximate methods such as the Laplace approximation [37], 
Hamiltonian Monte Carlo [42], and other Markov Chain Monte Carlo 
techniques [7] are commonly employed.

Variational Inference (VI) [20] is another popular approach to ap

proximate the true posterior 𝑝(𝜃 ∣) by introducing a simpler variational 
distribution 𝑞(𝜃) and then minimizing the Kullback–Leibler (KL) diver

gence between the two distributions:

KL
(
𝑞(𝜃) ‖ 𝑝(𝜃 ∣)

)
= ∫ 𝑞(𝜃) log

(
𝑞(𝜃) 

𝑝(𝜃 ∣)

)
𝑑𝜃. (3)

Because 𝑝(𝜃 ∣ ) is unknown in closed form, one typically derives an 
equivalent objective known as the Evidence Lower BOund (ELBO). Under 
a regression setting with mean squared error (MSE) as the negative log

likelihood (assuming Gaussian noise), the variational objective can be 
written (up to constants independent of 𝜃) as:

(𝜃) = 
𝑁∑
𝑖=1 

𝔼𝑞(𝜃)

[
(𝑦𝑖 − 𝑓𝜃(𝑥𝑖))2

]
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

MSE

+ KL
(
𝑞(𝜃) ‖ 𝑝(𝜃))

⏟ ⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏟
Regularization 

, (4)

where 𝑝(𝜃) is the prior over the weights. This objective encourages 𝑞(𝜃)
to produce accurate predictions for the training data while remaining 
close to the prior. In practice, the gradient of this loss is estimated via 
stochastic optimization, making it amenable to large-scale problems.

We implement our Bayesian Neural Network framework in PyTorch 
using the torchbnn library, which provides flexible modules for varia
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Fig. 1. Schematic of the MF-BayNet architecture. Yellow and red neurons represent the input and output layers, while the green ones the hidden layers. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

tional layers and inference. For optimization, we employ the ADAptive 
Moment estimation (Adam) optimizer during the backpropagation phase 
to update the variational parameters of 𝑞(𝜃) and thereby approximate 
the posterior distribution effectively.

2.2. MF-BayNet

The core of our methodology revolves around a multifidelity sur

rogate model that combines BNNs with TL, herein referred to as MF

BayNet, which is designed to predict integrated transonic aerodynamic 
loads, specifically lift and pitching moment coefficients, across differ

ent flight conditions. First, the process begins by training a BNN on a 
large dataset of LF data to capture general trends of aerodynamic be

havior over the full design space. Then, the model undergoes TL on 
midfidelity (MF) data where certain layers of the model are frozen, so 
that low-level features remain fixed; then a subset of layers is retrained 
using the MF dataset. This partially corrects LF inaccuracies—especially 
in regions with transonic shocks or mild boundary-layer interactions. Fi

nally, a limited number of the remaining trainable layers are fine-tuned 
using a few expensive HF samples. This final step adds important fine

scale corrections to the network, enabling it to capture strong shocks, 
boundary-layer separations, and other highly nonlinear phenomena.

2.2.1. Transfer learning process

In the context of DF, once the model has captured the basic under

standing of the general behaviors during initial training, the first layers 
of the model are frozen by increasing the fidelity of the training set. 
This means that all frozen neurons have fixed values of weights during 
training, which in the case of BNN are represented by the mean and stan

dard deviation of each probability distribution. After this phase, we get 
a pre-trained network that has gained a basic knowledge of the problem. 
Then, the subset of trainable parameters of the model is retrained on one 
or more small sets of increasingly higher fidelity data. A schematic of 
the architecture is illustrated in Fig. 1.

The TL approach significantly reduces the computational cost and 
time required for training due to the reduced subset of trainable neu

rons, while improving the model ability to make accurate predictions 
using different fidelities and emphasizing the importance of higher fi

delity data. In addition, this method relies only on DL principles, which 
makes it more straightforward and robust compared to other methods. 
Two TL processes were executed: the first on MF data and the second 
on HF data points to fine-tune the model. In the second process, fewer 
layers were frozen compared to the first, allowing for more refined ad

justments. By progressively transferring learned representations from 
one fidelity level to the next, the MF-BayNet framework fully exploits 
large amounts of approximate LF data while carefully incorporating MF 
and HF points to correct errors in the more challenging regions. This 
approach drastically reduces the need for large HF datasets while achiev

ing high accuracy and built-in uncertainty quantification. By restricting 
this last stage of training to a minimal number of layers, or even just 
the output layer, the network retains most of the generalized aerody

namic knowledge acquired from the LF and MF datasets. Consequently, 

Algorithm 1 MF-BayNet Training with Low-, Mid-, and High-Fidelity 
Datasets.

1: Input: Low-Fidelity Dataset 𝐷𝐿𝐹 , Mid-Fidelity Dataset 𝐷𝑀𝐹 , High-Fidelity 
Dataset 𝐷𝐻𝐹 , Initial Model 𝑀

2: Output: Trained Multi-Fidelity Model 𝑀𝑀𝐹−𝐵𝑎𝑦𝑁𝑒𝑡

3: Step 1: Train on Low-Fidelity Data

4: 𝑀 ← Initialize Bayesian Neural Network (BNN)

5: 𝑀𝐿𝐹 ← train(𝑀 , 𝐷𝐿𝐹 ) 
6: Step 2: Transfer Learning to Mid-Fidelity Data

7: freeze(𝑀𝐿𝐹 , 𝑁𝐿𝐹→𝑀𝐹
𝑓𝑟𝑧

)

8: 𝑀𝑀𝐹 ← train(𝑀𝐿𝐹 , 𝐷𝑀𝐹 ) 
9: Step 3: Transfer Learning to High-Fidelity Data

10: freeze(𝑀𝑀𝐹 , 𝑁𝑀𝐹→𝐻𝐹
𝑓𝑟𝑧

)

11: return 𝑀𝑀𝐹−𝐵𝑎𝑦𝑁𝑒𝑡 ← train(𝑀𝑀𝐹 , 𝐷𝐻𝐹 )

the model maintains predictive capabilities even in areas lacking HF 
data, potentially outperforming models trained exclusively on limited 
HF samples. The TL process is explained in Algorithm 1.

2.2.2. Prediction means and confidence interval

Once the TL process is completed, we use Monte Carlo Sampling [3] 
(MCS) to obtain the prediction means and standard deviations from 
the surrogate model, which are used for estimating the uncertainty and 
reliability in predictions. First, multiple forward passes are performed 
through the BNN. Each pass generates a different set of weights due to 
the nondeterministic behavior of the model, effectively creating an en

semble of models. Next, the outputs of these forward passes are averaged 
to obtain the mean prediction. This gives us an estimate of the expected 
value of the prediction. Finally, the standard deviation of the outputs 
from multiple forward passes is calculated to assess the uncertainty in 
the predictions, incorporating both epistemic and aleatoric components. 
The choice of a good number of passes is therefore a trade-off between 
computational efficiency and the accuracy of the uncertainty estima

tion. A higher number of passes leads to a more precise evaluation of 
both the mean prediction and its associated uncertainty, but at the cost 
of increased inference time. In practical applications, an optimal bal

ance must be found based on the specific requirements of the task. For 
example, in scenarios where fast predictions are needed, a lower num

ber of passes may be preferable despite a slight reduction in accuracy, 
whereas in offline analyses, a larger number of passes can be used to 
maximize reliability. To determine the optimal setting, conduct sensi

tivity analyses or compare the uncertainty estimates against reference 
solutions is suggested.

2.2.3. Uncertainty quantification

Uncertainty quantification (UQ) is essential for understanding the re

liability of the model predictions. The MF-BayNet surrogate model pro

vides a probabilistic interpretation of predictions, offering insights into 
both model and data uncertainty. The total uncertainty in the predic

tion, the predictive uncertainty (𝑃𝑢), is defined as the sum of epistemic 
(𝐸𝑢) and aleatoric uncertainty (𝐴𝑢) [5,12,13].



Aerospace Science and Technology 163 (2025) 110301

4

A. Vaiuso, G. Immordino, M. Righi et al. 

𝑃𝑢 =𝐸𝑢 +𝐴𝑢 (5)

Epistemic uncertainty refers to the uncertainty in the model param

eters. This can be visualized as the spread of the posterior weight distri

bution 𝑝(𝑤|𝐷). In ML, this type of uncertainty emerges when the model 
has not encountered data that adequately represents the entire design 
domain, or when the domain itself needs further refinement or com

pletion. This type of uncertainty arises due to deficiencies from a lack 
of knowledge or information [10,47]. In contrast, aleatoric uncertainty 
arises from the inherent variability in the input data. Given a specific 
input and fixed weight parameters, high aleatoric uncertainty indicates 
that the output estimate is subject to noise. This kind of uncertainty 
refers to the intrinsic randomness in the data, which can derive from 
factors such as data collection errors, sensor noise, or noisy labels [47].

This distinction is particularly important in multifidelity modeling 
with TL, where the TL process impacts the aleatoric uncertainty asso

ciated with different fidelity inputs. Only the subset of neurons with 
trainable parameters captures the probabilistic information from these 
inputs, making discrepancies between fidelity levels a significant source 
of aleatoric uncertainty. Although higherfidelity datasets are generally 
more reliable, this is not always clear beforehand, complicating the as

sessment of overall uncertainty during TL. These complexities make it 
challenging to fully isolate aleatoric uncertainty, as some degree of epis

temic uncertainty remains intertwined with it. In the first part of the 
results presented in this study, the uncertainty primarily reflects epis

temic contributions from the model itself. In contrast, the second part 
specifically examines aleatoric uncertainty, though a complete separa

tion between the two remains difficult due to their inherent interactions 
in the multifidelity TL process.

2.3. Model optimization

Choosing the right hyperparameters of the network is a complex 
task. This requires a deep understanding of the model architecture and 
the specific characteristics of the data at different fidelity levels in or

der to create a good hyperparameter optimization process. We imple

mented a Bayesian optimization [55] strategy to obtain the best set of 
hyperparameters for each model. Bayesian optimization strength lies 
in its iterative approach to fine-tuning hyperparameters using Bayesian 
probability distributions, rather than exhaustively testing every possi

ble combination. Each iteration involves training the network with a 
defined set of hyperparameters and optimizing them based on past tri
als performance with respect to the validation set metric. This cycle 
repeats until the optimal outcome is attained.

The design parameters targeted for the optimization process include 
the number of units per layer (𝑁𝑢𝑛𝑖𝑡𝑠), the total number of layers in the 
model (𝑁𝑙𝑎𝑦𝑒𝑟𝑠), activation functions, optimization function, batch size, 
number of epochs, and the learning rate for each training phase. After 
the 𝑖 − 𝑡ℎ TL phase, the model needs to be retrained with a different 
learning rate value (𝑙𝑟𝑖). Other parameters include the prior distribu

tion (initial probability distribution for each weight), determined by the 
mean (𝜇𝑝𝑟𝑖𝑜𝑟) and variance (𝜎𝑝𝑟𝑖𝑜𝑟) values of a Gaussian function, and the 
number of layers to freeze during TL (𝑁𝑓𝑟𝑧). The last step is a critical 
task, as freezing too many layers might prevent the model from adapting 
to the new, higherfidelity data, while freezing too few layers can lead 
to excessive retraining and potentially overfitting. The design space for 
all hyperparameters, including the possible values and step size for each 
variable, is presented in Table 1. A total number of 300 trials per model 
tested has been executed, with an average time per trial of 3 minutes. 
The dataset was divided into 70% for training and 30% for validation.

During each trial of the optimization process, the model parameters, 
which are represented by the mean and variance values of the proba

bility distributions of each neuron in the BNN model, along with bias 
values of the activation functions, are optimized based on the Mean Ab

solute Error (MAE) on the validation set.

Table 1
Hyperparameters design space in Bayesian optimization.

Hyperparameter Value Step size 
𝑁𝑙𝑎𝑦𝑒𝑟𝑠 3 to 6 1 
𝑁𝑢𝑛𝑖𝑡𝑠 16 to 176 16 
𝑙𝑟𝑖 1 ⋅ 10−4 to 1 ⋅ 10−1 5 ⋅ 10−3
𝜇𝑝𝑟𝑖𝑜𝑟 -1.5 to 1.5 5 ⋅ 10−2
𝜎𝑝𝑟𝑖𝑜𝑟 1 ⋅ 10−4 to 1 ⋅ 10−2 5 ⋅ 10−4
𝑁𝑓𝑟𝑧 1 to (𝑁𝑙𝑎𝑦𝑒𝑟𝑠 − 1) 1 
Activation 𝑓 ReLU, PReLU, LeakyReLU -- 

2.4. Co-Kriging

Co-Kriging (CK) is a traditional approach for integrating low- and 
highfidelity simulation data and serves as a benchmark in this study. 
Following the methodology outlined in Da Ronch et al. [9], the CK func

tion, denoted as 𝜂̂, is first computed from LF evaluations and applied at 
HF sample points. The input parameters at these HF locations, 𝑥𝑖 , are 
then expanded to include the CK-estimated LF values, forming the aug

mented vector 𝑥𝑎𝑢𝑔
𝑖

= [𝑥𝑖, 𝜂̂(𝑥𝑖)]. This expanded dataset enables a refined 
CK function, 𝜂̂(𝑥𝑎𝑢𝑔

𝑖
), to enhance correlation modeling between fidelity 

levels.

To implement this, the CK model was initially trained on the MF 
dataset, augmented with LF data interpolated via a singlefidelity 
Bayesian neural network (introduced in Section 3). Once the CK model 
converged, it was used as a surrogate to further interpolate MF points 
onto the HF dataset. This process was iterated once more, generating 
an augmented HF dataset that incorporated all three fidelity levels, 
ultimately yielding a Gaussian process-based model capable of multi

fidelity predictions.

2.5. Performance metrics

The error metrics 𝜀𝜇 [%], 𝜀𝜎 [%], and 𝜀𝑡𝑜𝑡 [%] are computed to eval

uate the performance of the models predictions on test cases for each 
output variable. The Percentage Error on Mean Prediction (𝜀𝜇𝑖

[%]) is de

rived by calculating the MAE between prediction means 𝜇̃𝑦 calculated on 
MCS, and ground truth values 𝑦, normalized by the output label range, 
thus Range𝑖 = |max(𝑖) − min(𝑖)| where 𝑖 represents the vector of 
values on dataset column 𝑖:

𝜀𝜇𝑖
[%] =

(MAE(𝑦, 𝜇̃𝑦)
Range𝑖

)
× 100. (6)

The Percentage Error on Standard Deviation (𝜀𝜎𝑖 [%]) measures the model 
uncertainty in its predictions (lower is better). The predicted standard 
deviations 𝜎̃𝑦 calculated on MCS are averaged and then normalized by 
the range of the corresponding output label:

𝜀𝜎𝑖 [%] =
( avg(𝜎̃𝑦)
Range𝑖

)
× 100. (7)

The Total Percentage Error (𝜀𝑡𝑜𝑡 [%]) provides an aggregated measure 
of the overall prediction error across all output labels. This metric is 
computed as the root mean square of the individual 𝜀𝜇 [%] values, given 
by:

𝜀𝑡𝑜𝑡[%] =

√√√√1
𝑛 

𝑛 ∑
𝑖=1 

(
𝜀𝜇𝑖

[%]
)2

, (8)

where 𝑛 is the number of output labels.

3. Finite wing test case

This section outlines the application of the MF-BayNet surrogate 
model for predicting aerodynamic loads on the Benchmark Super Criti

cal Wing (BSCW) by leveraging a combination of low-, mid-, and high

fidelity datasets. The identified input parameters include angle of attack 
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Fig. 2. Impression of BSCW highfidelity grid. 

(AoA) and Mach number, which characterize the influence of the tran

sonic flow regime on the aerodynamic performance. Lift coefficient (𝐶𝐿) 
and pitching moment coefficient (𝐶𝑀 ) represent the two outputs to pre

dict. To evaluate the effectiveness of the MF-BayNet approach, multiple 
models were developed, optimized, and compared. Three singlefidelity 
BNN models were trained to evaluate the impact of TL technique. Each 
model was individually optimized to minimize the MAE on its respective 
validation dataset, simulating the development of models using one fi

delity source at a time. Additionally, the same optimized LF-BNN model 
was used to provide LF interpolated samples to expand MF dataset for 
the CK. Finally, the MF-BayNet surrogate model was trained using the 
TL framework that sequentially incorporated LF, MF, and HF datasets 
on subset of layers. The number of layers frozen from the left for each 
TL phase is also defined as a hyperparameter and optimized. The opti

mized hyperparameters for all models used in this test case are reported 
in Appendix B.1.

3.1. Multifidelity datasets

The BSCW, featured in the AIAA Aeroelastic Prediction Work

shop [24], is a transonic, rigid, semi-span wing with a rectangular 
planform and a supercritical airfoil shape, specifically the NASA SC(2)

0414 profile. The wing is elastically suspended on a flexible mount 
system with two degrees of freedom, pitch and plunge. However, in our 
case study, we focus solely on the wing itself, excluding the pitch-plunge 
system. The BSCW exhibits complex aerodynamic phenomena such as 
shock wave motion, shock-induced boundary-layer separation, and in

teractions between shock waves and detached boundary layers. These 
nonlinearities present significant challenges for model predictions. The 
BSCW configuration and geometry make it an ideal test case for gen

erating low-, mid-, and highfidelity aerodynamic data using various 
techniques. An impression of the half-span BSCW is shown in Fig. 2.

The datasets include a large number of LF samples and a limited num

ber of mid- and highfidelity samples. LF data come from panel method, 
providing quick but approximate solutions. Mid- and highfidelity data, 
derived from CFD simulations with different number of grid points, of

fer detailed and accurate results but are computationally expensive. This 
hierarchical arrangement of fidelity levels is a key to our multifidelity 
approach, providing both broad aerodynamic coverage and targeted 
refinement where nonlinear effects become significant. In particular, 
at relatively low AoA and Mach numbers, the aerodynamic response 
remains weakly nonlinear, with Mach exhibiting a stronger influence 
on the loads than AoA. As both parameters increase, nonlinear phe

nomena become more significant - shock waves form on the wing and 
boundary-layer separation occur, leading to pronounced changes in lift 
and pitching moment. In particular, stall onset is observed at relatively 
low AoA under transonic conditions, highlighting the strong coupling 
between Mach and AoA in this regime. For this study, AoA ranges from 

Table 2
Summary of datasets used for training the MF-BayNet surro

gate model.

Fidelity Level Number of Samples Simulation Approach 
Low 625 Panel Method 
Mid 49 RANS - Coarse Grid 
High 7 RANS - Fine Grid 

0 to 4 deg and Mach from 0.70 to 0.84 (see Fig. 3(a)). By combining 
these multifidelity datasets, the MF-BayNet surrogate model is trained 
and fine-tuned to capture the full spectrum of aerodynamic behaviors 
relevant to the BSCW.

Fig. 3(b) also highlights differences in aerodynamic coefficient pre

dictions from each fidelity level, emphasizing the necessity for a model 
capable of effectively distinguishing and emphasizing the key features 
of each fidelity. The aerodynamic coefficients were calculated using a 
reference chord length of 0.4064 m, with 𝐶𝑀 determined relative to 
30% of the chord. Table 2 provides a summary of the datasets used for 
training the MF-BayNet surrogate model.

3.1.1. Lowfidelity

LF data were generated using XFoil, a popular tool for the design 
and analysis of subsonic airfoils which employs a combination of in

viscid panel methods with a boundary layer analysis, allowing it to 
rapidly generate aerodynamic data. For this study, the BSCW wing pro

file was used. To create a comprehensive dataset, 25 points equally 
distributed along each parameter of the design space were used, result

ing in a total of 625 samples. This extensive dataset offers a broad base 
of quick, approximate aerodynamic solutions. The XFoil-generated data 
were corrected applying the equations from Helmbold [25] to account 
for three-dimensional effects, thereby improving the accuracy for the 
low-aspect-ratio straight BSCW configuration. These corrections ensure 
that the LF data better represent the actual aerodynamic behavior of 
the wing in three-dimensional flow conditions, making the dataset more 
valuable for the multifidelity model training.

3.1.2. Midfidelity

MF data were obtained from RANS simulations using SU2 v7.5.1 soft

ware [16] with a relatively coarse grid of 2.5 ⋅ 106 elements. The grid is 
a hybrid type, with structured elements on the wing surface and in the 
first layers of the boundary layer, while voxel elements were used for the 
rest of the computational domain. The domain itself extends 100 chord 
lengths from the solid wall to the farfield. The Grid Convergence Index 
(GCI) for this coarse grid was calculated to be approximately 5.4%, indi

cating a moderate level of discretization error. The RANS equations were 
closed using the one-equation Spalart-Allmaras turbulence model. Con

vergence was monitored using the Cauchy method applied to the lift co

efficient, with a variation threshold of 10−7 across the last 100 iterations. 
A 1𝑣 multigrid scheme was adopted to accelerate convergence. Con

vective flow discretization utilized the Jameson-Schmidt-Turkel central 
scheme with artificial dissipation, and flow variable gradients were com

puted using the Green Gauss method. The biconjugate gradient stabiliza

tion linear solver with an ILU preconditioner was selected. The samples 
were distributed to refine the highly nonlinear regions, particularly at 
high combinations of 𝐴𝑜𝐴 and Mach number. This strategic sampling 
ensures that the MF data provide enhanced resolution in critical areas, 
capturing the complex aerodynamic interactions more effectively. A to

tal of 49 samples were generated, capturing viscosity and transonic flow 
effects better than LF data and at a lower computational cost than HF 
simulations, but still with moderate discretization errors.

3.1.3. Highfidelity

HF dataset was previously generated [27], incurring no further com

putational cost. It consists of 58 RANS simulations with a fine grid 
comprising 15.6 ⋅ 106 elements. The GCI for this fine grid is around 
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Fig. 3. Design variable distribution (AoA-Mach) and aerodynamic coefficient predictions for each fidelity level for the finite wing test case. 

0.6%, indicating a very low discretization error and that the solution 
is nearly grid-independent. These HF simulations provide the most de

tailed resolution of transonic nonlinear features and the most accurate 
aerodynamic load predictions, serving as a benchmark for validating 
the MF-BayNet surrogate model. However, they are an order of magni

tude more expensive than MF and millions of times more than LF. For 
fine-tuning, 7 simulations were identified as the minimum number of 
samples necessary to characterize the discrepancies between mid- and 
highfidelity predictions, represented as red dots in Fig. 3. These sam

ples were not selected arbitrarily; instead, they were deliberately chosen 
to ensure coverage of the most critical flow conditions, emphasizing 
regions where transonic shock formation, boundary-layer separation, 
and other nonlinear effects become more pronounced. This targeted 
selection captures the most challenging flow regimes with the fewest 
simulations, thereby minimizing the cost of HF runs while preserving 
accuracy. This selection was informed by the authors’ prior knowledge 
of the relevant aerodynamic phenomena [27]. The remaining samples 
were used as a test set to validate the model, demonstrating that with a 
minimum number of simulations for fine-tuning, the model can achieve 
a relatively low error on the entire HF dataset.

3.1.4. Discussion

The inherent nonlinearity of aerodynamic behavior, particularly in 
the transonic regime, is a significant challenge when developing surro

gate models. Fig. 3 provides a clear illustration of how the aerodynamic 
coefficients, 𝐶𝐿 and 𝐶𝑀 , vary nonlinearly across the M-AoA design 
space. The LF data, generated through XFoil, shows a more linear re

sponse, failing to capture the abrupt changes and complex phenomena 
like shock-wave formation and boundary-layer separation that occur at 
higher Mach numbers and AoA. This limitation necessitates the incor

poration of higherfidelity data to correct for these deficiencies. The MF 
RANS simulations, with their ability to better resolve the flow nonlinear 
characteristics, particularly near the critical Mach number, offer a sig

nificant improvement. However, it is the HF data that most accurately 
captures the sharp gradients and nonlinearities essential for predicting 
aerodynamic loads in the transonic regime. These differences across fi

delity levels underscore the importance of a multifidelity approach. 
By integrating data from different fidelities, the MF-BayNet surrogate 

Table 3
Number of samples used for training, validation, and testing across 
the three fidelity levels for the finite wing test case. HF test samples 
(51 in total) are used exclusively for final evaluation and are not 
included in training or validation.

Fidelity Level Train Samples Validation Samples Test Samples 
Low 437 188 -

Mid 33 15 -

High 5 2 51 

model more effectively captures and predicts the complex nonlinear dy

namics of transonic aerodynamics.

3.2. Results

Here, the performance of the MF-BayNet surrogate model, three 
singlefidelity dataset and the CK method are evaluated by comparing 
their predictions of aerodynamic coefficients against an independent 
HF test dataset made of 51 CFD samples, which was excluded from 
both the HF model training and multifidelity training. Specifically, each 
singlefidelity dataset was partitioned into 70% for training and 30% for 
validation. The same partitioning was used to train MF-BayNet during 
TL process. Dataset sizes are shown in Table 3. Further, the MF-BayNet 
surrogate model uncertainty estimates are compared to CK method, 
highlighting its superior ability to capture and quantify prediction un

certainty. Results also include comparisons with BNNs trained on each 
dataset individually without TL, with model architectures optimized.

3.2.1. Comparison of models performance

Table 4 compares the performance of MF-BayNet with CK in pre

dicting 𝐶𝐿 and 𝐶𝑀 . It also includes the results of the network trained 
individually on each dataset without utilizing TL, as well as results from 
the MF-BayNet framework where LF samples were excluded from train

ing. For the latter, the model was first trained on MF samples and then 
TL was applied to fine-tune the model on HF samples. All results are 
averaged over a k-fold validation with a k value of 5.

The results demonstrate that MF-BayNet significantly outperforms 
all other models for both 𝐶𝐿 and 𝐶𝑀 . Specifically, MF-BayNet achieves 
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Fig. 4. Comparison of MF-BayNet and CK predictions for 𝐶𝐿 and 𝐶𝑀 at two Mach numbers (𝑀 = 0.74, left panel; 𝑀 = 0.82, right panel) across varying AoA for the 
finite wing test case. Points from different fidelity datasets have been interpolated for 2D plot visualization.

Table 4
Performance metrics in percentage [%] for different models for the 
finite wing test case. Errors are calculated on HF test set.

Model Name 𝜀𝜇𝐶𝐿
𝜀𝜎𝐶𝐿

𝜀𝜇𝐶𝑀
𝜀𝜎𝐶𝑀

𝜀𝑡𝑜𝑡

BNN LF 14.43 1.59 42.02 1.41 31.42 
BNN MF 12.63 6.88 7.73 4.92 10.47 
BNN HF 15.29 9.00 5.62 5.96 11.52

CK 7.53 2.98 7.70 9.46 7.61 
MF-BayNet (MF+HF) 5.81 6.95 6.48 4.44 6.15 
MF-BayNet (LF+MF+HF) 4.24 1.37 5.50 0.71 4.91 

a 𝜀𝜇𝐶𝐿
of 4.2% and a 𝜀𝜇𝐶𝑀

of 5.5%, which are approximately half of 
those obtained with CK, which has errors of 7.5% and 7.7% for 𝐶𝐿 and 
𝐶𝑀 respectively. Moreover, the standard deviations errors (𝜀𝜎𝐶𝐿

and 
𝜀𝜎𝐶𝑀

) for MF-BayNet are also lower, indicating more consistent and 
reliable predictions. The BNN models, whether trained on LF, MF or 
HF datasets, show higher prediction errors and standard deviations, re

inforcing the efficacy of the TL and fine-tuning processes utilized by 
MF-BayNet. Finally, these results confirm the added value of combin

ing datasets across all fidelity levels; removing LF samples from the 
MF-BayNet training slightly increased prediction errors, indicating that 
lower fidelity data still contribute information that enhances general

ization capability.

To better illustrate model performance, Figs. 4 show predictions of 
𝐶𝐿 and 𝐶𝑀 at different Mach numbers. The left panels present predic

tions at 𝑀 = 0.74, while the right panels show predictions at 𝑀 = 0.82. 
For 𝐶𝐿 predictions, the MF-BayNet surrogate model (orange line) closely 
follows the HF dataset (red dots), effectively leveraging knowledge ac

quired through transfer learning and fine-tuning. The MF-BayNet pre

dictions exhibit narrow confidence intervals (brown shaded regions), 
indicating high predictive certainty. In contrast, the CK model (dark 
green line) struggles to capture the correct trend, especially at higher 
AoA and Mach numbers, and shows significantly larger confidence inter

vals (green shaded regions, particularly noticeable in the right panels). 
The nonlinear nature of the aerodynamic behavior is particularly evi

dent at 𝑀 = 0.82, where the 𝐶𝐿 curve shows significant nonlinearity, 
especially at higher angles of attack. This nonlinearity arises from the 
formation of shock waves on the wing surface, which induce abrupt 
changes in the pressure distribution, leading to sharp variations in 𝐶𝐿. 

The MF-BayNet surrogate model successfully captures these complex 
behaviors, unlike the CK model, which struggles more in representing 
these nonlinear effects. Similarly, the 𝐶𝑀 predictions reveal pronounced 
nonlinear trends as the aerodynamic center shifts due to interactions 
between shock waves and the boundary layer. These interactions com

plicate the aerodynamic response, causing rapid changes in 𝐶𝑀 . The 
MF-BayNet surrogate model ability to closely match the HF data, along 
with its narrower confidence intervals, highlights its strength in mod

eling these challenging nonlinear phenomena. Similar considerations 
apply to Fig. 5, where the predictions of 𝐶𝐿 and 𝐶𝑀 are shown with 
fixed AoA values and varying Mach. It can be seen that the CK model oc

casionally produces predictions closer to the HF data points, but still fails 
to capture the more complex trends indicated by the MF and HF datasets. 
Instead, it continues to align more closely with the lower fidelity dataset 
trend. Examination of both figures reveals that the observed nonlin

earities arise from the combined influence of Mach number and AoA 
variations, with the MF Baynet providing good accuracy over the entire 
parameter space, under both small and large nonlinearity ranges.

In summary, the singlefidelity model trained on LF data failed to 
capture the nonlinear transonic aerodynamics due to the oversimplified 
nature of the underlying data. Including MF data improved predictions 
by resolving more complex flow features, though discretization errors 
still constrained generalization. The HF-only model achieved low accu

racy and poor extrapolation due to the limited number of samples. In 
contrast, the proposed multifidelity framework, which integrates LF, 
MF, and HF data through TL, achieved superior accuracy and gener

alization, outperforming both singlefidelity models and CK. While CK 
benefited from combining data sources, it underperformed in highly 
nonlinear regions and provided less reliable uncertainty estimates.

3.2.2. Midfidelity dataset size impact

Since MF data strikes a good balance - being significantly less compu

tationally expensive than HF data, yet providing much richer informa

tion compared to LF data - we investigated the impact of MF sampling on 
model performance. To perform this sensitivity analysis, we first gener

ated a denser set of MF points. The original sample consisted of 49 points 
arranged in a 7 × 7 grid, while the newly generated points formed a 
denser 13×13 grid of 169 points. Model performance was evaluated in

crementally as the dataset size increased, using 5-fold cross-validation, 
with each fold divided into 70% training and 30% testing subsets.
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Fig. 5. Comparison of MF-BayNet and CK predictions for 𝐶𝐿 and 𝐶𝑀 at two AoA values (𝐴𝑜𝐴= 1.0 deg, left panel; 𝐴𝑜𝐴 = 3.0 deg, right panel) across varying Mach 
numbers for the finite wing test case. Points from different fidelity datasets have been interpolated for 2D plot visualization.

Fig. 6. Influence of MF training set size on model performance for the finite 
wing test case.

In general, increasing the number of MF samples leads to a reduc

tion in prediction error. This behavior is expected, as more MF points 
allow the model to better capture the underlying physics. However, as 
shown in Fig. 6, the improvement quickly reaches a saturation point 
where further increases yield minimal or no additional benefit, reflect

ing the inherent limitations of the simplified representation provided 
by MF data compared to HF data. In our analysis, performance gains 
become negligible after approximately 50 MF samples.

3.2.3. Aleatoric uncertainty quantification

To assess the impact of aleatoric uncertainty on the predictions, we 
re-trained the baseline version of our MF-BayNet model—termed the 
“Vanilla MF-BayNet''—by systematically adding noise to each fidelity 
dataset separately. The training dataset was augmented following an 
augmentation factor value (AF) from 20% to 80%, by adding Gaussian 
noise with a standard deviation from 2% to 10% of the mean output 
label value, applied to either 𝐶𝐿 (Fig. 7) or 𝐶𝑀 (Fig. 8).

Results show that 𝜀𝜇 generally decreases with increasing noise when 
added to LF and HF datasets for 𝐶𝐿, whereas the MF datasets exhibit 
an increasing trend in mean error. In contrast, for 𝐶𝑀 , the mean error 
increases with noise in both LF and MF datasets, but adding noise to 
HF datasets tends to reduce the mean error, especially as AF increases. 
Across both 𝐶𝐿 and 𝐶𝑀 , 𝜀𝜎 remains low and stable, indicating that noise 

primarily impacts the mean error rather than the variability of model 
predictions.

As the AF increases in MF datasets, the impact of noise on the mean 
error becomes more pronounced, while higher AF generally show de

creased mean errors in HF datasets. This behavior can be explained by 
considering the robustness of HF data to noise and the sensitivity of MF 
data. HF datasets contain more accurate and detailed information, mak

ing the model less sensitive to noise and, in some cases, benefiting from 
noise through regularization, which improves the model generalization 
and reduces the mean error [2]. Adding noise to MF datasets results in a 
significant increase in mean error. This higher sensitivity to noise is due 
to the moderate levels of accuracy and detail in MF datasets, which are 
significantly degraded by the introduction of noise. The balance between 
the inherent detail and the added noise disrupts the model learning pro

cess, leading to increased errors. LF datasets, already less accurate and 
detailed, exhibit a mixed response to noise. In some cases, the noise fur

ther degrades data quality, increasing the mean error, while in others, 
it has minimal impact or even aids the model by introducing beneficial 
variability.

The relatively minor changes in the standard deviation of errors, 
despite varying noise levels, suggest that the model overall prediction 
uncertainty remains stable. This indicates that while noise impacts the 
accuracy (mean error) of predictions, it does not significantly affect the 
model confidence in its predictions. These observations underscore the 
importance of understanding and mitigating aleatoric uncertainty to im

prove predictive modeling performance, particularly by leveraging the 
robustness of HF data and addressing the sensitivity of MF data.

We also studied the effect of aleatoric uncertainty on model predic

tions when adding Gaussian noise to the entire LF dataset (𝐴𝐹 = 100%) 
(refer to Fig. 9). The noise standard deviation ranged from 2% to 10%, 
applied independently to the coefficients 𝐶𝐿 and 𝐶𝑀 . The graph de

picts how the introduction of this noise influences the error associated 
with these coefficients separately. It is evident that as the noise stan

dard deviation increases, the error in the predictions also increases. This 
trend is consistent for both 𝐶𝐿 and 𝐶𝑀 . This indicates that the predic

tive capability of the model is increasingly compromised as more noise 
is introduced. However, the standard deviation remains relatively sta

ble for both coefficients, suggesting that while accuracy decreases, the 
consistency of the model predictions does not fluctuate significantly.
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Fig. 7. Impact of aleatoric uncertainty on the model predictions, in terms of error on the standard deviation and mean value of the 𝐶𝐿. Training dataset augmented 
from 20% to 80% by adding Gaussian noise to the 𝐶𝐿 of each dataset separately with a standard deviation ranging from 2% to 10%.

Fig. 8. Impact of aleatoric uncertainty on the model predictions, in terms of error on the standard deviation and mean value of the 𝐶𝑀 . Training dataset augmented 
from 20% to 80% by adding Gaussian noise to the 𝐶𝑀 of each dataset separately with a standard deviation ranging from 2% to 10%.

This behavior can be explained by the structure of our MF-BayNet 
surrogate model. Adding noise to the entire LF dataset increases the ini

tial errors, which propagate through the subsequent training stages. The 
model learns from this noisier data initially, which degrades its base

line understanding and leads to higher errors that carry over even after 
TL processes. Moreover, the stable standard deviation suggests that the 
noise primarily affects the bias (mean error) rather than the variance 
of the predictions. This indicates that while the model accuracy de

creases due to systematic errors introduced by the noise, its confidence 
in the consistency of predictions remains unaffected. Therefore, enhanc

ing data quality or employing robust modeling techniques to mitigate 
the impact of noise can lead to better accuracy without compromising 
prediction consistency.

4. Full–configuration test case

This section presents a five-propeller electric vertical takeoff and 
landing (eVTOL) test case that illustrates the critical aerodynamic chal

lenges associated with rotor-wing interactions in a real scenario. The 
test case combines two different fidelity datasets and it is inspired by 
the modeling exercise carried out by the authors in the EASA funded 
project MODEL-SI [15]. The vehicle under consideration has four lon

gitudinally symmetric lift propellers mounted forward and aft of the 
wing, and one pusher propeller mounted at the tail for forward flight. 
Thanks to this configuration, the drone can switch between a so-called 
“helicopter mode'' and an ``airplane mode'' depending on the use of the 
propellers. The fuselage is 4 m long, while the wingspan is 6 m with 
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Fig. 9. Effect of aleatoric uncertainty on model predictions: Gaussian noise, with 
a standard deviation ranging from 2% to 10%, was independently added to the 
𝐶𝐿 and 𝐶𝑀 of the entire LF dataset.

Fig. 10. Impression of eVTOL configuration. 

a mean chord of 1 m of the NACA0012 profile. An impression of the 
configuration can be obtained from Fig. 10.

The primary aerodynamic challenge is the complex interaction be

tween the propellers, wing, and fuselage. Forward propellers generate 
rotor wakes that flow over the wing and impinge directly on the aft 
propellers, significantly altering the local flowfield. This perturbation 
changes the lift distribution, adds extra wing loading, and increases 
drag. Also, the rear propellers suffer a decrease in thrust when oper

ating in the wake of the front rotors for the same power input, resulting 
in spatially varying performance that is difficult to predict with lower 
fidelity methods alone. Once the wing itself generates lift, its nearfield 
flow curvature affects the inflow conditions of the forward rotors. De

pending on how far forward of the wing the propellers are located, the 
swirling flow can reduce rotor efficiency if the incoming flow is distorted 
or partially blocked. These phenomena occur over a wide flight enve

lope, from vertical takeoff and forward flight to the transition between 
helicopter and airplane mode, making the problem highly nonlinear.

To capture the most important physical parameters that affect the 
rotor-wing aerodynamics of the eVTOL vehicle, the inputs include AoA, 
freestream velocity 𝑈∞, and rotational speeds of five propellers: pusher 
(PP), front right (FR), front left (FL), rear right (RR), and rear left 
(RL). The multifidelity framework predicts two outputs for each of 
the five propellers: thrust coefficient (𝐾𝑇 ) and torque coefficient (𝐾𝑄). 
Specifically, the model produces 𝐾𝑇PP

,𝐾𝑄PP
for the pusher propeller 

and 𝐾𝑇FR
,𝐾𝑄FR

, 𝐾𝑇FL
,𝐾𝑄FL

,𝐾𝑇RR
,𝐾𝑄RR

, 𝐾𝑇RL
,𝐾𝑄RL

for the four lift pro

pellers.

The MF-BayNet surrogate model was trained using the TL frame

work, sequentially incorporating LF and MF datasets. The optimized 
hyperparameters used in this test case are reported in Appendix B.2.

Table 5
Summary of datasets used for training the MF-BayNet surro

gate model.

Fidelity Level Number of Samples Simulation Approach 
Low 2,000 BEM 
Mid 250 VPM 

4.1. Multifidelity datasets

The strongly coupled and nonlinear flow physics in this eVTOL 
configuration provide another representative test case for the surro

gate aerodynamic model presented. Although HF simulations (e.g., 
RANS-based CFD) can offer greater accuracy, they become prohibitively 
expensive—and often difficult to converge—when exploring wide flight 
envelopes. Indeed, in this study, fully converged CFD data could not 
be generated due to excessive computational costs. By contrast, lower

fidelity simulations are more affordable yet struggle to capture the pro

nounced rotor–wing interactions and wake impingement effects. Con

sequently, a multifidelity approach provides a more balanced solution: 
it integrates fast, lowerfidelity analyses with higher-order corrections 
from MF data, ensuring that complex flow interactions are accurately 
captured without incurring prohibitive computing time.

To generate samples, we covered a wide range of operating condi

tions: AoA varies from -180 to 180 deg, 𝑈∞ from 0 to 40 m∕s, and each 
propeller rotational speed up to ±4000 RPM, depending on its position 
and direction of rotation. These ranges were chosen based on aerody

namic and flight mechanics considerations to ensure that the dataset 
covers realistic maneuvers and bounds of the flight envelope.

Latin Hypercube Sampling (LHS) strategy was used to generate the 
LF dataset, resulting in approximately 2000 data points covering the 
broad ranges described above. These LF points were derived from an an

alytical aerodynamic function, allowing efficient data generation over a 
wide parameter space. In contrast, a limited set of MF samples were ob

tained from more accurate but computationally expensive simulations, 
resulting in 250 points distributed like in Fig. 11. This smaller MF set 
refines and corrects the trends observed in the LF data. Table 5 schemat

ically illustrates how both LF and MF data form the training dataset.

4.1.1. Lowfidelity

The LF aerodynamic model is inspired to the work by Davoudi [11] 
in which Momentum Theory and Blade Element Method (BEM) are ex

ploited to assess induced velocity and thrust generated by a moving 
rotor. Momentum theory provides a global analysis of flow through an 
actuator disk, deriving thrust and power relationships from force and 
flow balances. BEM refines this approach by discretizing the rotor blade 
into spanwise segments, each analyzed independently using 2D sectional 
aerodynamics. These models are most commonly used for aeroacoustic 
studies [43] to develop flight mechanics models of drones, capturing 
variations in AoA, chord, and twist along the blade span at low com

putational cost. In essence, the induced velocity model is inspired by 
Peter’s model [44] and represents a simple yet sufficiently accurate ap

proach for most engineering applications, providing a valuable starting 
point for rapid iterative analysis in preliminary design.

4.1.2. Midfidelity

For the MF aerodynamic simulations, we employed the DUST 
framework [59]. It is designed to analyze the aerodynamics of non

conventional aircraft configurations at a level of detail that bridges low-

and highfidelity approaches by implementing a Vortex Particle Method 
(VPM). Compared to purely potential-based tools or blade-element 
methods, DUST offers superior accuracy in capturing three-dimensional 
effects while remaining considerably less expensive than full RANS

based simulations. In the model setup, care was taken to model rotors 
and propeller blades with the accurate chord and twist distributions. 
The results shown in this paper were obtained with the option called 
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Fig. 11. Histograms of LF and MF datasets distribution across the design space. 𝐾𝑇 and 𝐾𝑄 values are flatten for all propellers PP, FR, FL, RR, RL. 

Table 6
Number of samples used for training, validation, and testing across 
the two fidelity levels for the full–configuration test case.

Fidelity Level Train Samples Validation Samples Test Samples 
Low 1,400 600 -

Mid 605 130 130 

“nonlinear lifting line'' in the user manual [50]. We selected between 30 
and 40 lifting lines per blade, the aerodynamic coefficients were given 
by look-up tables obtained from CFD for a number of blade sections. 
The maximum number of vortex particles was set to 100 million. The 
wing surface is discretized using approximately 3,000 panels for each 
side.

4.2. Results

The eVTOL test case presents a more challenging aerodynamic sce

nario than the finite wing test case, due to strong rotor-rotor and rotor

wing interactions. Such interactions introduce significant nonlinearities, 
wake impingement effects, and asymmetric flowfields, thereby increas

ing the difficulty of accurately capturing the physics across the design 
space. Consequently, this test case provides a high-dimensional bench

mark for evaluating the generalizability of DF models.

Following the previous test case approach, the dataset is partitioned 
into training, validation, and test sets as detailed in Table 6. The MF test 
set, which is completely excluded from the training process, is used to 
compare the prediction accuracy of both MF-BayNet and CK. The com

parison focuses on both mean prediction error and uncertainty quan

tification performance, with particular attention to the ability of each 
model to capture the variability introduced by complex aerodynamic 
couplings.

Table 7 shows the results for 𝐾𝑇 and 𝐾𝑄 for the two different 
models. For 𝐾𝑇 , the two models have comparable performance (3.9% 
vs. 2.9%), indicating that both methods adequately capture the basic 
rotor thrust variations under different flight conditions. However, for 
𝐾𝑄, MF-BayNet achieves a lower average error (3.1%) compared to CK 
(∼5%). The torque coefficient is more sensitive to local flow features 
(e.g., rotor wake distortion or wing-propeller flow interference), and 
MF-BayNet’s TL structure appears to be better able to leverage the MF 
data to capture these interaction effects.

Fig. 12 illustrates how the two DF approaches predict the 𝐾𝑇 and 
𝐾𝑄 values of the pusher propeller (PP) under ``airplane mode'' condi

Table 7
Averaged thrust and torque coefficients per

centage errors [%] for different models for the 
full–configuration test case. Errors are calcu

lated respect to MF test set.

Model Name 𝜀𝐾𝑇
𝜀𝐾𝑄

𝜀𝑡𝑜𝑡 𝜎𝑡𝑜𝑡

CK 3.93 4.98 4.50 0.26 
MF-BayNet 2.99 3.12 3.06 0.87 

tions, namely at 𝐴𝑜𝐴 = −5.0 deg, 𝑈∞ = 10 m/s, with the lift propellers 
off (0 RPM). Compared to CK, MF-BayNet follows the reference data 
more accurately, especially at medium to high RPM values, and cap

tures the shift in aerodynamic behavior. In contrast, the CK prediction 
deviates significantly from the MF samples at higher speeds, reflecting 
a less effective DF for strong nonlinear rotor-propeller interactions. This 
highlights the benefit of the MF-BayNet framework, which better ex

ploits the MF data to refine and correct the predictions in challenging 
flow regimes.

5. Conclusions

We developed a multifidelity framework using Bayesian neural net

works and transfer learning (MF-BayNet) to enhance the accuracy of 
aerodynamic load prediction in the transonic regime over a three

dimensional wing and to reduce the required HF sample for training the 
surrogate model. Our primary objective was to leverage the strengths of 
BNNs, notably their ability to quantify uncertainty, alongside the effi

ciency and robustness of TL to improve predictive performance across 
datasets of different accuracy. The resulting surrogate model effectively 
integrates data of varying fidelities, harnessing the strengths of each 
fidelity level to produce superior predictive performance and robust un

certainty quantification.

The results obtained on two different test cases–a transonic wing and 
a full–configuration eVTOL vehicle–demonstrate that the MF-BayNet 
surrogate model not only surpasses traditional models trained on single

fidelity datasets but also outperforms CK method in predicting inte

grated aerodynamic loads. These results demonstrate the effectiveness 
of our hybrid approach in achieving superior accuracy and reliability, 
especially in complex aerodynamic scenarios where nonlinearity plays 
a critical role.

Our study also revealed that the impact of aleatoric uncertainty 
on model predictions varies significantly with the fidelity level of the 
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Fig. 12. Comparison of MF-BayNet and CK predictions in Airplane Mode for 𝐾𝑇 and 𝐾𝑄 using (𝐴𝑜𝐴 = −5.0 deg, 𝑈∞ = 10 m/s, and all the lift propellers set to 0 
RPM) across varying RPM values for the pusher propeller (PP) in the full–configuration test case. Points from different fidelity datasets have been interpolated for 
2D plot visualization.

datasets to which noise is added. Adding noise generally increases the 
mean error with noisy MF datasets while often decreasing the mean 
error with noisy HF datasets, particularly as the augmentation factor in

creases. Noisy LF datasets show a mixed response, with slight increases 
or decreases in mean error. The standard deviation of the error remains 
relatively stable across different noise levels, indicating that noise pri

marily affects the accuracy of predictions rather than the variability. 
These findings highlight the robustness of HF data to noise and the sensi

tivity of MF data, suggesting that while noise can regularize and improve 
model performance with HF data, it can degrade performance with MF 
data.

Additionally, we observed that adding noise to the entire LF dataset 
increases the initial errors, which propagates through the subsequent 
training stages, degrading overall accuracy. This is because the model, 
which first trains on the LF data, carries forward these systematic errors 
introduced by the noise even after TL processes. Consequently, while the 
mean error rises due to these systematic errors, the prediction consis

tency, as indicated by the stable standard deviation, remains unaffected. 
Therefore, understanding and addressing these subtleties is extremely 
important for enhancing predictive performance and mitigating the ef

fects of aleatoric uncertainty.

Future work will explore the application of this framework to other 
relevant scenarios, in order to highlight the versatility and robustness 
of the model. The incorporation of more diverse and complex datasets 
will be a key focus to challenge and refine model performance. We plan 
to explore advanced data fusion techniques, including multifidelity 
Monte Carlo and Deep Gaussian Processes, to evaluate and compare the 
strengths and limitations of the MF-BayNet framework across various 
test cases.

The open-source implementation of the framework enables the re

search community to access, modify, and build upon our work, driving 
further advancements in the framework and wider applicability.1
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Table A.8

CPU hours for different simulation runs for the dataset cre

ation process of the finite wing test case.

Dataset Run time 
(Full dataset) (1 run) 

Panel Method (LF) 0.3475 (625 runs) 0.00056 
RANS - Coarse Grid (MF) 2,352 (49 runs) 48 
RANS - Fine Grid (HF) 29,000 (58 runs) 500 
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Appendix A. Computational cost analysis

A.1. Finite wing test case

Tables A.8 and A.9 provide a comparative analysis of the computa

tional costs associated with dataset creation and model performance.

Table A.8 highlights the substantial disparity in computational effort 
required across different fidelity levels. The HF dataset requires approx

imately 500 CPU hours per sample, making it over 10 times more expen

sive than the MF dataset and nearly a million times more computation

ally intensive than the LF dataset. This underscores the impracticality 
of relying exclusively on HF simulations for aerodynamic load predic

tions, reinforcing the necessity of multifidelity modeling. By integrating 
lowerfidelity data, the MF-BayNet framework effectively mitigates the 
reliance on computationally expensive HF simulations while maintain

ing a high level of predictive accuracy.

Table A.9 presents the GPU hours required for training and predic

tion across different models using an NVIDIA Quadro P2000 GPU, with 
execution times averaged over one dataset fold and results calculated 
using 5-fold cross-validation (k=5). For singlefidelity datasets, the av

erage training times were approximately 41 minutes for the LF model, 

https://github.com/andrea-vaiuso/MF-Baynet
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Table A.9

GPU hours for training and prediction 
costs for the proposed models for the 
finite wing test case.

Model Training Prediction 
BNN LF 0.68 7.0e-6 
BNN MF 0.58 7.0e-6 
BNN HF 0.08 7.0e-6 
MF-BayNet 0.97 7.0e-6 
CK 0.08 1.4e-6 

Table A.10

CPU hours for different simulation runs for 
the dataset creation process of the full--

configuration test case.

Dataset Run time 
(Full dataset) (1 run) 

BEM (LF) 0.2 (2000 runs) 0.0001 
DUST (MF) 7,800 (60 runs) 130 

Table A.11

GPU hours for training and prediction 
costs for the proposed models for the 
full–configuration test case.

Model Training Prediction 
MF-BayNet 1 7.7e-6 
CK 0.08 1.4e-6 

35 minutes for the MF model, and less than 5 minutes for the HF model. 
The MF-BayNet required approximately 58 minutes for training. In com

parison, CK took about 5 minutes to fit from LF data using HF points as 
an additional feature to perform CK. Prediction times across all BNN 
models were consistent, averaging around 0.025 seconds to compute 
both mean and standard deviation values through MCS with 100 predic

tions. Conversely, the CK model demonstrated faster prediction times, 
requiring only about 0.005 seconds to generate mean and standard de

viation predictions due to the simpler architecture and structure.

A.2. Full–configuration test case

In Table A.10 we report the total CPU hours required to generate the 
LF and MF datasets for the eVTOL test case. As shown, the analytic func

tion (LF) approach is extremely efficient, requiring only 0.2 CPU hours 
for the entire dataset of 2000 runs (i.e., 0.0001 CPU hours per run). In 
contrast, the DUST (MF) simulations, while providing higher accuracy 
due to a more sophisticated modeling of the rotor-wing interaction, are 
significantly more expensive, amounting to 130 CPU hours per run or a 
total of 7,800 CPU hours for 60 runs.

Table A.11 shows the GPU hours required for training and prediction 
for different models using the same procedure as for the previous test 
case. MF-BayNet required approximately 60 minutes for training, while 
CK completed training in about 5 minutes. For prediction, MF-BayNet 
consistently took around 0.025 seconds per sample using MCS with 100 
forward passes, whereas CK required only about 0.005 seconds.

Appendix B. Optimized network architectures

B.1. Finite wing test case

This section outlines the architecture used for the finite wing test case 
after the Bayesian hyperparameter optimization. The design parameters 
for the optimization are chosen accordingly to the multifidelity frame

work, and are described in Section 2.3. The final model is composed 

Table B.12

Optimized hyperparameters of the Low-Fidelity (LF), Mid-Fidelity (MF), 
High-Fidelity (HF) BNN models, and the Transfer Learning (TL) MF

BayNet models for the finite wing test case.

Model Hyperparameter Best value 
LF BNN 𝑁𝑙𝑎𝑦𝑒𝑟𝑠 6 

𝑁𝑢𝑛𝑖𝑡𝑠 [176, 176, 144, 176, 176] + [2] output 
𝑙𝑟 0.0016 
𝜇𝑝𝑟𝑖𝑜𝑟 0 
𝜎𝑝𝑟𝑖𝑜𝑟 0.0126

MF BNN 𝑁𝑙𝑎𝑦𝑒𝑟𝑠 3 
𝑁𝑢𝑛𝑖𝑡𝑠 [160, 80] + [2] output 
𝑙𝑟 0.0014 
𝜇𝑝𝑟𝑖𝑜𝑟 0 
𝜎𝑝𝑟𝑖𝑜𝑟 0.0526

HF BNN 𝑁𝑙𝑎𝑦𝑒𝑟𝑠 4 
𝑁𝑢𝑛𝑖𝑡𝑠 [128, 160, 176] + [2] output 
𝑙𝑟 0.0014 
𝜇𝑝𝑟𝑖𝑜𝑟 0 
𝜎𝑝𝑟𝑖𝑜𝑟 0.0596

MF-BayNet 
(MF+HF) 

𝑁𝑙𝑎𝑦𝑒𝑟𝑠 3 
𝑁𝑢𝑛𝑖𝑡𝑠 [160, 80] + [2] output 
𝑙𝑟(𝑀𝐹 →𝐻𝐹 ) 0.001 
𝜇𝑝𝑟𝑖𝑜𝑟 0 
𝜎𝑝𝑟𝑖𝑜𝑟 0.0526 
𝑁𝑓𝑟𝑧 (MF → HF) 2

MF-BayNet 
(LF+MF+HF) 

𝑁𝑙𝑎𝑦𝑒𝑟𝑠 6 
𝑁𝑢𝑛𝑖𝑡𝑠 [176, 176, 144, 176, 176] + [2] output 
𝑙𝑟(𝐿𝐹 ) 0.0016 
𝑙𝑟(𝐿𝐹 →𝑀𝐹 ) 0.001 
𝑙𝑟(𝑀𝐹 →𝐻𝐹 ) 0.001 
𝜇𝑝𝑟𝑖𝑜𝑟 0 
𝜎𝑝𝑟𝑖𝑜𝑟 0.0126 
𝑁𝑓𝑟𝑧 (LF → MF) 3 
𝑁𝑓𝑟𝑧 (MF → HF) 5 

by 114,194 trainable weights for the pre-trained model with LF sam

ples, 57,026 trainable weights for the pre-trained model with the first 
TL phase using MF samples, and 354 trainable weights during the last 
TL phase using HF samples. The model needed about 55 minutes to con

verge on an NVIDIA Quadro P2000 using a TL approach with specific 
training settings. For the first TL phase with MF samples, the model 
was trained using a batch size of 32 and a learning rate of 0.001. The 
maximum number of epochs was set to 8000, setting an early stopping 
criterion with a patience of 500. During the final TL phase with HF sam

ples, the batch size was reduced to 1 to better capture HF details. This 
training followed a similar structure, with a maximum of 8000 epochs 
and an early stopping patience of 500. However, only one layer was un

frozen for fine-tuning, ensuring that the model retained the knowledge 
learned in previous stages while adapting to the HF dataset. The opti

mized hyperparameters for the four models developed are summarized 
in Table B.12.

B.2. Full–configuration test case

This section outlines the architecture used for the full–configuration 
test case after the Bayesian hyperparameter optimization. The overall 
procedure closely follows what was done for the finite wing test case 
described in Appendix B.1, with the main difference being the larger 
number of layers and trainable weights required to capture the increased 
complexity of the full–configuration problem.

As summarized in Table B.13, the final network architecture for the 
full–configuration test case consists of six layers, for a total of 174,932 
trainable weights. The model is first trained on the LF dataset using a 
batch size of 32, a learning rate of 0.0016, a maximum of 5000 epochs, 
and an early stopping criterion with a patience of 300. Subsequently, the 
model transitions to the MF dataset through TL. In this phase, three out 
of the six layers are kept frozen, while the remaining layers are fine--
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Table B.13

Optimized hyperparameters of the MF-BayNet model for the full--

configuration test case.

Model Hyperparameter Best value 
MF-BayNet 𝑁𝑙𝑎𝑦𝑒𝑟𝑠 6 

𝑁𝑢𝑛𝑖𝑡𝑠 [224, 144, 160, 112, 96] + [10] output 
𝑙𝑟(𝐿𝐹 →𝑀𝐹 ) 0.0081 
𝜇𝑝𝑟𝑖𝑜𝑟 0 
𝜎𝑝𝑟𝑖𝑜𝑟 0.0351 
𝑁𝑓𝑟𝑧(𝐿𝐹 →𝑀𝐹 ) 3 

tuned with a batch size of 16, a learning rate of 0.0081, a maximum 
of 8000 epochs, and an early stopping patience of 500. Freezing part 
of the model ensures that knowledge gathered from the LF training is 
preserved, while the unfrozen layers adapt to the higherfidelity data.

Data availability

Data will be made available on request.
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