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ARTICLE INFO ABSTRACT

Communicated by Mehdi Ghoreyshi Multi-fidelity surrogate models are of particular interest in aerospace applications, as they combine the
computational efficiency of low-fidelity simulations with the accuracy of high-fidelity models. This methodology,
often implemented via data fusion, aims to reduce the cost of data generation while preserving predictive
accuracy. Despite the widespread use of traditional machine learning techniques to improve surrogates and
perform data fusion tasks, there remains a need for novel approaches that further improve predictive reliability—
particularly in terms of uncertainty quantification—without substantially increasing the computational cost
of generating high-fidelity training samples. In this study, we propose a Bayesian neural network framework
designed for multi-fidelity prediction of transonic aerodynamic data, employing transfer learning to integrate
computational fluid dynamics data of varying fidelities. The probabilistic nature of the model allows also
quantification of the uncertainty in the input space, making it well suited for analyzing the inherently complex
and nonlinear behavior of the transonic aerodynamic responses under investigation. Our results demonstrate
that the proposed multi-fidelity Bayesian model outperforms classical data fusion Co-Kriging method, both in
accuracy and generalization capabilities on unseen data.

1. Introduction

In aerospace engineering, the accurate prediction of aerodynamic
loads is extremely important for the design and optimization of aircraft.
In particular, the transonic regime is characterized by complex flow
phenomena, such as shock wave formation and boundary-layer sepa-
ration, which introduce significant nonlinearities into the aerodynamic
behavior of aircraft components. These nonlinearities pose challenges
for traditional modeling techniques, which often struggle to balance ac-
curacy with computational efficiency.

To address these challenges, there is increasing interest in combin-
ing data from models of different fidelities. By leveraging the strengths
of both low- and high-fidelity models, this approach enhances predic-
tive accuracy while reducing computational costs, making it valuable
not only for aerodynamic load estimation but also for applications in
aeroelasticity, flight dynamics, and so forth [64,18,1,62].

In general, low-fidelity (LF) models are employed to calculate phys-
ical quantities of interest in complex systems with a cost-effective ap-
proach in situations where rapid assessments are required [8,4,57]. This
is achieved through the identification of the key physical phenomena,

the application of simplifying assumptions to reduce degrees of free-
dom, and the use of basic mathematical models or empirical data to ap-
proximate the behavior of the system [36,29,60,40,38]. These models,
such as simplified vortex approaches [51,63] and reduced-order meth-
ods [36,30,31,14], provide essential aerodynamic characteristics with-
out incurring the significant computational demands of high-fidelity
(HF) Computational Fluid Dynamics (CFD) simulations [48]. However,
these LF models often struggle to achieve sufficient accuracy when pre-
dicting regions of the flight envelope that exhibit a highly nonlinear
behavior [17,65].

To bridge this gap, a valid approach is represented by Data Fusion
(DF) techniques, which aim to leverage the strengths of models based on
different fidelities to create a multi-fidelity surrogate model [23,49]. A
common DF approach involves combining a data-driven model based on
LF samples with a small number of HF points, with the goal of improving
the overall prediction accuracy without incurring the prohibitive costs of
fully HF studies [41,34,45,61]. This approach is particularly beneficial
when the generation of HF data at specific physical conditions is com-
putationally prohibitive, yet LF and inexpensive models are available.
A traditional and widely used DF technique, Co-Kriging (CK), utilizes

* Corresponding author at: Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.

E-mail address: G.Immordino@soton.ac.uk (G. Immordino).

https://doi.org/10.1016/j.ast.2025.110301

Received 3 February 2025; Received in revised form 29 April 2025; Accepted 4 May 2025

Available online 9 May 2025
1270-9638/© 2025 The Author(s).
(http://creativecommons.org/licenses/by/4.0/).

Published by Elsevier Masson SAS. This is an open access article under the CC BY license


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://orcid.org/0009-0001-0048-8072
http://orcid.org/0000-0003-2718-0120
http://orcid.org/0000-0001-7428-6935
mailto:G.Immordino@soton.ac.uk
https://doi.org/10.1016/j.ast.2025.110301
https://doi.org/10.1016/j.ast.2025.110301
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2025.110301&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Vaiuso, G. Immordino, M. Righi et al.

Gaussian Process to correct LF predictions using correlations between
different fidelity levels, thereby improving precision and quantifying
uncertainty effectively [35,45]. Forrester et al. [19] demonstrated CK
capability in multi-fidelity wing optimization, highlighting its utility in
integrating diverse data sources. This method is still prevalent in recent
aerodynamic studies and airfoil optimizations [9,22,35]. Other recent
popular strategies include Recursive Cokriging [61], extended hierar-
chical Kriging [45], and multi-fidelity Gaussian processes [41], which
have been applied to a wide range of aerospace problems such as high-
pressure compressor rotors, eVTOL aircraft, and the NASA Common
Research Model in transonic conditions.

The integration of machine learning (ML) has significantly advanced
the DF field, offering rapid and accurate predictions despite the costs
associated with the initial training, particularly with Deep Learning
(DL) [53,56] and more novel and emergent solutions such as graph
neural networks [54]. The demand for large quantities of high-quality
training data, often limited and costly to obtain through CFD, under-
scores the importance of DF techniques for leveraging multi-fidelity
sources. Transfer Learning (TL) is a frequently employed approach in DL
networks for DF tasks, involving initial training with LF data followed
by fine-tuning with sparse HF samples to enhance precision [66,32].
In Chakraborty study [6], a multi-fidelity physics-informed deep neu-
ral network uses TL to predict reliability analysis outcomes effectively,
surpassing standalone models, while in Liao et al. approach [33], TL in-
tegrates LF and HF data to improve a CNN-based model accuracy for
aerodynamic optimization.

Despite these advances, many ML-based DF surrogate models still
lack direct mechanisms for robust uncertainty quantification—a crit-
ical aspect for ensuring prediction reliability in many aerospace ap-
plications. Although ML-based approaches have shown superior per-
formance over traditional methods like CK in capturing data nonlin-
earity [17,21,46], they typically do not provide inherent measures of
how confident they are in their predictions. Bayesian Neural Networks
(BNNSs) address this limitation by incorporating Bayesian inference to es-
timate distributions over network weights [58], providing probabilistic
interpretations of predictions that capture both model and data un-
certainties [26]. This is particularly useful in conceptual design and
optimization workflows. By examining the confidence intervals around
predicted quantities, it is possible to assess the reliability of these es-
timates and identify regions of the flight envelope that require further
refinement. In addition, these uncertainty bounds play an important role
in robust optimization, where they help avoid solutions that appear op-
timal under a single deterministic prediction, but carry a high risk of
underperformance when potential variations and modeling inaccuracies
are considered. Recent research, such as Meng et al. [39] and Sharma
et al. [52], explores BNNs in multi-fidelity models, highlighting chal-
lenges in computational complexity and data integration mismatches.
Kerleguer et al. [28] propose a hybrid approach combining Gaussian
process regression and BNNs to mitigate these challenges, demonstrat-
ing promising avenues for integrating diverse data sources effectively.
Multi-fidelity frameworks with BNNs have demonstrated robust and re-
liable uncertainty estimates for complex problems—even in scenarios
where HF data are scarce [39,52,28].

The aim of our paper is to develop a ML-based multi-fidelity sur-
rogate model that predicts integrated aerodynamic loads, using exclu-
sively BNN layers, and integrating TL for the data fusion process. This
approach has led to the design of a more straightforward architecture,
solely based on the DL paradigm, capable of capturing the complex
nonlinearities of transonic flows. This framework is implemented us-
ing open-source code to ensure replicability and accessibility for further
research and applications.

This paper is structured as follows: Section 2 introduces the con-
cepts of Bayesian Neural Networks and Transfer Learning, and presents
the Multi-Fidelity Bayesian Neural Network with Transfer Learning
(MF-BayNet) model. Section 3 focuses on the Benchmark Super Criti-
cal Wing (BSCW) test case, describing how the transonic aerodynamic
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loads were generated at multiple fidelities and demonstrating that in-
tegrating numerous LF samples with a limited number of mid- to high-
fidelity CFD points improves both predictive accuracy and uncertainty
quantification. Section 4 extends the methodology to a more complex
full-configuration aircraft, highlighting how multi-fidelity data fusion
captures complex rotor-wing interactions more effectively than classi-
cal surrogate approaches. Finally, Section 5 summarizes the conclusions
drawn from these studies and outlines avenues for future research.

2. Methodology

This section details the steps involved in creating the surrogate
model. We implemented a multi-fidelity framework integrating BNNs
with TL technique to harness diverse data sources and enhance model
generalization. The approach includes quantification of uncertainty to
ensure reliable predictions, along with systematic optimization of model
hyperparameters for optimal performance. CK model is introduced in or-
der to perform a comparative analysis, benchmarking the efficacy of our
proposed method.

2.1. Bayesian neural networks and variational inference

Bayesian Neural Networks (BNNs) extend standard neural networks
by incorporating a Bayesian inference to estimate uncertainty in model
predictions. Instead of learning a single set of weights, BNNs place a
prior distribution over the network weights 0, denoted by p(0), which is
considered a model hyperparameter and is usually randomly initialized.
Given a training dataset D = {(x;, ;) }iﬁ L the objective is to compute the
posterior distribution of the weights,
20| Dy = PP1OO) -

p(D)
where p(D | 6) = Hﬁ L P 1 x;,0) is the likelihood of the data under the
weights 6, and p(D) is the marginal likelihood (or evidence).

For a regression task, the predictive distribution at a new input x*
marginalizes out the uncertainty in the weights:

p(* | x*,D) = /p(y* | x*,6) p(6 | D) db. (2

This integral is typically intractable due to the complexity of p(@ | D).
Hence, approximate methods such as the Laplace approximation [37],
Hamiltonian Monte Carlo [42], and other Markov Chain Monte Carlo
techniques [7] are commonly employed.

Variational Inference (VI) [20] is another popular approach to ap-
proximate the true posterior p(@ | D) by introducing a simpler variational
distribution ¢(#) and then minimizing the Kullback-Leibler (KL) diver-
gence between the two distributions:

q(0)
0] D)) 40- ®

Because p(@ | D) is unknown in closed form, one typically derives an
equivalent objective known as the Evidence Lower BOund (ELBO). Under
a regression setting with mean squared error (MSE) as the negative log-
likelihood (assuming Gaussian noise), the variational objective can be
written (up to constants independent of 6) as:

KL(¢(0) | p(0 | D)) = / 4(0) log<

N
£O) = Y Eyy| 01 = FoGe)?| + KLa(®) 11 p0)). @
i=1 ————
~ Regularization
Lyse

where p(6) is the prior over the weights. This objective encourages ¢(0)
to produce accurate predictions for the training data while remaining
close to the prior. In practice, the gradient of this loss is estimated via
stochastic optimization, making it amenable to large-scale problems.
We implement our Bayesian Neural Network framework in PyTorch
using the torchbnn library, which provides flexible modules for varia-
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Fig. 1. Schematic of the MF-BayNet architecture. Yellow and red neurons represent the input and output layers, while the green ones the hidden layers. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

tional layers and inference. For optimization, we employ the ADAptive
Moment estimation (Adam) optimizer during the backpropagation phase
to update the variational parameters of ¢q(f) and thereby approximate
the posterior distribution effectively.

2.2. MF-BayNet

The core of our methodology revolves around a multi-fidelity sur-
rogate model that combines BNNs with TL, herein referred to as MF-
BayNet, which is designed to predict integrated transonic aerodynamic
loads, specifically lift and pitching moment coefficients, across differ-
ent flight conditions. First, the process begins by training a BNN on a
large dataset of LF data to capture general trends of aerodynamic be-
havior over the full design space. Then, the model undergoes TL on
mid-fidelity (MF) data where certain layers of the model are frozen, so
that low-level features remain fixed; then a subset of layers is retrained
using the MF dataset. This partially corrects LF inaccuracies—especially
in regions with transonic shocks or mild boundary-layer interactions. Fi-
nally, a limited number of the remaining trainable layers are fine-tuned
using a few expensive HF samples. This final step adds important fine-
scale corrections to the network, enabling it to capture strong shocks,
boundary-layer separations, and other highly nonlinear phenomena.

2.2.1. Transfer learning process

In the context of DF, once the model has captured the basic under-
standing of the general behaviors during initial training, the first layers
of the model are frozen by increasing the fidelity of the training set.
This means that all frozen neurons have fixed values of weights during
training, which in the case of BNN are represented by the mean and stan-
dard deviation of each probability distribution. After this phase, we get
a pre-trained network that has gained a basic knowledge of the problem.
Then, the subset of trainable parameters of the model is retrained on one
or more small sets of increasingly higher fidelity data. A schematic of
the architecture is illustrated in Fig. 1.

The TL approach significantly reduces the computational cost and
time required for training due to the reduced subset of trainable neu-
rons, while improving the model ability to make accurate predictions
using different fidelities and emphasizing the importance of higher fi-
delity data. In addition, this method relies only on DL principles, which
makes it more straightforward and robust compared to other methods.
Two TL processes were executed: the first on MF data and the second
on HF data points to fine-tune the model. In the second process, fewer
layers were frozen compared to the first, allowing for more refined ad-
justments. By progressively transferring learned representations from
one fidelity level to the next, the MF-BayNet framework fully exploits
large amounts of approximate LF data while carefully incorporating MF
and HF points to correct errors in the more challenging regions. This
approach drastically reduces the need for large HF datasets while achiev-
ing high accuracy and built-in uncertainty quantification. By restricting
this last stage of training to a minimal number of layers, or even just
the output layer, the network retains most of the generalized aerody-
namic knowledge acquired from the LF and MF datasets. Consequently,

Algorithm 1 MF-BayNet Training with Low-, Mid-, and High-Fidelity
Datasets.
1: Input: Low-Fidelity Dataset D, ;, Mid-Fidelity Dataset D,,, High-Fidelity
Dataset Dy, Initial Model M
: Output: Trained Multi-Fidelity Model M y; p_p,yner

: Step 1: Train on Low-Fidelity Data
: M « Initialize Bayesian Neural Network (BNN)
: M, p < train(M, D, )

: Step 2: Transfer Learning to Mid-Fidelity Data
: freeze(M;, NfL7MT)
t My p < train(M; , Dyp)

: Step 3: Transfer Learning to High-Fidelity Data
: freeze(M y, p, NMF=HE)

frz
sreturn My p_poone < train(My, g, Dy p)

—_ e

the model maintains predictive capabilities even in areas lacking HF
data, potentially outperforming models trained exclusively on limited
HF samples. The TL process is explained in Algorithm 1.

2.2.2. Prediction means and confidence interval

Once the TL process is completed, we use Monte Carlo Sampling [3]
(MCS) to obtain the prediction means and standard deviations from
the surrogate model, which are used for estimating the uncertainty and
reliability in predictions. First, multiple forward passes are performed
through the BNN. Each pass generates a different set of weights due to
the nondeterministic behavior of the model, effectively creating an en-
semble of models. Next, the outputs of these forward passes are averaged
to obtain the mean prediction. This gives us an estimate of the expected
value of the prediction. Finally, the standard deviation of the outputs
from multiple forward passes is calculated to assess the uncertainty in
the predictions, incorporating both epistemic and aleatoric components.
The choice of a good number of passes is therefore a trade-off between
computational efficiency and the accuracy of the uncertainty estima-
tion. A higher number of passes leads to a more precise evaluation of
both the mean prediction and its associated uncertainty, but at the cost
of increased inference time. In practical applications, an optimal bal-
ance must be found based on the specific requirements of the task. For
example, in scenarios where fast predictions are needed, a lower num-
ber of passes may be preferable despite a slight reduction in accuracy,
whereas in offline analyses, a larger number of passes can be used to
maximize reliability. To determine the optimal setting, conduct sensi-
tivity analyses or compare the uncertainty estimates against reference
solutions is suggested.

2.2.3. Uncertainty quantification

Uncertainty quantification (UQ) is essential for understanding the re-
liability of the model predictions. The MF-BayNet surrogate model pro-
vides a probabilistic interpretation of predictions, offering insights into
both model and data uncertainty. The total uncertainty in the predic-
tion, the predictive uncertainty (P,), is defined as the sum of epistemic
(E,) and aleatoric uncertainty (4,) [5,12,13].
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Epistemic uncertainty refers to the uncertainty in the model param-
eters. This can be visualized as the spread of the posterior weight distri-
bution p(w| D). In ML, this type of uncertainty emerges when the model
has not encountered data that adequately represents the entire design
domain, or when the domain itself needs further refinement or com-
pletion. This type of uncertainty arises due to deficiencies from a lack
of knowledge or information [10,47]. In contrast, aleatoric uncertainty
arises from the inherent variability in the input data. Given a specific
input and fixed weight parameters, high aleatoric uncertainty indicates
that the output estimate is subject to noise. This kind of uncertainty
refers to the intrinsic randomness in the data, which can derive from
factors such as data collection errors, sensor noise, or noisy labels [47].

This distinction is particularly important in multi-fidelity modeling
with TL, where the TL process impacts the aleatoric uncertainty asso-
ciated with different fidelity inputs. Only the subset of neurons with
trainable parameters captures the probabilistic information from these
inputs, making discrepancies between fidelity levels a significant source
of aleatoric uncertainty. Although higher-fidelity datasets are generally
more reliable, this is not always clear beforehand, complicating the as-
sessment of overall uncertainty during TL. These complexities make it
challenging to fully isolate aleatoric uncertainty, as some degree of epis-
temic uncertainty remains intertwined with it. In the first part of the
results presented in this study, the uncertainty primarily reflects epis-
temic contributions from the model itself. In contrast, the second part
specifically examines aleatoric uncertainty, though a complete separa-
tion between the two remains difficult due to their inherent interactions
in the multi-fidelity TL process.

2.3. Model optimization

Choosing the right hyperparameters of the network is a complex
task. This requires a deep understanding of the model architecture and
the specific characteristics of the data at different fidelity levels in or-
der to create a good hyperparameter optimization process. We imple-
mented a Bayesian optimization [55] strategy to obtain the best set of
hyperparameters for each model. Bayesian optimization strength lies
in its iterative approach to fine-tuning hyperparameters using Bayesian
probability distributions, rather than exhaustively testing every possi-
ble combination. Each iteration involves training the network with a
defined set of hyperparameters and optimizing them based on past tri-
als performance with respect to the validation set metric. This cycle
repeats until the optimal outcome is attained.

The design parameters targeted for the optimization process include
the number of units per layer (N,,,;,), the total number of layers in the
model (Ny,y,,,), activation functions, optimization function, batch size,
number of epochs, and the learning rate for each training phase. After
the i — th TL phase, the model needs to be retrained with a different
learning rate value (/r;). Other parameters include the prior distribu-
tion (initial probability distribution for each weight), determined by the
mean (4,,,;,.) and variance (c,,,,;,.) values of a Gaussian function, and the
number of layers to freeze during TL (N ). The last step is a critical
task, as freezing too many layers might prevent the model from adapting
to the new, higher-fidelity data, while freezing too few layers can lead
to excessive retraining and potentially overfitting. The design space for
all hyperparameters, including the possible values and step size for each
variable, is presented in Table 1. A total number of 300 trials per model
tested has been executed, with an average time per trial of 3 minutes.
The dataset was divided into 70% for training and 30% for validation.

During each trial of the optimization process, the model parameters,
which are represented by the mean and variance values of the proba-
bility distributions of each neuron in the BNN model, along with bias
values of the activation functions, are optimized based on the Mean Ab-
solute Error (MAE) on the validation set.
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Table 1

Hyperparameters design space in Bayesian optimization.
Hyperparameter Value Step size
Niayers 3t06 1
Noits 16 to 176 16
Ir; 1-10%to1-107! 5-1073
Hprior -15t0 1.5 5.1072
G prior 1-10* to 11072 5.107
Ny, 1to (Njgyers — 1) 1

Activation f ReLU, PReLU, LeakyReLU

2.4. Co-Kriging

Co-Kriging (CK) is a traditional approach for integrating low- and
high-fidelity simulation data and serves as a benchmark in this study.
Following the methodology outlined in Da Ronch et al. [9], the CK func-
tion, denoted as #, is first computed from LF evaluations and applied at
HF sample points. The input parameters at these HF locations, x;, are
then expanded to include the CK-estimated LF values, forming the aug-
mented vector x;“® = [x;, 4(x;)]. This expanded dataset enables a refined
CK function, A(x{*®), to enhance correlation modeling between fidelity
levels.

To implement this, the CK model was initially trained on the MF
dataset, augmented with LF data interpolated via a single-fidelity
Bayesian neural network (introduced in Section 3). Once the CK model
converged, it was used as a surrogate to further interpolate MF points
onto the HF dataset. This process was iterated once more, generating
an augmented HF dataset that incorporated all three fidelity levels,
ultimately yielding a Gaussian process-based model capable of multi-
fidelity predictions.

2.5. Performance metrics

The error metrics u [%], €, [%], and ¢,,, [%] are computed to eval-
uate the performance of the models predictions on test cases for each
output variable. The Percentage Error on Mean Prediction (& i [%]) is de-
rived by calculating the MAE between prediction means /i, calculated on
MCS, and ground truth values y, normalized by the output label range,
thus Range; = |max(D;) — min(D;)| where D; represents the vector of
values on dataset column i:

MAE(y, ji
e, [%] = MAEG: Ay) % 100. (6)
# Range;

The Percentage Error on Standard Deviation (561_ [%]) measures the model
uncertainty in its predictions (lower is better). The predicted standard
deviations 6, calculated on MCS are averaged and then normalized by

y
the range of the corresponding output label:
avg(s,)
%] = % 100. 7
€5,1%] (Ran ei )

The Total Percentage Error (g,, [%]) provides an aggregated measure
of the overall prediction error across all output labels. This metric is
computed as the root mean square of the individual £,, [%] values, given
by:

€l %] = (8)

where # is the number of output labels.
3. Finite wing test case

This section outlines the application of the MF-BayNet surrogate
model for predicting aerodynamic loads on the Benchmark Super Criti-
cal Wing (BSCW) by leveraging a combination of low-, mid-, and high-
fidelity datasets. The identified input parameters include angle of attack
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Fig. 2. Impression of BSCW high-fidelity grid.

(AoA) and Mach number, which characterize the influence of the tran-
sonic flow regime on the aerodynamic performance. Lift coefficient (C; )
and pitching moment coefficient (C,,) represent the two outputs to pre-
dict. To evaluate the effectiveness of the MF-BayNet approach, multiple
models were developed, optimized, and compared. Three single-fidelity
BNN models were trained to evaluate the impact of TL technique. Each
model was individually optimized to minimize the MAE on its respective
validation dataset, simulating the development of models using one fi-
delity source at a time. Additionally, the same optimized LF-BNN model
was used to provide LF interpolated samples to expand MF dataset for
the CK. Finally, the MF-BayNet surrogate model was trained using the
TL framework that sequentially incorporated LF, MF, and HF datasets
on subset of layers. The number of layers frozen from the left for each
TL phase is also defined as a hyperparameter and optimized. The opti-
mized hyperparameters for all models used in this test case are reported
in Appendix B.1.

3.1. Multi-fidelity datasets

The BSCW, featured in the AIAA Aeroelastic Prediction Work-
shop [24], is a transonic, rigid, semi-span wing with a rectangular
planform and a supercritical airfoil shape, specifically the NASA SC(2)-
0414 profile. The wing is elastically suspended on a flexible mount
system with two degrees of freedom, pitch and plunge. However, in our
case study, we focus solely on the wing itself, excluding the pitch-plunge
system. The BSCW exhibits complex aerodynamic phenomena such as
shock wave motion, shock-induced boundary-layer separation, and in-
teractions between shock waves and detached boundary layers. These
nonlinearities present significant challenges for model predictions. The
BSCW configuration and geometry make it an ideal test case for gen-
erating low-, mid-, and high-fidelity aerodynamic data using various
techniques. An impression of the half-span BSCW is shown in Fig. 2.

The datasets include a large number of LF samples and a limited num-
ber of mid- and high-fidelity samples. LF data come from panel method,
providing quick but approximate solutions. Mid- and high-fidelity data,
derived from CFD simulations with different number of grid points, of-
fer detailed and accurate results but are computationally expensive. This
hierarchical arrangement of fidelity levels is a key to our multi-fidelity
approach, providing both broad aerodynamic coverage and targeted
refinement where nonlinear effects become significant. In particular,
at relatively low AoA and Mach numbers, the aerodynamic response
remains weakly nonlinear, with Mach exhibiting a stronger influence
on the loads than AoA. As both parameters increase, nonlinear phe-
nomena become more significant - shock waves form on the wing and
boundary-layer separation occur, leading to pronounced changes in lift
and pitching moment. In particular, stall onset is observed at relatively
low AoA under transonic conditions, highlighting the strong coupling
between Mach and AoA in this regime. For this study, AoA ranges from
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Table 2
Summary of datasets used for training the MF-BayNet surro-
gate model.
Fidelity Level ~ Number of Samples  Simulation Approach
Low 625 Panel Method
Mid 49 RANS - Coarse Grid
High 7 RANS - Fine Grid

0 to 4 deg and Mach from 0.70 to 0.84 (see Fig. 3(a)). By combining
these multi-fidelity datasets, the MF-BayNet surrogate model is trained
and fine-tuned to capture the full spectrum of aerodynamic behaviors
relevant to the BSCW.

Fig. 3(b) also highlights differences in aerodynamic coefficient pre-
dictions from each fidelity level, emphasizing the necessity for a model
capable of effectively distinguishing and emphasizing the key features
of each fidelity. The aerodynamic coefficients were calculated using a
reference chord length of 0.4064 m, with C,, determined relative to
30% of the chord. Table 2 provides a summary of the datasets used for
training the MF-BayNet surrogate model.

3.1.1. Low-fidelity

LF data were generated using XFoil, a popular tool for the design
and analysis of subsonic airfoils which employs a combination of in-
viscid panel methods with a boundary layer analysis, allowing it to
rapidly generate aerodynamic data. For this study, the BSCW wing pro-
file was used. To create a comprehensive dataset, 25 points equally
distributed along each parameter of the design space were used, result-
ing in a total of 625 samples. This extensive dataset offers a broad base
of quick, approximate aerodynamic solutions. The XFoil-generated data
were corrected applying the equations from Helmbold [25] to account
for three-dimensional effects, thereby improving the accuracy for the
low-aspect-ratio straight BSCW configuration. These corrections ensure
that the LF data better represent the actual aerodynamic behavior of
the wing in three-dimensional flow conditions, making the dataset more
valuable for the multi-fidelity model training.

3.1.2. Mid-fidelity

MF data were obtained from RANS simulations using SU2 v7.5.1 soft-
ware [16] with a relatively coarse grid of 2.5 - 10° elements. The grid is
a hybrid type, with structured elements on the wing surface and in the
first layers of the boundary layer, while voxel elements were used for the
rest of the computational domain. The domain itself extends 100 chord
lengths from the solid wall to the farfield. The Grid Convergence Index
(GCI) for this coarse grid was calculated to be approximately 5.4%, indi-
cating a moderate level of discretization error. The RANS equations were
closed using the one-equation Spalart-Allmaras turbulence model. Con-
vergence was monitored using the Cauchy method applied to the lift co-
efficient, with a variation threshold of 107 across the last 100 iterations.
A 1v multigrid scheme was adopted to accelerate convergence. Con-
vective flow discretization utilized the Jameson-Schmidt-Turkel central
scheme with artificial dissipation, and flow variable gradients were com-
puted using the Green Gauss method. The biconjugate gradient stabiliza-
tion linear solver with an ILU preconditioner was selected. The samples
were distributed to refine the highly nonlinear regions, particularly at
high combinations of AoA and Mach number. This strategic sampling
ensures that the MF data provide enhanced resolution in critical areas,
capturing the complex aerodynamic interactions more effectively. A to-
tal of 49 samples were generated, capturing viscosity and transonic flow
effects better than LF data and at a lower computational cost than HF
simulations, but still with moderate discretization errors.

3.1.3. High-fidelity

HF dataset was previously generated [27], incurring no further com-
putational cost. It consists of 58 RANS simulations with a fine grid
comprising 15.6 - 10° elements. The GCI for this fine grid is around



A. Vaiuso, G. Immordino, M. Righi et al.

Aerospace Science and Technology 163 (2025) 110301

4 N » N N ae o a

3 N " . N REE]
2 . . . . N «  High Fidelity
s, + Mid Fidelity
3 . Low Fidelity
< .

1 N « P N o o 2

0 a N N N as o a

0.70 0.74 0.78 0.82 0.86
Mach

(a) Distribution of sample points per fidelity level.

07
0.5 ./: s A 8 o, o
a il p . [y
0.3]\ 4 e
01 3 - ‘A
—— ——— 1 740.70
© 1 T 0.78074
3 4 086082
A0A [deg : Mach

012 |
0.06
Cy R . TS

0.00

., ! "“““‘““A\A " ~ ‘:AAA 2
-006| ° . .

0 T —— = .740.70
123 T gge082078
A0A [deg) ’ Mach

(b) Lift and pitching moment coefficients across the design space.

Fig. 3. Design variable distribution (AoA-Mach) and aerodynamic coefficient predictions for each fidelity level for the finite wing test case.

0.6%, indicating a very low discretization error and that the solution
is nearly grid-independent. These HF simulations provide the most de-
tailed resolution of transonic nonlinear features and the most accurate
aerodynamic load predictions, serving as a benchmark for validating
the MF-BayNet surrogate model. However, they are an order of magni-
tude more expensive than MF and millions of times more than LF. For
fine-tuning, 7 simulations were identified as the minimum number of
samples necessary to characterize the discrepancies between mid- and
high-fidelity predictions, represented as red dots in Fig. 3. These sam-
ples were not selected arbitrarily; instead, they were deliberately chosen
to ensure coverage of the most critical flow conditions, emphasizing
regions where transonic shock formation, boundary-layer separation,
and other nonlinear effects become more pronounced. This targeted
selection captures the most challenging flow regimes with the fewest
simulations, thereby minimizing the cost of HF runs while preserving
accuracy. This selection was informed by the authors’ prior knowledge
of the relevant aerodynamic phenomena [27]. The remaining samples
were used as a test set to validate the model, demonstrating that with a
minimum number of simulations for fine-tuning, the model can achieve
a relatively low error on the entire HF dataset.

3.1.4. Discussion

The inherent nonlinearity of aerodynamic behavior, particularly in
the transonic regime, is a significant challenge when developing surro-
gate models. Fig. 3 provides a clear illustration of how the aerodynamic
coefficients, C; and C,,, vary nonlinearly across the M-AoA design
space. The LF data, generated through XFoil, shows a more linear re-
sponse, failing to capture the abrupt changes and complex phenomena
like shock-wave formation and boundary-layer separation that occur at
higher Mach numbers and AoA. This limitation necessitates the incor-
poration of higher-fidelity data to correct for these deficiencies. The MF
RANS simulations, with their ability to better resolve the flow nonlinear
characteristics, particularly near the critical Mach number, offer a sig-
nificant improvement. However, it is the HF data that most accurately
captures the sharp gradients and nonlinearities essential for predicting
aerodynamic loads in the transonic regime. These differences across fi-
delity levels underscore the importance of a multi-fidelity approach.
By integrating data from different fidelities, the MF-BayNet surrogate

Table 3

Number of samples used for training, validation, and testing across
the three fidelity levels for the finite wing test case. HF test samples
(51 in total) are used exclusively for final evaluation and are not
included in training or validation.

Fidelity Level Train Samples Validation Samples Test Samples

Low 437 188
Mid 33 15 -
High 5 2 51

model more effectively captures and predicts the complex nonlinear dy-
namics of transonic aerodynamics.

3.2. Results

Here, the performance of the MF-BayNet surrogate model, three
single-fidelity dataset and the CK method are evaluated by comparing
their predictions of aerodynamic coefficients against an independent
HF test dataset made of 51 CFD samples, which was excluded from
both the HF model training and multi-fidelity training. Specifically, each
single-fidelity dataset was partitioned into 70% for training and 30% for
validation. The same partitioning was used to train MF-BayNet during
TL process. Dataset sizes are shown in Table 3. Further, the MF-BayNet
surrogate model uncertainty estimates are compared to CK method,
highlighting its superior ability to capture and quantify prediction un-
certainty. Results also include comparisons with BNNs trained on each
dataset individually without TL, with model architectures optimized.

3.2.1. Comparison of models performance

Table 4 compares the performance of MF-BayNet with CK in pre-
dicting C; and C,,. It also includes the results of the network trained
individually on each dataset without utilizing TL, as well as results from
the MF-BayNet framework where LF samples were excluded from train-
ing. For the latter, the model was first trained on MF samples and then
TL was applied to fine-tune the model on HF samples. All results are
averaged over a k-fold validation with a k value of 5.

The results demonstrate that MF-BayNet significantly outperforms
all other models for both C; and C,,. Specifically, MF-BayNet achieves
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Fig. 4. Comparison of MF-BayNet and CK predictions for C; and C,, at two Mach numbers (M = 0.74, left panel; M = 0.82, right panel) across varying AoA for the
finite wing test case. Points from different fidelity datasets have been interpolated for 2D plot visualization.

Table 4
Performance metrics in percentage [%] for different models for the
finite wing test case. Errors are calculated on HF test set.

Model Name . €5,y Ehen €opry £
BNN LF 14.43 1.59 42.02 1.41 31.42
BNN MF 12.63 6.88 7.73 4.92 10.47
BNN HF 1529 9.00 5.62 596  11.52
CK 7.53 2.98 7.70 9.46  7.61
MF-BayNet (MF+HF) 5.81 6.95 6.48 4.44 6.15
MF-BayNet (LF+MF+HF) 4.24 1.37 5.50 0.71 4.91

ag, . of 4.2% and a ¢ ewm of 5.5%, which are approximately half of
those obtained with CK, which has errors of 7.5% and 7.7% for C; and
Cyy respectively. Moreover, the standard deviations errors (e,,., and
Eqep) for MF-BayNet are also lower, indicating more consistent and
reliable predictions. The BNN models, whether trained on LF, MF or
HF datasets, show higher prediction errors and standard deviations, re-
inforcing the efficacy of the TL and fine-tuning processes utilized by
MF-BayNet. Finally, these results confirm the added value of combin-
ing datasets across all fidelity levels; removing LF samples from the
MF-BayNet training slightly increased prediction errors, indicating that
lower fidelity data still contribute information that enhances general-
ization capability.

To better illustrate model performance, Figs. 4 show predictions of
C; and C,, at different Mach numbers. The left panels present predic-
tions at M = 0.74, while the right panels show predictions at M = 0.82.
For C; predictions, the MF-BayNet surrogate model (orange line) closely
follows the HF dataset (red dots), effectively leveraging knowledge ac-
quired through transfer learning and fine-tuning. The MF-BayNet pre-
dictions exhibit narrow confidence intervals (brown shaded regions),
indicating high predictive certainty. In contrast, the CK model (dark
green line) struggles to capture the correct trend, especially at higher
AoA and Mach numbers, and shows significantly larger confidence inter-
vals (green shaded regions, particularly noticeable in the right panels).
The nonlinear nature of the aerodynamic behavior is particularly evi-
dent at M = 0.82, where the C; curve shows significant nonlinearity,
especially at higher angles of attack. This nonlinearity arises from the
formation of shock waves on the wing surface, which induce abrupt
changes in the pressure distribution, leading to sharp variations in C; .

The MF-BayNet surrogate model successfully captures these complex
behaviors, unlike the CK model, which struggles more in representing
these nonlinear effects. Similarly, the C,, predictions reveal pronounced
nonlinear trends as the aerodynamic center shifts due to interactions
between shock waves and the boundary layer. These interactions com-
plicate the aerodynamic response, causing rapid changes in C,;. The
MF-BayNet surrogate model ability to closely match the HF data, along
with its narrower confidence intervals, highlights its strength in mod-
eling these challenging nonlinear phenomena. Similar considerations
apply to Fig. 5, where the predictions of C; and C,; are shown with
fixed AoA values and varying Mach. It can be seen that the CK model oc-
casionally produces predictions closer to the HF data points, but still fails
to capture the more complex trends indicated by the MF and HF datasets.
Instead, it continues to align more closely with the lower fidelity dataset
trend. Examination of both figures reveals that the observed nonlin-
earities arise from the combined influence of Mach number and AoA
variations, with the MF Baynet providing good accuracy over the entire
parameter space, under both small and large nonlinearity ranges.

In summary, the single-fidelity model trained on LF data failed to
capture the nonlinear transonic aerodynamics due to the oversimplified
nature of the underlying data. Including MF data improved predictions
by resolving more complex flow features, though discretization errors
still constrained generalization. The HF-only model achieved low accu-
racy and poor extrapolation due to the limited number of samples. In
contrast, the proposed multi-fidelity framework, which integrates LF,
MF, and HF data through TL, achieved superior accuracy and gener-
alization, outperforming both single-fidelity models and CK. While CK
benefited from combining data sources, it underperformed in highly
nonlinear regions and provided less reliable uncertainty estimates.

3.2.2. Mid-fidelity dataset size impact

Since MF data strikes a good balance - being significantly less compu-
tationally expensive than HF data, yet providing much richer informa-
tion compared to LF data - we investigated the impact of MF sampling on
model performance. To perform this sensitivity analysis, we first gener-
ated a denser set of MF points. The original sample consisted of 49 points
arranged in a 7 X 7 grid, while the newly generated points formed a
denser 13 x 13 grid of 169 points. Model performance was evaluated in-
crementally as the dataset size increased, using 5-fold cross-validation,
with each fold divided into 70% training and 30% testing subsets.
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Fig. 6. Influence of MF training set size on model performance for the finite
wing test case.

In general, increasing the number of MF samples leads to a reduc-
tion in prediction error. This behavior is expected, as more MF points
allow the model to better capture the underlying physics. However, as
shown in Fig. 6, the improvement quickly reaches a saturation point
where further increases yield minimal or no additional benefit, reflect-
ing the inherent limitations of the simplified representation provided
by MF data compared to HF data. In our analysis, performance gains
become negligible after approximately 50 MF samples.

3.2.3. Aleatoric uncertainty quantification

To assess the impact of aleatoric uncertainty on the predictions, we
re-trained the baseline version of our MF-BayNet model—termed the
“Vanilla MF-BayNet”—by systematically adding noise to each fidelity
dataset separately. The training dataset was augmented following an
augmentation factor value (AF) from 20% to 80%, by adding Gaussian
noise with a standard deviation from 2% to 10% of the mean output
label value, applied to either C; (Fig. 7) or C), (Fig. 8).

Results show that ¢, generally decreases with increasing noise when
added to LF and HF datasets for C;, whereas the MF datasets exhibit
an increasing trend in mean error. In contrast, for C,,, the mean error
increases with noise in both LF and MF datasets, but adding noise to
HF datasets tends to reduce the mean error, especially as AF increases.
Across both C; and Cy, €, remains low and stable, indicating that noise

primarily impacts the mean error rather than the variability of model
predictions.

As the AF increases in MF datasets, the impact of noise on the mean
error becomes more pronounced, while higher AF generally show de-
creased mean errors in HF datasets. This behavior can be explained by
considering the robustness of HF data to noise and the sensitivity of MF
data. HF datasets contain more accurate and detailed information, mak-
ing the model less sensitive to noise and, in some cases, benefiting from
noise through regularization, which improves the model generalization
and reduces the mean error [2]. Adding noise to MF datasets results in a
significant increase in mean error. This higher sensitivity to noise is due
to the moderate levels of accuracy and detail in MF datasets, which are
significantly degraded by the introduction of noise. The balance between
the inherent detail and the added noise disrupts the model learning pro-
cess, leading to increased errors. LF datasets, already less accurate and
detailed, exhibit a mixed response to noise. In some cases, the noise fur-
ther degrades data quality, increasing the mean error, while in others,
it has minimal impact or even aids the model by introducing beneficial
variability.

The relatively minor changes in the standard deviation of errors,
despite varying noise levels, suggest that the model overall prediction
uncertainty remains stable. This indicates that while noise impacts the
accuracy (mean error) of predictions, it does not significantly affect the
model confidence in its predictions. These observations underscore the
importance of understanding and mitigating aleatoric uncertainty to im-
prove predictive modeling performance, particularly by leveraging the
robustness of HF data and addressing the sensitivity of MF data.

We also studied the effect of aleatoric uncertainty on model predic-
tions when adding Gaussian noise to the entire LF dataset (AF = 100%)
(refer to Fig. 9). The noise standard deviation ranged from 2% to 10%,
applied independently to the coefficients C; and C,,. The graph de-
picts how the introduction of this noise influences the error associated
with these coefficients separately. It is evident that as the noise stan-
dard deviation increases, the error in the predictions also increases. This
trend is consistent for both C; and C,,. This indicates that the predic-
tive capability of the model is increasingly compromised as more noise
is introduced. However, the standard deviation remains relatively sta-
ble for both coefficients, suggesting that while accuracy decreases, the
consistency of the model predictions does not fluctuate significantly.
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from 20% to 80% by adding Gaussian noise to the C,, of each dataset separately with a standard deviation ranging from 2% to 10%.

This behavior can be explained by the structure of our MF-BayNet
surrogate model. Adding noise to the entire LF dataset increases the ini-
tial errors, which propagate through the subsequent training stages. The
model learns from this noisier data initially, which degrades its base-
line understanding and leads to higher errors that carry over even after
TL processes. Moreover, the stable standard deviation suggests that the
noise primarily affects the bias (mean error) rather than the variance
of the predictions. This indicates that while the model accuracy de-
creases due to systematic errors introduced by the noise, its confidence
in the consistency of predictions remains unaffected. Therefore, enhanc-
ing data quality or employing robust modeling techniques to mitigate
the impact of noise can lead to better accuracy without compromising
prediction consistency.

4. Full-configuration test case

This section presents a five-propeller electric vertical takeoff and
landing (eVTOL) test case that illustrates the critical aerodynamic chal-
lenges associated with rotor-wing interactions in a real scenario. The
test case combines two different fidelity datasets and it is inspired by
the modeling exercise carried out by the authors in the EASA funded
project MODEL-SI [15]. The vehicle under consideration has four lon-
gitudinally symmetric lift propellers mounted forward and aft of the
wing, and one pusher propeller mounted at the tail for forward flight.
Thanks to this configuration, the drone can switch between a so-called
“helicopter mode” and an “airplane mode” depending on the use of the
propellers. The fuselage is 4 m long, while the wingspan is 6 m with
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Fig. 9. Effect of aleatoric uncertainty on model predictions: Gaussian noise, with
a standard deviation ranging from 2% to 10%, was independently added to the
C, and C,, of the entire LF dataset.

Fig. 10. Impression of eVTOL configuration.

a mean chord of 1 m of the NACA0O12 profile. An impression of the
configuration can be obtained from Fig. 10.

The primary aerodynamic challenge is the complex interaction be-
tween the propellers, wing, and fuselage. Forward propellers generate
rotor wakes that flow over the wing and impinge directly on the aft
propellers, significantly altering the local flowfield. This perturbation
changes the lift distribution, adds extra wing loading, and increases
drag. Also, the rear propellers suffer a decrease in thrust when oper-
ating in the wake of the front rotors for the same power input, resulting
in spatially varying performance that is difficult to predict with lower
fidelity methods alone. Once the wing itself generates lift, its near-field
flow curvature affects the inflow conditions of the forward rotors. De-
pending on how far forward of the wing the propellers are located, the
swirling flow can reduce rotor efficiency if the incoming flow is distorted
or partially blocked. These phenomena occur over a wide flight enve-
lope, from vertical takeoff and forward flight to the transition between
helicopter and airplane mode, making the problem highly nonlinear.

To capture the most important physical parameters that affect the
rotor-wing aerodynamics of the eVTOL vehicle, the inputs include AoA,
freestream velocity U, and rotational speeds of five propellers: pusher
(PP), front right (FR), front left (FL), rear right (RR), and rear left
(RL). The multi-fidelity framework predicts two outputs for each of
the five propellers: thrust coefficient (K ) and torque coefficient (KQ).
Specifically, the model produces K7, ,K,, for the pusher propeller
and KTFR’ KQFR’ KTFL s KQFL’ KTRR’ KQRR’ KTRL’ KQRL for the four lift pro-
pellers.

The MF-BayNet surrogate model was trained using the TL frame-
work, sequentially incorporating LF and MF datasets. The optimized
hyperparameters used in this test case are reported in Appendix B.2.
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Table 5
Summary of datasets used for training the MF-BayNet surro-
gate model.
Fidelity Level ~ Number of Samples  Simulation Approach
Low 2,000 BEM
Mid 250 VPM

4.1. Multi-fidelity datasets

The strongly coupled and nonlinear flow physics in this eVTOL
configuration provide another representative test case for the surro-
gate aerodynamic model presented. Although HF simulations (e.g.,
RANS-based CFD) can offer greater accuracy, they become prohibitively
expensive—and often difficult to converge—when exploring wide flight
envelopes. Indeed, in this study, fully converged CFD data could not
be generated due to excessive computational costs. By contrast, lower-
fidelity simulations are more affordable yet struggle to capture the pro-
nounced rotor-wing interactions and wake impingement effects. Con-
sequently, a multi-fidelity approach provides a more balanced solution:
it integrates fast, lower-fidelity analyses with higher-order corrections
from MF data, ensuring that complex flow interactions are accurately
captured without incurring prohibitive computing time.

To generate samples, we covered a wide range of operating condi-
tions: AoA varies from -180 to 180 deg, U, from 0 to 40 m/s, and each
propeller rotational speed up to £4000 RPM, depending on its position
and direction of rotation. These ranges were chosen based on aerody-
namic and flight mechanics considerations to ensure that the dataset
covers realistic maneuvers and bounds of the flight envelope.

Latin Hypercube Sampling (LHS) strategy was used to generate the
LF dataset, resulting in approximately 2000 data points covering the
broad ranges described above. These LF points were derived from an an-
alytical aerodynamic function, allowing efficient data generation over a
wide parameter space. In contrast, a limited set of MF samples were ob-
tained from more accurate but computationally expensive simulations,
resulting in 250 points distributed like in Fig. 11. This smaller MF set
refines and corrects the trends observed in the LF data. Table 5 schemat-
ically illustrates how both LF and MF data form the training dataset.

4.1.1. Low-fidelity

The LF aerodynamic model is inspired to the work by Davoudi [11]
in which Momentum Theory and Blade Element Method (BEM) are ex-
ploited to assess induced velocity and thrust generated by a moving
rotor. Momentum theory provides a global analysis of flow through an
actuator disk, deriving thrust and power relationships from force and
flow balances. BEM refines this approach by discretizing the rotor blade
into spanwise segments, each analyzed independently using 2D sectional
aerodynamics. These models are most commonly used for aeroacoustic
studies [43] to develop flight mechanics models of drones, capturing
variations in AoA, chord, and twist along the blade span at low com-
putational cost. In essence, the induced velocity model is inspired by
Peter’s model [44] and represents a simple yet sufficiently accurate ap-
proach for most engineering applications, providing a valuable starting
point for rapid iterative analysis in preliminary design.

4.1.2. Mid-fidelity

For the MF aerodynamic simulations, we employed the DUST
framework [59]. It is designed to analyze the aerodynamics of non-
conventional aircraft configurations at a level of detail that bridges low-
and high-fidelity approaches by implementing a Vortex Particle Method
(VPM). Compared to purely potential-based tools or blade-element
methods, DUST offers superior accuracy in capturing three-dimensional
effects while remaining considerably less expensive than full RANS-
based simulations. In the model setup, care was taken to model rotors
and propeller blades with the accurate chord and twist distributions.
The results shown in this paper were obtained with the option called
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Fig. 11. Histograms of LF and MF datasets distribution across the design space. K7 and K, values are flatten for all propellers PP, FR, FL, RR, RL.

Table 6
Number of samples used for training, validation, and testing across
the two fidelity levels for the full-configuration test case.

Fidelity Level ~ Train Samples  Validation Samples  Test Samples

600
130

Low
Mid

1,400

605 130

“nonlinear lifting line” in the user manual [50]. We selected between 30
and 40 lifting lines per blade, the aerodynamic coefficients were given
by look-up tables obtained from CFD for a number of blade sections.
The maximum number of vortex particles was set to 100 million. The
wing surface is discretized using approximately 3,000 panels for each
side.

4.2. Results

The eVTOL test case presents a more challenging aerodynamic sce-
nario than the finite wing test case, due to strong rotor-rotor and rotor-
wing interactions. Such interactions introduce significant nonlinearities,
wake impingement effects, and asymmetric flowfields, thereby increas-
ing the difficulty of accurately capturing the physics across the design
space. Consequently, this test case provides a high-dimensional bench-
mark for evaluating the generalizability of DF models.

Following the previous test case approach, the dataset is partitioned
into training, validation, and test sets as detailed in Table 6. The MF test
set, which is completely excluded from the training process, is used to
compare the prediction accuracy of both MF-BayNet and CK. The com-
parison focuses on both mean prediction error and uncertainty quan-
tification performance, with particular attention to the ability of each
model to capture the variability introduced by complex aerodynamic
couplings.

Table 7 shows the results for K; and K, for the two different
models. For K, the two models have comparable performance (3.9%
vs. 2.9%), indicating that both methods adequately capture the basic
rotor thrust variations under different flight conditions. However, for
K, MF-BayNet achieves a lower average error (3.1%) compared to CK
(~5%). The torque coefficient is more sensitive to local flow features
(e.g., rotor wake distortion or wing-propeller flow interference), and
MEF-BayNet’s TL structure appears to be better able to leverage the MF
data to capture these interaction effects.

Fig. 12 illustrates how the two DF approaches predict the Ky and
K values of the pusher propeller (PP) under “airplane mode” condi-
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Table 7

Averaged thrust and torque coefficients per-
centage errors [%] for different models for the
full-configuration test case. Errors are calcu-
lated respect to MF test set.

Model Name e, £k, €400 Gyt
CK 3.93 498 450 026
MEF-BayNet 2.99 3.12 3.06 0.87

tions, namely at AoA = —5.0 deg, U, = 10 m/s, with the lift propellers
off (0 RPM). Compared to CK, MF-BayNet follows the reference data
more accurately, especially at medium to high RPM values, and cap-
tures the shift in aerodynamic behavior. In contrast, the CK prediction
deviates significantly from the MF samples at higher speeds, reflecting
a less effective DF for strong nonlinear rotor-propeller interactions. This
highlights the benefit of the MF-BayNet framework, which better ex-
ploits the MF data to refine and correct the predictions in challenging
flow regimes.

5. Conclusions

We developed a multi-fidelity framework using Bayesian neural net-
works and transfer learning (MF-BayNet) to enhance the accuracy of
aerodynamic load prediction in the transonic regime over a three-
dimensional wing and to reduce the required HF sample for training the
surrogate model. Our primary objective was to leverage the strengths of
BNNs, notably their ability to quantify uncertainty, alongside the effi-
ciency and robustness of TL to improve predictive performance across
datasets of different accuracy. The resulting surrogate model effectively
integrates data of varying fidelities, harnessing the strengths of each
fidelity level to produce superior predictive performance and robust un-
certainty quantification.

The results obtained on two different test cases—a transonic wing and
a full-configuration eVTOL vehicle-demonstrate that the MF-BayNet
surrogate model not only surpasses traditional models trained on single-
fidelity datasets but also outperforms CK method in predicting inte-
grated aerodynamic loads. These results demonstrate the effectiveness
of our hybrid approach in achieving superior accuracy and reliability,
especially in complex aerodynamic scenarios where nonlinearity plays
a critical role.

Our study also revealed that the impact of aleatoric uncertainty
on model predictions varies significantly with the fidelity level of the
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Fig. 12. Comparison of MF-BayNet and CK predictions in Airplane Mode for K; and K, using (AoA = —5.0 deg, U, = 10 m/s, and all the lift propellers set to 0
RPM) across varying RPM values for the pusher propeller (PP) in the full-configuration test case. Points from different fidelity datasets have been interpolated for

2D plot visualization.

datasets to which noise is added. Adding noise generally increases the
mean error with noisy MF datasets while often decreasing the mean
error with noisy HF datasets, particularly as the augmentation factor in-
creases. Noisy LF datasets show a mixed response, with slight increases
or decreases in mean error. The standard deviation of the error remains
relatively stable across different noise levels, indicating that noise pri-
marily affects the accuracy of predictions rather than the variability.
These findings highlight the robustness of HF data to noise and the sensi-
tivity of MF data, suggesting that while noise can regularize and improve
model performance with HF data, it can degrade performance with MF
data.

Additionally, we observed that adding noise to the entire LF dataset
increases the initial errors, which propagates through the subsequent
training stages, degrading overall accuracy. This is because the model,
which first trains on the LF data, carries forward these systematic errors
introduced by the noise even after TL processes. Consequently, while the
mean error rises due to these systematic errors, the prediction consis-
tency, as indicated by the stable standard deviation, remains unaffected.
Therefore, understanding and addressing these subtleties is extremely
important for enhancing predictive performance and mitigating the ef-
fects of aleatoric uncertainty.

Future work will explore the application of this framework to other
relevant scenarios, in order to highlight the versatility and robustness
of the model. The incorporation of more diverse and complex datasets
will be a key focus to challenge and refine model performance. We plan
to explore advanced data fusion techniques, including multi-fidelity
Monte Carlo and Deep Gaussian Processes, to evaluate and compare the
strengths and limitations of the MF-BayNet framework across various
test cases.

The open-source implementation of the framework enables the re-
search community to access, modify, and build upon our work, driving
further advancements in the framework and wider applicability.!
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Table A.8
CPU hours for different simulation runs for the dataset cre-
ation process of the finite wing test case.

Dataset Run time

(Full dataset) (1 run)
Panel Method (LF) 0.3475 (625 runs) 0.00056
RANS - Coarse Grid (MF) 2,352 (49 runs) 48
RANS - Fine Grid (HF) 29,000 (58 runs) 500
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Appendix A. Computational cost analysis
A.1. Finite wing test case

Tables A.8 and A.9 provide a comparative analysis of the computa-
tional costs associated with dataset creation and model performance.

Table A.8 highlights the substantial disparity in computational effort
required across different fidelity levels. The HF dataset requires approx-
imately 500 CPU hours per sample, making it over 10 times more expen-
sive than the MF dataset and nearly a million times more computation-
ally intensive than the LF dataset. This underscores the impracticality
of relying exclusively on HF simulations for aerodynamic load predic-
tions, reinforcing the necessity of multi-fidelity modeling. By integrating
lower-fidelity data, the MF-BayNet framework effectively mitigates the
reliance on computationally expensive HF simulations while maintain-
ing a high level of predictive accuracy.

Table A.9 presents the GPU hours required for training and predic-
tion across different models using an NVIDIA Quadro P2000 GPU, with
execution times averaged over one dataset fold and results calculated
using 5-fold cross-validation (k=5). For single-fidelity datasets, the av-
erage training times were approximately 41 minutes for the LF model,
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Table A.9

GPU hours for training and prediction
costs for the proposed models for the
finite wing test case.

Model Training  Prediction

BNN LF 0.68 7.0e-6

BNN MF 0.58 7.0e-6

BNN HF 0.08 7.0e-6

MF-BayNet 0.97 7.0e-6

CK 0.08 1.4e-6
Table A.10

CPU hours for different simulation runs for
the dataset creation process of the full-
configuration test case.

Dataset Run time

(Full dataset) (1 run)
BEM (LF) 0.2 (2000 runs) 0.0001
DUST (MF) 7,800 (60 runs) 130
Table A.11

GPU hours for training and prediction
costs for the proposed models for the
full-configuration test case.

Model Training  Prediction
MF-BayNet 1 7.7e-6
CK 0.08 1.4e-6

35 minutes for the MF model, and less than 5 minutes for the HF model.
The MF-BayNet required approximately 58 minutes for training. In com-
parison, CK took about 5 minutes to fit from LF data using HF points as
an additional feature to perform CK. Prediction times across all BNN
models were consistent, averaging around 0.025 seconds to compute
both mean and standard deviation values through MCS with 100 predic-
tions. Conversely, the CK model demonstrated faster prediction times,
requiring only about 0.005 seconds to generate mean and standard de-
viation predictions due to the simpler architecture and structure.

A.2. Full-configuration test case

In Table A.10 we report the total CPU hours required to generate the
LF and MF datasets for the eVTOL test case. As shown, the analytic func-
tion (LF) approach is extremely efficient, requiring only 0.2 CPU hours
for the entire dataset of 2000 runs (i.e., 0.0001 CPU hours per run). In
contrast, the DUST (MF) simulations, while providing higher accuracy
due to a more sophisticated modeling of the rotor-wing interaction, are
significantly more expensive, amounting to 130 CPU hours per run or a
total of 7,800 CPU hours for 60 runs.

Table A.11 shows the GPU hours required for training and prediction
for different models using the same procedure as for the previous test
case. MF-BayNet required approximately 60 minutes for training, while
CK completed training in about 5 minutes. For prediction, MF-BayNet
consistently took around 0.025 seconds per sample using MCS with 100
forward passes, whereas CK required only about 0.005 seconds.

Appendix B. Optimized network architectures
B.1. Finite wing test case

This section outlines the architecture used for the finite wing test case
after the Bayesian hyperparameter optimization. The design parameters

for the optimization are chosen accordingly to the multi-fidelity frame-
work, and are described in Section 2.3. The final model is composed
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Table B.12

Optimized hyperparameters of the Low-Fidelity (LF), Mid-Fidelity (MF),
High-Fidelity (HF) BNN models, and the Transfer Learning (TL) MF-
BayNet models for the finite wing test case.

Model Hyperparameter Best value
LF BNN Nigyers 6
units [176, 176, 144, 176, 176] + [2] output
Ir 0.0016
Hprior 0
Cprior 0.0126
MF BNN Niyers 3
mits [160, 80] + [2] output
Ir 0.0014
Hprior 0
G prior 0.0526
HF BNN Niagers 4
N its [128, 160, 176] + [2] output
Ir 0.0014
Hprior 0
G prior 0.0596
MF-BayNet Nigyers 3
(MF+HF) N oics [160, 80] + [2] output
IrtMF - HF) 0.001
Hprior 0
Cprior 0.0526
N,,. (MF—HF) 2
MEF-BayNet N, layers 6
(LF+MF+HF) mits [176, 176, 144, 176, 176] + [2] output
Ir(LF) 0.0016
Ir(LF > MF) 0.001
Ir(MF - HF) 0.001
Hprior 0
c 0.0126

prior
N, (F>MP) 3
N, (MF—>HF) 5

by 114,194 trainable weights for the pre-trained model with LF sam-
ples, 57,026 trainable weights for the pre-trained model with the first
TL phase using MF samples, and 354 trainable weights during the last
TL phase using HF samples. The model needed about 55 minutes to con-
verge on an NVIDIA Quadro P2000 using a TL approach with specific
training settings. For the first TL phase with MF samples, the model
was trained using a batch size of 32 and a learning rate of 0.001. The
maximum number of epochs was set to 8000, setting an early stopping
criterion with a patience of 500. During the final TL phase with HF sam-
ples, the batch size was reduced to 1 to better capture HF details. This
training followed a similar structure, with a maximum of 8000 epochs
and an early stopping patience of 500. However, only one layer was un-
frozen for fine-tuning, ensuring that the model retained the knowledge
learned in previous stages while adapting to the HF dataset. The opti-
mized hyperparameters for the four models developed are summarized
in Table B.12.

B.2. Full-configuration test case

This section outlines the architecture used for the full-configuration
test case after the Bayesian hyperparameter optimization. The overall
procedure closely follows what was done for the finite wing test case
described in Appendix B.1, with the main difference being the larger
number of layers and trainable weights required to capture the increased
complexity of the full-configuration problem.

As summarized in Table B.13, the final network architecture for the
full-configuration test case consists of six layers, for a total of 174,932
trainable weights. The model is first trained on the LF dataset using a
batch size of 32, a learning rate of 0.0016, a maximum of 5000 epochs,
and an early stopping criterion with a patience of 300. Subsequently, the
model transitions to the MF dataset through TL. In this phase, three out
of the six layers are kept frozen, while the remaining layers are fine—
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Table B.13
Optimized hyperparameters of the MF-BayNet model for the full-
configuration test case.

Model Hyperparameter Best value
MF-BayNet  Njqpe 6
anits [224, 144, 160, 112, 96] + [10] output
Ir(LF > MF) 0.0081
Hprior 0
o, 0.0351

prior

N;.(LF>MF) 3

tuned with a batch size of 16, a learning rate of 0.0081, a maximum
of 8000 epochs, and an early stopping patience of 500. Freezing part
of the model ensures that knowledge gathered from the LF training is
preserved, while the unfrozen layers adapt to the higher—fidelity data.

Data availability
Data will be made available on request.
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