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ABSTRACT The joint optimization of the hybrid transmit precoders (HTPCs) and reflective elements
of a millimeter wave (mmWave) integrated sensing and communication (ISAC) system is considered.
The system also incorporates a reconfigurable intelligent surface (RIS) relying on a non-diagonal RIS
(NDRIS) phase shift matrix. Specifically, we consider a hybrid architecture at the ISAC base station (BS)
that serves multiple downlink communication users (CUs) via the reflected links from the RIS, while
concurrently detecting multiple radar targets (RTs). We formulate an optimization problem that aims for
maximizing the geometric mean (GM) rate of the CUs, subject to the sensing requirement for each RT.
Additional specifications related to the limited transmit power and unit modulus (UM) constraints for both
the HTPCs and the reflective elements of the NDRIS phase shift matrix make the problem challenging.
To solve this problem, we first transform the intractable GM rate expression to a tractable weighted sum
rate objective and next split the transformed problem into sub-problems. Consequently, we propose an
iterative alternating optimization approach that leverages the majorization-minimization (MM) framework
and block coordinate descent (BCD) method to solve each sub-problem. Furthermore, to tackle the UM
constraints in the sub-problem of the HTPC design, we propose a penalty-based Riemannian manifold
optimization (PRMO) algorithm, which optimizes the HTPCs on the Riemannian manifold. Similarly, the
phases of the reflective elements of the NDRIS are optimized by employing the Riemannian manifold,
and the locations of the non-zero entries of the NDRIS phase shift matrix are obtained by the maximal
ratio combining (MRC) criterion. Finally, we present our simulation results, which show that deploying
an NDRIS achieves additional gains for the CUs over a conventional RIS, further enhancing both the
communication efficiency and sensing reliability. Furthermore, we compare the results to the pertinent
benchmarks, which validate the effectiveness of our proposed algorithms.

INDEX TERMS Reconfigurable intelligent surface, integrated sensing and communication, millimeter wave,
and geometric mean rate.

I. INTRODUCTION

INtegrated sensing and communication (ISAC) is an in-
novative technology that seeks to merge the tradition-

ally separate domains of sensing and communication into
a unified framework. This integration promises numerous
advantages, including improved efficiency, enhanced per-

formance, and novel capabilities in various applications
such as autonomous vehicles, smart cities, unmanned aerial
vehicles, healthcare, industrial automation, and a plethora
of others [1], [2]. Thus, ISAC technology is envisaged to
play a crucial role in the evolution of next-generation (NG)
wireless networks, which jointly optimize both sensing and
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communications functionalities in an integrated hardware
platform, thereby reducing the hardware cost and enhancing
the overall system efficiency and performance [3], [4].

Recently, several compelling advantages have emerged
with the deployment of millimeter wave (mmWave) technol-
ogy in ISAC systems. At the forefront of this development
is the use of a wide bandwidth facilitated by the vast
mmWave range spanning from 30 GHz to 300 GHz, which
is capable of supporting ultra-high data rates [5] for the
communication users (CUs). Another advantage of mmWave
technology is its ability to facilitate precise localization and
sensing capabilities due to its short wavelengths, enabling
accurate radar target (RT) detection and tracking in complex
environments. However, the conventional fully digital trans-
mit precoder (TPC) designs are not suitable for mmWave
systems due to their exclusive hardware costs and increased
power consumption, especially when deployed in large-scale
array systems [6]. To overcome this impediment, the well-
known hybrid transmit precoder (HTPC) is employed in
mmWave systems in which the TPC at the ISAC base station
(BS) is split into the baseband (BB) TPC and digitally
controllable RF TPC. Due to this, the HPTC significantly
reduces the number of RF chains required, resulting in
moderate hardware complexity and cost compared to con-
ventional systems [7], [8].

Despite the above advantages, mmWave-aided systems
face several challenges, such as their high pathloss and
susceptibility to blockages by physical obstacles. To handle
these issues, reconfigurable intelligent surfaces (RIS) have
been investigated, which offer an additional layer of en-
hancement for mmWave systems by providing a favorable
propagation environment and additional reflecting links [9]–
[11]. Specifically, an RIS comprises passive reflective ele-
ments having adjustable reflection coefficients, which modify
the phase shifts of the incident signal to optimize the signal
propagation towards the intended CUs. In the conventional
diagonal RIS (DRIS), the incident wave impinges on a
specific element of the RIS and it is reflected from the
same element, resulting in a diagonal phase shift matrix.
However, while conventional DRIS enhances the signal of
the intended CUs, it does not reach its full potential due
to passive beamforming based on the equal gain criterion
(EGC) [12]. To achieve a higher passive beamforming gain
based on the optimal maximal ratio combining (MRC)
criterion, an enhanced version of the RIS, namely a non-
diagonal RIS (NDRIS), was proposed in [12]–[14]. In the
NDRIS design, the incident wave impinges on an element
and gets reflected from another element via a configuration
of switches, resulting in a non-diagonal phase shift matrix.
In doing so, one can achieve a higher beamforming gain by
suitably optimizing the phases and locations of the non-zero
RIS elements [14].

Furthermore, rate fairness among the CUs in mmWave
ISAC systems is a serious problem due to the sensing
requirements of the RTs and higher channel attenuation in

the mmWave band. To achieve this, one can employ the
max-min rate (MMR) objective, as discussed in [15]–[17]
for maximizing the rate of the CU having poor channel
conditions. However, this leads to an undesirable degradation
in the overall sum rate (SR) of the system. As a remedy, the
geometric mean (GM) rate maximization [18]–[20] strikes
a compelling trade-off between excellent rate fairness and
high sum rate. Therefore, we harness GM rate maximization
for achieving rate fairness in mmWave ISAC systems.

Inspired by the above developments, we consider an RIS-
assisted mmWave ISAC system relying on the NDRIS archi-
tecture that jointly optimizes the HPTCs and the reflection
coefficients of the NDRIS phase shift matrix for maximizing
the GM rate of CUs, while meeting the sensing requirements
of the RTs. The next subsection presents a comprehensive
literature survey on ISAC, mmWave technology, RIS, GM
rate optimization, and their integration in modern wireless
communications.

A. Literature review
The recent literature [5], [6], [21]–[27] investigated potent
HTPC design techniques conceived for mmWave ISAC sys-
tems. Specifically, Xiao et al. [22] proposed a cost-effective
RF TPC-based beamforming design, which is inspired by
the idea of the multiple-beam sweeping method for serving
the CU and RT in a mmWave ISAC system. Qi et al. [23]
minimized the error between the radar beampattern and the
desired transmit beamformer, incorporating SINR constraints
for each CU and total power constraints to design HTPCs
for mmWave ISAC systems. Gong et al. [24] optimized
the HTPCs by maximizing the weighted sum rate of the
CUs, while considering the Cramér-Rao bound (CRB) for
the estimation of the RT angle and power constraint. The
authors therein proposed the Riemannian conjugate gradient
(RCG) based framework to address the unit modulus (UM)
constraint on each element of the RF TPC. Wang et al. [25]
considered a partially connected hybrid architecture at the
ISAC base station (BS) and proposed a triple-stage alternat-
ing minimization technique for designing the HPTCs, which
accomplishes the tasks of joint sensing and communication.
As a further advance, the authors of [26], [27] conceived
HPTC design for the mmWave ISAC-aided Internet of Ve-
hicles (IoVs). Furthermore, Chowdary et al. [28] proposed
a hybrid radar fusion framework for ISAC, where a DFRC
base station integrates the downlink and uplink signals to
jointly estimate target angle of arrivals (AoAs) using efficient
maximum likelihood-based algorithms.

To overcome signal blockages in mmWave-aided sys-
tems, the authors of [9]–[11], [15], [29], [30] explored the
benefit of RISs in mmWave communications, highlighting
the benefits of deploying an RIS for enhancing the hybrid
beamforming gain. Specifically, Gong et al. [9] considered
a RIS-aided mmWave system, wherein they advocated min-
imizing the mean squared error (MSE) of the transmitted
and received signal for jointly optimizing the HPTCs and



reflective elements at the ISAC BS and RIS, respectively.
To solve the problem, the authors employed the RCG as
well as majorization and minimization (MM) techniques to
tackle the non-convex UM constraints. Furthermore, Zargari
et al. [11] proposed the joint active and passive beamforming
deign for the RIS-aided simultaneous wireless information
and power transfer (SWIPT) system to maximize energy
efficiency (EE) through the MM and Dinkelbach algorithms.
By contrast, the authors of [15] addressed a QoS prob-
lem aiming for minimizing the total transmit power at the
BS, while ensuring that the individual SINR constraints of
the users are met. In our previous work [29], we jointly
optimized the HTPCs, receiver combiners (RCs), and RIS
phase shift matrix for maximizing the sum rate of the
secondary system in RIS-aided mmWave cognitive radio
systems operating in the underlay mode. In addition, in [30],
we maximized the EE of an RIS-aided mmWave system for
the optimization of the HTPCs, RCs, and the RIS phase shift
matrix. Furthermore, Li et al. [31]–[33] have investigated the
impact of imperfect CSI and hardware impairments on RIS-
aided systems. The authors revealed performance floors at
high transmit power due to estimation errors and RIS phase
noise. These effects must be carefully considered in practical
ISAC system design to ensure robust performance.

It is worth noting that an important feature of the RIS
discussed in [9], [10], [15], [29], [30] is the diagonal nature
of the phase shift matrix. This type of RIS configuration,
commonly referred to as a DRIS, operates without any
cooperation among its elements. Furthermore, due to the
underlying passive beamforming, the DRIS amalgamates the
incident and reflected signals by harnessing the suboptimal
EGC criterion. Therefore, a DRIS is unable to fully harness
the potential advantages of RIS technology. To address
this limitation, Shen et al. [34] proposed a more advanced
fully/group-connected RIS architecture, wherein the RIS
elements cooperate to create a favorable wave propaga-
tion environment. In these architectures, the fully-connected
and group-connected configurations contain M(M+1)

2 and
M(G+1)

2 non-zero entries, respectively, where M denotes the
number of RIS elements and G represents the group size.
Optimizing these configurations and feeding the results back
to the RIS is essential for achieving optimal performance, but
it comes at the cost of increased complexity and overhead.
To mitigate this drawback, Li et al. [12] introduced a non-
diagonal RIS (NDRIS) phase shift matrix. This design allows
an wave incident on one RIS element to be reflected from
any other RIS element, significantly enhancing the system
performance. However, implementing an NDRIS necessitates
additional switches within the RIS to enable inter-element
routing. As discussed in [12], these switches rely on RF
micro-electromechanical systems (MEMS), which are cost-
effective and energy-efficient components suitable for prac-
tical communication systems [35]. For practical implemen-
tation of the NDRIS structure, including its additional power
requirements and hardware complexity, motivated readers

might like to consult [14], [35], [36]. In particular, [14]
considered an NDRIS-aided mmWave system for jointly
optimizing the HTPCs and phase shift matrix for the max-
imization of the minimum user rate, which vindicated our
proposition that an NDRIS phase shift matrix can lead to
a significantly enhanced performance over the DRIS phase
shift matrix in terms of both spectral- and energy- efficiency.
Moreover, the authors of [36] presented a transistor-based
realization of nonreciprocal, non-gyrotropic phase gradient
metasurfaces suitable for NDRIS design.

However, only a few studies [37], [38] have investigated
the use of RISs in ISAC-aided mmWave systems for en-
hancing both the sensing and communication performance.
Specifically, Lyu et al. [37] jointly optimized the HTPCs
and RIS phase shift matrix to minimize the CRB for
sensing the angle of the RT, while meeting the minimum
rate requirement of each CU in the RIS-aided mmWave
ISAC system. The authors reformulated the non-convex
problem considered by using auxiliary variables and the
Schur complement and subsequently proposed a Remanninan
manifold-based algorithm to handle the non-convex UM
constraints. As a further advance, Hao et al. [38] considered
a pair of interesting problems for optimizing the joint active
and passive beamforming in an RIS-aided mmWave ISAC
system. The first one focused on maximizing the worst-
case illumination power of the RTs, while maintaining the
quality of services of the CUs. By contrast, the second one
aimed for maximizing the rate of CUs, while maintaining
the illumination power requirements of the RTs. Although
Hao et al. [38] in their second problem maximized the
achievable sum rate of the CUs, this approach leads to rate
unfairness among the CUs, possibly resulting in near zero
data rates, especially as the sensing performance improves.
To this end, the GM rate [18]–[20] is a beneficial com-
munication metric for RIS-aided mmWave ISAC systems,
which achieves a rate fairness similar to that of the MMR
optimization framework without significantly compromising
the sum rate. It is worth noting that the above studies have
initiated the investigation of RISs in mmWave ISAC systems,
yet key challenges remain, including ensuring rate fairness
among users and managing the non-convex optimization of
active and passive beamforming. Therefore, considering the
GM rate maximization as the communication performance
metric along with the NDRIS in a mmWave ISAC system
is eminently suitable for achieving rate fairness of the CUs
and meeting the sensing requirements of the RTs. However,
maximizing the GM rate in an RIS-aided mmWave ISAC
system with the NDRIS phase shift matrix is challenging
due to the intractable expression of the GM rate and the non-
convex constraints of the HPTCs and the NDRIS phase shift
matrix. Furthermore, optimizing the locations of the non-
zero elements of the NDRIS phase shift matrix exacerbates
the challenges.

Motivated by these facts and to address the challeng-
ing problems described above, we consider a RIS-aided
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TABLE 1. Overview of Literature on RIS-aided mmWave ISAC Systems

[9] [10] [12] [14] [15] [18] [19] [22] [23] [24] [25] [37] [38] Proposed

RIS-aided mmWave systems ✓ ✓ ✓ ✓ ✓ ✓ ✓

Joint active and passive beamforming ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NDRIS ✓ ✓ ✓ ✓

mmWave ISAC systems ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multiple communication users (CUs) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multiple radar targets (RTs) ✓ ✓ ✓ ✓ ✓

Block coordinate descent (BCD) approach ✓ ✓ ✓ ✓

Riemannian manifold optimization (RMO) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Majorization and minimization (MM) ✓ ✓ ✓

NDRIS-aided mmWave ISAC ✓

Geometric mean rate maximization ✓ ✓ ✓

Penalty-based RMO ✓

MM-based BCD ✓

mmWave ISAC system relying on an NDRIS phase shift
matrix, where an ISAC BS serves multiple CUs with the aid
of an RIS and simultaneously ensures meeting the minimum
sensing requirements of the RTs. To this end, we formulate
an optimization problem for maximizing the GM rate of the
CUs, while considering the minimum beampattern gain of
the RTs, transmit power, and non-convex UM constraints
of the RF TPC and the NDRIS phase shift matrix. To
solve this challenging problem, we propose efficient iterative
algorithms based on the MM and BCD techniques. Our
simulation results comprehensively compare the performance
achieved to that of the benchmark schemes, which demon-
strates the efficacy of the proposed methods and the suitabil-
ity of the NDRIS phase shift matrix in RIS-enabled mmWave
ISAC systems. We boldly contrast our novel contributions to
the related literature in Table 1, and the main contributions
of this paper are enumerated next.

B. Contributions of this work
1) We conceive a RIS-aided mmWave ISAC system,

where an ISAC BS provides communication services
to single-antenna users, while simultaneously sens-
ing multiple radar targets. In this system model, the
RIS supports communication by enhancing the signal
quality and coverage, thus enabling improved link
reliability and increased capacity.

2) We formulate a communication-centric optimization
problem that aims for optimizing the joint HBF and
RIS phase shift matrix to maximize the geometric
mean rate for all users, subject to the constraint of
a minimum acceptable radar transmit power from the
BS for the targets, along with additional limitations
related to the finite transmit power and unit modulus
constraints for both the RF precoder and the RIS
reflective elements.

3) To tackle this novel problem, we initially reformulate
the intractable GM rate objective in an equivalent
tractable form by converting the non-linear product of

user rates to a weighted sum rate of the users. However,
the reformulated problem remains a highly coupled
non-convex problem. To solve the above problem, we
propose an efficient Block coordinate descent (BCD)
method by decoupling it into three sub-problems, each
one focusing on the separate design of the BB TPC
FBB, RF TPC FRF, and the RIS phase shift matrix
Θ, respectively.

4) At each stage of optimizing these variables, we trans-
form the non-convex objective function using the the-
ory of majorization-minimization (MM), which seeks
a suitable surrogate function that acts as a lower-
bound for the rate expression. For BB TPC opti-
mization, we reformulate the pertinent problem as a
convex quadratic program. Subsequently, the Rieman-
nian Conjugate Gradient (RCG) method is utilized for
optimizing both the RF TPC and the RIS phase shift
matrix.

5) Finally, our findings demonstrate that optimizing the
GM rate strikes a compelling balance between the
reliability of sensing and efficiency of communication,
ultimately leading to significantly enhanced overall
system performance in comparison to other bench-
marks.

C. Notations
The following notations are used throughout the paper:
Vectors and matrices are denoted as x and X, respectively.
The matrices operations X(i, j), XT , and XH represent the
(i, j)th element, transpose, and Hermitian transpose of X,
respectively. The trace, Frobenius norm, and vectorization
of a matrix X are denoted as tr(·), |X|F , and vec(·),
respectively. A diagonal matrix with the vector x on its
main diagonal is written as D(x). The expectation operator
is denoted by E·, and the real part of a number is written as
ℜ·. The M ×M identity matrix is represented by IM . The
symmetric complex Gaussian distribution with mean µ and
covariance matrix σ2 is denoted as CN (µ, σ2). Additionally,



FIGURE 1. Illustration of a RIS-aided mmWave ISAC system

FIGURE 2. Block diagram of HTPC at the ISAC BS.

the operators ⊙ and ⊗ represent the Hadamard product and
Kronecker product, respectively.

II. System Model
As shown in Fig. 1, we consider a RIS-assisted millimeter-
wave ISAC system, where an ISAC BS equipped having
Nt transmit antennas is serving K CUs with a single
antenna each, while simultaneously detecting L RTs, which
are indexed by k ∈ K ≜ {1, . . . ,K} and l ∈ L ≜
{1, . . . , L}, respectively. Furthermore, a RIS comprising an
NDRIS phase shift matrix with M elements indexed as
m ∈ M ≜ {1, . . . ,M} is deployed closer to the CUs to
enhance the SINR of CUs. Assuming that the RTs are located
far from the RIS ensures that the RIS does not interfere
with the sensing task, while enhancing the performance of
the CUs. Note that even though the NDRIS is capable of
enhancing not only the communication signal, but also radar
target detection, we assume that radar sensing is performed
primarily via the direct line-of-sight path between the ISAC
BS and RTs. This represents a mmWave scenario, where
signals reflected by the RIS suffer significant path loss,
making their contribution to sensing negligible compared to
the direct link. As shown in Fig. 2, the overall HTPC in
the hybrid architecture splits into a BB TPC as well as an
RF TPC, and both are connected via a limited number of

RFCs NRF. To ensure the feasibility of the HPTC design,
we assume the condition K < NRF << Nt.

A. Signal model
Let us consider s = [s1, s2, . . . , sK ]T ∈ CK×1 as the BB
data stream vector, where the data symbol sk is intended for
the kth CU. Furthermore, the data symbols are assumed to be
mutually independent, satisfying E{s} = 0 and E{ssH} =
IK . Following the hybrid MIMO architecture, the downlink
signal x ∈ CNt×1 transmitted by employing the HPTC from
the ISAC BS, which is used to serve K CUs as well as to
sense L RTs, is expressed as

x = FRFFBBs = FRF

∑
k∈K

fBB,ksk. (1)

The matrix FBB = [fBB,1, . . . , fBB,K ] ∈ CNRF×K represents
the BB TPC, in which fBB,k ∈ CNRF×1 denotes the BB
TPC vector intended for the kth CU. Furthermore, FRF ∈
CNt×NRF represents the RF TPC, with each entry having
a constant modulus of unity, i.e., |FRF(i, j)| = 1,∀i, j.
Moreover, the signal x transmitted from the ISAC BS is
also directed to the RIS, where the phase shift of the
incident is adjusted for ensuring constructive interference
at the intended CUs. Since this paper considers an NDRIS
phase shift matrix having only M non-zero quantities, let
us define the non-zero quantities of the phase shift matrix
Θ ∈ CM×M as |θf(m),m| = 1,∀m ∈ M. Here the quantity
θf(m),m denotes the phase shift that occurs for the wave
impinging at the mth and reflected from the f(m)th element.
Furthermore, f(m) is the bijective function that maps the
indices for the incident wave to the wave reflected via the
configuration of the switches. For more details about the
NDRIS, readers are encouraged to refer to [12]–[14].

B. Communication model
In the system under consideration, we define the channels
spanning from ISAC BS to RIS as G ∈ CM×Nt , and from
the RIS to the kth CU as hHr,k ∈ C1×M . Since the mmWave
channels have a limited effective number of scatters in the
propagation environment, we adopt the well-known Saleh-
Valenzuela sparse geometric multipath mmWave channel
model [14], [29], [30], which effectively captures key prop-
agation features like sparsity and limited scattering. While
real-world scenarios involve more complex effects, this
model provides a strong foundation for our analysis, with
future work aiming to incorporate blockage and dynamic
environments. Following this model, the channel matrix G
can be expressed as

G =

√
NtM

Lp

Lp∑
ℓ=0

αℓaB
(
ψB
ℓ

)
aH

R

(
ψR
ℓ

)
, (2)

where Lp and α(ℓ) denote the number of propagation paths
and the complex path gain of the ℓth path. Furthermore,
aB
(
ψB
ℓ

)
∈ CNt×1 and aH

R

(
ψR
ℓ

)
∈ CNr×1 are the array

steering vectors corresponding to the azimuth angles of
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departures (AoDs), ψB
l and to the angle of arrivals (AoAs),

ψR
l of the ISAC BS and the RIS, respectively. Considering

uniform linear arrays (ULAs) at the ISAC BS and RIS, the
steering vectors can be written as

az (ψ
z) =

1√
Nz

[
1, . . . ,ej

2πd
λ sin(ψz)i,

. . . , ej
2πd
λ sin(ψz)(Nh

z −1)

]T
,

(3)

where we have z ∈ {B, R}, d is the antenna spacing. 0 ≤
i < Nh

z , where Nh
z denotes the number of elements of the

ULA in the 1D plane. By contrast, the RIS is often placed at
high elevations, where it establishes LoS channels with the
CUs, mitigating the impact of multiple reflections. Thus, the
channel hHr,k ∈ C1×M is given by

hHr,k =
√
Mβka

H
R (ψk), (4)

where βk represent the complex path gain. We assume that
all the CSI involved in the system model are perfectly known.
As a result, the signal received at the kth CU is expressed
as

yk = hHr,kΘGFRF

K∑
j=1

fBB,jsj + nk, ∀k ∈ K, (5)

where nk is the i.i.d. complex additive white Gaussian
noise (AWGN) at the kth CU with the distribution nk ∼
CN (0, σ2

k). Upon defining hHbr,k(Θ) ≜ hHr,kΘG ∈ C1×Nt ,
the SINR of the kth user is given by

γk(Θ,FRF,FBB) =

∣∣∣hHbr,k(Θ)FRFfBB,k

∣∣∣2
K∑
j ̸=k

∣∣∣hHbr,k(Θ)FRFfBB,j

∣∣∣2 + σ2
k

,∀k ∈ K.

(6)
Thus, the achievable rate of the kth CU in nats/s is expressed
as

Rk (Θ,FRF,FBB) = ln
[
1 + γk (Θ,FRF,FBB)

]
,∀k ∈ K.

(7)

C. Radar model
We assume that the ISAC BS operates in tracking mode
to detect the RTs located at azimuth angles φl,∀l ∈ L,
while also providing communication services to CUs. Since
the radar sensing considers LoS propagation, the signal
transmitted in the direction of the lth RT is given by

yl(φl) = aHB (φl)FRFFBBs, ∀l ∈ L. (8)

To achieve effective radar sensing, it is crucial to radiate the
transmitted signal power from the ISAC BS in the directions
of the RTs. This is because, maximizing the radiated power
towards φl,∀l ∈ L results in a strong received radar echo
signal. Therefore, we express the power radiated toward the
direction of the lth RT, as follows

P (φl) = E{|yl(φl)|2}, ∀l ∈ L, (9a)

= aHB (φl)RxaB(φl), ∀l ∈ L, (9b)

where Rx = FRFFBBF
H
BBF

H
RF ∈ CNt×Nt is the covariance

matrix of the transmitted signal x.

D. Problem formulation
The main objective of this paper is to jointly optimize the
BB TPC FBB, RF TPC FRF, and the NDRIS phase shift
matrix Θ to achieve rate fairness among CUs in the RIS-
assisted mmWave ISAC systems. Specifically, we aim for
maximizing the GM rate of CUs, while maintaining the
minimum power radiated in the direction of the RTs required
for sensing, and mmWave, the NDRIS hardware constraints.
Mathematically, we formulate the pertinent optimization
problem as follows

P0 : max
FRF, FBB, Θ

(∏
k∈K

Rk(Θ,FRF,FBB)

) 1
K

(10a)

s. t. P (φl) ≥ Γl,∀l ∈ L, (10b)

∥FRFFBB∥2F ≤ Pt, (10c)
|FRF(i, j)| = 1,∀i, j, (10d)∣∣θf(m),m

∣∣ = 1,∀m ∈M, (10e)

where constraint (10b) is to guarantee that the minimum
power radiated in the direction of the lth RT is not lower
than the specified threshold Γl, while (10c) denotes the
transmit power constraint of the BS. Furthermore, the last
two constraints (10d) and (10e) are the UM constraints
imposed due to phase shifters in the RF TPC and the NDRIS
phase shift matrix. The non-diagonal components of the
phase shift matrix not indexed by f(m) in (10e) are struc-
turally zero and not included in the optimization, reflecting
the inherent hardware design of the NDRIS. Note that this
work assumes the availability of full CSI and known sensing
thresholds Γl,∀l, at the ISAC BS, which reflects a centralized
processing framework similar to that in [39], wherein all
relevant information is aggregated at a central node to enable
joint optimization. This assumption allows us to explore the
theoretical performance limits of the proposed GM rate max-
imization framework. However, in practical deployments,
CSI estimation errors may degrade the SINR performance
due to beam misalignment and increased interference. Inves-
tigating robust optimization strategies that account for such
imperfections is an important avenue for future research.
Nevertheless, it is clear that the above optimization problem
(10) is computationally challenging to solve due to the
non-tractable expression of the GM rate (10a) and highly
non-convex UM constraints (10d) and (10e). Additionally,
the bijective function f involves combinatorial optimization
as well as tightly coupled optimization variables in the
objective function and the above constraints, rendering the
problem highly challenging. To solve Problem (10), we
propose an highly efficient majorization-minimization-based
block coordinate descent (MM-BCD) framework for jointly
optimizing the BB TPC, RF TPC, and the NDRIS phase shift
matrix, which is discussed in the next section.



III. Proposed approach
To solve Problem (10), let us first transform the intractable
expression of the GM rate (10) into a tractable form. To
this end, we define the function fGM(Θ,FRF,FBB) ≜(∏

k∈KRk(Θ,FRF,FBB)
) 1

K corresponding to the GM rate
of the system. Observe that the function fGM(Θ,FRF,FBB)
is highly non-linear due to the composition of the con-
vex function

(∏
k∈KRk

) 1
K and the non-convex functions

Rk(Θ,FRF,FBB), k ∈ K. To convert fGM(Θ,FRF,FBB)
into an equivalent linear form, let us consider the point
(Θ(κ),F

(κ)
RF,F

(κ)
BB) as the optimal feasible solution obtained

from the (κ − 1)st iteration. As a result, a linearized
form of the function fGM(Θ,FRF,FBB) around the point
(Θ(κ),F

(κ)
RF,F

(κ)
BB) can be derived as [18]

fGM(Θ(κ),F
(κ)
RF,F

(κ)
BB)

K

∑
k∈K

Rk(Θ,FRF,FBB)

Rk(Θ
(κ),F

(κ)
RF,F

(κ)
BB)

. (11)

Consequently, Problem (10) is transformed into the following
steepest descent optimization problem,

max
FRF, FBB, Θ

1

K

∑
k∈K

fGM(Θ(κ),F
(κ)
RF,F

(κ)
BB)

Rk(Θ
(κ),F

(κ)
RF,F

(κ)
BB)

Rk(Θ,FRF,FBB)

(12a)
s. t. (10b),(10c),(10d), and (10e), (12b)

which is equivalent to the following problem of adaptive
weighted sum rate maximization

max
FRF, FBB, Θ

f(Θ,FRF,FBB) ≜
∑
k∈K

η
(κ)
k Rk(Θ,FRF,FBB)

(13a)
s. t. (10b),(10c),(10d), and (10e), (13b)

where η(κ)k is the adaptive weight. For computational stabil-
ity, a scaled version of η(κ)k may be formulated as

η
(κ)
k =

max
k′∈K

Rk′
(
Θ(κ),F

(κ)
RF,F

(κ)
BB

)
Rk

(
Θ(κ),F

(κ)
RF,F

(κ)
BB

) , ∀k ∈ K. (14)

However, the objective function (13a) of the transformed
problem (13) is now tractable, but it is still non-convex due to
the presence of multiple fractional SINR terms. Furthermore,
the optimization variables FBB, FRF, and Θ are tightly
coupled both in the objective function and constraints of
(13), which exacerbates the challenges of solving (13). To
handle this issue, we adopt the popular BCD approach for
optimizing the BB TPC FBB, RF TPC FRF, and the NDRIS
phase shift matrix Θ with a fixed value η(κ)k ,∀k ∈ K at the
κth iteration. Moreover, at each stage of optimizing these
variables, we transform the non-convex objective function
(13a) to a convex one via the MM method, which seeks
suitable lower-bound surrogate functions.

A. Optimizing the BB TPC FBB

Given
(
Θ(κ),F

(κ)
RF,F

(κ)
BB

)
, we seek to optimize the next

feasible F
(κ+1)
BB that satisfies the following criterion

f (κ)
(
Θ(κ),F

(κ)
RF,F

(κ+1)
BB

)
> f (κ)

(
Θ(κ),F

(κ)
RF,F

(κ)
BB

)
,

(15)
by considering the following sub-problem for BB TPC

P1 : max
FBB

∑
k∈K

η
(κ)
k ln

(
1 + γ

(κ)
k (FBB)

)
(16a)

s. t.
∑
k∈K

fHBB,kΩ
(κ)
l fBB,k ≥ Γl,∀l, (16b)∑

k∈K

fHBB,kΩ
(κ)
p fBB,k ≤ Pt, (16c)

where γ
(κ)
k (FBB) =

∣∣∣∣(h(κ)
k

)H
fBB,k

∣∣∣∣2
K∑

j ̸=k

∣∣∣∣(h(κ)
k

)H
fBB,j

∣∣∣∣2+σ2
k

with

(
h
(κ)
k

)H
= hHbr,k

(
Θ(κ)

)
F

(κ)
RF ∈ C1×Nt ,

Ω
(κ)
l =

(
F

(κ)
RF

)H
aB(φl)a

H
B (φl)F

(κ)
RF ∈ CNRF×NRF and

Ω
(κ)
p =

(
F

(κ)
RF

)H
F

(κ)
RF ∈ CNRF×NRF . Then, by rearranging

the terms of (44) as given in Appendix A and neglecting the
constant quantities, one can equivalently express problem
P1 as follows

min
FBB

∑
k∈K

fHBB,k∆
(κ)fBB,k − 2

∑
k∈K

ℜ
{(

d
(κ)
k

)H
fBB,k

}
(17a)

s. t. (16b), (16c), (17b)

where ∆(κ) =
∑K

j=1 η
(κ)
j b

(κ)
j ∥h

(κ)
j ∥22 and

(
d
(κ)
k

)H
=

η
(κ)
k a

(κ)
k

(
h
(κ)
k

)H
,∀k ∈ K. Similarly, we transform the non-

concave constraint (16b) by approximating it with a suitable
surrogate function via the MM technique. Specifically, a
convex lower bound of the concave function fHBB,kΩ

(κ)
l fBB,k

around the point f (κ)BB,k can be constructed as follows [40]

fHBB,kΩ
(κ)
l fBB,k ≥ 2ℜ

{
fHBB,kΩ

(κ)
l fBB,k

}
− fHBB,kΩ

(κ)
l fBB,k.

(18)
Following the above transformations, problem (17) can be
reformulated as follows

min
FBB

∑
k∈K

fHBB,k∆
(κ)fBB,k − 2

∑
k∈K

ℜ
{(

d
(κ)
k

)H
vk

}
(19a)

s. t. 2ℜ
{
fHBB,kΩ

(κ)
l fBB,k

}
− fHBB,kΩ

(κ)
l fBB,k ≥ Γl,∀l ∈ L,

and (16c). (19b)

Observe that the Problem (19) above is convex, and we
solved it via the interior-point method [41].
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B. Optimizing the RF TPC FRF

Given
(
Θ(κ),F

(κ)
RF,F

(κ+1)
BB

)
, we now seek to optimize the

next feasible RF TPC F
(κ+1)
RF that satisfies the criterion of

f (κ)
(
Θ(κ),F

(κ+1)
RF ,F

(κ+1)
BB

)
> f (κ)

(
Θ(κ),F

(κ)
RF,F

(κ+1)
BB

)
,

(20)
by considering the following sub-problem for the RF TPC

P2 : max
FRF

∑
k∈K

η
(κ)
k ln

(
1 + γ

(κ)
k (FRF)

)
(21a)

s. t. tr
(
FHRFAlFRFB

)
≥ Γl,∀l ∈ L, (21b)

tr
(
FHRFINt

FRFB
)
≤ Pt, (21c)

|FRF(i, j)| = 1,∀i, j, (21d)

where γ
(κ)
k (FRF) = γk

(
Θ(κ),FRF,F

(κ+1)
BB

)
, B =(

F
(κ+1)
BB

)H
F

(κ+1)
BB and Al = aB(φl)a

H
B (φl). Further-

more, by defining ϕ = vec (FRF) ∈ CNtNRF×1 and
using the transformation pQr =

(
rT ⊗ p

)
vec(Q), the

quantity γ
(κ)
k (FRF) in terms of ϕ can be rewritten as

γ
(κ)
k (ϕ) =

∣∣∣∣(h̃(κ)
k,k

)H
ϕ

∣∣∣∣2
K∑

j ̸=k

∣∣∣∣(h̃(κ)
k,j

)H
ϕ

∣∣∣∣2+σ2
k

with
(
h̃
(κ)
k,j

)H
≜ (f

(κ+1)
BB,j )T ⊗

hHbr,k(Θ
(κ)) ∈ C1×NtNRF . Subsequently, following the

transformations (48) and (50) given in Appendix B, the
problem P2 can be recast as follows

P2−A : min
ϕ

F (κ)(ϕ) = ϕHT(κ)ϕ− 2ℜ{q(κ)ϕ}

(22a)

s. t. ϕHΛ
(κ)
l ϕ ≥ Γl, ∀l ∈ L, (22b)

ϕHΠ(κ)ϕ ≤ Pt, (22c)
|ϕ(n)| = 1, ∀n ∈ {1, . . . , NtNRF}, (22d)

where we have Λ
(κ)
l =

(
B(κ)

)T ⊗ A
(κ)
l and Π(κ) =(

B(κ)
)T ⊗ INt . Observe that the above problem P2−A is

challenging to solve in the Euclidean space due to the non-
convex UM constraint (22d). It is worth noting that the
constraint (22d) represents a (NtNRF)-dimensional complex
circle Riemannian manifold R = {ϕ ∈ CNtNRF×1 :
|ϕ(n)| = 1,∀1 ≤ n ≤ NtNRF}. Thus, we propose a
more efficient penalized Riemannian manifold optimization
(PRMO) algorithm that solves the problem P2−A in the Rie-
mannian space by using the penalized method. Specifically,
we first incorporate the constraints (22b) and (22c) into the
objective function as penalty terms, resulting in a problem
with only the UM constraint. Subsequently, we employ the
Riemannian conjugate gradient (RCG) framework [29], [30]
to handle the problem on the surface of the Riemannian
manifold R. Finally, we adjust the penalty term by updating
the penalty parameter to satisfy the constraints (22b) and
(22c). Next, we discuss the PRMO algorithm in detail.

1) Transformation to a penalized manifold problem:
To transform the problem P2−A to an unconstrained problem
on the surface of a Riemannian manifold R, we add (22b)
and (22c) into the objective function as a penalty term.
Consequently, the resultant problem is given by

min
ϕ

G(κ)(ϕ) = F (κ)(ϕ) + λ

(
L∑
l=1

Υ
(κ)
l (ϕ) + χ(κ) (ϕ)

)
(23a)

s. t. (22d), (23b)

where λ ≥ 0 is a penalty parameter and the penalty terms
Υ

(κ)
l (ϕ) , χ(κ) (ϕ) are defined as

Υ
(κ)
l (ϕ) ≜

(
max

{
0,Γl − ϕHΛ

(κ)
l ϕ

})2
, ∀l ∈ L, (24a)

χ(κ) (ϕ) ≜
(
max

{
0,ϕHΠ(κ)ϕ− Pt

})2
. (24b)

2) RCG framework:
For the given λ, problem (23) represents an unconstrained
manifold optimization problem with the non-convex UM
constraint (22d). Thus, we adopt the RCG method, which
differs from the conventional gradient descent method per-
formed in Euclidean space. The following are the key steps
performed in each iteration of the RCG method:
Riemannian gradient: The Riemannian gradient at point ϕ
denoted as ∇RG(κ)(ϕ) is obtained by orthogonally project-
ing the Euclidean gradient onto the tangent space of the
manifold TϕR using a projection operator. Mathematically,
∇RG(κ)(ϕ) is given by

∇RG(κ)(ϕ) = Projϕ∇G(κ)(ϕ)
= ∇G(κ)(ϕ)−ℜ

{
∇G(κ)(ϕ)⊙ ϕ∗

}
⊙ ϕ,

(25)

where Proj is the projection operator and ∇G(κ)(ϕ) repre-
sents the Euclidean gradient, which is evaluated as

∇G(κ)(ϕ) = 2T(κ)ϕ− 2q(κ)H + λ

(
L∑
l=1

ξ
(κ)
l +Ξ(κ)

)
,

(26)
where ξ

(κ)
l and Ξ(κ) are given by

ξ
(κ)
l =

{
4
(
ϕHΛ

(κ)
l ϕ− Γl

)
Λ

(κ)
l ϕ, Γl ≥ ϕHΛ

(κ)
l ϕ,

0, Γl < ϕHΛ
(κ)
l ϕ,

(27a)

Ξ(κ) =

{
4
(
ϕHΠ(κ)ϕ− Pt

)
Π(κ)ϕ, ϕHΠ(κ)ϕ ≥ Pt

0, ϕHΠ(κ)ϕ < Pt.

(27b)

Furthermore, the tangent space TϕR at a point ϕ on the
manifold R is a tangent space comprising vectors tangential
to the smooth curves on the manifold R, which is given by

TϕR = {z ∈ CNtNRF×1|ℜ{z⊙ ϕ∗} = 0NtNRF×1}. (28)

Steepest search direction: To accelerate convergence, we



obtain the efficient steepest search direction ζι+1 at the
(ι+1)st step of the RCG update, which aligns in the direction
of minimizing the objective function G(κ)(ϕ). To achieve
this, the search direction ζι at ϕι is combined with the
Riemannian gradient ∇RG(κ)(ϕι+1), indicating the descent
direction at point ϕι+1. However, these vectors cannot be
added directly, since they lie in different tangential spaces.
Therefore, we perform the following evolutionary operation
given by Tϕι

R → Tϕι+1
R, which maps the suitable search

direction. Mathematically, the above evolutionary operation
is given by

Tϕι 7→ϕι+1
(ζι) = ζι −ℜ

{
ζι ⊙ ϕ∗ι+1

}
⊙ ϕι+1. (29)

Thereby, the steepest search direction in the (ι+1)st step is
given by

ζι+1 = −∇RG(κ)(ϕι+1) + νι+1 Tϕι 7→ϕι+1
(ζι) , (30)

where νι+1 represents the Polak-Ribiére’s conjugate param-
eter [29].
Retraction: Similar to the classic gradient descent approach,
we evaluate the next point ϕι+1 by using the step size τι
and search direction ζι. Yet, it is very likely that the next
point ϕι+1 = ϕι + τιζι does not fall on the manifold R,
but rather lies on Tϕι+1R. Therefore, we perform retraction
mapping for retracting back the point from Tϕι+1R to the
manifold R as follows

Retrϕ : TϕR → R :

ϕι+1 =

[
(ϕι+τιζι)1

|(ϕι+τιζι)1|
, . . . ,

(ϕι+τιζι)NtNRF

|(ϕι+τιζι)NtNRF
|

]T
,

(31)

where the step size τι is obtained by the Armijo backtracking
line search algorithm [29].
Update of penalty factor: It is worth noting that the penalty
parameter λ plays a crucial role in achieving an optimal fea-
sible VRF. When λ is too small, then the resultant solution
may fall far outside the feasible region, potentially leading
to constraint violations. Thus, we increase the penalty factor
λ as λ = λ/w, where we have w ∈ (0, 1) for ensuring that
constraint violations are penalized sufficiently. Therefore,
we iteratively optimize the RF TPC FRF via employing
the PRMO algorithm, whose key steps are summarized in
Algorithm 1.

C. Optimizing the NDRIS phase shift matrix Θ

Given
(
Θ(κ),F

(κ+1)
RF ,F

(κ+1)
BB

)
, we further seek to optimize

Θ(κ+1) that satisfies the following criterion

f (κ)
(
Θ(κ+1),F

(κ+1)
RF ,F

(κ+1)
BB

)
> f (κ)

(
Θ(κ),F

(κ+1)
RF ,F

(κ+1)
BB

)
(32)

by considering the following sub-problem for the RIS phase
shift matrix

P3 : max
Θ

∑
k∈K

η
(κ)
k ln

(
1 + γ

(κ)
k (Θ)

)
(33a)

s. t.
∣∣θf(m),m

∣∣ = 1,∀m ∈M, (33b)

Algorithm 1 PRMO algorithm for solving (22)

Input: Θ
(κ)
RF, F(κ)

RF, F(κ+1)
BB , λ ≥ 1, 0 < w < 1, thresholds

ϵ1 > 0, ϵ2 > 0
Output: optimal RF TPC F

(κ+1)
RF

1: initialize: ι = 0, ϕι = vec(F(κ)
RF), ζι = −∇RG(κ)(ϕι)

2: while
(
∥∇RG(κ)(ϕι)∥22 ≥ ϵ1

)
do

3: find τι using Armijo backtracking line search algo-
rithm

4: update the next point ϕι+1 via retraction operation
(31)

5: evaluate the Riemannian gradient ∇RG(κ) (ϕι+1) us-
ing (25).

6: compute the search direction ζι+1 according to (30)
7: set ι← ι+ 1
8: end while
9: end while

10: if
(
Υ

(κ)
l (ϕι) ≤ ϵ2, ∀l ∈ L && Π(κ) (ϕι) ≤ ϵ2

)
11: return ϕ(κ+1) = ϕι stop
12: else
13: update λ = λ

w and go to step 2
14: end if
15: return: restore F

(κ+1)
RF from ϕ(κ+1)

where γ
(κ)
k (Θ) = γk

(
Θ,F

(κ+1)
RF ,F

(κ+1)
BB

)
. It is worth

noting that for the available CSI of hHr,k and G, and fixed RF
TPC F

(κ+1)
RF and BB TPC F

(κ+1)
BB , the beamforming gain of

the kth CU via RIS is given by
∣∣∣hHr,kΘGF

(κ+1)
RF f

(κ+1)
BB,k

∣∣∣2.
To maximize this beamforming gain via the MRC crite-
rion, one has to match the phases of Θ to that of the
ordered elements of the row vector hHr,k and column vector
GF

(κ+1)
RF f

(κ+1)
BB,k [12], [14]. To achieve this ordering, we

define the permutation matrices Jt and Jr, which, when
applied to the respective vectors, arrange the elements of
hHr,k and GF

(κ+1)
RF f

(κ+1)
BB,k in ascending order by multiply-

ing them on the right and left, respectively. As a result,
the beamforming gain of the kth CU can be written as∣∣∣hHr,kJtΘ̃JrGF

(κ+1)
RF f

(κ+1)
BB,k

∣∣∣2, where Θ̃ = D
(
θ̃
)

is the
conventional diagonal phase shift matrix with phase vector

θ̃ =
[
θ̃1, . . . , θ̃M

]T
∈ CM×1. Therefore, we optimize

the diagonal phase shift matrix Θ̃ and subsequently obtain
the phase shift matrix of the NDRIS as Θ = JtΘ̃Jr.
Consequently, the resultant optimization problem in terms
of Θ̃ is given by

P3−A : max
Θ̃

∑
k∈K

η
(κ)
k ln

(
1 + γ

(κ)
k (Θ̃)

)
(34a)

s. t.
∣∣∣θ̃m∣∣∣ = 1,∀m ∈M. (34b)



Singh et al.: Geometric Mean Rate Maximization in RIS-aided mmWave ISAC Systems Relying on a Non-Diagonal Phase Shift Matrix

Furthermore, due to the non-convex SINR terms in the
objective function and non-convex UM constraint imposed
on the elements of Θ̃ in (34), optimizing the diagonal phase
shift matrix Θ̃ is still challenging. To handle these issues, let
us define H(κ)

k = D(h̃Hr,k)G̃ ∈ CM×Nt , where h̃Hr,k = hHr,kJt

and G̃ = JrG. Thereby, the SINR term γ
(κ)
k (Θ) can be

written in terms of θ̃ as follows

γ
(κ)
k (θ̃) =

∣∣∣∣(ĥ(κ)
k,k

)H
θ̃

∣∣∣∣2
K∑
j ̸=k

∣∣∣∣(ĥ(κ)
k,j

)H
θ̃

∣∣∣∣2 + σ2
k

, (35)

where ĥ
(κ)
k,j ≜ H

(κ)
k F

(κ+1)
RF f

(κ+1)
BB,j ∈ CM×1. As a further

advance, we compactly rewrite (51) as follows

2ℜ
{(

p(κ)
)H

θ̃

}
− θ̃

H
E(κ)θ̃ + ĉ(κ), (36)

where E(κ),p(κ) and ĉ(κ) are given by

E(κ) =
∑
k∈K

η
(κ)
k b̂

(κ)
k

(
K∑
j=1

(
ĥ
(κ)
k,j

)H
ĥ
(κ)
k,j

)
, (37a)

p(κ) =
∑
k∈K

η
(κ)
k â

(κ)
k ĥ

(κ)
k,k, (37b)

ĉ(κ) =
∑
k∈K

η
(κ)
k ĉ

(κ)
k . (37c)

Upon following the modification given by Appendix C , the
Problem P3 can be recast as follows

P3−A : min
θ̃

I(κ)(θ̃) = θ̃
H
E(κ)θ̃ − 2ℜ

{(
p(κ)

)H
θ̃

}
(38a)

s .t. |θ̃m| = 1, ∀m ∈M, (38b)

Observe that the above problem (38) is still non-convex due
to the UM constraint (38b). To handle this problem, we again
adopt the RCG framework, where the Euclidean gradient of
I(κ)(θ̃) is evaluated as follows

∇I(κ)(θ̃) = 2E(κ)θ̃ − 2p(κ). (39)

Furthermore, the optimal solution to problem P3−A is ob-
tained via the PRMO approach presented in Algorithm 1,
where the steps required for updating the penalty parameter
are omitted. Algorithm 2 presents the pseudocode for de-
signing joint HBF and RIS phase shift matrices by solving
P0 utilizing the MM-BCD method.

D. Complexity analysis
This section evaluates the complexity of the MM-BCD op-
timization. In Algorithm 2, the interior-point method is em-
ployed for optimizing the BB TPC FBB, with the variables
involved being NRF and K. Thus, the computational com-
plexity of solving the convex Problem (19) to obtain FBB is
given as O(N3.5

RFK
3.5). Algorithm 1 focuses on optimizing

the sub-problems P2 and P3 associated with the RF TPC
FRF and NDRIS phase shift Θ, respectively. The significant

Algorithm 2 Proposed MM-BCD algorithm for solving (10)
Input: Pt, Γl ∀l ∈ L, convergence thresh-
old

1: initialize: κ = 0, feasible Θ(κ), F
(κ)
RF and F

(κ)
BB

2: repeat
3: compute η(κ)k , ∀k ∈ K using (14)
4: obtain F

(κ+1)
BB for given Θ(κ) and F

(κ)
RF by solving

(19).
5: calculate F

(κ+1)
RF for given Θ(κ) and F

(κ+1)
BB by solv-

ing (23) via Algorithm 1.
6: find Θ

(κ+1)
RF for given F

(κ+1)
RF and F

(κ+1)
BB by solving

(38) via RCG framework.
7: until the value of objective function fGM(Θ,FRF,FBB)

in (10) converges

contribution of the complexity of Algorithm 1 stems from the
computation of the Euclidean gradient (27) and (39), which
has the complexity order of approximately O(N2

t N
2
RF )

and O(M2). Hence, the total computational complexity
of solving sub-problems P2 and P3 using Algorithm 1 is
given as O(IrN2

t N
2
RF ) and O(M2), where Ir represents the

combined number of iterations required for performing RCG
and updating the penalty factor λ for sub-problem P2. From
the above analysis, the overall computational complexity
of Algorithm 2 for solving the GMR-max problem (10)
is O

[
Io
(
N3.5
RFK

3.5 + IrN2
t N

2
RF +M2

)]
, where Io denotes

the number of iterations required for convergence.

IV. SIMULATION RESULTS
In this section, we evaluate the communication and sensing
performance using simulations for characterizing the pro-
posed NDRIS-aided mmWave ISAC system. Throughout the
simulations, we use the following settings, unless explicitly
stated otherwise. As shown in Fig. 3, mmWave ISAC BS is
located at the origin (0, 0), configured with a ULA array of
Nt = 32 transceiver antennas and NRF = {4, 6} RFCs.
The NDRIS structure comprises M = 64 elements, and
it is deployed at the coordinates (dRIS, 5) m, where dRIS

represents the distance between the RIS and the ISAC BS.
Furthermore, we consider K = 4 CUs to be randomly placed
within a circle of 5 m radius centered at (30, 0) m. Following
[14], [29], [30], the mmWave channel gains {α(ℓ), βk},∀l, k
obey the distribution CN (0, 10−0.1PL(dm)), where PL(dm)
is the path loss, which is modeled as [14], [29], [30]

PL(di) [dB] = ε1 + ε210 log10(di) +ϖ, (40)

where ϖ ∈ N (0, σ2
ϖ) with ε1 = 72, ε2 = 2.92 and

σϖ = 8.7dB. Additionally, L = 3 RTs of interest are located
at angles of −60◦, −40◦, and −20◦, and the minimum beam
pattern gain requirement of each RT is assumed to be the
same Γl = Γ and set as Γ = 20 dBm. Furthermore, the
system operates at 28 GHz with a bandwidth of 251.1886
MHz and total power budget of Pt = 30dBm. The bandwidth
chosen reflects the typical value used in mmWave-aided



FIGURE 3. Simulation setup for the NDRIS-aided mmWave ISAC system.

systems, and it is consistent with the existing literature [9],
[10], [14], [15], [25], ensuring realistic modeling of high-
frequency system characteristics. Thus, the noise variance
N0 at each CU is set as σ2

k = −174 + 10 log10B = −90
dBm. Finally, all results are multiplied by log2 e to convert
unit nats/sec to unit bps/Hz. Furthermore, we compare the
proposed HBF-NDRIS scheme for jointly optimizing the
HBF TPCs and RM schemes to the following benchmark
schemes to demonstrate the efficacy of the algorithms pro-
posed for NDRIS-aided mmWave ISAC systems:

• Scheme 1 (FDB-NDRIS): This scheme considers an
NDRIS-aided mmWave ISAC system relying on fully
digital beamforming at the ISAC BS. Thus, we employ
the MM-BCD algorithm with NRF = Nt for optimizing
the hybrid TPCs and RM.

• Scheme 2 (HBF-DRIS): In this scheme, we consider a
conventional DRIS instead of NDRIS and employ the
MM-BCD algorithm for optimizing the hybrid TPCs
and RM of the DRIS.

• Scheme 3 (Random NDRIS): This scheme involves
setting the reflecting coefficients of the NDRIS RM to
random values uniformly distributed over the interval
[0, 2π).

Although sparse precoding techniques such as Sparse
Bayesian Learning (SBL) [42], [43] and codebook-based
methods like Orthogonal Matching Pursuit (OMP) [44], [45]
could be employed for HTPC design by reformulating the
weighted sum-rate maximization problem in (13) into a
weighted beamforming error minimization framework, as
shown in [46], their adoption is avoided in this work.
This is primarily due to the substantial additional com-
plexity introduced by these methods and their sensitivity to
algorithm-specific parameters. Given the already significant
computational burden of optimizing the NDRIS phase shift
matrix, incorporating SBL or OMP would render the overall
system optimization impractically complex for the NDRIS-
aided mmWave ISAC system considered.
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FIGURE 4. Achievable GM rate versus number of iterations.
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FIGURE 5. Achievable GM rate versus sensing threshold Γ.

A. Convergence behavior
Fig. 4 depicts the convergence performance of the proposed
MM-BCD algorithm with the sensing and power termination
thresholds of ϵ1 = 10−3 and ϵ2 = 10−2, respectively, for
the PRMO algorithm. As shown in the figure, the GM rate
objective function of the system for both NRF = 4 and 6
increases and then saturates within a few iterations, which
shows the convergence behavior of the MM-BCD algorithm.
Furthermore, the NDRIS-HBF scheme requires a similar
number of iterations as the DRIS-HBF for its saturation. This
demonstrates that despite employing switches, the computa-
tional efficiency of the NDRIS-HBF is close to that of its
DRIS-HBF counterpart.

B. Communication performance
Fig. 5 plots the achievable GM rate versus the sensing
threshold Γ of the RTs for NRF = 4 and 6. As seen from
the figure, the achievable GM rate of the system degrades
upon increasing Γ from 0 dBm to 25 dBm. This is intuitive
because a higher value of Γ results in the radiation of higher
transmit power towards the RTs with the aim of meeting
the higher sensing requirements, thereby compromising the
communication performance. Furthermore, the HBF-NDRIS
scheme with only NRF = 6 performs close to the FDB-
NDRIS scheme, which evidences the efficacy of the pro-
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FIGURE 7. Achievable GM rate versus reflective elements M .

posed PRMO algorithm in achieving the optimization of
the hybrid TPCs. Moreover, observe that the HBF-NDRIS
scheme outperforms the conventional HBF-DRIS scheme at
low as well as at higher values of Γ. This is due to the
fact that the NDRIS yields a higher beamforming gain than
DRIS architecture, rendering the former better suited for
ISAC mmWave-aided systems. Furthermore, the Random
NDRIS scheme performs poorly in contrast to the HBF-
NDRIS and HBF-DRIS schemes, which reveals the efficacy
of the proposed RCG method for the optimization of the RIS
phase shift matrix.

Fig. 6 illustrates the achievable GM rate versus the trans-
mit power of the system under consideration. As expected,
the achievable GM rate of the system increases upon in-
creasing the transmit power from 28 dBm to 34 dBm. This
is due to the fact that the sensing constraint is rendered less
effective at higher values of Pt, hence leading to the radiation
of higher power towards the CUs, which results in an im-
provement in the communication performance. Furthermore,
the performance of the HBF-NDRIS scheme is enhanced
in comparison to the benchmark schemes, clearly at all Pt

values, which demonstrates the efficacy of the NDRIS array
in mmWave ISAC systems.

To further investigate the effect of the reflective elements
on system performance, we plot the achievable GM rate
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FIGURE 8. Achievable GM rate versus number of CUs K.

versus the number of reflective elements M in Fig. 7. The
achievable GM rate of the system increases upon increasing
the number of reflective elements because of the higher
passive beamforming gain provided by the RIS. Observe that
the performance of the HBF-DRIS and Random schemes
saturates at a higher number of reflective elements for both
NRF = 6 and 4. By contrast, the performance of the
HBF-NDRIS scheme increases linearly upon increasing the
reflective elements. This is because the HBF-NDRIS scheme
enjoys a higher beamforming gain as a benefit of the optimal
MRC criterion for the optimization of the RIS phases. By
contrast, the HBF-DRIS scheme uses the EGC criterion for
phase optimization.

Fig. 8 reveals the effect of CUs on the achievable GM
rate of the system for a fixed sensing threshold and transmit
power. As expected, the GM rate decreases upon increasing
the number of CUs for a fixed transmit power due to the
resultant higher MUI and the availability of lower power
per CU. Furthermore, observe that the HBF-NDRIS scheme
using NRF = 6 performs close to that of the FDB-NDRIS
at a higher number of CUs, which shows the efficacy of the
PRMO algorithm in handling the MUI. The performance
of the HBF-NDRIS scheme with NRF = 4 degrades upon
increasing the number of CUs, but it still outperforms
the benchmark schemes, interestingly also for NRF = 6.
This demonstrates the improved MUI handling capability of
the HBF-NDRIS scheme in comparison to the benchmark
schemes.

To examine the effect of the RIS position, we plot the
achievable GM rate versus the horizontal distance of the RIS
by varying dRIS from 10 m to 90 m in Fig. 9. Observed from
the figure, the GM rate first decreases upon increasing dRIS

from 10 m to 50, but beyond its minimum, it increases again
upon increasing dRIS from 50 m to 90 m. This reveals the
fact that placing the RIS near the ISAC BS or near the CUs is
beneficial for achieving higher communication performance.
Moreover, the HBF-NDRIS scheme with both NRF = 6 and
4 outperforms the benchmark scheme at each value of dRIS,
which is a benefit of the higher passive beamforming gain
of the HBF-NDRIS scheme.
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Furthermore, to evaluate the efficiency of the proposed
fairness-based GM-rate maximization scheme, we compare
it against the following benchmark schemes:

• Scheme 1 (Comm-only): The available transmit power
is allocated exclusively to the CUs. Thus, we set Γ = 0
and optimize the BB TPC FBB, RF TPC FRF, and the
NDRIS phase shift matrix Φ via solving problem P0.

• Scheme 3 (MMR-max): This scheme aims to maxi-
mize the minimum CU rate by solving the following
optimization problem:

max
Φ,FRF, FBB

min
k=1,...,K

Rk(Φ,FRF,FBB) (41a)

s. t. (10b),(10c),(10d), and (10e). (41b)

Problem (41) is solved by reformulating it as a feasibil-
ity problem via the introduction of an auxiliary variable
for Rk(Φ,FRF,FBB), and subsequently applying the
MM-BCD algorithm for the joint optimization of the
HTPCs and the NDRIS phase shift matrix, along with
the auxiliary variable, as discussed in [46].

• Scheme 4 (SR-max): This scheme optimizes the
HPTCs and NDRIS phase shift matrix to maximize
the overall sum-rate of the system. The corresponding
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FIGURE 12. Sum beampattern gain versus the number of reflective
elements M .

optimization problem is formulated as:

max
Φ,FRF, FBB

K∑
k=1

Rk(Φ,FRF,FBB) (42a)

s. t. (10b),(10c),(10d), and (10e). (42b)

The SR-max problem is solved using the proposed
MM-Alt algorithm by fixing the CU weights as η(κ)k =
1, ∀k.

In Fig. 10, we plot the achievable minimum rate of the
system. It can be observed that the MMR-max scheme
achieves the highest minimum rate, as it explicitly maximizes
the minimum CU rate through targeted power allocation.
Importantly, the proposed GM-rate maximization achieves a
minimum rate that is very close to that of the optimal MMR-
max scheme, while significantly outperforming the SR-max
scheme for both NRF = {6, 4}. These results verify the
effectiveness of the GM-rate maximization framework for
achieving rate fairness in mmWave ISAC systems.

C. Sensing performance
To examine the sensing performance of the RT, Fig. 11
depicts the transmit beampattern of the proposed NDRIS-
HBF scheme having a fixed transmit power and fixed number
of reflective elements for the different values of sensing
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thresholds Γ = {15, 20, 25} dBm. As seen from the figure,
the main lobes of the transmit beampattern point towards the
RTs, and thereby the proposed scheme is able to clearly sense
the three RTs located at −40◦,−20◦, and 0◦. Furthermore,
the uncertainty observed between 20◦ and 80◦ corresponds to
the angular region containing randomly placed CUs, leading
to variation in the beampattern gain. Moreover, observe that
the gain of the main lobes pointing towards the RTs increases
upon increasing the sensing threshold Γ. This is because
of the higher power radiated towards the RTs required for
meeting the increased sensing requirements.

To further investigate the sensing performance of the
system, we evaluate the sum beampattern gain of the RTs
by considering the following optimization problem

P4 : max
FRF, FBB, Θ

L∑
l=1

P (φl) (43a)

s. t.

(∏
k∈K

Rk(Θ,FRF,FBB)

) 1
K

≥ Rth, (43b)

(10c), (10d), and (10e), (43c)

where Rth denotes the rate thresholdfor the communication
performance of the system. To solve P4, we begin by
transforming the intractable GM rate constraint (43b) to the
weighted sum rate constraint. Subsequently, we adopt the
MM-BCD approach to optimize the hybrid TPCs and passive
NDRIS phase shift matrix, wherein three subproblems are
formulated corresponding to the BB TPC, RF TPC, and
NDRIS phase shift matrix, which are then solved via the
BCD method. Furthermore, the MM method transforms the
non-convex rate expression involved in the weighted sum
rate constraint to an equivalent convex form followed by
exploiting the PRMO and RCG-based algorithms to design
the RF TPC and the RIS phase shift matrices, respectively.

In Fig. 12, we plot the sum beampattern gain versus the
number of reflective elements for a fixed value of the rate
threshold Rth = 10 bps/Hz. Although the RIS is not involved
in sensing the RTs, the sum beampattern gain of the system
increases upon increasing the number of reflective elements,

since a lower portion of the available power is used for the
CUs due to the the RIS. As a result, a large fraction of
power is radiated in the direction of the RTs, which increases
the sum beampattern gain of the system. Furthermore, the
HBF-NDRIS scheme outperforms the benchmark schemes,
thanks to the greater passive beamforming gain offered by
the NDRIS.

Fig. 13 depicts the sum beampattern gain versus the rate
threshold of the HBF-NDRIS scheme for fixed values of
NRF = 6 and transmit power Pt = 30 dBm. Furthermore,
we compare the proposed GM rate-based approach to the
sum rate-based method, wherein we obtain the HTPCs and
NDRIS phase shift matrix for the sum rate by considering
the weighing factor η(κ)k as unity in each iteration. As seen
from the figure, the sum beampattern gain decreases upon
increasing rate threshold Rth, since more transmit power is
allocated towards satisfying the higher rate requirements of
the CUs, thereby leading to a reduction in the power radiated
towards the RTs. This observation illustrates the inherent
trade-off between sensing accuracy and communication rate.
The GM rate-based approach ensures rate fairness by allo-
cating a larger fraction of power to CUs with weaker channel
conditions, which further limits the power available for
sensing, resulting in a lower sum beampattern gain compared
to the sum rate-based method. Nevertheless, the GM rate-
based approach attains comparable sensing performance to
the sum rate-based design when the number of RIS elements
is increased to M = 128, highlighting the advantage of
incorporating NDRIS. These results confirm that the pro-
posed HBF-NDRIS scheme is capable of simultaneously
achieving rate fairness among the CUs and near-optimal
sensing performance, thereby effectively balancing the trade-
off between communication and sensing objectives.

V. CONCLUSIONS
We proposed a framework for joint HBF and RIS coefficient
matrix design in an RIS-aided mmWave ISAC system using
the NDRIS phase shift matrix, enabling multi-user commu-
nication via reflected links, while achieving target sensing. In
contrast to existing communication-centric designs focused
on sum rate maximization, we proposed maximizing the GM
rate of CUs, while meeting the radar sensing requirements
for each RT, adhering to the transmit power budget, the
UM constraints of the RF TPC, and the NDRIS phase shift
matrix. To obtain a solution to this challenging problem,
we first converted the intractable GM rate problem to an
equivalent tractable form via the MM framework. Thereafter,
we successfully developed an efficient iterative algorithm
based on the BCD framework via the construction of the
corresponding minorant quadratic function for the objective
function at each stage of optimization of the BB TPC,
RF TPC, and RIS coefficients. Finally, simulation results
were presented, which vindicated the fact that employing
an NDRIS provides more control over the propagation
paths, hence leading to higher communication performance



than the conventional RIS, all while meeting the sensing
requirements. Furthermore, achieving both balanced sum and
minimum rates by maximizing the GM rate without the need
to impose additional requirements on the CU rates.

Appendix A
DERIVATION OF TRANSFORMATION (16)
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Appendix B
DERIVATION OF TRANSFORMATION (21)
The quadratic minorizing function of γ(κ)k (ϕ) at point ϕ(κ)

is formed by considering ū =
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Subsequently, we rewrite (46) in a compact form as follows

2ℜ
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In a similar fashion, applying the matrix transformation
tr
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)
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vec(X), the con-

straints (21b) and (21c) can be transformed as follows
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Appendix C
DERIVATION OF TRANSFORMATION (34)
The quadratic minorizing function of (34a) at point θ̃
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where â(κ)k , b̂
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k , and ĉ(κ)k are given by
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