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ARTICLE INFO ABSTRACT

Communicated by Mehdi Ghoreyshi This study presents a framework for predicting unsteady transonic wing pressure distributions due to pitch and
plunge movement, integrating an autoencoder architecture with graph convolutional networks and graph-based
temporal layers to model time dependencies. The framework compresses high-dimensional pressure distribution
data into a lower-dimensional latent space using an autoencoder, ensuring efficient data representation while
preserving essential features. Within this latent space, graph-based temporal layers are employed to predict
future wing pressures based on past data, effectively capturing temporal dependencies and improving predictive
accuracy. Four different temporal schemes have been tested, where the spatio-temporal graph convolutional
network achieved the best accuracy thanks to convolution in both time and space. This combined approach
leverages the strengths of autoencoders for dimensionality reduction, graph convolutional networks for handling
unstructured grid data, and temporal layers for modeling time-based sequences. To benchmark the efficacy of
the framework, a comparison with the Dynamic Mode Decomposition with control technique is performed.
Validation is conducted using the Benchmark Super Critical Wing test case at Mach 0.74, demonstrating that
the proposed approach achieves accuracy comparable to high-fidelity computational fluid dynamics simulations
while significantly reducing prediction time. This work underscores the potential of the developed framework as
a scalable, efficient, and robust solution for the analysis of nonlinear unsteady aerodynamic phenomena.

1. Introduction corporates motion inputs, enabling effective reconstruction and fore-

casting of flow responses under dynamic excitation. DMDc has been

The complexity of aerodynamic analysis poses a significant challenge
across various engineering applications. Accurately predicting challeng-
ing physical phenomena involves capturing detailed variations that arise
from the complex interaction of multiple forces. Traditional computa-
tional fluid dynamics (CFD) methods are effective in many scenarios,
but often require substantial computational resources and may struggle
with accurately representing dynamic and unsteady phenomena under
specific flow conditions [1]. These limitations highlight the need for
more efficient and robust approaches.

To alleviate these challenges, reduced-order models (ROMs) have
been widely adopted. Among these, Proper Orthogonal Decomposition
(POD) [2] and Dynamic Mode Decomposition (DMD) [3] offer efficient
approximations of high-dimensional flowfields through low-rank rep-
resentations. The DMD framework, in particular, excels at extracting
coherent spatio-temporal patterns from unsteady flows. Its extension,
Dynamic Mode Decomposition with control (DMDc) [4], explicitly in-

successfully applied in various fluid dynamic contexts, including aero-
dynamic [5-7] and aeroelastic [8,9] applications.

Recent advancements in machine learning (ML) offer alternative
paths to surrogate modeling by enabling data-driven learning of com-
plex nonlinear patterns. Initial efforts employed deep neural networks to
reconstruct or forecast aerodynamic fields [10-13]. However, aerospace
engineering problems often rely on non-homogeneous and unstructured
grids modeling, which necessitate more advanced ML architectures that
can handle this complex data structures.

Geometric deep learning, introduced around 2017 [14], utilizes
graph neural networks (GNNs) for graph-structured data [15,16]. GNNs
excel in capturing relationships and dependencies within graph nodes,
making them ideal for tasks involving topological information [17-19].
Graph Convolutional Networks (GCNs), a specific type of GNN, leverage
convolution operations on graphs [20]. GCNs are particularly promis-
ing in aerospace engineering, as they can handle data with spatial
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Nomenclature

Acronyms

AE autoencoder

CFD computational fluid dynamics
GCN graph convolutional network
GNN  graph neural network

GRU gated recurrent unit

LSTM long short-term memory

ML machine learning

MAE  mean absolute error

MAPE mean absolute percentage error
MW LS moving weighted least squares
RM SE root mean square error
STGCN spatio-temporal GCN

Symbols

AoA,  freestream angle of attack........................... deg
Cp lift coefficient

Cy pitching moment coefficient

Cp pressure coefficient

M Mach number

[4 pitchangle.........oooiiiiiiiiiiii i rad
0 pitchrate. .......ooiiiie it rad/s
1 pitch acceleration ............c..cooiiiiiiiian.. rad/s?
I3 PlUNGe .. .e e m
é plungerate .......ovvuiiiiiiii i m/s
é plunge acceleration...............c.coiiiiiiiint m/s?

structures and are suitable for modeling complex aerodynamic geome-
tries [21-25]. In fact, while Convolutional Neural Networks (CNNs)
perform well on regular grid data like images and texts, GCNs are better
suited for irregular domains, such as mesh grids, by applying convolu-
tion operations directly on graphs [20]. Indeed, GCNs can directly input
raw 3D model mesh data without pre-computation or feature extraction,
enhancing predictive capabilities without bias or information loss [17].
Another important challenge concerns the high dimensionality of
model input data. As with CNN architectures for image recognition
tasks, deep and complex architectures struggle with propagating in-
formation over a large number of features. CFD simulations typically
involve the use of fine meshes, consisting of a significantly large num-
ber of points, increasing both complexity and computational require-
ments. To manage this, careful data compression is needed to retain only
the essential features without losing critical information. Previous stud-
ies have demonstrated that dimensionality reduction can be effectively
achieved using an autoencoder (AE) architecture [26,25,27,28]. AEs,
through their encoding and decoding processes, can learn a compact
and efficient representation of the data, ensuring that critical informa-
tion is preserved while reducing the computational burden [29,30].
Building on our previous study [31], which focused on steady-state
problems, we now extend our methodology to address unsteady phe-
nomena. Predicting time-varying pressure distributions relies primarily
on capturing temporal dependencies within the data. Recurrent Neural
Networks (RNNs), with their ability to track evolving patterns through
a hidden state, are particularly well-suited for this task. Their effec-
tiveness in modeling unsteady behaviors and dynamic responses makes
them an ideal choice for forecasting time series in aerodynamic applica-
tions [32,33]. However, RNNs often struggle with long-term dependen-
cies due to challenges like vanishing gradients [34]. To address these
limitations, Long Short-Term Memory (LSTM) networks and Gated Re-
current Units (GRUs), both RNN variants, have been developed. LSTMs
introduce gates that control the flow of information, making them more
effective at learning long-term dependencies [32]. GRUs offer a sim-
pler structure than LSTMs, using fewer gates while still managing to
capture long-term dependencies, often with faster training times [33].
LSTMs have been extensively applied in aerodynamic modeling, such
as predicting the dynamic response of aeroelastic systems and tur-
bulence [35,36], while GRUs have also proven effective for similar
tasks [37-39]. More recently, attention mechanisms have revolutionized
time series forecasting by enabling models to focus on the most relevant
parts of the input sequence [40,41]. This capability leads to more accu-
rate and robust predictions, as demonstrated for instance by improve-
ments in maintenance scheduling through estimating icing probabilities
on wind turbine blades [42], stable long-term fluid dynamics predic-
tions using transformer-style temporal attention [43], and enhanced
design and control of hypersonic vehicles by capturing spatiotemporal
turbulence characteristics [44]. Attention mechanisms enable models

to weigh the importance of different time steps dynamically, thereby
improving the ability to model complex temporal patterns. Similarly,
Spatio-Temporal Graph Convolution Networks (STGCNs) have shown
strong performance in modeling such patterns by processing entire se-
quences in parallel and applying filters across the time dimension, cap-
turing both short- and long-term dependencies efficiently [45].

To fully harness the potential of these temporal modeling techniques,
it is important to recognize that each approach offers distinct bene-
fits depending on the nature of the data and the specific application.
With this in mind, our methodology investigates and evaluates several
temporal layers—LSTMs, GRUs, attention mechanisms, and STGCNs—
to effectively capture the temporal dependencies in our case study. By
integrating graph convolutional networks with AEs and temporal lay-
ers, our proposed approach leverages the strengths of each method to
enhance the prediction of unsteady surface pressure distributions over a
transonic wing. This integrated framework not only handles the unstruc-
tured grids typical in aerodynamic data through GCNs but also ensures
efficient dimensionality reduction through AEs. By comparing different
temporal approaches, we aim to provide a comprehensive and scalable
solution for complex aerodynamic analyses, delivering more accurate
and computationally efficient predictions for unsteady phenomena. To
provide a clear reference for performance gains, we benchmarked the
proposed framework against a DMDc model due to its relevance and
maturity in this field.

The structure of the paper is as follows: Section 2 details the im-
plemented methodology, providing a comprehensive explanation of the
architecture and its components. Section 3 describes the test case used to
validate the model, focusing on its aerodynamic challenges. Section 4
presents the results, comparing the performance of different architec-
tures designed to address temporal challenges, while evaluating the
impact of various temporal layers. Finally, Section 5 summarizes the
conclusions drawn from the study and suggests potential future direc-
tions for improving the model accuracy and scalability in different aero-
dynamic scenarios.

2. Methodology

This section outlines the methodology used in developing the model.
It begins with an overview of the spatio-temporal graph convolutional
autoencoder framework, denoted as AeroNet, then provides an in-depth
description of each component of the model.

2.1. AeroNet
The proposed AeroNet framework integrates a GCN-based AE ar-

chitecture with a temporal prediction layer to model and forecast
wing pressure distributions for subsequent timesteps. The encoding and
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Fig. 1. Overview of the AeroNet architecture for predicting wing pressure distributions. Module A represents the autoregressive component, incorporating previously
predicted Cp values, while Module B processes spatial coordinates and motion data from previous timesteps.

decoding modules operate with graph nodes based on the pressure-
gradient distribution values across the wing surface, performing pool-
ing and unpooling operations on the input, respectively. Initially, a
pre-trained AE is used to compress the pressure distribution data into
a lower-dimensional representation, preserving fundamental features
while reducing computational complexity. This pre-training step re-
duces the full model training time and computational costs, enhancing
the overall efficiency of the prediction process. After the pooling op-
eration, the reduced-space representation is passed through a temporal
prediction layer. This layer is designed to capture the temporal depen-
dencies in the data and forecast wing pressure from a series of previous
timesteps to a future one. To account for the complexities caused by
shock waves and boundary layer separation, which affect force and
moment calculations, a penalty term for the pitching moment coeffi-
cient CMy is added to the Mean Absolute Error (MAE) loss function.
This addition is represented as Loss = MAE + A4 - C My with 4 =0.01
for dimensional consistency. The combination of AE, GCN layers, and
temporal modeling enables the framework to provide precise and reli-
able pressure predictions, which are crucial for analyzing aerodynamic
performance.

A visual overview of the model architecture is presented in Fig. 1.
The model input features include data from the n previous timesteps
(t -1, ..., t — n): spatial coordinates (x,y,z); pitch (8,_,,0,_,.0,_,);
plunge (¢,_,,,&,_,); and pressure coefficient (C p_,)» with n = 3. Finally,
the output of the model is represented by the pressure coefficient (C P, )
at the current timestep 7. The choice of this sequence length ensures that
the model has access to sufficient temporal context to capture the evo-
lution of unsteady aerodynamic features, such as flow separation and
shock dynamics, while avoiding the inclusion of redundant or excessive
data, which would increase computational complexity without signifi-
cantly improving accuracy.

Building on this, we developed two different types of architecture:
a feedforward model and an autoregressive-moving-average (ARMA)
model. In the case of the feedforward model, the inputs consist solely
of the coordinates of the wing surface and the prescribed motion at n
previous timesteps casted on each graph node (using only Module B in
Fig. 1). This model does not incorporate any past predicted pressures
into its input, relying purely on the historical spatial and motion data of
the wing to make its predictions. Conversely, the ARMA model includes
additional information in its input by integrating the pressures predicted
at prior timesteps (utilizing both Module A and Module B in Fig. 1).
This autoregressive component allows the ARMA model to potentially
capture more complex temporal dependencies by considering the history
of its own predictions, aiming to enhance the accuracy of the pressure
forecasts. Implementing both models serves to evaluate the trade-offs
between simplicity and predictive depth: while the feedforward model

offers a simpler, stable approach less prone to error accumulation, the
ARMA model is designed to capture complex temporal dependencies
and unsteady behaviors, potentially enhancing accuracy under dynamic
conditions.

To limit error accumulation in the time-marching scheme, we em-
ployed a Back-Propagation Through Time (BPTT) algorithm [34] for
the total loss calculation, dividing the dataset into mini-sequences. The
model processes each sequence consecutively, accumulating error over
time. After processing each sequence, the loss function is applied to up-
date the model parameters through backpropagation. A sequence length
of three was chosen based on its performance, yielding the best results.

2.1.1. Graph representation

A graph G is defined by a set of nodes N and edges E, where each
edge (i, j) represents a directed link from node i to node j. Self-loops oc-
cur when (i,i) € E. These connections are represented by an adjacency
matrix A, where A; ;=1 if (i,j) € E, and 0 otherwise. Costs for edges
can be included by replacing 1 with the cost and using oo for absent
connections. A path p(i — j) is a series of steps from i to j, where each
step (h,k) € E. A graph is acyclic if no path returns to a starting node,
otherwise, it is cyclic.

In our case, the mesh can be represented as a cyclic graph G, where
each grid point i serves as a node. Each node carries features such as
spatial coordinates (x, y, z), pitch (6, 8, §), plunge (£,£), and the pressure
coefficient Cp from the previous n timesteps. We call node features y;,
while edge weights ¢;;.

Graph connectivity is represented by the adjacency matrix A, where
each weight ¢;; is the Euclidean distance between grid points i and j:
¢;; = |Ix; —x;l,. To normalize the weights to (0, 1] and include self-loops
(e;; = 1), the adjacency matrix is augmented: A = A + L. Since edges are
bidirectional (e;; =¢;,), A is symmetric.

Due to the graph sparsity, the adjacency matrix is stored in a
memory-efficient Coordinate List (COO) format, where the edge-index
matrix contains pairs of node indices, and the edge-weight matrix stores
the corresponding weights, with n, being the number of edges.

2.1.2. Graph convolutional networks

GCNs are a particular type of ML algorithms that are based on graph
theory. GCNs extract features from graphs by aggregating information
from neighboring nodes using a graph convolutional operator. This op-
erator, originally introduced by Duvenaud et al. in 2015 for molecular
fingerprints [46], was later extended by Kipf et al. in 2016 [20] and is
now implemented in PyTorch-Geometric library [47]. GCNs effec-
tively generate node embeddings that capture structural information,
making them ideal for tasks requiring an understanding of relationships
between nodes.
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The GCN operator follows the layer-wise propagation rule that is
defined by the equation:

HD = oD 3AD": HOW D) )

Here, H") and HU*D are the node feature matrices at layers / and
I +1, A is the adjacency matrix with self-loops, D is the degree matrix
calculated on A, W is the matrix of trainable weights, and ¢ is the
activation function. This rule propagates information from a node to its
neighbors, allowing nodes to gather information from larger neighbor-
hoods as layers are stacked. Equation (1) is a first-order approximation
of trainable localized spectral filters g, on graphs [20].

A spectral convolution g, * x of an input graph X with a filter g, in
the Fourier domain is defined as:

gp *x=Ug Ul x 2)

where U contains the eigenvectors of the graph Laplacian, L. By approx-
imating the spectral filter g, using Chebyshev polynomials [48], GCNs
perform efficient localized filtering on graph data. This approximation
simplifies the convolution process, making it feasible for large-scale
graphs while preserving the ability to extract meaningful node features.

2.1.3. Temporal layers

In our framework, we explored various layers for temporal modeling:
GRUs, LSTMs, attention mechanisms, and STGCN layers. Each method
offers a distinct way to capture temporal dependencies, with varying
level of complexity and performance suited to different contexts. In this
section, we provide a brief overview of these methods, highlighting their
key features and how they are integrated into our model. This compar-
ison helps evaluate their effectiveness in handling temporal sequences.

Gated Recurrent Unit

The combination of GCNs with GRU [33] offers several key advan-
tages when dealing with spatio-temporal data. GRUs are widely used
and well-suited for modeling temporal dependencies, but they can not
directly used with non-Cartesian domains like graphs, where spatial re-
lationships are irregular. By incorporating graph convolution operators
on GRUEs, it is possible to improve the generalization capability of the
model by replacing traditional convolution with a graph convolution,
which can handle arbitrary graph structures and effectively learn from
unstructured data.

Based on the approach in [49] where recurrent networks for fixed
grid-structured sequence are introduced, Seo et al. [50] proposed a
Graph Convolutional Recurrent Network (GCRN) architecture for build-
ing a generalized GRU that works with unstructured sequence. To gen-
eralize the model to graphs, the 2D convolution is replaced by the graph
convolution operator, here * o introduced in (2). In particular, GRU cell
in GCRN is defined by:

zp=0(Wy, %y X, +Up %5 hy_j +b;)

ry =Wy #g X, + Uy, %, by_ +b,)

hy= W,y 5y X, + Upy 5g (r, © By_y) +by)
hy=(1-z)0h_, +z0h,

Here, W, *, x, refers to the graph convolution operation of x,
with spectral filters which are functions of the graph Laplacian L
parametrized by K Chebyshev coefficients. z, is the update gate vec-
tor, r, is the reset gate vector, h, is the candidate activation vector, h,
is the hidden state at time step #, W and U are the trainable weight
matrices for the input and hidden states, respectively, o is the logis-
tic sigmoid function, and ¢ is the hyperbolic tangent function (or other
possible activation functions). The operator ® denotes the Hadamard

product, while b represents the biases.

Long Short-Term Memory
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LSTM networks [32] are particularly useful when the data involves
long-term dependencies, as they include memory units that can store
information across multiple timesteps. This makes them potentially suit-
able to model unsteady aerodynamic flows where past behavior in-
fluences future forecasts over long periods of time. While both LSTM
and GRU address the vanishing gradient problem and are designed to
capture temporal relationships, LSTM includes additional memory struc-
tures that enable it to retain information over longer time periods, by
sacrificing computational power and increasing the number of parame-
ters. The implementation of a convolutional graph based LSTM follows
a similar approach presented before with GRU [50], by creating a model
that replaces the 2D convolution with the graph convolution operator
*,. In particular:

iy=0c(Wy kg X+ Wi *g h_+w,;0c_;+b)
Ji=oWyyp s X+ Whyp kg b +Wer @ciy +by)
=0 +i; QW %, x,+ Wy %, hy_y +b,.)
0o, =c(W,, *g X;+ Wi, g h_1+w,0c +b,)
h,=0,0 ¢(c,)

Where i, is the input gate, f, the forget gate, c, the cell state, o, the
output gate and A, the hidden state, which is the output of the LSTM
at time step ¢. As before, o is the logistic sigmoid function, ¢ is the hy-
perbolic tangent function, W represents the trainable weight matrix,
and the support K of the graph convolutional kernels is defined by the
Chebyshev coefficients. This extension of the standard LSTM architec-
ture enables the model to learn temporal dependencies while also taking
into account the spatial structure of the data.

Attention Mechanisms

Incorporating attention mechanisms allows for dynamically assign-
ing importance to different time steps in a temporal sequence, which
is especially useful in graph-based models where both complex spatial
and temporal dependencies must be captured. Following the work of Bai
et al. [45], attention mechanisms can be employed to re-weight the in-
fluence of hidden states of a GCRN across time, enabling the model to
focus on the most relevant time points for prediction, rather than treat-
ing each equally. The model was constructed by combining GCN and
GRU to compute both the spatial and temporal domains of the graph,
by using the graph convolution operator *, introduced before. In addi-
tion, the attention mechanism is used to compute a context vector that
selectively weighs the hidden states of the GCRN.

First, for each time step, the hidden states of the GRU A, are passed
through an attention layer, where attention scores , are computed us-
ing a softmax function. These scores are then used to weigh the hidden
states, resulting in the context vector C, which captures the global vari-
ation information.

In particular, given a series of hidden states calculated by the recur-
rent network for T' time steps: H = {h}, h,, ..., hr }, the attention weights
a;,1 <t <T are computed using a softmax function on the scores de-
rived from a multilayer perceptron (MLP):

exp(e;)
T expler)
where w®, w@®, pV, and @ are trainable weights and biases in the
MLP. The context vector C is then calculated by the weighted sum and

used for implementing the attention mechanism on the GCRN hidden
states:

T
Cc=Y ah,
t=1

By combining GCNs for spatial feature extraction with GRUs and
attention mechanisms for temporal modeling, the model can capture
both short-term and long-term dependencies in the data.

e, =w?WVH + b+ 5P, a,=
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Fig. 2. Diagram of the pooling and unpooling modules used in the AE for dimensionality reduction and reconstruction.

Spatio-temporal Graph Convolution

STGCN is introduced by Yu et al. [51] as a method to capture tem-
poral dependencies in spatio-temporal data by applying convolutions
across the time dimension. Unlike RNNs, which process inputs sequen-
tially, temporal convolutions handle entire sequences at once, allowing
for parallelization and faster computation. The temporal convolutional
block consists of 1-D causal convolutions followed by a Gated Linear
Unit (GLU) to introduce non-linearity and control the flow of informa-
tion.

For each node in the graph G, the temporal convolution layer ex-
plores K, neighboring elements along the time axis. This approach does
not require padding, and as a result, the length of the sequence decreases
by K, — 1 at each layer. Given an input sequence Y € RM*Ci with M
time steps and C; channels, the convolution kernel I" € RX*Ci*2C, maps
the input to a single output element [P Q] € RIM~Ki+Dx2C,) The GLU
is then applied, splitting [P Q] into two parts, and the output of the
temporal convolution is given by:

T#p Y =P O o(Q) € RM-KH+IXC,

where P and Q are the inputs of the GLU, © denotes the element-
wise Hadamard product, and o is the sigmoid function. The GLU se-
lectively gates the information flow, determining which parts of the
input sequence are relevant for capturing dynamic temporal dependen-
cies. Stacking multiple layers of these temporal convolutions enables the
model to capture both short- and long-term patterns effectively.

This approach can also be generalized to 3D tensors, where the same
convolution kernel is applied to every node Y; € RM*Ci in the graph G,
resulting in the operation I' # Y with Y € RM*¥C;,

2.1.4. Dimensionality reduction/expansion module

The dimensionality reduction and expansion process aims to sim-
plify the computational load by eliminating redundant information and
concentrating on key regions where nonlinear phenomena occur. This
method is based on our previous work [31] and is visualized in Fig. 2,
which illustrates both the pooling (reduction) and unpooling (expan-
sion) phases. These phases form the core of the encoding and decoding
operations in the AE architecture.

During the pooling phase, points are selected based on pressure gra-
dients to create a reduced point cloud. This strategy ensures that key
regions with high gradients are retained, while areas with lower gradi-
ents are simplified. The pressure gradient at each node i is calculated
assuming that pressure p varies linearly in all spatial directions, as de-
scribed by:

pi— Do =Ap; = Ax;p, + Ay;p, + Az;p, 3)

Here, p, represents the pressure at a reference node, while Ax;, Ay;,
and Az; are the spatial differences between neighboring nodes i. Using
a least-squares method, the gradient at each node is determined. Nodes

are then selected for the reduced space based on a probability function
driven by gradient magnitudes:

_ 2 /n
1—e2
where i refers to the node index ordered by gradient values, n is the
total number of nodes, and Pr; and Pr, are the probabilities assigned
to the highest and lowest normalized gradient values, respectively set
here to 0.2 and 1.0. Adjusting these two values allows the methodol-
ogy to control the strength of the bias towards high-gradient regions.
The mathematical form of Equation (4) may be adjusted to suit spe-
cific applications. The choice of this function in our case is based on a
heuristic modeling approach that prioritizes higher gradient nodes while
maintaining a smooth probabilistic transition across the ordered set. The
exponential form provides a nonlinear but smooth decay in importance,
offering more control over the sampling distribution than a linear or
stepwise function. The function behavior can be adjusted by changing
the range of the subtraction (Pr; — Pr,). Here, Pr; (lower probability
value) corresponds to the nodes with the highest gradient magnitudes,
which we aim to retain with higher priority, while Pr, (higher proba-
bility value) is assigned to the nodes with the lowest gradients, making
them more likely to be discarded. In practice, adjusting these two val-
ues allows the methodology to control the emphasis on sharp or smooth
gradient features.

To reconnect the reduced point cloud, Mahalanobis distance (MD)
is used [52], which accounts for the spread and covariance of the point
distribution. MD between two points x and y is given by:

Dpy(x. ) =Vx-nTSl(x-y) 5)

where S is the covariance matrix of the original point distribution. MD
is computed in the reduced point distribution, for each point to obtain
a new set of nearest neighbors, from a reduced selection [31]. With
MD, each point is connected according to the distribution of points in
the finer mesh, using the covariance matrix computed in the original
space. This method helps maintain accurate connectivity in the reduced
graph, avoiding false connections caused by proximity errors when us-
ing Euclidean distance [31]. After MD is applied, the reduced point
cloud becomes a new coarser graph.

Once the reduced graph is constructed, node values are interpolated
using the Moving Weighted Least Squares (MWLS) method [53,54]. This
methodology can be applied during both the encoding and decoding
phases by inverting the interpolation matrix. Here we use the nomencla-
ture source and destination grids, which represents the finer and coarser
grids, respectively, during pooling, and vice versa during unpooling. The
interpolation matrix Ig _g, is calculated to map any scalar feature y
values from the source grid S, to the destination grid S,. The final in-
terpolated value at each node x; for the specific feature y of the source
grid is then computed as:

Pr(i)=1+1 (Pry—Pr,)+Pr; for i=1,...,n (€)]
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Fig. 3. Schematic of the pre-trained AE architecture for compressing and reconstructing the Cp, data within the AeroNet framework.

Table 1

Parameters and types of training, test and validation signals. DS: damped
Schroeder-phased harmonic, US: undamped Schroeder-phased harmonic,
SH: single harmonic.

Signals Ky [-] ay [deg] kg [-] a; [m] Type
Training 1 0.114 0.80 0.152 -0.098 DS, 0 >0,¢ <0
Training 2 0.114 -0.80 0.152 0.098 DS, 0 <0,¢ >0
Training 3 0.148 1.00 0.181 -0.123 DS, 0 >0,¢ <0
Training 4 0.148 -1.00 0.181 0.123 DS, 0 <0,¢ >0
Test 1 0.091 0.70 0.123 0.074 DS, 0 >0,¢ >0
Test 2 0.104 0.90 0.089 0.061 DS, 0 >0,¢ <0
Test 3 0.104 -0.90 0.089 -0.061 DS, 0 <0,¢ <0
Test 4 0.092 0.75 0.081 -0.059 US, 0 >0,¢& <0
Test 5 0.147 -1.00 0.000 0.000 DS, 6 <0
Test 6 0.000 0.00 0.072 0.049 DS, ¢ >0
Validation 1 0.147 -1.00 0.072 0.049 DS, 0 <0,¢ >0
Validation 2 0.106 3.00 0.089 -0.246 SH, 0 >0, ¢ <0
T
ux) =®x;)ys, ¥s,=yi--vn 1 (6)
where:
@(x;)) =m’ (x,) (M WM)"'M' W %)

In this equation, M is the design matrix constructed from the source
nodes, m(x) is a second-order polynomial basis, and W is a diagonal
matrix of Gaussian weights w(x;) = e~ IX=%ill2 These weights control
how strongly each source point influences the weighted least-squares fit,
yielding a local approximation that is most accurate in the immediate
vicinity of the interpolation point. The interpolation matrix I g, is
used during pooling; since it is rectangular and therefore not invertible,
a separate matrix Iy _ g is calculated for the unpooling (decoder) step,
by using the same methodology, swapping S, and S,.

For a detailed explanation of the entire encoding and decoding pro-
cess, refer to the work of Immordino et al. [31].

2.1.5. Pre-trained autoencoder

Our proposed framework leverages an AE architecture, pre-trained
for subsequent integration into the complete model. The pre-training
phase involved using Cp data as both input and output to the AE, ensur-
ing the model accurately captures the essential features of the pressure
distribution over the wing surface. The training dataset comprised the
four signals detailed in Table 1.

To enhance the robustness of the AE, a data augmentation technique
was employed. Specifically, the dataset was augmented by 30% through
the addition of Gaussian noise with 10% standard deviation of the input

data. This augmentation strategy was designed to improve the model
ability to generalize and handle variability in the pressure distribution
data. Skip connections were integrated before each encoding module to
facilitate the direct flow of information across the network. These con-
nections allow the model to bypass certain layers, enabling the retention
of critical features and mitigating the risk of information loss during the
encoding and decoding processes. The network architecture has been
optimized using a Bayesian optimization strategy, following the same
approach of our previous work [31]. A schematic of the pre-trained AE
architecture is shown in Fig. 3.

2.2. Dynamic mode decomposition with control

Dynamic Mode Decomposition with Control (DMDc) provides a
systematic approach for deriving ROMs from high-dimensional data,
explicitly incorporating external inputs. Since this is a well-known
methodology in this field, we developed a baseline model to serve as
a reference for our GCN-based framework.

Originally introduced by Proctor et al. [4], DMDc extends Dynamic
Mode Decomposition to include control effects, yielding the following
linear system:

X1 = Ax, + Bu,, (€)]

where x, € R™ is the state vector, u, € R? is the control input vector
(modal amplitudes and derivatives), and A, B are the dynamic and in-
put matrices, respectively. In our case, state vector contains pressure
coefficient (C P, ), while the control vector contains pitch (6, 9,, 9,) and
plunge (,,&).

Following Fonzi et al. [7], we define the state vector as:

x,=[Cp1 Cpo

p. 2 CPam ] ! ’ (9)

where subscript m indicates the number of surface grid points. The input
vector is:

7 71T
u=[a & @], a0
where q, denotes structural modal amplitudes at time ¢.

To identify the system matrices, we collect snapshot matrices from
the dataset:

X= [xl
U= [ul

Xn—l]’ X'= [XZ xn]v an
u, ] 12)

Where subscript n denotes the number of timesteps for a single sim-
ulation. We define the augmented input matrix:
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X
VY= [U] , (13)

and compute the DMDc operators using the pseudoinverse:
[A B]=X"¥" (14

To reduce the model order, we apply truncated SVD to X ~ U, X, V7,
and project A and B onto the dominant modes:

A=U'AU,, B=U'B. (15)

Truncation is based on the Frobenius norm of X, with the number of
retained modes selected to minimize below a threshold the root mean
square error between the original and the reconstructed state matrix.
The resulting system is:

%, =A%, +Bu, x,~UZ%, 16)

enabling the model to predict surface pressure evolution.

A stabilization procedure is applied to improve the conditioning of
the reduced system, especially when unstable eigenvalues appear due to
truncation artifact. This procedure modifies the eigenvalues of matrix A,
making them all lie inside the unit circle in the complex plane. When an
unstable eigenvalue is obtained, a new eigenvalue is calculated using a
flip method, which modifies the eigenvalue outside the unit circle and
reflect it back inside while preserving phase and mode orientation (refer
to [7D).

3. Test case

The selected case study for evaluating our framework is the Bench-
mark Super Critical Wing (BSCW), a transonic rigid semi-span wing
featuring a rectangular planform and a supercritical airfoil profile, as de-
tailed in the ATAA Aeroelastic Prediction Workshop [55]. The freestream
conditions for this case are defined by a Mach number of 0.74, a
Reynolds number of 4.49 x 10°, and an initial angle of attack (AoA) of
0 degree. The wing features a reference chord length of 0.4064 m and a
surface area of 0.3303 m2, with pitching motion occurring around 30%
of the chord. It is mounted on a flexible support system that allows two
degrees of freedom: pitch 0 and plunge &. It is designed for flutter anal-
ysis, presenting challenges due to shock wave motion, shock-induced
boundary-layer separation, and the interaction between the shock wave
and the detached boundary layer. These nonlinear phenomena pose sig-
nificant challenges for the framework predictions.

An unstructured mesh with 8.4 x 10° elements and 86,840 surface
elements was created. A y* = 1 value was used, based on a prelimi-
nary mesh convergence study that confirmed adequate resolution of the
boundary layer and shock wave. The computational domain extends 100
chord lengths from the solid wall to the farfield. Fig. 4 provides an im-
pression of the mesh configuration.

The dataset used to train the model was generated with CFD un-
steady responses using the Unsteady Reynolds-averaged Navier—Stokes
(URANS) formulation with SU2 v7.5.1 [56]. The simulations employed
the one-equation Spalart-Allmaras turbulence model for RANS closure.
To accelerate convergence, a 1v multigrid scheme was used. The JST
central scheme with artificial dissipation handled convective flow dis-
cretization, and the gradients of flow variables were calculated using
the Green-Gauss method. The biconjugate gradient stabilization linear
solver, along with the ILU preconditioner, was utilized. All URANS sim-
ulations started from a steady-state solution, with a timestep of 2 x 10™*
seconds and a total simulation time of 2 seconds. These values were cho-
sen to ensure a high temporal resolution, capturing rapid aerodynamic
variations while keeping the computational cost manageable over the
full simulation period. However, due to computational constraints, the
timestep was reduced to 2 x 1073 seconds through downsampling for
model training, resulting in 660 timesteps per signal. This ensures a
balance between computational feasibility and quality of aerodynamic
data.
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Fig. 4. Impression of the BSCW CFD grid.

Table 2
Number of samples for the train-
ing, test and validation datasets.

Dataset Number of Samples

Training 2,640 (4 x 660)
Test 3,960 (6 x 660)
Validation 1,320 (2 X 660)

We ran a total of 12 time-varying simulations, divided into train-
ing, test, and validation sets as described in Table 1. The training set
comprises damped Schroeder-phased harmonic (DS) simulations (see
Appendix A for details on the DS signal formulation) with varied combi-
nations of the parameters: reduced frequency for pitch (k,), maximum
pitch amplitude (ay), reduced frequency for plunge (x;), and maximum
plunge amplitude (a;), ensuring that the model learns from diverse con-
ditions where these variables exhibit both positive and negative values
(Fig. 5). This variation helps the model understand the complex in-
teractions between the parameters. The test set extends this diversity
by including additional combinations and signal types, specifically un-
damped Schroeder-phased harmonic (US) and cases focusing solely on 6
or ¢ variations. The signs associated with pitch and plunge indicate the
initial directions of oscillation: a positive pitch corresponds to a nose-
up rotation, while a positive plunge indicates downward motion. This
approach allows us to accurately assess the model accuracy and sensi-
tivity in predicting the effects of individual parameters, ensuring that
it performs well across different conditions. The use of Schroeder sig-
nals is motivated by their ability to effectively cover a broad frequency
spectrum while minimizing peak amplitudes, which enhances the model
robustness and ability to generalize. The validation set is designed to
evaluate the model generalizability to new and unseen data. It includes
a scenario similar to those in the training set but with distinct parameter
values, as well as a unique single harmonic (SH) signal type, which the
model did not encounter during training. This ensures that the model
can handle both familiar and novel situations effectively.

Table 2 summarizes the number of samples in the training, test, and
validation datasets, providing a clear overview of the dataset structure
used in this study. Each sample consists of three consecutive timesteps
as input and one timestep as output.
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4. Results

In this section, we present the results of the reconstructed validation
signals for two different types of architectures: feedforward model and
ARMA model. By comparing the performance of these two architectures,
we aim to illustrate the influence of incorporating predicted Cp into
the model input on the overall prediction accuracy and robustness. The
impact of the temporal layer on the accuracy of each architecture is also
studied.

4.1. Feedforward model

The feedforward model utilizes spatial and temporal data from pre-
vious timesteps without relying on its own past predictions, thus pre-
venting the accumulation of errors over time. The model performance
across different temporal layers is evaluated using both DS and SH val-
idation signals.

For the DS signal (Figs. 6 and 7), the predictions of the aerodynamic
coefficients C; and C,, align well with the CFD reference data in all
temporal layers, as shown in Fig. 6. The STGCN layer demonstrates the
lowest average error for C;, while LSTM performs slightly better for
C)s. Aregion of maximum error, indicated by the red circle, is consistent

across all models and represents the point where the predictions for C;,
and C,, show the greatest deviation from the reference data. This error
appears to be related to the models difficulty in capturing sharp transi-
tions or non-linearities in the aerodynamic flow, particularly near shock
waves. Fig. 7 shows the Cp distribution at this maximum error point
and highlights the models overall ability to predict the pressure distri-
bution across the wing. While most temporal layers perform reasonably
well, some discrepancies near the leading edge and areas affected by
shock waves and flow separation are noticeable. These areas, character-
ized by strong flow gradients and non-linear aerodynamic behavior, are
challenging for all models, although STGCN and LSTM exhibit slightly
better accuracy compared to GRU and Attention mechanisms.

For the SH signal (Figs. 8 and 9), which involves higher-frequency os-
cillations, the models encounter increased errors, particularly in predict-
ing peak values for C; and C,,. LSTM and STGCN continue to provide
the most accurate results, although both exhibit some phase and ampli-
tude errors due to the rapid oscillations. The red-circled point, indicating
the region of maximum error for C; and C,,, again highlights the chal-
lenges of accurately capturing high-frequency aerodynamic loads. Fig. 9
provides a detailed view of the Cp distribution at this maximum error
point, where the models struggle more to match the rapid fluctuations
in Cp. Again, regions near the shock wave, which undergo significant
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temporal variation, show greater discrepancies. While the general Cp
distribution is captured, the accuracy decreases in areas where shock-
induced flow separation occurs, with LSTM and STGCN again showing
marginally better performance in these challenging regions.

To quantitatively evaluate the models, we calculated three error
metrics—Mean Absolute Percentage Error (MAPE), coefficient of deter-

mination (R2), and Root Mean Square Error (RMSE)—for Cp predictions
across both validation signals, as shown in Table 3. These metrics are
defined as:

100
MAPE = —
n

u| RMSE =
Vi

i=1
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Table 3

Comparison of MAPE, R2, and RMSE for C), predictions in the feedforward model
with different temporal layers for DS and SH validation signals.

Temporal Layer ~ MAPE R2 RMSE
DS SH DS SH DS SH
GRU 1.2382  1.7851  0.9851  0.9830  0.0217  0.0229
LSTM 0.7471  0.9695  0.9937  0.9909  0.0194  0.0215
Attention 1.0470  1.5452  0.9887  0.9815  0.0238  0.0291
STGCN 0.8524 09975  0.9918  0.9897  0.0163  0.0181
Y= 92
Ro =] ==l Yi— i with large deviations in dynamic conditions like the SH signal. Again,
27:1 ; — §)? GRU and Attention mechanisms exhibit the highest RMSE. These results

where y; is the Aeronet prediction averaged over the surface mesh,
weighted by the cell area, y; is the corresponding CFD reference value
computed under the same flow conditions and with the same weight-
ing, n is the number of timesteps in the signal, and y = % Y, 9; is the
mean of the ground-truth CFD series.

MAPE reflects the average percentage error across predictions, show-
ing that the LSTM model consistently achieves the lowest values, while
the STGCN model follows closely. GRU and Attention mechanisms, on
the other hand, display significantly higher MAPE, particularly for the
high-frequency oscillations of the SH signal, indicating their difficulty in
capturing rapid temporal variations and non-linearities. In terms of R2,
which measures how well the model explains variance in the data, LSTM
again performs the best, capturing the highest degree of variability, fol-
lowed closely by STGCN, which also demonstrates strong performance
in the DS signal but slightly lower accuracy for the SH signal. GRU and
Attention layers show lower R2, further confirming their difficulty to
fully capture the complexities in regions involving shock waves and
high dynamic variability. Regarding RMSE, which emphasizes larger er-
rors due to its quadratic nature, the STGCN model performs better with
the lowest values, indicating a good robustness against significant de-
viations. LSTM shows similar performance but struggles slightly more

suggest that all models are well-suited for capturing both spatial and
temporal dependencies with good overall performance, but GRU and
Attention layers struggle more to capture the rapid temporal variations
and non-linearities in the Cp distribution.

In conclusion, while all temporal layers provide reasonable predic-
tions for unsteady aerodynamic phenomena, the LSTM model delivers
the most robust performance across both validation signals. STGCN also
performs well, particularly for C; predictions, while GRU and Attention
mechanisms exhibit larger errors, especially in more complex dynamics.
The evaluation of Cp distribution highlights the importance of accu-
rately capturing non-linear flow features, with regions near shock waves
and flow separations proving to be the most challenging for all models.

4.2. ARMA model

The ARMA model, which integrates past predictions into its input,
was evaluated using various temporal layers to assess its performance
in predicting C;, C),, and Cp across DS and SH validation signals. As
shown in Fig. 10, one of the biggest limitations of the ARMA model con-
sists of accumulation of errors over time, particularly when using the
GRU and Attention mechanisms. Again, LSTM and STGCN demonstrate
better predictive performance, although both exhibit some deviations in

10
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Comparison of MAPE, R2, and RMSE for C, predictions in the ARMA model with
different temporal layers for DS and SH validation signals.

Temporal Layer =~ MAPE R2 RMSE

DS SH DS SH DS SH
GRU 8.5577 6.7837 0.7560 0.7993 0.1389 0.1439
LSTM 7.7511 6.4299 0.8426 0.8506 0.1002 0.0864
Attention 7.7985 5.8077 0.8167 0.7796 0.1233 0.1048
STGCN 6.9381 5.7971 0.8571 0.8648 0.0938 0.0844

complex flow regions. The red-circled points were selected to visualize
the evolution of the error over time. These points were spaced at regular
intervals along the signal to provide insight into how prediction accu-
racy changes throughout the sequence. This allows us to observe how
the model handles different stages of prediction and highlights its diffi-
culty in accurately capturing sharp transitions and non-linearities in the
aerodynamic flow, particularly around shocks. This issue is further em-
phasized in Fig. 11, where the Cp at these selected points shows that the
ARMA model has more difficulty maintaining accuracy near the leading
edge and in shock-affected regions. Despite these challenges, LSTM and
STGCN continue to provide the most reliable predictions despite the in-
herent error accumulation.

For the SH signal (Figs. 12 and 13), which involves higher frequency
oscillations, the ARMA model exhibits increased errors, particularly for
the GRU and Attention layers. The rapid oscillations introduce phase and
amplitude discrepancies, with LSTM and STGCN handling these varia-
tions better, though both models still show increased errors compared
to the DS signal. The Cp distribution in Fig. 13 reveals that the ARMA
model is more susceptible to error propagation in highly dynamic re-
gions near shock waves, where rapid changes in flow introduce greater
inaccuracies. Although LSTM and STGCN mitigate these issues to some
extent, they still experience some degradation in predictive accuracy
due to the model autoregressive nature.

The superior performance of LSTM and STGCN can be attributed
to their inherent design, which allows them to handle temporal de-
pendencies more effectively. The LSTM architecture, with its complex
gating mechanisms, enables the model to retain and manage both long-
and short-term dependencies, preventing information loss over multiple

timesteps and helping to mitigate the error accumulation issue inherent
in the ARMA model. The STGCN layer combines both spatial and tem-
poral convolutions, making it well-suited to handle non-uniform grid
structures and effectively capture spatial correlations (such as pressure
gradients across the wing) as well as temporal dependencies during
rapid changes in aerodynamic conditions, as seen in the SH signal.

In contrast, the GRU simpler structure limits its capacity to capture
long-term dependencies effectively. The Attention mechanism, while
effective for capturing important temporal relationships in longer se-
quences, is not as well suited to the short input sequences used in this
model, where the benefits of dynamically weighting timesteps are re-
duced, limiting the Attention layer effectiveness.

Table 4 quantifies the performance of the different temporal layers
in terms of MAPE, R2, and RMSE for Cp predictions in the ARMA model.
The STGCN model consistently achieves the lowest MAPE and RMSE val-
ues across both the DS and SH signals, with LSTM performing nearly as
well. This suggests that both models are adept at handling temporal de-
pendencies even in autoregressive contexts, although the STGCN slightly
outperforms LSTM, particularly in the dynamic SH signal. GRU and At-
tention layers, on the other hand, show higher MAPE and RMSE, along
with lower R2, indicating that they struggle to mitigate the error accu-
mulation inherent in the ARMA model, particularly in high-frequency
oscillations. The lower R2 values for GRU and Attention mechanisms
highlight their reduced ability to capture the full variability in the data
with rapid aerodynamic changes. Overall, the results suggest that while
the ARMA model can capture general trends, its susceptibility to error
propagation makes it crucial to use robust temporal layers, such as LSTM

11
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Fig. 11. Validation signal 1 - DS type: Impact of temporal layer selection on Cp prediction at the maximum error point in the ARMA model. The lower surface of
the wing is shown. LE: Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

and STGCN, to minimize predictive inaccuracies in highly dynamic and
non-linear aerodynamic conditions.

4.3. Comparison between feedforward and ARMA

The comparison between ARMA and feedforward models, both using
the STGCN temporal layer, reveals notable differences in performance,
especially regarding error accumulation and prediction stability. The
STGCN temporal layer was selected for this comparison because it con-
sistently yielded the most accurate results across both validation signals,
as demonstrated in previous sections. In this case, ARMA model uses
ground-truth Cp values for the first half of the signal, after which it

switches to using its own predictions for subsequent timesteps. As shown
in Fig. 14, the feedforward model provides more accurate predictions for
C; and C), on the DS signal, avoiding the accumulation of errors ob-
served in the ARMA model. The red circled points were chosen to be in
the middle of the first and second halves of the signal, providing infor-
mation on the behavior of the model during the transition from using
ground truth to self-predicted values. This choice allows for a clearer
comparison of model performance during both phases, highlighting the
ARMA model difficulty in limiting error accumulation, while the feed-
forward model maintains closer alignment with the reference data. This
trend is further confirmed in Fig. 15, where the evolution of the MAPE in
Cp reveals that the feedforward model consistently maintains lower er-

12
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Fig. 13. Validation signal 2 - SH type: Impact of temporal layer selection on Cp prediction at the maximum error point in the ARMA model. The upper surface of
the wing is shown. LE: Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

ror levels over time compared to the ARMA model, which, as expected,
shows a clear pattern of accumulation of errors.

Interestingly, the ARMA model performs relatively well during the
first half of the signals, when ground-truth Cp values are used as input.
In this phase, the ARMA model can even outperform the feedforward
model, as seen in the initial part of Figs. 14 and 15. However, once
the model begins using its own predicted Cp values for subsequent
timesteps, error accumulation begins, resulting in larger deviations from
the reference data. This behavior is clearly seen in Fig. 16, where the
ARMA model shows growing discrepancies in Cp predictions as the
autoregressive process progresses. In contrast, the feedforward model
avoids this problem by not relying on its past predictions, allowing it to
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maintain better accuracy in regions near the leading and trailing edges,
where flow complexity is higher.

These trends are even more evident with the SH signal, which fea-
tures rapid oscillations. Fig. 17 shows that the feedforward model han-
dles these high-frequency aerodynamic variations more effectively, with
significantly fewer phase and amplitude errors than the ARMA model.
The ARMA model, due to its time-marching scheme, exhibits a greater
sensitivity to reduced frequency. At higher frequencies, errors accumu-
late faster as small inaccuracies from previous steps compound. Once the
ARMA model switches from using ground-truth inputs to its own predic-
tions, it fails to keep pace with the rapid changes in aerodynamic forces,
resulting in larger phase lags and more significant deviations from the
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Fig. 14. Validation signal 1 - DS type: ARMA vs. Feedforward model using STGCN temporal layer on C; and C,, predictions. Red circles denote the points used for
plotting the Cp distribution. Vertical dashed line marks the time instance where the ARMA model transitions to autoregressive Cp predictions.

reference data. In contrast, as the feedforward model relies only on the
wing spatial coordinates and prescribed motions at previous timesteps
(without feeding back its own predictions), it results in a more stable er-
ror profile and in a more reliable and accurate predictions of unsteady
phenomena.

As shown in Fig. 18, the feedforward model consistently outper-
forms the ARMA model in terms of MAPE on Cp for the SH signal. The
ARMA model error accumulation is particularly pronounced in more
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dynamic conditions, such as rapid oscillations, which results in signifi-
cantly higher MAPE. Fig. 19 further supports this observation, showing
that the feedforward model is better at predicting the Cp distribution,
where the ARMA model struggles due to the accumulation of prediction
errors. However, it is important to note that when the ARMA model
is feeded with ground-truth Cp values, it can produce very accurate
predictions, outperforming the feedforward model. This highlights the
ARMA potential in study cases where error on pressure values does not
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the ARMA model transitions to autoregressive Cj, predictions.

accumulate too fast, as in systems with lower reduced frequency. Also,
insufficient convergence of the CFD solution may affect error accumu-
lation in regions with complex flow patterns, suggesting that improving
solution stability may help mitigate this problem.

4.4. Sensitivity analysis to elliptical and hyperbolic regions

The framework has the ability to independently detect the elliptic or
hyperbolic nature of the flow, as demonstrated by a sensitivity analy-
sis in which localized perturbations were applied separately in subsonic
and supersonic regions (see Fig. 20). Specifically, we introduced a 100%
instantaneous increase in Cp at a single surface node. Two cases are ex-
amined: (a) the perturbed node lies inside a subsonic area downstream
of the shock, and (b) the node is inside the supersonic region immedi-
ately upstream of the shock. The perturbation is injected into the ARMA
variant, and its spatial propagation is tracked for one time-step through
the decoder. Our analysis showed distinct differences in the response
to these perturbations: In the subsonic (elliptical) region, the pertur-
bation affected the pressure distribution in all directions around the
perturbed node, reflecting the expected elliptical behavior characterized
by long-range spatial correlation. In the supersonic (hyperbolic) region,
the perturbation only affected nodes downstream of the perturbed node,
consistent with hyperbolic behavior where information propagates pri-
marily in the downstream direction. Closer inspection reveals that the
affected region is not only biased in the downstream direction, but also
laterally constrained by the local Mach cone. In weakly supersonic pock-
ets where the local Mach number lies between M, = 1.0 and 1.2, the
corresponding Mach angle spans approximately 60° to 90°. As illus-
trated in Fig. 20, the high-AC)p response falls almost entirely inside this
2u-wide cone-shaped sector. These results confirm that the convolution
kernels in our graph-based architecture adaptively encode flow-specific
properties without explicit a priori definitions, successfully capturing
the essential physical behavior of transonic flows.

4.5. Extrapolation to off-design flow conditions

The Feedforward AeroNet was trained exclusively on URANS data
obtained at the reference condition M = 0.74, but in practical appli-
cations the wing will often operate at significantly different freestream
parameters. To assess how far the network can be pushed outside its
training envelope, we confronted it with wind tunnel measurements of
pitch-only motion from Piatak and Cleckner [57]. These experiments
were designed to generate test cases for validation purposes and have
since become standard benchmarks in the aeroelastic community. The
corresponding datasets, developed as part of the AIAA Aeroelastic Pre-
diction Workshop, have been widely studied both computationally and
experimentally precisely because they involve challenging transonic
phenomena, such as shock-induced separation, flow reattachment and
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nonlinear unsteady effects, which are difficult to predict reliably. This
complexity has motivated several initiatives aimed at benchmarking
reduced-order and high-fidelity models under standardized test condi-
tions [55,58-60].

The experimental database provides mean pressure coefficient
(Cp)pean distributions extracted at 60% span for two off-design Mach
numbers, M = 0.70 and M = 0.85, respectively, tested at mean inci-
dences (A0A_) of 0 deg and 5 deg, while keeping the pitch amplitude
(ap = 1.03 [deg]) and reduced frequency (k, = 0.439) identical for the
two maneuvers. To ensure a consistent basis for comparison, the pre-
dicted surface pressure distributions from AeroNet were averaged in
time over a full oscillation cycle, yielding mean values comparable to
the experimental data. Note that the current implementation has no ex-
plicit input of flow parameters-the current network receives only the
instantaneous wing kinematics {9,9,9} as input. Variations in M
or Re therefore affect the model only indirectly through the rescaled
timestep, which enters through the first and second order derivatives of
the motion. In practice, this means that any prediction at an off-design
Mach number is, strictly speaking, an extrapolation task. As with all
data-driven models, robust performance can be expected only within
the input space spanned by the training data; good generalization re-
quires that the training set include sufficiently rich and diverse examples
covering the desired range of operating conditions.

Fig. 21 contrasts the time-averaged AeroNet predictions (continu-
ous curves) with the corresponding experimental data (symbols). For
the subcritical case at M = 0.70, the network shows good agreement
with the measurements, especially at AoA =0 deg where the model
follows the nearly flat pressure plateau. At higher angles of incidence,
the distribution on the lower surface is correct, but the shock, which
is relatively weak at this Mach number, appears at about x/c ~ 0.35 in-
stead of 0.18, and the associated compression is slightly underpredicted.
The trailing edge pressure levels are correctly matched, suggesting that
this modest deviation from the design Mach number is well accommo-
dated by the network’s learned manifold. At M = 0.85, however, the
discrepancies become more pronounced. The model tends to shift the
shock aft compared to the experimental observations. For AocA,, =5
deg the discrepancy becomes more significant: the network overesti-
mates the suction on the lower surface downstream of the leading edge,
probably due to an incomplete representation of the shock-induced sep-
aration, which becomes more relevant at this higher Mach number; a
result consistent with the stronger and more upstream shock motion
that the network never encountered during training.

The encouraging performance at M = (.70 suggests that moderate
deviations from the design point remain within the latent manifold
learned by the network, while the larger deviations at M = 0.85 ex-
pose its limited awareness of transonic shock dynamics when freestream
parameters are kept invisible. Making M and Re explicit conditioning
variables is the next logical step for improving generalizability.

4.6. Comparison between AeroNet and DMDc

To contextualize the performance of the proposed AeroNet models,
we benchmark them against a well-established reduced-order technique-
the DMDc, given its similarity to the autoregressive mechanism inherent
to our AeroNet ARMA variant. The DMDc implementation follows the
procedure detailed by Fonzi et al. [7], which was previously employed
successfully on the same benchmark wing under similar flow conditions.
For optimal dimensionality reduction and computational efficiency, a
total of 25 modes were retained based on a Frobenius norm threshold
of 0.1, ensuring a low reconstruction error on the training dataset.

Figs. 22 and 23 compare the predicted C; and C,, histories from
the DMDc and AeroNet models against the CFD reference data for the
two validation signals detailed in Table 1. For the DS validation signal
(Fig. 22), all models exhibit good agreement with the CFD reference,
with the AeroNet FF variant demonstrating notably superior accuracy.
This observation is quantitatively supported by the metrics provided in
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Fig. 16. (continued)

Table 5

Comparison of MAPE, R2, and RMSE for C, predictions in the DMDc and
AeroNet ARMA - FF models with STGCN temporal layer for DS and SH vali-
dation signals.

Model MAPE R2 RMSE

DS SH DS SH DS SH
DMDc 4.7961 6.4841 0.9137 0.8574 0.0608 0.1362
Aeronet ARMA 6.9381 5.7971 0.8571 0.8648 0.0938 0.0844
Aeronet FF 0.8524 0.9975 0.9918 0.9897 0.0163 0.0181

Table 5. For the SH signal, characterized by higher-frequency oscilla-
tions (Fig. 23), both AeroNet variants outperform the DMDc method.
In particular, AeroNet effectively captures dynamic peaks and mitigates
the error propagation that noticeably affects the pitching moment pre-
dictions. These qualitative insights are further confirmed by the error
metric summarized in Table 5.
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To complement the error-propagation analysis, we quantified the
stability of the learned latent-space dynamics by estimating the largest
Lyapunov exponent, 4, for each model and excitation signal on the pre-
dicted Cp. The error is scaled with respect to the cell area. Table 6 lists
the resulting values together with a qualitative stability assessment: pos-
itive A, indicates exponential divergence (chaotic/unstable behavior),
whereas a negative value reflects asymptotic convergence to an attrac-
tor.

For both signals, the feedforward model has a Lyapunov exponent
of zero by definition, as the network never feeds back its own outputs
into the next step, local perturbations neither grow nor decay and no
systematic error build-up occurs, so the system remains neutrally sta-
ble. In contrast, for the DS signal, both ARMA and DMDc variants yield
a positive A;, so that perturbations double every 1.3 s and 1.1 s re-
spectively. This confirms that the autoregressive feedback loop amplifies
numerical noise and modeling inaccuracies—a mechanism responsible
for the error increase in Fig. 15. The SH case imposes a higher reduced
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Table 6
Estimated largest Lyapunov exponents A; for AeroNet and
DMDc models under DS and SH excitations.

Signal Type ~ Model A [s11  Stability
DS DMDc +0.581 Unstable
DS AeroNet ARMA  +0.513  Unstable
DS AeroNet FF 0 Neutrally Stable
SH DMDc +0.844  Unstable
SH AeroNet ARMA  +0.795  Unstable
SH AeroNet FF 0 Neutrally Stable

frequency and a stronger shock oscillation. Here, the ARMA model be-
comes even more unstable, with 4, ~ 0.80 s~!, implying that trajectory
separation doubles roughly every 0.9 s. Similar considerations can be
drawn for DMDc model, with perturbations double every 0.8 s. The
feedforward formulation maintains forecast fidelity over extended roll-
outs, whereas the autoregressive ARMA is prone to error accumulation
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unless external correction (e.g., periodic sensor feedback) is available.
The DMDc model exhibits slightly faster prediction degradation. Unlike
neural networks, which can learn to adaptively dampen or stabilize un-
steady behavior, DMDc relies on a purely linear, open-loop operator.
This makes it inherently more susceptible to noise amplification and
model drift, especially when extrapolating beyond the training region
or under higher frequency oscillations, as seen in the SH scenario.

The differences between AeroNet and DMDc models can be at-
tributed to their underlying methodologies. DMDc inherently carries
specific constraints, such as the requirement for explicit stabilization
procedures and calibration within a relatively narrow operating enve-
lope. Consequently, DMDc is highly sensitive to deviations from the
training conditions, limiting its general robustness. In contrast, AeroNet
models attain comparable or better accuracy without relying on such
stringent stabilization and tuning steps. This allows them to perform ro-
bustly across a wider range of dynamic conditions.

The trade-off of employing AeroNet over traditional methods such as
DMDc lies in interpretability. DMDc model expresses explicitly the sys-
tem dynamics via A and B matrices and modal decompositions, thereby
providing direct analysis of the system behavior and physical insights.
In contrast, AeroNet employs deep neural architectures whose internal
representations do not necessarily correspond to physically meaningful
quantities. The network operates as a black box, optimizing its parame-
ters solely to reduce predictive error, without explicitly encoding the
governing flow mechanisms. Therefore, while AeroNet demonstrates
superior adaptability and predictive accuracy in complex, dynamic sce-
narios, this comes at the cost of reduced interpretability.

4.7. Computing cost analysis

A comprehensive analysis of computational costs was performed to
compare the efficiency of the proposed AeroNet model with that of a
higher-order approach and DMDc technique, as shown in Table 7. A
single CFD run on a high-performance computing system, using an Intel
Skylake-based architecture with 3 nodes and 40 CPU cores per node, typ-
ically requires around 6,000 CPU hours. Generating the entire dataset
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Fig. 22. Validation signal 1 - DS type: DMDc vs. AeroNet models using STGCN temporal layer on C; and C,, predictions.

Table 7

Computing cost comparison between AeroNet models, DMDc and CFD. FF: FeedForward.

CFD (CPU hours)

AeroNet (GPU hours)

Simulation Pre-Trained AE Training Prediction
(12 runs) (1 run) (Optimization + Training) (ARMA) (FF) (ARMA) (FF)
75,000 6,000 42.6 35.2 33.1 0.03 0.03

DMDc (CPU hours)

Training

Prediction

0.15

0.003

demands approximately 75,000 CPU hours. In contrast, the proposed
framework predicts a full signal in under two minutes on a local ma-
chine with a NVIDIA RTX A4000 GPU, with a per-timestep inference
time of 0.15 seconds (6.67 frames-per-second), yielding over 99% com-
putational savings with respect to CFD. The DMDc model, once trained,
is still faster in wall-clock terms (60 frames-per-second), but (as shown
in Section 4.6) at the cost of lower prediction accuracy. Finally, we note
that the large up-front expense of producing high-fidelity training data
motivates future work on transfer-learning or active-learning strategies.
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5. Conclusions

This study introduced a framework for predicting unsteady transonic
wing pressure distributions, integrating an AE architecture with GCN
and graph-based temporal layers to capture time dependencies. Tested
on a grid consisting of 86,840 surface points, the proposed model effec-
tively compresses high-dimensional Cp distribution data into a lower-
dimensional latent space using the AE, preserving essential features for
accurate representation. The GCN layers are well-suited for handling
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Fig. 23. Validation signal 2 - SH type: DMDc vs. AeroNet models using STGCN temporal layer on C; and C,, predictions.

the unstructured grids characteristic of aerodynamic data, while the
temporal layers capture and leverage temporal dependencies for robust
forecasting of wing Cp distributions.

Our results demonstrated that this integrated approach can achieve
an accuracy comparable to traditional CFD methods for the dynamic
conditions included in the training and validation datasets, while signif-
icantly reducing computational costs, requiring initially about 76 GPU
hours for training and then less than 2 minutes to predict an entire sig-
nal. We evaluated two architectures, the feedforward model and the
ARMA model, using four different temporal layers (GRU, LSTM, STGCN,
ATTENTION), with the STGCN layer consistently delivering the most
accurate results across the validation signals. The feedforward model
demonstrated clear advantages in terms of predictive accuracy and sta-
bility, particularly in avoiding the error propagation inherent in the
ARMA model. By not relying on its own predictions for subsequent in-
puts, the feedforward model is better suited for dynamic simulations
ranging from steady-state to high reduced frequency, showing greater
accuracy in predicting complex flow features, such as shock waves and
flow separation. The ARMA model, while capable of capturing general
trends, is more prone to error accumulation, particularly in scenar-
ios with high-frequency oscillations or rapid changes in aerodynamic
forces. Nonetheless, when using ground-truth inputs, the ARMA model
can yield highly accurate results, underscoring its potential in scenar-
ios with reliable data inputs. Both AeroNet variants outperformed the
established DMDc approach, particularly in high-frequency, dynami-
cally complex situations. Notably, AeroNet achieves superior accuracy
without requiring explicit stabilization or calibration, indicating greater
robustness and adaptability.

Sensitivity analyses demonstrated that the proposed framework in-
herently distinguishes between elliptic and hyperbolic flow character-
istics typical of transonic flows. Localized perturbations in subsonic
(elliptical) regions affect global pressure distributions, while perturba-
tions in supersonic (hyperbolic) regions propagate downstream within
localized Mach cones. These findings confirm AeroNet capability to ac-
curately capture the distinct physical behaviors associated with different
aerodynamic flow regimes.

The extrapolation capacity to off-design conditions (e.g., varying
freestream Mach or Reynolds number) remains limited and should be
addressed in future work through explicit conditioning on flow param-
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eters or multi-fidelity learning strategies. Additionally, scalability to
larger grids and different graph structures will be explored. GCNs inher-
ently support various graph configurations, but expanding the model to
handle new spatial structures or larger meshes may require techniques
like subgraph splitting or padding to ensure input compatibility. As grid
size increases, deeper networks and additional pooling layers will be
necessary to capture long-range dependencies efficiently, while main-
taining computational feasibility.
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Layer structure and output dimensions for the ARMA model, detailing the two encod-
ings, temporal, and decoding layers used for predicting pressure distribution.

Layer Type  Output Size Layer Type  Output Size
Input mx3x 86840 x 8 Input mx3x 86840 x 1
< GCN mx3x 86840 X 256 @ GCN mx 3 X 86840 x 256
w GCN mx 3% 86840 x 224 w GCN mx 3 x 86840 x 224
£ GoN mx 3 x 86840 X 96 £  GoN mx 3% 86840 X 96
E Pooling 1 m X 3x 28600 X 96 g Pooling 1 m X 3 X 28600 % 96
GCN mx3x 28600 x 64 GCN mx 3 X% 28600 x 64
Pooling 2 mx 3 %9600 x 64 Pooling 2 m X 3 %9600 x 64
GCN mx 3 %9600 x 368 GCN mx 3 %9600 x 368
Concatenate Block — Output: m X 3 X 9600 X 736
Temporal Layer — Output: m X 9600 X 368
Layer Type Output Size
GCN mx 9600 x 368
Unpooling 2 m x 28600 x 368
;éa GCN m % 28600 x 64
o
g Unpooling 1 m X 86840 X 64
GCN m x 86840 x 96
GCN mx 86840 x 224
GCN m X 86840 x 256
Output mx 86840 x 1
Appendix A. Schroeder-phased harmonic signal formulation Table B.9

The Schroeder-phased harmonic signal is utilized in this study to
improve the robustness and generalizability of the model by covering a
wide frequency spectrum. These signals are constructed by summing
sinusoidal components, where the phases are optimized to minimize
the overall peak amplitude. This results in an evenly distributed energy
spectrum, which is advantageous for training the model to handle vari-
ous frequency interactions and reduces the risk of overfitting. To cover
this broad frequency range with minimal peak amplitude, a total of 9
harmonics is selected, with M =9.

Both damped Schroder-phased harmonic (DS) and undamped
Schroder-phased harmonic (US) signals are used to model the wing
displacement, whether it be pitch 6(f) or plunge &(r). The US signal
uniformly distributes energy across the frequency spectrum and is de-
fined as:

Mz

Oys® =) ay,sin((m+ Doyt +d,) A1)

m=1

where a,, represents the amplitude of the m-th component, w,, denotes
the angular frequency, and ¢,, corresponds to the phase of the m-th
sinusoidal component.

For transient response analysis, the DS signal simulates amplitude
decay over time, incorporating a damping function:

M
Ops)=

m=1

<<M(z — 1)+ a0> sin ((m + Doyt + ¢m)> (A.2)
Tend — to
where a, and a.,4 denote the initial and final amplitudes, respectively,
and 7, and 7,4 are the corresponding time intervals. The damping is
designed such that at the final time step, the amplitude is reduced to
0.1 a(, ensuring transient behaviors are effectively captured.

The phases ¢,, are calculated to minimize constructive interference
between the sinusoidal components, flattening the overall spectrum:

_m(m+ Hr

b= i (A.3)
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Layer structure and output dimensions
for the Feedforward model, detailing the
encoding, temporal, and decoding layers
used for predicting pressure distribution.

Layer Type Output Size
Input mx3Xx86840x 8
« GCN mx 3 x 86840 x 256
o0 GCN m X3 x 86840 x 224
£ oo mx 3% 86840 X 96
;% Pooling 1 m X3 x 28600 x 96
GCN mx 3% 28600 x 64
Pooling 2 m X 3 %9600 x 64
GCN m X3 x 9600 x 368

Temporal Layer — Output: m X 9600 X 368

Layer Type Output Size
GCN mx 9600 x 368
Unpooling 2 m X 28600 X 368
;én GCN m x 28600 x 64
§ Unpooling 1 m x 86840 x 64
GCN m % 86840 x 96
GCN m % 86840 x 224
GCN m % 86840 x 256
Output mx 86840 x 1

Appendix B. Models architecture

This section outlines the architecture and training process for both
the ARMA and feedforward models used in this study, as detailed in
Tables B.8 and B.9. The ARMA model in Table B.8 combines autore-
gressive components with GCN layers and STGCN temporal layer to
capture both spatial and temporal dynamics, featuring 5,775,023 train-
able weights. In contrast, the feedforward model in Table B.9 avoids
using previous predictions, which helps prevent error accumulation over
time. This model has 1,962,111 trainable weights. Both models utilize
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a pre-trained AE for dimensionality reduction. Specifically, the Encod-
ing A and Decoding layers in both architectures are optimized based on
the pre-trained AE, while Encoding B mirrors the structure of Encoding
A, ensuring consistent feature extraction across different model vari-
ants. Additionally, the concatenation block in both models concatenates
the encodings from the previous three timesteps, enabling the tempo-
ral layer to effectively capture and process the sequential dependencies
within the data.

During the backpropagation phase, the ADAptive Moment Estima-
tion (Adam) optimizer [61] was employed to fine-tune the neural net-
work weights and minimize the MAE loss function. The learning rate was
set to 0.001. A batch size m of 1 was found to yield the most accurate
results. The training process was carried out over 50 epochs.

Data availability
Data will be made available on request.
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