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A R T I C L E I N F O A B S T R A C T 

Communicated by Mehdi Ghoreyshi This study presents a framework for predicting unsteady transonic wing pressure distributions due to pitch and 
plunge movement, integrating an autoencoder architecture with graph convolutional networks and graph-based 
temporal layers to model time dependencies. The framework compresses high-dimensional pressure distribution 
data into a lower-dimensional latent space using an autoencoder, ensuring efficient data representation while 
preserving essential features. Within this latent space, graph-based temporal layers are employed to predict 
future wing pressures based on past data, effectively capturing temporal dependencies and improving predictive 
accuracy. Four different temporal schemes have been tested, where the spatio-temporal graph convolutional 
network achieved the best accuracy thanks to convolution in both time and space. This combined approach 
leverages the strengths of autoencoders for dimensionality reduction, graph convolutional networks for handling 
unstructured grid data, and temporal layers for modeling time-based sequences. To benchmark the efficacy of 
the framework, a comparison with the Dynamic Mode Decomposition with control technique is performed. 
Validation is conducted using the Benchmark Super Critical Wing test case at Mach 0.74, demonstrating that 
the proposed approach achieves accuracy comparable to highfidelity computational fluid dynamics simulations 
while significantly reducing prediction time. This work underscores the potential of the developed framework as 
a scalable, efficient, and robust solution for the analysis of nonlinear unsteady aerodynamic phenomena.

1. Introduction

The complexity of aerodynamic analysis poses a significant challenge 
across various engineering applications. Accurately predicting challeng

ing physical phenomena involves capturing detailed variations that arise 
from the complex interaction of multiple forces. Traditional computa

tional fluid dynamics (CFD) methods are effective in many scenarios, 
but often require substantial computational resources and may struggle 
with accurately representing dynamic and unsteady phenomena under 
specific flow conditions [1]. These limitations highlight the need for 
more efficient and robust approaches.

To alleviate these challenges, reduced-order models (ROMs) have 
been widely adopted. Among these, Proper Orthogonal Decomposition 
(POD) [2] and Dynamic Mode Decomposition (DMD) [3] offer efficient 
approximations of high-dimensional flowfields through low-rank rep

resentations. The DMD framework, in particular, excels at extracting 
coherent spatio-temporal patterns from unsteady flows. Its extension, 
Dynamic Mode Decomposition with control (DMDc) [4], explicitly in
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corporates motion inputs, enabling effective reconstruction and fore

casting of flow responses under dynamic excitation. DMDc has been 
successfully applied in various fluid dynamic contexts, including aero

dynamic [5--7] and aeroelastic [8,9] applications.

Recent advancements in machine learning (ML) offer alternative 
paths to surrogate modeling by enabling data-driven learning of com

plex nonlinear patterns. Initial efforts employed deep neural networks to 
reconstruct or forecast aerodynamic fields [10--13]. However, aerospace 
engineering problems often rely on non-homogeneous and unstructured 
grids modeling, which necessitate more advanced ML architectures that 
can handle this complex data structures.

Geometric deep learning, introduced around 2017 [14], utilizes 
graph neural networks (GNNs) for graph-structured data [15,16]. GNNs 
excel in capturing relationships and dependencies within graph nodes, 
making them ideal for tasks involving topological information [17--19]. 
Graph Convolutional Networks (GCNs), a specific type of GNN, leverage 
convolution operations on graphs [20]. GCNs are particularly promis

ing in aerospace engineering, as they can handle data with spatial 
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Nomenclature

Acronyms 

𝐴𝐸 autoencoder

𝐶𝐹𝐷 computational fluid dynamics

𝐺𝐶𝑁 graph convolutional network

𝐺𝑁𝑁 graph neural network

𝐺𝑅𝑈 gated recurrent unit

𝐿𝑆𝑇𝑀 long short-term memory

𝑀𝐿 machine learning

𝑀𝐴𝐸 mean absolute error

𝑀𝐴𝑃𝐸 mean absolute percentage error

𝑀𝑊𝐿𝑆 moving weighted least squares

𝑅𝑀𝑆𝐸 root mean square error

𝑆𝑇𝐺𝐶𝑁 spatio-temporal GCN

Symbols 

𝐴𝑜𝐴∞ freestream angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . deg

𝐶𝐿 lift coefficient

𝐶𝑀 pitching moment coefficient

𝐶𝑃 pressure coefficient

𝑀 Mach number

𝜃 pitch angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad

𝜃̇ pitch rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s

𝜃̈ pitch acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s2

𝜉 plunge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

𝜉̇ plunge rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

𝜉 plunge acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

structures and are suitable for modeling complex aerodynamic geome

tries [21--25]. In fact, while Convolutional Neural Networks (CNNs) 
perform well on regular grid data like images and texts, GCNs are better 
suited for irregular domains, such as mesh grids, by applying convolu

tion operations directly on graphs [20]. Indeed, GCNs can directly input 
raw 3D model mesh data without pre-computation or feature extraction, 
enhancing predictive capabilities without bias or information loss [17].

Another important challenge concerns the high dimensionality of 
model input data. As with CNN architectures for image recognition 
tasks, deep and complex architectures struggle with propagating in

formation over a large number of features. CFD simulations typically 
involve the use of fine meshes, consisting of a significantly large num

ber of points, increasing both complexity and computational require

ments. To manage this, careful data compression is needed to retain only 
the essential features without losing critical information. Previous stud

ies have demonstrated that dimensionality reduction can be effectively 
achieved using an autoencoder (AE) architecture [26,25,27,28]. AEs, 
through their encoding and decoding processes, can learn a compact 
and efficient representation of the data, ensuring that critical informa

tion is preserved while reducing the computational burden [29,30].

Building on our previous study [31], which focused on steady-state 
problems, we now extend our methodology to address unsteady phe

nomena. Predicting time-varying pressure distributions relies primarily 
on capturing temporal dependencies within the data. Recurrent Neural 
Networks (RNNs), with their ability to track evolving patterns through 
a hidden state, are particularly well-suited for this task. Their effec

tiveness in modeling unsteady behaviors and dynamic responses makes 
them an ideal choice for forecasting time series in aerodynamic applica

tions [32,33]. However, RNNs often struggle with long-term dependen

cies due to challenges like vanishing gradients [34]. To address these 
limitations, Long Short-Term Memory (LSTM) networks and Gated Re

current Units (GRUs), both RNN variants, have been developed. LSTMs 
introduce gates that control the flow of information, making them more 
effective at learning long-term dependencies [32]. GRUs offer a sim

pler structure than LSTMs, using fewer gates while still managing to 
capture long-term dependencies, often with faster training times [33]. 
LSTMs have been extensively applied in aerodynamic modeling, such 
as predicting the dynamic response of aeroelastic systems and tur

bulence [35,36], while GRUs have also proven effective for similar 
tasks [37--39]. More recently, attention mechanisms have revolutionized 
time series forecasting by enabling models to focus on the most relevant 
parts of the input sequence [40,41]. This capability leads to more accu

rate and robust predictions, as demonstrated for instance by improve

ments in maintenance scheduling through estimating icing probabilities 
on wind turbine blades [42], stable long-term fluid dynamics predic

tions using transformer-style temporal attention [43], and enhanced 
design and control of hypersonic vehicles by capturing spatiotemporal 
turbulence characteristics [44]. Attention mechanisms enable models 

to weigh the importance of different time steps dynamically, thereby 
improving the ability to model complex temporal patterns. Similarly, 
Spatio-Temporal Graph Convolution Networks (STGCNs) have shown 
strong performance in modeling such patterns by processing entire se

quences in parallel and applying filters across the time dimension, cap

turing both short- and long-term dependencies efficiently [45].

To fully harness the potential of these temporal modeling techniques, 
it is important to recognize that each approach offers distinct bene

fits depending on the nature of the data and the specific application. 
With this in mind, our methodology investigates and evaluates several 
temporal layers—LSTMs, GRUs, attention mechanisms, and STGCNs�-

to effectively capture the temporal dependencies in our case study. By 
integrating graph convolutional networks with AEs and temporal lay

ers, our proposed approach leverages the strengths of each method to 
enhance the prediction of unsteady surface pressure distributions over a 
transonic wing. This integrated framework not only handles the unstruc

tured grids typical in aerodynamic data through GCNs but also ensures 
efficient dimensionality reduction through AEs. By comparing different 
temporal approaches, we aim to provide a comprehensive and scalable 
solution for complex aerodynamic analyses, delivering more accurate 
and computationally efficient predictions for unsteady phenomena. To 
provide a clear reference for performance gains, we benchmarked the 
proposed framework against a DMDc model due to its relevance and 
maturity in this field.

The structure of the paper is as follows: Section 2 details the im

plemented methodology, providing a comprehensive explanation of the 
architecture and its components. Section 3 describes the test case used to 
validate the model, focusing on its aerodynamic challenges. Section 4
presents the results, comparing the performance of different architec

tures designed to address temporal challenges, while evaluating the 
impact of various temporal layers. Finally, Section 5 summarizes the 
conclusions drawn from the study and suggests potential future direc

tions for improving the model accuracy and scalability in different aero

dynamic scenarios.

2. Methodology

This section outlines the methodology used in developing the model. 
It begins with an overview of the spatio-temporal graph convolutional 
autoencoder framework, denoted as AeroNet, then provides an in-depth 
description of each component of the model.

2.1. AeroNet

The proposed AeroNet framework integrates a GCN-based AE ar

chitecture with a temporal prediction layer to model and forecast 
wing pressure distributions for subsequent timesteps. The encoding and 
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Fig. 1. Overview of the AeroNet architecture for predicting wing pressure distributions. Module A represents the autoregressive component, incorporating previously 
predicted 𝐶𝑃 values, while Module B processes spatial coordinates and motion data from previous timesteps.

decoding modules operate with graph nodes based on the pressure

gradient distribution values across the wing surface, performing pool

ing and unpooling operations on the input, respectively. Initially, a 
pre-trained AE is used to compress the pressure distribution data into 
a lower-dimensional representation, preserving fundamental features 
while reducing computational complexity. This pre-training step re

duces the full model training time and computational costs, enhancing 
the overall efficiency of the prediction process. After the pooling op

eration, the reduced-space representation is passed through a temporal 
prediction layer. This layer is designed to capture the temporal depen

dencies in the data and forecast wing pressure from a series of previous 
timesteps to a future one. To account for the complexities caused by 
shock waves and boundary layer separation, which affect force and 
moment calculations, a penalty term for the pitching moment coeffi

cient 𝐶𝑀𝑦
is added to the Mean Absolute Error (MAE) loss function. 

This addition is represented as 𝐿𝑜𝑠𝑠 = MAE + 𝜆 ⋅ 𝐶𝑀𝑦
, with 𝜆 = 0.01

for dimensional consistency. The combination of AE, GCN layers, and 
temporal modeling enables the framework to provide precise and reli

able pressure predictions, which are crucial for analyzing aerodynamic 
performance.

A visual overview of the model architecture is presented in Fig. 1. 
The model input features include data from the 𝑛 previous timesteps 
(𝑡 − 1, ..., 𝑡 − 𝑛): spatial coordinates (𝑥, 𝑦, 𝑧); pitch (𝜃𝑡−𝑛, 𝜃̇𝑡−𝑛, 𝜃̈𝑡−𝑛); 
plunge (𝜉̇𝑡−𝑛, 𝜉𝑡−𝑛); and pressure coefficient (𝐶𝑃𝑡−𝑛 ), with 𝑛 = 3. Finally, 
the output of the model is represented by the pressure coefficient (𝐶𝑃𝑡 ) 
at the current timestep 𝑡. The choice of this sequence length ensures that 
the model has access to sufficient temporal context to capture the evo

lution of unsteady aerodynamic features, such as flow separation and 
shock dynamics, while avoiding the inclusion of redundant or excessive 
data, which would increase computational complexity without signifi

cantly improving accuracy.

Building on this, we developed two different types of architecture: 
a feedforward model and an autoregressive–moving-average (ARMA) 
model. In the case of the feedforward model, the inputs consist solely 
of the coordinates of the wing surface and the prescribed motion at 𝑛
previous timesteps casted on each graph node (using only Module B in 
Fig. 1). This model does not incorporate any past predicted pressures 
into its input, relying purely on the historical spatial and motion data of 
the wing to make its predictions. Conversely, the ARMA model includes 
additional information in its input by integrating the pressures predicted 
at prior timesteps (utilizing both Module A and Module B in Fig. 1). 
This autoregressive component allows the ARMA model to potentially 
capture more complex temporal dependencies by considering the history 
of its own predictions, aiming to enhance the accuracy of the pressure 
forecasts. Implementing both models serves to evaluate the trade-offs 
between simplicity and predictive depth: while the feedforward model 

offers a simpler, stable approach less prone to error accumulation, the 
ARMA model is designed to capture complex temporal dependencies 
and unsteady behaviors, potentially enhancing accuracy under dynamic 
conditions.

To limit error accumulation in the time-marching scheme, we em

ployed a Back-Propagation Through Time (BPTT) algorithm [34] for 
the total loss calculation, dividing the dataset into mini-sequences. The 
model processes each sequence consecutively, accumulating error over 
time. After processing each sequence, the loss function is applied to up

date the model parameters through backpropagation. A sequence length 
of three was chosen based on its performance, yielding the best results.

2.1.1. Graph representation

A graph 𝐺 is defined by a set of nodes 𝑁 and edges 𝐸, where each 
edge (𝑖, 𝑗) represents a directed link from node 𝑖 to node 𝑗. Self-loops oc

cur when (𝑖, 𝑖) ∈𝐸. These connections are represented by an adjacency 
matrix 𝐀, where 𝐀𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸, and 0 otherwise. Costs for edges 
can be included by replacing 1 with the cost and using ∞ for absent 
connections. A path 𝑝(𝑖→ 𝑗) is a series of steps from 𝑖 to 𝑗, where each 
step (ℎ,𝑘) ∈ 𝐸. A graph is acyclic if no path returns to a starting node, 
otherwise, it is cyclic.

In our case, the mesh can be represented as a cyclic graph 𝐺, where 
each grid point 𝑖 serves as a node. Each node carries features such as 
spatial coordinates (𝑥, 𝑦, 𝑧), pitch (𝜃, 𝜃̇, 𝜃̈), plunge (𝜉̇, 𝜉), and the pressure 
coefficient 𝐶𝑃 from the previous 𝑛 timesteps. We call node features 𝑦𝑖 , 
while edge weights 𝑒𝑖𝑗 .

Graph connectivity is represented by the adjacency matrix 𝐀, where 
each weight 𝑒𝑖𝑗 is the Euclidean distance between grid points 𝑖 and 𝑗: 
𝑒𝑖𝑗 = ‖𝐱𝑖−𝐱𝑗‖2. To normalize the weights to (0,1] and include self-loops 
(𝑒𝑖𝑖 = 1), the adjacency matrix is augmented: 𝐀̃ =𝐀+ 𝐈. Since edges are 
bidirectional (𝑒𝑖𝑗 = 𝑒𝑗𝑖), 𝐀̃ is symmetric.

Due to the graph sparsity, the adjacency matrix is stored in a 
memory-e˙icient Coordinate List (COO) format, where the edge-index 
matrix contains pairs of node indices, and the edge-weight matrix stores 
the corresponding weights, with 𝑛𝑒 being the number of edges.

2.1.2. Graph convolutional networks

GCNs are a particular type of ML algorithms that are based on graph 
theory. GCNs extract features from graphs by aggregating information 
from neighboring nodes using a graph convolutional operator. This op

erator, originally introduced by Duvenaud et al. in 2015 for molecular 
fingerprints [46], was later extended by Kipf et al. in 2016 [20] and is 
now implemented in PyTorch-Geometric library [47]. GCNs effec

tively generate node embeddings that capture structural information, 
making them ideal for tasks requiring an understanding of relationships 
between nodes.
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The GCN operator follows the layer-wise propagation rule that is 
defined by the equation:

𝐻 (𝑙+1) = 𝜎(𝐃̃− 1
2 𝐀̃𝐃̃− 1

2𝐻 (𝑙)𝑊 (𝑙)) (1)

Here, 𝐻 (𝑙) and 𝐻 (𝑙+1) are the node feature matrices at layers 𝑙 and 
𝑙 + 1, 𝐀̃ is the adjacency matrix with self-loops, 𝐃̃ is the degree matrix 
calculated on 𝐀̃, 𝑊 (𝑙) is the matrix of trainable weights, and 𝜎 is the 
activation function. This rule propagates information from a node to its 
neighbors, allowing nodes to gather information from larger neighbor

hoods as layers are stacked. Equation (1) is a first-order approximation 
of trainable localized spectral filters 𝑔𝜃 on graphs [20].

A spectral convolution 𝑔𝜃 ∗ 𝑥 of an input graph 𝑥̃ with a filter 𝑔𝜃 in 
the Fourier domain is defined as:

𝑔𝜃 ∗ 𝑥 =𝐔𝑔𝜃𝐔𝑇 𝑥 (2)

where 𝐔 contains the eigenvectors of the graph Laplacian, 𝐋. By approx

imating the spectral filter 𝑔𝜃 using Chebyshev polynomials [48], GCNs 
perform efficient localized filtering on graph data. This approximation 
simplifies the convolution process, making it feasible for large-scale 
graphs while preserving the ability to extract meaningful node features.

2.1.3. Temporal layers

In our framework, we explored various layers for temporal modeling: 
GRUs, LSTMs, attention mechanisms, and STGCN layers. Each method 
offers a distinct way to capture temporal dependencies, with varying 
level of complexity and performance suited to different contexts. In this 
section, we provide a brief overview of these methods, highlighting their 
key features and how they are integrated into our model. This compar

ison helps evaluate their effectiveness in handling temporal sequences.

Gated Recurrent Unit

The combination of GCNs with GRU [33] offers several key advan

tages when dealing with spatio-temporal data. GRUs are widely used 
and well-suited for modeling temporal dependencies, but they can not 
directly used with non-Cartesian domains like graphs, where spatial re

lationships are irregular. By incorporating graph convolution operators 
on GRUs, it is possible to improve the generalization capability of the 
model by replacing traditional convolution with a graph convolution, 
which can handle arbitrary graph structures and effectively learn from 
unstructured data.

Based on the approach in [49] where recurrent networks for fixed 
grid-structured sequence are introduced, Seo et al. [50] proposed a 
Graph Convolutional Recurrent Network (GCRN) architecture for build

ing a generalized GRU that works with unstructured sequence. To gen

eralize the model to graphs, the 2D convolution is replaced by the graph 
convolution operator, here ∗𝑔 , introduced in (2). In particular, GRU cell 
in GCRN is defined by:

𝑧𝑡 = 𝜎(𝑊𝑥𝑧 ∗𝑔 𝑥𝑡 +𝑈ℎ𝑧 ∗𝑔 ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝜎(𝑊𝑥𝑟 ∗𝑔 𝑥𝑡 +𝑈ℎ𝑟 ∗𝑔 ℎ𝑡−1 + 𝑏𝑟)

ℎ̂𝑡 = 𝜙(𝑊𝑥ℎ ∗𝑔 𝑥𝑡 +𝑈ℎℎ ∗𝑔 (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)

ℎ𝑡 = (1 − 𝑧𝑡)⊙ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̂𝑡

Here, 𝑊𝑥𝑧 ∗𝑔 𝑥𝑡 refers to the graph convolution operation of 𝑥𝑡
with spectral filters which are functions of the graph Laplacian 𝐿
parametrized by 𝐾 Chebyshev coefficients. 𝑧𝑡 is the update gate vec

tor, 𝑟𝑡 is the reset gate vector, ℎ̂𝑡 is the candidate activation vector, ℎ𝑡
is the hidden state at time step 𝑡, 𝑊 and 𝑈 are the trainable weight 
matrices for the input and hidden states, respectively, 𝜎 is the logis

tic sigmoid function, and 𝜙 is the hyperbolic tangent function (or other 
possible activation functions). The operator ⊙ denotes the Hadamard 
product, while 𝑏 represents the biases.

Long Short-Term Memory

LSTM networks [32] are particularly useful when the data involves 
long-term dependencies, as they include memory units that can store 
information across multiple timesteps. This makes them potentially suit

able to model unsteady aerodynamic flows where past behavior in

fluences future forecasts over long periods of time. While both LSTM 
and GRU address the vanishing gradient problem and are designed to 
capture temporal relationships, LSTM includes additional memory struc

tures that enable it to retain information over longer time periods, by 
sacrificing computational power and increasing the number of parame

ters. The implementation of a convolutional graph based LSTM follows 
a similar approach presented before with GRU [50], by creating a model 
that replaces the 2D convolution with the graph convolution operator 
∗𝑔 . In particular:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗𝑔 𝑥𝑡 +𝑊ℎ𝑖 ∗𝑔 ℎ𝑡−1 +𝑤𝑐𝑖 ⊙ 𝑐𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗𝑔 𝑥𝑡 +𝑊ℎ𝑓 ∗𝑔 ℎ𝑡−1 +𝑤𝑐𝑓 ⊙ 𝑐𝑡−1 + 𝑏𝑓 )

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝜙(𝑊𝑥𝑐 ∗𝑔 𝑥𝑡 +𝑊ℎ𝑐 ∗𝑔 ℎ𝑡−1 + 𝑏𝑐)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗𝑔 𝑥𝑡 +𝑊ℎ𝑜 ∗𝑔 ℎ𝑡−1 +𝑤𝑐𝑜 ⊙ 𝑐𝑡 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜙(𝑐𝑡)

Where 𝑖𝑡 is the input gate, 𝑓𝑡 the forget gate, 𝑐𝑡 the cell state, 𝑜𝑡 the 
output gate and ℎ𝑡 the hidden state, which is the output of the LSTM 
at time step 𝑡. As before, 𝜎 is the logistic sigmoid function, 𝜙 is the hy

perbolic tangent function, 𝑊 represents the trainable weight matrix, 
and the support 𝐾 of the graph convolutional kernels is defined by the 
Chebyshev coefficients. This extension of the standard LSTM architec

ture enables the model to learn temporal dependencies while also taking 
into account the spatial structure of the data.

Attention Mechanisms

Incorporating attention mechanisms allows for dynamically assign

ing importance to different time steps in a temporal sequence, which 
is especially useful in graph-based models where both complex spatial 
and temporal dependencies must be captured. Following the work of Bai 
et al. [45], attention mechanisms can be employed to re-weight the in

fluence of hidden states of a GCRN across time, enabling the model to 
focus on the most relevant time points for prediction, rather than treat

ing each equally. The model was constructed by combining GCN and 
GRU to compute both the spatial and temporal domains of the graph, 
by using the graph convolution operator ∗𝑔 introduced before. In addi

tion, the attention mechanism is used to compute a context vector that 
selectively weighs the hidden states of the GCRN.

First, for each time step, the hidden states of the GRU ℎ𝑡 are passed 
through an attention layer, where attention scores 𝛼𝑡 are computed us

ing a softmax function. These scores are then used to weigh the hidden 
states, resulting in the context vector 𝐶 , which captures the global vari

ation information.

In particular, given a series of hidden states calculated by the recur

rent network for 𝑇 time steps: 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑇 }, the attention weights 
𝛼𝑡,1 < 𝑡 < 𝑇 are computed using a softmax function on the scores de

rived from a multilayer perceptron (MLP):

𝑒𝑡 =𝑤(2)(𝑤(1)𝐻 + 𝑏(1)) + 𝑏(2), 𝛼𝑡 =
exp(𝑒𝑡) ∑𝑇

𝑖=1 exp(𝑒𝑖)

where 𝑤(1), 𝑤(2), 𝑏(1), and 𝑏(2) are trainable weights and biases in the 
MLP. The context vector 𝐶 is then calculated by the weighted sum and 
used for implementing the attention mechanism on the GCRN hidden 
states:

𝐶 =
𝑇∑
𝑡=1 

𝛼𝑡ℎ𝑡

By combining GCNs for spatial feature extraction with GRUs and 
attention mechanisms for temporal modeling, the model can capture 
both short-term and long-term dependencies in the data.
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Fig. 2. Diagram of the pooling and unpooling modules used in the AE for dimensionality reduction and reconstruction. 

Spatio-temporal Graph Convolution

STGCN is introduced by Yu et al. [51] as a method to capture tem

poral dependencies in spatio-temporal data by applying convolutions 
across the time dimension. Unlike RNNs, which process inputs sequen

tially, temporal convolutions handle entire sequences at once, allowing 
for parallelization and faster computation. The temporal convolutional 
block consists of 1-D causal convolutions followed by a Gated Linear 
Unit (GLU) to introduce non-linearity and control the flow of informa

tion.

For each node in the graph 𝐺, the temporal convolution layer ex

plores 𝐾𝑡 neighboring elements along the time axis. This approach does 
not require padding, and as a result, the length of the sequence decreases 
by 𝐾𝑡 − 1 at each layer. Given an input sequence 𝑌 ∈ ℝ𝑀×𝐶𝑖 with 𝑀
time steps and 𝐶𝑖 channels, the convolution kernel Γ ∈ℝ𝐾𝑡×𝐶𝑖×2𝐶𝑜 maps 
the input to a single output element [𝑃 𝑄] ∈ℝ(𝑀−𝐾𝑡+1)×(2𝐶𝑜). The GLU 
is then applied, splitting [𝑃 𝑄] into two parts, and the output of the 
temporal convolution is given by:

Γ ∗𝑇 𝑌 = 𝑃 ⊙ 𝜎(𝑄) ∈ℝ(𝑀−𝐾𝑡+1)×𝐶𝑜 ,

where 𝑃 and 𝑄 are the inputs of the GLU, ⊙ denotes the element

wise Hadamard product, and 𝜎 is the sigmoid function. The GLU se

lectively gates the information flow, determining which parts of the 
input sequence are relevant for capturing dynamic temporal dependen

cies. Stacking multiple layers of these temporal convolutions enables the 
model to capture both short- and long-term patterns effectively.

This approach can also be generalized to 3D tensors, where the same 
convolution kernel is applied to every node 𝑌𝑖 ∈ℝ𝑀×𝐶𝑖 in the graph 𝐺, 
resulting in the operation Γ ∗𝑇 𝑌 with 𝑌 ∈ℝ𝑀×𝑛×𝐶𝑖 .

2.1.4. Dimensionality reduction/expansion module

The dimensionality reduction and expansion process aims to sim

plify the computational load by eliminating redundant information and 
concentrating on key regions where nonlinear phenomena occur. This 
method is based on our previous work [31] and is visualized in Fig. 2, 
which illustrates both the pooling (reduction) and unpooling (expan

sion) phases. These phases form the core of the encoding and decoding 
operations in the AE architecture.

During the pooling phase, points are selected based on pressure gra

dients to create a reduced point cloud. This strategy ensures that key 
regions with high gradients are retained, while areas with lower gradi

ents are simplified. The pressure gradient at each node 𝑖 is calculated 
assuming that pressure 𝑝 varies linearly in all spatial directions, as de

scribed by:

𝑝𝑖 − 𝑝0 = Δ𝑝𝑖 =Δ𝑥𝑖𝑝𝑥 +Δ𝑦𝑖𝑝𝑦 +Δ𝑧𝑖𝑝𝑧 (3)

Here, 𝑝0 represents the pressure at a reference node, while Δ𝑥𝑖, Δ𝑦𝑖, 
and Δ𝑧𝑖 are the spatial differences between neighboring nodes 𝑖. Using 
a least-squares method, the gradient at each node is determined. Nodes 

are then selected for the reduced space based on a probability function 
driven by gradient magnitudes:

𝑃𝑟(𝑖) = 1 + 1 − 𝑒−2𝑖∕𝑛

1 − 𝑒−2
(𝑃𝑟1 − 𝑃𝑟𝑛) + 𝑃𝑟1 for 𝑖 = 1,… , 𝑛 (4)

where 𝑖 refers to the node index ordered by gradient values, 𝑛 is the 
total number of nodes, and 𝑃𝑟1 and 𝑃𝑟𝑛 are the probabilities assigned 
to the highest and lowest normalized gradient values, respectively set 
here to 0.2 and 1.0. Adjusting these two values allows the methodol

ogy to control the strength of the bias towards high-gradient regions. 
The mathematical form of Equation (4) may be adjusted to suit spe

cific applications. The choice of this function in our case is based on a 
heuristic modeling approach that prioritizes higher gradient nodes while 
maintaining a smooth probabilistic transition across the ordered set. The 
exponential form provides a nonlinear but smooth decay in importance, 
offering more control over the sampling distribution than a linear or 
stepwise function. The function behavior can be adjusted by changing 
the range of the subtraction (𝑃𝑟1 − 𝑃𝑟𝑛). Here, 𝑃𝑟1 (lower probability 
value) corresponds to the nodes with the highest gradient magnitudes, 
which we aim to retain with higher priority, while 𝑃𝑟𝑛 (higher proba

bility value) is assigned to the nodes with the lowest gradients, making 
them more likely to be discarded. In practice, adjusting these two val

ues allows the methodology to control the emphasis on sharp or smooth 
gradient features.

To reconnect the reduced point cloud, Mahalanobis distance (MD) 
is used [52], which accounts for the spread and covariance of the point 
distribution. MD between two points 𝑥 and 𝑦 is given by:

𝐷𝑀 (𝑥, 𝑦) =
√
(𝑥− 𝑦)𝑇 𝑆−1(𝑥− 𝑦) (5)

where 𝑆 is the covariance matrix of the original point distribution. MD 
is computed in the reduced point distribution, for each point to obtain 
a new set of nearest neighbors, from a reduced selection [31]. With 
MD, each point is connected according to the distribution of points in 
the finer mesh, using the covariance matrix computed in the original 
space. This method helps maintain accurate connectivity in the reduced 
graph, avoiding false connections caused by proximity errors when us

ing Euclidean distance [31]. After MD is applied, the reduced point 
cloud becomes a new coarser graph.

Once the reduced graph is constructed, node values are interpolated 
using the Moving Weighted Least Squares (MWLS) method [53,54]. This 
methodology can be applied during both the encoding and decoding 
phases by inverting the interpolation matrix. Here we use the nomencla

ture source and destination grids, which represents the finer and coarser 
grids, respectively, during pooling, and vice versa during unpooling. The 
interpolation matrix 𝐼𝑆𝑠→𝑆𝑑

is calculated to map any scalar feature 𝐲
values from the source grid 𝑆𝑠 to the destination grid 𝑆𝑑 . The final in

terpolated value at each node 𝐱𝑗 for the specific feature 𝐲 of the source 
grid is then computed as:
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Fig. 3. Schematic of the pre-trained AE architecture for compressing and reconstructing the 𝐶𝑃 data within the AeroNet framework. 

Table 1
Parameters and types of training, test and validation signals. DS: damped 
Schroeder-phased harmonic, US: undamped Schroeder-phased harmonic, 
SH: single harmonic.

Signals 𝜿𝜽 [-] 𝒂𝜽 [deg] 𝜿𝝃 [-] 𝒂𝝃 [m] Type 
Training 1 0.114 0.80 0.152 -0.098 DS, 𝜃 >0, 𝜉 <0 
Training 2 0.114 -0.80 0.152 0.098 DS, 𝜃 <0, 𝜉 >0 
Training 3 0.148 1.00 0.181 -0.123 DS, 𝜃 >0, 𝜉 <0 
Training 4 0.148 -1.00 0.181 0.123 DS, 𝜃 <0, 𝜉 >0

Test 1 0.091 0.70 0.123 0.074 DS, 𝜃 >0, 𝜉 >0 
Test 2 0.104 0.90 0.089 0.061 DS, 𝜃 >0, 𝜉 <0 
Test 3 0.104 -0.90 0.089 -0.061 DS, 𝜃 <0, 𝜉 <0 
Test 4 0.092 0.75 0.081 -0.059 US, 𝜃 >0, 𝜉 <0 
Test 5 0.147 -1.00 0.000 0.000 DS, 𝜃 <0 
Test 6 0.000 0.00 0.072 0.049 DS, 𝜉 >0

Validation 1 0.147 -1.00 0.072 0.049 DS, 𝜃 <0, 𝜉 >0 
Validation 2 0.106 3.00 0.089 -0.246 SH, 𝜃 >0, 𝜉 <0 

𝑢(𝐱𝑗 ) =𝚽(𝐱𝑗 ) 𝐲𝑆𝑠 , 𝐲𝑆𝑠 = [ 𝑦1,… , 𝑦𝑛𝑠
]𝑇 , (6)

where:

𝚽(𝐱𝑗 ) =𝐦𝑇 (𝐱𝑗 )(𝐌𝑇𝐖𝐌)−1𝐌𝑇𝐖 (7)

In this equation, 𝐌 is the design matrix constructed from the source 
nodes, 𝐦(𝐱) is a second-order polynomial basis, and 𝐖 is a diagonal 
matrix of Gaussian weights 𝑤(𝐱𝑖) = 𝑒−‖𝐱𝐣−𝐱𝑖‖2 . These weights control 
how strongly each source point influences the weighted least-squares fit, 
yielding a local approximation that is most accurate in the immediate 
vicinity of the interpolation point. The interpolation matrix 𝐼𝑆𝑠→𝑆𝑑

is 
used during pooling; since it is rectangular and therefore not invertible, 
a separate matrix 𝐼𝑆𝑑→𝑆𝑠

is calculated for the unpooling (decoder) step, 
by using the same methodology, swapping 𝑆𝑠 and 𝑆𝑑 .

For a detailed explanation of the entire encoding and decoding pro

cess, refer to the work of Immordino et al. [31].

2.1.5. Pre-trained autoencoder

Our proposed framework leverages an AE architecture, pre-trained 
for subsequent integration into the complete model. The pre-training 
phase involved using 𝐶𝑃 data as both input and output to the AE, ensur

ing the model accurately captures the essential features of the pressure 
distribution over the wing surface. The training dataset comprised the 
four signals detailed in Table 1.

To enhance the robustness of the AE, a data augmentation technique 
was employed. Specifically, the dataset was augmented by 30% through 
the addition of Gaussian noise with 10% standard deviation of the input 

data. This augmentation strategy was designed to improve the model 
ability to generalize and handle variability in the pressure distribution 
data. Skip connections were integrated before each encoding module to 
facilitate the direct flow of information across the network. These con

nections allow the model to bypass certain layers, enabling the retention 
of critical features and mitigating the risk of information loss during the 
encoding and decoding processes. The network architecture has been 
optimized using a Bayesian optimization strategy, following the same 
approach of our previous work [31]. A schematic of the pre-trained AE 
architecture is shown in Fig. 3.

2.2. Dynamic mode decomposition with control

Dynamic Mode Decomposition with Control (DMDc) provides a 
systematic approach for deriving ROMs from high-dimensional data, 
explicitly incorporating external inputs. Since this is a well-known 
methodology in this field, we developed a baseline model to serve as 
a reference for our GCN-based framework.

Originally introduced by Proctor et al. [4], DMDc extends Dynamic 
Mode Decomposition to include control effects, yielding the following 
linear system:

𝐱𝑡+1 =𝐀𝐱𝑡 +𝐁𝐮𝑡, (8)

where 𝐱𝑡 ∈ ℝ𝑚 is the state vector, 𝐮𝑡 ∈ ℝ𝑝 is the control input vector 
(modal amplitudes and derivatives), and 𝐀, 𝐁 are the dynamic and in

put matrices, respectively. In our case, state vector contains pressure 
coefficient (𝐶𝑃𝑡 ), while the control vector contains pitch (𝜃𝑡, 𝜃̇𝑡, 𝜃̈𝑡) and 
plunge (𝜉̇𝑡, 𝜉𝑡).

Following Fonzi et al. [7], we define the state vector as:

𝐱𝑡 =
[
𝐶𝑝,1 𝐶𝑝,2 … 𝐶𝑝,𝑚

]𝑇
, (9)

where subscript 𝑚 indicates the number of surface grid points. The input 
vector is:

𝐮𝑡 =
[
𝐪𝑇
𝑡

𝐪̇𝑇
𝑡

𝐪̈𝑇
𝑡

]𝑇
, (10)

where 𝐪𝑡 denotes structural modal amplitudes at time 𝑡.
To identify the system matrices, we collect snapshot matrices from 

the dataset:

𝐗 =
[
𝐱1 … 𝐱𝑛−1

]
, 𝐗′ =

[
𝐱2 … 𝐱𝑛

]
, (11)

𝐔 =
[
𝐮1 … 𝐮𝑛−1

]
. (12)

Where subscript 𝑛 denotes the number of timesteps for a single sim

ulation. We define the augmented input matrix:
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𝚿 =
[
𝐗
𝐔

]
, (13)

and compute the DMDc operators using the pseudoinverse:[
𝐀 𝐁

]
=𝐗′𝚿†. (14)

To reduce the model order, we apply truncated SVD to 𝐗 ≈𝐔𝑟𝚺𝑟𝐕∗
𝑟
, 

and project 𝐀 and 𝐁 onto the dominant modes:

𝐀̃ =𝐔𝑇
𝑟
𝐀𝐔𝑟, 𝐁̃ =𝐔𝑇

𝑟
𝐁. (15)

Truncation is based on the Frobenius norm of 𝚺, with the number of 
retained modes selected to minimize below a threshold the root mean 
square error between the original and the reconstructed state matrix. 
The resulting system is:

𝐱̃𝑡+1 = 𝐀̃𝐱̃𝑡 + 𝐁̃𝐮𝑡, 𝐱𝑡 ≈𝐔𝑟𝐱̃𝑡, (16)

enabling the model to predict surface pressure evolution.

A stabilization procedure is applied to improve the conditioning of 
the reduced system, especially when unstable eigenvalues appear due to 
truncation artifact. This procedure modifies the eigenvalues of matrix Ã, 
making them all lie inside the unit circle in the complex plane. When an 
unstable eigenvalue is obtained, a new eigenvalue is calculated using a 
flip method, which modifies the eigenvalue outside the unit circle and 
reflect it back inside while preserving phase and mode orientation (refer 
to [7]).

3. Test case

The selected case study for evaluating our framework is the Bench

mark Super Critical Wing (BSCW), a transonic rigid semi-span wing 
featuring a rectangular planform and a supercritical airfoil profile, as de

tailed in the AIAA Aeroelastic Prediction Workshop [55]. The freestream 
conditions for this case are defined by a Mach number of 0.74, a 
Reynolds number of 4.49×106, and an initial angle of attack (𝐴𝑜𝐴∞) of 
0 degree. The wing features a reference chord length of 0.4064 𝑚 and a 
surface area of 0.3303 𝑚2, with pitching motion occurring around 30% 
of the chord. It is mounted on a flexible support system that allows two 
degrees of freedom: pitch 𝜃 and plunge 𝜉. It is designed for flutter anal

ysis, presenting challenges due to shock wave motion, shock-induced 
boundary-layer separation, and the interaction between the shock wave 
and the detached boundary layer. These nonlinear phenomena pose sig

nificant challenges for the framework predictions.

An unstructured mesh with 8.4 × 106 elements and 86,840 surface 
elements was created. A 𝑦+ = 1 value was used, based on a prelimi

nary mesh convergence study that confirmed adequate resolution of the 
boundary layer and shock wave. The computational domain extends 100 
chord lengths from the solid wall to the farfield. Fig. 4 provides an im

pression of the mesh configuration.

The dataset used to train the model was generated with CFD un

steady responses using the Unsteady Reynolds-averaged Navier–Stokes 
(URANS) formulation with SU2 v7.5.1 [56]. The simulations employed 
the one-equation Spalart-Allmaras turbulence model for RANS closure. 
To accelerate convergence, a 1𝑣 multigrid scheme was used. The JST 
central scheme with artificial dissipation handled convective flow dis

cretization, and the gradients of flow variables were calculated using 
the Green-Gauss method. The biconjugate gradient stabilization linear 
solver, along with the ILU preconditioner, was utilized. All URANS sim

ulations started from a steady-state solution, with a timestep of 2×10−4
seconds and a total simulation time of 2 seconds. These values were cho

sen to ensure a high temporal resolution, capturing rapid aerodynamic 
variations while keeping the computational cost manageable over the 
full simulation period. However, due to computational constraints, the 
timestep was reduced to 2 × 10−3 seconds through downsampling for 
model training, resulting in 660 timesteps per signal. This ensures a 
balance between computational feasibility and quality of aerodynamic 
data.

Fig. 4. Impression of the BSCW CFD grid. 

Table 2
Number of samples for the train

ing, test and validation datasets.

Dataset Number of Samples 
Training 2,640 (4 × 660) 
Test 3,960 (6 × 660) 
Validation 1,320 (2 × 660) 

We ran a total of 12 time-varying simulations, divided into train

ing, test, and validation sets as described in Table 1. The training set 
comprises damped Schroeder-phased harmonic (DS) simulations (see 
Appendix A for details on the DS signal formulation) with varied combi

nations of the parameters: reduced frequency for pitch (𝜅𝜃), maximum 
pitch amplitude (𝑎𝜃), reduced frequency for plunge (𝜅𝜉 ), and maximum 
plunge amplitude (𝑎𝜉 ), ensuring that the model learns from diverse con

ditions where these variables exhibit both positive and negative values 
(Fig. 5). This variation helps the model understand the complex in

teractions between the parameters. The test set extends this diversity 
by including additional combinations and signal types, specifically un

damped Schroeder-phased harmonic (US) and cases focusing solely on 𝜃
or 𝜉 variations. The signs associated with pitch and plunge indicate the 
initial directions of oscillation: a positive pitch corresponds to a nose

up rotation, while a positive plunge indicates downward motion. This 
approach allows us to accurately assess the model accuracy and sensi

tivity in predicting the effects of individual parameters, ensuring that 
it performs well across different conditions. The use of Schroeder sig

nals is motivated by their ability to effectively cover a broad frequency 
spectrum while minimizing peak amplitudes, which enhances the model 
robustness and ability to generalize. The validation set is designed to 
evaluate the model generalizability to new and unseen data. It includes 
a scenario similar to those in the training set but with distinct parameter 
values, as well as a unique single harmonic (SH) signal type, which the 
model did not encounter during training. This ensures that the model 
can handle both familiar and novel situations effectively.

Table 2 summarizes the number of samples in the training, test, and 
validation datasets, providing a clear overview of the dataset structure 
used in this study. Each sample consists of three consecutive timesteps 
as input and one timestep as output.
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Fig. 5. Training signal 1: DS with 𝜅𝜃 = 0.114, 𝑎𝜃 = 0.80 [deg], 𝜅𝜉 = 0.152, and 𝑎𝜉 = −0.098 [m]. 

Fig. 6. Validation signal 1 - DS type: Effect of temporal layer selection on 𝐶𝐿 and 𝐶𝑀 predictions in the feedforward model. The red circle marks the point of 
maximum error, used for plotting the 𝐶𝑃 distribution. FF: FeedForward. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

4. Results

In this section, we present the results of the reconstructed validation 
signals for two different types of architectures: feedforward model and 
ARMA model. By comparing the performance of these two architectures, 
we aim to illustrate the influence of incorporating predicted 𝐶𝑃 into 
the model input on the overall prediction accuracy and robustness. The 
impact of the temporal layer on the accuracy of each architecture is also 
studied.

4.1. Feedforward model

The feedforward model utilizes spatial and temporal data from pre

vious timesteps without relying on its own past predictions, thus pre

venting the accumulation of errors over time. The model performance 
across different temporal layers is evaluated using both DS and SH val

idation signals.

For the DS signal (Figs. 6 and 7), the predictions of the aerodynamic 
coefficients 𝐶𝐿 and 𝐶𝑀 align well with the CFD reference data in all 
temporal layers, as shown in Fig. 6. The STGCN layer demonstrates the 
lowest average error for 𝐶𝐿, while LSTM performs slightly better for 
𝐶𝑀 . A region of maximum error, indicated by the red circle, is consistent 

across all models and represents the point where the predictions for 𝐶𝐿
and 𝐶𝑀 show the greatest deviation from the reference data. This error 
appears to be related to the models difficulty in capturing sharp transi

tions or non-linearities in the aerodynamic flow, particularly near shock 
waves. Fig. 7 shows the 𝐶𝑃 distribution at this maximum error point 
and highlights the models overall ability to predict the pressure distri

bution across the wing. While most temporal layers perform reasonably 
well, some discrepancies near the leading edge and areas affected by 
shock waves and flow separation are noticeable. These areas, character

ized by strong flow gradients and non-linear aerodynamic behavior, are 
challenging for all models, although STGCN and LSTM exhibit slightly 
better accuracy compared to GRU and Attention mechanisms.

For the SH signal (Figs. 8 and 9), which involves higher-frequency os

cillations, the models encounter increased errors, particularly in predict

ing peak values for 𝐶𝐿 and 𝐶𝑀 . LSTM and STGCN continue to provide 
the most accurate results, although both exhibit some phase and ampli

tude errors due to the rapid oscillations. The red-circled point, indicating 
the region of maximum error for 𝐶𝐿 and 𝐶𝑀 , again highlights the chal

lenges of accurately capturing high-frequency aerodynamic loads. Fig. 9
provides a detailed view of the 𝐶𝑃 distribution at this maximum error 
point, where the models struggle more to match the rapid fluctuations 
in 𝐶𝑃 . Again, regions near the shock wave, which undergo significant 
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Fig. 7. Validation signal 1 - DS type: Effect of temporal layer selection on 𝐶𝑃 prediction at the maximum error point in the feedforward model. The lower surface of 
the wing is shown. LE: Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

Fig. 8. Validation signal 2 - SH type: Effect of temporal layer selection on 𝐶𝐿 and 𝐶𝑀 predictions in the feedforward model. The red circle marks the point of 
maximum error, used for plotting the 𝐶𝑃 distribution. FF: FeedForward.

temporal variation, show greater discrepancies. While the general 𝐶𝑃
distribution is captured, the accuracy decreases in areas where shock

induced flow separation occurs, with LSTM and STGCN again showing 
marginally better performance in these challenging regions.

To quantitatively evaluate the models, we calculated three error 
metrics—Mean Absolute Percentage Error (MAPE), coefficient of deter

mination (R2), and Root Mean Square Error (RMSE)�-for 𝐶𝑃 predictions 
across both validation signals, as shown in Table 3. These metrics are 
defined as:

MAPE= 100
𝑛 

𝑛 ∑
𝑖=1 

||||
𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|||| , RMSE=

√√√√1
𝑛 

𝑛 ∑
𝑖=1 

(𝑦𝑖 − 𝑦̂𝑖)2,



Aerospace Science and Technology 165 (2025) 110516

10

G. Immordino, A. Vaiuso, A. Da Ronch et al. 

Fig. 9. Validation signal 2 - SH type: Effect of temporal layer selection on 𝐶𝑃 prediction at the maximum error point in the feedforward model. The upper surface 
of the wing is shown. LE: Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

Table 3
Comparison of MAPE, R2, and RMSE for 𝐶𝑃 predictions in the feedforward model 
with different temporal layers for DS and SH validation signals.

Temporal Layer MAPE R2 RMSE 
DS SH DS SH DS SH 

GRU 1.2382 1.7851 0.9851 0.9830 0.0217 0.0229 
LSTM 0.7471 0.9695 0.9937 0.9909 0.0194 0.0215 
Attention 1.0470 1.5452 0.9887 0.9815 0.0238 0.0291 
STGCN 0.8524 0.9975 0.9918 0.9897 0.0163 0.0181 

R2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2

where 𝑦𝑖 is the Aeronet prediction averaged over the surface mesh, 
weighted by the cell area, 𝑦̂𝑖 is the corresponding CFD reference value 
computed under the same flow conditions and with the same weight

ing, 𝑛 is the number of timesteps in the signal, and 𝑦̄ = 1
𝑛 
∑𝑛

𝑖=1 𝑦̂𝑖 is the 
mean of the ground-truth CFD series.

MAPE reflects the average percentage error across predictions, show

ing that the LSTM model consistently achieves the lowest values, while 
the STGCN model follows closely. GRU and Attention mechanisms, on 
the other hand, display significantly higher MAPE, particularly for the 
high-frequency oscillations of the SH signal, indicating their difficulty in 
capturing rapid temporal variations and non-linearities. In terms of R2, 
which measures how well the model explains variance in the data, LSTM 
again performs the best, capturing the highest degree of variability, fol

lowed closely by STGCN, which also demonstrates strong performance 
in the DS signal but slightly lower accuracy for the SH signal. GRU and 
Attention layers show lower R2, further confirming their difficulty to 
fully capture the complexities in regions involving shock waves and 
high dynamic variability. Regarding RMSE, which emphasizes larger er

rors due to its quadratic nature, the STGCN model performs better with 
the lowest values, indicating a good robustness against significant de

viations. LSTM shows similar performance but struggles slightly more 

with large deviations in dynamic conditions like the SH signal. Again, 
GRU and Attention mechanisms exhibit the highest RMSE. These results 
suggest that all models are well-suited for capturing both spatial and 
temporal dependencies with good overall performance, but GRU and 
Attention layers struggle more to capture the rapid temporal variations 
and non-linearities in the 𝐶𝑃 distribution.

In conclusion, while all temporal layers provide reasonable predic

tions for unsteady aerodynamic phenomena, the LSTM model delivers 
the most robust performance across both validation signals. STGCN also 
performs well, particularly for 𝐶𝐿 predictions, while GRU and Attention 
mechanisms exhibit larger errors, especially in more complex dynamics. 
The evaluation of 𝐶𝑃 distribution highlights the importance of accu

rately capturing non-linear flow features, with regions near shock waves 
and flow separations proving to be the most challenging for all models.

4.2. ARMA model

The ARMA model, which integrates past predictions into its input, 
was evaluated using various temporal layers to assess its performance 
in predicting 𝐶𝐿, 𝐶𝑀 , and 𝐶𝑃 across DS and SH validation signals. As 
shown in Fig. 10, one of the biggest limitations of the ARMA model con

sists of accumulation of errors over time, particularly when using the 
GRU and Attention mechanisms. Again, LSTM and STGCN demonstrate 
better predictive performance, although both exhibit some deviations in 
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Fig. 10. Validation signal 1 - DS type: Impact of temporal layer selection on 𝐶𝐿 and 𝐶𝑀 predictions in the ARMA model. Red circles denote the points used for 
plotting the 𝐶𝑃 distribution.

Table 4
Comparison of MAPE, R2, and RMSE for 𝐶𝑃 predictions in the ARMA model with 
different temporal layers for DS and SH validation signals.

Temporal Layer MAPE R2 RMSE 
DS SH DS SH DS SH 

GRU 8.5577 6.7837 0.7560 0.7993 0.1389 0.1439 
LSTM 7.7511 6.4299 0.8426 0.8506 0.1002 0.0864 
Attention 7.7985 5.8077 0.8167 0.7796 0.1233 0.1048 
STGCN 6.9381 5.7971 0.8571 0.8648 0.0938 0.0844 

complex flow regions. The red-circled points were selected to visualize 
the evolution of the error over time. These points were spaced at regular 
intervals along the signal to provide insight into how prediction accu

racy changes throughout the sequence. This allows us to observe how 
the model handles different stages of prediction and highlights its diffi

culty in accurately capturing sharp transitions and non-linearities in the 
aerodynamic flow, particularly around shocks. This issue is further em

phasized in Fig. 11, where the 𝐶𝑃 at these selected points shows that the 
ARMA model has more difficulty maintaining accuracy near the leading 
edge and in shock-affected regions. Despite these challenges, LSTM and 
STGCN continue to provide the most reliable predictions despite the in

herent error accumulation.

For the SH signal (Figs. 12 and 13), which involves higher frequency 
oscillations, the ARMA model exhibits increased errors, particularly for 
the GRU and Attention layers. The rapid oscillations introduce phase and 
amplitude discrepancies, with LSTM and STGCN handling these varia

tions better, though both models still show increased errors compared 
to the DS signal. The 𝐶𝑃 distribution in Fig. 13 reveals that the ARMA 
model is more susceptible to error propagation in highly dynamic re

gions near shock waves, where rapid changes in flow introduce greater 
inaccuracies. Although LSTM and STGCN mitigate these issues to some 
extent, they still experience some degradation in predictive accuracy 
due to the model autoregressive nature.

The superior performance of LSTM and STGCN can be attributed 
to their inherent design, which allows them to handle temporal de

pendencies more effectively. The LSTM architecture, with its complex 
gating mechanisms, enables the model to retain and manage both long-

and short-term dependencies, preventing information loss over multiple 

timesteps and helping to mitigate the error accumulation issue inherent 
in the ARMA model. The STGCN layer combines both spatial and tem

poral convolutions, making it well-suited to handle non-uniform grid 
structures and effectively capture spatial correlations (such as pressure 
gradients across the wing) as well as temporal dependencies during 
rapid changes in aerodynamic conditions, as seen in the SH signal.

In contrast, the GRU simpler structure limits its capacity to capture 
long-term dependencies effectively. The Attention mechanism, while 
effective for capturing important temporal relationships in longer se

quences, is not as well suited to the short input sequences used in this 
model, where the benefits of dynamically weighting timesteps are re

duced, limiting the Attention layer effectiveness.

Table 4 quantifies the performance of the different temporal layers 
in terms of MAPE, R2, and RMSE for 𝐶𝑃 predictions in the ARMA model. 
The STGCN model consistently achieves the lowest MAPE and RMSE val

ues across both the DS and SH signals, with LSTM performing nearly as 
well. This suggests that both models are adept at handling temporal de

pendencies even in autoregressive contexts, although the STGCN slightly 
outperforms LSTM, particularly in the dynamic SH signal. GRU and At

tention layers, on the other hand, show higher MAPE and RMSE, along 
with lower R2, indicating that they struggle to mitigate the error accu

mulation inherent in the ARMA model, particularly in high-frequency 
oscillations. The lower R2 values for GRU and Attention mechanisms 
highlight their reduced ability to capture the full variability in the data 
with rapid aerodynamic changes. Overall, the results suggest that while 
the ARMA model can capture general trends, its susceptibility to error 
propagation makes it crucial to use robust temporal layers, such as LSTM 
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Fig. 11. Validation signal 1 - DS type: Impact of temporal layer selection on 𝐶𝑃 prediction at the maximum error point in the ARMA model. The lower surface of 
the wing is shown. LE: Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

and STGCN, to minimize predictive inaccuracies in highly dynamic and 
non-linear aerodynamic conditions.

4.3. Comparison between feedforward and ARMA

The comparison between ARMA and feedforward models, both using 
the STGCN temporal layer, reveals notable differences in performance, 
especially regarding error accumulation and prediction stability. The 
STGCN temporal layer was selected for this comparison because it con

sistently yielded the most accurate results across both validation signals, 
as demonstrated in previous sections. In this case, ARMA model uses 
ground-truth 𝐶𝑃 values for the first half of the signal, after which it 

switches to using its own predictions for subsequent timesteps. As shown 
in Fig. 14, the feedforward model provides more accurate predictions for 
𝐶𝐿 and 𝐶𝑀 on the DS signal, avoiding the accumulation of errors ob

served in the ARMA model. The red circled points were chosen to be in 
the middle of the first and second halves of the signal, providing infor

mation on the behavior of the model during the transition from using 
ground truth to self-predicted values. This choice allows for a clearer 
comparison of model performance during both phases, highlighting the 
ARMA model difficulty in limiting error accumulation, while the feed

forward model maintains closer alignment with the reference data. This 
trend is further confirmed in Fig. 15, where the evolution of the MAPE in 
𝐶𝑃 reveals that the feedforward model consistently maintains lower er
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Fig. 11. (continued) 

Fig. 12. Validation signal 2 - SH type: Impact of temporal layer selection on 𝐶𝐿 and 𝐶𝑀 predictions in the ARMA model. Red circles denote the points used for 
plotting the 𝐶𝑃 distribution.
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Fig. 13. Validation signal 2 - SH type: Impact of temporal layer selection on 𝐶𝑃 prediction at the maximum error point in the ARMA model. The upper surface of 
the wing is shown. LE: Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

ror levels over time compared to the ARMA model, which, as expected, 
shows a clear pattern of accumulation of errors.

Interestingly, the ARMA model performs relatively well during the 
first half of the signals, when ground-truth 𝐶𝑃 values are used as input. 
In this phase, the ARMA model can even outperform the feedforward 
model, as seen in the initial part of Figs. 14 and 15. However, once 
the model begins using its own predicted 𝐶𝑃 values for subsequent 
timesteps, error accumulation begins, resulting in larger deviations from 
the reference data. This behavior is clearly seen in Fig. 16, where the 
ARMA model shows growing discrepancies in 𝐶𝑃 predictions as the 
autoregressive process progresses. In contrast, the feedforward model 
avoids this problem by not relying on its past predictions, allowing it to 

maintain better accuracy in regions near the leading and trailing edges, 
where flow complexity is higher.

These trends are even more evident with the SH signal, which fea

tures rapid oscillations. Fig. 17 shows that the feedforward model han

dles these high-frequency aerodynamic variations more effectively, with 
significantly fewer phase and amplitude errors than the ARMA model. 
The ARMA model, due to its time-marching scheme, exhibits a greater 
sensitivity to reduced frequency. At higher frequencies, errors accumu

late faster as small inaccuracies from previous steps compound. Once the 
ARMA model switches from using ground-truth inputs to its own predic

tions, it fails to keep pace with the rapid changes in aerodynamic forces, 
resulting in larger phase lags and more significant deviations from the 
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Fig. 13. (continued) 

Fig. 14. Validation signal 1 - DS type: ARMA vs. Feedforward model using STGCN temporal layer on 𝐶𝐿 and 𝐶𝑀 predictions. Red circles denote the points used for 
plotting the 𝐶𝑃 distribution. Vertical dashed line marks the time instance where the ARMA model transitions to autoregressive 𝐶𝑃 predictions.

reference data. In contrast, as the feedforward model relies only on the 
wing spatial coordinates and prescribed motions at previous timesteps 
(without feeding back its own predictions), it results in a more stable er

ror profile and in a more reliable and accurate predictions of unsteady 
phenomena.

As shown in Fig. 18, the feedforward model consistently outper

forms the ARMA model in terms of MAPE on 𝐶𝑃 for the SH signal. The 
ARMA model error accumulation is particularly pronounced in more 

dynamic conditions, such as rapid oscillations, which results in signifi

cantly higher MAPE. Fig. 19 further supports this observation, showing 
that the feedforward model is better at predicting the 𝐶𝑃 distribution, 
where the ARMA model struggles due to the accumulation of prediction 
errors. However, it is important to note that when the ARMA model 
is feeded with ground-truth 𝐶𝑃 values, it can produce very accurate 
predictions, outperforming the feedforward model. This highlights the 
ARMA potential in study cases where error on pressure values does not 
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Fig. 15. Validation signal 1 - DS type: Evolution of MAPE of 𝐶𝑃 with ARMA 
and Feedforward model. Vertical dashed line marks the time instance where 
the ARMA model transitions to autoregressive 𝐶𝑃 predictions.

accumulate too fast, as in systems with lower reduced frequency. Also, 
insufficient convergence of the CFD solution may affect error accumu

lation in regions with complex flow patterns, suggesting that improving 
solution stability may help mitigate this problem.

4.4. Sensitivity analysis to elliptical and hyperbolic regions

The framework has the ability to independently detect the elliptic or 
hyperbolic nature of the flow, as demonstrated by a sensitivity analy

sis in which localized perturbations were applied separately in subsonic 
and supersonic regions (see Fig. 20). Specifically, we introduced a 100% 
instantaneous increase in 𝐶𝑃 at a single surface node. Two cases are ex

amined: (a) the perturbed node lies inside a subsonic area downstream 
of the shock, and (b) the node is inside the supersonic region immedi

ately upstream of the shock. The perturbation is injected into the ARMA 
variant, and its spatial propagation is tracked for one time-step through 
the decoder. Our analysis showed distinct differences in the response 
to these perturbations: In the subsonic (elliptical) region, the pertur

bation affected the pressure distribution in all directions around the 
perturbed node, reflecting the expected elliptical behavior characterized 
by long-range spatial correlation. In the supersonic (hyperbolic) region, 
the perturbation only affected nodes downstream of the perturbed node, 
consistent with hyperbolic behavior where information propagates pri

marily in the downstream direction. Closer inspection reveals that the 
affected region is not only biased in the downstream direction, but also 
laterally constrained by the local Mach cone. In weakly supersonic pock

ets where the local Mach number lies between 𝑀loc = 1.0 and 1.2, the 
corresponding Mach angle spans approximately 60◦ to 90◦. As illus

trated in Fig. 20, the high-Δ𝐶𝑃 response falls almost entirely inside this 
2𝜇-wide cone-shaped sector. These results confirm that the convolution 
kernels in our graph-based architecture adaptively encode flow-specific 
properties without explicit a priori definitions, successfully capturing 
the essential physical behavior of transonic flows.

4.5. Extrapolation to off-design flow conditions

The Feedforward AeroNet was trained exclusively on URANS data 
obtained at the reference condition 𝑀 = 0.74, but in practical appli

cations the wing will often operate at significantly different freestream 
parameters. To assess how far the network can be pushed outside its 
training envelope, we confronted it with wind tunnel measurements of 
pitch-only motion from Piatak and Cleckner [57]. These experiments 
were designed to generate test cases for validation purposes and have 
since become standard benchmarks in the aeroelastic community. The 
corresponding datasets, developed as part of the AIAA Aeroelastic Pre

diction Workshop, have been widely studied both computationally and 
experimentally precisely because they involve challenging transonic 
phenomena, such as shock-induced separation, flow reattachment and 

nonlinear unsteady effects, which are difficult to predict reliably. This 
complexity has motivated several initiatives aimed at benchmarking 
reduced-order and highfidelity models under standardized test condi

tions [55,58--60].

The experimental database provides mean pressure coefficient 
(𝐶𝑃 )𝑀𝑒𝑎𝑛 distributions extracted at 60% span for two off-design Mach 
numbers, 𝑀 = 0.70 and 𝑀 = 0.85, respectively, tested at mean inci

dences (𝐴𝑜𝐴∞) of 0 deg and 5 deg, while keeping the pitch amplitude 
(𝑎𝜃 = 1.03 [deg]) and reduced frequency (𝑘𝜃 = 0.439) identical for the 
two maneuvers. To ensure a consistent basis for comparison, the pre

dicted surface pressure distributions from AeroNet were averaged in 
time over a full oscillation cycle, yielding mean values comparable to 
the experimental data. Note that the current implementation has no ex

plicit input of flow parameters-the current network receives only the 
instantaneous wing kinematics {𝜃, 𝜃̇, 𝜃̈} as input. Variations in 𝑀∞
or 𝑅𝑒 therefore affect the model only indirectly through the rescaled 
timestep, which enters through the first and second order derivatives of 
the motion. In practice, this means that any prediction at an off-design 
Mach number is, strictly speaking, an extrapolation task. As with all 
data-driven models, robust performance can be expected only within 
the input space spanned by the training data; good generalization re

quires that the training set include sufficiently rich and diverse examples 
covering the desired range of operating conditions.

Fig. 21 contrasts the time-averaged AeroNet predictions (continu

ous curves) with the corresponding experimental data (symbols). For 
the subcritical case at 𝑀 = 0.70, the network shows good agreement 
with the measurements, especially at 𝐴𝑜𝐴∞ = 0 deg where the model 
follows the nearly flat pressure plateau. At higher angles of incidence, 
the distribution on the lower surface is correct, but the shock, which 
is relatively weak at this Mach number, appears at about 𝑥∕𝑐 ≈ 0.35 in

stead of 0.18, and the associated compression is slightly underpredicted. 
The trailing edge pressure levels are correctly matched, suggesting that 
this modest deviation from the design Mach number is well accommo

dated by the network’s learned manifold. At 𝑀 = 0.85, however, the 
discrepancies become more pronounced. The model tends to shift the 
shock aft compared to the experimental observations. For 𝐴𝑜𝐴∞ = 5
deg the discrepancy becomes more significant: the network overesti

mates the suction on the lower surface downstream of the leading edge, 
probably due to an incomplete representation of the shock-induced sep

aration, which becomes more relevant at this higher Mach number; a 
result consistent with the stronger and more upstream shock motion 
that the network never encountered during training.

The encouraging performance at 𝑀 = 0.70 suggests that moderate 
deviations from the design point remain within the latent manifold 
learned by the network, while the larger deviations at 𝑀 = 0.85 ex

pose its limited awareness of transonic shock dynamics when freestream 
parameters are kept invisible. Making 𝑀 and 𝑅𝑒 explicit conditioning 
variables is the next logical step for improving generalizability.

4.6. Comparison between AeroNet and DMDc

To contextualize the performance of the proposed AeroNet models, 
we benchmark them against a well-established reduced-order technique

the DMDc, given its similarity to the autoregressive mechanism inherent 
to our AeroNet ARMA variant. The DMDc implementation follows the 
procedure detailed by Fonzi et al. [7], which was previously employed 
successfully on the same benchmark wing under similar flow conditions. 
For optimal dimensionality reduction and computational efficiency, a 
total of 25 modes were retained based on a Frobenius norm threshold 
of 0.1, ensuring a low reconstruction error on the training dataset.

Figs. 22 and 23 compare the predicted 𝐶𝐿 and 𝐶𝑀 histories from 
the DMDc and AeroNet models against the CFD reference data for the 
two validation signals detailed in Table 1. For the DS validation signal 
(Fig. 22), all models exhibit good agreement with the CFD reference, 
with the AeroNet FF variant demonstrating notably superior accuracy. 
This observation is quantitatively supported by the metrics provided in 
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Fig. 16. Validation signal 1 - DS type: ARMA vs. Feedforward model using STGCN temporal layer on 𝐶𝑃 prediction. The lower surface of the wing is shown. LE: 
Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

Fig. 16. (continued) 

Table 5
Comparison of MAPE, R2, and RMSE for 𝐶𝑃 predictions in the DMDc and 
AeroNet ARMA - FF models with STGCN temporal layer for DS and SH vali

dation signals.

Model MAPE R2 RMSE 
DS SH DS SH DS SH 

DMDc 4.7961 6.4841 0.9137 0.8574 0.0608 0.1362 
Aeronet ARMA 6.9381 5.7971 0.8571 0.8648 0.0938 0.0844 
Aeronet FF 0.8524 0.9975 0.9918 0.9897 0.0163 0.0181 

Table 5. For the SH signal, characterized by higher-frequency oscilla

tions (Fig. 23), both AeroNet variants outperform the DMDc method. 
In particular, AeroNet effectively captures dynamic peaks and mitigates 
the error propagation that noticeably affects the pitching moment pre

dictions. These qualitative insights are further confirmed by the error 
metric summarized in Table 5.

To complement the error–propagation analysis, we quantified the 
stability of the learned latent-space dynamics by estimating the largest 
Lyapunov exponent, 𝜆1, for each model and excitation signal on the pre

dicted 𝐶𝑃 . The error is scaled with respect to the cell area. Table 6 lists 
the resulting values together with a qualitative stability assessment: pos

itive 𝜆1 indicates exponential divergence (chaotic/unstable behavior), 
whereas a negative value reflects asymptotic convergence to an attrac

tor.

For both signals, the feedforward model has a Lyapunov exponent 
of zero by definition, as the network never feeds back its own outputs 
into the next step, local perturbations neither grow nor decay and no 
systematic error build-up occurs, so the system remains neutrally sta

ble. In contrast, for the DS signal, both ARMA and DMDc variants yield 
a positive 𝜆1, so that perturbations double every 1.3 s and 1.1 s re

spectively. This confirms that the autoregressive feedback loop amplifies 
numerical noise and modeling inaccuracies—a mechanism responsible 
for the error increase in Fig. 15. The SH case imposes a higher reduced 



Aerospace Science and Technology 165 (2025) 110516

18

G. Immordino, A. Vaiuso, A. Da Ronch et al. 

Fig. 17. Validation signal 2 - SH type: ARMA vs. Feedforward model using STGCN temporal layer on 𝐶𝐿 and 𝐶𝑀 predictions. Red circles denote the points used for 
plotting the 𝐶𝑃 distribution. Vertical dashed line marks the time instance where the ARMA model transitions to autoregressive 𝐶𝑃 predictions.

Fig. 18. Validation signal 2 - SH type: Evolution of MAPE of 𝐶𝑃 with ARMA 
and Feedforward model. Vertical dashed line marks the time instance where 
the ARMA model transitions to autoregressive 𝐶𝑃 predictions.

Table 6
Estimated largest Lyapunov exponents 𝜆1 for AeroNet and 
DMDc models under DS and SH excitations.

Signal Type Model 𝜆1 [s-1] Stability 
DS DMDc +0.581 Unstable 
DS AeroNet ARMA +0.513 Unstable 
DS AeroNet FF 0 Neutrally Stable

SH DMDc +0.844 Unstable 
SH AeroNet ARMA +0.795 Unstable 
SH AeroNet FF 0 Neutrally Stable 

frequency and a stronger shock oscillation. Here, the ARMA model be

comes even more unstable, with 𝜆1 ≈ 0.80 s−1, implying that trajectory 
separation doubles roughly every 0.9 s. Similar considerations can be 
drawn for DMDc model, with perturbations double every 0.8 s. The 
feedforward formulation maintains forecast fidelity over extended roll

outs, whereas the autoregressive ARMA is prone to error accumulation 

unless external correction (e.g., periodic sensor feedback) is available. 
The DMDc model exhibits slightly faster prediction degradation. Unlike 
neural networks, which can learn to adaptively dampen or stabilize un

steady behavior, DMDc relies on a purely linear, open-loop operator. 
This makes it inherently more susceptible to noise amplification and 
model drift, especially when extrapolating beyond the training region 
or under higher frequency oscillations, as seen in the SH scenario.

The differences between AeroNet and DMDc models can be at

tributed to their underlying methodologies. DMDc inherently carries 
specific constraints, such as the requirement for explicit stabilization 
procedures and calibration within a relatively narrow operating enve

lope. Consequently, DMDc is highly sensitive to deviations from the 
training conditions, limiting its general robustness. In contrast, AeroNet 
models attain comparable or better accuracy without relying on such 
stringent stabilization and tuning steps. This allows them to perform ro

bustly across a wider range of dynamic conditions.

The trade-off of employing AeroNet over traditional methods such as 
DMDc lies in interpretability. DMDc model expresses explicitly the sys

tem dynamics via 𝐴 and 𝐵 matrices and modal decompositions, thereby 
providing direct analysis of the system behavior and physical insights. 
In contrast, AeroNet employs deep neural architectures whose internal 
representations do not necessarily correspond to physically meaningful 
quantities. The network operates as a black box, optimizing its parame

ters solely to reduce predictive error, without explicitly encoding the 
governing flow mechanisms. Therefore, while AeroNet demonstrates 
superior adaptability and predictive accuracy in complex, dynamic sce

narios, this comes at the cost of reduced interpretability.

4.7. Computing cost analysis

A comprehensive analysis of computational costs was performed to 
compare the efficiency of the proposed AeroNet model with that of a 
higher-order approach and DMDc technique, as shown in Table 7. A 
single CFD run on a high-performance computing system, using an Intel 
Skylake-based architecture with 3 nodes and 40 CPU cores per node, typ

ically requires around 6,000 CPU hours. Generating the entire dataset 
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Fig. 19. Validation signal 2 - SH type: ARMA vs. Feedforward model using STGCN temporal layer on 𝐶𝑃 prediction. The upper surface of the wing is shown. LE: 
Leading Edge. TE: Trailing Edge. Dash-dot line indicates the symmetry plane.

Fig. 19. (continued) 

Fig. 20. Instantaneous 𝐶𝑃 perturbation study demonstrating model sensitivity to elliptical and hyperbolic flow behavior. 
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Fig. 21. Time-averaged surface pressure coefficient at 60% span for pitch-only oscillations with 𝑎𝜃 = 1.03 [deg] and 𝑘𝜃 = 0.439. 

Fig. 22. Validation signal 1 - DS type: DMDc vs. AeroNet models using STGCN temporal layer on 𝐶𝐿 and 𝐶𝑀 predictions. 

Table 7
Computing cost comparison between AeroNet models, DMDc and CFD. FF: FeedForward.

CFD (CPU hours) AeroNet (GPU hours) 
Simulation Pre-Trained AE Training Prediction 
(12 runs) (1 run) (Optimization + Training) (ARMA) (FF) (ARMA) (FF) 
75,000 6,000 42.6 35.2 33.1 0.03 0.03 

DMDc (CPU hours) 
Training Prediction 
0.15 0.003 

demands approximately 75,000 CPU hours. In contrast, the proposed 
framework predicts a full signal in under two minutes on a local ma

chine with a NVIDIA RTX A4000 GPU, with a per-timestep inference 
time of 0.15 seconds (6.67 frames-per-second), yielding over 99% com

putational savings with respect to CFD. The DMDc model, once trained, 
is still faster in wall-clock terms (60 frames-per-second), but (as shown 
in Section 4.6) at the cost of lower prediction accuracy. Finally, we note 
that the large up-front expense of producing highfidelity training data 
motivates future work on transfer-learning or active-learning strategies.

5. Conclusions

This study introduced a framework for predicting unsteady transonic 
wing pressure distributions, integrating an AE architecture with GCN 
and graph-based temporal layers to capture time dependencies. Tested 
on a grid consisting of 86,840 surface points, the proposed model effec

tively compresses high-dimensional 𝐶𝑃 distribution data into a lower

dimensional latent space using the AE, preserving essential features for 
accurate representation. The GCN layers are well-suited for handling 
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Fig. 23. Validation signal 2 - SH type: DMDc vs. AeroNet models using STGCN temporal layer on 𝐶𝐿 and 𝐶𝑀 predictions. 

the unstructured grids characteristic of aerodynamic data, while the 
temporal layers capture and leverage temporal dependencies for robust 
forecasting of wing 𝐶𝑃 distributions.

Our results demonstrated that this integrated approach can achieve 
an accuracy comparable to traditional CFD methods for the dynamic 
conditions included in the training and validation datasets, while signif

icantly reducing computational costs, requiring initially about 76 GPU 
hours for training and then less than 2 minutes to predict an entire sig

nal. We evaluated two architectures, the feedforward model and the 
ARMA model, using four different temporal layers (GRU, LSTM, STGCN, 
ATTENTION), with the STGCN layer consistently delivering the most 
accurate results across the validation signals. The feedforward model 
demonstrated clear advantages in terms of predictive accuracy and sta

bility, particularly in avoiding the error propagation inherent in the 
ARMA model. By not relying on its own predictions for subsequent in

puts, the feedforward model is better suited for dynamic simulations 
ranging from steady-state to high reduced frequency, showing greater 
accuracy in predicting complex flow features, such as shock waves and 
flow separation. The ARMA model, while capable of capturing general 
trends, is more prone to error accumulation, particularly in scenar

ios with high-frequency oscillations or rapid changes in aerodynamic 
forces. Nonetheless, when using ground-truth inputs, the ARMA model 
can yield highly accurate results, underscoring its potential in scenar

ios with reliable data inputs. Both AeroNet variants outperformed the 
established DMDc approach, particularly in high-frequency, dynami

cally complex situations. Notably, AeroNet achieves superior accuracy 
without requiring explicit stabilization or calibration, indicating greater 
robustness and adaptability.

Sensitivity analyses demonstrated that the proposed framework in

herently distinguishes between elliptic and hyperbolic flow character

istics typical of transonic flows. Localized perturbations in subsonic 
(elliptical) regions affect global pressure distributions, while perturba

tions in supersonic (hyperbolic) regions propagate downstream within 
localized Mach cones. These findings confirm AeroNet capability to ac

curately capture the distinct physical behaviors associated with different 
aerodynamic flow regimes.

The extrapolation capacity to off-design conditions (e.g., varying 
freestream Mach or Reynolds number) remains limited and should be 
addressed in future work through explicit conditioning on flow param

eters or multifidelity learning strategies. Additionally, scalability to 
larger grids and different graph structures will be explored. GCNs inher

ently support various graph configurations, but expanding the model to 
handle new spatial structures or larger meshes may require techniques 
like subgraph splitting or padding to ensure input compatibility. As grid 
size increases, deeper networks and additional pooling layers will be 
necessary to capture long-range dependencies efficiently, while main

taining computational feasibility.

CRediT authorship contribution statement

Gabriele Immordino: Writing -- review & editing, Writing -- orig

inal draft, Visualization, Validation, Methodology, Investigation, For

mal analysis, Data curation, Conceptualization. Andrea Vaiuso: Writing 
– original draft, Methodology, Conceptualization. Andrea Da Ronch: 
Writing -- review & editing, Supervision, Resources, Project administra

tion, Conceptualization. Marcello Righi: Writing -- review & editing, 
Supervision, Resources, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela

tionships which may be considered as potential competing interests: 
Gabriele Immordino reports financial support was provided by ZHAW 
University of Applied Sciences. If there are other authors, they declare 
that they have no known competing financial interests or personal re

lationships that could have appeared to influence the work reported in 
this paper.

Acknowledgement

This work was supported by Digitalization Initiative of the Zurich 
Higher Education Institutions (DIZH) grant 9710.Z.12.P.0003.05 from 
Zurich University of Applied Sciences (ZHAW). The authors also ac

knowledge the University of Southampton for granting access to the 
IRIDIS High Performance Computing Facility and its associated support 
services.



Aerospace Science and Technology 165 (2025) 110516

22

G. Immordino, A. Vaiuso, A. Da Ronch et al. 

Table B.8

Layer structure and output dimensions for the ARMA model, detailing the two encod

ings, temporal, and decoding layers used for predicting pressure distribution.

E
n

c
o
d

in
g
 A

Layer Type Output Size 

E
n

c
o
d

in
g
 B

Layer Type Output Size 
Input 𝑚 × 3 × 86840 × 8 Input 𝑚 × 3 × 86840 × 1

GCN 𝑚 × 3 × 86840 × 256 GCN 𝑚 × 3 × 86840 × 256
GCN 𝑚 × 3 × 86840 × 224 GCN 𝑚 × 3 × 86840 × 224
GCN 𝑚 × 3 × 86840 × 96 GCN 𝑚 × 3 × 86840 × 96

Pooling 1 𝑚 × 3 × 28600 × 96 Pooling 1 𝑚 × 3 × 28600 × 96

GCN 𝑚 × 3 × 28600 × 64 GCN 𝑚 × 3 × 28600 × 64

Pooling 2 𝑚 × 3 × 9600 × 64 Pooling 2 𝑚 × 3 × 9600 × 64

GCN 𝑚 × 3 × 9600 × 368 GCN 𝑚 × 3 × 9600 × 368

Concatenate Block -- Output: 𝑚 × 3 × 9600 × 736

Temporal Layer -- Output: 𝑚 × 9600 × 368

D
e
c
o
d

in
g

Layer Type Output Size 
GCN 𝑚 × 9600 × 368

Unpooling 2 𝑚 × 28600 × 368

GCN 𝑚 × 28600 × 64

Unpooling 1 𝑚 × 86840 × 64

GCN 𝑚 × 86840 × 96
GCN 𝑚 × 86840 × 224
GCN 𝑚 × 86840 × 256

Output 𝑚 × 86840 × 1

Appendix A. Schroeder-phased harmonic signal formulation

The Schroeder-phased harmonic signal is utilized in this study to 
improve the robustness and generalizability of the model by covering a 
wide frequency spectrum. These signals are constructed by summing 
sinusoidal components, where the phases are optimized to minimize 
the overall peak amplitude. This results in an evenly distributed energy 
spectrum, which is advantageous for training the model to handle vari

ous frequency interactions and reduces the risk of overfitting. To cover 
this broad frequency range with minimal peak amplitude, a total of 9 
harmonics is selected, with 𝑀 = 9.

Both damped Schroder-phased harmonic (DS) and undamped 
Schroder-phased harmonic (US) signals are used to model the wing 
displacement, whether it be pitch 𝜃(𝑡) or plunge 𝜉(𝑡). The US signal 
uniformly distributes energy across the frequency spectrum and is de

fined as:

𝜃𝑈𝑆 (𝑡) =
𝑀∑
𝑚=1

𝑎𝑚 sin
(
(𝑚+ 1)𝜔𝑚𝑡+ 𝜙𝑚

)
(A.1)

where 𝑎𝑚 represents the amplitude of the 𝑚-th component, 𝜔𝑚 denotes 
the angular frequency, and 𝜙𝑚 corresponds to the phase of the 𝑚-th 
sinusoidal component.

For transient response analysis, the DS signal simulates amplitude 
decay over time, incorporating a damping function:

𝜃𝐷𝑆 (𝑡) =
𝑀∑
𝑚=1

((
𝑎end − 𝑎0
𝑡end − 𝑡0

(𝑡− 𝑡0) + 𝑎0

)
sin

(
(𝑚+ 1)𝜔𝑚𝑡+ 𝜙𝑚

))
(A.2)

where 𝑎0 and 𝑎end denote the initial and final amplitudes, respectively, 
and 𝑡0 and 𝑡end are the corresponding time intervals. The damping is 
designed such that at the final time step, the amplitude is reduced to 
0.1 𝑎0, ensuring transient behaviors are effectively captured.

The phases 𝜙𝑚 are calculated to minimize constructive interference 
between the sinusoidal components, flattening the overall spectrum:

𝜙𝑚 = −𝑚(𝑚+ 1)𝜋
𝑀

(A.3)

Table B.9

Layer structure and output dimensions 
for the Feedforward model, detailing the 
encoding, temporal, and decoding layers 
used for predicting pressure distribution.

E
n

c
o
d

in
g
 A

Layer Type Output Size 
Input 𝑚 × 3 × 86840 × 8

GCN 𝑚 × 3 × 86840 × 256
GCN 𝑚 × 3 × 86840 × 224
GCN 𝑚 × 3 × 86840 × 96

Pooling 1 𝑚 × 3 × 28600 × 96

GCN 𝑚 × 3 × 28600 × 64

Pooling 2 𝑚 × 3 × 9600 × 64

GCN 𝑚 × 3 × 9600 × 368

Temporal Layer -- Output: 𝑚 × 9600 × 368

D
e
c
o
d

in
g

Layer Type Output Size 
GCN 𝑚 × 9600 × 368

Unpooling 2 𝑚 × 28600 × 368

GCN 𝑚 × 28600 × 64

Unpooling 1 𝑚 × 86840 × 64

GCN 𝑚 × 86840 × 96
GCN 𝑚 × 86840 × 224
GCN 𝑚 × 86840 × 256

Output 𝑚 × 86840 × 1

Appendix B. Models architecture

This section outlines the architecture and training process for both 
the ARMA and feedforward models used in this study, as detailed in 
Tables B.8 and B.9. The ARMA model in Table B.8 combines autore

gressive components with GCN layers and STGCN temporal layer to 
capture both spatial and temporal dynamics, featuring 5,775,023 train

able weights. In contrast, the feedforward model in Table B.9 avoids 
using previous predictions, which helps prevent error accumulation over 
time. This model has 1,962,111 trainable weights. Both models utilize 



Aerospace Science and Technology 165 (2025) 110516

23

G. Immordino, A. Vaiuso, A. Da Ronch et al. 

a pre-trained AE for dimensionality reduction. Specifically, the Encod

ing A and Decoding layers in both architectures are optimized based on 
the pre-trained AE, while Encoding B mirrors the structure of Encoding 
A, ensuring consistent feature extraction across different model vari

ants. Additionally, the concatenation block in both models concatenates 
the encodings from the previous three timesteps, enabling the tempo

ral layer to effectively capture and process the sequential dependencies 
within the data.

During the backpropagation phase, the ADAptive Moment Estima

tion (Adam) optimizer [61] was employed to fine-tune the neural net

work weights and minimize the MAE loss function. The learning rate was 
set to 0.001. A batch size 𝑚 of 1 was found to yield the most accurate 
results. The training process was carried out over 50 epochs.

Data availability

Data will be made available on request.
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