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Supersymmetric indices, defects and holography

by Benjamin Suzzoni

This thesis explores the use of holography in the study of codimension-2 and
codimension-4 defects of the 6d N = (2, 0) theories. By means of the Ryu-Takayanagi
formula, we successfully determine various central charges associated to these defects,
which play a crucial role in their full characterization. We also establish connections
between different families of supergravity solutions, delivering a more comprehensive
picture of their landscape.

Another focus of this thesis is that of background conformal supergravity configurations
for 4d N = 2 and 4d N = 4 SCFTs. The departure from the holographic tools is
nevertheless an interesting one, as we are able to find such backgrounds that engineer
various topological twists of the theories. Our results are novel in the context of N = 4,
where we are able to construct the supercharges of the Vafa-Witten, Kapustin-Witten
and half-twists, all valuable non-perturbative tools in the study of four-dimensional
theories. Backgrounds for the N = 2 indices were already known, however, we provide a
novel family of indices that interpolates exactly between the twisted index and a point
on the moduli of Coulomb-branch indices; allowing us to equate the two.

Finally, we introduce a novel realisation of defect-conformal-field-theories as
finite-dimensional integrals over neural-networks. This construction extends the known
formalism for CFTs to the defect case, providing a systematic framework for generating
dCFT data from neural-network concatenations.
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Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence [10–12] has
introduced novel ways of studying strongly coupled superconformal field theories
(SCFTs)1. In its prototypical example, this conjectured correspondence states that Type
IIB string theory on AdS5 × S5, with N units of 5-form flux through the S5, is
equivalent to N = 4 super-Yang-Mills (SYM) in four dimensions, with gauge group
SU (N ) and coupling related to the string coupling via g2

YM = gs. When assumed to
hold for any value of N and any string coupling gs, this is the conjecture’s strong form.
However, most treatments look at the large ’t Hooft coupling limit, λ = g2

YMN →∞,
together with the large-N limit. This, in turn, reduces the string theory to a classical
supergravity theory on AdS5 × S5, which is conjectured to be dual to a strongly coupled
N = 4 SYM, with gauge group SU (N ) and N →∞.

CFTd|t

t

AdSd+1

Figure 1: A visual representation of AdSd+1 together with its conformal boundary.
We denoted in blue the CFT that lives on the conformal boundary, at a fixed time t.

More generally, the AdS/CFT correspondence states that a quantum theory of gravity
with asymptotic AdS geometry is dual to a CFT in one dimension lower. The ‘quantum
field theory of gravity’ in question is typically a Type II string theory on AdSd+1×X9−d

or M-theory on AdSd+1 ×X10−d and the CFT is one on R1,d−1. Given how this
correspondence relates the degrees of freedom of a gauge theory in d dimensions to that
of a gravitational one in one dimension higher, it is often called gauge/gravity duality
and is an example of a holographic correspondence, or holography for short. Its weak

1See the reviews [13–25].
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form then relates a strongly coupled CFT in d dimensions to a classical supergravity
theory with AdSd+1 asymptotics, such as the Type II supergravities or 11d supergravity.

Even the weakest form of this correspondence has its uses. Indeed, standard
perturbative techniques are not effective when studying strongly coupled systems. In the
weak-string-coupling and large-N limit we are able to probe the strongly coupled
regimes of holographic CFTs using classical supergravities. In other words, the
AdS/CFT correspondence becomes an excellent non-perturbative tool for the study of
CFTs, and very often recasts CFT computations into purely geometric ones within the
bulk AdS space.

For holographic theories that do not admit a weakly coupled description the AdS/CFT
toolset becomes paramount; this is the case of the elusive 6d N = (2, 0) SCFTs. Indeed,
these are special in many ways, one of which is their lack of a known Lagrangian
description. These theories contain a multiplet (B,λ, Φ), transforming in the (1, 4, 5) of
the R-symmetry so(5)R, where B is a self-dual 2-form gauge field, λ a spinor and Φ a
scalar. Since B is a self-dual two-form, it is not known how to construct interacting
terms for it in six dimensions. These 6d theories are also special due to their unique
positioning within the landscape of supersymmetric CFTs. Thanks to Nahm’s
classification [26], we know that six is the maximal number of dimensions in which the
superconformal algebra exists; and N = (2, 0) is the maximal amount of supersymmetry
therein. We can explain this by decomposing the Lie superalgebra into its bosonic and
fermionic components. For a superalgebra to be conformal, its bosonic subalgebra must
contain the spacetime conformal algebra. Above six dimensions, this is no longer
possible; and while the superalgebra can be defined, it is not a suitable conformal one.
These unique properties don’t stop there, as many CFTs in lower dimensions can be
engineered from twist-compactifications of the 6d theory on compact manifolds — the
6d N = (2, 0) is in many ways a master theory2.

The holographic correspondence described above isn’t the only tool one can use to probe
the strongly coupled regimes of theories. Those which display some amount of
supersymmetry contain a special set of observables which are protected under certain
continuous deformations. Cancellations between bosonic and fermionic degrees of
freedom render some quantities one-loop exact, such as the anomaly polynomials, and
others invariant under certain renormalisation-group (RG) flows, such as
supersymmetric indices. The motivation behind this thesis lies in the latter — by
constructing RG-flow-invariant observables, one can study the strong-coupling regime of
a supersymmetric field theory from the knowledge of other supersymmetric theories
along the flow.

2See [27] for a great introduction to the 6d (2, 0) theories and its class-S constructions of 4d theories.
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For superconformal field theories in four dimensions, the superconformal index counts
protected states in the quantum field theory, such that it is invariant under any
continuous deformation that preserves the conformal structure [28, 29]. It contains all
the information, one can extract from group theory alone, about local operators in the
theory. For holographic CFTs, it is related to the microstate counting of AdS black holes
[29, 30]. In essence, it is an important observable that can aid in identifying dualities
between SCFTs and is equally important in the study of AdS black holes. A better
understanding of this index is thus essential for the study of SCFTs, and is one of the
objectives of this thesis.

Furthermore, a complete understanding of a generic quantum field theory comes with
more than the knowledge of its strong-coupling behaviour. We wish to emphasise that
"complete" refers to the set of all data that must be specified in order to uniquely
identify a QFT: global symmetry, field content, Hilbert space, etc. One such data most
QFTs are adorned with is the possible existence of extended operators. Whenever they
exist, these extended operators hold important information about the global properties
of the theory3. They also are acted on by so-called higher-form symmetries, leading to
important constraints in their dynamics [33]. So, for instance, a complete understanding
of the 6d N = (2, 0) SCFTs necessarily comes with the knowledge of its extended
operators.

The study of arbitrary extended operators in an arbitrary QFT is, so far, out of reach.
We can hope to extract interesting statements about these for more symmetric cases.
Indeed, a lot more is known about conformally-invariant extended operators, or
conformal defects, within CFTs. For instance, the 6d N = (2, 0) SCFTs possess two
types of superconformal defect — one of dimension two, and the other of dimension
four4. It is the context of AdS/CFT that one can most simply extract information about
these defects. Indeed, the 6d N = (2, 0) theories are dual to asymptotically (locally)
AdS7 geometries5, and introducing a defect can be done in a couple of different ways. In
the probe-brane picture, another M-brane is inserted in the bulk AdS space, and extends
all the way to the boundary, without affecting the geometry. In the backreacted setup,
the AdS geometry breaks down, locally on the boundary, into an AdS3 or AdS5 foliation;
the boundaries of which describe the defect location. The latter treatment will be the
focus of Part II of this thesis, where we extract universal information about the defects
for different families of dual AdS geometries.

3For instance, line defects in four dimensions can tell apart SU(2) from SO(3) gauge theories [31, 32].
4Their existence can be inferred from the possible central extensions of the 6d supersymmetry algebra,

or equivalently by looking at the allowed M-brane intersections.
5Which can be seen as the near-horizon limit of M5-branes, which are extensions of strings to one

time direction and five spatial ones.
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We expand slightly upon those key concepts in the succeeding pages, and highlight the
contributions brought forth in this thesis. The remainder of the thesis is structured as
follows.

Part I contains the necessary background material to understand our work. Therein,
Chapter 1 presents the basics of conformal symmetry and CFT. We give a brief
presentation on the conformal group in dimensions greater than two, and its
corresponding algebra. After introducing the embedding space formalism, we put
forward the most general form of the one-, two- and three-point functions of conformal
primaries. We close off the chapter by presenting the extension to defect CFTs of this
embedding space formalism, together with the dCFT’s various correlators. On the other
hand, Chapter 2 gives a succinct presentation of 11d supergravity. The action, equations
of motion and supersymmetry transformations are enumerated, and its most common
BPS solutions are listed. We also briefly mention its algebra and its relation to the
extended objects of M-theory. In Chapter 3 we introduce the reader to the
Festuccia-Seiberg formalism, essential to our study of supersymmetric partition
functions on curved spaces. We detail the specifics of the conformal supergravities in
four dimensions with both eight (N = 2) and sixteen (N = 4) Poincaré supercharges.

Part II pertains to the study of superconformal defects of the 6d N = (2, 0) theories,
from a holographic perspective. Chapters 4 and 5 are a reprint of our publications [8]
and [7]. There, we use asymptotically AdS7 solutions to supergravity to study universal
information about the two types of superconformal defects in the 6d theories; namely
their Weyl anomaly coefficients. In passing, we also identify one family of supergravity
solutions as being contained within another.

Part III is dedicated to the construction of background supergravity solutions that still
preserve some amount of supersymmetry on S3 × S1. In Chapter 6 we construct such a
solution that interpolates between the twisted index and a point on the moduli space of
Coulomb-branch indices. We prove that the interpolation is exact via a formula which
relates the supersymmetry transformation of a current multiplet to that of the
background supergravity fields. In essence, this allows us to prove the equality between
the indices for any 4d N = 2 SCFT, be it Lagrangian or not. On the other hand, in
Chapter 7 we propose a formulation of conformal supergravity with sixteen Poincaré
supercharges in four Euclidean dimensions and identify a number of supersymmetric
configurations that engineer the various twists of 4d N = 4 theories. We successfully
reproduce the half-twists, Kapustin-Witten and Vafa-Witten twists. We further our
search by looking for Ω-deformations of these configurations.

Finally, Part IV, which only contains Chapter 8, presents novel results in the field of
neural-network-CFTs. There, we extend the known formalism of neural-network-CFTs
to defect CFTs by constructing explicit examples of correlation functions between scalar
conformal primaries in the presence of a defect. We also propose a formulation which
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includes symmetric traceless tensors. This chapter is the subject of an upcoming paper
[9].
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Weyl anomaly coefficients

Placing a conformal field theory on a curved manifold generally incurs a breaking of the
conformal symmetry. For an even number of dimensions, this comes as an anomaly in
the tracelessness of the stress-energy tensor, Tµν , coined Weyl anomaly. The coefficients
that dictate the various terms in the anomaly are called Weyl anomaly coefficients6.

In two dimensions, the Weyl anomaly gives the standard result wherein the trace of the
stress-energy tensor is proportional to the Ricci scalar ⟨Tµµ⟩ = c(2d)

24π R. The coefficient
c(2d) is the central charge that appears in the Virasoro algebra, and is essential in
characterising 2d CFTs. For unitary theories this central charge obeys a strong
monotonic property under RG flows — for a CFT in the UV connected to another in the
IR, c(2d)

UV ≥ c
(2d)
IR .7 This is the celebrated c-theorem [36].

For four-dimensional theories, the Weyl anomaly contains more terms, since the Weyl
tensor doesn’t vanish,

⟨Tµµ⟩ =
1

(4π)2

(︂
a(4d)E4 + c(4d)WµνρσW

µνρσ + c̃(4d)P4
)︂

, (1)

where E4 is the 4d Euler density, W the Weyl tensor and P4 the Pontryagin density.
Here too, the A-type anomaly coefficient a(4d) obeys an a-theorem, whereby
a
(4d)
UV ≥ a

(4d)
IR for unitary theories [37–40].

In six dimensions, we can play the same game and look at the Weyl anomaly

⟨Tµµ⟩ =
1

(4π)3

(︂
a(6d)E6 + b

(6d)
1 WµλνρνW

λστρWσ
µ
τ
ν + · · ·

)︂
, (2)

where E6 is the 6d Euler density and · · · denotes other terms built from the Weyl and
Riemann tensors [41]. Here too the A-type anomaly coefficient a(6d) obeys an a-theorem
[42–47].

The important takeaway here lies in the fact that the Weyl anomaly coefficients, a, b1, c,
etc, contain universal information about the CFT at hand8, and constitute a
generalisation of the notion of central charge of a two-dimensional CFT. A
comprehensive analysis of these is required for a full understanding of the landscape of
CFTs.

Let us now briefly outline what happens when we introduce a conformal defect, Υ, in the
CFT. Here too the stress-tensor will pick up a Weyl anomaly, however, there is a

6See [34] for a brief overview of Adam Chalabi’s thesis [35] for a deeper presentation.
7There is an understanding in which the central charge counts the number of degrees of freedom.

The monotonic behaviour is in agreement with the standard picture whereby an IR theory is given by
integrating out certain UV degrees of freedom.

8In other words, they appear in the n-point functions of various operators, such as the stress-energy
tensor.
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distinct separation to its contributions — one from the ambient CFT, T (ambient), and
the other localised on the defect, T (defect). Schematically, we write

T = T (ambient) + δ(Υ)T (defect), (3)

where δ(Υ) is a Dirac delta function that localises to the defect submanifold. Naturally,
the defect-localised contribution displays its own set of Weyl anomaly coefficients,
however, these are generally more numerous than their ambient counterparts.

For instance, a 2d conformal defect embedded in a 6d ambient CFT engenders a Weyl
anomaly of the form

⟨T (defect)µ
µ⟩ =

1
24π

(︄
aΥR̃+ d1

◦
Π

2
+ d2Wab

ab

)︄
+ · · · , (4)

where R̃ is the Ricci scalar of the induced metric on Υ,
◦
Π is the traceless second

fundamental form and W is the pullback of the Weyl tensor onto Υ. A similar expression
for a four-dimensional conformal defect exists, but is a lot more complicated [34].

The defect Weyl anomaly coefficients also appear in various observables of the defect
CFT (dCFT), and as such contain universal information about the dCFT. Their study
is essential in understanding the landscape of dCFTs.

Part of this thesis’ aim lies in calculating a subset of these coefficient for two- and
four-dimensional defect within the 6d N = (2, 0) SCFTs of holographic type. This
is the subject of Part II and appears in our published works [7, 8].
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Holographic entanglement entropy

In the study of holographic theories, for which a static, asymptotically AdS filling exists,
the Ryu-Takayanagi formula [48–50] poses a relation between the entanglement entropy
of a spatial region within the CFT and a Plateau, or minimisation, problem for a surface
within the bulk. In other words, it recasts a field theory computation (at large-N) into a
purely geometric one. The entanglement entropy calculated in this way is coined
holographic entanglement entropy.

B

SB = −trB(ρB ln(ρB))

CFTd

ζ

AdSd+1 B

SEE = min
ζ

A[ζ]
4GN

Figure 2: The Ryu-Takayanagi prescription. On the right-hand-side, a spatial region
in the CFT, B, together with its entropy SB. On the left-hand-side, the asymptotically
AdS bulk with the minimal surface ζ, homologous (i.e. shares the same boundary) to B
on the boundary. The holographic entanglement entropy is equal to the entanglement

entropy SEE = SB.

Naturally, due to the infinite volume of AdS, this entanglement entropy is divergent and
one must regulate it. In that effect, let us introduce a cutoff, ϵ, in the holographic
direction, such that as ϵ tends to zero, we approach the boundary of AdS, ∂AdSd+1.
Furthermore, if B is a spatial ball of radius l within the d-dimensional CFT, then the
holographic entanglement entropy admits an expansion in terms of ϵ of the form

SEE =

⎧⎪⎨⎪⎩ p1
(︂
l
ϵ

)︂d−2
+ · · ·+ pd−2

l
ϵ + pd−1 + o(1) d: odd,

p1
(︂
l
ϵ

)︂d−2
+ · · ·+ pd−3

(︂
l
ϵ

)︂2
+ q ln

(︂
l
ϵ

)︂
+ o(1) d: even.

(5)

In the above, most coefficients of the Laurent polynomials are renormalisation-scheme
dependent. In other words, for any change in the cutoff parameter ϵ = ϵ(η), these would
see their numerical value affected. Those which are not9, pd−1 and q, contain information
about the CFT specifics. For example, in two dimensions the universal coefficient q
contains information of the central charge of the Virasoro algebra, SEE = c

3 ln
(︂
l
a

)︂
.

More generally, the universal coefficients contain information about the Weyl anomaly
coefficients of the given holographic CFT.

9There is a sense in which the change in cutoff must be “sufficiently” regular. One can see that
changing ϵ via a logarithmic transformation would affect the universal coefficients, which is no desirable.
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Let us now illustrate how this construction is affected by the insertion of a defect within
the CFT. Let Υ denote an arbitrary such (conformal) defect. Due to the potential
interactions between Υ and the ambient CFT, the entanglement entropy of the region B
will, in general, contain information about both the defect and the ambient theory.
Untangling their contributions is generally regarded as a difficult problem. However, in
simple symmetric cases we have a stronger handle on things — as the dependence within
the universal coefficients is known.

Υ

B

CFTd

∂AdSn

ζ

Figure 3: The Ryu-Takayanagi prescription with a defect insertion. The conformal
defect Υ manifests itself as AdSn fibre within the bulk AdS geometry.

Take for example a 2d conformal defect within a 6d holographic CFT. We consider the
entanglement entropy of a spatial ball B, of radius l, centred around the defect Υ. In
this case, the universal coefficient q is a simple linear combination of a defect, qΥ, and an
ambient term, q6d, [51]; and one can isolate the defect contribution by performing
so-called vacuum subtraction. In other words, we evaluate the entanglement entropy SEE

both with and without the defect Υ, and take their difference,

qΥ = l
d

dl
(SEE[Υ]− SEE[]). (6)

In Chapter 4, we calculate qΥ for a family of defects described by an AdS3 foliation
of AdS7 [8]. In this codimension-four case, the defect contribution to the universal
coefficient is given as

qΥ =
1
3

(︃
aΥ −

3
5d2

)︃
, (7)

where aΥ and d2 are defect Weyl anomaly coefficients of A- and B-type respectively.
We perform a similar computation for codimension-two defects in Chapter 5, where
this time [7]

qΥ = −4
(︃
aΥ +

1
10d2

)︃
. (8)
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Supersymmetric indices

Given a supersymmetric field theory, one defines a set of observables called its
supersymmetric indices. These are given as partition functions of the theory on a
compact manifolds, M. The standard example is that of the Witten index [52], for
whichM = T d, the d-dimensional torus. This index counts the supersymmetric vacua of
the theory, and is rigid under renormalisation group (RG) flows. Its trace definition is

ZT d = TrT d−1

(︂
(−1)F e−βH

)︂
, (9)

where the trace is performed over states on T d−1, F is the fermion number and H is the
Hamiltonian. Special cancellations between fermionic and bosonic states above the
vacuum energy render the index independent of β.

Another important example is that of the partition function of SCFTs on Sd−1 × S1.
The index there defined is called the superconformal index (SCI) [28, 29]. It counts
supersymmetric states on Sd−1, or equivalently the set of local BPS (short) multiplets
on Rd that do not recombine into larger ones. This particular counting renders the
partition function independent of exactly marginal couplings, and thus, rigid under RG
flows10. Let Q := Q− be one of the Poincaré supercharges in flat space, and Q† := S+
the conjugate conformal supercharge. The SCI is equivalently defined as the trace

I = TrSd−1

(︂
(−1)Fx

1
2 {Q,Q†}

)︂
, (10)

over the set of states on Sd−1.11 Truthfully, the correspondence between the trace
definition above and the partition function on Sd−1 × S1 isn’t exact. The latter is given
by the trace formula, multiplied by an exponential factor that depends on the
supersymmetric Casimir energy [53, 54].

The SCI in four dimensions displays numerous properties that render its study of utmost
importance. Not only does it contain a vast amount of information about the theory’s
local BPS states, it is also related to many important indices, such as the Schur and
Coulomb-branch indices [5]. In this setting, we understand that the SCI of
four-dimensional N = 2 SCFTs possesses information about the Coulomb and Higgs
branches of the theory. It is, thus, a shame to realise how difficult it is to evaluate the
SCI, generically; doubly so for non-Lagrangian theories for which no Lagrangian fixed
point is known.

10It is actually invariant under any continuous deformation that preserves a given sub-Lie superalgebra
of the full global supersymmetry. Notably, the R-symmetry mustn’t be anomalous. We will not detail
why this is true, but will instead refer the reader back to the original construction [29].

11One can further refine the counting in the trace by introducing fugacities for the various global
charges that commute with Q.
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It is the aim of Part III of this thesis to facilitate such constructions. Indeed,
we utilise the coupling to background conformal supergravity to construct the
partition function of a generic 4d N = 2 SCFT on S3 × S1, which engineers the
superconformal index with a particular set of additional fugacities. We further
show, in Chapter 6, that this index is equivalent to the twisted index of the same
theory on S3 × S1.
In Chapter 7, we search for 4d N = 4 conformal supergravity backgrounds that
engineer all three twists of those theories, together with their Ω-deformations.
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nn-dCFTs

For all intents and purposes, we take a neuron to be a map between two spaces, say Rm

and Rn, f : Rm → Rn. Importantly, we allow certain operations between these —
composition, addition and scalar multiplication. Then, a neural network is a function
build from neurons using those compositions. It is standard to represent a network using
a diagram where neurons are nodes and the operations are lines.

Take for instance three neurons (i.e. three arbitrary functions) fi from Rm to Rq. We
decide to add these with weights wi and compose the sum inside a fourth neuron fo,
which is a function from Rq to Rn. Mathematically, this is simply the function
f = fo ◦ (

∑︁
iwifi), however it is better represented by the diagram below.

w1
w2

w3

Rm Rn

The true power of neural networks is made apparent by the universal approximation
theorems (UATs) [55–59]. For a given set of neurons (i.e. basis functions), the UATs
state that in a suitable limit where the number of neurons tends to infinity, the neural
network can approximate any function in a given space of functions. This could be the
set of smooth functions from Rm to Rn or another function space, based on the
particulars of the network and how the limit is taken.

Thanks to this property, one can envision writing the path integral of a theory in terms
of infinitely big neural networks, and integrating over all possible basis neurons. This
way of dealing with QFTs is known as the neural network-field theory (nn-FT)
correspondence [60].

However, in 2024, Halverson, Naskar and Tian showed that for CFTs this correspondence
holds regardless of whether one takes the infinite limit or not [61]. In other words, they
were able to construct families of CFTs using only finite-dimensional integrals.

The power behind this formalism comes from the fact the one can easily engineer new
CFTs, by starting from a set of nnCFTs and combining them into a larger network. Let
us illustrate this with an example. Let Φi

θi
(X) be a family of neural-network

architectures, with parameters θi distributed sampled from a distribution Pi(θ). Each of
these can be thought of as a family of neurons with parameters θi. The weighted sum
also defines a neural-network CFT,

φθi,wi
(X) =

∑︂
i

wiΦi
θi
(X) (11)
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Conformal primary

ϕ(x) ↦→ λ−∆ϕ(x) Φ(X) ↦→ λ−∆Φ(X)

Partition function

Z[J ] =
∫︁
Dϕe−S[ϕ]e

∫︁
ddxJ(x)ϕ(x) Z[J ] =

∫︁
dθP(θ)e

∫︁
ddxJ(x)Φ(x)

Correlators

⟨ϕ(x)ϕ(y)⟩ E[Φ(x)Φ(y)]

Table 1: A summary of the neural-network-CFT (nnCFT) data, and their standard
CFT counterparts. ϕ is a conformal primary, and obeys the conformal primary condition
displayed above. In the nnCFT, this translate to requiring a homogenous neuron Φ.
The partition function is given as a finite integral over neuron parameters, θ, with
distribution P(θ). The distribution plays the role of the action in the standard CFT.

Correlators are given as standard expectation values of probability variables.

where wi are distributed according to P(w). Given that each Φi
θi

defines a nnCFT, the
combined network φθi,wi

also does. The correlation functions of it obey the standard
CFT constraints (crossing symmetry, etc).

Given the infinitely many ways of combining neurons into networks, the nnCFT
formalism becomes a powerful tool to generate arbitrary CFT data from
finite-dimensional integrals.

We dedicated Part IV of this thesis to the extension of this formalism to the
defect case. In our upcoming paper [9], summarised in Chapter 8, we define
neural-network-dCFTs and show how their data obey the standard constraints
due to defect conformal symmetry and the existence of defect operator product
expansions.
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Chapter 1

Conformal Field Theory

Long story made short...

Andy O’Bannon

The concept of conformal field theory (CFT) is central to this thesis’ content. Not only
that, it is also a central concept in quantum field theory (QFT). They appear as the
end-point of renormalisation group (RG) flows between quantum field theories. By
identifying the set of relevant deformations of a given CFT, one can study the conformal
manifold these span. Knowledge of these RG flows turn out to be powerful tools in the
study of QFTs. By identifying structures that are independent of RG flows (or
monotonic), one can study the conformal limit and infer results on the QFTs that flow
to it.

Conformal symmetry is an extension of the Poincaré symmetry, in that it adds
invariance under rescaling and so-called special conformal transformations (SCTs).
Given the structure of the conformal group, an important question that arises is whether
the SCTs come for free. In other words, given a scale-invariant theory, is it also
conformally invariant? In general, the answer is no. However, requiring unitarity on top
of scale-invariance leaves us with a completely different outcome. In the late 80s,
Zamolodchikov and Polchinski [36, 62] proved this to be true in two dimensions.
However, asking whether this holds in dimensions greater than two does not give
conclusive answers [63]. There has been some recent work towards answering that
question, using holography. For instance [64] were able to prove that Scale without
Conformal Invariance (SwCI) for certain field theories is only possible if the Null Energy
Condition (NEC) is violated. See [65] for an excellent overview of the latest results (as
of 2014).

With the avenue of AdS/CFT [10], supersymmetric conformal field theories (SCFTs)
have also found a renewed interest. Being the low-energy effective field theories of
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D-branes, and M-branes in M-theory, their study opened a surge of results in holography
(see the standard reviews [13–25] for more details). In lower dimensions the move away
from the large ’t Hooft-limit may be permissible in certain settings [66], but is a lot less
attainable in higher dimensions. Nevertheless, knowledge of supergravity solutions can
inform us about the strong-coupling CFTs, a direction we followed in [7, 8] (reproduced
here as Chapters 4 and 5).

In this chapter we will cover some basic concepts of conformal symmetry and CFT. The
reader already familiar with those ideas can skip this entirely and move to Part II and
beyond. In Section 1.1 we give a brief presentation of the conformal group of R1,d−1.
Section 1.2 is dedicated to its algebra, and its representation on the space of fields, after
which Section 1.3 lists the standard form for their correlators in a CFT. Section 1.4 is a
brief sketch of the important aspects of the operator product expansion in these CFTs.
Necessary for an understanding of Chapter 8, Section 1.5 presents the embedding space
formalism for Euclidean CFTs, and lists the various form the correlators take therein.
Finally, in Section 1.6 we extend all previous concepts to the defect-CFT case, where an
extended operator breaks conformal symmetry down to a subgroup.

All the content from this chapter, and more, can be found in the reviews [67–73].

1.1 The Conformal Group

The elementary introduction in this section presents a consistent definition of the
conformal group of flat space, with either Euclidean or Minkowskian signature, Rt,s,
where (t, s) = (0, d) or (t, s) = (1, d− 1). Furthermore, we show that on the
two-dimensional planes the conformal group structure depends greatly on the spacetime
signature — on the Euclidean plane, R0,2, it is finite-dimensional while its sibling, the
conformal group of the Minkowski plane, is infinite-dimensional. Most of the material
presented here can be found in its original form in [68, 70].

Definition 1.1. Conformal Transformation Let (M, g) and (N ,h) be two (pseudo-)
Riemannian (smooth) manifolds of dimension d and let U ⊂M, V ⊂ N , be open
subsets of M and N respectively. A smooth mapping φ : U −→ V of maximal rank is
called a conformal transformation, or conformal map, if there is a smooth function
σ : U −→ R such that

φ∗h = e2σg. (1.1)

The factor of two in the definition is customary and allows us to simplify various
equations down the line. As a first remark, we notice that for any metric g and h, a
conformal map only exists if g and h have the same signature, and coincides with a local
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isometry when σ = 0. Secondly, we can immediately make connection with our intuitive
picture of what a conformal map is supposed to do. Indeed, any such map is allowed to
move points of M around only up to a local rescaling1, hence the factor of e2σ.
Whenever the manifolds are Riemannian, i.e. g and h are positive definite, this local
rescaling property preserves the angle between any two tangent vectors at all points in
the manifolds. In more detail, let X,Y ∈ TpM be two vectors on M. The angle
between these is defined via the inner-product induced by g,

ωg(X,Y ) =
g(X,Y )√︂

g(X,X)g(Y ,Y )
. (1.2)

Under the action of a conformal map φ, these vectors are mapped to
Tφ(X),Tφ(Y ) ∈ Tφ(p)N . The angle between them, however, is identical

ωh(Tφ(X),Tφ(Y )) =
h(Tφ(X),Tφ(Y ))√︂

h(Tφ(X),Tφ(X))h(Tφ(Y ),Tφ(Y ))
= ωg(X,Y ), (1.3)

by definition of φ. This angle-preserving property justifies the nomenclature of con – the
same and formal – shape.

Important to our use case are the maps between open subsets of M alone. The set of
such maps for σ = 0 are precisely the isometries of M, i.e. the set of “symmetries” of
the manifold. To all those maps that are continuously connected to the identity there
corresponds an infinitesimal map between the tangent spaces, called the algebra of
isometries. Furthermore, these are classified by the set of Killing vectors on M.
Whenever we allow for non-zero conformal factor σ, we talk about conformal Killing
vectors.

In the same way that the set of isomorphisms of M forms a group, we can define a
notion of conformal group of M by specialising to a particular subset of conformal maps.
In practice, we are also interested in conformal maps between manifolds with different
topologies. For instance, the Euclidean plane R2 and the two-sphere S2 are “one
conformal transformation away from each other”, in the sense that one is the conformal
compactification of the other. It turns out that the definition of a conformal group
which is the most relevant to Physics is that which places these conformal
compactifications are the forefront.

Definition 1.2. Conformal Group The conformal group Conf(M) of a manifold M is
the connected component containing the identity in the group of conformal
diffeomorphisms of the conformal compactification of M [70].

1This is to be contrasted with Weyl transformations. A given theory might be invariant under scale
transformations but not conformal ones [74].
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An important distinction appears when looking at different signatures. For example, the
two-planes are either of the Euclidean type of the Minkowskian type. Indeed, these
planes behave very differently under conformal compactification. The Euclidean plane
R0,2 has a natural conformal compactification to S2. By our definition above, we find
that the set of diffeomorphisms that preserve the metric on the two-sphere up to an
overall scale is isomorphic to the Möbius group2

Conf (R2,0) ∼= SO(3, 1) ∼= PSL(2, C). (1.4)

However, this is not the case for the Minkowski plane R1,1. As the two-sphere cannot be
given a Lorentzian metric, it cannot be a suitable conformal compactification of R1,1.
The natural conformal compactification turns out to be a product of two circles, S1× S1.
The corresponding conformal group is then

Conf(R1,1) ∼= Diff+(S
1)×Diff+(S

1), (1.5)

where Diff+(S1) is the group of orientation-preserving diffeomorphisms of the
one-sphere. The corresponding infinite-dimensional algebra is known as the Witt algebra
and can be engineered as the complexification of the algebra of smooth vector fields on
S1, Lie(Diff+(S))C

∼= Vect(S1)C. Upon quantization this algebra gets deformed to its
unique central extension, known as the Virasoro algebra.

On the flip side, when considering spacetimes of the form Rt,s, with t+ s > 2, the
corresponding conformal group is always isomorphic to SO(t+ 1, s+ 1). The cases of
interest here are (t, s) = (0, d) and (t, s) = (1, d− 1), with d > 2, whose groups are
SO(1, d+ 1) and SO(2, d) respectively.

Having defined a consistent notion of conformal group, and identified its realisation for
Rt,s, let us now detail its algebraic structure in dimensions larger than two. For those
interested in the two-dimensional case, we recommend the standard textbooks [68, 70].
For an approach more focused on vertex operator algebras, we recommend the excellent
introduction by Gaberdiel [69].

1.2 The Conformal Algebra

As discussed previously, the set of conformal maps that are connected to the identity
form the conformal algebra — the Lie algebra associated to the conformal group of the
manifold M. Since we will only focus on conformal transformations of Rt,s, with
t+ s > 2, the conformal algebra will always be given by the standard Lie algebra
so(t+ 1, s+ 1). Furthermore, we will only be interested in the (t, s) = (0, d) and

2We ignore here the semi-direct product which generates translations.
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(t, s) = (1, d− 1) cases; but will keep the notation general to facilitate our presentation.
Let us see how to construct this algebra, starting from the set of conformal Killing
vectors.

Definition 1.3. Conformal Killing Vector Let (M, g) be a (pseudo-) Riemannian
(smooth) manifold of dimensions d. A vector field X ∈ Γ(TM) is conformal Killing if it
obeys

LXg =
2
d

div(X)g, (1.6)

where LX is the Lie derivative along X and div(X) is its divergence.

If ∇ denotes the Levi-Civita connection associated to g, then (1.6) can be written in
terms of it

LXg =
2
d
∇µXµg. (1.7)

It isn’t hard to notice that any vector field whose divergence vanishes is also conformal
Killing, by definition.

Allow us to apply Definition 1.3 to Rt,s, for which the metric is the diagonal metric
η = diag(−1, . . . ,−1, 1, . . . , 1), with t instances of −1 and s of 1. In this simple case the
conformal Killing vector equation simplifies to a constraint on the divergence of X
(provided t+ s > 2),

∂µ∂ν div(X) = 0. (1.8)

This further implies that each component of X is at most quadratic in the coordinates.
Let a, b ∈ Rt+s be constant vectors, λ ∈ R a constant scalar and ω ∈ so(p, q) a global
Lorentz transformation. The most general solution to (1.8) may be written as follows

Xµ = aµ + ωµνx
ν + λxµ + 2(b · x)xµ − (x · x)bµ. (1.9)

Note that in the expression above, the · notation refers to the inner-product induced by
η, i.e. a · b = η(a, b) = aµbνηµν . The term containing the constant vector a is the
familiar Killing vector that generates translations. The first linear term in x generates
Lorentz transformations. The corresponding conformal map is φ(x)µ = Λµ

νx
ν , where

Λ ∈ SO(t, s). Together these two form the familiar Poincaré algebra of flat space
ISO(t, s) = SO(t, s)⋉ Rt,s. However, we see that conformal transformations allow for
more than just the Poincaré algebra. Indeed, the second linear term corresponds to
dilatations3, the conformal map of which is φ(x)µ = eλxµ. The final, quadratic, term

3Some people prefer the word dilation. The underlying idea is identical, however.
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generates so-called special conformal transformations (SCTs), whose conformal maps are

φ(x) =
x− (x · x)b

1− 2x · b+ (x · x)(b · b)
. (1.10)

These SCTs can be constructed via a set of translations sandwiched in between
coordinate inversions, x ↦→ 1/x4. Altogether, the Poincaré subgroup together with
dilatations and SCTs forms the conformal group SO(t+ 1, s+ 1)⋉ Rt,s detailed in the
previous section. See Table 1.1 for a summary of its generators.

Name Conf. Killing vec. Generators

Translation aµ Pµ

Lorentz Boost ωµνx
ν Jµν

Dilatation λxµ D

Special Conformal Transformation 2(b · x)xµ − (x · x)bµ Kµ

Table 1.1: A detailed breakdown of the different generators of the conformal group of
Rt,s. For each generator, the corresponding conformal Killing vector is included.

Action on smooth fields

Of interest to physicists, is the action of such a group on the space of fields (say of
smooth functions from Rd to RJ) and its irreducible representations. We will try and
keep the following discussion as general as possible by considering fields ϕ(x) valued in
some arbitrary representation of the Lorentz group (i.e. with arbitrary spin). By that
token, given a field ϕa(x), where the index a spans the dimensions of said representation,
its conformal transformation reads

ϕ′
a(x) =

∑︂
b

ρ(O)abϕb(x), O ∈ Conf(R1,d−1), (1.11)

where ρ labels the field representation under which ϕa transforms. The infinitesimal
version of that transformation above can be written in terms of the generators of
Conf(Rt,s), T iρab, in the ρ representation,

ρ(O)ab = eiαiT
i
ρab ,

ϕ′
a(x) = ϕa(x) + i

∑︂
i,b
αiT

i
ρabϕb(x) + o(α). (1.12)

For illustrative purposes, let us consider such a field ϕ(x), which sits in the trivial
representation of the Lorentz group together with zero scaling dimension. In other

4While inversions are not strictly speaking part of the group of conformal transformations, there are
still useful for generating these SCTs.
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words, we take ϕ(x) to be a scalar field. Acting on this field with the different conformal
Killing vectors in Table 1.1 allows us to determine a functional form for the generators,
in this trivial representation of the conformal group. Starting with translations along aµ

and Lorentz transformations give the standard generators of ISO(t, s),

ϕ′(x) = ϕ(x) + aµ∂µϕ(x) + o(a) ⇒ Pµ = −i∂µ, (1.13a)

ϕ′(x) = ϕ(x) + ωµνx
ν∂µϕ(x) + o(ω) ⇒ Jµν = i(xµ∂ν − xν∂µ). (1.13b)

The dilatation and SCTs, on the other hand, lead to the following expressions for their
generators

ϕ′(x) = ϕ(x) + xµ∂µϕ(x) + o(λ) ⇒ D = −i(x · ∂), (1.13c)

ϕ′(x) = ϕ(x) + 2(b · x)xµ∂µϕ(x)− x2bµ∂µϕ(x) + o(b)

⇒ Kµ = −i(2xµ(x · ∂)− (x · x)∂µ). (1.13d)

Naturally, this way of representing the generators closes to the conformal algebra on the
space of smooth functions (scalar fields). One can verify that their commutation
relations are indeed extensions of the Poincaré algebra on Rt,s.

[Pρ, Jµν ] = i(ηρµPν − ηρνPµ)

[Jµν , Jρσ] = i(ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ)

⎫⎬⎭Poincaré

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ,Pν ] = 2i(ηµνD− Jµν)

[Kρ, Jµν ] = i(ηρµPν − ηρνPµ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Conformal (1.14)

All other commutators are trivial.

To make more explicit the so(t+ 1, s+ 1) structure of the conformal algebra we redefine
certain generators as follows:

J̄µν = Jµν , J̄−1,µ =
1
2 (Pµ −Kµ), (1.15a)

J̄−1,0 = D, J̄0,µ =
1
2 (Pµ +Kµ). (1.15b)

Following this redefinition, all the commutation relations which don’t involve
translations can be summarised in this single commutator

[J̄ab, J̄cd] = i(η̄adJ̄bc + η̄bcJ̄ad − η̄acJ̄bd − η̄bdJ̄ac),

η̄ = diag(−1, . . . ,−1⏞ ⏟⏟ ⏞
t+1

, 1, . . . , 1⏞ ⏟⏟ ⏞
s+1

), (1.16)
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which is the standard commutator for the generators of so(t+ 1, s+ 1). Combining
(1.16) with the commutators involving Pµ, we obtain the full conformal algebra
SO(t+ 1, s+ 1)⋉ Rt,s, as alluded to earlier. This concludes our brief overview of the
conformal algebra of Rt,s.

1.3 Correlation Functions

Having discussed the conformal group and its algebra in sections 1.1 and 1.2, let us now
turn to their application in conformally-invariant quantum field theories, or CFTs. We
will assume the reader is familiar enough with the language of QFT and move straight
to illustrating the power conformal symmetry has on constraining the form of the CFTs’
correlators.

The irreducible representations of the conformal algebra are spanned by so-called
conformal primary operators. Note that our definition of conformal primaries coincides
with the notion of quasi-primaries in 2d CFTs, however, we will not need to make that
distinction as we work solely in dimensions greater than two. These conformal primaries
come with a definite scaling dimension, and commute with the generator of special
conformal transformations. Looking back at the conformal algebra so(t+ 1, s+ 1) in
(1.14), we see that acting on a conformal primary with Pµ raises the scaling dimension
by one. One can start from a conformal primary and act infinitely many times with Pµ

to get a tower of operators, with ever increasing scaling dimensions. These operators are
called descendents of the conformal primary.

Definition 1.4. Conformal Primary Field A conformal primary field is a field ϕa(x) (in
a given representation of the Lorentz group) which commutes with the generators of
special conformal transformations, Kµ and is an eigenfunction of the dilatation
generator at the origin,

[Kµ,ϕa(0)] = 0, (1.17a)

[D,ϕa(0)] = −i∆ϕa(0). (1.17b)

Whenever the above holds, ∆ is called the conformal scaling dimension of ϕa(x), or its
scaling dimension for short.

Also note that this definition is not at odds with the Wigner method of classifying
irreducible representations according to the eigenvalue of the Casimir operators. The
eigenfunctions of these operators, constructed by contracting the generators J̄ab in
(1.15), are the conformal primaries and their descendents [75, 76].

To illustrate Definition 1.4 further, let us consider the case of a scalar conformal primary,
ϕ(x). In general, acting on this field with the dilatation generator gives (obtained by
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shifting ϕ(0) by x, ϕ(x) = eix·Pϕ(0)e−ix·P )

Dϕ(x) = (−ixµ∂µ − i∆)ϕ(x), (1.18)

where ∆ is the scaling dimension of the field. Note that we used the short-hand notation
where D is actually the dilatation generator in the corresponding irreducible
representation: ρscalar(D). Under an arbitrary conformal map x ↦→ x′, the field ϕ

necessarily transforms following the pattern

ϕ(x) ↦→
⃓⃓⃓⃓
∂x′

∂x

⃓⃓⃓⃓−∆/d

ϕ(x), (1.19)

where ∂x′

∂x is the Jacobian, and d = t+ s is the spacetime dimension.

These properties alone are sufficient to constrain the functional form of correlators
involving conformal primaries. For correlation functions involving up to two conformal
primaries, the symmetries fully determine the function, up to a constant. For correlation
functions that involve more than three conformal primaries, we find an arbitrary
function of the cross-ratios. Importantly, by studying the operator product expansion
between conformal primaries, it is possible to fully determine the CFT data using the
four-point functions alone. All higher-order correlators can then be written in terms of
this data, known as the conformal block expansion. We give a more detailed overview of
this construction and its properties in section 1.4.

Unitary bounds

In any sensible unitary CFT, the Hamiltonian spectrum should be bounded by below.
This places a constraint on the conformal primaries and their tower of descendents, by
imposing that they all have a non-negative norm. This requirement is translated into a
lower bound on the conformal primary scaling dimensions, ∆, which may depend on the
spin of the operator [77–81]. This is known as the unitary bound on the CFT data. The
corresponding notion in Euclidean CFTs is that of reflection positivity. See [82] for an
excellent mathematical treatment in general d.

For brevity, we replicate only two of the bounds here (see [83] for detailed references and
the fermionic bound)

∆ ≥ d− 2
2 , scalar,

∆ ≥ l+ d− 2, symmetric traceless, l ≥ 1.
(1.20)

Scalar primaries that saturate the bound are precisely the free bosons.
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1.3.1 One-point functions

The simplest kind of correlation function, involving only one insertion of conformal
primaries, doesn’t require much attention. Indeed, conformal symmetry automatically
forces this correlator to vanish, for all conformal primary ϕ. Nevertheless, for
completeness let us write this result for our scalar primary,

⟨ϕ(x)⟩ = 0. (1.21)

As we will soon see in section 1.6, this no longer holds when considering defect CFTs, for
which the conformal symmetry is broken down to one of its subgroups.

1.3.2 Two-point functions

Moving on to the correlation function between two conformal primaries, with scaling
dimensions ∆1 and ∆2, we get our first non-trivial result. The functional form of this
correlator is fully determined for fields in any representation of the Lorentz group.
However, as its expression can be quite complicated in general, we will only detail the
spin-less case here. The full spin-full case will be detailed in section 1.5, where the
embedding space formalism will allow us to greatly simply notations.

For ϕ1, ϕ2, two scalar primaries with scaling dimensions ∆1 and ∆2 respectively, we find

⟨ϕ1(x1)ϕ2(x2)⟩ = δ∆1,∆2

c12

x2∆1
12

, (1.22)

where x2
12 = (x1 − x2) · (x1 − x2) denotes the squared distance between the two

insertions. Note that the factor of Kronecker delta on the right-hand-side constrains this
correlator to be non-vanishing if and only if the scaling dimensions of ϕ1 and ϕ2 are
identical.

1.3.3 Three-point functions

The three-point function follows a similar structure to the two-point function, where the
end result depends only on the squared-distance between insertion points. Again, let us
illustrate that of the scalar primaries only and come back to the more general spin-full
case in later sections.

Let ϕ1, ϕ2 and ϕ3 be scalar primaries with scaling dimensions ∆1, ∆2 and ∆3

respectively. Their correlator is fully determined up to an overall constant,

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)⟩ =
c123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
13

, (1.23)
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where again x2
ij = (xi − xj) · (xi − xj).

1.3.4 Four-point function

The full conformal group leaves the four-point function with more freedom, as it can
only fix it up to a function of cross-ratios. Let us now illustrate this with a correlator
between four identical scalar primaries, where te more general formula can be found in
later sections,

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
g(u, v)
x2∆

12x
2∆
34

. (1.24)

In the equation above, g(u, v) is an arbitrary function of the cross-ratios u and v defined
by

u =
x2

12x
2
34

x2
13x

2
24

v =
x2

14x
2
23

x2
13x

2
24

. (1.25)

Naturally, one can redefine g(u, v) such that the explicit powers that appear in the
correlator’s expression are those of x13 and x24, in agreement with the permutation
symmetry exhibited by such correlator.

1.4 The Conformal Blocks and the OPE

A systematic way of obtaining the results from the previous section, regarding the
various correlators between conformal primaries, is via the so-called operator product
expansion (OPE). First introduced in [84] for general QFTs, OPEs are a way of rewriting
the product between two operators as a (usually infinite) sum of local operators, where
this rewriting is understood as being true when evaluated as an expectation value. This
expansion is usually performed in the region where the two operators get infinitely close
to one another, as this allows for the infinite sum to be a ‘suitable approximation’ to the
product. While in general such a sum would not converge in the space of operators, it
can be shown to converge for CFTs [85, 86]. Furthermore, the convergence holds in a
finite region (as opposed to an infinitesimal neighbourhood of the operator insertions).
In the 2d CFT context, this can be understood from the fact that the OPE is intricately
related to representation theory of the Virasoro algebra [87].

Let us illustrate this phenomenon using two identical scalar primary operators, ϕ.
Typically, their OPE will include contributions from spinning fields and other operators
which are descendents of conformal primaries. Packaging this neatly, we are able to write

ϕ(x)ϕ(y) ∼
∑︂
O
fϕϕOP (x− y, ∂y) · O(y), (1.26)
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where the ∼ indicates equality as expectation values. Note that the sum is performed
over conformal primary operators O only. The · denotes contractions between all
Lorentz indices, when O is a spinning field. The function P is typically a power series in
x− y and ∂y, which encodes the contributions of O and its descendents.

Interestingly, one may use this expansion inside the four-point correlation function of
scalar primaries, ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩, and rewrite it as a sum of two-point
functions. Using (1.22) together with the OPE expansion (1.26), applied once on
ϕ(x1)ϕ(x2) and then again ϕ(x3)ϕ(x4), we see that

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑︂
O
(fϕϕO)

2 gO(u, v)
x2∆

12x
2∆
34

. (1.27)

The overall contribution should match that of (1.24), where the sum of partial functions
gO(u, v) should recover the function of cross-ratios g(u, v). This expansion of the
function g is known as the conformal block decomposition, or conformal partial waves
decomposition [76, 88, 89] (see [90] for an introduction). Together with the scaling
dimensions of the conformal primaries spectrum, the set of coefficients (fϕϕO) form the
complete data required to specify the CFT. Notably, however, not every such set of
coefficients forms a suitable CFT. Indeed, had we performed the OPE on ϕ(x1)ϕ(x3)

first, and then on ϕ(x2)ϕ(x4), we would have ended on a different conformal block
decomposition. The coefficients fϕϕO are such that both expansions should match. This
constraint on the CFT data is known as crossing symmetry, and is visually depicted in
Figure 1.1.

=

Figure 1.1: A visualisation of crossing symmetry in the four-point function. Black
circles denote operator insertions, blue circles their decomposition through the OPE.

As these OPEs are generally quite involved, there are ways to simplify the expansion.
For instance, in the lightcone limit of Lorentzian CFTs, all operators become lightlike
separated and the OPE is dominated by operators with large spin [91–95]. For finite
(non-zero) spin the “inversion formula” can be used to reconstruct the CFT data from
the correlators [96].

1.5 The Embedding Space Formalism

In preceding sections, we have omitted to display identities relating spinning fields as
those are typically quite involved. A simple way of circumventing this problem is to use



1.5. The Embedding Space Formalism 15

the embedding space formalism [97]. This formalism to prove extremely useful to our
presentation of Chapter 8, and as such we will only work with Euclidean CFTs in D

dimensions.

First and foremost, recall that the conformal group, SO(1,D+ 1), acts non-linearly on
RD. This non-linear action is the root cause for complicating calculations with arbitrary
spinning fields. The aforementioned formalism aims to solve this by considering a space
on which it acts linearly, namely R1,D+1 [98]. Naturally, this embedding only makes
sense if there is a well-defined notion extending CFTs to this space, or at the very least
a well-defined restriction of QFTs from R1,D+1 to CFTs on RD. This statement turns
out to be true, where the restriction is to a particular subspace of the light-cone, known
as the Poincaré section.

We follow the presentation given in the original article [97], and encourage the reader to
consult it for further details. Let X = (X−,X+,x) be a point on R1,D+1, given in
light-cone coordinates, where the metric reads

ηABX
AXB = −X−X+ + x · x. (1.28)

In the above, · denotes the scalar product induced by the Euclidean metric on RD. The
light-cone is the D+ 1-dimensional subspace of R1,D+1 defined by the vanishing of the
line element ηABXAXB,

LC = {X−X+ − x · x = 0 |X ∈ R1,D+1}. (1.29)

Furthermore, we can define the projective light-cone as the projective analogue of LC.
With the relation X ∼ λX, for all X ∈ LC\{0}, we define the projective light-cone as

PLC = LC\{0}/ ∼ . (1.30)

This creates two copies of RD, both intersecting along a sphere SD−1. A choice of
representative for each can be, for instance, X− = 1 and X+ = 1. We call that with
X+ = 1 the Poincaré section (PS) of the embedding space. Every point on this section
belongs to an RD subspace and has the coordinate expression

X|PS = (x2, 1,x). (1.31)

We will often refer to the PS as a being a standard subspace of the embedding space,
instead of correctly calling it a ‘projective subspace’. The distinction is made doubly
important by the fact that SO(1,D+ 1) actions do not, in general, preserve the X+ = 1
condition. On the projective light-cone, however, all points related to X+ = 1 by a
linear transformations are identified with each other, and we do not need to worry about
a potential change in the representative. That being the case, one can treat the PS as a
standard subspace of R1,D+1 provided that one rescales X accordingly under conformal
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transformation, i.e. such that X+ = 1. That is the line of thinking we will follow
throughout.

X+ = 1

X+ = −1

Figure 1.2: A visual representation of the null cone NC = {X ∈ R1,D+1 |X2 = 0}.
The Poincaré section (PS) X+ = 1 and its antipodal locus X+ = −1 are shown in red;
they select a unique representative from each projective orbit X ∼ λX within each

section. An example of such a null ray is shown in blue.

We now move on to describing how to deal with spinning fields. Symmetric traceless
tensors (STT)5 can be encoded as polynomials of an auxiliary complex variable z. In the
embedding space, all that needs to be done is to introduce an auxiliary variable Z, and
define the polynomial as

F (X,Z) = FA1···AJ
(X)ZA1 · · ·ZAJ , (1.32)

where ηABZAZB = 0. The symmetry under the exchange ZAi ↔ ZAj provides the
symmetric constraint on the components of F , while ηABZAZB = 0 provides the
tracelessness condition. One can move between the polynomial representation and
component representation by acting on F with the Todorov differential operator [100]

DA =

(︃
D

2 + Z · ∂
∂Z

)︃
∂

∂ZA
− 1

2ZA
∂2

∂Z · ∂Z
. (1.33)

Note that in order for F to properly descend to a spinning conformal primary, we
further require it to satisfy two additional conditions:

1. (Homogeneity) F (λX,Z) = λ−∆F (X,Z),

2. (Transversality) ∀α ∈ C, F (X,Z + αZ) = F (X,Z).

5See [99] for the anti-symmetric case.
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Thus, given an SO(1,D+ 1)-invariant QFT, defined on the embedding space, the
logical steps towards recovering a CFT in D-dimensions go as follows:

• Define a QFT on the embedding space

• Write down the correlators of homogenous and transverse polynomials

• Restrict them to the PS, for which

– Xi ·Xj = −1
2x

2
ij (X2 = 0)

– Z ·X = 0

– Zi ·Zj = zi · zj (Z2 = 0)

– Xi ·Zj = xi · zj

With this toolset, we can define a composite tensor CAB built from the coordinate X
and auxiliary variable Z,

CAB = XAZB −XBZA, (1.34)

with which all correlators can be written.

1.5.1 Two-point function

Firstly, we come back to the two-point function of conformal primaries, this time
generalising to any spinning fields. Let F1(X1,Z1) and F2(X2,Z2) be two conformal
spinning primaries of spin J and conformal scaling dimension ∆1 and ∆2, respectively.
Their correlator in the embedding space takes the general form

G(X1,X2;Z1,Z2) = αδ∆1,∆2

(︂
1
2C1ABC

AB
2

)︂J
(X1 ·X2)∆1+J

= αδ∆1,∆2

(Z1 ·Z2X1 ·X2 −X1 ·Z2X2 ·Z1)J

(X1 ·X2)∆1+J
, (1.35)

where α is a constant. One can easily see that in the spinless case, J = 0, and after
restricting to the PS, we recover the expression given in (1.22).

1.5.2 Three-point function

Let us now look at the three point function of spinning fields. Let {Fi(Xi,Zi)}i∈{1,2,3}

be three conformal spinning primaries with conformal scaling dimension ∆i and spin Ji,
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respectively. The three-point correlator between these has the general expression

G({Xi,Zi}) =
Q({Xi,Zi})

(X1 ·X2)
τ1+τ2−τ3

2 (X2 ·X3)
τ2+τ3−τ1

2 (X3 ·X1)
τ3+τ1−τ2

2
, (1.36)

where τi = ∆i + Ji and Q is an identically transverse polynomial of degree Ji in each Zi,
with coefficients depending on Xi. By transversality and homogeneity, it must obey

Q({λiXi,αiZi + βiXi}) = Q({Xi,Zi})
∏︂
i

(λiαi)
Ji . (1.37)

Again, restricting back to the Ji = 0 case and imposing the PS constraints, we recover
our previous expression (1.23), for the three-point function between scalar conformal
primaries.

1.6 Defect CFTs and Boundary CFTs

We are finally ready to move on to the main subject of the thesis, namely defect
conformal field theory (dCFT). In this presentation, we define a defect as being any
non-local operator that acts on the CFT Hilbert space. Much like how local operators
are specified by a position, a defect is specified by a submanifold. We will typical refer
to the defects codimensionality instead of its dimension directly. So for instance, if a
defect is valued on a p-dimensional surface within a d-dimensional CFT, we will call it a
(d− p)-codimensional defect.

In general, such a definition is too vague to have any practical use, except in the rare
cases where a complete (or fully local) description of the QFT is known [101]. Instead,
we will focus on such extended operators that preserve a subgroup of the conformal
group. Taking the Euclidean CFT in D dimensions as an example, we will be looking at
p-dimensional defects that break SO(1,D+ 1) into SO(1, p+ 1)×G, where
G ⊆ SO(d− p). We call such defects conformal defects by virtue of the fact that they
preserve a conformal subgroup along their defining submanifold. Any CFT in the
presence of such a defect will be referred to as a defect CFT, or dCFT. In the
codimension-1 case, if the CFT is restricted to live only on one side of the defect, we call
it a boundary CFT, or bCFT.

We recommend the reviews [102–105] for bCFTs and [106–109] for general dCFTs.

One can engineer conformal defects in many equivalent ways – by assigning singularities
to CFT fields on a given submanifold, by coupling the theory to a lower-dimensional one,
restricted to a submanifold, following which the lower-dimensional theory is integrated
out. Or one could also modify the Ward identities directly6. In all these examples, the

6Which can be argued to be the most robust way to define conformal defects.
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resulting theory is only invariant under the defect conformal subgroup, and their
corresponding correlation functions will be adequately modified.

As we will come to see later in this section, preservation of the conformal structure on
the defect submanifold implies a CFT-like structure for all fields that are restricted to it.
One can see that this holds true in their correlation functions, which follow the form
dictated by conformal symmetry, be it in p-dimensions instead of D. What does not
necessarily hold true, however, is the existence of a conserved stress-energy tensor. Since
the defect itself interacts with the ambient CFT, it may exchange ‘energy’ between it
and the ambient CFT fields. The cases where such a stress-tensor on the defect does
exist correspond to decoupled theories and are of no interest to us, amongst other things,
due to their triviality.

The specific Ward identity that dictates what the divergence of the stress-energy tensor
is, gets modified in the presence of a defect. Since the defect is localised to a
submanifold, say Σ, this departure from the divergence-free case should only be true on
Σ, and indeed one finds a modification of the form

∂µT
µν = δ(p)(Σ)Dν , (1.38)

where Dν is the displacement operator. See [35] for an excellent overview of the various
results these modified Ward identities can lead to.

Breaking the conformal group offers us a larger set of field representatives of the
conformal algebra. In addition to the standard conformal primaries of the ambient
theory, which one can treat as those that remain when the defect is removed, there are
additional defect conformal primaries, which are physically restricted to live on the
defect submanifold. A direct consequence of this is the opening of a new OPE channel.
Indeed, in addition to the standard ambient OPE, for which products of ambient
operators can be written as a sum of ambient operators, dCFTs have the defect OPE.
There, any ambient field can be written as a sum of defect ones,

ϕ(x) ∼
∑︂
Ô

fϕÔQ(x⊥ − y, ∂y) · Ô(y), (1.39)

where ϕ is an ambient conformal primary and Ô is a defect one. The function Q

encapsulates all descendent contributions in this expansion.

One can immediately see that dCFTs then require more data to be fully specified.
Indeed, on top of the scaling dimensions of ambient operators (∆) and their OPE
coefficients (λijk), we also need to specify the scaling dimensions of defect operators (∆̂)
together with the defect OPE coefficients (λij). Naturally, not any set of such
coefficients defines a dCFT and one must place constraints on these, similarly to how
crossing-symmetry places constraints on the ambient OPE coefficients. In this case, the



20 Chapter 1. Conformal Field Theory

two OPEs should commute and one is left with a set of relations between the ambient
and defect OPE coefficients. Figure 1.3 is a visual representation of this. The search for
such dCFT data from the ground up is known as the dCFT bootstrap [107, 110–116].

=

Figure 1.3: A visualisation of constraints imposed on the coefficients in the defect
OPE. Black circles denote operator insertions, blue circles their decomposition through

the OPE and the solid line represents the defect.

Finally, let us close this chapter with a brief presentation of the embedding space
formalism for dCFTs, as introduced in [107]. This presentation will be useful in
understanding our notation in Chapter 8.

The embedding space has a natural split into defect and orthogonal directions, each
being acted on by their respective subgroup of SO(1,D+ 1). If X denotes the
coordinates on R1,D+1, we write XA, 0 ≤ A ≤ p+ 1, for the defect directions and XI ,
p+ 2 ≤ I ≤ p+ q + 2, for the orthogonal ones. The dot product, ·, also sees a natural
split into a defect part, •, and an orthogonal one, ◦,

X · Y = X • Y +X ◦ Y

= XAY BηAB +XIY JδIJ . (1.40)

Just as in the non-defect case, ambient spinning conformal primaries which are STTs are
encoded by polynomials of an auxiliary coordinate Z ∈ R1,D+1. Consequently, such
insertions obey the same restrictions, when passing down to the Poincaré section,
namely

X ·X = 0 ⇔ X •X = −X ◦X, (1.41a)

Z ·X = 0 ⇔ Z •X = −Z ◦X, (1.41b)

Z ·Z = 0 ⇔ Z •Z = −Z ◦Z. (1.41c)

Defect insertions, on the other hand possess an additional SO(q)-representation. As
such, STTs on the defect require two auxiliary coordinates, Z and W , one for
SO(1, p+ 1) and the other for SO(q). When projecting down to physical space, on top
of restricting the coordinates to the Poincaré section of R1,D+1, defect insertions must
further be restricted to the ‘defect Poincaré section’, which a section of the light-cone of
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the defect subspace R1,p+1. In practice, this means setting

X •X = X ◦X = 0, (1.42a)

Z •X = Z ◦X = 0, (1.42b)

W •X = W ◦X = 0, (1.42c)

Z •Z = Z ◦Z = 0, (1.42d)

W •W = W ◦W = 0. (1.42e)

The composite tensor C also breaks down into three components, CAB, CAI and CIJ .
For bulk insertions only combinations of CAI appear in correlators, while for defect ones
only CAB does.

1.6.1 One-point functions

The existence of the identity operator inside the defect OPE shows that ambient
conformal primaries can now pick up a non-trivial one-point function. This can be
understood from the perspective that any correlator in the presence of a defect is
effectively that of a higher-point function with a defect operator insertion. This
introduces a scale, that of the distance to the defect. In our notation, where the defect
lies at the origin of the transverse part of the embedding space, this distance is given by√
X ◦X. Let O∆,J (X;Z) be a spinning conformal primary of spin J and conformal

dimension ∆. Then its one-point function, in the presence of a defect, reads

⟨O∆,J (X;Z)⟩ = α
QJ (X;Z)
(X ◦X)∆/2 , (1.43)

where the polynomial Q(X;Z) of degree J in Z is given by

QJ (X;Z) =
(︄ 1

2CAIC
AI

X ◦X

)︄J/2

=

(︄
(X ◦Z)2

X ◦X
−Z ◦Z

)︄J/2

. (1.44)

As expected, this structure mirrors directly that of a two-point function without defects,
(1.22).

Defect conformal primaries on the other hand do not develop a one-point function. As
alluded to earlier, their correlators are that of a standard CFT, for which operators do
not develop non-trivial one-point functions.

1.6.2 Two-point functions

Two-point functions now come in three different classes: defect-defect, ambient-defect
and ambient-ambient. In all three cases, the presence of this additional OPE channel
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grants them a much larger structure than the non-defect two-point functions. In fact,
the presence of the defect has the effect of ‘doubling’ the possible dependencies of this
correlator, making it act like a standard four-point function. The only correlator for
which this does not apply is that of two defect insertions. As those follow precisely
(1.35) (with · replaced by •), we refer the reader back to that equation.

Let O∆,J (X1;Z1) be an ambient spinning conformal primary of scaling dimension ∆ and
spin J . We choose Ô∆̂,j,s(X2;Z2,W2) to be a defect spinning conformal primary of
scaling dimension ∆̂, SO(1, p+ 1)-spin j and SO(q)-spin s. Then, their correlation
function is a mixed-correlator, or ambient-defect correlator and has the general form

⟨O∆,J (X1;Z1)Ô∆̂,j,s(X2;Z2,W2)⟩ =
(︂
Q0

AD

)︂j ∑︂
{ni}

bn1···n4

∏︁4
k=1

(︂
QkAD

)︂nk

(X1 •X2)∆̂(X1 ◦X1)
∆−∆̂

2

,

(1.45)

where the sum runs over ni ∈N that satisfy n1 + n3 = s and n2 + n3 + 2n4 = J − j.
The coefficients bn1···n4 depend on the specifics of the CFT and can be determined by
the OPE expansions. The ambient-defect homogeneous functions QiAD are given by

Q0
AD = Z1 •Z2 −

X2 •Z1
X1 •X2

X1 •Z2, (1.46a)

Q1
AD =

X1 ◦W2
(X1 ◦X1)1/2 , (1.46b)

Q2
AD =

X1 ◦Z1X1 ◦X2 −X2 ◦Z1X1 ◦X1
(X1 ◦X1)1/2(X1 •X2)

, (1.46c)

Q3
AD =

W2 ◦Z1X1 ◦X1 −X1 ◦W2X1 ◦Z1
X1 ◦X1

, (1.46d)

Q4
AD =

X1 ◦Z1
X1 ◦X1

−Z1 ◦Z1. (1.46e)

Let us briefly comment on the structure of equation (1.45). One can readily see how the
introduction of a defect OPE channel augments the structure of this two-point function,
when compared to equation (1.35). The conformally invariant quantities are now the
distance between the two insertions on the defect, X1 •X2 and the distance from the
defect of the ambient insertion, X1 ◦X1.

Finally, if O∆1,J1(X1;Z1) and O∆2,J2(X2;Z2) are two ambient conformal primaries, their
correlator takes the general form

⟨O∆1,J1(X1;Z1)O∆2,J2(X2;Z2)⟩ =
∑︂
{ni}

∏︁8
k=1(Q

k
AA)

nkfn1···n8(χ,ϕ)
(X1 ◦X1)∆1/2(X2 ◦X2)∆2/2 , (1.47)

where the sum runs over ni ∈N that satisfy n1 + n2 + n5 + n6 + 2n7 = J1 and
n3 + n4 + n5 + n6 + 2n8 = J2. This time around, the ambient-ambient homogeneous
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functions QiAA are given by7

Q1
AA =

X1 •X1Z1 ◦X2 −X1 ◦X2Z1 •X1
X1 ◦X1(X2 ◦X2)1/2 , (1.48a)

Q2
AA =

X1 •X2Z1 ◦X2 −X1 ◦X2Z1 •X2
(X1 ◦X1)1/2X2 ◦X2

, (1.48b)

Q3
AA =

X1 •X2Z2 ◦X2 −X2 ◦X2Z2 •X1
(X1 ◦X1)1/2X2 ◦X2

, (1.48c)

Q4
AA =

X1 •X2Z2 ◦X1 −X1 ◦X2Z2 •X1
X1 ◦X1(X2 ◦X2)1/2 , (1.48d)

Q5
AA =

X1 •X1(X2 •X2Z1 ◦Z2 −X2 •Z2X2 ◦Z1)

X1 ◦X1X2 ◦X2

− Z1 •X1(X2 •X2X1 ◦Z2 −X2 •Z2X1 ◦X2)

X1 ◦X1X2 ◦X2
, (1.48e)

Q6
AA =

X1 ◦X1(X2 ◦X2Z1 •Z2 −X2 ◦Z2X2 •Z1)

(X1 ◦X1)1/2(X2 ◦X2)3/2

− Z1 ◦X1(X2 ◦X2X1 •Z2 −X2 ◦Z2X1 •X2)

(X1 ◦X1)1/2(X2 ◦X2)3/2 , (1.48f)

Q7
AA =

(X1 ◦Z1)2

X1 ◦X1
−Z1 ◦Z1, (1.48g)

Q8
AA =

(X2 ◦Z2)2

X2 ◦X2
−Z2 ◦Z2. (1.48h)

The summands fn1···n8(χ,ϕ) are arbitrary functions of the cross-ratios

ξ = − 2X1 ·X2
(X1 ◦X1)1/2(X2 ◦X2)1/2 , cos(ϕ) = X1 ◦X2

(X1 ◦X1)1/2(X2 ◦X2)1/2 , (1.49)

as expected from a correlator that behaves like the four-point function (1.24).

7We purposely expanded out every factor of CAI . Please see the original reference for a more compact
form [107].
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Chapter 2

11D supergravity

En Prouvènço, lou soulèu si lèvo dous
còup, lou matin e après lou penequet.

Yvan Audouard

Eleven-dimensional supergravity plays a central role in the landscape of supergravity
theories, and it is for that reason that we dedicate an entire chapter to it. Our main
motivation originates from the fact that it describes the low-energy limit of M-theory
[117]. The extended objects of which (M-branes) are mapped to extended black hole
solutions (black branes) in the supergravity theory. As we will survey later in this
chapter, the intersections of these extended objects also have a supergravity counterpart.
Together with the AdS/CFT correspondence, these allow us to make non-trivial
statements about the underlying low-energy theories that live on these M-branes, as well
as the defects that they support.

Another point of interest to us, are the various compactifications of 11d supergravity
down to lower dimensions. It is well known that maximally-extended supergravity
theories in lower dimensions can be obtained via compactification of the 11d theory, i.e.
choosing the manifold to be Md × S11−d and letting the radius of S11−d go to zero.
Historically, this was what 11d supergravity was originally used for. Just like its
non-gravitational counter-parts, N -extended supergravity theories in d dimensions are
more simply formulated in terms of N = 1 supergravity in higher dimension.

Thanks to Nahm’s classification, we know that eleven is the largest dimension with
which one can formulate a consistent supersymmetric theory of gravity [26]1. The later
work by Cremmer, Julia and Scherk [119] showed that the unique supergravity in eleven

1Any flat space superalgebra in d > 11 will necessarily include fields of spin higher than two, making
the supergravity theory inconsistent. This argument, however, does not hold when dealing with an
infinite number of fields, curved spaces, or signatures other than (1, 10). For a more recent presentation
of Weinberg’s original argument, see Schwartz [118], section 9.5.1.



26 Chapter 2. 11D supergravity

dimensions admits a simple description in terms of three fields: the graviton gµν , the
gravitino ψµ and a three-form gauge field C3. These come in the (2, 0, 0, 0, 0),
( 3

2 , 1
2 , 1

2 , 1
2 , 1

2 ) and (1, 1, 1, 0, 0) representations of the Lorentz algebra so(1, 10),
respectively [120].

so(1, 10) rep. dim. name

(2, 0, 0, 0, 0) 44 graviton

( 3
2 , 1

2 , 1
2 , 1

2 , 1
2 ) 128 gravitino

(1, 1, 1, 0, 0) 84 3-form

Figure 2.1: The field content of 11d supergravity and its so(1, 10) representations.

Let us briefly comment on how the algebra enforces this field content. See [121, 122] for
a more detailed exposition. The field content of the theory is given by the massless
irreducible representations of the global symmetry algebra, so(1, 10). Using Wigner’s
method of induced representations [123], there is a one-to-one correspondence between
massless irreducible representations of so(1, 10) and those of the little group, so(9). This
follows from the fact that the operator PµPµ is Casimir. On this little algebra, only 16
out of the 32 supercharges remain active. That is to say, only half of the supercharges
act non-trivially. These supercharges turn out to be in the vector representation of
Clifford algebra Cl(16), a 256-dimensional representation. Finding the massless field
representations then amount to understanding how the vector representation of Cl(16)
decomposes into representations of the little algebra so(9).

Cl(16) ⊃ so(16) → so(9)
256 → 128s ⊕ 128c → 44⊕ 84⊕ 128

(2.1)

In this decomposition, the irreducible representation of so(9) with dimension 44
corresponds to a rank-two symmetric traceless tensor, in other words the graviton field,
gµν , which is in the (2, 0, 0, 0, 0) representation of so(1, 10). That with dimension 84 is
the three-form C in the (1, 1, 1, 0, 0) and that with dimension 128 corresponds to a
spin-3

2 field, the gravitino, ψµ, in the ( 3
2 , 1

2 , 1
2 , 1

2 , 1
2 ) representation.

The field content of any maximally-extended supergravities in lower dimensions can then
be determined from how these representations decompose into the corresponding global
symmetry algebras. For instance, compactifying down to four dimensions yields N = 8
supergravity. The field content is determined by the decomposition
so(9)→ so(2)⊕ so(7), which gives a graviton, 8 gravitinos, 28 vector fields, 56 spin- 1

2
fermions, and 70 scalar fields [124].
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A standard feature of supergravity theories in higher dimensions seems to be the
appearance of higher-form gauge fields. The three-form C3 being one such example
whose dimensional reductions can lead to other higher-form gauge fields in lower
dimensions. The subtlety in defining such a theory stems from the fact that the
three-form C3 admits gauge transformations parametrised by a two-form λ(2),
C3 ↦→ C3 + dλ(2). Furthermore, this two-form also admits gauge transformations by a
one-form, and so on and so forth. While the four-form field strength F4 is indeed a
section of a bundle, ⋀︁4 T ∗M, that clearly isn’t the case for the three-form gauge field
C3. It isn’t a connection on a principal bundle either, as one would hope. The proper
object one needs to consider is a connection on a bundle gerbe. Nevertheless, when
describing it locally, one can consider it as a three-form, with the implicit understanding
that it admits local gauge transformations and obeys gluing conditions between patches.

This chapter will not serve as a pedagogical introduction to 11d supergravity. Instead,
the reader should see it as a useful collection of facts about it and its various black
brane solutions. In Section 2.1 we present the 11d supergravity action together with the
supersymmetry transformation of its fields and equations of motion. Section 2.2
mentions in passing, the various avenues of compactifying 11d supergravity down to
lower dimensions. Section 2.3 will present the five important half-BPS solutions to this
supergravity that have relevance within this thesis. Finally, Section 2.4 briefly highlights
the key aspects of the asymptotic supersymmetry algebra, namely that of flat
eleven-dimensional space.

In attempting to present such a vast topic, we will most likely fail at demonstrating its
beauty. For that reason, we recommend reading these excellent reviews instead of this
chapter: [125–128]. As a lot of the topics from this section will intersect with concepts
in string theory/M-theory, we also recommend these excellent reviews [126, 128–131].

2.1 The action principle

Eleven dimensional supergravity is the unique supersymmetric theory of gravity in
signature (1, 10) with 32 supercharges. Let M be an eleven-dimensional smooth, spin
manifold equipped with a Lorentzian metric G. Its field content is rather simple as it
contains the vielbeins field eaµ, seen as a section of the bundle TM⊗ T ∗M, a thirty
two component spinor field ψµ, seen as a section of the bundle T ∗M⊗S, where S is the
spin bundle. Finally, supersymmetry requires the third field to be a three-form C3, with
four-form field strength F4 = dC3.

Throughout this chapter, we use greek letters µ, ν, ρ ∈ {0, . . . , 10} to label the
coordinates on a patch of M. The non-coordinate basis is labelled by roman letters
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a, b, c ∈ {0, . . . , 10}. The Clifford algebra generators (Γa)a∈{0,...,10} are required to obey
the following anti-commutator {Γa, Γb} = 2ηab132, where ηab = diag(−1, 1, . . . , 1) is the
Minkowski metric in mostly-plus convention. We also define the antisymmetrised
product of these generators as

Γa1···an =
1
n!

∑︂
σ∈Sn

sign(σ)Γaσ1 · · · Γaσn . (2.2)

The Clifford algebra generators can then be converted to their “curved-space” analogues
using the vielbeins eaµΓµ = Γa.

The full supergravity Lagrangian density then reads [119, 132]

L = ⋆R− 1
2F ∧ ⋆F −

1
6F ∧ F ∧C + 2ψ̄µΓµνρDνψρ ⋆ 1

+
1
16 ψ̄µΓµνρΓabψρψ̄αΓνabαβψβ ⋆ 1

− 1
48
(︂
ψ̄µΓµναβγδψν + 12ψ̄αΓγδψβ

)︂ (︂
Fαβγδ + 6ψ̄[αΓβγψδ]

)︂
⋆ 1,

(2.3)

where ⋆1 denotes the Hodge dual of unity, i.e. the canonical volume form, and
Dµψν = ∂µψν +

1
4ω

ab
µ Γabψν is the covariant derivative of the gravitino. Do note the

presence of a Chern-Simons-like term F ∧ F ∧C, which is be crucial for our
understanding of the M-theory description and how its various extended objects can
intersect [128]. Additionally, due to the presence of fermions the spin connection will
naturally develop a non-zero torsion. If we denote by ω(0) the Levi-Civita connection,
then the torsion-full connection ω takes the form

ωabµ = ω(0)
µ

ab +Kab
µ , (2.4a)

Kab
µ =

1
4 (ψ̄αΓµabαβψβ − 2(ψ̄µΓbψa − ψ̄µΓaψb + ψ̄

bΓµψa)) (contorsion). (2.4b)

The action built from equation (2.3) is invariant under all superdiffeomorphisms. In
particular, given ξ a spinor on M, the odd part of this superdiffeomorphism is called the
supersymmetry variation, and for each field of the supergravity multiplet, is given by

δξe
a
µ = ξ̄Γaψµ, (2.5a)

δξCµνρ = 3ξ̄Γ[µνψρ], (2.5b)

δξψµ = Dµξ −
1

2 · 144
(︂

Γαβγδµ − 8Γβγδδαµ
)︂
ξ
(︂
Fαβγδ + 6ψ̄[αΓβγψδ]

)︂
+

1
16 ψ̄αΓµabαβψβΓabξ. (2.5c)

Note that any configuration of the fields for which δξ = 0 is known as a supersymmetric
configuration, or BPS configuration. The reason for which will be discussed shortly.
Nevertheless, such solutions where the fermions are set to zero are known as bosonic
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fixed points, and will be the central focus of this thesis. Out of the three supersymmetry
equations above, only the variation of ψµ will impose non-trivial constraints on M for
such a bosonic fixed point. In that context, the variation of the gravitino defines a
(generalised) Killing spinor equation

Dµξ −
1

288
(︂

Γαβγδµ − 8Γβγδδαµ
)︂
Fαβγδξ = 0, (2.6)

and its solutions, ξ are called (generalised) Killing spinors (see Appendix D for the
specific definitions).

Finally, we may also explicitly write down the equations of motions for the graviton,
three-form connection and gravitino

Rαβ =
1
12

(︃
FανρσFβ

νρσ − 1
12gαβFµνρσF

µνρσ
)︃

, (2.7a)

d ⋆ F +
1
2F ∧ F = 0, (2.7b)

Γµνρ
(︃
Dνψρ −

1
2 · 144

(︂
Γαβγδν − 8Γβγδδαν

)︂
ψρ
(︂
Fαβγδ + 6ψ̄[αΓβγψδ]

)︂
+

1
16 ψ̄αΓνabαβψβΓabψρ

)︃
= 0. (2.7c)

Provided the fields obey suitable reality conditions (obligatory in Lorentzian signature),
any solution of the Killing spinor equation is also a solution of the equations of motion2.

2.2 Its toroidal compactifications

As mentioned in the introduction to this chapter, eleven-dimensional supergravity was
original constructed as a tool to facilitate the construction of N -extended supergravity
theories in lower dimensions [119]. An important aspect of these lower-dimensional
theories that isn’t captured by the higher-dimensional parent, however, is the
exceptional global symmetry. Indeed, it was shown that 4d N = 8 supergravity exhibits
an E7(7)-symmetry [124, 133] and in general maximal supergravity in 11− d dimensions
exhibits an Ed(d) symmetry. This fact was coined the silver rule of supergravity
[134–136] and these additional symmetries are referred to as hidden symmetries by
virtue of the fact that they do not appear explicitly in the 11d context.

It turns out that, in order to see the emergence of these hidden symmetries from an 11d
perspective, one needs to perform various dualisations of the 11d supergravity fields3.

2With supergravity theories in Euclidean signature we do not need impose any reality conditions
on the fields. In that context, solutions to the Killing spinor equation may not be solutions to the
equations of motion. However, if one wishes to Wick rotate back to Lorentzian signature, a choice of
reality conditions is required. See Chapter 3.

3In eleven dimensions, the Hodge dual to the four-form field strength F4 is a seven-form F7. The
latter can be given the interpretation of the field strength of a ‘dual gauge field’ C6.
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Toroidal compactifications with the appropriate field redefinitions can then give rise to
the E-series of Dynkin labels [137]. We recommend the excellent review by Samtleben
[122] for a more recent overview of the emergence of such exceptional global symmetries
upon dimensional reduction of the 11d action. The chapter by Dieter Maison [138] in
the book [139], is also a great place to learn more about these Kaluza-Klein reductions
of Einstein’s theory and how the non-abelian symmetries can emerge from them.

The relevance behind these compactifications here won’t lie in the hidden symmetries
they produce, but rather in their existence in the first place. Indeed, the emergence of
M-theory as the large-coupling limit of type IIA string theory [117, 140] suggests a
direct relationship from the supergravity limits [125]. The compactification of 11d
supergravity on a circle of vanishing radius will indeed lead to the equations of motion of
IIA supergravity in ten dimensions [141–143]. Naturally, similar constructions exist in
various other dimensions (9d [144], 8d [145], 4d [124], 3d [146–150] and 2d [151–154] just
to cite a few). By construction solutions to these lower-dimensional supergravity
theories can be ‘uplifted’ to solutions of the eleven-dimensional theory.

This is the central idea behind the construction of 10d and 11d supergravity solutions in
[1] from solutions to certain 7d supergravity. As w will review those uplifts in Chapter 4,
Section 4.2, we will not comment further on this.

2.3 BPS solutions

An important subset of solutions to 11d supergravity are given by those which preserve
a non-zero number of supercharges. In other words, they are solutions to the equations
of motion (2.7) which also offer non-trivial solutions to the generalised Killing spinor
equation (2.5c). The supersymmetry thus retained protects them under quantisation
and it is expected that a corresponding object exists in the full M-theory [125].
Contrarily to perturbative string theory, whose dynamical objects are strings, those of
M-theory are expected to be further extended object known as M-branes. In the
supergravity limit, these appear in multiple instances – as supersymmetric black brane
solutions (generalising supersymmetric black hole solutions) or directly as central
charges in the superalgebra.

Let us focus on the former description within this section. A full classification of all
supersymmetric solutions is still out of reach, however, progress was made for solutions
with a given amount of supersymmetry. For instance, the maximally supersymmetric
solutions, i.e. those that preserve 32 supercharges, are fully known. They break down
into either AdS7 × S4, R1,10 or AdS4 × S7, and additional curvature-free solutions
[155–158], the Cahen-Wallach pp-wave [159]. We will focus our presentation here on
those solutions that preserve half of the maximal supersymmetry, i.e. 1/2-BPS solutions
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(see for instance [160, 161]). These are essential solutions to 11d supergravity as they
describe the supergravity counterparts of the fundamental objects of M-theory, the
M-branes. Under the circle compactification that brings us back down to type IIA string
theory these objects should have an extended string-theoretic description, as D-branes.

The M-wave (pp-wave)

The M-wave is a solution of 11d supergravity which preserves half of the 32 supercharges
and is originally due to [162]. We follow the presentation given in [125]. The M-wave
solution only involves a non-trivial profile in the metric and is specified by a harmonic
function H on the transverse space R9,

g11 = −dt2 + dρ2 + (H − 1)(dt+ dρ)2 + gR9 , (2.8a)

H(r) = 1 + k

r7 . (2.8b)

However, it can be generalised to include non-trivial 3-form gauge field C [163]

g11 = −dt2 + dρ2 + (H − 1)(dt+ dρ)2 +A⊗ (dt+ dρ) + gR8 + dy2, (2.9a)

C =
1
3A∧ (dt+ dρ) ∧ dy, (2.9b)

∆R8H = 0, ∆R8dA = 0, (2.9c)

where A is a one-form on R8.

It was also shown in [164] that this class of solutions can be made to preserve more
supersymmetry, from 16 for the original M-wave to 18, 20, 22, 24 and 32 for the
Cahen-Wallach pp-wave. Those with 26 supercharges have also been constructed [165].
Note that it is also possible to construct solutions with multiple M-waves, as was shown
[166] where the action for such a configuration was constructed.

We finally note that under the S1 compactification down to type IIA supergravity, the
M-wave solution becomes either an M-wave solution of type IIA or a D0-brane.

The M2-brane

The presence of a three-form gauge field C3 suggests the existence of an object which is
electrically charged under it. This is the M2-brane4, whose supergravity solution is given

4We will often use the same terminology to denote M-theory objects and their black brane solutions
in supergravity. This might make some readers uneasy but given that one is the low-energy limit of the
other, we do not see this as a problem.
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by [167]

g11 = H−2/3(r)gR1,2 ⊕H1/3(r)gR8 , (2.10a)

F = volR1,2 ∧ dH(r)−1, (2.10b)

H(r) = 1 + k

r6 , (2.10c)

where r is the radial direction in R8.

The presence of the harmonic factor H(r) in front of the three-dimensional subspace
R1,2 hints at an extended black hole solution along said subspace. That is indeed the
space spanned by the M2-brane as an M-theory object. One can also notice that this
solution interpolates between two maximally supersymmetric solutions of 11d
supergravity. In the large-r limit, the harmonic factor tends to one and the supergravity
solution asymptotes to that of vacuum Minkowski space, R1,10. On the flip side, when
taking the small-r limit, the metric becomes that of AdS4 × S7 asymptotically. The
latter limit is known as the near-horizon geometry of the M2-brane, and is the typical
setting in which a holographic duality between the Aharony Bergman Jafferis Maldacena
(ABJM) theory [168] and this geometry can be established.

The fact that this M2-brane interpolates between two maximally supersymmetric
solutions is no surprise. Indeed, this is a general feature of solitonic objects. Their
presence also affects the supersymmetry algebra via the addition of central terms in the
anti-commutator of two supercharges. It is in that way that the M2-brane will appear as
a central extension of the 11d supersymmetry algebra.

Under compactification down to type IIA supergravity, the M2-brane solution becomes
either a fundamental string (F1), if the M2-brane wraps the compactification circle, or a
D2-brane, otherwise.

The M5-brane

Similarly to the M2 case, the existence of a three-form gauge field suggests the existence
of an object which is magnetically charged under it. This is the M5-brane, whose
supergravity solution is given by [125, 169]

g11 = H−2/3(r)gR1,5 ⊕H1/3(r)gR5 (2.11a)

F = ⋆R5dH(r) (2.11b)

H(r) = 1 + k

r3 (2.11c)

where r is the radial direction in R5 and HM5 = 1 + πQM5l
3
p

r3 = 1 + R3
M5
r3 .

We reiterate our observation made with the M2-brane solution. The subspace spanned
by the M5-brane corresponds to the singularity subspace of the black brane. In other



2.3. BPS solutions 33

words, the M5-brane in M-theory spans R1,5. This time, however, it interpolates
between R1,10, in the large-r limit, and AdS7 × S4 in the small-r limit. In this
near-horizon limit, the AdS7 × S4 geometry should be the holographic dual of a
six-dimensional superconformal field theory with (2, 0) supersymmetry. Contrarily to
the M2-brane, whose low-energy effective field theory is known, the M5-brane does not
enjoy such a complete description (see [131] for recent overview). The 6d (2, 0) still
eludes a Lagrangian description, and the holographic description provides a useful way
of calculating quantities that live on it.

Under compactification down to type IIA supergravity, the M5-brane solution becomes
either a D4-brane, if the M5 has a leg in the compactification circle, or an NS5-brane,
otherwise.

The KK6-monopole

The Kaluza-Klein monopole is another instance of a BPS solution that involves
non-trivial configurations of the metric alone. It displays a
Taub-Newman-Unti-Tamburino (Taub-NUT) geometry along all points on R1,6, hence
the name KK6. The solution may be written as [117]

g11 = gR1,6 ⊕ gTN, (2.12a)

gTN = H(r)dyidyi +H(r)−1(dψTN + Vi(y)dy
i)2, (2.12b)

H(r) = 1 + k

∥y∥
, curl(V ) = div(H). (2.12c)

Under the circle compactification down to type IIA supergravity, this solution becomes
either the KK-monopole of type IIA, or the D6-brane.

The M9-brane

Given the previous results, one can see how the 1/2-BPS solutions of 11d supergravity
map to the down extended objects of type IIA supergravity. In other words, we are able
to recover the M-wave, F1, NS5 and KK-monopole branes in the Neveu-Schwarz sector.
We were also able to recover the D0-, D2-, D4- and D6-branes in the Ramond-Ramond
sector (See Figure 1.3 in [170] for a nice pictorial representation of these dualities).
Existence of space-filling branes and D8-branes hints at the existence of another type of
M-brane. This is known as the M9-brane [171, 172] (see [173] for a recent paper
discussing the allowed anomalies in the presence of a chiral boundary in M-theory). As
we will see in the following section, the existence of such an object is also hinted at from
the algebra.
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Quick Remarks

A few remarks are in place. Recall that the M2/M5-brane solutions have a four-form flux
turned on in the S4 or AdS4. The moduli provided by F4 is such that supersymmetry is
maximal at these configurations (i.e. 16 supercharges). Turning the flux on in the other
directions can only lead to less or no supersymmetry preserved. This is the case of the
Englert [174] and Pope [175] solutions. In fact, it turns out that writing the S7 as a
fibration over S4 has been useful in finding squashed solutions [176–178] (see [178]).

Additionally, due to the cancellation between forces between such M-branes, it is
possible to engineer solutions with multiple parallel M-branes by adding different
harmonic forms localised at different positions. Take for instance the harmonic form for
the M2-brane solution localised at the origin, H(r) = 1 + k

r6 . The multiple-M2-brane
solution will then look like

H(r)M2 = 1 +
N∑︂
i=1

k

∥x⃗− xi⃗∥6
, (2.13)

where x⃗ are the R8 coordinates transverse to the branes, and x⃗i are their respective
position in that transverse space.

Another interesting avenue comes from considering multiple M-branes that interest in an
orthogonal manner. Those type of configurations might not preserve all 16 supercharges
that the parallel solutions do, however, there are ways of constructing them in such a
way that at least 8 supercharges are. We will refer to this method of as the harmonic
rule [179]. It is in that way that solutions of [1] were constructed and later included in
the more general set of solutions derived in [2]. From the M-brane theory’s perspective,
one of these intersection resembles a defect insertion. This is precisely how we are able
to study certain supersymmetric conformal defects in the 6d (2, 0) theory. We expand
upon those statements in our paper [8], or equivalently in Chapter 4.

2.4 Its susy algebra

As promised, let us briefly describe the supersymmetry algebra in eleven dimensions.
More specifically, we will focus on the appearance of central charges due to its solitonic
objects. This will demonstrate the existence of the five half-BPS configurations
mentioned in the previous section. Most of the content here can be found in the
following reviews and lecture notes: [125, 127, 129, 130, 180].
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From a purely Clifford-algebraic perspective, it can be shown that the standard
commutator of supercharges on R1,10, 5

{Qα,Qβ} = (CΓM )αβPM , (2.14)

can be supplemented with various central charges. These come as numbers multiplied to
antisymmetrised products of gamma matrices, giving them a representation as
differential forms on R1,10. Thus, the most general extension to this supersymmetry
algebra takes the form

{Qα,Qβ} = (CΓM )αβPM +
1
2 (CΓMN )αβZ

MN +
1
5!
(CΓMNPQR)αβY

MNPQR. (2.15)

In both expressions above, PM is the standard generator of translations in the
super-Poincaré algebra. The numbers ZMN and YMNPQR are the central charges
associated to the solitonic objects of M-theory. Do note that, while they are indeed
central to the odd part of this Lie superalgebra, they are not central charges of the
entire algebra. Given their non-trivial spacetime indices, as one might expect, they
transform accordingly under the action of the Poincaré subgroup.

The notion of algebra here is similar to to that of asymptotic symmetry in Einstein
gravity, wherein one considers the algebra of generators in the asymptotic limit to flat
space. In this case, we are looking at solutions to supergravity which asymptote to
R32|1,10, or in other words, which asymptote to R1,10 together with 32 supercharges.

In a similar fashion to how one can couple particle world-line actions to
Maxwell-Einstein gravity, it was realised that one can couple 11d supergravity to a
closed supermembrane action [181]. That of a supersymmetric membrane that spans two
spacial directions and one time direction is none-other than the M2-brane action

S = −T2

∫︂
M2

volg +Q2

∫︂
M2

C3. (2.16)

Then, given a set of coordinates on the submanifold M2, say XM , the existence of this
coupling naturally induces the aforementioned central charge

ZMN = Q2

∫︂
dXM ∧ dXN , (2.17)

where the integral is performed along the spacial directions of the M2-brane only. A
similar construction can be envisioned for the M5-brane, whose worldvolume spans five
spacial directions and one time direction. The central charge this induces is

ZMNPQR = Q5

∫︂
dXM ∧ dXN ∧ dXP ∧ dXQ ∧ dXR, (2.18)

5Recall that we are dealing with N = 1 supersymmetry in eleven dimensions, which has 32 supercharges.
They are each labelled by an index α ∈ {1, . . . , 32}.
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where, again, the integral is performed on the spacial slice alone.

Both actions described above generate the 2-form central charge Z and five-form central
charge Y from an integral over the spacial slice of their worldvolumes. Their Hodge
duals, the nine-form ⋆Z and six-form ⋆Y should also have a corresponding integral over
the worldvolume of a solitonic object. For ⋆Z this is the M9-brane, whereas for ⋆Y it is
the KK6-monopole [182].

2.5 Further Reading

Given the vastness of the topic, one can never hope to cover all topics within M-theory
and 11d supergravity. The sketch given in this thesis only serves the reader to
understand the two papers [7, 8] by the author and collaborators, which are transcribed
in Chapters 4 and 5.

Nevertheless, it may be important to point out a couple of interesting facts regarding
the content discussed thus far.

The concepts are brane worldvolume action and central charges are intimately linked to
that of calibration in supergravity (see [183] for a review and [184] for applications to
M-branes). Indeed, a calibrated manifold necessarily minimises its volume, in the same
way that BPS configurations of M-branes minimise their (generalised) volume [185].

Furthermore, the existence of a 2-form central charge within the supersymmetry algebra
of the M5-brane hints at configurations wherein the M2- and M5-branes are bound
together [186]. This is a common phenomenon in string theory, wherein configurations
of D-branes of different dimensions can be ‘bound together’. Alternatively, the smaller
D-brane can be seen as ‘puffing up’ into the larger D-brane when coupled to non-trivial
RR-forms of higher degree. This is the celebrated Myers effect [187].

Giving a description of these solitons as an action principle also allows one to study
their dynamics, and more specifically their interaction [188–192]. However, proper
topological considerations are required if one wishes to discuss anomaly cancellations
within this theory [193].
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Chapter 3

Supersymmetry on curved spaces

Passer de la mécanique de Newton à
celle d’Esintein doit être un peu, pour
le mathématicien, comme de passer du
bon vieux dialiecte provençal à l’argot
parisien dernier cri. Par contre, passer
à la mécanique quantique, j’imagine,
c’est passer du français au chinois.

Alexandre Grothendieck, Récoltes et
Semailles (1986)

This chapter is mostly concerned with the application of supergravity to supersymmetry
on curved spaces in four spacetime dimensions, with a view of using this in Chapters 6
and 7. All the material presented here is mostly self-contained and no prior knowledge
of Chapter 2 is assumed. Though, some definitions in Appendix D may help readers who
are unfamiliar with Killing spinors. A lot of the standard supergravity material can be
found in the books [194, 195]. We also recommend [196], and more specifically [197] for
a lightning overview of conformal superspace techniques in N = 2 supergravity.

This chapter is organised as follows. In Section 3.1 we give a brief overview of the
seminal work of Festuccia and Seiberg [198] on rigid supergravity and supersymmetry in
curved spaces. That presentation is intended as an introductory piece, and as such, will
not be thorough. The keen reader might find the lecture notes [199, 200] to be a better
introduction to the topic. Sections 3.2.1 and 3.2.2, however, are more technical in that
we give a detailed account of the Weyl multiplet fields for 4d N = 2 and 4d N = 4, in
view of applying that knowledge in Chapters 6 and 7.
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3.1 Rigid Supergravity and Festuccia-Seiberg

Consider a field theory described by a flat-space Lagrangian density LRd . Minimally
coupling to a background metric g allows us to define a new Lagrangian density LM on
a Riemannian manifold (M, g). The procedure of minimal coupling usually entails
replacing the Euclidean metric δ with the curved metric g, partial derivatives ∂ with
covariant derivatives ∇, and finally adding a volume factor √g to the integration
measure. The resulting action functional is suitably invariant under the diffeomorphisms
of M. Note that higher order diffeomorphism-invariant terms could be added in; these
would, however, constitute a departure from the minimal coupling setup we are
considering here.

On the other hand, the minimal coupling procedure can be viewed in a different, yet
ultimately equivalent, light. Similarly to how a global U (1) symmetry may be gauged
using a background gauge field, minimal coupling may be regarded as a gauging of
global symmetries. In this description, one starts from the flat space Lagrangian density
LRd and identifies its (generically non-unique) stress-energy tensor Tµν , whose existence
and conservation follow from locality and translational invariance. The conservation
equation, in particular, is given by ∂µTµν = 0, where all indices are raised and lowered
using the Euclidean metric δ. The stress-energy tensor can then be coupled to a
background rank-2 tensor field, which we will call h. The resulting Lagrangian density

LR4 −
1
2hµνT

µν , (3.1)

however, still lacks the proper symmetries that would allow it to be placed on any
manifold M, equipped with a curved metric g. If we identify g = δ + h, so that h
captures the metric fluctuations about flat space, we can add the correct higher order
terms that render the Lagrangian density invariant under general coordinate
transformations of g. These are the so-called seagull terms. Putting these together, the
action in the presence of the background field h constructed from LM,

SM =
∫︂

M
ddx
√
gLM, LM = LRd −

1
2hµνT

µν +O(h2), (3.2)

is now a well defined action functional on M, for any Riemannian metric g. Note that
we packed all seagull terms in the term O(h2).

Unfortunately, one may face issues when placing a supersymmetric field theory on a
curved manifold using the procedure of coupling the conserved stress-energy tensor to a
background metric. Indeed, in order to preserve a subset of the flat-space
supersymmetry generators, only a select few curved manifolds M are allowed. Let us
denote spinors that generate flat-space supersymmetry transformations as ξ. While on
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Rd any such constant spinor is a suitable supersymmetry generator1, placing the theory
on M restrict us to those sections of the spin bundle which are parallel with respect to
it. This Killing spinor equation ∇µξ = 0 severely restricts the types of geometries
allowed. For instance, only Ricci-flat manifolds can admit parallel Killing spinors. In the
case of compact four-dimensional manifolds, only T 4 and K3-surfaces with Ricci-flat
Kähler metrics admit non-trivial solutions to the Killing spinor equation.

There exist alternative ways to define a supersymmetric field theory on any curved
manifold. If the theory exhibits extended supersymmetry its R-symmetry group can be
used in a topological twisting procedure. We remind the reader that in this setup we
work with two bundles over the base space M, the spinor bundle, on which the spin
connection ω is defined, and the R-symmetry bundle, on which the R-symmetry
connection AR is defined. Introducing this second principal connection amounts to
modifying the Killing spinor equation via the addition of a background field as,(︃

∂µ +
1
4ωµ

abγab +
1
2A

R
µ

)︃
ξ = 0, (3.3)

where γa are the generators of the Clifford algebra Cl(d). When the R-symmetry is
large enough it is possible to identify the the R-symmetry bundle with a subbundle of
the spin bundle. In the case of four-dimensional theories with an SU (2)R R-symmetry,
this is done by identifying the R-symmetry connection with the Levi-Civita connection
on either SU (2)-subbundles of the Spin(4) spin bundle. The resulting Killing spinor
equation (3.3) admits solutions for which the spin connection ω and the R-symmetry
connection ARµ act in a way as to cancel each other out. The solutions are then given by
constant spinors, regardless of the metric choice on M, allowing for the resulting theory
to exhibit supersymmetry on any curved manifold. This is the topological twisting
introduced by Witten [201].

The beauty behind the work of Festuccia and Seiberg [198] is to actually unify the above
constructions into a single framework, and allow for more general setups of
supersymmetry-preserving theories on curved spaces. To understand how it came about,
we must first recall that minimally coupling the stress-energy tensor to a background
metric does not, in general, lead to a supersymmetric theory on M, as the Killing spinor
equation becomes that of covariantly constant spinors on M. One can look at this from
the perspective of the modified Lagrangian LM, as a perturbation around flat space
g = δ + h, where h is small. In this setup, the higher order seagull terms can be ignored
and the linear-order term is the coupling between the background metric h and the
stress-energy tensor of the flat-space theory Tµν . Since Tµν is not a BPS-operator, this
deformation does not generally preserve supersymmetry. On the other hand, this
operator always belongs to a supermultiplet, the current supermultiplet, regardless of

1Given one chooses the canonical vielbeins, ea = dxa, formulated in terms of the Cartesian coordinates
xa.
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whether the theory admits a Lagrangian formulation or not. It is then possible to
introduce other background fields, that each couple to a different member of the
supercurrent multiplet in such a way as to counter act the supersymmetry variation of
Tµν in the linear coupling, allowing for a supersymmetry-preserving deformation. This
was done for four-dimensional N = 1 theories in [202]. The partition function of such
theories can then depend on more than just the topology of M [203, 204].

The systematic way of viewing this coupling of current multiplets is as follows. Consider
a dynamical supergravity theory coupled to some matter. Here the specific supergroup
we are gauging is not important. As long as the supergravity-matter theory has an
off-shell formulation, the following will hold true. If we denote the supergravity fields by
Ψ and the matter fields by ϕ, the action takes the schematic form

S[Ψ,ϕ] = 1
Mp

∫︂
Kinetic(Ψ, ∂Ψ, ∂2Ψ) +

∫︂
Coupling(Ψ,ϕ, ∂ϕ), (3.4)

where Mp is the Planck mass. In the formula above, the action S[Ψ,ϕ] is invariant
under all superdiffeomorphisms of the underlying supermanifold. In other words, it is
invariant under all supersymmetry variations of its fields on top of being invariant under
all diffeomorphisms of the base manifold. Taking the rigid limit amounts to taking the
Planck mass to infinity, Mp →∞. In doing so, the kinetic term can be discarded and all
the supergravity fields, Ψ, freeze to a background configuration, ΨB,

S[ϕ] =
∫︂

Coupling(ΨB,ϕ, ∂ϕ). (3.5)

In this rigid limit, the background supergravity fields need not obey any equations of
motion and can be frozen to any desired configuration. That being said, the “leftover
supersymmetry” will depend on what that background configuration is. Indeed, in
choosing a configuration of the supergravity fields we are explicitly breaking the
superdiffeomorphism-invariance the original action was gifted with. How can one tell
what (if any) amount of supersymmetry is preserved? To answer this question, requires
us to look back at the supersymmetry variations of the supergravity fields Ψ. Whatever
supergravity theory one starts with, the infinitesimal variations of its fields under any
supersymmetry parameter are known2. Typically these appear with the structure

δΨ = O(Ψ, ∂Ψ), (3.6a)

δϕ = O(Ψ, ∂Ψ,ϕ, ∂ϕ), (3.6b)

namely that variations of the supergravity fields only involve supergravity fields, while
variations of the matter fields involve both matter and supergravity fields. If the
background configuration is chosen in such a way that the supersymmetry variations of

2What is often made explicit is the Lie derivative of its superfields with respect to any super-vector
field. This contains information about the action of infinitesimal bosonic and fermionic transformations.
See [205] for the original construction of such a derivative on spinor fields (champs de spineurs therein).
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all the supergravity fields vanish, δΨ = 0, then the action S[ϕ] will be supersymmetric.
The amount of supersymmetry is dictated by how many supercharges lead to δΨ = 0.

Notably, the multiplet Ψ will always contain the gravitino ψiµ. Its supersymmetry
variation is a direct generalisation of the Killing spinor equation, the so-called
generalised Killing spinor equation3. If the background configuration is chosen such that
only the metric is set to a non-trivial value4, then we recover the Killing spinor
equations of minimal coupling ∇µξ. On the other hand, if said background configuration
also has an R-symmetry connection set to the spin connection, then we recover the
topological twist (3.3).

It turns out that coupling supersymmetric field theories to these rigid supergravities,
and further requiring various amount of supersymmetry, places important constraints on
the background geometry (for 4 supercharges in 2d see [206], for 4 supercharges in 3d
see [203, 207, 208], for four supercharges in 4d see [203, 204, 209–212], for eight
supercharges in 4d see [213, 214]). For instance, [203] find that forM a four-dimensional
manifold the existence of one Killing spinor implies that M is Hermitian. That of two
Killing spinors implies that M is a torus fibration over a Riemann surface and finally
that of four Killing spinors implies that M is either T 4 or S3 × S1.5

The idea behind Chapters 6 and 7 will be that of finding such background configurations
that preserve supersymmetry while also holding other interesting properties. Chapter 6
is concerned with constructing certain supersymmetric configurations of 4d N = 2
conformal supergravity, while Chapter 7 deals with 4d N = 4. For either chapter we
need to present a few results on conformal supergravity in four dimensions, and motivate
our usage of these.

3.2 Conformal Supergravity

Conformal supergravity is the supergravity theory of local conformal symmetry. In other
words, it is the local gauging of a given superconformal algebra. This class of theories
was originally introduced as a way of constructing Poincaré supergravities with N = 1
[215–219], and later extended to N = 2 [220]. This construction is now known as
superconformal tensor calculus, or sometimes supergravity tensor calculus. A useful
representation of this local superconformal algebra is via the Weyl multiplet, a

3In fact, throughout this thesis, we define the generalised Killing spinor equation to be the set of
equations given by the vanishing of the supersymmetry variation of all fermionic fields in te supergravity
multiplet. This includes the gravitino, naturally, but may involve other fields too.

4For a given choice of multiplet Ψ, minimal coupling might require auxiliary components to have
non-trivial values. Here, we are only requiring the other gauge fields to have trivial value.

5These results, of course, do not cover all cases and we invite the reader to look up the original article
for a more thorough presentation.
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supermultiplet which contains the vielbeins6. There has been a huge effort by the
supergravity community in constructing such multiplets in various dimensions and for
various amounts of supersymmetry (2d [221], 3d [222–225], 4d [220, 225–237], 5d
[225, 235, 238–242], 6d [225, 235, 241, 243–247]).

The main advantage the superconformal tensor calculus offers is in giving an off-shell
formulation of the Poincaré supergravities, obtained from coupling a compensating
matter multiplets to the conformal supergravity theory. For example, coupling to a
conformal chiral multiplet in 4d N = 1 leads to the old-minimal Poincaré supergravity
[248–250], while coupling to a current multiplet gives the new-minimal supergravity
[251, 252]7. This off-shell formulation also lends itself well to applications in localisation
[53, 255–257], from which our interest originates (see Chapter 6 for more details).

In this thesis, however, we will only make use of the Weyl multiplets of conformal
supergravity in four dimensions. Our interest not lying in Poincaré supergravities, but
rather on their conformal parents. The reason being that we wish to study
superconformal field theories in curved spaces, using the tools introduced by Festuccia
and Seiberg [198], which we described in section 3.1. This coupling to conformal
supergravity is natural if one wishes to preserve the conformal structure of the theory
[209, 211, 258]. The only notable addition to section 3.1, is the presence of additional
fermionic components of the supergravity multiplet8. These additional fermionic fields
lead to additional constraints on the background configuration, given as a vanishing of
their supersymmetric variations (which we will collectively call the generalised Killing
spinor equations). We will detail those when appropriate, in the subsections 3.2.1 and
3.2.2.

3.2.1 The Weyl multiplet of 4d N = 2 conformal supergravity

Four-dimensional N = 2 conformal supergravity is the gauge theory of the
superconformal algebra su(2, 2|2). This algebra contains an eight-dimensional odd part,
and as such, describes a conformal supergravity theory with eight supercharges. Its
bosonic subalgebra decomposes into the standard conformal algebra in four dimensions,
su(2, 2) ≃ so(2, 4), and the R-symmetry algebra, su(2)⊕ u(1)[26]. Importantly, however,
we will only be interested in its Euclidean counterpart, wherein the conformal algebra is
given by so(1, 5)9. We will present here its formulation in terms of the Weyl multiplet

6In general, this multiplet is not unique and one can trade off various of its field constituents for
others. Examples of this are the Dilaton-Weyl multiplet, or Hyperdilaton-Weyl multiplet.

7It is also possible to couple to other multiplets of conformal supergravity to obtain non-minimal
Poincaré supergravities [253, 254].

8The presence of a dilaton field, for instance, will always require a supersymmetric partner, the
dilatino.

9While the R-symmetry algebra remains identical under Wick rotation, its global structure is no
longer that of SU(2) × U(1) but rather SU(2) × SO(1, 1).
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Local symmetry Weyl multiplet field U(1)r weight

Independent Connections

Translations eaµ ∈ Γ(TM⊗ T ∗M) 0
Dilatations bµ ∈ Γ(T ∗M) 0
U (1)r R-symmetry AU(1)r

µ ∈ Γ(T ∗M) 0
SU (2)R R-symmetry ASU(2)R

µ
i
k ∈ Γ

(︂
T ∗M⊗ Sym2KR

)︂
0

Q-SUSY ψαi+µ, ψα̇i−µ ∈ Γ
(︂
T ∗M⊗ SM⊗KR

)︂
∓ 1

2

Composite Connections

Lorentz ωµ
ab ∈ Γ

(︂
T ∗M⊗Λ2TM

)︂
0

S-SUSY ϕαi+µ, ϕα̇i−µ ∈ Γ
(︂
T ∗M⊗ SM⊗KR

)︂
± 1

2

Special Conformal fµ
a ∈ Γ

(︂
T ∗M⊗ TM

)︂
0

Auxiliary Fields

— D ∈ Ω0(M) 0
— T±

µν ∈ Ω2(M) ± 1
— χαi+ , χα̇i− ∈ Γ(SM⊗KR

)︂
∓ 1

2

Table 3.1: Field content of the 4dN = 2 Weyl multiplet on an oriented spin Riemannian
manifold M. Throughout, Γ(P ) denotes the space of sections over a bundle P −→M,
SM is the spin bundle over M, KR is the total space of the associated bundle to the
principal SU (2)R R-symmetry bundle over M, and Ωk(M) is the space of k-forms
on M. Wherever present, ± denotes either (self-)anti-self duality or positive/negative
chirality. The latter also entails that the spinor is a section of one of the two parts of

the spin bundle SM ∼= S+M⊗S−M only.

constructed in [259] from an off-shell timelike reduction of the Lorentzian 5d Weyl
multiplet.

The Weyl multiplet is made up of the connections of the superconformal algebra. Its
field content, as well as the various U (1)r weights, are presented in table 3.1. In
addition to the Riemannian metric g, or equivalently the vierbein fields ea, the multiplet
contains the connections for dilatations, u(1)r and su(2)R R-symmetries, and Poincaré
supersymmetries, the latter being the gravitino ψ. The remaining fields, namely the spin
connection ω, the conformal gravitino ϕ, and the special conformal connection f , are
composite, meaning that they can be expressed in terms of the other fields in an
algebraic fashion via the so-called conventional constraints of conformal supergravity.
For instance, the conformal gravitino with Spin(4) ∼= SU (2)ℓ × SU (2)r indices
suppressed is expressed as

ϕµ
i = − i2

(︃
γρνγµ −

1
3γµγ

ρν
)︃(︃
Dρψνi +

i

32Tabγ
abγρψν

i +
1
4γρνχ

i
)︃

, (3.7)
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Local symmetry Parameter Weyl weight U(1)r weight χrality

Q-SUSY ξαi+ , ξα̇i− −1
2 ∓1

2 ±

S-SUSY ηαi+ , ηα̇i−
1
2 ±1

2 ±

Table 3.2: The (Grassmann even) parameters of Q- and S-supersymmetries, and their
quantum numbers.

where the 2-form10 T and the dilatino χ are auxiliary fields whose presence is demanded
by off-shell closure of the algebra in field space. For the same reason, one must also
introduce an auxiliary scalar field11 D. This completes the field content of the N = 2
Weyl multiplet in four Euclidean dimensions.

The Poincaré (Q-) and conformal (S-) supersymmetries have Dirac spinorial parameters
ξ and η, respectively, whose quantum numbers are displayed in table 3.2. Aligning our
conventions with those of the supersymmetric localization literature, we take the
parameters ξ and η to be Grassmann even, so that their derivations δξ,η are Grassmann
odd. Following [259], albeit with an opposite sign for the spin connection, the covariant
derivatives of ξ and η with respect to Lorentz, dilatation, and R-symmetry
transformations are

Dµξi =
(︃
∂µ +

1
4ωµ

abγab +
1
2bµ +

1
2A

U(1)r
µ γ5

)︃
ξi +

1
2A

SU(2)R
µ

i

j
ξj , (3.8a)

Dµηi =
(︃
∂µ +

1
4ωµ

abγab −
1
2bµ −

1
2A

U(1)r
µ γ5

)︃
ηi +

1
2A

SU(2)R
µ

i

j
ηj , (3.8b)

where γ5 is the chirality matrix in four Euclidean dimensions (see Appendix D for our
detailed conventions). We note in particular our choice of normalization of the
R-symmetry gauge fields, for instance the lack of factors of i compared to e.g. [261].

Importantly, what constitutes our generalised Killing spinor equations, namely the
supersymmetric variations of the gravitino and dilatino under the parameters (ξ, η), are

δξ,ηψµ
i = 2Dµξi +

i

16Tabγ
abγµξ

i − iγµηi , (3.9a)

δξ,ηχ
i =

i

24γ
abγµ(DµTab)ξi +

1
24Tabγ

abηi +
1
6R

SU(2)R
µν

i

j
γµνξj − 1

3R
U(1)r
µν γµνγ5ξi +Dξi ,

(3.9b)

where the supercovariant curvature tensors for the R-symmetry connections are

RSU(2)R
i

j = dASU(2)R
i
j +

1
2A

SU(2)R
i
k ∧ASU(2)R

k
j + (fermions) , (3.10a)

RU(1)r = dAU(1)r + (fermions) , (3.10b)

10The (anti) self-dual components T ± = 1
2 (T ± ⋆T ) are independent, since ⋆2 = 1 upon acting on

2-forms on Riemannian manifolds.
11Our choice for D coincides with the definition of the field d̃ used in [258], and is related to the field

M of [260] by 6D = −3M − R.
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while the covariant derivative of the 2-form T has components

DµTab = ∂µTab + ωµa
cTcb + ωµb

cTac −AU(1)r
µ (⋆T )ab . (3.11)

We also mention in passing the expression for the curvature tensor of the spin
connection,12

R(ω)ab = dωab + ωac ∧ ωcb . (3.12)

When considering supersymmetric configurations for which the supersymmetric
variations of the spinorial components vanish, δξ,ηψ = δξ,ηχ = 0, the S-susy parameter η
can be entirely written in terms of the Q-susy parameter

ηi = − i2γ
µDµξi , (3.13)

where a term containing the self-dual 2-form T vanishes due to the properties of the
Dirac matrices.

For completeness, we also note here the supersymmetric variations of the bosonic fields
in the Weyl multiplet (see (3.6) in [259])

δξeµ
a = ξ̄iγ

5γaψµ
i (3.14a)

δξbµ =
i

2 ξ̄iγ
5ϕµ

i − 3
4 ξ̄iγ

5γµχ
i +

i

2 η̄iγ
5ψµ

i (3.14b)

δξA
U(1)r
µ = − i2 ξ̄iϕµ

i − 3
4 ξ̄iγµχ

i − i

2 η̄iψµ
i (3.14c)

δξA
SU(2)R
µ

i
j = 2iξ̄jγ5ϕµ

i − 3ξ̄jγ5γµχ
i − 2iη̄jγ5ψµ

i − SU (2)R − (trace) (3.14d)

δξTab = −8iξ̄iγ5R(Q)ab
i (3.14e)

δξD = ξ̄iγ
5γµDµχi (3.14f)

where the supercovariant curvature of the gravitino is

R(Q)ab
i = 2D[aψb]

i − iγ[aϕb]i +
i

16Tcdγ
cdγ[aψb]

i . (3.15)

Other than our choice of sign convention for the spin connection, all other quantities
follow precisely [259]. Consequently, we refer the reader back to them for a detailed
expression of all composite fields and supercovariant curvature tensors.

3.2.2 Weyl multiplet of 4d N = 4 conformal supergravity

When considering 4d N = 4, a u(1) bosonic factor decouples into a bonus symmetry, so
that the simple conformal superalgebra is actually the quotient psu(2, 2|4) instead of

12We wish to emphasise that we adhere to a different sign convention for the spin connection than that
used in [259]. In our convention, the sphere enjoys positive scalar curvature.
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su(2, 2|4) [26]. Its bosonic subalgebra splits into the standard conformal algebra in four
dimensions, su(2, 2) ≃ so(2, 4), and the R-symmetry algebra, su(4). Ultimately, we wish
to describe the Weyl multiplet in Euclidean signature, just as we did for N = 2, however,
as the literature lacks such a description, we will instead focus here on the Lorentzian
signature, for which the literature is quite rich. Part of our work in Chapter 7, will be to
actually come up with a Euclidean formulation by Wick rotating this multiplet, which
implies forgoing reality conditions and complexifying its field components.

The original formulation of 4d N = 4 conformal supergravity was due to [227, 262–265],
even though formulations of N = 4 supergravity theories were already known [266–268]
without the need of the conformal construction. While the Weyl multiplet and its
transformations were known since the 80s [227], a complete action of N = 4 conformal
supergravity was only found 35 years later [269, 270]. Part of the difficulty lied in the
presence of the scalar fields ϕα in the Weyl multiplet, which parametrise the coset
SU (1, 1)/U (1). There is, thus, an entire moduli space of conformal supergravity actions
[232]. Our presentation here, however, will follow the one given in [269], whose
conventions follow closely [227]13. A similar presentation can also be found in [271]. As
the aim of Chapter 7 is not to construct supergravity actions, but rather to construct
supersymmetric configurations of the Weyl multiplet, we will only focus on the latter.

They Weyl multiplet contains the vierbein field eaµ, the dilatation gauge field bµ and the
SU (4) gauge field Vµ

i
j as its independent bosonic connections. The gauge fields

associated to special conformal transformations faµ, the bonus U (1)-gauge field aµ and
the spin connection ωabµ are composite. Its fermionic gauge fields are the gravitino ψµi,
associated to Q-susy transformations and the composite conformal gravitino ϕµi,
associated to S-susy transformations. The remainder of this multiplet’s bosonic content
is made up of the scalar fields ϕα, α ∈ {1, 2}, which parametrise the SU (1, 1)/U (1)
coset space, the scalar fields Eij and Dij

kl, and the two-form T ij . Finally, the
supersymmetric partners of these are the gaugino Λi and the dilatino χijk. The
multiplet and its fields are summarised in Table 3.3, including all constraints obeyed by
them and their SU (4) representation.

We also note that, all throughout, we employ the chiral SU (4) notation [227, 262]. This
notation assigns conjugate representations of the R-symmetry group to fermions of
opposite chirality. For example, the conjugate to the gravitino is a fermionic field in the
4 representation of SU (4), (ψµi) = ψµi

14. Since we are working in Lorentzian signature,
these fields are not independent and we will not need to consider them separately.

13There are certain differences between the two references. We choose to follow the conventions of
[269] for which, amongst other choices, the local-frame Levi-Civita symbol obeys ϵ1234 = −1. We also
decide to part from their spin connection convention and adopt one where the sphere has a positive Ricci
scalar curvature.

14See the appendix in Bergshoeff’s thesis for a detailed description of this procedure [262].
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Field Name Constraints SU(4) Rep

ψµ
i Gravitino γ5ψµ

i = ψµ
i

4 =
ϕµ

i S-gauge field (auxiliary)

Λi Gaugino γ5Λi = Λi 4 =

χijk Dilatino
χijk = −χjik, χijj = 0,

20 =
γ5χijk = χijk

eaµ Vierbeins 1

ωabµ Spin connection ωabµ = −ωbaµ 1

bµ Dilatation gauge field 1

Vµ
i
j

SU (4)-gauge field (Vµij)∗ = −Vµji,
15 =

Vµ
i
i = 0

faµ K-gauge field (auxiliary) 1

aµ U (1)-gauge field (auxiliary) 1

Tab
ij

Tab
ij = −Tabji, 6 =

1
2ϵab

cdT ijcd = −T
ij
ab

Eij Eij = Eji 10 =

ϕα

(ϕ1)∗ = ϕ1,
1(ϕ2)∗ = −ϕ2

ϕαϕα = 1

Dij
kl

Dij
kl = −Dji

kl = −Dij
lk,

20′ =
Dij

kl =
1
4ϵ
ijmnϵklpqD

pq
mn,

(Dij
kl)

∗ = Dkl
ij ,

Dij
kj = 0

Table 3.3: Field content of the Lorentzian N = 4 Weyl multiplet. The double line
separates the four fermionic fields (top) from the bosonic ones (bottom). The third
row details all constraints obeyed by the field, including chirality/self-duality (if any).
We de not detail those for the auxiliary fields. The final row displays the SU (4)R

representation.

Associated to every Q- and S-supersymmetry transformation of the fields are the
parameters ξi and ηi, respectively. In our conventions, the Q-susy parameter ξi has
positive chirality, while that of S-susy ηi has negative chirality, yet both are in the same
4 representation of SU (4). These couple to the spin connection, dilaton gauge field,



48 Chapter 3. Supersymmetry on curved spaces

bonus U (1) gauge field and SU (4) gauge field through their covariant derivatives15,

Dµξi =
(︃
∂µ +

1
4ωµ

abγab +
1
2 (bµ + iaµ)

)︃
ξi − Vµijξj , (3.16a)

Dµηi =
(︃
∂µ +

1
4ωµ

abγab −
1
2 (bµ − iaµ)

)︃
ηi − Vµijηj . (3.16b)

In parallel to the N = 2 case, the full superconformal derivative of these fields (Dµξ
i

and Dµη
i) would also couple them to the fermionic gauge fields. However, as we will

never need to consider non-trivial fermionic configurations, we will leave out their full
expressions. The SU (1, 1)/U (1) coset fields ϕα also admit such a superconformal
covariant derivative, be it without the spin connection and SU (4) connections. From it,
one can define the vectors Pµ, P̄µ, together with a supercovariant U (1) field strength
Fab,

Pµ = ϵαβϕ
αDµϕ

β , (3.17a)

P̄µ = −ϵαβϕαDµϕβ , (3.17b)

Fab =2iP̄ [aPb] −
i

2 (Λ̄
i
γ[aDb]Λi − h.c.), (3.17c)

where ϵ12 = ϵ12 = 1. For completeness, we also note here the covariant derivative acting
on the two-form T ij and scalar field Eij ,

DµTabij = ∂µTab
ij + ωµa

cTcb
ij + ωµb

cTac
ij − VµikTabkj − VµjkTabik, (3.18a)

DµEij = ∂µEij + Vµ
k
iEkj + Vµ

k
jEik. (3.18b)

Again, we will not set out to describe the full superconformal derivative of these fields
(DµTab

ij and DµEij) as we will not need them in the coming work.

Finally, we are ready to present what will become the generalised Killing spinor
equations, namely the supersymmetric variations of the spinorial components of the
Weyl multiplet. Under a combination of a Q-susy transformation, parametrised by the
spinor ξi, and an S-susy transformation, parametrised by the spinor ηi, the gravitino,

15We emphasise again our differing conventions which spawn a positive sign in front of the spin
connection term.
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gaugino and dilatino transform following

δξ,ηψµ
i = 2Dµξ

i − 1
2γ

abTab
ijγµξj + ϵijklψ̄µjξkΛl − γµηi, (3.19a)

δξ,ηΛi = −2P̄µγµξi +Eijξ
j +

1
2ϵijklTbc

klγbcξj , (3.19b)

δξ,ηχ
ij
k = −

1
2γ

abDµTab
ijγµξk − γabR(V )ab

[i
kξ
j] − 1

2ϵ
ijlmDµEklγ

µξm

+Dij
klξ

l − 1
6ϵklmnE

l[iγ|ab|(Tab
j]nξm + Tab

|mn|ξj])

+
1
2EklE

l[iξj] − 1
2ϵ

ijlmP̄µγ
µγabT

ab
klξm − (traces)

+
1
2Tab

ijγabηk +
2
3δ

[i
kTab

j]lγabηl −
1
2ϵ

ijlmEklηm + (fermions). (3.19c)

Since the dilatino χijk obeys a traceless condition in its SU (4) indices, χijj = 0, its
supersymmetry transformation must too. This explains the presence of the −(traces)
notation in the equation above. In practice, however, if ∆χijk denotes the
right-hand-side of δξ,ηχijk without the traces removed, then
δξ,ηχ

ij
k = ∆χijk + 2

3δ
[i
k∆χj]ll16.

16For completeness, we may also note that a similar expression holds for Dij
kl and its traceless condition

Dij
kj = 0. If Cij

kl is any SU(4)-tensor in the 6 ⊗ 6 representation, then its traceless counterpart can be
constructed component-wise following Dij

kl = Cij
kl − (δ[ikCj]m

lm − δ[ilC
j]m

km) + 1
3 δ[ikδj]

lC
mn

mn.
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Chapter 4

Codimension-4 defect in 6d SCFT

Are we meeting in 15 mins?

Pietro Capuozzo

4.1 Introduction

Six dimensional (6d) superconformal field theories (SCFTs) hold a special place among
quantum field theories (QFTs). Owing to the classification discovered in the seminal
work by Nahm [26], superconformal symmetry is only possible in six and fewer spacetime
dimensions. Moreover, N = (2, 0) is the maximal amount of supersymmetry (SUSY)
that a 6d theory can have. Combining this amount of SUSY with conformal symmetry
constrains a 6d N = (2, 0) SCFT to such a degree that the only additional information
that is necessary to completely determine the theory is the choice of a gauge algebra.

The study of the 6d N = (2, 0) theory is thus of fundamental importance in QFT, for
many reasons. For example, the 6d N = (2, 0) SCFT determines the physics of many
other QFTs in 6d, via SUSY-breaking deformations [272–274] such as orbifolds
[275–278]. By suitable (partial) topological twisting, the 6d theory compactified on, e.g.,
a Riemann surface [279] or a 3-manifold [280] can also determine the physics of infinite
families of QFTs in d < 6.

The 6d N = (2, 0) SCFT is also of fundamental importance in quantum gravity.
Currently, the leading candidate for an ultra-violet (UV)-complete theory of quantum
gravity is M-theory. M-theory’s fundamental objects are M2-branes [167] and M5-branes
[169], and the low-energy worldvolume theory on M coincident M5-branes is the 6d
N = (2, 0) SCFT with gauge algebra AM−1 [281]. Understanding the 6d N = (2, 0)
SCFT is thus essential to understanding M-theory in general. In particular, via the
Anti-de Sitter/CFT (AdS/CFT) correspondence, the 6d N = (2, 0) SCFT can provide a
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fully non-perturbative definition of M-theory on an asymptotically 7d AdS spacetime,
AdS7, times a four-sphere, S4 [10, 282, 283].

Strongly interacting SCFTs constructed in string- and M-theory, including the
non-Abelian 6d N = (2, 0) SCFT, are prohibitively difficult to study, for many reasons,
of which we will mention only three. First, the N = (1, 0) and N = (2, 0) SUSY
multiplets include a chiral two-form gauge field, and writing a local, gauge-invariant
Lagrangian for a non-Abelian higher-form gauge field remains a major open problem.
These SCFTs thus have no known Lagrangian descriptions. Second, in the space of
renormalization group (RG) flows, these SCFTs are isolated fixed points, and in
particular they cannot be reached as infra-red (IR) fixed points of RG flows from free
ultra-violet (UV) fixed points. Third, these SCFTs are intrinsically strongly interacting.
For example, the 6d N = (2, 0) SCFT has no dimensionless parameter besides M that
can be tuned to allow a perturbative expansion.

As a result, practically all of our direct knowledge1 of interacting 6d SCFTs comes from
non-perturbative methods, such as the superconformal bootstrap [285], F-theory [286],
and especially AdS/CFT [287], where holographic computations of quantities like Weyl
anomalies [288] and entanglement entropy (EE) [289] are used to great effect to
characterise 6d SCFTs at large M .

An aspect of 6d SCFTs, and generally of QFTs in three and higher dimensions, that
requires particularly careful treatment to characterise is the spectrum of 2d, string-like or
surface, defects. In the co-dimension one case, 2d defects in 3d QFTs arise as boundaries
or interfaces, and so are more easily studied and, thus, more familiar than their higher
co-dimension realizations. Despite being somewhat more exotic in standard treatments
of QFTs, 2d defects of co-dimension two and greater show up in a number of settings2:
from free field theories [291–294] to strongly interacting and non-Lagrangian 4d QFTs,
e.g. [295–297], to being fundamental objects in 6d SCFTs [298] and in the study of EE
and Renyi entropies [299, 300]. As such, the last few decades have seen tremendous
advancements in characterising [107] and constraining [301, 302] the properties of 2d
defects, and it is vitally important in the study of QFTs, generally, to continue this effort
by finding novel constructions of surface defects and examining their unique physics.

Of interest to us in the current work are the holographic descriptions, afforded by
AdS/CFT, of 6d SCFTs and the defects that they support. In particular, we will
primarily focus our attention on solutions to 11d supergravity (SUGRA) that are
contained in a one-parameter family of solutions with superisometry given by the
exceptional Lie superalgebra d(2, 1; γ)⊕ d(2, 1; γ) [2]. Crucially, an asymptotically

1Indirect methods such as dimensional reduction to 5d N ≤ 2 SUSY QFTs have also been used to
great effect to study these theories, e.g. by using the resulting lower dimensional Lagrangian description
together with supersymmetric localization techniques [284].

2This is by no means an exhaustive list of the work done on 2d defects. For a recent review of
boundaries and defects in QFTs and further references on the topic, see [290].



4.1. Introduction 55

AdS7 × S4 solution is possible only at certain values of γ. Indeed, as a historical note,
prior to the full classification given in [2], evidence of d(2, 1; γ)⊕ d(2, 1; γ) invariant
SUGRA solutions that exist for general γ were found in superconformal Janus solutions
in 4d gauged N = 8 SUGRA [303], which extended beyond the known γ = 1 AdS4 × S7

Janus solution of 11d SUGRA[304].

More pertinent to the cases that we will study below, the most well studied case among
the values of γ that admit asymptotically locally AdS7 × S4 solutions is γ = −1/2,
which holographically describes 1/2-BPS Wilson surface operators in the 6d AM−1

N = (2, 0) SCFT that preserve a large N = (4, 4) 2d SUSY. These BPS Wilson surface
operators have a long history in M-theory descriptions of 6d SCFTs [281, 298, 305–307],
and there has been a recent resurgence of interest in these defects where holographic
[51, 308, 309] and field theoretic [310–312] computations have characterised these defect
CFTs through their EE and Weyl anomalies.

Recently, new solutions in 11d SUGRA have been constructed that are proposed to be
holographically dual to 2d BPS surface defects in 6d N = (1, 0) SCFTs preserving
“small” N = (4, 4) or N = (0, 4) 2d SUSY [1]. In the sections below, we will clearly
demonstrate that these new solutions also fit into the one-parameter family of solutions
in [2] in the limit where γ → −∞. It will turn out that the solutions in [1] are, in fact, a
particular case within a broader class of solutions that can be realised in the γ → −∞
limit, which we will characterise by computing their contributions to the EE of a
spherical region.

A crucial point that we emphasise in our construction of the γ → −∞ solutions is that
the superisometry algebra of the near-horizon limit of a stack of M5-branes, osp(8∗|4),
does not contain d (2, 1; γ)⊕ d (2, 1; γ) as a sub-superalgebra [313–315]. In the
supergravity solution, this is manifested by the appearance of additional terms in the
four-form flux as compared to that due to pure M5-branes. Nevertheless, the geometry
is still locally asymptotically AdS7 × S4, which is in line with the fact that the bosonic
subalgebra of d (2, 1; γ)⊕ d (2, 1; γ) is a subalgebra of osp(8∗|4).

One upshot of our analysis that follows from the identification of the global symmetries
in the γ → −∞ limit is that it allows for a suitable regulation scheme, which we will
employ when we compute the defect sphere EE. Lacking a generalised program of
holographic renormalization for SUGRA solutions dual to defects on the field theory
side, we will use a background subtraction scheme in order to remove the ambient
degrees of freedom and isolate contributions to physical quantities coming from the
defect. The key step in this background subtraction scheme is the correct identification
of the vacuum solution, and as will be made clear, the ambient theory with a “trivial
defect” is a deformed 6d N = (2, 0) SCFT preserving the bosonic superconformal
subalgebra so(2, 2)⊕ so(4)⊕ so(5) ⊂ osp(8 ∗ |4). Since the solutions in [1] belong to the
class of solutions that we study below, in finding a vacuum solution that manifests the
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corresponding isometries and carefully carrying out background subtraction, we will also
resolve a puzzle in [1], where physical quantities like the “defect central charge” were
divergent.

Ultimately, we will see that that universal part of the defect sphere EE, S(univ)
EE , i.e. the

coefficient of its log-divergent part, is determined in terms of the highest weight vector,
ϖ, of an AM−1 irreducible representation determined by a Young diagram that encodes
the partition of M5-branes that specifies the defect. Explicitly, we will show that

S
(univ)
EE = − (ϖ,ϖ)

5 , (4.1)

where (·, ·) is the scalar product on the weight space. This result is similar to the Wilson
surface sphere EE [309] in that both are expressible in terms of scalar quantities derived
from representation data but differ in that (4.1) is negative definite3 and is completely
determined by the highest weight vector.

In section 4.2, we begin by reviewing the 11d supergravity solutions dual to 2d small
N = (4, 4) defects in 6d N = (1, 0) SCFTs found in [1]. In section 4.3 we briefly review
the d(2, 1; γ)⊕ d(2, 1; γ)-invariant solutions to 11d supergravity found in [2], and we
show that by orbifolding the solutions in the γ → −∞ limit, we can recover the
solutions in [1]. We then use the γ → −∞ limit to construct new 2d small N = (4, 4)
defects with finite Ricci scalar in section 4.4. Further in section 4.4, we demonstrate that
the naïve AdS7 × S4 vacuum is inappropriate to use in a background subtraction scheme
for regulating holographic computations in the γ → −∞ limit, and we identify the
correct background to use in this scheme. In section 4.5, we utilise the new γ → −∞
supergravity solutions and correct regulating scheme in a computation of the
contribution of a flat 2d small N = (4, 4) superconformal defect to the EE of a spherical
region in a 6d SCFT. We then summarise our findings and discuss remaining issues and
open questions surrounding these new defect solutions in section 4.6.

In addition, there are two appendices that detail technical aspects of the computations
in the main text. First, in Appendix A.1, we analyze the asymptotic expansion of the
supergravity data that specify the new solutions in the γ → −∞ limit and construct the
map to Fefferman-Graham (FG) gauge. Lastly, in Appendix A.2, we carefully treat the
integral in the area functional of the Ryu-Takayanagi (RT) surface in the computation
of the holographic EE of the defect in the dual field theory.
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R1,1 r θ1 θ2 χ z ρ φ1 φ2 ϕ

KK′ – – – – – – – · · · ISO

M5′ – – – – – – · · · · ·

M2 – – · · · · – ∼ ∼ ∼ ∼

M5 – – · · · · ∼ – – – –

KK – – · · · ISO – – – – –

Table 4.1: The 1/8-BPS brane setup of [1], with M2-M5 defect branes intersecting
orthogonal M5′-branes, and with both stacks of 5-branes probing A-type singularities. In
our conventions, –, · and ∼ denote directions along which a brane is extended, localised,
and smeared, respectively, while ISO(metric) denotes the compact direction of the

KK-monopoles.

4.2 Review: small N = (4, 4) surface defects

We begin with a brief summary of the results of [1]. The particular 11d supergravity
metric constructed therein is the uplift of a 7d charged AdS3 × S3 domain wall initially
found in [316], and is given by

ds2 = 4kQM5H
−1/3
M5′

(︂
ds2

AdS3 + ds2
S3/Zk

)︂
+H2/3

M5′

(︃
dz2 + dρ2 + ρ2ds2

S̃
3/Zk′

)︃
, (4.2)

for some parameter QM5 and a function HM5′ defined over a 4d space parametrised by
the coordinates {z, ρ,φ1,φ2}. The solution above captures the near-horizon geometry of
the brane intersection depicted in table 4.1. Namely, a “bound state” (in the sense
discussed in footnote 4) of M2- and M5-branes, with charges QM2 and QM5, intersects
an orthogonal stack of M5′-branes, thus forming a 1/4-BPS brane setup. In 2d notation,
this corresponds to N = (4, 4) supersymmetry, with the large R-symmetry realised
geometrically as the isometry of the two 3-spheres S3 and S̃

3 with coordinates
{χ, θ1, θ2} and {ϕ,φ1,φ2}, respectively. In addition, the two stacks of 5-branes can be
made to probe ALE singularities by introducing two Kaluza-Klein (KK) monopoles,
with charges k and k′ and Taub-NUT directions ∂χ and ∂ϕ, respectively. The inclusion
of any one of the two KK monopoles results in a further breaking of the preserved
supersymmetries and a degeneration to an 1/8-BPS setup, which in 2d language
corresponds to (large) N = (0, 4) supersymmetry. The presence of the second KK
monopole does not incur a further loss of supersymmetry, so the final brane
configuration is always at least a 1/8-BPS supergravity solution.

Furthermore, the defect M2- and M5-branes are fully localised within a 2d submanifold
of the worldvolume of the M5′-branes. This is to be expected from the holographic

3Unlike in an ordinary 2d CFT, (4.1) being strictly negative does not necessarily signal that the theory
may be non-unitary. Indeed, the 2d defect sphere EE is expressible as a signed linear combination of
defect Weyl anomaly coefficients [51], which is not bounded from below.
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realization of a surface defect in a 6d SCFT; this interpretation was first attached to the
7d domain wall in [317] and to the full 11d SUGRA background in [1]. On the other
hand, the defect branes are smeared in the directions transverse to the worldvolume of
the M5′-branes4, so that their charge is localised within S3/Zk, but not S̃3/Zk′ .
Therefore, while the metric in (4.2) manifests the isometry groups of both (orbifolded)
3-spheres, the R-symmetry is partially broken, giving rise to small N = (0, 4)
supersymmetry. For k′ = 1, the solution above fits into the classification of N = (0, 4)
AdS3 × S3/Zk ×CY2 backgrounds foliated over an interval performed in [319], where
CY2 = R4 contains the (round) S̃3. In particular, the solution above corresponds to
taking the M5′-branes to be completely localised in their transverse space.

On shell, the defect brane charges are constrained to be equal, QM2 = QM5, while the
function HM5′ satisfies [1]

∇2
R3

ρ̂
HM5′(z, ρ̂) + k′∂2

zHM5′(z, ρ̂)
ρ̂

= 0, (4.3)

where we rescaled ρ̂ = ρ2/(4k′), and denoted by R3
ρ̂ the three-dimensional subspace

which is transverse to the M5-branes, parallel to the M5′-branes, and along which the
M2-branes are smeared. Following the parametrization adopted in table 4.1, R3

ρ̂ is then
the space spanned by {∂ρ̂, ∂φ1 , ∂φ2}, with ρ̂ being the radial coordinate and {φ1,φ2}
parametrising a 2-sphere.

In terms of the brane setup described above, then, the spacetime in (4.2) is reached by
approaching the brane intersection locus from within the worldvolume of the M5′-branes
in a radial fashion, i.e. by taking r → 0. In this limit, the ISO(1, 1) isometry group gets
promoted to SO(2, 2), and the M5′-brane worldvolume becomes AdS3 × S3/Zk.

A particular solution to (4.3) is, for any α ∈ R,

HM5′(z, ρ) = 4
√

2
g3

1
P+P−

√︂
P 2
+ + P 2

− − 4α2 + 2P+P−

P 2
+ + P 2

− + 2P+P−
, (4.4)

where P± =
√︂
z2 + (ρ± α)2. By redefining

ρ = α
cos ξ√︁
1− µ5 (4.5a)

z = αµ
5
2

sin ξ√︁
1− µ5 (4.5b)

4It is this property – that the M2- and M5-branes do not share transverse directions with the M5′-
branes, other than those along which the former are smeared – which we are implicitly referring to when
we describe the M2- and M5-branes as forming a “bound state”. This aligns with the terminology used
in [1], and should not to be confused with the dyonic supermembrane [318], which is a rather different
multimembrane solution of 11d supergravity. Indeed, in the setup described by table 4.1, there is no
M2-brane charge dissolved within the M5-brane worldvolume, nor do the M2-branes polarise into a fuzzy
3-sphere via the Myers effect.
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and setting α = (27/4g3/2kQM5)
−1, the particular solution in (4.4) can be matched to

the one found in eq. (2.17) of [1], which we now reproduce for clarity5:

HM5′(µ, ξ) = 227/4(
√
gkQM5)

3 µ
5/2(1− µ5)3/2

µ5 cos2 ξ + sin2 ξ
. (4.6)

Furthermore, in [1] it was argued that, as µ→ 1 (which corresponds to a non-linear
limit in the original coordinates ρ̂ and z), the near-horizon geometry in (4.2) locally
recovers the AdS7/Zk × S4/Zk′ vacuum of M-theory. This was shown by realising the
11d line element as the uplift of the domain wall solution to N = 1, d = 7 supergravity
(whose gauge coupling constant g appears in (4.6) above) found in [316], which
interpolates between AdS7 (as µ→ 1) and an infrared singularity (at µ = 0).

While the singular nature of the solution is not immediately obvious, it can be made
manifest by studying the Ricci scalar, R, in the z → 0 limit. For metrics generally of the
form of (4.2), and following [315], we can write the expression for the Ricci scalar for an
arbitrary harmonic function HM5′ as

R = H−2/3
M5′

[︄
1
6
(∂zHM5′)2 + (∂ρHM5′)2

H2
M5′

− 2
3
∂2
zHM5′ + ∂2

ρHM5′

HM5′
− 2∂ρHM5′

ρHM5′

]︄
. (4.7)

The function HM5′ has a branch point located at z = 0 and ρ = α and correspondingly
admits two different expansions as z → 0, depending on whether ρ is larger or smaller
than α. The choice of sign for the branch cut can be determined by the requirement
P+P− ≥ 0. For ρ > α, this leads to

R =
g2(2α2 − 3ρ2)2

12ρ2/3(ρ2 − α2)5/3 +O(z2) (4.8)

which has a pole as ρ→ α. This corresponds to setting ξ = 0, with the pole appearing
as µ→ 0. For ρ < α, we find

R =
g2α2/3(α2 − ρ2)

12z8/3 +O
(︄

1
z2/3

)︄
(4.9)

which corresponds to taking µ→ 0 with ξ ̸= 0. Thus for all values of ξ, we find that the
Ricci scalar diverges as µ→ 0.

4.3 From large to small N = (4, 4) surface defects

To begin, we will briefly review the classification due to [2, 315] of the d = 11
supergravity solutions with superisometry given by two copies of the exceptional Lie

5To see this, it is convenient to first rationalise the product P+P− as P+P− = α2(︁1 + µ5 − (1 −
µ5) cos(2ξ)

)︁
/2(1 − µ5).



60 Chapter 4. Codimension-4 defect in 6d SCFT

M2
AdS4 × S4

M2-M5
AdS3 × S3 × S3 ⋉ Σ2

M5
AdS7 × S4

M5-KK
AdS7 × S4/Zk

M2-M5-KK
AdS3 × S3/Zk × S3 ⋉ Σ2

M2-M5′

AdS3 × S3 × S3 ⋉ Σ2

M5′

AdS7 × S4

M5′-KK′

AdS7 × S4/Zk

M2-M5′-KK′

AdS3 × S3 × S3/Zk′ ⋉ Σ2

M2-M5-M5′-KK′

AdS3 × S3 × S3 ⋉ Σ2

M2-M5-M5′-KK
AdS3 × S3/Zk × S3 ⋉ Σ2

M2-M5-M5′-KK′

AdS3 × S3/Zk × S3 ⋉ Σ2

M2-M5-M5′-KK-KK′

AdS3 × S3/Zk × S3/Zk′ ⋉ Σ2

Figure 4.1: A diagram representing a constructive approach to building the brane
intersection in [1]. One can start with either M2 or M5 branes (top) and consider
adding the other branes successively, working downwards. Under each brane setup is
the corresponding near horizon geometry. This content was added for the purpose of

this thesis, and does not appear in the original article.

superalgebra d(2, 1; γ). This classification represents the foundation for the new defect
solutions we present below.

In particular, we will be interested in the real form d(2, 1; γ; 0) which arises as a real
subsuperalgebra of the fixed points of an involutive semimorphism of d(2, 1; γ) [313].
Recall that the 9-dimensional maximal bosonic subalgebra of the real form d(2, 1; γ; 0) is
so(2, 1)⊕ so(3)⊕ so(3). Labelling each factor in this subalgebra by an index
a ∈ {1, 2, 3}, the generators T (a) satisfy

∀i, j ∈ {1, 2, 3}, [T
(a)
i , T (b)

j ] = iδabεijkη
kl
a T

(a)
l , (4.10)

where εijk and ηkla are the totally anti-symmetric tensor (with ε123 = 1) and the
canonical metric induced by the Killing form, respectively. In addition to the bosonic
sector, d(2, 1; γ) contains an 8-dimensional fermionic generator with components
FA1A2A3 , where the indices Aa ∈ {±} transform in the spinorial representation 2 of the
ath factor in the even subalgebra. Furthermore, the components FA1A2A3 obey the
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following anti-commutation relation

{FA1A2A3 ,FB1B2B3} = β1CA2B2CA3B3(Cσ
i)A1B1T

(1)
i (4.11)

+ β2CA1B1CA3B3(Cσ
i)A2B2T

(2)
i

+ β3CA1B1CA2B2(Cσ
i)A3B3T

(3)
i ,

where C ≡ iσ2 is the charge conjugation matrix, {σi}3i=1 are the Pauli matrices, and
{βi}3i=1 are real parameters satisfying ∑︁3

a=1 βa = 0, which follows from the (generalised)
Jacobi identity. This last constraint, together with the possibility of absorbing any
rescaling {λβ1,λβ2,λβ3} for λ ∈ C into a redefinition of the normalization of the
fermionic generator, implies that d(2, 1; γ) is entirely specified by the choice of a ratio of
any two of the three β parameters; here, we take γ ≡ β2/β3. Note that d(2, 1; γ) is the
only (finite-dimensional) Lie superalgebra admitting a continuous parametrization.

Amongst the possible values that γ can take, there are clearly three special values
corresponding to the vanishing of any one of the β parameters. Specifically, choosing
β1 = 0 fixes γ = −1. The more interesting case, and the one relevant to our analysis, is
β3 = 0, which corresponds to γ → ±∞. The case β2 = 0 corresponds to γ = 0 and is
equivalent under a group involution as discussed at the end of this section. In the limit
β3 = 0, the anticommutator in (4.11) degenerates to

{FA1A2A3 ,FB1B2B3} = β1
(︂
CA2B2CA3B3(Cσ

i)A1B1T
(1)
i −CA1B1CA3B3(Cσ

i)A2B2T
(2)
i

)︂
.

(4.12)
Consequently, the so(4)R ∼= so(3)⊕ so(3) R-symmetry of the large superalgebra is
broken into the single so(3)R factor which constitutes the R-symmetry of a small
superalgebra. Note that the other so(3) factor remains a bosonic symmetry of the
supergravity solution; however, it is now realised as a flavour symmetry, rather than as
an outer automorphism of the supersymmetry algebra.

In addition, there are isolated points of interest in the γ-parameter space where the real
form d(2, 1; γ; 0) reduces to classical Lie superalgebras:

d(2, 1; γ; 0) = osp(4∗|2) for γ ∈ {−2,−1/2} (4.13a)

d(2, 1; γ; 0) = osp(4|2; R) for γ = 1 . (4.13b)

In particular, γ = −1/2 is the only value (up to algebra involution, as we will discuss
shortly) for which d(2, 1; γ; 0)⊕ d(2, 1; γ; 0) admits a canonical inclusion into the
superisometry algebra osp(8∗|4) of AdS7 × S4. This case was studied extensively in
[309]; it is the holographic realization of Wilson surfaces, 1/2-BPS codimension-4
superconformal solitons, within the 6d N = (2, 0) SCFT. In this case, the ambient 6d
SCFT is undeformed, in the sense that the supergroup of symmetries preserved by the
defect is a subgroup of the 6d superconformal symmetry group. This is a common
feature throughout the study of defects embedded in higher-dimensional theories.



62 Chapter 4. Codimension-4 defect in 6d SCFT

For generic values of γ, including the limit γ → ±∞, the superisometry algebra
d(2, 1; γ; 0)⊕ d(2, 1; γ; 0) is not a subalgebra of the osp(8∗|4) superconformal Lie
superalgebra [309]. As a result, we expect the 6d ambient theory to be deformed as we
tune γ away from the special value γ = −1/2. In the supergravity solutions we
construct below, this deformation will appear at leading order in the asymptotic
expansion of the four-form flux. Additionally, the warp factors of the symmetric spaces
corresponding to T (1) and T (2) have the correct normalization to create an AdS7 space
only when |β1| = |β2|, which can happen only when γ = −1/2 or γ → ±∞.

Finally, we note that the complex Lie superalgebra d(2, 1; γ) enjoys a triality symmetry
generated by γ ↦→ γ−1, γ ↦→ −(γ + 1), and γ ↦→ −γ/(γ + 1), any two of which are
linearly independent. However, only the γ ↦→ γ−1 involution survives at the level of the
real form d(2, 1; γ; 0), due to the distinguished nature of the T (1) generator. Therefore,
our analysis below can be equivalently carried out in the γ → ±∞ limits, or even in the
γ → 0 limit (albeit with a permutation of the two so(3)⊕ so(3) factors contained in two
copies of d(2, 1; γ; 0))6. The physical interpretation of the choice of either limit
corresponds to fixing the orientation of the M5-branes that engineer the ambient 6d
SCFT.

4.3.1 Supergravity solutions for general γ

In this section, we will review the structure of supergravity solutions with
d(2, 1; γ; 0)⊕ d(2, 1; γ; 0) superisometry algebra, for generic γ, as first described in
[2, 315, 320]. The odd subspace of this superalgebra is 16-dimensional for all γ, so that
all supergravity backgrounds discussed below are 1/2-BPS. Furthermore, the maximal
bosonic subalgebra of d(2, 1; γ; 0)⊕ d(2, 1; γ; 0) is

so(2, 2)⊕ so(4)⊕ so(4) . (4.14)

To realise this superisometry, the supergravity metric must be of the form7

(AdS3 × S3 × S̃3
)⋉ Σ2 , (4.15)

for a Riemann surface Σ2.

The Killing spinor equations on such manifolds can be recast into conditions on two
auxiliary functions, h and G, defined over the Riemann surface Σ2 [2, 315, 320].

6In spite of the involution relating the γ → −∞ and γ → 0 limits, these two descriptions cannot
be smoothly deformed into one another by varying γ. Indeed, the two regimes are separated by the
decompactification point γ = −1.

7For the previously mentioned special values γ = −1 and γ = 0, AdS3 Wigner-İnönü contracts to
R2,1 and one of the 3-spheres decompactifies into R3, respectively.
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Specifically, if we employ local complex8 coordinates {w, w̄} on Σ2, so that the metric on
the Riemann surface is given by ds2

Σ2
= dwdw̄, the function h is constrained to be

R-valued and harmonic
∂w∂w̄h = 0 , (4.16)

while G is C-valued and satisfies the conformally covariant equation

∂wG =
1
2 (G+ Ḡ) ∂w ln h . (4.17)

Note that both constraints above hold for generic γ.

Regularity conditions on the auxiliary functions h and G have been discussed in [2].
Here, we will consider Riemann surfaces with a boundary, ∂Σ2 ̸= ∅. In short, regularity
of the supergravity solution constrains G = ±i on ∂Σ2, while the (holomorphic part of
the) function h must either vanish or have a simple pole at any point of ∂Σ2.

∂Σ2
ξ1 ξ2

S̃
3

S3

AdS3

Figure 4.2: A visual representation of the solutions in [2] — a foliation of AdS3 and
two S3 over a Riemann surface Σ2. At the singularities on the boundary of the Riemann

surface, ξi, either one of the two three-spheres in the foliation collapses.

The triple (h,G, γ) uniquely specifies a bosonic background within the space of 11d
supergravity solutions with superisometry algebra d(2, 1; γ; 0)⊕ d(2, 1; γ; 0). In
particular, the metric field in the supergravity solution can be written in terms of this
data as

ds2 = f2
AdS3ds2

AdS3 + f2
S3ds2

S3 + f2
S̃

3ds2
S̃

3 + f2
Σ2ds2

Σ2 , (4.18)

where the metric factors are functions over Σ2 and can be expressed in terms of the
auxiliary functions

W± := |G± i|2 + γ±1(GḠ− 1) (4.19)
8The SUGRA orientation and Riemannian metric automatically endow the Riemann surface Σ2 with

a complex structure.
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as [2]

f6
AdS3 =

h2W+W−
β6

1(GḠ− 1)2 , (4.20a)

f6
S3 =

h2(GḠ− 1)W−
β3

2β
3
3W

2
+

, (4.20b)

f6
S̃

3 =
h2(GḠ− 1)W+

β3
2β

3
3W

2
−

, (4.20c)

f6
Σ2 =

|∂wh|6

β3
2β

3
3h

4 (GḠ− 1)W+W− . (4.20d)

The bosonic sector of the 11d supergravity solution is completed by a three-form gauge
potential C(3), which can be written in terms of the (h,G, γ) data as

C(3) =
3∑︂
i=1

bMi volMi (4.21)

where volMi denotes the volume form on the manifold Mi = {AdS3,S3, S̃3}i. We also
introduced the gauge potentials

bAdS3 :=
τ1
β3

1

[︄
−h(G+ Ḡ)

1−GḠ + (2 + γ + γ−1)Φ− (γ − γ−1)h̃+ b0
1

]︄
, (4.22a)

bS3 :=
τ2
β3

2

[︄
−γh(G+ Ḡ)

W+
+ γ(Φ− h̃) + b0

2

]︄
, (4.22b)

b
S̃

3 :=
τ3
β3

3

[︄
h(G+ Ḡ)

γW−
− Φ + h̃

γ
+ b0

3

]︄
, (4.22c)

where {b0
i }3i=1 are integration constants, while the dual harmonic function h̃ and the real

auxiliary function Φ are defined in terms of h and G via

∂wh̃ = −i∂wh , (4.23a)

∂wΦ = Ḡ∂wh . (4.23b)

Finally, in (4.22) we made use of the signs τi = ±1 for i ∈ {1, 2, 3}, which are subject to
the constraint

3∏︂
i=1

βifMi + h
3∏︂
i=1

τi = 0 . (4.24)

As discussed above, regularity conditions force h and G to have prescribed behaviour on
∂Σ2. The solutions that we are interested in studying are asymptotically AdS7 × S4,
which are indeed described by G = ±i and h having a single simple pole, which
corresponds to having a single asymptotic AdS7× S4 region. Generically at any point on
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∂Σ2, the regularity constraint on h implies that its Laurent expansion reduces to

h = −ih0w+ c. c. = 2h0 sinϑ
ϱ

, (4.25)

for some real constant h0. In the second equality, we have introduced new convenient set
of coordinates {ϱ,ϑ} on Σ2 defined by w = eiϑ/ϱ. Adopting these new polar coordinates
and using (4.25) allows us to perturbatively solve (4.17) in small ϱ to find

G = −i+ a1ϱe
iϑ sinϑ+O(ϱ2) (4.26)

for some constant a1. If we then insert (4.26) into eqs. (4.19) and (4.27), we can
perturbatively expand (4.18) in small ϱ to find

ds2 = L2 dϱ2

ϱ2 −
2γL2

a1(1 + γ)2ϱ

(︄
ds2

AdS3 +
(1 + γ)2

γ2 ds2
S3

)︄
+ L2

(︂
dϑ2 + sin2 ϑds2

S̃
3

)︂
+ . . .

(4.27)
with

L6 =
a2

1h
2
0(1 + γ)6

β6
1γ

2 . (4.28)

We can see the AdS7 × S4 asymptotic geometry in (4.27) clearly for certain values of γ.
The obvious case is if we choose γ = −1/2, which was studied extensively in [2, 308, 309].
The other possibility, namely the limits γ → ±∞, will be discussed in the next section.

For γ < 0 and for the function h given in (4.25), the general solution to (4.17) for the
function G with an even number 2n+ 2 of branch points {ξi}2n+2

i=1 ⊂ ∂Σ2 was found in
[315] to be

G = −i

⎛⎝1 +
2n+2∑︂
j=1

(−1)j w− ξj
|w− ξj |

⎞⎠ , (4.29)

where G flips sign ±i→ ∓i upon crossing each branch point ξi.

4.3.2 The γ → −∞ limit

Of particular interest to us in the following sections are solutions that are constructed by
taking the scaling limit

γ → ±∞ , γa1 → constant , L→ constant . (4.30)

From (4.27) and the requirement γa1 → constant, we can see that this scaling limit
realises an AdS7 × S4 asymptotic geometry. In this and the following subsections, we
will consider the γ → −∞ limit in greater detail and show that the solutions engineered
in this limit contain the class of solutions found in [1] which we reviewed in section 4.2.
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Below, we will expand upon these solutions and construct new surface defects with small
N = (4, 4) SUSY.

To begin, we introduce a complex function F via

G = −i
(︂
1 + γ−1F

)︂
, (4.31)

and we rescale β1 = β̂(−γ)1/3. This ensures that L remains finite as required by the
limiting procedure of (4.30). In this limit, the metric in (4.27) becomes

ds2 =

[︄
4h2

β̂
6
(F + F̄ )

]︄ 1
3 (︂

ds2
AdS3 + ds2

S3

)︂
+

[︄
h2(F + F̄ )2

16β̂6

]︄ 1
3
(︄

ds2
S̃

3 +
4|∂wh|2
h2 dwdw̄

)︄
.

(4.32)

In addition, the gauge potentials are given by

bAdS3 = bS3 = −2h̃
β̂

3 , b
S̃

3 =
h

2β̂3
−i(F − F̄ )

2 − Φ̂ , (4.33)

where the function Φ̂ is defined via

∂wΦ̂ = F̄
∂wh̃

β̂
3 . (4.34)

Let us introduce a new set of coordinates {z, ρ} on Σ2 defined via w = z + iρ, and
choose h0 in (4.25) such that the harmonic function h = β̂

3
h1ρ for some constant h1. Let

us also parametrise the real and imaginary parts of the complex function F such that

F =
2ρ2

h1
H + iFI , (4.35)

for real functions H and FI . Note that the latter does not enter the metric field; indeed,
we can rewrite the line element in (4.32) entirely in terms of H as

ds2 = h1H
− 1

3
(︂
ds2

AdS3 + ds2
S3

)︂
+H

2
3
(︂
dz2 + dρ2 + ρ2ds2

S̃
3

)︂
. (4.36)

The condition in (4.17) implies that the complex function F satisfies the first order
equation

∂wF =
1
2 (F − F̄ )∂w ln h , (4.37)

which in turn can be recast into a second order equation for its real part,

∂2
ρH +

3
ρ
∂ρH + ∂2

zH = 0 . (4.38)



4.3. From large to small N = (4, 4) surface defects 67

The supergravity solution in the {z, ρ} parametrization of Σ2 is completed by the
following expressions for the gauge potentials,

bAdS3 = bS3 = 2h1z, b
S̃

3 =
h1ρ

2 FI + Φ̂ . (4.39)

In particular, a more explicit form can be given for the derivatives of b
S̃

3 as

∂ρbS̃3 = ρ3∂zH, ∂zbS̃3 = −ρ3∂ρH . (4.40)

These solutions have a scaling symmetry under the transformation

z → λz, ρ→ λρ, H → λ−3H, h1 → λ−1h1, (4.41)

for which the metric and flux are invariant. This transformation could be used to fix the
value of h1 so that the solution is uniquely given by choice of function H.

4.3.3 Inclusion of KK-monopoles and recovering known solutions

At the level of the local geometry described by (4.36), KK-monopoles can be included in
a straightforward fashion by replacing S3 and S̃

3 with the lens spaces S3/Zk and
S̃

3/Zk′ , respectively, where k and k′ are the orbifold charges. The lens spaces can be
realised as the total spaces of circle bundles over 2-spheres, where the orbifold acts on
the Hopf fibre; this amounts to the substitutions

ds2
S3 → ds2

S3/Zk
=

1
4

[︄(︃dχ
k

+ ω

)︃2
+ ds2

S2

]︄
, (4.42a)

ds2
S̃

3 → ds2
S̃

3/Zk′
=

1
4

[︄(︃dϕ
k′ + η

)︃2
+ ds2

S̃
2

]︄
, (4.42b)

where dω = volS2 and dη = vol
S̃

2 . The inclusion of either KK-monopole incurs the loss
of 1/2 of the existing supersymmetry generators, resulting in a small N = (0, 4)
supersymmetry algebra. Indeed, dimensional reduction along the Taub-NUT direction
produces a D6-brane which breaks half of the supersymmetries of the massless type IIA
AdS7 vacuum. The second KK-monopole can be added without bringing about any
further breaking of the supersymmetries, and provides a second isometric direction upon
which the background can be dimensionally reduced to massless type IIA supergravity.
Therefore, the final solution is an 1/8-BPS configuration. At the level of the
superconformal symmetry algebra, this corresponds to a reduction from
d (2, 1; γ)⊕ d (2, 1; γ) to d (2, 1; γ).

The inclusion of orbifolds allows us to match the γ → −∞ solutions of section 4.3.2 to
those found in [1] and reviewed in section 4.2. In particular, we see that the γ → −∞
metric in (4.36), subject to the inclusion of KK-monopoles as in (4.42), matches the
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Σ2(z, ρ)

z
ξ1 ξ2 ξ3 ξ4 · · · ξ2n+1 ξ2n+2ν1 ν3 ν2n+1

γ → −∞

Figure 4.3: A particular choice of collapse points νj ∈ ∂Σ2 and the behaviour of the
singular points ξi ∈ ∂Σ2 as γ → −∞ under pairwise collapse. The collapse points νj
can be chosen arbitrarily, while maintaining νj < νj+1, but for clarity in the figure have
been depicted at the midpoint in the region [ξj , ξj+1] to demonstrate pairwise collapse.

M2-M5-KK-M5′-KK′ near-horizon in (4.2) under the identifications h1 = 4kQM5 and
H = HM5′ . In particular, the functions H and HM5′ solve the same equation, since
(4.38) maps to (4.3) under the rescaling ρ̂ = ρ2/4. We have thus managed to fully
recover the solutions described in [1] as a limiting case of those in [2].

4.4 New small N = (4, 4) surface defects

In this section, we will construct a new explicit family of solutions H(z, ρ) to (4.38). In
particular, without loss of generality we will specialise to the γ → −∞ limit. We recall
that for γ < 0, a general solution with an even number of branch points {ξi}2n+2

i=1 ⊂ ∂Σ2

was given by (4.29). We rescale the singular points ξj as

ξj = νj − γ−1ξ̂j ∈ ∂Σ2 for j ∈ {1, 2, . . . , 2n+ 2} , (4.43)

where the collapse points satisfy νj ≤ νj+1 for all j, so as to preserve the total order of
the set {ξj} following the γ → −∞ limit. Furthermore, to ensure finiteness of the
complex function F in this limit, we must also demand that all points νj , for
1 ≤ j ≤ 2n+ 2, correspond to the collapse of even-dimensional clusters
{ξk, ξk+1, . . . , ξk+2m+1} of singular points, where k ≤ j ≤ k+ 2m+ 1. This can be
implemented by identifying

νk ≡ νk+1 ≡ . . . ≡ νk+2m+1 (4.44)

for each cluster. Finally, in order to preserve the ordering of the singular points
throughout the γ → −∞ limit, we must also arrange the corresponding collapse
parameters within each cluster so that ξ̂k < ξ̂k+1 < . . . < ξ̂k+2m+1. Without loss of
generality, then, it suffices to consider a pairwise collapse of neighbouring singular
points, which can be realised by identifying

ν2i−1 ≡ ν2i for i ∈ {1, 2, . . . ,n+ 1} . (4.45)

However, we will later comment on certain phenomena which appear only when the
singular points collapse in clusters of 4 or more.
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An illustration of the pairwise collapse described by (4.43) and (4.45) is shown in
figure 4.3. Under this collapse dynamic, the complex function F becomes, in the
γ → −∞ limit,

F (w, w̄) =
2n+2∑︂
j=1

(−1)j ξ̂j
w̄−w

2(w̄− νj)|w− νj |
. (4.46)

The corresponding function H is given by

H(z, ρ) = h1
2

2n+2∑︂
j=1

(−1)j ξ̂j
(ρ2 + (z − νj)2)3/2 . (4.47)

For pure AdS7 × S4, this procedure produces what we refer to as the single-pole vacuum
(1PV) solution with

F1PV(w, w̄) = ξ̂
w̄−w
w̄|w|

, (4.48a)

H1PV(z, ρ) =
h1ξ̂

(z2 + ρ2)
3
2

, (4.48b)

which can be obtained by taking n = 0, ξ2 = −ξ1 = ξ, and ν1 = ν2 = 0. Alternatively,
this solution can also be obtained by collapsing all singular points to the origin, i.e.
νj = 0 for all j. Note that (4.38) is linear in H and admits a translation symmetry
under shifts of z. Using these two properties, the general solutions given in (4.47) can be
reconstructed from the 1PV solution by taking linear combinations and making use of
the translation symmetry.

One may worry that since the solution for the potential H in (4.47) is generically
singular at the points (z, ρ) = (νi, 0) for all i ∈ {1, 2, . . . , 2n+ 2}, the resulting
supergravity metric may have a singularity or these points may simply correspond to
horizons. In order to investigate the regularity of the spacetime geometry, we compute
the scalar curvature at these points. Without loss of generality we can choose to
evaluate the Ricci scalar at the point (z, ρ) = (ν2j , 0). Recall that for metrics generally
of the form in (4.36), the scalar curvature is given by (4.7) with HM5′ replaced by H.
Note that since all collapse points ν2k−1 with odd labels are identified with even-labelled
ones ν2k via (4.45), the point (z, ρ) = (ν2j , 0) is indeed generic within the set of
collapsed points. Ultimately, we find

R
⃓⃓⃓
(z,ρ)=(ν2j ,0)

=
3

2L2
S4

(︄
ξ̂2j − ξ̂2j−1

m̂1

)︄−2/3

, (4.49)

which is indeed finite, where LS4 and m̂1 are strictly positive constants introduced below.
This suggests that the geometry is regular at these points.
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We also note that the 1PV solution corresponds to a spacetime with a constant scalar
curvature given by

R =
3

2L2
S4

, (4.50)

with LS4 = (h1ξ̂)1/3.

4.4.1 Asymptotic local behaviour

We will now show explicitly that the solutions described by (4.47) are asymptotically
locally AdS7 × S4. As described in greater detail in Appendix A.1, the Riemann surface
Σ2 admits a parametrization by Fefferman-Graham (FG) coordinates {v,ϕ} in terms of
which the line element takes the following asymptotic form for small v,

ds2 =
4L2

S4

v2

[︂
dv2 + α1

(︂
ds2

AdS3 + ds2
S3

)︂]︂
+ L2

S4

[︂
α3dϕ2 + α4 sin2 ϕ ds2

S̃
3

]︂
, (4.51)

where the metric factors are of the form αi = 1 +O(v4) for i ∈ {1, 3, 4}. They are given
explicitly, together with the asymptotic mapping to FG coordinates on Σ2, in
Appendix A.1. The asymptotic S4 radius LS4 can be expressed in terms of the moments

m̂k :=
2n+2∑︂
j=1

(−1)j ξ̂kj (4.52)

as
L3
S4 =

h1m̂1
2 . (4.53)

As claimed above, we may recognise within (4.51), at leading order in v, the large-x
limit of the line element of AdS7 (with radius 2LS4) written in AdS3 slicing,

ds2
AdS7 = 4L2

S4

[︂
dx2 + cosh2 x ds2

AdS3 + sinh2 x ds2
S3

]︂
, (4.54)

where the coordinate normal to the AdS3 foliation is related to the FG coordinate via
x = log(2/v). The large-x limit trivialises the relative warping coth2 x between the
AdS3 and the S3 subspaces, matching the behaviour seen in (4.51).

In the γ → −∞ limit, the auxiliary functions Φ and h̃ admit the following FG
expansions,

Φ = −h̃ =
4m̂1 cosϕ

v2 +
2n̂1
m̂1

+
m̂1n̂2 − n̂2

1
m̂3

1
cosϕ v2 +O(v4) , (4.55)
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Σ2

z
νξ1 ξ2

Ca

Ca

Σ2

ξ1

ν

ξ2

Figure 4.4: The 1PV solution described in section 4.4.2 is characterised by two singular
points ξ{1,2}, which collapse to the same ν ∈ ∂Σ2 in the γ → −∞ limit. As discussed in
section 4.4.3, the basis of non-contractible four-cycles for this solution is one-dimensional.
The profile of a representative cycle Ca along Σ2 is shown; note that the same 3-sphere
collapses at both of its endpoints on ∂Σ2. On the right, the 1PV on the upper half

plane is mapped to a semi-infinite strip.

where the moments n̂i are defined in (A.9). Using these expansions, we find that the
asymptotic geometry in (4.51) is supported by a four-form flux9

F(4)

L3
S4

= −16 cosϕ
v3 dv ∧ (volS3 + volAdS3)−

8 sinϕ
v2 dϕ∧ (volS3 + volAdS3) (4.56)

+ 3 sin3 ϕ dϕ∧ vol
S̃

3 + 4 cosϕ m̂1n̂2 − n̂2
1

m̂4
1

v dv ∧ (volS3 + volAdS3) +O(v2).

The first line in the equation above manifests the deformation of the 6d ambient SCFT
by the insertion of a source, as already hinted at by the superalgebra structure discussed
in section 4.3. This deformation takes the form of an S-wave over the internal S̃3. It can
be compared to the undeformed theory, which corresponds to γ = −1/2. In that case,
the four-form field strength at the conformal boundary v = 0 is F(4) = 3L3

S4 volS4 ,
where S4 is the internal 4-sphere spanned by ϕ and S̃

3. We can recognise this term as
the first term in the second line of (4.56).

4.4.2 Single-pole vacuum

For later reference, we now identify a vacuum solution within the family of supergravity
backgrounds presented above. An appropriate choice of vacuum is necessary for
computing properties associated to a defect embedded in a holographic CFT. Indeed, in
order to isolate quantities which are intrinsic to a defect, one must ensure that the
contributions due to the ambient degrees of freedom are taken into account. The
gravitational analogue of this operation, upon recasting a field theory computation into
a bulk one, is vacuum subtraction. In particular we must use a vacuum solution which is
characterised by the same bulk deformation as the general solutions discussed above. As
discussed above, pure AdS7 × S4 with γ = −1/2 does not satisfy this criteria, as the

9In the following, we have made a choice on the signs τ1,2,3 in line with the constraint
∏︁3

i=1 τi = 1
which follows from evaluating (4.24) on the γ → −∞ solutions.
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solutions we consider here with γ → −∞ contain a bulk deformation as can be seen in
the asymptotic expression for the flux given in (4.56).

We take the vacuum to be the 1PV we identified in (4.48), which is the solution
corresponding to the γ → −∞ of pure AdS7 × S4, i.e. two singular points ξ{1,2}

collapsing to a single point ν, as shown in figure 4.4. More precisely, for general γ, the
1PV metric is given in FG form by

ds2
1PV(γ)

L2
S4

=
4
v2

[︃
dv2 +

(︃
1 + 2γ + 3− (2γ + 1)c2ϕ

16(γ + 1)2 v2
)︃

ds2
AdS3 (4.57)

+

(︄
(γ + 1)2

γ2 +
2γ − 1− (2γ + 1)c2ϕ

16γ2 v2
)︄

ds2
S3 +O(v4)

]︄

+

[︄(︃
1 + (2γ + 1)(2c2ϕ + 1)

12(γ + 1)2 v2
)︃
s2
ϕds2

S̃
3 +

(︄
1 +

(2γ + 1)c2
ϕ

4(γ + 1)2 v
2
)︄

dϕ2 +O(v4)

]︄
,

where in order to keep the expression manageable, we have adopted the abusive notation

cosx ≡ cx, and sin x ≡ sx, (4.58)

which will be employed from this point forward. For γ = −1/2, the 1PV recovers the
AdS7 × S4 vacuum in FG gauge. In the γ → −∞ limit which is of relevance here, the
line element of the 1PV becomes instead

ds2
1PV(γ → −∞) =

4LS4

v2

[︂
dv2 + ds2

AdS3 + ds2
S3 +O(v4)

]︂
+L2

S4

[︂
s2
ϕds2

S̃
3 + dϕ2 +O(v4)

]︂
.

(4.59)
Furthermore, as a quick sanity check, we can take the 1PV limit of (4.49), which
recovers R|1PV = 3/(2L2

S4) as expected.

As remarked above, the 1PV contains no explicit defect data – as we will see later, no
Young Tableau can be associated to it. However, it does fully capture the bulk S-wave
deformation discussed previously. This follows from the fact that all terms in (4.56)
which do not vanish at the conformal boundary v = 0 are independent of the moments
{m̂i, n̂j}. Therefore, the 6d ambient theory dual to the 1PV is deformed by the same
sources as the theories dual to completely generic γ → −∞ bulk solutions, and so, in this
limit, there is no smooth deformation of the field theory parameters that restores the
ambient conformal symmetry in full. This is to be contrasted with the global AdS7 × S4

solution, which enjoys the full SO(6, 2) conformal symmetry. Lastly, in taking the 1PV
limit, the solution exhibits a flavour symmetry enhancement SO(4)→ SO(5).

In the construction of [1] reviewed in section 4.2, the 1PV solution can be obtained from
(4.3) by taking α→ 0 and setting g3 = 2

√
2/h1ξ̂. Alternatively, it can also be obtained

in the limit g → 0. To see this, first make a scale transformation using the scaling
symmetry given by (4.41), take g to scale with λ as g3 = 2

√
2/h1ξ̂λ

3, and then take
λ→∞.
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4.4.3 Partition data

In this subsection, our aim is to identify within the γ → −∞ solutions of (4.47) a basis
of independent, non-contractible cycles threaded by four-form flux. Integrating the flux
along these cycles will allow us to compute the integral M-brane charges that label a
supergravity solution. In turn, this characterization will enable us to recast the
specification of a supergravity solution in the form of a partition containing the
representation data associated to the defect string in the dual gauge theory, in analogy
with the Wilson surfaces of the γ = −1/2 solutions [309]. We begin by searching for
independent, non-contractible four-cycles through the 11d geometry of the
pairwise-collapsed γ → −∞ solutions. Later, we will comment on how the cycles are
modified if less generic collapse dynamics are considered.

It is straightforward to see that, in the γ → −∞ limit, the volume of S3 vanishes on
∂Σ2 − {νj}2n+2

j=1 , i.e. all along the boundary of the Riemann surface, except at the
locations of the collapse points νj . In turn, any open curve on Σ2 with end points on
∂Σ2 − {νj}2n+2

j=1 will be a closed curved in the full 11d geometry. Therefore, any curve
encircling at least one of the distinct collapse midpoints νj will not be contractible to a
point. This observation allows us to build a basis for non-contractible four-cycles Ca, by
taking the product of such curves on Σ2 with S̃

3, i.e.

Ca ≡ {Reiθ − ν2a−1 | 0 ≤ θ ≤ π} × S̃
3 , (4.60)

for 1 ≤ a ≤ n+ 1. Note that any curve enveloping multiple νa’s can be decomposed into
a linear combination of curves enclosing a single collapse point; hence, to build an
irreducible basis of cycles, we take the radius R above such that Ca encircles only a
single collapse point νa.

The Ca cycles alone do not exhaust the set of all non-contractible four-cycles. Indeed, we
can consider a four-cycle constructed from a curve on Σ2 connecting singular points νa.
For irreducibility, we only consider curves connecting neighbouring collapse points.
While the singular nature of their endpoints might make such curves appear problematic
at first glance, building a regular four-cycle from such a curve is possible as the volume
of S3 vanishes at both endpoints, while the volume of S̃3 remains finite. Indeed, the
metric factor of S3 contains h1H

−1/3, while the metric factor of S̃3 has ρ2H2/3, and
from (4.47), the function H goes as ρ−3 near any collapse point νa. Thus, the cycle

C′
a ≡

{︃1
2 (ν2a+1 − ν2a−1)e

iθ +
1
2 (ν2a+1 + ν2a−1)

⃓⃓⃓⃓
0 ≤ θ ≤ π

}︃
× S3 , (4.61)

has the desired behaviour of a non-contractible four-cycle. The distinction between the
Ca and C′

a cycles is illustrated in figure 4.5. Given that, by construction, they connect
neighbouring collapse points, there are n distinct such cycles C′

a. Combining them with
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Σ2

z

ρ

ν2a−3 ν2a−1 ν2a+1

C′
aCa

Figure 4.5: The profile of the non-contractible four-cycles Ca and C′
a in Σ2. Every

point on the red and blue curves is a 3-sphere.

the n+ 1 cycles Ca, we can thus build a basis consisting of 2n+ 1 non-contractible
four-cycles in the solutions defined by (4.47).

Having identified a basis for non-contractible four-cycles, we are now in a position to
derive the M-brane charges by integrating the four-form flux over the Ca. To ease the
computation, we abstractly write the flux as [1]

F(4) = 2h1 volAdS3 ∧dz + 2h1 volS3 ∧dz

+ ∂zHρ
3dρ∧ vol

S̃
3 −∂ρHρ3dz ∧ vol

S̃
3 .

(4.62)

The pull-back of the four-form field strength F(4) onto any of the Ca cycles eliminates
the first two terms in (4.62). Integrating along a given Ca then yields∫︂

Ca

PCa [F(4)] = 2h1 Vol(S̃3
)(ξ̂2a − ξ̂2a−1) . (4.63)

The choice of orientation we made while defining the cycles Ca ensures that the integral
above is positive. This enables us to define the following charge

Ma =
1

2(4π2GN )1/3

∫︂
Ca

PCa [F(4)] , (4.64)

which can be interpreted as the number of M5-branes in the ath stack [2], which obey∑︁
aMa =M with M being the total number of M5-branes.

It is also possible to generalise the construction above. As we mentioned previously, we
can in fact build four-cycles surrounding more than one collapse point νa. The four-cycle
defined by Cbc ≡

∑︁c
a=b Ca, with 1 ≤ b ≤ c ≤ n+ 1, is also non-contractible by

construction, and is characterised by a charge

∫︂
Cbc

PCbc
[F(4)] = 2h1 Vol(S̃3

)
c∑︂

a=b

(ξ̂2a − ξ̂2a−1) , (4.65)

under the four-form field strength.
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We can follow a similar analysis for the flux threading the other set of non-contractible
four-cycles, which we labelled C′

a earlier. In this case, only the second term in (4.62)
provides a non-vanishing contribution after pulling back the four-form field strength F(4)

to the cycle C′
a. Integrating the flux through C′

a gives∫︂
C′

a

PC′
a
[F(4)] = 2h1 Vol(S3)(ν2a+1 − ν2a−1) . (4.66)

Similar to the integrated fluxes through the Ca cycles, we define the charge

M ′
a =

1
2(4π2GN )1/3

∫︂
C′

a

PC′
a
[F(4)] , (4.67)

which is read as the number of M5′-branes in the ath stack (see table 4.1).

Again, we can easily generalise this analysis to four-cycles that connect
non-neighbouring collapse points νa. Denoting the sum of four-cycles as C′

bc ≡
∑︁c
a=b C

′
a,

where given the construction of the C′
a in (4.66) 1 ≤ b ≤ c ≤ n, the integral of the flux

through this cycle is simply∫︂
C′
PC′ [F(4)] = 2h1 Vol(S3)

∑︂
a

(ν2a+1 − ν2a−1) . (4.68)

In addition, following [2] we can deduce the number of M2-branes ending on the ath

stack of M5-branes, which we denote

Na =
n∑︂
b=a

M ′
b =

h1 Vol(S3)

(4π2GN )1/3

n∑︂
b=a

(ν2b+1 − ν2b−1) . (4.69)

One may notice how the definition of the collapse points νa influences the properties of
Na. Indeed, since {νa} is an ordered set, we see that Na ≥ Nb for a ≤ b. In other words,
the set {Na} forms a partition of the total number of M2-branes N =

∑︁
aNa, and so it

is possible to define a Young diagram to encode the brane charges as illustrated in
figure 4.6a.

We can now recast the various moments defined in eqs. (4.52) and (A.9) in terms of this
partition data. Since only m̂1 appears in the asymptotic expansions in Appendix A.1,
and so also in the physical quantities computed using those expansions, we will not treat
the higher m̂j moments and simply write

m̂1 =
2n+2∑︂
j=1

(−1)j ξ̂j =
(4π2GN )1/3

h1 Vol(S̃3
)
M , (4.70)

which gives back the usual relation between M and the length scale on the S4,

L3
S4 =

h1m̂1
2 =

(GN )1/3

(2π)4/3 M . (4.71)



76 Chapter 4. Codimension-4 defect in 6d SCFT

N1

M1

M2

M3

M4

N4

(a)

N1

M1

M2

M3

N3

(b)

Figure 4.6: (a) Young diagram corresponding to the partition specifying a γ → −∞
solution with 5 distinct νa constructed by pairwise collapse of 10 different ξj . (b) Young
diagram obtained by “multiwise” collapse of 10 different ξj to 4 distinct νa. Another way
to realise the construction of (b) starts from the partition in (a) and collapses ν2 = ν3.

The n̂j moments are a bit trickier to re-express in terms of Ma and Na, but one can
show that the following relation holds for any j

j∑︂
k=0

(−1)j+k j!
k!(j − k)!

νk2n+1 n̂j−k =

(︄
G1/3
N

h1π(2π)1/3

)︄j+1 n+1∑︂
a=1

MaN
j
a , (4.72)

where it is understood that n̂0 = m̂1. However, we will only require relations up to
j = 2 moving forward. Using the expressions above, we can write

n̂2
1 − m̂1n̂2 =

G4/3
N

h4
1π

4(2π)4/3

⎡⎣(︄n+1∑︂
a=1

MaNa

)︄2

−M
n+1∑︂
a=1

MaN
2
a

⎤⎦ , (4.73)

which will be useful in the following section.

Before moving on, we recall from our previous discussion that it is also possible to
consider solutions where more than two branch points ξj collapse to a single point νa
and, of course, build non-contractible four-cycles around or connecting them. Let us
again index the p distinct loci of collapse as νa, where now 1 ≤ a ≤ p+ 1 with p ≤ n.
The limiting case p = n recovers the pairwise collapse described above. It will be useful
to label Ia and Ka respectively as the smallest and largest j-indices of the ξj branch
points which collapse to a given νa, i.e. νa := νIa = νIa+1 = · · · = νKa . The ordering of
the collapse points νa and of the branch points ξj was discussed previously in section 4.4;
in particular, we recall that the parameters ξ̂j ’s associated to the branch points
collapsing to the same νa are ordered amongst themselves. In the end, the analysis for
these “multiwise” collapse solutions is identical to the one presented above for the
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pairwise collapse scenario, up to the replacements

ξ̂2a − ξ̂2a−1 −→
Ka∑︂
j=Ia

(−1)j ξ̂j (4.74)

and n→ p throughout the expressions above. The net effect is that the partition data
yields a differently shaped Young diagram, illustrated in figure 4.6b. In particular, since
the multiwise collapse can greatly reduce the number of singular points on the boundary
of the Riemann surface, we see that the Young tableaux specifying the γ → −∞
solutions have at most p rows. This is a striking difference compared to the Young
tableau construction of [309] for the Wilson surface solutions with γ = −1/2, whose
associated Young tableaux always have n rows. This difference is maximal in the 1PV
solution described in section 4.4.2, to which one cannot attach any Young tableau
interpretation at all. This is due to the fact that the 1PV solution features a single
collapse point ν, so that the construction of the C′

a cycle fails, thus preventing the
definition of the M ′

a and Na charges.

4.5 Entanglement entropy of small N = (4, 4) surface
defects

The entanglement entropy SEE of a spatial subregion B within a QFT is defined as the
von Neumann entropy of the reduced density matrix obtained by tracing out the states
in the complementary region B of the QFT. For CFTs with weakly coupled gravity
duals, the RT prescription [48, 49, 321] holographically recasts the computation of SEE

into the following Plateau problem in the asymptotically AdS bulk,

SEE = min
ζ

A[ζ ]
4GN

, (4.75)

where A[ζ ] is the area functional evaluated on a bulk hypersurface ζ which is
homologous to the chosen spatial subregion in the dual CFT: ζ ∪B = ∂b for some static
bulk subregion b. We will denote this extremal bulk hypersurface as ζRT. In the
computations below, we choose the spatial subregion to be an Euclidean 5-ball,
B = B5

R ↪→ R5, with radius R. We take B to be centred on the spatial extent of the
surface defect, which has a Lorentzian worldvolume Υ2 = R1,1.

In an ordinary QFT, the presence of highly entangled UV degrees of freedom induces
short-distance divergences near the surface ∂B = S4. Most of the divergences in the EE
of a general QFT are non-universal and shape-dependent. However, in even dimensional
theories, there are universal log-divergent contributions to the EE, which are generically
related at conformal fixed points to the Weyl anomalies of the CFT.
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This is true in the presence of a defect as well, but we see additional divergences that
arise from the defect degrees of freedom near Υ2 ∩ ∂B. In order to isolate these
defect-localised contributions, we will adopt a scheme where we subtract off the EE of
the deformed, vacuum ambient CFT, SEE[∅], from the EE computed in the presence of
the defect SEE[Υ2]. We can then extract the coefficient of the universal, log-divergent
part of the defect contribution to the sphere EE by

S
(univ)
EE = R

d
dR (SEE[Υ2]− SEE[∅])

⃓⃓⃓
R→0

. (4.76)

In [51], it was shown that contribution to the log-divergent part of the EE of a spherical
region coming from a flat, 2d conformal defect embedded in a d-dimensional flat-space
ambient CFT takes the form of a linear combination of defect localised Weyl anomalies.
Explicitly, for a 6d ambient CFT

S
(univ)
EE =

1
3

(︃
aΥ −

3
5d2

)︃
. (4.77)

where aΥ is the A-type defect Weyl anomaly coefficient–i.e. appearing with the intrinsic
Euler density–and d2 is the B-type anomaly that enters with the trace of the pullback of
the ambient Weyl tensor. Importantly, while [51] demonstrated that d2 ≥ 0 based on
energy conditions, aΥ, though obeying a defect “c-theorem”, has no positivity constraints.
This means that as opposed to an ordinary, unitary 2d CFT where the universal part of
the EE is is proportional to the central charge [322] and, hence, is non-negative, it is
clear from (4.77) that S(univ)

EE is not similarly bounded nor is it RG monotonic.

In completing the holographic computation, we also need to contend with the fact that
the FG expansion is not globally defined as it typically breaks down in a region near the
AdS submanifold that is dual to the insertion of the defect in the field theory. However,
we have a full analysis of the asymptotic expansions of the data specifying the γ → −∞
solutions in Appendix A.1, and we have the general prescription for the FG
transformation suitable for defect EE in [323]. Together, we will be able to
unambiguously holographically compute S(univ)

EE .

To begin the holographic computation of the defect EE, we choose the following
parametrization for the AdS3 subspace in (4.51),

ds2
AdS3 =

1
u2

(︂
du2 − dt2 + dx2

∥

)︂
. (4.78)

Furthermore, we take the RT hypersurface ζ to wrap both S3 and S̃
3, and its profile in

the remaining subspace to be described by x∥(u, ρ, z). The area of ζ as measured
against the metric in (4.51) is then

A[ζ ] = Vol(S3)Vol(S̃3
)
∫︂

du
∫︂

Σ2
dρdz L , (4.79)
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where the Lagrangian is

L =
h2

1ρ
3

u2

[︂
h1
(︂
(∂ρx∥)

2 + (∂zx∥)
2
)︂
H(z, ρ) + u2

(︂
1 + (∂ux∥)

2
)︂
H(z, ρ)2

]︂1/2
. (4.80)

As shown in [324], the minimal area surface wraps the Riemann surface Σ2 too, so that
∂ρx∥ = ∂zx∥ = 0. The Lagrangian is thus minimised by

x2
∥ + u2 = R2, (4.81)

for a constant R, so that the area of the extremal hypersurface ζRT is

A[ζRT] = h3
1 Vol(S3)Vol(S̃3

) log
(︃2R
ϵu

)︃∫︂
Σ2

dρdz ρ3
2n+2∑︂
j=1

(−1)j ξ̂j
(ρ2 + (z − νj)2)3/2 +O(ϵ2u),

(4.82)
where we introduced a small-u cutoff ϵu > 0.

The evaluation of the integral above is performed in detail in Appendix A.2. The
resulting holographic entanglement entropy is

SEE[Υ2] =
π4L9

S4

GN
log

(︃2R
ϵu

)︃[︄64
3

1
ϵ4v

+
16
5
n̂2

1
m̂4

1
− 16

5
n̂2
m̂3

1
+O(ϵ2v)

]︄
+O(ϵ2u), (4.83)

where ϵv > 0 is a small-v cutoff in the FG parametrization.

Subtracting off the 1PV contribution to the entanglement entropy, S1PV
EE , precisely

removes the ϵ−4
v divergence from (4.83), and leaves the O(ϵ0v) term unchanged. To see

this, we recall that the 1PV limit takes n̂k → 0, which in (4.83) gives

S1PV
EE =

π4L9
S4

GN
log

(︃2R
ϵu

)︃[︃64
3

1
ϵ4v

+O(ϵ2v)
]︃
+O(ϵ2u). (4.84)

Therefore, we can at once compute the coefficient of the universal part of the defect
sphere EE using (4.76) and plugging in eqs. (4.83) and (4.84) with SEE[∅] = S1PV

EE to
find

S
(univ)
EE =

16
5
π4L9

S4

GN

n̂2
1 − m̂1n̂2
m̂4

1
(4.85a)

=
1

5M

⎡⎣(︄n+1∑︂
a=1

MaNa

)︄2

−M
n+1∑︂
a=1

MaN
2
a

⎤⎦ , (4.85b)

where we have mapped to field theory quantities using L3
S4 =

G1/3
N

(2π)4/3M and used the
definitions of moments n̂j , m̂j in terms of the numbers of branes in eqs. (4.70) and
(4.73). In terms of the highest weight ϖ of the AM−1 irreducible representation encoded
in the Young diagrams that specify the defect discussed in the previous section, we can
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re-express the defect sphere EE as [309]

S
(univ)
EE = − (ϖ,ϖ)

5 , (4.86)

where (·, ·) is the scalar product on the weight space induced by the Killing form.

We also note that the contribution of the aforementioned bulk deformation to the
coefficient of the universal, log-divergent component of the vacuum-subtracted
entanglement entropy is

S
(univ,bulk−def .)
EE =

8
3
π4L9

S4

GN
=
M3

6 . (4.87)

This is independent of the moments (m̂i, n̂j), in line with the lack of Young Tableau
data associated to the bulk deformation. Had we subtracted in (4.76) the AdS7 × S4

vacuum, rather than the 1PV, the resulting entanglement entropy would have received
both the defect and bulk deformation contributions above.

Finally, we note that the same quantity can be trivially computed in the orbifolded
theory described in section 4.3.3 simply by rescaling

S
(univ)
EE −→ Vol(S3/Zk)Vol(S̃3/Zk′)

Vol(S3)Vol(S̃3
)

S
(univ)
EE =

S
(univ)
EE
kk′ . (4.88)

4.6 Summary and Outlook

In this work, we have constructed a novel class of solutions in 11d SUGRA that are
holographically dual to 2d superconformal defects preserving small N = (4, 4) and
N = (0, 4) SUSY in 6d SCFTs at large M . These solutions fit into the one-parameter
family organised in a general classification scheme of 11d SUGRA solutions with
superisometry d(2, 1; γ)⊕ d(2, 1; γ) [2]; specifically, they are obtained in the γ → −∞
limit. There are several features of these new solutions that separate them from the
more familiar γ = −1/2 case that holographically corresponds to 1/2-BPS Wilson
surface type defects in the 6d N = (2, 0) AM−1 SCFT.

Within the one-parameter family of solutions labelled by γ, the γ → −∞ limit is slightly
unusual from the superalgebra perspective. Despite producing an AdS7 × S4 asymptotic
geometry as shown in section 4.3, taking the γ → −∞ limit means that
d(2, 1; γ)⊕ d(2, 1; γ) is not a subalgebra of the osp(8∗|4) superisometry of AdS7 × S4.
On the field theory side of the holographic duality, this means that the ambient theory
into which the defects are inserted is some deformation of the 6d N = (2, 0) SCFT.

We have seen that choosing all of the singular loci in the internal space to collapse to a
single point – a configuration which we label 1PV – destroys the data that specifies the
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defect, i.e. the Young diagram corresponding to the arrangement of M5-branes.
However, as is clear from the discussion in section 4.4.2, the vacuum that we arrive at
has an isometry group of SO(2, 2)× SO(3)× SO(5), as opposed to the vacuum solution
at γ = −1/2, which instead enjoys the full SO(6, 2). In the latter case, the trivial defect
corresponds to a Wilson surface transforming in the 1 of AM−1, and the conformal
symmetry of the ambient 6d N = (2, 0) theory is restored. For γ → −∞, the trivial
defect dual to the 1PV still possesses what looks like the ‘defect’ conformal symmetry
despite being the vacuum solution, which renders giving a precise definition for and
interpretation of the defect CFT difficult. The 1PV does, however, enable us to correctly
employ a background subtraction scheme10 and arrive at a finite result for S(univ)

EE and,
we believe, resolves the puzzling appearance of divergences in the “defect central charge”
computed in [1].

On a more fundamental level, the small N = (4, 4) defects at γ → −∞ cannot be
viewed as a smooth deformation of the Wilson surface defects at γ = −1/2. Indeed, the
γ → −∞ solutions cannot even be smoothly deformed into the solution at γ = 0, to
which they are related by the involution γ ↦→ 1/γ with an exchange of the so(3)⊕ so(3)
factors in d(2, 1; γ; 0)⊕ d(2, 1; γ; 0). The reason is that there is a special point at γ = −1
where the real form d(2, 1; γ; 0) becomes osp(4|2; R). At this value of γ, SO(2, 2)
Wigner-İnönü contracts to ISO(1, 2), and AdS3 becomes R2,1. Therefore, the γ → −∞
solutions are isolated from the other class of asymptotically AdS7 × S4 geometries.

In light of the new small N = (4, 4) solutions that we have constructed and
holographically studied, there are a number of open questions that remain to be
answered.

Firstly, as we discussed at the start of section 4.5 , the contribution from a flat 2d
conformal defect to the log-divergent, universal part of the EE of a spherical region in a
d ≥ 4 ambient CFT is built from a linear combination of two defect Weyl anomaly
coefficients, aΥ and d2 that characterise the defect theory. In order to disentangle these
two fundamental defect quantities, we would compute a second holographic quantity
that contains either aΥ or d2. For instance, d2 controls the normalization of the
one-point function ⟨Tµν⟩ of the stress-energy tensor, which can be readily computed for
most 10d or 11d supergravity solutions by dimensional reduction on the internal space
[325, 326]. Therefore, it is natural to try to compute d2 and S

(univ)
EE in order to isolate

the independent defect Weyl anomalies11. This was successfully done for the Wilson
surfaces at γ = −1/2 in [309] and for codimension-2 defects in [7]. However, the
γ → −∞ solutions are more subtle, and a naïve application of dimensional reduction

10Here, “correctly” refers to a background subtraction which also removes any contributions from the
trivial defect. As we have demonstrated, the same cannot be said of a subtraction scheme which utilises
vacuum AdS7 × S4.

11In fact, aΥ and d2 are the only independent defect Weyl anomaly coefficients for superconformal
defects preserving at least 2d N = (0, 2) supersymmetry. This was shown for co-dimension four defects
in 6d SCFTs in [311] and co-dimension two defects in 4d SCFT in [327].
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techniques would be inappropriate. Namely, in reducing the 11d solutions to 7d, the
presence of the non-trivial four-form flux modifies the gravitational equations of motion
at the conformal boundary of AdS7, which violates the assumptions in [325]. Therefore,
computing d2 holographically from ⟨Tµν⟩ requires a generalization to account for flux
contributions, which is the subject of ongoing work.

Furthermore, it is natural to look for physical observables which can be reliably
computed on the field theory side and employed to test the holographic predictions made
above. For 2d BPS conformal defects in 6d AM−1 and DM N = (2, 0) SCFTs at large
M , recent developments in analytic bootstrap methods have enabled the computation of
correlations functions in the presence of 2d defects that are controlled by anomalies
[311, 328]. Further, despite the lack of a Lagrangian description and of supersymmetric
localization methods for 6d SCFTs at large M , chiral algebra methods have also been
shown to give exact results for defect correlators [328] and the defect SUSY Casimir
energy [284, 310]. Currently, only Wilson surface type defects, i.e. the holographically
dual theories to the γ = −1/2 solutions, have been studied using these field theory
techniques. It is reasonable to wonder whether any of these methods are applicable to
the types of defects in the deformed 6d theory that we have constructed in this work.

The biggest hurdle to clear in trying to generalise bootstrap or chiral algebra methods
for use in the dual to the 1PV of the γ → −∞ solutions is clarifying the precise role of
the deformation parameter γ. As we have explained in the γ → −∞ limit, the ambient
6d theory has reduced global and conformal symmetries, and there is no smooth path in
field theory space as γ is varied through γ = −1 to get from the 6d AM−1 N = (2, 0)
theory to the dual of the 1PV. It is unclear at the moment precisely what symmetry
breaking operators are sourced on the field theory side in the γ → −∞ limit.
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Chapter 5

Codimension-2 defect in 6d SCFT

5.1 Introduction

Knowing the spectrum of local operators in a given quantum field theory (QFT) is
insufficient to uniquely specify it in field theory space [329], and so operators with
non-trivial extension along submanifolds embedded in the background spacetime
(‘defects’) play an important role in classifying QFTs [32]. However, the way that the
presence of these defects affects, say, correlation functions of local operators depends on
the dimension d and geometry of the background manifold Md, the co-dimension d− d

and embedding of the d-dimensional defect submanifold Σd, and the couplings between
ambient and defect degrees of freedom1. Thus, it is crucial to characterise allowable
defects in a given theory and precisely determine how ambient physical observables
change under the deformation by defect operators.

In this effort, some of the most powerful tools that we have come from imposing
symmetries on both the ambient and defect theories. The ambient field theories we
consider are 6d, supersymmetric, and invariant under 6d flat-space conformal symmetry
SO(6, 2); superconformal field theories (SCFTs). The defects that we study in this work
are supported on embedded co-dimension 2 submanifolds, Σ4 ↪→M6, that will preserve
at least 1/4 of the total supersymmetries, i.e. N ≥ 1 4d supersymmetry, as well as an
SO(4, 2)×U (1)N ⊂ SO(6, 2) global symmetry representing the defect conformal
symmetry and U (1)N rotations in M6/Σ4. We will refer to these theories as defect
[super]conformal field theories (D[S]CFTs).

In the following, we will focus on ambient theories that are maximally superconformal
N = (2, 0) SCFTs with gauge algebra AN−1 in the large N limit and the 1/4- and
1/2-BPS co-dimension 2 defects that they support. Despite the highly restrictive
symmetries imposed, 6d N = (2, 0) SCFTs and their defect operators pose a challenge

1See [290] for a recent review of defects of various (co-)dimension in QFTs.



84 Chapter 5. Codimension-2 defect in 6d SCFT

to direct study. We know from the worldvolume theory of a stack of coincident
M5-branes [281] or M5-branes probing ADE singularities [330] that 6d N ≥ (1, 0)
SCFTs exist, but generally they have no known Lagrangian description. We also know
that 6d SCFTs constructed from M-theory support 4d BPS defect operators engineered
at the intersection of orthogonal stacks of M5 branes. Since we often lack a Lagrangian
description, our efforts to characterise these d = 4 dSCFTs are limited to analysing their
global properties using techniques such as anomaly inflow (e.g. [331]) and chiral algebra
methods [332]. That said, there is a tremendous amount that we can learn about the
defect theory by studying its conformal anomalies.

As with any systems preserving an SO(d, 2) global conformal symmetry, putting the
ambient theory on a curved Md results in a non-trivial Weyl anomaly. Crucial to our
understanding of dCFTs, the theory supported on Σd ↪→Md has its own defect-localised
contributions to the total Weyl anomaly that are sensitive to both the intrinsic
submanifold geometry and its embedding in the ambient space. The resulting defect
Weyl anomaly can be far more complicated than that of an ordinary d-dimensional
theory. For example, it is common knowledge that the Weyl anomaly in d = 4 is a
combination of an ‘A-type’ anomaly ∼ aE4, where E4 is the 4d Euler density, and a
‘B-type’ anomaly ∼ c|W |2 with Wµνρσ denoting the Weyl-tensor [333]. On the other
hand, it was recently discovered in [34] that the Weyl anomaly of a d = 4 defect in an
ambient theory with d ≥ 6 has a total of 29 terms2.

The challenge thus far has been finding tractable, non-trivial d = 4 defect systems
beyond free theories (e.g. [294]) in which any of the 29 available defect Weyl anomalies
can be computed3. In light of recently discovered 11d supergravity (SUGRA) solutions
that holographically describe certain d = 4 BPS defects in 6d SCFTs [3, 4], we have a
window on strongly coupled, non-Lagrangian defect systems that can be approached
with standard tools in holography to compute quantities known to be controlled by
defect anomalies.

In this work, we study both the 1/4-BPS ‘two-charge’ solutions in 11d constructed as
the uplift of domain wall solutions in 7d gauged SUGRA and the 1/2-BPS ‘electrostatic’
solutions for bubbling geometries [336, 337] built along the lines of those in [338, 339]
but with non-compact internal spaces. By holographically computing the one-point
function of the stress-energy tensor and the flat defect contribution to the entanglement
entropy (EE) of a spherical region co-original with the defect, we will be able to extract
two of the 29 possible defect Weyl anomaly coefficients. In doing so, we find two
independent pieces of data that characterise these defect systems.

2These 29 terms include 6 terms that break parity on the defect submanifold. The limit case of a
co-dimension 1 defect in 5d has 12 (including 3 parity odd) terms in the Weyl anomaly [34, 334].

3For probe branes wrapping AdS5 ⊂ AdSd+1, all of 23 of the parity even anomalies can be holograph-
ically computed [34] using the work of Graham and Reichert in [335].
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The results that we obtain for these d = 4 defect anomalies have implications and open
up questions beyond their roles in 6d SCFTs. In particular, the ‘electrostatic’ solutions
holographically describe defects in the 6d AN−1 N = (2, 0) SCFT labelled equivalently
by a Lie algebra homomorphism ϑ : sl(2)→ su(N ), the choice of Levi subalgebra
l ⊂ su(N ) associated with the Levi subgroup L = S(U (N1)× . . . U (Nn)), or the Young
diagram corresponding to the partition of N =

∑︁n
a=1Na. Under the (partially) twisted

dimensional reduction on genus-g Riemann surface Cg either with Σ4 wrapping two legs
along Cg or with Cg orthogonal to Σ4 in M6, the theory descends to a 4d class−S
N = 2 SCFT [279, 340] deformed by a d = 2 surface defect [297, 341] or by (possibly
irregular [342–344]) punctures on its UV curve. For example in the case of Σ4 wrapping
Cg = T2, the 4d description is of Gukov-Witten defects in N = 4 SU (N ) super-Yang
Mills theory [295, 296], whose defect Weyl anomalies are known [51, 345, 346]. While
the precise map between the 29 defect anomalies and the two independent Weyl
anomalies of a surface operator in 4d [327] or the central charges of the 4d SCFT itself is
unknown at present, our results provide some insight into how some of the defect data in
6d is reorganised into 4d (defect) Weyl anomalies.

The following work is structured as follows: In section 5.2, we first review the pertinent
aspects of Weyl anomalies for 4d defects and highlight their connection to physical
quantities that we will compute in later sections. We will also briefly review the solutions
in 11d SUGRA that holographically describe 1/4-BPS and 1/2-BPS co-dimension 2
defects in 6d SCFTs. In section 5.3, we compute the holographic stress-energy tensor
one-point function for both the 1/4-BPS, two-charge solution and a generic 1/2-BPS
electrostatic solution, which we use to find the defect B-type Weyl anomaly that we call
d2. In section 5.4, we holographically compute the defect contribution to the EE of a
spherical region, which we use to determine defect A-type Weyl anomaly, aΣ. In
section 5.5, we discuss comparisons to field theory results and future directions.

In addition, a number of useful intermediate results are contained in appendices. In
Appendix B.1 we detail the asymptotic maps of the metrics for the solutions we consider
into Fefferman-Graham form. In appendix B.2 we compute the on-shell action for the
11d uplift of the two-charge solutions and highlight a discrepancy with the same
computation done in the domain wall description in 7d N = 4 gauged SUGRA. Finally,
in appendix B.3, we discuss the details of the regulating scheme for the on-shell action
including the vacuum solution that we use in background subtraction as well as the
renormalised volume of the AdS5 geometry.

5.2 Review

In this section, we will very briefly review some key background material in order to
orient the subsequent computations. In the first subsection, we will introduce the two
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defect Weyl anomalies and discuss the physical quantities that they control, which will
be the focus of the computations to follow. In the second subsection, we will give a short
overview of the two solutions to 11d SUGRA that will be the focus of our holographic
study.

5.2.1 Defect Weyl anomalies

Up to a total derivative, the Weyl anomaly of an ordinary 4d CFT has two independent
contributions4,

Tµµ =
1

4π2 (−a4dE4 + c|W |2). (5.1)

The first term proportional to the Euler density E4 is the so-called “A-type” anomaly in
the classification of [333], which exists in all even-dimensional CFTs and is unique in
that it transforms as a total derivative under Weyl transformations. The second term
given by the square of the Weyl tensor is a “B-type” anomaly. In arbitrary
even-dimensional CFTs, there is generally a tower of B-type anomalies each of which is
exactly Weyl invariant and built out of non-topological, rank- d2 monomials in curvatures.
The Weyl anomaly coefficients of a 4d CFT control correlation functions of the
stress-energy tensor [348], and have strong upper and lower bounds on their ratio [349];
a4d also appears in the EE [350], and obeys an ‘a’-theorem under renormalization group
(RG) flows [38, 40]. For 4d SCFTs with an R-symmetry, a4d and c are both related to
the cubic and mixed R-anomalies through non-perturbative formulae [351].

The Weyl anomaly of a conformal defect supported on Σd ↪→Md is much richer due to
the additional freedom of building submanifold conformal invariants out of not only the
intrinsic curvature but also the normal bundle curvature, the pullback of curvature
tensors from the ambient space, and the second fundamental form for the embedding.
For conformal defects on Σ4 ↪→Md of co-dimension 2 or greater5, there are a total of 23
anomalies respecting submanifold parity [34]6. The complete form of the 4d defect Weyl
anomaly is cumbersome, and so we will only display the parts relevant to the
computations in the following sections (see eq. 3.1 of [34] for the full expression):

Tµµ|Σ4
⊃ 1

(4π)2

(︃
− aΣE4 + d2J2 + . . .

)︃
. (5.2)

The first term is recognizable as the defect A-type anomaly proportional to the intrinsic
Euler density, E4, of Σ4. The second term J2 is a B-type anomaly built out of a

4This basis is not unique, and one can exchange either E4 or W 2 for Branson’s Q-curvature [347]
and a total derivative, which gives a basis for the 4d Weyl anomaly that is particularly convenient for
holography.

5The limit case of co-dimension one is far more restricted and only leads to 9 parity even anomalies
[34, 334].

6There are an additional 6 parity odd defect Weyl anomalies, but as of yet, there are neither any
known physical quantities in which they appear nor any no-go theorem to forbid them.
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complicated linear combination of the submanifold pullback of the ambient curvatures,
connection on the normal bundle, normal bundle curvature, and the second fundamental
form for the embedding (see eq. 3.2 of [34] for the full expression). Importantly, J2 does
not contain a term like the pullback of |W |2 or the square of the intrinsic Weyl tensor,
and so is not analogous to the B-type anomaly of a standalone 4d CFT above.

While it is unclear what physics the vast majority of terms in the full expression of the
defect Weyl anomaly control, the two anomalies displayed above appear in two physical
quantities that will be the primary focus of the following work.

The first quantity we will analyze is the one-point function of the stress-energy tensor.
For a d-dimensional conformal defect embedded in a d-dimensional CFT, conformal
symmetry preserved by the defect constrains the form of the one-point function of the
stress-energy tensor a distance x⊥ away from the defect to be of the form [107, 352]

⟨T ab⟩ = −hT
(d− d− 1)δab
|x⊥|d

, ⟨T ij⟩ = hT
(d+ 1)δij − dx

i
⊥x

j
⊥

|x⊥|2

|x⊥|d
, (5.3)

where a, b index directions parallel to the defect and i, j label directions normal to the
defect. By starting from the defect geometry Σ4 = R4 ↪→ Rd and then finding the
totally transverse log divergent parts of the effective action in the presence of a linear
ambient metric perturbation [34, 300], it can be shown that the normalization of the
stress-energy tensor one-point function is determined by

hT = −
Γ
(︂
d
2 − 1

)︂
π

d
2 (d− 1)

d2 . (5.4)

In the case that we are particularly interested in for the following work, i.e. d = 6,

hT = − 1
5π3d2 . (5.5)

There is a constraint on the sign of d2 that follows from the assumption that the average
null energy condition (ANEC) holds in the presence of a defect. That is, the statement
of the ANEC is that for any state |Ψ⟩ of a QFT, the expectation value of the
stress-energy tensor projected along a null direction vµ in that state satisfies∫︂ ∞

−∞
dλ ⟨Ψ|Tµν |Ψ⟩ vµvν ≥ 0, (5.6)

where λ parametrises the null geodesic. From (5.4), we see that by taking the ambient
theory to be a CFT and |Ψ⟩ to be the vacuum state of the theory deformed by a defect
and orienting the null ray vµ to be parallel to the defect and separated by a distance x⊥

in the normal direction, h ≥ 0, which implies d2 ≤ 0 [34, 51]7.
7In fact, it has recently been argued that the quantum null energy condition (QNEC), which is a

stronger energy condition valid in any ambient QFT and reduces to ANEC in a certain limit (see e.g.
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The other physical quantity controlled by defect Weyl anomalies that we will study
below is the contribution to the EE of a spherical region of size R centred on
Σ4 = R1,3 ↪→ R1,d−1. Following the same logic that formed the basis of the proof for 2d
defects [51, 302], it was shown in [34] that for a 4d defect of co-dimension d− 4, the
coefficient of the universal, i.e. the log divergent, part of the defect EE is

SEE[Σ]
⃓⃓⃓⃓
log

= −4
[︃
aΣ +

1
4
(d− 4)(d− 5)

d− 1 d2

]︃
log

(︃
R

ϵ

)︃
, (5.7)

where ϵ≪ R is a UV cutoff scale and
⃓⃓⃓
log

denotes dropping the leading non-universal
divergences as well as the trailing scheme dependent terms.

For a conformal defect on Σ4, we will use a background subtraction scheme to isolate the
defect contribution to the EE. That is, our computations below will use

4aΣ +
2
5d2 = −R∂R (SEE[Σ]− SEE[∅]) |R→0, (5.8)

where SEE[∅] is the EE computed without the defect, i.e. the EE of the vacuum of the
6d ambient theory. Thus, combining the computation of d2 from ∆ ⟨Tij⟩ with the result
of (5.8), we can compute the defect A-type anomaly unambiguously.

Unlike d2, however, there is no constraint on the sign of aΣ. Indeed, in the simple case of
a free scalar on a 5d manifold with a boundary, aΣ > 0 for Neumann (Robin) boundary
conditions, while aΣ < 0 for Dirichlet [334]8.

5.2.2 11d SUGRA solutions

Two-charge solutions

We now briefly review the domain wall solutions in 7d N = 4 gauged SUGRA found in
[3] and uplifted to 11d in [4]. The bosonic 7d gauged SUGRA action built from the
metric g, two scalars Φ1,2 and two U (1) gauge fields A1,2 takes the following form:

S = − 1
16πG(7)

N

∫︂
d7x

√︂
|g|
(︄
R− 1

2 |∂µΦI |2 − ĝ2V (Φ)− 1
4

2∑︂
I=1

ea⃗I Φ⃗F 2
I

)︄
. (5.9)

Using a⃗1 = (
√

2,
√

2/5), a⃗2 = (−
√

2,
√

2/5), the potential is given by

V = −4e− 1
2 (a⃗1+a⃗2)Φ⃗ − 2

(︂
e

1
2 (a⃗1+2α⃗2)Φ⃗ + e

1
2 (2a⃗1+α⃗2)Φ⃗

)︂
+

1
2e

2(a⃗1+a⃗2)Φ⃗. (5.10)

[353]), holds in the presence of a defect [354]; putting d2 ≤ 0 and any other sign constraint derived from
such energy conditions on even firmer ground.

8Note we are using the conventions for the definition of the 4d defect A-type anomaly aΣ as in [34],
which differs from the defect A-type anomaly, a, in [334] by aΣ ↔ −a/5760.
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The domain wall solution to (5.9) describing the double analytic continuation of a
charged black hole is given by

ds2
7 = (yP (y))

1
5ds2

AdS5 +
y(yP (y))

1
5

4Q(y) dy2 +
yQ(y)

(yP (y))
4
5
dz2, (5.11)

where the polynomials P , Q are given by

P (y) = H1(y)H2(y), (5.12a)

Q(y) = −y3 + µy2 +
ĝ2

4 P (y), (5.12b)

where HI(y) = y2 + qI , I ∈ {1, 2}. The gauge fields in this solution9 are given by

AI =

(︃√︃
1− µ

qI

qI
HI(y)

+ aI

)︃
dz . (5.13)

In order to find BPS solutions, SUSY forces µ = 0. For both qI ̸= 0, the solutions are
1/4-BPS, while setting one charge, say q2, to zero allows for 1/2-BPS solutions. In the
following, we will refer to the former 1/4-BPS cases as ‘two-charge solutions’ and the
latter 1/2-BPS cases as ‘one-charge solutions’. The coordinate y ranges from y+, the
largest root of Q(y), to infinity. To have a smooth geometry one can choose the gauge
so that AI(y+) = 0 by appropriate choice of the aI . Setting ĝ = 2, the AdS5 × S1

geometry does not have a conical deficit provided z ∈ [0, 2π) (this will be assumed in the
uplift to 11d). At y = y+, the geometry either has a smooth cap or a conical deficit
2π n̂−1

n̂ with n̂ related to y+ by the constraint n̂ Q′(y+) = y2
+.

The conditions Q(y+) = 0 and n̂ Q′(y+) = y2
+ can be solved to determine q1 and q2 in

terms of n̂ and y+ as follows

qI = y+

(︄
3n̂+ 1
n̂ĝ2 − y+ ±

2
ĝ

√︄
(1 + 3n̂)2

4ĝ2n̂2 − y+

)︄
, (5.14)

where q1 and q2 are chosen with opposite signs for the square root. This has real
solutions provided 0 ≤ y+ ≤ y+,max with y+,max = (1 + 3n̂)2/4ĝ2n̂2. It will be useful
later to notice that the sum q1 + q2 is always non-negative as is evident from

q1 + q2
2y+

=

(︃3n̂+ 1
n̂ĝ2 − y+

)︃
≥
(︃3n̂+ 1

n̂ĝ2 − y+,max

)︃
=

(n̂− 1)(3n̂+ 1)
4ĝ2n̂2 ≥ 0. (5.15)

9Note that, in general, the action in (5.9) does not qualify as a consistent truncation of 11d supergravity.
The 7d solutions considered here, however, are characterised by F1 ∧ F2 = 0; this guarantees that their
uplift produces consistent solutions of the 11d theory [355].
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Uplifting to 11d, the metric for the two-charge 1/4-BPS solutions can be written
schematically as

ds2
11 = f̂

2
AdSds

2
AdS5 + f̂

2
ydy

2 + f̂
2
zdz

2 + f̂
2
ϕi
dϕ2

i + f̂
2
zϕi
dzdϕi + f̂

2
ψdψ

2 + f̂
2
ζdζ

2 + f̂ψζdψdζ,
(5.16)

where each of the f̂ ’s displayed in (B.1) is a function of the y, ψ, and ζ coordinates and
also depends on the qI ’s and aI ’s. Note that in (B.1), we have introduced the slightly
abusive shorthand

sin x ≡ sx, cosx ≡ cx, (5.17)

in order to compactly express some of the more cumbersome expressions, and we will
adopt this notation throughout the following sections. Continuing on, the uplifted
four-form field strength can be inferred from

⋆11F4
κ2 =− 2(Ĥ(X0 + 2(X1 +X2))− 2X2

0 + 2(X2
0 −X2

1 )s
2
ζ + 2(X2

0 −X2
2 )c

2
ψc

2
ζ)Υ7 (5.18)

+
c2
ζcψsψ

2X0X2
(X2 ⋆7 dX0 −X0 ⋆7 dX2) ∧ dψ +

cζsζ
2X1

⋆7 dX1 ∧ dζ

− cζsζ
2X0X2

(X2s
2
ψ ⋆7 dX0 +X0c

2
ψ ⋆7 dX2) ∧ dζ +

cζsζ
4X2

1
dζ ∧ (dϕ1 + 2A1) ∧ ⋆7dA1

− cζcψ
4X2

2
(cζsψdψ + sζcψdζ) ∧ (dϕ2 + 2A2) ∧ ⋆7dA2

where we have set ĝ = 2, and where Υ7 is the 7d volume form. We also defined

X1 =
(yH2(y))

2
5

H1(y)
3
5

, X2 =
(yH1(y))

2
5

H2(y)
3
5

, X0 = (X1X2)
−2 (5.19)

as well as

Ĥ =
X2(H2 − q2c

2
ψ)c

2
ζ

y2 +X1s
2
ζ . (5.20)

Electrostatic solutions

In this subsection, we review the construction of an infinite class of ‘bubbling’ solutions
to 11d SUGRA with AdS5 × S1 boundary geometries that holographically describe
1/2-BPS co-dimension 2 defects in 6d SCFTs [4]. There is a long history of AdS5

compactifications in 11d SUGRA and M-theory holographically dual to 4d N = 2
SCFTs, e.g. [336, 337, 356, 357]. The class into which the solutions of [3, 4] are
embedded are a particular type of Lin-Lunin-Maldacena (LLM) ‘bubbling’ geometries
[336, 337].

Recall that the general LLM solution consists of an 11d geometry with a warped product
AdS5 × S2 over M4 realised as a U (1)χ-fibration over a 3d base space B3 supported by
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four-form flux. The data that specifies the solution is encoded in a function that satisfies
a non-linear Toda equation on B3, which is generically difficult to solve. However, by
imposing that B3 has an additional U (1)β isometry, the Toda equation can be cast in an
axi-symmetric form that can be solved more easily. Further facilitating finding general
solutions to the axi-symmetric Toda equation, one can perform a Bäcklund
transformation to map to a Laplace-type equation on R3, and so the problem is turned
into an ‘electrostatic’ one [4, 331, 339, 358–360]. Hence, the class of bubbling geometries
reviewed below will be referred to as ‘electrostatic solutions’ in the following sections.

In the formulation as a Laplace-type equation, finding a solution to the SUGRA
equations of motion amounts to specifying a linear charge density ϖ which determines
the electrostatic potential V . Exploiting the axial symmetry of the problem on B3, we
take ϖ = ϖ(η) to be aligned along the η-axis, i.e. the fixed point of the U (1)β rotations.
The bosonic sector of these solutions takes the form

ds2
11 = κ

2
3
11

(︄
V̇ σ

2V ′′

)︄ 1
3
⎛⎝4ds2

AdS5 +
2V ′′V̇

σ
dΩ2

2 +
2(2V̇ − V̈ )

V̇ σ

(︃
dβ +

2V̇ V̇ ′

2V̇ − V̈
dχ

)︃2
(5.21a)

+
2V ′′

V̇

(︃
dr2 +

2V̇
2V̇ − V̈

r2dχ2 + dη2
)︃⎞⎠

≡ f2
AdSds

2
AdS5 + fS2dΩ2

2 + f2
βdβ

2 + f2
χdχ

2 + f2
βχdβdχ+ f2

3 (dr
2 + dη2) ,

C3 =
2κ11
σ

(︂(︂
V̇ V̇

′ − ση
)︂
dβ − 2V̇ 2

V ′′dχ
)︂
∧ ΥS2 , (5.21b)

where we have adopted the notation where ΥM :=
√︁
|gM|dx1 ∧ . . .∧ dxd is the volume

form on a d-dimensional manifold M. In this notation, the coordinates {r, η,β} span
B3, κ11 = πℓ3P/2, and

V ′ ≡ ∂ηV , V̇ ≡ r∂r(V ), σ ≡ V ′′(2V̇ − V̈ ) + (V̇
′
)2. (5.22)

In this background, away from sources, the electrostatic potential V (r, η) satisfies

V̈ (r, η) + r2V ′′(r, η) = 0, (5.23)

subject to the boundary condition ∂rV |η=0 = 0. Exploiting the U (1)β isometry imposed
on B3, the line charge distribution ϖ(η) specifying the solution is related to the Laplace
potential V by

ϖ(η) = lim
r→0+

V̇ (r, η). (5.24)

Given an appropriate ϖ(η), the solution to (5.23) can be expressed in terms of a
Green’s function, G(r, η, η′), as

V (r, η) = −1
2

∫︂
dη′G(r, η, η′)ϖ(η′). (5.25)
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By the symmetry of the problem, the Green’s function can be written simply using the
method of images as [4, 339]

G(r, η, η′) =
1√︂

r2 + (η− η′)2
− 1√︂

r2 + (η + η′)2
. (5.26)

The complete description of the solution to the 11d SUGRA field equations is thus given
by finding a ϖ(η) that obeys a set of necessary conditions.

For a generic ϖ(η), the constraints that follow from charge conservation and regularity
(modulo Ak singularities on M4) of the full 11d geometry were given in [357]. Satisfying
these constraints determines the profile of ϖ(η) to be a continuous, convex piecewise
linear function of η with integer slope, whose slope decreases by integer values at
discrete ηa. In general, the boundary conditions and symmetry imposed on V in solving
(5.23) require ϖ(0) = 0. However, there are generally two cases for the behaviour of ϖ
as η increases.

In the first case, apart from the zero at the origin, ϖ has a zero at some value
η = ηc > 0 where the internal space closes off. The geometry of the 11d SUGRA
solution is then a warped product of AdS5 over the compact internal space
M6 = Cg ×M4, and holographically describes a 4d theory that descends from the
compactification of a 6d SCFT on a Riemann surface Cg. The generic charge
distribution is decomposed into n+ 1 ‘regular’ intervals with positive slope and an
‘irregular’ interval [ηn, ηc] with negative slope fixed by ratios of four-form flux. The data
associated with the kinks between the regular parts of the charge distribution, namely a
partition of N , label a regular puncture on Cg, while the data specifying the slope of the
irregular interval is mapped to an irregular puncture [339]. This construction –
reminiscent of other spindle compactifications engineering 4d SCFTs [338, 361–368] –
was argued in [339] to be the SUGRA dual to class-S constructions [279] of certain
classes of Argyres-Douglas theories [369] by analysing anomalies and counting of
Coulomb and Higgs branch operators in the field theory. While we will not study these
types of solutions further here, we will mention some of their properties as they pertain
to the results of holographic calculations of defect anomalies.

The second case, relevant for our study, is where ϖ(η) has non-trivial support over the
whole range η ∈ [0,∞) [4]. Since ϖ(η) never turns around to hit the η-axis, the
geometry M6 in the 11d SUGRA solution is non-compact, and the 11d geometry can be
engineered to be asymptotically locally AdS7 × S4 where the geometry of the conformal
boundary of the AdS7 factor is AdS5 × S1. These solutions are, thus, interpreted as
holographically describing co-dimension 2 defect operators in 6d SCFTs, where the
defect operator ‘lives’ at the conformal boundary of AdS5.

As a simple example of a line charge density that gives rise to a non-compact geometry,
it was shown in [4] that the one-charge solution reviewed in the previous subsection can
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be recast in the language of the electrostatic solutions as a ϖ(η) with two segments:

ϖ(η) =

⎧⎪⎨⎪⎩
(︂
1 + 1√

1−4q1

)︂
η, η ∈

[︂
0, N2
√

1− 4q1
]︂

η +N/2, η ∈
[︂
N
2
√

1− 4q1,∞
)︂
.

(5.27)

Due to ϖ being continuous and piecewise linear, we will refer to the solution engineered
by (5.27) as a ‘single kink solution’. This relation between the q2 → 0 limit of the
two-charge solutions and the simple single kink line charge distribution for the
electrostatic solutions will be useful in later sections as a consistency check for our
computations. We should also note that the constraint that the change in slope of ϖ(η)

is integral forces q1 = j2−1
4j2 for j ∈N.

Generalizing beyond the single kink solutions, the constraints on ϖ(η) realizing a defect
solution allow for a generic n-kink charge profile. Since ϖ(η) is piecewise linear, its
behavior on the ath interval, where η ∈ [ηa, ηa+1] and a ∈ {0, 1, . . . ,n}, can be written
as [4, 331]

ϖa(η) =

⎛⎝1 +
n∑︂

b=a+1
kb

⎞⎠ η + a∑︂
b=1

ηbkb (5.28)

≡ pa+1η + δa+1,

where in the second line we have introduced a convenient short hand for the slope pa+1

and intercept δa+1 of the line continued from the ath segment. From the boundary
condition ϖ(0) = 0 it is understood that η0 = 0, and due to the semi-infinite domain of
support we take ηn+1 →∞.

As a simple visualization of an arbitrary distribution, see the left side of figure 5.1. Note
that from the constraint following from the quantization of four-form flux
N = 2∑︁n

a=1 ηaka along with the quantization of the ηa and their ordering along the
η-axis (0 < . . . < ηa < ηa+1 < . . . < ηn), there is a natural interpretation of the data
(ηa, ka) specifying the charge distribution as a Young diagram, which is displayed on the
right side of figure 5.1.

In the language of the field theory description, the Young diagram corresponding to the
specific ϖ(η) is in correspondence to both the Lie algebra homomorphism ϑ : sl(2)→ g

and to the choice of Levi subalgebra l of the AN−1 gauge algebra. Furthermore, the
slope change ka ∈ Z between the (a− 1)th and ath intervals corresponds to the
monopole charge at the R4/Zka orbifold point located at (r, η) = (0, ηa) in the internal
manifold. These points are the holographic realization of the non-Abelian summands
su(ka) of the global symmetry algebra [357].
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η

ϖ(η)

η1 η2 ηn· · ·

· · ·N
2

kn

ηn

· · ·

k2

η2

k1

η1

Figure 5.1: (Top) A generic line charge distribution ϖ(η), with n kinks at positions
ηa along the axis of cylindrical symmetry, specifying a solution to the axially symmetric
Laplace equation in R3. The AdS7 × S4 vacuum corresponds to the single-kink (n = 1)
charge distribution with k1 = 1; the location of the kink is then given by η1 = N/2.
(Bottom) The Young Tableau corresponding to the partition N = 2

∑︁n
a=1 kaηa =∑︁n

a=1 Na. The height and width of the a-th block are given by the location ηa ∈ Z and
slope change ka ∈ Z of the a-th kink in ϖ(η), respectively. The AdS7 × S4 vacuum is

associated to the 1 of su(N ) determined by n = k1 = 1 and η1 = N/2.

Lastly, for use in future computations, it will be convenient to define the ‘moments’ of
the potential as in [4]

mj =
n∑︂
a=1

(pa − pa+1)η
j
a =

n∑︂
a=1

kaη
j
a. (5.29)

For most of the following, we will only need the first and third moments

m1 =
N

2 and m3 =
∑︂
a

N3
a

8k2
a

(5.30)

respectively.

5.3 Holographic stress-energy tensor one-point function

In this section, we will compute the contribution of a co-dimension 2 defect to the
one-point function of the stress-energy tensor of the ambient 6d SCFT. To do so, we will
reduce the 11d SUGRA backgrounds described in the previous section on the internal S4

and employ the holographic renormalization methods of [325]. In their original
formulation, these methods are meant to apply to asymptotically AdS solutions of pure
Einstein-Hilbert gravity; therefore, we must ensure that the presence of the four-form
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flux in the dimensionally reduced M-theory solutions does not necessitate a modification
of those methods. In both two-charge and electrostatic solutions, we will show that the
field strength decays sufficiently fast as the conformal boundary of AdS7 is approached
so that it produces a vanishing contribution to the field equations on the boundary.

Following the general procedure in [325], we begin by recasting the 11d metric as a
perturbation h11 about the AdS7 × S4 vacuum:

ds2
11 = gAdS7×S4 + h11. (5.31)

Dimensionally reducing on the internal S4 then leads to the 7d line element

ds2
7 =

(︃
1 + ς̄

5

)︃
gAdS7 + h̄7, (5.32)

where gAdS7 is the metric on AdS7, the 7d field h7 captures the fluctuations about the
AdS7 geometry, and ς is the trace of the fluctuations in the internal manifold. Bars
indicate zero modes on the internal space; for instance10,

ς̄ =
3
4

∫︂
S4

√
gS4 habg

(0)
ab . (5.33)

Mapping the 7d line element into Fefferman-Graham (FG) gauge,

ds2
7 =

L2

u2

(︂
du2 + g

)︂
, (5.34)

where the 6d metric g admits the power series expansion

g = g(0) + g(2)u
2 + g(4)u

4 + g(6)u
6 + h(6)u

6 log u2 + . . . , (5.35)

the 6d stress-energy tensor one-point function can be computed

⟨Tij⟩ dxidxj =
3L5

8πG(7)
N

(︃
g(6) −A(6) +

S

24

)︃
(5.36a)

=
N3

4π3

(︃
g(6) −A(6) +

S

24

)︃
, (5.36b)

where A(6) and S are rank-2 tensors built out of g(0), and in the second line we have
used the holographic map to field theory quantities

1
G

(7)
N

=
vol(S4)

G
(11)
N

, G
(11)
N = 24π7ℓ9P , L3 = πNℓ3P , vol(S4) =

L4π2

6 . (5.37)

10Our index conventions in this section are that µ, ν, . . . are AdS7 indices, a, b, . . . are S4 indices, and
i, j, . . . are 6d indices on the conformal boundary of AdS7.
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Note that in our conventions the internal S4 has curvature scale L2/4. Explicit
expressions for A(6) and S are provided in [325]11. Once the appropriate vacuum
subtraction is performed, the defect contribution to hT , and therefore to d2, can be
extracted via (5.3) and (5.5).

5.3.1 Two-charge solutions

In this subsection, we will focus on the 11d uplift of the two-charge solutions described
in section 5.2.2 and compute ⟨Tij⟩ with the methods described above. In order to isolate
the contributions from the holographic dual to the defect, we will employ a background
subtraction scheme where we remove the contributions from vacuum AdS7 × S4.

Before jumping in to the computation of ⟨Tij⟩, we need to carefully check that we can
properly utilise our chosen holographic renormalization scheme. One of the crucial
assumptions in the construction of (5.36a) is that Einstein’s equations near the
boundary of the dimensionally reduced AdS7 geometry are not modified by
contributions coming from non-trivial fluxes, such as the four-form curvature F4. So, we
must be careful to make sure that in the asymptotic small u region, the components of
the variation of the FMNPQF

MNPQ part of the 11d SUGRA action involving AdS7

directions fall off sufficiently fast so as to not modify the boundary equations of motion.

For the solutions in eqs. (5.16) and (5.19), it suffices to show the fall-off conditions for
the single charge case. Setting q2 → 0 and a2 → 0, transforming ϕI → φI − 2aIz, and
mapping to FG gauge as in appendix B.1.1, a quick computation shows the small u
behaviour to be (up to overall numerical prefactors)

FMNP
a FbMNP ∼ c2

θgab + . . . ,

FMNP
φ1 Fφ1MNP ∼ s2

θ + . . . ,

FMNP
θ FθMNP ∼ 1 + . . . ,

FMNP
z FzMNP ∼ q2

1(13− 5c2θ)u
8 + . . . ,

FMNP
z Fφ1MNP ∼ q1s

2
θu

4 + . . . ,

FMNP
y FyMNP ∼ q2

1s
2
2θu

12 + . . . ,

(5.38)

where gab are components along the S2 ⊂ S4 and the AdS5 components of the variation
vanish. From the zz- and zφ1-components of the variation of F 2

4 , we can see that the
contributions to the boundary equations of motion dies at worst as u4 as u→ 0. The
analysis of the two-charge solution follows similarly, and so we can proceed using (5.36a)
without modification. Allowing for q2 ̸= 0 modifies the variation of FMNPQF

MNPQ but
crucially does not introduce any leading terms in the small u expansion.

11Note that the differences in sign are due the fact that we are using the convention that, in units of
L2d, the scalar curvature R < 0 for a space of constant “negative curvature”; whereas the authors of
[325] use the opposite convention, R > 0.
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Now that we have established that the variation of F 2
4 decays sufficiently fast near the

AdS7 boundary, we can proceed using the logic of [325] recapped above to compute ⟨Tij⟩.
To do so, we first map (5.16) to FG gauge as in (B.4), which we reproduce here for
clarity

ds2
FG =

L2

u2 (du
2 + α̂AdSds

2
AdS5 + α̂zdz

2) + L2s2
θα̂zφ1dzdφ1 + L2c2

ℵc
2
θα̂zφ2dzdφ2

+
L2

4 (α̂θdθ
2 + s2

θα̂φ1dφ
2
1 + c2

θ(α̂ℵdℵ2 + c2
ℵα̂φ2dφ

2
2) + α̂θℵdθdℵ).

The α̂ metric functions are given in (B.6). In order to put the dimensionally reduced
metric in the form of (5.32), we then write ds2

FG as a fluctuation around AdS7 × S4

ds2 = (g(0)µν + hµν)dx
µdxν (5.39)

where

g(0)µν dx
µdxν =

L2du2

u2 +
L2

u2

(︄(︄
1 + u2

2 +
u4

16

)︄
ds2

AdS5 +

(︄
1− u2

2 +
u4

16

)︄
dz2

)︄
+
L2

4 dΩ2
4.

(5.40)

Using the expressions in (B.6), we can compute the zero modes of the fluctuations
around the AdS7 directions

h̄7 =− 2L2(q1 + q2)

15 u4(ds2
AdS5 − 5dz2). (5.41)

Similarly, the trace fluctuations on the S4 are found to be

ς =
10q2c2ℵc

2
θ + 5(q2 − 2q1)c2ℵ + 2q1 − 3q2

8 u4 + . . . . (5.42)

Integrating the internal space fluctuations over the S4 gives ς̄ = 0. The vanishing of the
zero modes of the trace fluctuations means that the dimensionally reduced metric is
already in FG form. The resulting stress-energy tensor one-point function is

⟨Tij⟩ dxidxj =
N3

192π3

[︃
1− 32

5 (q1 + q2)

]︃ (︂
ds2

AdS5 − 5dz2
)︂

. (5.43)

In order to isolate the holographic quantities associated with the defect, we will subtract
off the value of ⟨T (vac)

ij ⟩ computed using vacuum AdS7 × S4. Note that, taking qI → 0 in
(5.41) kills the fluctuations and gives the exact AdS7 metric upon dimensional reduction,
as expected. So, taking qI → 0 in (5.43) yields the vacuum 1-pt function

⟨T (vac)
ij ⟩ dxidxj = N3

192π3

(︂
ds2

AdS5 − 5dz2
)︂

. (5.44)

Subtracting this vacuum contribution from (5.43) computes the change in the
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Figure 5.2: The solutions to the constraint in (5.15) for n̂ = 1 (red), n̂ = 2 (blue),
and n̂ = 3 (green) on the (q1, q2) plane, reproduced from [3, 4]. The shaded regions
correspond to the two-charge configurations for which Q(y) = 0 admits no real solutions

(region I) or which violate the defect ANEC (region II).

stress-energy tensor one-point function due to the introduction of the holographic dual
to the field theory defect:

∆ ⟨Tij⟩ dxidxj = −
N3(q1 + q2)

30π3 (ds2
AdS5 − 5dz2), (5.45)

which recovers the results in [3] up to subtraction of the contribution from the
AdS7 × S4 vacuum. Using (5.3) we arrive at

hT =
N3(q1 + q2)

30π3 (5.46)

Thus, one of the B-type anomaly coefficients for 1/4-BPS co-dimension 2 operators in a
6d N = (2, 0) AN−1 SCFT holographically described by the two-charge solutions is
found to be

d2 = −1
6N

3(q1 + q2). (5.47)

Recall that in (5.15), we found that the linear combination q1 + q2 ≥ 0 for all n̂.
Further, we know that (5.6) implies d2 ≤ 0, and so all of the two-charge solutions
studied in [3, 4] are consistent with the defect ANEC. In figure 5.2, we reproduce the
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curves for solutions obeying (5.15) as appears in [3, 4] together with the region excluded
by consistency with defect ANEC. We see that, indeed, all of the n̂ = 1, 2, 3 solutions
lie above the line q1 + q2 ≥ 0 with only n̂ = 1 saturating the bound at q1 = q2 = 0.

5.3.2 Electrostatic solutions

Prior to approaching the holographic computation of ∆ ⟨Tij⟩ for the electrostatic
solutions using the methods outlined above, we again must verify that the boundary
equations of motion in the dimensionally reduced geometry are unmodified by the
four-form flux. From (5.21b), we can compute F4. For brevity, we will immediately
define r = ϱcω and η = ϱsω to map (5.21b) into (ϱ,ω) coordinates on the internal space
and adopt (z,φ) using (B.14) as our angular coordinates and compute the large ϱ
expansion to leading order in each component

F4
2κ11

=

[︄
c2
ωs

3
ω

5m3 − 2m3
1

ϱ3 dϱ∧ dz + 3cωs2
ωm1dω ∧ dz (5.48)

+ s3
ω

4(m3 −m3
1)

ϱ3 dϱ∧ dφ+ cωs
2
ω

6(m3
1 −m3)

ϱ2 dω ∧ dφ
]︄
∧ vol(S2) + . . .

where we have fixed Cz = −2 following the discussion in appendix B.1.2.

Now, we can check the fall off of the contribution of the variation of F 2
4 to the equations

of motion. Keeping Cz = −2 fixed and transforming into FG gauge, we find the leading
behaviour in the small-u expansion (up to numerical factors)

FuMNPFu
MNP ∼ s2

2θ(m
3
1 −m3)

2u6 + . . . ,

FzMNPFz
MNP ∼ (13− 5c2θ)(m

3
1 −m3)

2u8 + . . . ,

FφMNPFz
MNP ∼ (m3

1 −m3)s
2
θu

4 + . . . ,

FaMNPFb
MNP ∼ gS4 + . . . ,

(5.49)

where a, b are indices for S4 coordinates {θ,φ,S2}, gS4 is the metric on the unit S4 in
S1 × S2 fibration. Note that the variations in the AdS5 directions vanish identically. So,
in the u→ 0 limit, there are no surviving contributions to the equations of motion in
the dimensionally reduced geometry coming from the variation of the F 2

4 term.

We can now proceed with [325]. First, we rewrite the metric in (B.16) as fluctuations
around AdS7 × S4. The perturbation away from AdS7 × S4 takes the form

h11 =
L2

u2

(︃
αAdS − 1− u2

2 −
u4

16

)︃
ds2

AdS5 +
L2

u2

(︃
αz − 1 + u2

2 −
u4

16

)︃
dz2

+
L2

4 (αθ − 1)dθ2 +
L2s2

θ

4 (αφ − 1)dφ2 +
L2c2

θ

4 (αS2 − 1)dΩ2
2 + L2s2

θαzφdzdφ.

(5.50)
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Fixing χ = −z −φ and β = 2z + φ, we can compute the zero modes for the AdS7 part
of the fluctuations,

h̄7 = L2m3 −m3
1

30m3
1
u4ds2

AdS5 + L2m
3
1 −m3
6m3

1
u4dz2 + . . . . (5.51)

The trace S4 fluctuations are found to be

ς = (1− 5c2θ)
m3

1 −m3
16m3

1
u4 − 11(1− 5c2θ)

m3
1 −m3

216m3
1
u6 + . . . . (5.52)

Integrating ς over the S4, we find the zero modes ς̄ = 0. The reduced geometry

g7 =

(︃
1 + ς̄

5

)︃
g(0) + h̄7 (5.53)

is thus already in FG form. So, the dimensionally reduced metric is

ds2
7 =

L2

u2

[︄
du2 +

(︄
1 + u2

2 +
u4

16 +
(m3 −m3

1)u
6

30m3
1

)︄
ds2

AdS5

+

(︄
1− u2

2 +
u4

16 +
(m3

1 −m3)u6

6m3
1

)︄
dz2

]︄
,

(5.54)

where we have suppressed higher powers of u. From this expression for ds2
7, we can

easily read off g(0), g(2), g(4), and g(6). Note if we take n = 1 and k1 = 1, then
m3 = m3

1 = N3/8, and so in this limit, (5.54) reduces to the exact AdS7 metric, which
is expected from eqs. (5.21a), (5.23), and (5.28).

Proceeding with the computation in the same way as the previous subsection, we find
that the holographic stress-energy tensor one-point-function takes the form

⟨Tij⟩ dxidxj = −
N3(3m3

1 − 8m3)

960π3m3
1

(︂
ds2

AdS5 − 5dz2
)︂

. (5.55)

Regulating this result by subtracting the AdS7 × S4 vacuum contribution ⟨T (vac)
ij ⟩ in

(5.44) produces

∆⟨Tij⟩ dxidxj = −
N3(m3

1 −m3)

120π3m3
1

(︂
ds2

AdS5 − 5dz2
)︂

. (5.56)

As a quick check, computing the trace of (5.56) gives ∆
⟨︁
T ii
⟩︁
= 0 as expected due to

defect conformal symmetry. Comparing (5.56) to (5.3), we find

hT =
m3

1 −m3
15π3 . (5.57)
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We can thus read off the defect Weyl anomaly coefficient d2 from (5.5):

d2 = −m
3
1 −m3

3 (5.58a)

= − 1
24

(︄
N3 −

∑︂
a

N3
a

k2
a

)︄
, (5.58b)

where in the second line we have rewritten d2 in terms of the parameters Na and ka

which are more suitable for comparison to field theory. For any partition of N =
∑︁
aNa,

it is clear that d2 ≤ 0. The upper bound d2 = 0 is only saturated in the vacuum case
n = 1, k1 = 1 where there is no defect.

There is a non-trivial consistency check on the value of d2 in the n = 1 case. As
mentioned above, the 11d uplift of the 1/2-BPS one-charge solutions is related to the
single-kink electrostatic solutions by setting n = 1 and k1 = 1/

√
1− 4q1. Plugging these

values into in to (5.58b) results in d2 = −N3q1/6. Checking this against the one-charge
solutions found by taking q2 → 0 in (5.47), we also find d2 = −N3q1/6. Thus, the
values of d2 computed in the two-charge and n-kink electrostatic solutions are consistent
in this limit.

5.4 Defect sphere EE and the defect A-type anomaly

In the following subsections we will use the techniques developed in [323, 324] to
holographically compute the defect contribution to the EE of a spherical region in the
dual 6d AN−1 N = (2, 0) SCFT at large N for both the 1/4-BPS two-charge and
1/2-BPS electrostatic co-dimension 2 defects. Leveraging the results of the previous
section and eqs. (5.7) and (5.8), we will be able to compute the defect A-type anomaly
aΣ.

To facilitate the discussion below, let us briefly review some of the relevant background
concepts for defect EE. We will restrict our discussion here to the holographic duals to
6d (D)SCFTs.

To start, we will need the Ryu-Takayanagi (RT) formula for holographic EE [48–50],
which we write agnostic to the presence of a defect as

SEE =
Amin
4GN

. (5.59)

The quantity Amin is the area of the extremal surface that minimises the bulk area
functional subject to the condition that the surface anchored at the conformal boundary
of AdS7 is homologous to the entangling region in the dual theory. For our computations
below, we take the entangling region in the 6d SCFT at a fixed time slice to be a
Euclidean 5-ball B = B5 ↪→ R5 of radius R. When we consider the theory deformed by
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a flat embedding of a Lorentzian defect on Σ = R1,3, we will take the defect to be
co-original with the entangling surface such that ∂B ∩ Σ = S2 sitting along the equator
of ∂B.

By including a defect in the field theory, there are subtleties that arise in directly
applying (5.7). On the field theory side, SEE will now have short-distance divergences
near ∂B due to highly entangled UV modes in both ambient and defect localised
theories. In the holographic description, one needs to adopt a suitable regularization
scheme that isolates the defect contribution to SEE; we will use a background
subtraction scheme (SEE[Σ]− SEE[∅]) akin to the one used in computing the
holographic stress-energy tensor one-point function. One further complication in the
holographic computation is the fact that the FG expansion is generally not globally
defined, and so one must be careful to find the asymptotic form of the map to FG gauge
in order to define the UV cutoff slice at fixed AdS7 radius Λ≫ L. A general formula for
finding the asymptotic form of the FG transformation and cutoff slice was found in [323],
which we will use in the computations below.

Since we are considering a spherical entangling region, the solution for Amin takes a
particularly simple form; even in the presence of a defect. It was shown in [324] that for
a bulk geometry realizing the defect symmetry group SO(2, d− d)× SO(d), the relative
warp factors of the AdSd+1 and Sd−1 spaces are largely immaterial, and the logic of [370]
can be generalised to prove (5.7) for these backgrounds. In the process, the authors of
[324] proved that for the holographic defect spherical EE the surface Amin is simply a
hemispherical region extending into the bulk anchored at B. For the 11d backgrounds
corresponding to both the two-charge and electrostatic solutions that we consider, if we
write the line element on the AdS5 in the form

ds2
AdS5 =

1
w2 (dw

2 − dt2 + dr2
∥ + r2

∥dΩ2
2) , (5.60)

then Amin is the surface w2 + r2
∥ = R2. We will exploit the simplicity of the minimal

surface to great effect in the subsequent computations.

5.4.1 Two-charge solutions

To begin computing the defect spherical EE for the two-charge solutions, we need to
express the area functional A in terms of the metric functions, f̂ in (5.16) with the AdS5

factor written as in (5.60). Evaluating on the extremal surface r2
∥ +w2 = R2, we

regularise the w integration by introducing a UV cutoff ϵw ≪ 1 and performing the
integral over the angular coordinates ϕ1,ϕ2 and z to obtain

Amin[Σ] = 8π4L9R

∫︂ ∞

ϵw
dw

√
R2 −w2

w3 I = 4π4
(︄
R2

ϵ2w
− log 2R

ϵw
+ . . .

)︄
I , (5.61)
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where we have defined the remaining integral

I ≡
∫︂
dψ dζ

∫︂ Λy(ϵu,ψ,ζ)

y+
dy f̂

3
AdSfy

√︃
(4f̂2

ψf̂
2
ζ − f̂

4
ψζ)(f̂

2
ϕ1 f̂

4
zϕ2 + f̂

2
ϕ2 f̂

4
zϕ1 − 4f̂2

ϕ1 f̂
2
ϕ2 f̂

2
z) .

(5.62)

Despite the initially complicated appearance of the integrand upon substituting the form
of the metric functions in (B.1), we find after a bit of algebra that the remaining integral
drastically simplifies to

I =
1
8

∫︂
dψ dζ cψc

2
ζsζ

∫︂ Λy(ϵu,ψ,ζ)

y+
dy y. (5.63)

Using the double-cutoff prescription to compute I as in [308, 323], we first map the
radial coordinate y to the FG coordinate u leaving the remaining angular coordinates ψ
and ζ in their original frame. We then impose a cutoff ϵu ≪ 1, which induces a cutoff in
large y, Λy(ϵu,ψ, ζ). Recalling the asymptotic FG map in appendix B.1.1 used in the
previous section and recasting the FG angular coordinates ℵ, θ in terms of ψ, ζ, we find
that

Λy(ϵu,ψ, ζ) = 1
ϵ2u

+
1
2 +

3− 10q1 − 9q2 − 2q2c2ψc
2
ζ + (2q1 − q2)c2ζ

48 ϵ2u + . . . . (5.64)

Evaluating the integral I with this cutoff is straightforward, yielding

I =
1

24ϵ4u
+

1
24ϵ2u

+
1

960 (15− 16(q1 + q2)− 40y2
+) + . . . (5.65)

In order to find the contributions coming from the defect, we must regulate the ϵu
divergences present in Amin. In order to do so, we employ the same vacuum subtraction
scheme as was used in computing ∆ ⟨Tij⟩ above. For the two-charge solution, the
vacuum is obtained by setting q1 = q2 = 0 and a1 = a2 = 0, which sets y(vac)

+ = 1.
Recomputing Amin[∅] for the vacuum solution and subtracting it from Amin[Σ], the
regulated area functional gives

Amin[Σ]−Amin[∅] = −
π4L9

30 (2q1 + 2q2 + 5(y2
+ − 1))

(︄
R2

ϵ2w
− log 2R

ϵw
+ . . .

)︄
, (5.66)

free from ϵu divergences.

In order to compute aΣ for the defect theory, we insert (5.66) in (5.59). Mapping to field
theory quantities by L3 = 4πNℓ3P and GN = 24π7ℓ9P , we can read off the coefficient of
the universal part of the defect sphere EE from (5.59)

−R∂R(SEE[Σ]− SEE[∅])|R→0 = −N
3

30 (2(q1 + q2) + 5(y2
+ − 1)). (5.67)
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Hence, using d2 = −N3

6 (q1 + q2) derived above in (5.8) we find

aΣ =
N3

24 (1− y2
+). (5.68)

One interesting consequence of this computation is that one can show that A-type
anomaly of the general two-charge solution must satisfy aΣ ≥ 0. To see this more clearly,
recall from (5.15) that

y+ ≤
3n̂+ 1

4n̂ ≤ 1. (5.69)

The second inequality follows from n̂ ∈N, and so the upper bound is saturated only for
n̂ = 1. Thus, for all consistent two-charge solutions, aΣ ≥ 0.

5.4.2 Electrostatic solutions

Continuing with the logic used in the previous subsection, we now turn our attention to
the electrostatic solutions. Our starting point for the computation is in transforming the
metric in (5.21a) using (B.14) and reading off the metric functions. Since only Cz = −2
gives an asymptotic form for the metric suitable for mapping into FG gauge, we fix the
transformation χ = −z −φ and β = 2z + φ and arrive at

ds2
11 = f2

AdSds
2
AdS5 + fS2dΩ2

2 + f2
z dz

2 + f2
φdφ

2 + f2
zφdzdφ+ f2

ϱdϱ
2 + f2

ωdω
2. (5.70)

We will also write the AdS5 line element as in (5.60).

Plugging in the expression for the minimal surface, r2
∥ +w2 = R2, into the area

functional, we first integrate over the two S2 factors as well as the angular coordinates
z ∈ [0, 2π] and φ ∈ [0, 2π], which yields

Amin[Σ] = 32π4R

∫︂
dw

√
R2 −w2

w3 I [Σ] . (5.71)

where

I [Σ] ≡
∫︂ π/2

0
dω

∫︂ Λϱ(ϵu,ω)

0
f3

AdSf
2
S2fωfϱ

√︂
4f2
z f

2
φ − f4

zφ . (5.72)

Note that we have introduced the large ϱ cutoff, Λϱ, that was induced by the small u
cutoff in FG gauge ϵu:

Λϱ(ϵu,ω) =2m1
ϵ2u

+
2m3

1s
2
ω − (1 + 5c2ω)m3

48m2
1

ϵ2u + s2
ω

m3 −m3
1

36m2
1
ϵ4u + . . . . (5.73)
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Since the metric functions f are independent of w, the w integral can be performed over
[ϵw,∞), where ϵw ≪ 1,

Amin[Σ] = 16π4
(︄
R2

ϵ2w
− log 2R

ϵw
+O(ϵ0w)

)︄
I [Σ] . (5.74)

Using the expressions for the metric functions in (5.21a) in terms of the potential, we
find that I can be expressed as a total derivative. To see this more clearly, we note that
in (ϱ,ω) coordinates

I [Σ] = 64κ3
11

∫︂ π/2

0
dω

∫︂ Λϱ(ϵu,ω)

0
dϱ ϱ2cωV̇ V

′′ . (5.75)

Switching to (r, η) coordinates and using the Laplace equation V̈ = −r2V ′′, we arrive at

I [Σ] = −32κ3
11

∫︂ Λη

0
dη

∫︂ Λr

0
dr ∂rV̇

2 , (5.76)

where we have mapped the asymptotic cutoff in ϱ back to the (r, η) frame,

Λr = Λϱ(ϵu,ω)cω , Λη = Λϱ(ϵu,ω)sω . (5.77)

The remaining integral in I is identical to the one found in computing the central charge
for the compact electrostatic solutions in [339] and again in [4]. For clarity, let us
analyze I in detail here. We can integrate the total derivative in (5.76) and find that the
surviving contributions come from the boundary of the region in the ϱ− ω quarter-plane
spanned by the η-axis at ω = π/2 and the contour at fixed ϱ = Λϱ between ω = 0 and
ω = π/2. The integral along the η-axis can be decomposed into the regions of
η ∈ [0, ηn] and η ∈ [ηn, Λϱ(ϵu,π/2)]; in the latter region, the line charge density takes
the form λ(η) = η +m1. In all,

I [Σ]
32κ3

11
=
∫︂ ηn

0
dηϖ(η)2⏞ ⏟⏟ ⏞
I1

+
∫︂ Λϱ(ϵu,π/2)

ηn

dη(η +m1)
2

⏞ ⏟⏟ ⏞
I2

−
∫︂ ω=π/2

ω=0
V̇

2
⃓⃓⃓⃓
Λr

d(Λρ(ϵu,ω))⏞ ⏟⏟ ⏞
I3

, (5.78)

where V̇ 2
⃓⃓⃓⃓
Λr

in I3 is held at fixed r = Λr in the integration over ω.

Let’s take each of the I’s individually, starting with I2. Performing the integral is trivial
and leads to the small ϵu expansion

I2 =
8m2

1
3ϵ6u

+
4m3

1
ϵ4u

+
13m3

1 + 2m3
6ϵ2u

+
8m3 +m3

1 − 18m2
1ηn − 18m1η

2
n − 6η3

n

18 + . . . . (5.79)

The integral I3 can also be easily taken. First, we expand the integrand using the large
ϱ expansions of the potential in (B.10). Then after computing dΛr(ϵu,ω), we expand in
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small ϵu and integrate term-by-term in ω ∈ [0,π/2], which gives

I3 =
8m3

1
3ϵ6u

+
8m3

1
3ϵ4u

+
5m3

1 + 2m3
6ϵ2u

+
m3

1 + 14m3
45 + . . . . (5.80)

Combining I2 and I3, we see

I2 − I3 =
4m3

1
3ϵ4u

+
4m3

1
3ϵ2u

+
4m3 +m3

1 − 10ηn(η2
n + 3ηnm1 + 3m2

1)

30 + . . . . (5.81)

Lastly, we need to take care of the integral I1. To do so, we break up the the integral
over η ∈ [0, ηn] into a sum over the intervals [ηa, ηa+1] for a = 0, . . . ,n− 1 with η0 = 0.
Then, using ϖa = pa+1η + δa+1 over each interval we find

I1 =
1
3

n−1∑︂
a=0

(︂
p2
a+1(η

3
a+1 − η3

a) + 3δa+1pa+1(η
2
a+1 − η2

a) + 3δ2
a+1(ηa+1 − ηa)

)︂
. (5.82)

Combining everything we get

I [Σ]
32κ3

11
=

4m3
1

3ϵ4u
+

4m3
1

3ϵ2u
+

4m3 +m3
1

30 +
1
3

n∑︂
a=0

(p2
a+1η

3
a+1 − η3

a)

+
n∑︂
a=0

δa+1pa+1(η
2
a+1 − η2

a) +
n∑︂
a=0

δ2
a+1(ηa+1 − ηa),

(5.83)

where we slightly abuse the notation by setting ηn+1 = 0 in this sum to make the
expressions a bit more compact.

The ϵu divergences in I [Σ] need to be regulated. We again adopt the background
subtraction scheme as before, where the background vacuum AdS7 × S4 solution is
obtained by taking n = 1 and k1 = 1. Taking this limit in (5.83) yields

I [∅]
32κ3

11
=

4m3
1

3ϵ4u
+

4m3
1

3ϵ2u
− 5m3

1
6 + . . . . (5.84)

We then arrive at the expression for the regulated I:

I [Σ]−I [∅]
32κ3

11
=

2m3 + 13m3
1

15 +
1
3

n∑︂
a=0

p2
a+1(η

3
a+1 − η3

a) +
n∑︂
a=0

δa+1pa+1(η
2
a+1 − η2

a)

+
n∑︂
a=0

δ2
a+1(ηa+1 − ηa)),

(5.85)

which recovers the result of the integral for the non-compact electrostatic solutions in [4].
Thus, the regulated minimal area is given by

Amin[Σ]−Amin[∅] = 29π4κ3
11

(︄
R2

ϵ2w
− log 2R

ϵw
+O(1)

)︄
(I [Σ]−I [∅]). (5.86)
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Proceeding with the computation of aΣ, we feed (5.86) in (5.59) to get SEE. Computing
the log derivative with respect to R of the regularised minimal area functional at R = 0
gives the universal part of defect entanglement entropy

R∂R(SEE[Σ]− SEE[∅]) =− (I [Σ]−I [∅]), (5.87)

where we mapped to the field theory variables using G(11)
N = 213π4κ3

11 and κ11 = L3/8N .
Using (5.8) we can read off the A-type anomaly coefficient using d2 = −1

3 (m
3
1 −m3)

aΣ =
(
∑︁n
a=1 kaηa)

3

4 +
1
12

n∑︂
a=0

(p2
a+1(η

3
a+1 − η3

a) + 3δa+1pa+1(η
2
a+1 − η2

a) + 3δ2
a+1(ηa+1 − ηa)).

(5.88)

Recall that the ηa are ordered by 0 = η0 < η1 < . . . < ηn, and so (ηja+1− ηja) > 0 for any
j ∈N and for all a. Further, the orbifold parameters are non-negative ka ∈N, and so
by definition are the pa, and in addition 2δa ∈N. Hence, we see that aΣ ≥ 0. Note that
the inequality is saturated at n = k1 = 1 i.e. aΣ = 0, which is expected since this line
charge density configuration corresponds to having no defect.

For completeness, we can rewrite aΣ in terms of the ranks, Na, of the factors in the Levi
subalgebra l ⊂ AN−1 and their associated monopole charges, ka,

aΣ =
N3

32 −
1
96

n∑︂
a=1

⎛⎝1 + 2ka
k2
a

N3
a +

n∑︂
b=a+1

Nakb

(︄
N2
a

k2
a

+ 3N
2
b

k2
b

)︄⎞⎠ . (5.89)

While the definite sign of aΣ is a bit less clear in terms of the gauge algebra data, it is
nonetheless non-negative following from (5.88).

As we mentioned toward the end of section 5.3.2, there is a non-trivial consistency check
of our results in (5.88) from the comparison to the one-charge (q2 → 0) solutions.
Setting n→ 1 and k1 → 1/

√
1− 4q1 in (5.88) results in

aΣ

⃓⃓⃓
n=1

=
N3

48
(︂
1 + 2q1 −

√︁
1− 4q1

)︂
. (5.90)

Looking back to the computation of aΣ for the two-charge solutions, we need the largest
root of Q(y) with q2 → 0, which is simply y+(q1) =

1
2 (1 +

√
1− 4q1). Plugging y+(q1)

into (5.68) exactly matches (5.90).

We now compare aΣ to the computations of the ‘defect central charge’ for these
solutions. The ‘defect central charge’ was computed in [4] using the standard formula for
the central charge c of standalone 4d N = 2 SCFTs at large N holographically dual to
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AdS5 solutions in M-theory [371]

c =
25π3κ3

11
(2πℓP )9

∫︂
M6

(︄
V̇ σ

2V ′′

)︄ 3
2

, (5.91)

which applies to 11d metrics of the form

ds2
11 =

(︄
κ2

11V̇ σ

2V ′′

)︄ 1
3

(ds2
AdS5 + ds2

M6). (5.92)

This formula had been used to find the holographic central charge dual to electrostatic
solutions with compact internal space engineering irregular punctures [339, 372]. Despite
the integrals in eqs. (5.85) and (5.91) having the same form, the crucial difference is in
the interpretation of the result: the relative difference between aΣ and c is a factor of
−2d2/5.

Lastly, while monotonicity of the universal part of the defect sphere EE has yet to be
tested for 4d dCFTs, in the case of a co-dimension 4 Wilson surface in 6d SCFTs the
universal defect contribution to the sphere EE does not behave monotonically under
defect RG flows (see e.g. [373]). Due to the relative sign in ∆SEE and the fact that only
aΣ is known to obey a weak defect a-theorem12, it is expected that (5.87) is not a
monotone along defect RG flows.

5.5 Discussion

In this work, we have analysed solutions in 11d SUGRA that holographically describe
1/4− and 1/2−BPS co-dimension 2 defects in the 6d AN−1 N = (2, 0) SCFT at large
N .

Our holographic computations of the defect contribution to the one-point function of the
stress energy tensor have revealed simple expressions for the defect Weyl anomaly
coefficient d2 in section 5.3. For the 1/4-BPS two-charge solutions specified by charges
q1, q2, we have found that d2 ∝ N3(q1 + q2). For the 1/2-BPS electrostatic solutions
determined by a potential solving a Laplace-type equation with moments mj ,
d2 ∝ (m3

1 −m3) ∼ N3 −
∑︁
aN

3
a where N =

∑︁
aNa. Using the 4d form of the defect

ANEC, which states d2 ≤ 0, we have demonstrated that all of the allowed two-charge
solutions found in [3] and the electrostatic solutions in [4] obey the bound and are thus
consistent with this known defect energy condition [354]. We were also able to compare
against a similar computation for the two-charge solutions done in 7d N = 4 gauged
SUGRA, and found an agreement with ⟨Tij⟩ in [3].

12The recent entropic proof in [354] of the irreversibility of defect RG flows in addition to the dilaton
effective action methods (à la [40]) in [374] have firmly established the existence of at least a weak defect
a-theorem.
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In section 5.4, we used the tools developed in [323, 324] to holographically compute the
contribution of flat, co-dimension 2 defects to the EE of a spherical region in the dual
field theory. By isolating the universal, log-divergent part of the defect sphere EE, we
were able to find closed form expressions for the A-type anomaly aΣ for both defect
systems considered. Since we know that the universal part of the defect sphere EE, is a
linear combination of aΣ and d2 as in (5.7), by combining ∆ ⟨Tij⟩ and ∆SEE, we have a
direct computation of aΣ: for the two-charge solutions we found aΣ ∝ N3(1− y2

+) where
y+ is the largest root of the quartic polynomial in (5.12b), while aΣ for the electrostatic
solutions in (5.88) is a complicated function of the data of the line charge distribution
that specifies the solution. For the electrostatic solutions, we have shown that the
computation of the holographic ‘central charge’ in [4] is proportional to the universal
part of the defect sphere EE. Further, we were able to show that the complicated sum
over line charge density data that appears in aΣ is the same sum that determines the
large N ‘central charge’ c(= a) for the compact electrostatic solutions describing 4d
N = 2 SCFTs; the important difference is that the defect aΣ has an additional
contribution of N3/32. In both classes of defects, we have also shown that aΣ ≥ 0,
where the inequality is only saturated for a trivial defect.

Curiously, in appendix B.2, we showed that the holographically renormalised on-shell
action for the 11d uplift of the two-charge solutions using the full form of the radial
cutoff in FG gauge and found that the log divergent part of the action cannot be written
in terms of either aΣ, as was expected from the same computation done in 7d gauged
SUGRA description of the two-charge defects [3], d2, or a linear combination of them.
The reason for this discrepancy is unclear at this time, but may be related to the
insufficiency of the background subtraction scheme for the on-shell action, which
highlights a need for a full covariant holographic renormalization scheme for ‘defects’ in
11d SUGRA.

With the holographic predictions for aΣ and d2 in hand, let us compare to results in the
field theory at large N . We will focus entirely on the 1/2-BPS electrostatic solutions in
the following comparisons.

Defect supersymmetric Casimir energy

In ordinary 4d SCFTs with R-symmetry placed on S1
β × S3, the supersymmetric

localised partition function can be decomposed as a product of an exponential prefactor
multiplying the superconformal index

ZS1
β

×S3 = e−βECI. (5.93)

The supersymmetric Casimir energy (SCE), EC , can be expressed in terms of the
conformal anomalies a and c [53, 375] of the theory, the equivariant integral of the
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anomaly polynomial [376], or ‘t Hooft anomalies [377]. Given the results in [284] for the
localised partition functions a 1/2-BPS co-dimension 2 defect in a 6d N = (2, 0) AN−1

SCFT labelled by ϑ wrapping Σ = S1
β × S3 ⊂ S1

β × S5, it was conjectured in [310] that
the change in the exponential prefactor due to the introduction of the defect was in fact
the defect SCE and could be related to defect conformal anomalies13. Now that we have
holographic predictions for two defect anomalies, we can look for a superficial match to
this field theory quantity.

As a very brief overview, we start the comparison by putting the ambient theory on the
squashed S1

β × S5
b and reducing along the S1 factor. The localised partition function of

the 6d N = (2, 0) AN−1 SCFT in the unrefined limit becomes the partition function of
5d N = 2 U (N ) super-Yang-Mills theory on S5

b , which determines the ambient SCE

EC [∅] ≡
c

24 , where c = N (N2 − 1)(b+ b−1)2 +N − 1. (5.94)

The quantity c in this picture is the central charge of the 2d WN -algebra on the plane
orthogonal to the directions that defect will eventually wrap [284, 332]. The
introduction of a co-dimension 2 defect breaks the gauge algebra to the Levi subalgebra
l = s [

⨁︁n
a=1 u(Na)]. The most general 1/2-BPS defect configuration allows for

monodromy parameters w⃗ = (w1, . . . ,wn) for the Levi factors. The change in the SCE
due to introducing the defect along Σ labelled by ϑ : sl(2)→ g with monodromy
parameters w⃗ was found to be given by [284, 310]

EC [Σ]ϑ,w⃗ −EC [∅] =
1
2 (b+ b−1)2[(ϱ̂l, ϱ̂l)− (ϱ̂g, ϱ̂g)] +

1
2 (w⃗, w⃗), (5.95)

= −1
6

(︄
N3 −

n∑︂
a=1

N3
a − 3(w⃗, w⃗)

)︄
.

In the second line we took the limit b→ 1, and replaced the scalar product of the Weyl
vectors – denoted ϱ̂l and ϱ̂g for l and g = su(N ), respectively – with

(ϱ̂l, ϱ̂l) =
1
12

n∑︂
a=1

(N3
a −Na), (ϱ̂g, ϱ̂g) =

1
12 (N

3 −N ). (5.96)

Turning off the monodromy parameters14 (wa = 0) in (5.95) we see the superficial
relation

EC [Σ]ϑ,0⃗ −EC [∅] = 4d2|ka→1 , (5.97)

13Evidence for a version of this conjecture for d = 2 defects gathered from studying various examples
appeared to support the claim, and in [328], a relation between the SCE and hT was established using
the chiral algebra description of the defect insertion, which gives a much stronger argument for EC being
controlled by d2. We thank Maxime Trépanier for pointing out the chiral algebra proof in [328] to us.

14In light of the compact LLM-type solutions found recently in [378] where the additional internal U(1)
symmetry is broken by the presence of scalar fields, which are interpreted as monodromy parameters, it
may be possible to pin down a more precise relation between EC and defect anomalies by computing
⟨Tµν⟩ if similar non-compact solutions allowing for wa ̸= 0 can be constructed.
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where on the right hand side we take all orbifold parameters ka → 1 in (5.58b).

Since the expression for the defect SCE in terms of explicit defect Weyl anomalies is still
unknown and 4d dCFTs have 23 possible parity even anomalies, we cannot definitively
state that the defect SCE is determined solely by d2. We note, though, that a similar
relation was found for co-dimension 4 Wilson surface defects: the defect SCE in that
case was also related to the 2d dCFT equivalent of d2. Since 2d dSCFT preserving at
least N = (2, 0) supersymmetry have only two independent Weyl anomalies15, which for
the Wilson surface defect can be clearly distinguished from one another [51], it was
conjectured that d2 alone fixed the defect SCE [310]. So, while it is not inconceivable
that d2 could appear in the defect SCE for co-dimension 2 defects, we leave establishing
the precise relation for future work.

R-anomalies

Ordinarily in 4d SCFTs, there are non-perturbative formulae that relate the A-type and
B-type Weyl anomalies to ‘t Hooft anomalies for the superconformal R symmetry [351].
In [374], it was conjectured that aΣ obeys the same relation to defect R-anomalies as a
standalone theory16:

aΣ =
9krrr − 3kr

32 , (5.99)

where krrr and kr are the cubic and mixed U (1)r R-anomalies. Importantly for the
defect theory written in 4d N = 1 language, the superconformal rΣ symmetry is a linear
combination of the Cartan generator of the ambient SU (2)R R-symmetry and the
generator of normal bundle rotation Mφ [374]

rΣ =
2
3 (2r6d −Mφ). (5.100)

It was further stated in [374] that precisely for the types of defects holographically
described by the electrostatic solutions considered above, in order to determine the R
and mixed anomaly we should use the counting formulae [331]

krrr =
2
27 (nv − nh) +

8
9nv, kr =

2
3 (nv − nh), (5.101)

15This was first proven for superconformal surface defects in 4d N = 2 SCFTs in [327], and later, it
was proven for 2d defects in the 6d N = (2, 0) theory in [311].

16It was also conjectured that a B-type defect anomaly built out of the square of intrinsic Weyl tensor
(cΣ|W̄ |2) obeys the usual relation [351]

cΣ =
9krrr − 5kr

32 . (5.98)

However, the basis used in [34] did not include |W̄ |2. From the Gauss-Codazzi and Ricci relations, |W̄ |2
is related to several anomalies in the original basis (none of which include d2). So it is unclear at the this
time, what observables can be used to compute cΣ. Though it is reasonable to expect that the defect
limit of ⟨TµνTρσ⟩ may be the appropriate correlator to compute cΣ, proving this is the subject of future
work.
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where nv is the number of 4d vector multiplets and nh is the number hypermultiplets. In
turn, both nh and nv are determined by the Young diagram data.

As we have pointed out around (5.88), the defect A-type anomaly contains a
contribution that is precisely of the form of the central charge c of 4d SCFTs engineered
from irregularly punctured Riemann surface compactifications of 6d N = (2, 0) AN−1

series SCFTs dual to electrostatic solutions of the type studied above. Further, in
[331, 339], a match was found between the holographic computation of c of the dual 4d
SCFT and the large N behaviour of the central charge computed in the field theory
using the R-anomalies and (5.101). However since we have found aΣ ∼ c+N3/32, it is
clear that the naïve application of (5.99) and (5.101) do not directly match.

5.5.1 Future directions and open questions

The work that we have presented in this paper is only scratching the surface of 4d
defects. While a full accounting of all of the defect Weyl anomalies of these systems
through computing entropies, correlation functions, or other physical quantities is not
currently possible, there are a number of questions opened up by our analysis that we
will leave for future work.

Probe branes

Even though we have access to the full 11d SUGRA bubbling geometry solution, it is
useful to consider limit cases where we can instead appeal to a probe brane construction.
By finding κ-symmetric embeddings of probe M5-branes in an AdS7 × S4 background
wrapping AdS5 ⊂ AdS7 and an S1 living either in the internal S4 or in the AdS7, we
expect to be able to holographically study defects engineered by Young diagrams
associated to totally symmetric or totally antisymmetric representations of su(N )

similar to the co-dimension 4 Wilson surface defects from M2 and M5 probe branes
[373, 379, 380]. One advantage of studying these defect systems using probe brane
holography is that we will have clearer access to the study of defect RG flows, which will
provide holographic tests of the defect aΣ-theorem in a strongly coupled theory, a means
to study defect phase transitions, and a setting to test the monotonicity of the defect
sphere EE along an RG flow [373]. Further taking inspiration from AdS5 holography
[381–383], if one was able to construct a κ-symmetric probe M5 brane embedding in
global AdS7, say with an S1 × S5 boundary, one could try to compare to recent results
in type IIB probe brane holography and supersymmetric localization in 3d/5d systems
on a sphere [384, 385]. These questions are currently being investigated in work
currently in progress.

Dimensional reduction
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By (partial) topologically-twisted dimensional-reduction on a Riemann surface or a
3-manifold, 6d SCFTs can be used to engineer large classes of 4d [341, 386] and 3d
[280, 387] theories. Further, we can enrich the algorithm to determine the lower
dimensional theory by starting from a 6d theory deformed by their natural co-dimension
2 and 4 defects to end up with a dimensionally reduced theory possibly with defects
[297, 388, 389]. As we have seen in the computation of the A-type anomaly for
co-dimension 2 defects in the 6d N = (2, 0) AN−1 series SCFTs, there is a connection to
the central charge of a 4d SCFT engineered on a Riemann surface with regular
punctures, at least in the large N limit. It is natural, then, to wonder how the rest of
the data contained in the other 22 parity even defect Weyl anomalies can be used to
characterise the lower dimensional theory, or whether the remaining unknown defect
Weyl anomalies are vanishing or fixed by aΣ and d2. For BPS Wilson surfaces in 6d
preserving at least 2d N = (2, 0) supersymmetry, the defect supersymmetry imposes
non-trivial relations among the B-type defect Weyl anomalies [311], but as of yet, there
is no known relation imposed by 4d N = 2 defect supersymmetry.

A special case of dimensional reduction of the 6d N = (2, 0) AN−1 theory is taking the
Riemann surface to be T2, which reduces to 4d N = 4 SU (N ) super Yang-Mills theory.
The co-dimension 2 defects labelled by ϑ : sl(2)→ su(N ) in the parent theory that we
have holographically studied above wrapped on T2 reduce to Gukov-Witten type defects.
In the absence of complex structure deformations on T2, all of the defect Weyl
anomalies are equal to one another and are ∝ N2 −

∑︁
aN

2
a [51, 345, 346, 390], which is

closer in appearance to d2 in (5.58b) than aΣ in (5.88). However, an exact relation to
determine the anomalies of the Gukov-Witten defect from the higher dimensional defect
anomalies is as of yet unknown.

Defect Weyl anomalies and ‘t Hooft anomalies

As we saw in the attempt to match the any of the holographic results for aΣ or d2 to
large N field theory computations, there are points of tension that should be resolved.
One of the biggest issues, though, is that the putative relation between defect ‘t Hooft
anomalies and defect Weyl anomalies seemed to disagree with the holographic results.
While it remains a possibility that the issue stems from the holographic side of the story,
there is an open question on the field theory side that must be addressed as well.
Namely, the formulae conjectured in [374] only relate two of the twenty-three parity
even defect Weyl anomalies to the defect R-anomalies for co-dimension ≥ 2 4d defects.
That is, only the E4 and |W |2 structures in the defect anomaly have been
supersymmetrised. A similar supersymmetrisation of the defect Weyl anomaly for 2d
defects limited to be sensitive only to the intrinsic geometry of the defect submanifold
was carried out in [391]. This naturally leads one to wonder if it is possible to
supersymmetrise the full defect Weyl anomaly including the anomalies containing the
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second fundamental form and normal bundle curvature in order to arrive at a complete
set of non-perturbative formulae for defect Weyl anomalies.
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Part III

Supersymmetry and Indices
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Chapter 6

Interpolating Index

It ain’t over ’til it’s over.

Yogi Berra

This chapter presents some novel results in the construction of supersymmetric
backgrounds of 4d N = 2 conformal supergravity. By coupling general 4d SCFTs with
eight Poincaré supercharges to conformal supergravity, it is possible to study these on
various geometric backgrounds, while retaining some amount of supersymmetry. The
background of interest to us here is the product manifold S3 × S1. We are interested in
constructing a background supergravity configuration whereby evaluating the partition
function on it will lead to either the superconformal index or the twisted index — two
quantities that count local operators within the SCFT. The superconformal index does
also admit a definition as a trace over a Hilbert space of operators on S3, and the
relation between the partition function and trace definitions is known [53].

Both indices admit a dual representation as AdS black hole configurations, for
holographic theories [30]. Our results show that the twisted index is equal to the value
of the superconformal index at a special point within its moduli space, inherently
relating their holographic descriptions. We do not further comment on this relation
between black hole microstate countings and simply detail our proof on the CFT side, in
a theory-agnostic fashion.

6.1 Introduction

Four-dimensional superconformal field theories with eight supercharges are uniquely
positioned within the space of supersymmetric field theories and possess many
interesting structures. Firstly, the amount of supersymmetry is sufficient that one can
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derive exact results, yet not too constraining that they still display rich dynamics. Many
of these theories do not admit weak-coupling descriptions and one must rely on a class-S
construction [279] to build them. Thanks to the Alday-Gaiotto-Tachikawa (AGT)
correspondence [340], they are intimately tied to two-dimensional conformal field
theories. This amount of symmetry also gifts these theories with observables that are
rigid under certain renormalisation group (RG) flows.

The superconformal index [28, 29] is an example of such a quantity. It performs a
graded counting of local BPS operators within the theory, up to those short multiplets
that recombine into larger ones under certain RG flows. It therefore captures
fundamental data about the SCFT at hand. Invariance under RG flows1 also means that
the index can be computed in the free-theory limit and be related to other conformal
field theories at various fixed points.

This type of index is defined as a Witten index with respect to a given supercharge of
the theory (see Definition 6.1). For every subalgebra that commutes with this
supercharge, one can introduce a fugacity that further refines the index by counting
separately operators that fall under different representations of said algebra. In four
dimensions, all theories with sixteen Poincaré supercharges (N = 4) admit a refinement
with four parameters. Theories with eight supercharges generically have three such
parameters. See Figure 6.1 or [392] for further details. Furthermore, one can consider
constructing limits of these parameters to construct new sub-indices, that count
differently the various operators in the theory. For instance, the Schur index, which
counts operators in the Schur subsector, is given as a one-dimensional sub-index2. The
Coulomb-branch index [5] can also be obtained, as a two-dimensional sub-index (see
Figure 6.2). The latter will take the center stage in this chapter.

The R-symmetry group of these four-dimensional theories with eight supercharges is also
large enough that one can consider identifying a subgroup of the Lorentz group with it.
This is the twisting procedure introduced by Witten [201]. Such a construction will
always lead to the conservation of at least one supercharge, on any (smooth) orientable
manifold, known as the Donaldson-Witten supercharge. The cohomological theory thus
defined is topological and its partition function, known as the twisted index, counts
operators in the cohomology of that supercharge.

Summary of new results
1More specifically, it is invariant under any continuous transformation that preserves its defining

supercharge.
2It recently came to my attention that Deb and Razamat constructed a new limit, dubbed the

‘generalised Schur index’, which exhibits fascinating properties relating it to the Schur index of different
SCFTs [393].
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N = 1 χplet, vplet I(p, q)

N = 2 hplet, vplet I(p, q, t)

N = 3 I(p, q, t,σ)

N = 4 vplet I(p, q, t,σ)

Figure 6.1: Decomposition of four-dimensional superconformal multiplets for various
amounts of supersymmetry. On the right-hand-side, we denote the corresponding index,

illustrating how many parameters it depends on.

It is the aim of this chapter to relate the twisted index and the Coulomb-branch index,
further than a simple identification of their defining supercharges. Indeed, both indices
fall under the unified framework of Festuccia and Seiberg [198] (see Chapter 3 for an
overview), whereby the trace over operators is equivalently given as the partition
function of the original theory on M3 × S1, where M3 is a three-dimensional manifold.
In this context, the various fugacities which the indices may depend on are encoded as
values of background gauge fields. All throughout, we will consider geometries of the
form S3 × S1, which correspond to removing any fugacities associated to the two su(2)
subalgebras of the global so(4). The consequence of this is two-fold. Firstly, the
Coulomb-branch index there created is restricted to live at a given point in its
parameter space. In other words, if ICB(ρ,σ) denotes the general Coulomb-branch
index, our background can only engineer ICB(ρ0,σ0), for a given ρ0 and σ0.3 Secondly,
it is the only geometrical configuration which admits an ‘exact interpolation’, in a sense
which is defined clearly in later sections.

We use the coupling to background N = 2 conformal supergravity, reviewed in
Chapter 3, to find supersymmetric background configurations that give either the
twisted index or the Coulomb-branch index when evaluating the partition function of
the coupled theory. Furthermore, we also construct a background which interpolates
between the two. Together with a novel formula, relating the supersymmetric variation
of current multiplets to that of the background supergravity fields, we show that this
interpolation is exact. One can then conclude that indices on the real line connecting
the twisted index and the Coulomb-branch index are all equal. We further emphasise
that this result holds for any 4d N = 2 SCFT, regardless of whether a Lagrangian
description exists or not. Given that the supercharge that defines the Coulomb-branch
index is the Donaldson-Witten supercharge, it may come to no surprise that these turn

3This result cannot be otherwise. Since we claim that the twisted index, which doesn’t depend on any
moduli, is equal to the Coulomb-branch index, which depends on two fugacities, this can only happen at
a particular point in that moduli.
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out to be equal. However, our background supergravity construction gives a novel way
of viewing this result, and allows for a more precise identification of the fugacities.

6.2 The Coulomb-branch index

The superconformal index of a d-dimensional theory captures non-trivial information
about the spectrum of protected operators. It coincides, up to a factor related to the
supersymmetric Casimir energy [53], with the Euclidean partition function of the
radially quantised theory on S3. We now introduce the basic partition function, and
then explain its 3-parameter refinement and the resulting Coulomb-branch index.

Definition 6.1. SCI The superconformal index of a superconformal field theory in four
dimensions is defined as the Witten index of the theory in radial quantisation. Let
Q := Q− be one of the Poincaré supercharges, and Q† := S+ the conjugate conformal
supercharge. It is defined as a trace over the Hilbert space of operators on S3,

I(µi) = TrS3

(︄
(−1)Fx

1
2 {Q,Q†}

N∏︂
i=1

µMi
i

)︄
. (6.1)

In the above, δ = 2{Q,Q†} is a linear combination of the Cartan generators of the 4d
N = 2 superconformal algebra su∗(4|2), with coefficients determined by the quantum
numbers of the chosen supercharge Q, while {µi} is a complete set of fugacities
associated to symmetry generators Qi which commute amongst themselves, as well as
with Q. The centraliser of any one supercharge in su∗(4|2) is su∗(2|2), which has rank 3;
therefore, the superconformal index generically depends on three superconformal
fugacities, as well as any flavour fugacities which may be present in the theory.. On the
other hand, due to Bose-Fermi cancellations amongst the δ ̸= 0 states, the
superconformal index only enumerates the harmonic representatives of Q-cohomology
classes, and so it is independent of β.4

The definition given above is an application of linear algebra — a simple counting of
operators that act on a Hilbert space. Our interest rather lies in a more geometric
construction of it, namely through its definition as a partition function on M3 × S1, up
to factors of the supersymmetric Casimir energy. We emphasise once again that the
trace definition follows from radial quantisation of the theory on flat space, whereby the
radial direction plays the role of Euclidean time. It may be instructive to understand
how placing the theory on S3 × S1 can describe that same algebra. Furthermore, a
precise identification of this procedure is required if one wishes to translate between the

4The independence of the superconformal index on β is reminiscent of the stability of the index of a
Fredholm operator under additive perturbations by (relatively) compact operators [394].
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two pictures, for instance, when deciding which supercharge is used to define the index
(see Appendix D.2).

As reviewed in Chapter 3, four-dimensional N = 2 superconformal field theories on R4

are gifted with an su∗(4|2) Lie superalgebra. By applying a conformal transformation to
R4 \ {0}, the full superconformal algebra can be preserved on the round S3 ×Rt, where
t parametrises Euclidean time. The conformal Killing spinor equation on S3 ×Rt allows
for the presence of an arbitrary complex Wilson line for the U (1)r gauge field along Rt.
While generic configurations of AU(1)r lead to Killing spinors with exponential temporal
profiles, preventing the compactification of the Rt factor into a circle S1

β of radius β, it
is nevertheless possible to render the supercharges independent of Euclidean time by
selecting the following gauge field configuration [198, 210],

AU(1)r = −βdt . (6.2)

Consequently, in this R-symmetry background, we can compactify S3 ×Rt into S3 × S1
β .

In this context, we consider a Riemannian metric g,

g = dθ2 + sin2(θ)dφ2 + cos2(θ)dτ2 + β2dt2 , (6.3)

where {θ,φ, τ} are toroidal coordinates on the round 3-sphere. A more detailed
discussion of this geometry, and our choice of conventions, can be found in
Appendix C.2.

The resulting rigid supersymmetries on S3 × S1
β are a (non-invariant) mixture of

Poincaré (or Q-) and conformal (or S-type) supersymmetries; equivalently, in terms of
the Euclidean Weyl multiplet of conformal supergravity described in Chapter 3, the
conformal supersymmetry parameter η is generically non-vanishing. The generalised
Killing spinors ξ on this background satisfy(︃

∇µ −
1

2β δµ
tγ5
)︃
ξi =

1
4γµγ

ν
(︃
∇ν −

1
2β δν

tγ5
)︃
ξi . (6.4)

This generalised Killing spinor equation is a specialisation of equation (3.9a) to the
background presently under consideration, and is solved by any Dirac spinor which is
constant, but otherwise generic, when measured against the spacetime and Clifford
algebra bases summarised in Appendix D.2.

Let us now consider a deformation of the background discussed above. The partition
function evaluated on this background will compute, up to a multiplicative factor
determined by the supersymmetric Casimir energy [53], the superconformal index of the
theory. In particular, we introduce a geometric deformation [395–397] with parameters
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ϵ1,2 by modifying the vierbein according to

ea −→ ea + eaµv
µdt , (6.5)

where v = ϵ1∂φ + ϵ2∂τ parametrises the Cartan subalgebra of the so(4) isometry of S3.
This deformation metrically fibres S3 over S1

β ; the resulting Riemannian metric gΩ reads

gΩ = dθ2 + sin2(θ)(dφ+ ϵ1dt)
2 + cos2(θ)(dτ + ϵ2dt)

2 + β2dt2 . (6.6)

To preserve the reality of the metric gΩ, we will take the equivariant parameters ϵ1,2 to
be real. Their complexification would allow us to make contact with the abundant
literature concerning partition functions on squashed spherical backgrounds (see
Appendix C.3).

Furthermore, we include an SU (2)R deformation with parameter mR ∈ C by
introducing a background SU (2)R gauge field

ASU(2)R = −imRσ3dt . (6.7)

Preservation of (at least) two constant supercharges on S3 ×Ω S
1
β can be achieved by

performing a concurrent and further deformation of the U (1)r gauge field to

AU(1)r = (−β + i(mR − ϵ1 − ϵ2))dt . (6.8)

The fact that the R-symmetry holonomy is complexified is not problematic, since
throughout this work we do not insist on attaching any reality conditions to the
background fields. In the Clifford algebra basis summarised in Appendix D.2, the
3-parameter background thus described possesses two generalised Killing spinors

ξ± = c±(σ1 ∓ iσ2) , (6.9)

where c± are constants. Their corresponding conformal supersymmetry parameters, as
determined by equation (3.13), are

η± = c∓(σ1 ± iσ2) . (6.10)

Additional conserved Killing spinors can be found at specific points (or submanifolds) in
the space of geometric and SU (2)R deformation parameters. For instance, and
anticipating the relation between the Coulomb-branch and topologically twisted indices,
the specialization to the mR = ϵ1 + ϵ2 locus results in a supersymmetry enhancement.
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In particular, the Killing spinors satisfy(︃
∇µ −

1
2β δµ

tγ5
)︃
ξi − i

2 (ϵ1 + ϵ2)δµ
tσ3

i
jξ
j = (6.11)

=
1
4γµγ

ν
[︃(︃
∇ν −

1
2β δµ

tγ5
)︃
ξi − i

2 (ϵ1 + ϵ2)δµ
tσ3

i
jξ
j
]︃

and can be written in the chiral basis as follows,

ξ± = c1
±σ1 + c2

±σ2 , (6.12)

for constants c1,2
± . Quantisation of the two negative- and two positive-chirality constant

Killing spinors preserved along the mR = ϵ1 + ϵ2 subspace leads to two negative-chirality
supercharges Q, and their adjoints. The superconformal index on this fugacity subspace
therefore computes the cohomology of the commuting pair of supercharges.

τ →
0

p = 0

q = 0
q = t

Coulomb-branch Index
I(τσ, τρ, τ2)

↪→ dep. on ρ, σ only

Macdonald Index
I(0, q, t)

Hall-Littlewood Index
I(0, 0, t)

q =
t

Schur Index
I(p, q, q)

Superconformal Index
I(p, q, t)

Figure 6.2: The various limits of the sci considered in [5]. Note that the Schur index,
while explicitly dependent on two parameters, p and q, only actually dependents on the

latter.

The index thus defined (in particular, specialised to mR = ϵ1 + ϵ2) coincides with the
Coulomb-branch index introduced in [5], which is obtained in the limit wherein the three
original fugacities vanish, while two ratios are kept fixed (see Figure 6.2). In [5], it was
argued that this index only counts the short multiplets of type E , in the notation of
[398]. These supermultiplets are shortened by a vanishing charge under the Cartan of
SU (2)R, and arise by acting with the superconformal generators on a lowest dimension
operator which is spinless under one Cartan of the spin group, and in an arbitrary
representation of the other [398]. The lowest components of these short multiplets are
the gauge-invariant operators spanning the Coulomb-branch of the theory, such as
{Trϕi}rank G

i=2 for a theory with special unitary gauge group G [5].

How does one identify this background as engineering the Coulomb-branch index, as
opposed to any other specialisation of the superconformal index? One way of answering
this question is as follows. Take the four spinors that are Killing with respect to this
background configuration, equation (6.12). These are all spinors of S3 ×Ω S

1
β . It is,
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nevertheless, possible to map them back to flat space spinors using, for instance, our
results from Appendix D.2. Doing so one finds an exact match with the spinor used to
defined the Coulomb-branch index, in the notation of [5]. The partition function of a
theory on this background can then only describe the Coulomb-branch index, as stated
previously.

Having described the background that engineers the full Coulomb-branch index, from
this point on, we will restrict back to backgrounds with ϵ1,2 = 0, for which the metric
diagonalises to S3 × S1

β . The Coulomb-branch index therefore sees its fugacities fixed,
and the partition function on this background evaluates to ICB(ρ0,σ0). The precise
values of these coordinates on the moduli depend on the functional dependence of ρ and
σ on the deformation parameters ϵ1,2. For instance, identifying our metric with that of a
primary Hopf surface, we see that the parameters p and q, appearing in the N = 1
superconformal index, are related to ϵ1,2 via arg(p) = ϵ1 and arg(q) = ϵ2 [203].
Translating this back to the Coulomb-branch index parameters, the ϵ1,2 → 0 limit would
correspond to the ρ,σ →∞ limit. Despite this, we will continue to refer to ICB(ρ0,σ0)

as the Coulomb-branch index, with the understanding that the limit is implicit.

6.3 The twisted index

As reviewed in Chapter 3, topological twisting allows an N = 2 theory to be defined
consistently on any oriented Riemannian 4-manifold; it does so by leveraging the
theory’s SU (2)R symmetry [201]. The procedure can be phrased in terms of the
introduction of a principal bundle with SU (2)R structure group, chosen so that it, and
its connection ASU(2)R , are locally isomorphic to the SU (2)r spinor bundle and its
Levi-Civita spin connection, respectively. Twisting the theory in this fashion leads to the
existence of spinors on which the action of the SU (2)R background gauge field exactly
cancels that of the spin connection. Any such spinors which are constant are therefore
also covariantly constant and Killing in a generalised sense. By viewing the metric and
the SU (2)R gauge field as being embedded in an off-shell formulation of (conformal)
supergravity [198], which enjoys an SU (2)R local symmetry, it is then natural to
consider deforming the theory further by the inclusion of non-trivial backgrounds for the
fields in the supersymmetric completion of the multiplet.

In particular, on the product manifold S3 × S1
β , rigid supersymmetry can be preserved

by taking AU(1)r and T to vanish, while tuning the SU (2)R background to the following
configuration,

ASU(2)R
µ =

1
2ωµ

abσab , (6.13)

where σab is the anti-symmetrised product of Pauli matrices, as defined in
equation (D.16). In the presence of this SU (2)R background, the generalised Killing
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spinor equation, equation (3.9a), reads

∇µξi +
1
4ωµ

abσab
i
jξ
j = 0 (6.14)

and admits, on any oriented Riemannian manifold, regardless of the latter’s holonomy, a
solution of definite chirality, which in our conventions is ξ− = c−σ2, for constant c−. On
S3 × S1

β , the self-duality of the spin connection 1-form actually engenders a second,
positive-chirality Killing spinor ξ+ = c+σ2, for constant c+. For both ξ±, the associated
conformal supersymmetry parameters vanish, η± = 0.

The topological supercharge associated to either generalised Killing spinor is nilpotent
on gauge-invariant operators, and is of the type used by Witten to define the
cohomological field theory which arises from the Donaldson-Witten topological twist of
SU (2) N = 2 super Yang-Mills (SYM) [201]. The path integral of topologically twisted
SYM theories localises onto a subspace of A/G, where G = Aut(P ) = Γ(AdP ) is the
gauge group associated to the principal G-bundle with total space P , and A is the
(affine) space of connections. This subspace coincides with the moduli space of vacua
protected by supersymmetry (or, equivalently, which are cohomologically trivial); for the
Donaldson-Witten theory, this is famously the zero locus of the section F+ = 1

2 (1 + ⋆)F ,
i.e. it is the (finite-dimensional) moduli space of instantons, which are anti-self-dual
(ASD) connections on the gauge bundle. Hence, the topologically twisted theory provides
a field theoretic description of Donaldson invariants [399]. The finite dimensionality of
the moduli space of instantons is related to the ellipticity of the problem F+ = 0.

We remind the reader that the topological twist rearranges the flat-space
supersymmetries into representations of the twisted symmetry group. Under this effect,
the Donaldson-Witten supercharge becomes scalar and the twist can subsequently be
defined on any smooth manifold, whether a spin structure exists or not. As such, one is
free to evaluate the partition function of the twisted theory on any background M4,
however, in anticipation of our interpolation with the Coulomb-branch index, we wish to
consider its partition function on S3 × S1

β . By definition, this partition function will
perform a counting of twisted operators, and as such, will return a number. It is
worthwhile to note that this twisted partition function is equivalent to the original
theory’s partition function on that same geometric background, in the presence of the
SU (2)R background gauge field. To illustrate this further, we write

Itwisted = Z[Ψtwist] :=
∫︂
Dϕ e−S[Ψtwist,ϕ], (6.15)

where Ψtwist denotes the set of background supergravity fields that engender the twist.
Amongst these is the previously-mentioned SU (2)R gauge field, tuned to its
configuration in equation (6.13). The value of all other auxiliary fields of the N = 2
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Weyl multiplet are then determined from the generalised Killing spinor equations; the
evaluation of which we move on to now.

Consistency of the bosonic nature of the fixed point given by the R-symmetry
background in equation (6.13) entails the vanishing of the supersymmetric variation of
the dilatino in equation (3.9b); evaluated on the topologically twisted background, this
reads

δξχ
i =

1
6R

SU(2)R
µν

i

j
γµνξj +Dξi . (6.16)

The identification in equation (6.13) of the SU (2)R R-symmetry vector bundle and the
negative chirality spinor bundle, and their corresponding connections, implies that

RSU(2)R
µν

i

j
=

1
2R(ω)µν

abσab
i
j (6.17)

where the curvature of the spin connection satisfies

R(ω)ab
ab = R , (6.18)

where R is the Ricci scalar. Note that, in our conventions, spaces of constant positive
curvature, such as the round 3-sphere, have positive Ricci scalar. The vanishing of δξχi

in equation (6.16) against either of the generalised Killing spinors ξ± therefore
necessitates the following background for the auxiliary scalar D [400],

D = −R6 . (6.19)

6.4 Current multiplet transformations

In this section we will give an important result in conformal supergravity coupled to any
4d N = 2 SCFT. In general, the supersymmetric variation of the current multiplet is
theory dependent and may be rather complicated. Here, we propose a formula that
relates it to the supersymmetric variation of the background supergravity fields instead,
allowing for a theory-agnostic formulation of these variations.

Let us denote by S[Ψ,ϕ] the action of a 4d N = 2 SCFT coupled to conformal
supergravity. We choose to collectively denote all the Weyl multiplet fields by
Ψ = {eµa,ψµi, bµ,AU(1)R

µ ,ASU(2)R
µ

i
j ,Tab,χi,D}, and all the SCFT field by ϕ. Note that,

by consequence of this coupling, the action S[Ψ,ϕ] is invariant under all
super-diffeomorphisms and super-conformal transformations; said otherwise, it is
invariant under all supersymmetry transformations with arbitrary (Q- and S-)spinor
parameters.
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Of importance here is the existence of a supersymmetric fixed point of the background,
denoted Ψ0. By definition, if Ψ0 exists there also exists a subset of all possible
supersymmetry transformations which preserves this background. If we denote by ξ and
η, respectively, the Q- and S-supersymmetry parameters which generate this subset,
then the fixed point satisfies δξ,ηΨ0 = 0. Given a particular choice of fixed point Ψ0, let
us consider an expansion of the supergravity fields around it. In other words, we write
Ψ = Ψ0 + t∆Ψ. The parameter t is a dimensionless quantity which we will use to
quantify deviations away from the fixed point. Assuming sufficient smoothness of the
action, it may also be expanded in powers of t,

S[Ψ,ϕ] = S[Ψ0,ϕ] + t
∑︂

Ψ∈Weyl

⟨︄
∆Ψ, δS[Ψ,ϕ]

δΨ

⃓⃓⃓⃓
Ψ=Ψ0

⟩︄
+O(t2)

= S[Ψ0,ϕ] + t
∑︂

Ψ∈Weyl
⟨∆Ψ, JΨ[Ψ0,ϕ]⟩+O(t2), (6.20)

where ⟨·, ·⟩ denotes a suitable contraction of indices followed by integration, and where
we defined the current multiplet

JΨ =
δS[Ψ,ϕ]
δΨ

⃓⃓⃓⃓
t=0

. (6.21)

We recognise here the action coupled to background rigid supergravity at the zeroth

order and the linear coupling between the (shifted) Weyl multiplet fields, ∆Ψ, and the
current multiplet fields, JΨ, at the first order in t. Importantly, our definition of the
currents deviates from the standard definition by also including the volume factor. We
further emphasise that these currents are functions of the fixed point, Ψ0, and the SCFT
fields, ϕ, only.

As equation (6.20) is a simple rewriting of the full action S[Ψ,ϕ], it is still invariant
under all supersymmetry transformations. In particular, it is invariant under the
infinitesimal transformations which leave the fixed point, Ψ0, invariant. Again, we use
δξ,η to denote this action on the fields. With our particular choice of conformal
supergravity, δξ,η splits into two actions on the supergravity fields — one which
preserves the powers of t and one which increases the powers of t by one.5 With that in
mind we can now take the supersymmetric variation of equation (6.20) and collect terms
by powers of t. Since this supersymmetric action is a symmetry of both the full action
S[Ψ,ϕ] and the action at the fixed point S[Ψ0,ϕ], the resulting equation has no
zero-order term. For our current investigation, it will be sufficient to look at the linear

5This split of δξ,η can simply be derived from the Q- and S-susy transformations of the Weyl multiplet.
The right hand side being at most linear in the multiplet fields, any t-expansion will result in a t-
independent term and a linear term in t.
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term only,

∑︂
Ψ∈Weyl

(⟨δξ,η∆Ψ, JΨ⟩+ ⟨∆Ψ, δξ,ηJΨ⟩)
⃓⃓⃓⃓
t=0

= 0 . (6.22)

From that expression, taking a function derivative gives us a formula for the
supersymmetric variation of the current multiplet in terms of that of the Weyl multiplet,
at the bosonic fixed point,

δξ,ηJΦ = − δ

δΦ

∑︂
Ψ∈Weyl

⟨δξ,ηΨ, JΨ⟩
⃓⃓⃓⃓
t=0

, (6.23)

which in our case expands to

Theorem 6.2.

δξJΦ = −
∑︂

Ψ∈Weyl

(︄
∂(δξΨ)

∂Φ
JΨ − ∂µ

(︄
∂(δξΨ)

∂(∂µΦ)
JΨ

)︄)︄
. (6.24)

Notice how the right-hand-side only involves supersymmetric variations of the
background Weyl multiplet. It is thanks to that fact that we are able to prove exactness
of our interpolation, regardless of the SCFT chosen.

6.5 Interpolating index

Having introduced both the Coulomb-branch index and the twisted index in the
previous sections, we now construct a novel one-parameter bosonic background of 4d
N = 2 Euclidean conformal supergravity which smoothly interpolates between the two,
and which is supersymmetric at all points in the interpolation. Furthermore, we show
that, given a generic 4d N = 2 superconformal field theory coupled to this background,
the dependence of its action on the interpolation parameter is exact in a supersymmetric
sense. Therefore, all of the a priori distinct partition functions and indices obtained at
each point in the interpolation are actually equivalent. In particular, the
Coulomb-branch index coincides with the twisted index, as expected by their common
defining supercharge.

6.5.1 Interpolating background

We briefly recall that the rigid supergravity backgrounds introduced in sections 6.2
and 6.3 allowed us to identify the corresponding Euclidean partition functions with a
particular limit of the superconformal index in the former case, and with the
topologically twisted index in the latter. The former is in part introduced via the
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geometric background S3 × S1
β . These supergravity configurations correspond to

particular supersymmetric fixed points of Euclidean 4d N = 2 conformal supergravity.
As reviewed above, a necessary condition for supersymmetry to be preserved by the 4d
theory coupled to the off-shell Weyl multiplet is for a subset of the spinors, namely those
generating Q- and S-type supersymmetries, to solve the generalised Killing spinor
equations, (3.9a) and (3.9b).

In particular, we constructed a particular point in the Coulomb-branch index moduli,
which corresponds to the following bosonic background of conformal supergravity,

g = gS3×S1
β

D = 0 AU(1)r = −βdt
T− = 0 T+ = 0 ASU(2)R = 0 ,

(6.25)

where we recall that the metric gS3×S1
β

is defined in equation (6.3).

While it may seem unnecessary to specify the fields T and D at this stage, their
inclusion will ease the comparison with the field content of the twisted index
background. Additionally, it will become useful to reiterate now the particular form of
the Killing spinors in equation (6.12), which are given by ξ± = c1

±σ1 + c2
±σ2. In

particular, the Killing spinor (ξ+, ξ−) = (0,σ2) given by c1,2
+ = c1

− = 0 and c2
− = 1 will

play a prominent role in the ensuing discussion.

The twisted index is associated with non-trivial backgrounds for the auxiliary scalar field
D and the SU (2)R gauge field required by the topological twisting procedure, notably.
Summarising the results from that analysis here provides us with the following bosonic
fixed point,

g = gS3×S1
β

D = −1
6R AU(1)r = 0

T− = 0 T+ = 0 ASU(2)R = 1
2ω

abσab .
(6.26)

The corresponding constant Killing spinors are the two chiral spinors ξ± = c±σ2.

We can observe that both supergravity backgrounds above preserve two common Killing
spinors, namely, ξ± = σ2. It is then interesting to ask whether there exists a conformal
supergravity background which interpolates between the Coulomb-branch index and
twisted indices, while preserving those same Killing spinors throughout the interpolation.
We now show that this is indeed the case, by constructing the explicit interpolation.
Indeed, the configuration

g = gΩ D =
u(u− 2)

6 R AU(1)r = β(u− 1)dt

T− = 0 T+ = 0 ASU(2)R =
u

2ω
abσab .

(6.27)
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with interpolating parameter u, connects the superconformal point (at u = 0) and the
twisted one (at u = 1) in a smooth fashion. One can verify that the chiral spinors

ξ± = c±σ2 (6.28)

are indeed (generalised) Killing for all u ∈ [0, 1]. Their corresponding conformal
supersymmetry parameters η are

η± = c∓(1− u)σ2 . (6.29)

One can also check that, against the background of equation (6.27), the supersymmetry
variation of the dilatino in equation (3.9b) vanishes. From this point onward, we will
refer to the background configuration in equation (6.27), together with the
supersymmetry parameters ξ and η in equations (6.28) and (6.29), as the interpolating
background, and to the partition function evaluated on it,

I(u) :=
∫︂
Dϕe−S[Ψ(u),ϕ] , (6.30)

as the interpolating index, where ϕ denotes the field content of a generic 4d N = 2
superconformal field theory.

6.5.2 Supersymmetric exactness of the interpolation

In the previous subsection, we showed how the interpolating background gives rise to a
continuous line of indices I(u), which a priori are distinct for all values of the
interpolating parameter u. We now argue that I(u) not only provides a smooth
interpolation between the Coulomb-branch index at u = 0 and the topologically twisted
index at u = 1, but in fact manifests their equivalence.

In particular, we contend that the dependence of the coupled action S[Ψ(u),ϕ] on the
interpolating parameter u is exact in a supersymmetric sense:

dS

du
= δξO , (6.31)

where ξ and O are a Killing spinor and an otherwise generic gauge-invariant operator,
respectively. We emphasise that their explicit expressions are unimportant. Indeed, the
bare existence of data {ξ,O} satisfying equation (6.31) suffices to imply the
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Weyl multiplet field Ψ
δδξΨ
δχi

δδξΨ
δ∂µχi

eµ
a 0 0

bµ −1
2 ξ̄iγ

5γµ 0

AU(1)r
µ −ξ̄iγµ 0

ASU(2)R
µ

j

k
−2ξ̄kγ5γµδ

j
i + δjkξ̄iγ

5γµ 0

Tab 4iξ̄iγ5γab 0

D ξ̄iγ
5γµ

(︃1
4ωµ

abγab +
1
2A

U(1)r
µ γ5

)︃
+

1
2 ξ̄jγ

5γµ ASU(2)R
µ

j

i
ξ̄iγ

5γµ

Table 6.1: The functional dependence of the supersymmetric variations of the fields in
the Weyl multiplet on the dilatino χ and ∂µχ.

independence of the interpolating index I(u) on the parameter u:

dI
du

=
d

du

∫︂
Dϕ e−S[Ψ(u),ϕ]

= −
∫︂
Dϕ e−S[Ψ(u),ϕ]δξO

= −
∫︂
Dϕ δξ

(︂
e−S[Ψ(u),ϕ]O

)︂
= 0 ,

(6.32)

where in the second line we employed equation (6.31), while the third line follows from
the assumption that ξ is a Killing spinor for the coupled action S[Ψ(u),ϕ]. Therefore, if
equation (6.31) holds, the indices I(u) coincide for all u, including in particular the
Coulomb-branch index and the topologically twisted index.

Our precise claim, whose proof will preoccupy us for the remainder of this section, is
that equation (6.31) is satisfied by the spinor in equation (6.28),

(︄
ξ+

ξ−

)︄
=

(︄
c+σ2

c−σ2

)︄
, (6.33)

which we recall is Killing for all u ∈ [0, 1], and by the following gauge-invariant operator,

O =
∫︂
S3×S1

β

(︂
J̄χiζ

i + J̄
µ
ψiζ̃

i
µ

)︂
, (6.34)

where Jχ and Jψ are the supercurrent multiplet fields corresponding to the dilatino χ
and the gravitino ψ, respectively, while ζ and ζ̃

µ are, for now, arbitrary spinors. The
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Weyl multiplet field Ψ
δδξΨ
δψνi

δδξΨ
δ∂τψνi

eµ
a ξ̄iγ

5γaδνµ 0

bµ
i

2 ξ̄jγ
5 δϕµ

j

δψνi
+
i

2 η̄iγ
5δνµ

i

2 ξ̄jγ
5 δϕµ

j

δ∂τψνi

AU(1)r
µ − i2 ξ̄j

δϕµ
j

δψνi
− i

2 η̄iδ
ν
µ − i2 ξ̄j

δϕµ
j

δ∂τψνi

ASU(2)R
µ

j
k 2iξ̄kγ5 δϕµ

j

δψνi
− 2iη̄kγ5δνµδ

j
i − SU (2)R trace 2iξ̄kγ5 δϕµ

j

δ∂τψνi
− SU (2)R trace

Tab −8iξ̄jγ5 δR(Q)ab
j

δψνi
−8iξ̄jγ5 δR(Q)ab

j

δ∂τψνi

D 0 0

where

δϕµ
j

δψνi
= − i4

(︃
γρνγµ −

1
3γµγ

ρν
)︃[︃(︃1

2ωρ
abγab + bρ +AU(1)r

ρ γ5 +
i

16Tabγ
abγρ

)︃
δji +ASU(2)R

ρ
j
i

]︃
δϕµ

j

δ∂τψνi
= − i2

(︃
γτνγµ −

1
3γµγ

τν
)︃
δji

δR(Q)µρj

δψνi
=

[︃(︃1
2ω[µ

abγab + b[µ +A
U(1)r

[µ γ5
)︃
δji +A

SU(2)R

[µ
j
i

]︃
δνρ] − iγ[µ

δϕρ]
j

δψνi
+

i

16Tabγ
abγ[µδ

ν
ρ]δ

j
i

δR(Q)µρj

δ∂τψνi
= 2δτ[µδ

ν
ρ]δ

j
i − iγ[µ

δϕρ]
j

δ∂τψνi

Table 6.2: The functional dependence of the supersymmetric variations of the fields in
the Weyl multiplet on the gravitino ψ and ∂µψ.

claim is then that the supersymmetric variation δξO of the operator above coincides
with

dS

du
=

∑︂
Ψ∈Weyl

⟨︃
dΨ
du

, Ψ̂
⟩︃

=

⟨︃
de

du
, Je
⟩︃
+

⟨︃
db

du
, Jb
⟩︃
+

⟨︃
dAU(1)R

du
, JU(1)R

⟩︃
+

⟨︃
dASU(2)R

du
, JSU(2)R

⟩︃
+

+

⟨︃
dT

du
, JT

⟩︃
+

⟨︃
dD

du
, JD

⟩︃
. (6.35a)

The computation of δξO amounts to determining the supersymmetric variations of J̄χ
and J̄ψ. Using the Q- and S-supersymmetry transformations of the 4d N = 2 Euclidean
Weyl multiplet presented in equation (3.14), we find the results collated in Tables 6.1
and 6.2. Leveraging the argument in equation (6.24), the supersymmetric variation of
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J̄χ is given by

δξJ̄χi =
1
2 ξ̄iγ

5γµJ
µ
b + ξ̄iγ

µJU(1)r
µ + 2ξ̄kγ5γµJSU(2)R

µ

k

i
− ξ̄iγ5γµJSU(2)R

µ

k

k
− 4iξ̄iγ5γµνJ

µν
T

+

⎡⎣ ξ̄iγ5γµ
(︃←−
∂ µ −

1
4ωµ

abγab −
1
2A

U(1)r
µ γ5

)︃
− 1

2 ξ̄jγ
5γµASU(2)R

µ

j

i⏞ ⏟⏟ ⏞
= 2iη̄iγ

5

⎤⎦JD
+ ξ̄iγ

5γµ∂µJD , (6.36)

where we exploited the (Dirac conjugate of the) Killing spinor equation to exchange
differential terms in ξ with an algebraic one in η. Equation (6.24) similarly determines
the supersymmetric variation of the source field J̄ψ to be

δξJ̄ψµi = −ξ̄iγ5γaJeµ
a − i

2 ξ̄jγ
5 δϕ

νj

δψµi
Jbν −

i

2 η̄iγ
5Jbµ +

i

2 ξ̄j
δϕνj

δψµi
JU(1)r
ν +

i

2 η̄iJ
U(1)r
µ +

− 2iξ̄kγ5 δϕ
νj

δψµi
JSU(2)R
ν

k
j + iξ̄kγ

5 δϕ
νk

δψµi
JSU(2)R
ν

j
j + 2iη̄kγ5JSU(2)R

µ
k
i − iη̄iγ5JSU(2)R

µ
k
k

+ 8iξ̄jγ5 δR(Q)ab
j

δψµi
JabT +

i

2∂ν
(︄
ξ̄jγ

5 ∂ϕρj

∂∂νψµi
Jbρ

)︄
− i

2∂ν
(︄
ξ̄j

∂ϕρj

∂∂νψµi
JU(1)r

ρ

)︄

+ 2i∂ν
(︄
ξ̄kγ

5 ∂ϕρj

∂∂νψµi
JSU(2)R
ρ

k
j

)︄
− i∂ν

(︄
ξ̄jγ

5 ∂ϕρj

∂∂νψµi
JSU(2)R
ρ

k
k

)︄

− 8i∂ν
(︄
ξ̄jγ

5∂R(Q)ab
j

∂∂νψµi
JabT

)︄
(6.37)

The proof is then complete by finding spinors ζ and ζ̃µ such that the supersymmetric
variation of O with parameter ξ recovers the u-dependence of the coupled action; a
sufficient set of conditions which can be imposed upon the spinors ζ and ζ̃µ for this to
occur is

d

du
eµ
a = −ξ̄iγ5γaζ̃µ

i , (6.38a)

d

du
bµ =

1
2 ξ̄iγ

5γµζ
i − i

2 ξ̄jγ
5∂ϕµ

j

∂ψνi
ζ̃ν
i − i

2 η̄iγ
5ζ̃µ

i − i

2 ξ̄jγ
5 ∂ϕµ

j

∂∂νψρi
∂ν ζ̃ρ

i , (6.38b)

d

du
AU(1)r
µ = ξ̄iγµζ

i +
i

2 ξ̄j
∂ϕµ

j

∂ψνi
ζ̃ν
i +

i

2 η̄iζ̃µ
i +

i

2 ξ̄j
∂ϕµ

j

∂∂νψρi
∂ν ζ̃ρ

i , (6.38c)

d

du
ASU(2)R
µ

i
j = 2ξ̄jγ5γµζ

i − 2iξ̄jγ5 ∂ϕµ
i

∂ψνk
ζ̃ν
k + 2iη̄jγ5ζ̃µ

i +

− 2iξ̄jγ5 ∂ϕµ
i

∂∂νψρk
∂ν ζ̃ρ

k − (SU (2)R trace), (6.38d)

d

du
Tab = −4iξ̄iγ5γabζ

i + 8iξ̄jγ5∂R(Q)ab
j

∂ψµi
ζ̃µ

i + 8iξ̄jγ5∂R(Q)ab
j

∂∂µψνi
∂µζ̃ν

i (6.38e)

d

du
D = 2iη̄iγ5ζi, (6.38f)

all of which are to be evaluated against the interpolating background of equation (6.27).
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While seemingly overconstrained, the conditions above in fact admit a simultaneous
solution

ζ =

⎛⎝− i
4c−

σ2
i

4c+σ2

⎞⎠ , ζ̃µ = cµ

⎛⎝−σ2
c−
c+
σ2

⎞⎠ . (6.39)

The existence of these spinors satisfying equation (6.38) completes the proof of our claim
in equation (6.31). We conclude that the Coulomb-branch index (at a point of its
moduli) and the topologically twisted index, as well as the indices at all other values of
the interpolating parameter u, coincide.

6.6 Conclusion/Remarks

Let us take this opportunity to pause and look back at what was achieved within this
chapter, and postulate on the possible extensions and implications our work brings forth.

Under the formalism of Festuccia and Seiberg, we considered arbitrary 4d N = 2 SCFTs
coupled to Euclidean conformal supergravity. Via the construction of explicit bosonic
fixed points of the background supersymmetry, we recovered the well-established
configurations that engineer the Coulomb-branch and twisted indices. These are both
given as partition functions of the theory on S3 × S1, with a given subset of background
supergravity fields turned on.6

We then constructed a supersymmetric configuration that interpolates between the
twisted index, Itwisted, and a point on the Coulomb-branch index, ICB(ρ0,σ0). The
interpolation relies on a dimensionless parameter u, and so does the partition function of
a theory on said background, which we coined the interpolating index, I(u). Having
shown that the background preserves two chiral supercharges, we moved on to proving
the main result, namely that the interpolation is exact. This exactness translates into
the fact that the u-variation of the action is a supersymmetry-exact quantity, written as
δξ,ηO, for some operator O; and consequently the interpolation is shown to be
independent of u. Proving this for arbitrary 4d N = 2 SCFT is reliant on our
intermediary result in equation (6.24), thanks to which we are able to recast the
supersymmetry variation of arbitrary current multiplets into that of background
supergravity fields alone. These results, in turn, assure us that for any 4d N = 2 SCFT,
regardless of whether it admits a Lagrangian description or not, the twisted index is
equivalent to the Coulomb-branch index at a given point in its moduli space.
Furthermore, the whole interval of indices, {I(u)}u∈R, is also equal to the twisted index.

6Truthfully, the former partition function equates to the Coulomb-branch index, multiplied by a
supersymmetric Casimir energy [53].
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One may point to the fact that both the Coulomb-branch index and the twisted index
are defined from the same supercharge — the Donaldson-Witten supercharge — and, as
such, a relation between the two is bound to appear. However, our presentation shows
this explicitly, even allowing one to find the precise point on the moduli of the
Coulomb-branch for which this is true.

It would be interesting to understand this relation further; demonstrably, a precise
understanding of the specific point in the Coulomb-branch index moduli, (ρ0,σ0), is still
lacking. Our work here only presents this relation from the background supergravity
perspective; it would be instructive to understand it from the field theory side.
Nevertheless, our work unearthed a relation between the counting of operators in a given
theory — on one side, operators on the Coulomb-branch are counted with U (1)R and
SU (2)R charge-dependent weight; on the other side, the twisted index counts operators
in the cohomology of the Donaldson-Witten supercharge — where both countings are
equal. Given the theory-agnostic derivation, we are convinced that this demonstrates a
deeper property of 4d N = 2 theories.

Why restrict to one point on the space of CB indices?

It is known that the twisted index of 4d N = 2 admits a refinement, whereby operators
in the cohomology of the Donaldson-Witten supercharge are graded with respect to the
two su(2) subalgebras of the flat space isometry so(4). This refined index is known as
the equivariant Donaldson-Witten index, and depends on the two Ω-deformation
parameters ϵ1,2 (which are valued in the Cartan subalgebras of each su(2) [397, 401]).
Following our presentation in this chapter, one can easily show that most results hold
when replacing the product manifold S3 × S1 by the metric fibration S3 ×Ω S

1, whose
line element reads7

gΩ = dθ2 + sin2(θ)(dφ+ ϵ1dt)
2 + cos2(θ)(dτ + ϵ2dt)

2 + β2dt2 . (6.40)

On the Coulomb-branch side of the interpolation, this engineers the full moduli of
indices, where the standard parameters ρ and σ are recast into ϵ1,2.8 As stated above,
one can show that this background is supersymmetric — it preserves one supercharge.
However, we were unable to find a pair of spinors ζi, ζ̃iµ such that the u-variation of the
action can be written in terms of these (see equation (6.31)). In other words, we were
unable to show that the interpolation is exact.

7Further adjustments must be made to the background supergravity fields on the twisted side to
accommodate for the equivariance (any continuous geometric deformation cannot affect a topological
index). Notably, one must turn on the background two-form as follows T − = 4u(dv#)−, where
v = ϵ1∂φ + ϵ2∂τ .

8Truthfully, this only engineers a subspace of the moduli where ϵ1,2 are real. A proper treatment of
complex ϵ1,2 would require squashing the spheres.
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One might wonder why bother bringing this up, if the interpolation may be doomed to
fail. The answer to this query lies in two key observations:

- The interpolation would have been exact, had the b-field constraint in
equation (6.38b) been ignored.

- Both indices now exhibit a two-dimensional moduli. Given that they match at one
point, one could expect them to match at every point therein.

The first observation above is crucial. Indeed, most applications of 4d conformal
supergravity utilise K-gauge, thanks to which the b-field can be completely ignored (i.e.
set to zero). If we naively apply this gauge before establishing our interpolating
conditions, both indices are found to be equal; a strong showing for the subtlety this
gauge choice brings forth.

Our failure in finding spinors that solve the interpolating equations (6.38), naturally,
doesn’t prevent a solution from existing. It would be interesting to see if such a solution
can be unearthed. The most interesting reason to the author being the holographic
interpretation it would lead to. Indeed, for holographic theories, both indices have
known AdS completions: a Kerr-Newman AdS5 black hole in the superconformal index
case [402, 403] and a magnetically charged one in the twisted case [30]. An equality of
these indices at the CFT level would imply a relation between their black holes
microstate counting.
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Chapter 7

The N = 4 Ω-deformations

K’i sayè métre o aprenti, on crwé
ouvri a crwé outi.
Whether master or an apprentice, a
bad worker has bad tools.

Savoie proverb

The present chapter constitutes a departure from the discussions made in Chapter 6,
and can be read independently of it.

After looking at supergravity backgrounds that engineer the superconformal and twisted
indices in 4d N = 2 SCFTs, we are naturally drawn to doing the same for 4d N = 4
SCFTs. In fact, we focus solely on constructing backgrounds that give the three main
twists of N = 4, the half-twist, the Kapustin-Witten twist and the Vafa-Witten twists.
These constitute three different ways of getting a topological field theory from an N = 4
SCFT. As a reminder, the twist is built by identifying a subgroup of the R-symmetry
with a Lorentz symmetry. With a large-enough R-symmetry group, such as that of 4d
N = 4, there are three inequivalent ways of doing this, hence the three twists. This
identification can be done by choosing a value for the background R-symmetry gauge
field that cancels with the spin connection. Our results are novel in that we are the first
to construct these twists from an N = 4 background conformal supergravity perspective,
which adheres to the Festuccia-Seiberg paradigm [198] (see Chapter 3 for an overview).

Additionally to constructing the regular twists, we attempt to expand these results by
including possible Ω-deformations. This deforms the topological field theory in a way
which refines the counting of operators in the partition function. In the supergravity
construction, it appears via the inclusion of non-trivial configurations of the two-form T

which depend on a conformal Killing vector field v. Subsequently, the Killing spinors
will also gain a linear v-dependence, rendering the BPS equations generically non-linear.
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We successfully find Ω-deformations for the half- and Kapustin-Witten twists, but are
unable to do so for the Vafa-Witten one.

7.1 Introduction

Four dimensional supersymmetric field theories exist with 4 (N = 1), 8 (N = 2), 12
(N = 3) and 16 (N = 4) Poincaré supercharges. Any larger amount of supersymmetry
will necessarily lead to the inclusion of fields with spin greater than 3/2, i.e.
gravitational theories. Those with N = 4 supersymmetry are the most restrictive – the
only multiplet there is the vector multiplet. The large amount of R-symmetry does offer
many avenues in twisting these theories, however. Those with N = 2 have a much richer
structure. While a full classification is unknown, many exact results have been found,
see for instance the solutions of Seiberg and Witten [404, 405]. Many of these theories
do not admit a weak-coupling coupling limit, yet, we are able to construct some of them
implicitly from twist-compactifications of the 6d (2, 0) theory. Theories constructed in
that way are called class-S [279]. They also admit a subset of operators, known as the
Schur subsector, which are constrained by ‘infinite’ 2d-symmetries [406]. One would
expect that N = 3 theories lie somewhere in the middle, however, they do not admit a
Lagrangian description and neither do they admit full topological twists [407].

The topological twist, introduced by Witten [201], is a powerful tool in studying
supersymmetric field theories. When the R-symmetry is large enough, such as in the
N = 2 and N = 4 cases, one can identify it with the spin group. This effectively ‘twists’
the spin representations of the theory, allowing for supersymmetric theories to be
defined on any smooth manifold. Furthermore, the set of operators in the cohomology of
the supercharge define a field theory that is independent of the metric. Theories with
eight supercharges in four dimensions only have one inequivalent topological twist1, the
Donaldson-Witten twist. The construction by Witten identified the partition function of
the pure N = 2 vector multiplet theory, topologically twisted, with the generator of
Donaldson invariants of the underlying manifold [408]. We now refer to any twisted
N = 2 theory as a Donaldson-Witten theory. The partition function of which computes
various topological invariants depending on the original field content, see Table 7.1 for a
summary.

Theories with sixteen supercharges, on the other hand, have a larger R-symmetry group,
SO(6). As a consequence, there are three inequivalent topological twists one can
perform. One of them is the N = 4 uplift of the one available in the N = 2 setting,
known here as the half-twists [409]. The other two are the Vafa-Witten twist [409, 410]
and Kapustin-Witten (or Geometric Langlands) twist [411, 412]. The former is
characterised by the presence of two supercharges with identical chirality, while the

1We are not counting here the half-twists, for which there are more possibilities.
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latter has two of the opposite chirality. We recommend the review [413] for a complete
list of available twists in various dimensions.

Donaldson-Witten twist of: Invariant of Mk

N = 2 vector multiplet Donaldson invariant

N = 2 vector multiplet with adjoint hypermultiplets Euler characteristic

N = 2 vector multiplet with fundamental hypermultiplets Segre numbers

N = 2 vector multiplet coupled to gravity Family Donaldson invariant

N = 1 5d vector multiplet on X × S1 Holomorphic Euler characteristic

N = 1 6d vector multiplet on X × T 2 Elliptic genus

Table 7.1: List of invariants computed by the Donaldson-Witten twist for various
N = 2 gauge theories. Taken from [6].

In practice, these cohomological partition functions can still be complicated objects to
manipulate, as one still needs to perform an infinite dimensional integral over a field
space. In the context of four dimensional N = 2 theories, Nekrasov showed how one can
break this path integral down into integrals over finite-dimensional moduli of instantons
by deforming the original theory [397, 401]. This is the celebrated Ω-deformation, which
is now used in various dimensions with various amount of supersymmetry. There are
many ways of constructing such a deformation. Typically, one starts from an action
functional in higher dimensions, say six. There, one places the theory on the product
M4 × T 2, and introduces a geometric twist between the torus and the four-manifold.
Compactifying back down to four dimensions gives the Ω-deformed theory of Nekrasov.
Another completely geometric construction is that of the flux-trap background in
string/M-theory (see for instance [414]). Theories constructed on such backgrounds are
known as equivariant versions of the standard twists, or Ω-deformed twists. In the
context of Donaldson-Witten theory, we talk about equivariant Donaldson-Witten twist
[395, 396, 415, 416]. Using this method [417, 418] constructed an Ω-deformation for all
three types of twists of N = 4, by starting from a ten-dimensional theory and twist
compactifying down to four.

An equivalent way of defining the Ω-background is through the use of background
supergravity. There, the higher-dimensional Ω-deformation parameters are remapped to
an auxiliary bosonic field of the chosen background supergravity. For theories with eight
supercharges, we already constructed such a background in Chapter 6. Here we will aim
to do so for the theories with sixteen supercharges. As this work is still ongoing, we will
only present the preliminary results gathered so far.

In Section 7.2 we propose a Euclidean formulation of the Weyl multiplet of N = 4
conformal supergravity [227] (see Chapter 3). In Section 7.3 we give the corresponding
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supergravity backgrounds that engineer all three twists of these theories, detailing every
time the corresponding supercharges. Our results are summarised in Table 7.4. Finally,
in Section 7.4 we attempt to construct those backgrounds that produce an
Ω-deformation of each twist. We are successful in doing so for the Kapustin-Witten and
half-twists but fail for the Vafa-Witten twist.

7.2 Euclidean Weyl multiplet

In Chapter 3, we gave an account of the Weyl multiplet of N = 4 conformal supergravity
in Lorentzian signature. Given that we wish to construct background configurations that
engineer the various twists of N = 4, together with their Ω-deformation, we will need to
Euclidean formulation of it. In principle, one could construct it directly with known
supergravity methods, however, we will use a simpler trick. As Wick rotations have the
effect of complexifying fields and disentangling spinors from their conjugates, one can
start from a Lorentzian supergravity and forgo any reality constraints on its fields. This
has the desired effect of making spinors and their conjugates independent as well as
complexifying its bosonic fields. If the Lorentzian picture contains a complex field, say
m, then the Euclidean formulation will spawn two independent complex fields, m and m̄.

The Lorentzian Weyl multiplet fields, together with their reality conditions and
constraints, are listed in Table 3.3. The main constraint we will be lifting is that given
implicitly by the chiral-SU (N ) notation. Therein, all fields in a given SU (4)
representation have a ‘conjugate’ field that lives in the conjugate representation. This
includes bosonic fields, for which the ‘conjugate field’ is the complex conjugate. For
instance, the auxiliary field Eij has, as its complex conjugate, Eij . Being a complex field
from the start (see Table 2 in [271]), we now wish to make Eij and Eij independent.

Let us, thus, proceed with building such a Euclidean Weyl multiplet using the rules
specified above. We do point out, however, that we will not seek to complexify the
metric or the SU (4) connection. The reason being that we still wish to consider real
geometries, as well as their topological twists. Any complexification of those fields would
be a departure from that setup. The field content being identical to the Lorentzian case,
we will not repeat our presentation of it and instead refer the reader back to Chapter 3
for that. For better readability, we have separated our summary of these Euclidean fields
into two tables, one for the fermions (see Table 7.2) and one for the bosons (see
Table 7.3). In each, we break down the chiral-SU (N ) notation so as to list all
independent such fields.

Additionally, under this ‘Euclideanisation’ procedure the Q- and S-supersymmetry
spinors ξi and ηi also see themselves disentangled from their chiral-SU (4) counterparts.
As such, any Q-supersymmetry transformation will be specified by the spinor ξi (resp.
ξi) for its positive (resp. negative) chirality and any S-supersymmetry transformation
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Field Constraints Chirality SU(4) Rep

ψµ
i γ5ψµ

i = ψµ
i

4 =ϕµ
i γ5ϕµ

i = −ϕµi

Λi γ5Λi = −Λi

ψµi γ5ψµi = −ψµi
4̄ =ϕµi γ5ϕµi = ϕµi

Λi γ5Λi = Λi

χijk
χij

k = −χjik,
χij

j = 0 γ5χijk = χijk 20 =

χij
k χij

k = −χjik,
χijj = 0 γ5χij

k = −χijk 20 =

Table 7.2: List of the fermionic components of the Euclidean N = 4 Weyl multiplet.
In the second column, any remaining constraints are detailed. The chirality is given in

the third row, while the final row contains their SU (4)R representation.

will be specified by the spinor ηi (resp. ηi) for its negative (resp. positive) chirality. As
there are now twice as many independent spinorial components in the Weyl multiplet,
we also see a doubling of the generalised Killing spinor equations. Those of the two
chiral parts of the gaugino become

δξ,ηψµ
i = 2Dµξ

i − 1
2γ

abTab
ijγµξj + ϵijklψ̄µjξkΛl − γµηi, (7.1a)

δξ,ηψµi = 2Dµξi −
1
2γ

abTab ijγµξ
j + ϵijklψ̄µ

jξkΛl − γµηi. (7.1b)

Those of the gaugino are

δξ,ηΛi = −2P̄µγµξi +Eijξ
j +

1
2ϵijklTbc

klγbcξj , (7.1c)

δξ,ηΛi = −2Pµγµξi +Eijξj +
1
2ϵ

ijklTbc klγ
bcξj , (7.1d)
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Field Constraints Self-duality SU(4) Rep

eaµ 1

ωabµ ωabµ = −ωbaµ 1

bµ 1

Vµ
i
j

(Vµij)∗ = −Vµji,
15 =

Vµ
i
i = 0

faµ (auxiliary) 1

aµ (auxiliary) 1

Tabij Tabij = −Tabji ⋆Tij = Tij 6 =
Tab

ij Tab
ij = −Tabji ⋆T ij = −T ij

Eij Eij = Eji 10 =

Eij Eij = Eji 10 =

ϕα

(ϕ1)∗ = ϕ1,
1(ϕ2)∗ = −ϕ2

ϕαϕα = 1

Dij
kl

Dij
kl = −Dji

kl =
−Dij

lk
20′ =

Table 7.3: List of the bosonic components of the Euclidean N = 4 Weyl multiplet. In
the second column, any remaining constraints are detailed. The self-duality is given in
the third row, while the final row contains their SU (4)R representation. Note that the
vierbeins ea, spin connection ωab and SU (4) connection V ij can be taken as complex
through this procedure. However, we will only focus on backgrounds where they are

real.

and finally those due to the dilatino are

δξ,ηχ
ij
k = −

1
2γ

abDµTab
ijγµξk − γabR(V )ab

[i
kξ
j] − 1

2ϵ
ijlmDµEklγ

µξm

+Dij
klξ

l − 1
6ϵklmnE

l[iγ|ab|(Tab
j]nξm + Tab

|mn|ξj])

+
1
2EklE

l[iξj] − 1
2ϵ

ijlmP̄µγ
µγabT

ab
klξm − (traces)

+
1
2Tab

ijγabηk +
2
3δ

[i
kTab

j]lγabηl −
1
2ϵ

ijlmEklηm + (fermions), (7.1e)

δξ,ηχij
k = −1

2γ
abDµTab ijγ

µξk + γabR(V )ab
k
[iξj] −

1
2ϵijlmDµE

klγµξm

+Dkl
ijξl −

1
6ϵ

klmnEl[iγ
ab(T|ab| j]nξm + T|abmn|ξj])

+
1
2E

klEl[iξj] −
1
2ϵijlmPµγ

µγabT
ab klξm − (traces)

+
1
2Tab ijγ

abηk +
2
3δ

k
[iT|ab| j]lγ

abηl − 1
2ϵijlmE

klηm + (fermions). (7.1f)
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For completeness, let us also rewrite the covariant derivates of our spinor parameters,
where we only focus on the coupling between them and the bosonic supergravity fields,

Dµξ
i =

(︃
∂µ +

1
4ωµ

abγab +
1
2 (bµ + iaµ)

)︃
ξi − Vµijξj , (7.2a)

Dµξi =

(︃
∂µ +

1
4ωµ

abγab +
1
2 (bµ − iaµ)

)︃
ξi + Vµ

j
iξj , (7.2b)

Dµη
i =

(︃
∂µ +

1
4ωµ

abγab −
1
2 (bµ − iaµ)

)︃
ηi − Vµijηj , (7.2c)

Dµηi =

(︃
∂µ +

1
4ωµ

abγab −
1
2 (bµ + iaµ)

)︃
ηi + Vµ

j
iηj . (7.2d)

Another important set of covariant derivatives, is that of the conjugate fields Eij and Tij .
Being in conjugate representations of SU (4), it is straightforward to determine what
their covariant derivates should be. Nevertheless, let us write them down explicitly,

DµTab
ij = ∂µTab

ij + ωµa
cTcb

ij + ωµb
cTac

ij − VµikTabkj − VµjkTabik, (7.3a)

DµTab ij = ∂µTab ij + ωµa
cTcb ij + ωµb

cTac ij + Vµ
k
iTab kj + Vµ

k
jTab ik, (7.3b)

DµEij = ∂µEij + Vµ
k
iEkj + Vµ

k
jEik, (7.4a)

DµE
ij = ∂µEij − VµikEkj − VµjkEik. (7.4b)

We conclude this section by point out that on a given supersymmetric configuration of
the Weyl multiplet, one where δξ,ηψµi = δξ,ηψµ i = 0, the S-supersymmetry parameter is
completely determined from the Q-supersymmetry one,

ηi =
1
2γ

µDµξ
i ηi =

1
2γ

µDµξi. (7.5)

7.3 The twists of N = 4

In this section we will use the machinery built in the previous section to construct
topological twists of N = 4 gauge theories. Put differently, we will search for
supersymmetric configurations of the background Euclidean Weyl multiplet for which
the SU (4) connection is proportional to the spin connection. We will come to see that
this successfully reproduces the Vafa-Witten twist [409, 410], Kapustin-Witten twist
[411, 412] and half-twists [409] of N = 4. Our results are summarised in Table 7.4.

Firstly, let us set the stage. We wish to consider topological twists of arbitrary smooth,
orientable, Riemannian manifolds, M. However, let us start by considering those that
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are also spin, as required by the initial presence of spinors on M. In turn, through the
twisting procedure, one can relax that condition. Nevertheless, let g be the Riemannian
metric on M. Through the Levi-Civita connection, associated to g, we see that M
comes equipped with a spin connection, ω.

Secondly, the twisting procedure requires an identification of the spin bundle with the
R-symmetry bundle. Equivalently, one can specify an injective homomorphism from the
spin group to the R-symmetry group, φ : SU (2)ℓ × SU (2)r → SU (4)R. This
homomorphism takes a simple form if we write elements of SU (4) as SU (2)
block-diagonal matrices. In this way, the notation will completely mirror that of
Chapter 6, whereby a basis of SU (2) is given in terms of the Pauli matrices (see
Appendix D for our conventions).

Let us proceed as follows. We take the SU (4) connection to have the following ansatz,

Vµ
i
j = −

1
4ω

ab
µ Σabij , (7.6)

where Σab is a traceless 4× 4 matrix. We also set all other, non-geometric, Weyl
multiplet fields to zero, except for the auxiliary field Dij

kl, which we will come back to
shortly. Now, different choices of Σ will lead to different topological twists.

The half-twists

We can start with the simplest example, that which recovers the Donaldson-Witten
twist, available to us in N = 2, and discussed at length in Chapter 6. In that case, we
beak down SU (4) to a single SU (2) R-symmetry group and consider the
homomorphism SU (2)l × SU (2)r → SU (2)R, which is given by either

Σabij =

(︄
σab 0
0 0

)︄i
j , or Σabij =

(︄
σ̄ab 0
0 0

)︄i
j , (7.7)

depending on the choice whether we are twisting the left SU (2) (twist) or the right one
(anti-twist). One can verify that both these ansätze do indeed lead to non-trivial (and
constant) solutions to the generalised Killing spinor equations (7.1a) and (7.1b). The
two constant solutions to these equations are given in Table 7.4. Note that, to make our
presentation more palatable, we use a matrix notation for our supersymmetry
parameters where the first index labels the (chiral) spin index, and the second one the
SU (4) index. As such, a chiral Q-susy parameter ξi will be represented by a 2× 4
matrix, sometimes written as two 2× 2 matrices. The two equations derived from the
variation of the gaugino, (7.1c) and (7.1d), are trivially satisfied on this background.
The final two equations, (7.1e) and (7.1f), are solved by those same two spinors if we set
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φ : SU (2)ℓ × SU (2)r → SU (4)R
(A,B) ↦→ φ(A,B)

Σabij
Killing spinors

ξi ξi

Donaldson-Witten twists

φ(A,B) := diag(A, I2)

(︄
σab 0
0 0

)︄
0

(︂
c1I2 0

)︂

φ(A,B) := diag(B, I2)

(︄
σ̄ab 0
0 0

)︄ (︂
c1σ2 0

)︂
0

φ(A,B) := diag(I2,A)
(︄

0 0
0 σab

)︄
0

(︂
0 c1I2

)︂

φ(A,B) := diag(I2,B)

(︄
0 0
0 σ̄ab

)︄ (︂
0 c1σ2

)︂
0

Kapustin-Witten twists

φ(A,B) := diag(A,B)

(︄
σab 0
0 σ̄ab

)︄ (︂
0 c1σ2

)︂ (︂
c2I2 0

)︂

φ(A,B) := diag(B,A)
(︄
σ̄ab 0
0 σab

)︄ (︂
c1σ2 0

)︂ (︂
0 c2I2

)︂
Vafa-Witten twists

φ(A,B) := diag(A,A)
(︄
σab 0
0 σab

)︄
0

(︂
c1I2 c2I2

)︂

φ(A,B) := diag(B,B)

(︄
σ̄ab 0
0 σ̄ab

)︄ (︂
c1σ2 c2σ2

)︂
0

Table 7.4: The topological (anti-)twists of N = 4 theories on oriented Riemannian (but
otherwise arbitrary) manifolds, as defined by their respective homomorphic injection φ of
the Euclidean rotations into the SU (4)R R-symmetries. For each twist, we provide the
data Σ defining the SU (4)R connection via equation (7.6) and the positive- (negative-

)chirality Killing spinor(s) ξi (ξi). I2 is the unit 2× 2 matrix.

the auxiliary field Dij
kl to the following background value

Dij
kl = −

R

4

(︄
σ2 0
0 0

)︄ij (︄
σ2 0
0 0

)︄
kl

− (trace), (7.8)

where the specific meaning of −(trace) is given in footnote 16 of Chapter 3.

A similar formulation exists for those two twists where a different SU (2) subgroup is
chosen within SU (4). In that case, the SU (4) connection is set using the matrices

Σabij =

(︄
0 0
0 σab

)︄i
j , or Σabij =

(︄
0 0
0 σ̄ab

)︄i
j . (7.9)
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The corresponding two Killing spinors are also given in Table 7.4. This time, however,
the background value of Dij

kl takes the following form

Dij
kl = −

R

4

(︄
0 0
0 σ2

)︄ij (︄
0 0
0 σ2

)︄
kl

− (trace), (7.10)

due to the change in SU (2) subgroup.

The Kapustin-Witten twist

Arguably more interesting are the twists that are not available in N = 2. The
Kapustin-Witten is one such twist that has preserves two constant spinors of opposite
chirality. Its defining injective homomorphism is that which identifies SU (2)-left and
SU (2)-right with different SU (2) subgroups of the SU (4) R-symmetry. In the
supergravity background, this can be engineered in two different ways, using two
different Σab matrices

Σabij =

(︄
σab 0
0 σ̄ab

)︄i
j , or Σabij =

(︄
σ̄ab 0
0 σab

)︄i
j . (7.11)

Both engender two constant solutions to the first two generalised Killing spinor
equations, (7.1a) and (7.1b), with opposite chirality. The two twists are mapped to each
other under chiral flips, as expected from the fact that one is just the ‘anti-’ twists of the
other. As usual, we reported those solutions in Table 7.4.

The two Killing spinor equations given by the supersymmetry variation of the gaugino
are still trivially satisfied on our background. The final two equations, given as the
variation of the dilatino, (7.1e) and (7.1f), are solved by those two constant spinors
provided we set

Dij
kl = −

R

6
(︂
(I2 ⊗ σ2)

ij(I2 ⊗ σ2)kl + (σ1 ⊗ σ2)
ij(σ1 ⊗ σ2)kl

+ (σ3 ⊗ σ2)
ij(σ3 ⊗ σ2)kl

)︂
− (trace). (7.12)

In the above I2 denotes the 2× 2 identity matrix, and ⊗ is the tensor product, whose
components are defined such that

(I2 ⊗ σ2)
ij =

(︄
σ2 0
0 σ2

)︄ij
. (7.13)

The Vafa-Witten twist

Finally, we can present the supergravity background that engineers the Vafa-Witten
twist of N = 4 gauge theories. This twist is characterised by the fact that it preserves
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two constant spinors of identical chirality, distinguishing it from the Kapustin-Witten
twist which has two spinors of opposite chirality. Its defining injective homomorphism
maps the same SU (2) subgroup of the spin group to the R-symmetry group. As such,
the correct background supergravity configuration is that specified by

Σabij =

(︄
σab 0
0 σab

)︄i
j , or Σabij =

(︄
σ̄ab 0
0 σ̄ab

)︄i
j . (7.14)

The first configuration leads to two constant Killing spinors, both of negative chirality.
We will label that configuration the ‘twist’. The second configuration leads to two
constant positive chirality Killing spinors. We will label that one the ‘anti-twist’.

As usual, we reported these solutions in Table 7.4. They properly solve all generalised
Killing spinor equations, provided the auxiliary field Dij

kl takes the following form

Dij
kl = −

R

6
(︂
(I2 ⊗ σ2)

ij(I2 ⊗ σ2)kl + (σ1 ⊗ σ2)
ij(σ1 ⊗ σ2)kl

+ (σ3 ⊗ σ2)
ij(σ3 ⊗ σ2)kl

)︂
− (trace), (7.15)

identically to the Kapustin-Witten case.

Whenever a given manifold M exhibits more symmetry, additional non-trivial solutions
to the generalised Killing spinor equations may emerge. For instance, on any product
manifold M3 × S1, where the canonical choice of vierbeins is taken, the spin connection
satisfies ω4a = 0. From our choice of SU (2) basis, this further shows that the SU (4)
connections for the Vafa-Witten and Kapustin-Witten twists coincide. The manifold
then admits four constant Killing spinor.

7.4 Ω-deformed twists

Recall from our exposition in Chapter 6 that the Donaldson-Witten twist admits a U (1)
deformation. This is often referred to as the equivariant Donaldson-Witten twist, or
Ω-deformed Donaldson-Witten twist. In our background supergravity setup, we
constructed such a twist by additionally turning on the two-form Weyl multiplet field T .
Its values being dictated by a U (1)-vector of M.

Let us present here the various generalisations of this construction to the N = 4
conformal supergravity background. This time, however, the two-form T is
SU (4)R-valued and must somehow be related to the auxiliary fields Eij and Eij through
the gaugino variation. These facts, generally, complicated the search for supersymmetric
configurations quite a bit. Let us nevertheless, give an account for the ones we were able
to construct explicitly.
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The half-twists

In this first setup, we will mirror directly the configuration given in N = 2 conformal
supergravity for the Ω-deformation of the Donaldson-Witten twist. Here, we start from
the background configuration of the half-twist and turn on one of the two-forms T ij or
Tij , depending on whether we are looking at the twist or anti-twist. In our conventions,
the former has

Σabij =

(︄
σab 0
0 0

)︄i
j . (7.16)

Consequently, we wish to turn on the anti-self-dual two-form Tij. Let v be a vector field
on M, then the ansatz

T ij =
1
2 (dv)

−
(︄
σ2 0
0 0

)︄ij
, (7.17)

leads to a non-trivial solution to the equations of motion, provided further constraints
on v. Indeed, one can show that the spinors

(ξα i) = vµσ̄µ (c1σ2 0) , (ξαi ) = (c1I2 0) , (7.18)

are Killing on this background provided that v is a conformal Killing vector of M. This
result mirrors our finding in Chapter 6.

The Kapustin-Witten twist

Let us now start from the supergravity background that manufactures the
Kapustin-Witten twist, as discussed in the previous section. For simplicity, we will focus
on that given by

Σabij =

(︄
σ̄ab 0
0 σab

)︄i
j , (7.19)

in other words, what we call the anti-twist. Similar result can be found for the twist,
with a flip of chirality/self-duality. In the present setting, the SU (4) connection forces
us to turn on both self-dual and anti-self-dual two-form fields T ij and Tij .

Let v be a vector field on M. Then, the ansatz

Tij =
1
2 (dv)

+

(︄
σ2 0
0 0

)︄
ij

, T ij =
1
2 (dv)

−
(︄

0 0
0 σ2

)︄ij
, (7.20)
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leads to the following Killing spinors

(ξα i) = (c1σ2 c2v
µσ̄µσ2) , (ξαi ) = (c1v

µσ̄µ c2I2) , (7.21)

provided v is a conformal Killing vector field of M. Additionally to the two-forms, one
must also introduce a non-trivial configuration for the bosonic fields Eij and Eij , in
order to solve the second sets of Killing spinor equations, (7.1c) and (7.1d). The
simplest form these take can be written as

Eij =
1
2 (dv

−)ab

(︄
σ2σ̄ab 0

0 0

)︄
ij

, Eij =
1
2 (dv

+)ab

(︄
0 0
0 σ2σab

)︄ij
. (7.22)

With those fields specified, the final two Killing spinor equations, (7.1e) and (7.1f), are
automatically solved. This confirms the supersymmetric nature of the proposed
background configuration.

The Vafa-Witten twist

Surprisingly enough, a similar construction for the Vafa-Witten twist doesn’t seem to
allow for the introduction of an Ω-deformation. At the very least, no simple
construction like the ones introduced for the half-twists and Kapustin-Witten twist solve
all Killing spinor equations.

Let us, nevertheless, presented here our attempt at constructing such a background and
pin-point where this attempt fails. Starting from the SU (4) connection, let us consider
the configuration that gives the ‘twist’. A similar ansatz exists for the anti-twist.
Together with the matrix configuration

Σabij =

(︄
σab 0
0 σab

)︄i
j , (7.23)

we give the two-form T ij a non-trivial configuration that depends on a vector field v,

T ij =
1
2 (dv)

−
(︄
σ2 0
0 σ2

)︄ij
. (7.24)

The spinors

(ξα i) = vµσ̄µ (c1σ2 c2σ2) , (ξαi ) = (c1I2 c2I2) , (7.25)

are indeed solutions of the first two Killing spinor equations, (7.1a) and (7.1b), provided
v is conformal Killing. Solving the variation of the gaugino, (7.1c) and (7.1d), further
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requires us to set

Eij =
1
2 (dv

−)ab
vcvd

∥v∥2
(︂
I2 ⊗ σ2σcσ̄

abσ̄d
)︂
ij

. (7.26)

Unfortunately, this configuration doesn’t solve the variation of the dilatino. The failure
of which originates from the DµEkl term in (7.1e). The equation would be solved by our
ansatz, if its sign were inverted, possibly hinting at an error in our construction.

7.5 Conclusion/Remarks

In this chapter we proposed a Euclidean formulation of the Weyl multiplet of N = 4
conformal supergravity, starting from the known literature (detailed in Chapter 3).
Using this, we were able to construct BPS configurations that engineer the three twists
of 4d N = 4, the half-, Kapustin-Witten and Vafa-Witten twists. Each case is
distinguished by its Lie group homomorphism from the Lorentz group to the
R-symmetry group, φ. In each case, we solved the variations of the gravitino, gaugino
and dilatino; reporting our results in Table 7.4.

These twists admit a further refinement, whereby the two-form fields T ij and Tij are
turned on, and depend on a conformal Killing vector v. Mirroring the construction done
for N = 2 theories, we believe these engineer the Ω-deformation of their corresponding
twists. A more thorough identification with the alternative definition [418] has yet to be
done, however. More specifically, it would be interesting to see if the algebra generated
by our supercharges match that found in that article.

The lack of apparent Ω-deformed solution for the Vafa-Witten twist is troubling. As
pointed out below equation (7.26), our ansatz fails only due to a singular sign within the
dilatino variation. This could possibly hint at a mistake made when constructing the
Euclidean formula of the Weyl multiplet.

Where to go from there?

Those used to performing Ω-deformations via twist-compactifications might find the
background supergravity formulation too abstract. However, it does seem to provide a
simpler, group-theoretic, way of constructing these deformations — by choosing how to
decompose the anti-symmetric representation of T ij into SU (2) representations, with
the usual vector field dependence. Notably, this allows us to construct general ansätze
for these fields, by giving them an arbitrary block decomposition in terms of SU (2)
generators.



7.5. Conclusion/Remarks 151

For instance, let us consider a deformation of the Vafa-Witten twist,

Σabij =

(︄
σab 0
0 σab

)︄i
j ,

where we give the two-form T ij a configuration that now depends on three vector fields
v1, v2 and v3,

T ij =
1
2

(︄
σ2(dv1)− σ2(dv3)−

σ2(dv3)− σ2(dv2)−

)︄ij
. (7.27)

One can show that the gravitino variation, (7.1a) and (7.1b), is solved by the spinors

(ξα i) = σ̄µ ((v
µ
1 c1 + vµ3 c2)σ2 (vµ3 c1 + vµ2 c2)σ2) , (ξαi ) = (c1I2 c2I2) , (7.28)

provided the vector fields V1 = vµ1 c1 + vµ3 c2 and V2 = vµ3 c1 + vµ2 c2 are conformal Killing.
This is a promising start as it seems to engineer a background with a non-abelian
Ω-deformation, where the algebra generated by these spinors mixes the vectors vi.
However, we were unable to find solutions to the other four generalised Killing spinor
equations, (7.1c), (7.1d), (7.1e) and (7.1f); and cannot conclude whether such a
background configuration is indeed supersymmetric. Further look into this is expected.
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Part IV

Neural networks





155

Chapter 8

nn-dCFT

Patti chjari amici cari.
Clear contracts makes dear friends.

Corsican proverb

The central idea behind this chapter is the so-called neural-network-field-theory (nn-FT)
correspondence. Without aiming for a complete description, we will at least outline the
main points, by focusing on its realisation in correlation functions. For a more
comprehensive overview, and a good point to start reading on this, we recommend the
introductory sections of [419] or the TASI lecture notes [60].

In 2024, Halverson, Naskar and Tian successfully specialised this correspondence to
conformal field theories (CFTs) [61]. By leveraging the constructive power of neural
networks, they developed a formalism that assigns a CFT to every neural network
configuration of a given class. This comes in opposition to the standard nn-FT
correspondence, for which one gets a QFT only in a suitable limit.

In this chapter, we will expand on this formalism by extending the construction to
defect conformal field theories (dCFTs). In a manner similar to the CFT case, one can
assign a dCFT to every neural network of a given class. Basic operations between
neural-networks also allows one to iteratively build new dCFTs from given dCFT data.
This construction is highly desirable as it allows us to engineer an infinite class of
(potentially new) dCFTs using a finite function space. Additionally, while the original
formalism was only explicitly built for scalar conformal primaries, we will suggest a
potential extension to any spinning conformal primary that can be packaged into
symmetric-traceless tensors (STTs)1.

1We will not present a proof that our extension works in every case. This will be ironed out in a
follow-up work to [9].
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8.1 The nn-FT correspondence

Let us restrict our discussion to Euclidean field theories in d-dimensions, and recall some
basic facts about those QFTs. In the Lagrangian approach, the generating functional is
called the partition function Z[{Ji}]. For every field ϕi in the theory we can associate a
current Ji and define Z[{Ji}] to be the functional integral of the exponentiated action
S[{ϕi}] of the fields multiplied by the exponential of the current couplings.
Schematically, we write this as an integral with measure Dϕ (even if no such measure is
known formally),

Z[{Ji}] =
∫︂
Dϕe−S[{ϕi}]∏︂

i

e
∫︁
ddxJi(x)ϕi(x). (8.1)

The expression above must then be understood as a formal expression, used to illustrated
the properties of this generating functional [420]. We also note that ϕi is a placeholder
for fields in any representation of Spin(d). Any spacetime indices those would contain
are understood as being contracted with those of Ji, resulting in a spacetime scalar.

All correlators of the fields ϕi can be retrieved from Z[{Ji}] by performing multiple
functional derivatives with respect to the currents Ji. For example, the n-point
correlation function G(n)(x1, . . . ,xn) between the fields ϕ1, . . . ,ϕn is constructed as

G(n)(x1, . . . ,xn) = ⟨ϕ1(x1) · · ·ϕn(xn)⟩ =
δnZ[{Ji}]

δJ1(x1) · · · δJn(xn)
. (8.2)

By symmetry arguments, it is then possible to restrict the functional forms of these
correlators (see Chapter 1). They can even be given a more formal definition, and be
exactly determined in some special cases2.

Let us now see how neural-networks can be used to engineer these QFTs. The Universal
Approximation Theorems (UATs) are a category of theorems that describe under which
conditions neural networks are dense in a given function space [55–59]3. Placing
ourselves in such conditions satisfied by the UATs, we can quickly understand how neural
networks can be used to approximate a field theory. Let us illustrate this constructively.

Firstly, recall that a neural network is a map Φθ : Rd → Rq, the parameters of which
can take any value in a measurable set θ ∈ E. We can then define a partition function,
Z[{Ji}], for this family of q neural networks. Since the networks are labelled by a
measurable set, E, we can define any functional integral involving these fields as a
standard integral over E, with a given choice of measure µE

4. An important step in this
2The examples that come to mind are integrable theories like TQFTs, and certain supersymmetric

QFTs.
3We refer the reader to the classic surveys [421–423] for more information.
4Here E denotes a σ-algebra on E. In practice, we will always take E = P(E), the set of all subsets of

E, and choose E to be Rd or some subset thereof.
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...

...

Figure 8.1: Illustration of the large-width limit (left) and large-depth limit (right) of
the neural network (middle).

construction lies in the fact that we wish to give all correlators a statistical
interpretation. This is possible when the measure µE is a probability density. In other
words, it must obey the axioms of probability:

• ∀U ∈ E , µE (U ) ∈ [0, 1],

• µE (E) = 1.

In that instance, the partition function Z[{Ji}], written explicitly as

Z[{Ji}] =
∫︂
E
µE

q∏︂
i=1

e
∫︁
ddxJi(x)Φi

θ(x), (8.3)

describes a type of field theory known as a neural-network quantum field theory
(nn-QFT). The explicit choice of Φi

θ, as a function of θ, is known as a choice of
architecture.

Allow us to briefly point out the similarities between the standard partition function
(8.1) and that of the nn-QFT (8.3). In the Feynman interpretation of the partition
function, every field configuration ϕi⋆ is weighted by its action, S[{ϕi⋆}], through the
exponential term. Those with the smallest action contribute the most to the integral. In
other words, Dϕe−S[{ϕi}] acts as a measure on the space of fields, just like µE does on E.
From the nn-QFT side of things, a choice of measure amounts to a choice of action
S[{ϕi}] in the QFT language. The UATs tell us that in a suitable limit of the number of
parameters θ, the networks Φθ will be dense in the set of functions from Rd to Rq. In
other words, the integration in (8.3) will coincide with the functional integral in (8.1).
The neural-network-field-theory correspondence has emerged.

Such a correspondence should not appear as a surprise. For most standard
neural-networks with a parameter N , say the number of neurons in the layer, taking N
to infinity amounts to drawing the network from a Gaussian process. This is the
neural-network-Gaussian-Process (nn-GP) correspondence [424]. Using this
correspondence, [425, 426] showed that the infinite-width limit of such nn-QFTs leads to
a free field theory. The interactions emerge as finite-width corrections, i.e. deviations
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away from the Gaussian limit. [427] extend this construction to the non-perturbative
renormalisation group.

8.2 Neural-network-CFTs

Constructing neural-network-CFTs (nn-CFTs) is now a simple extension of that of
nn-QFTs described above. This section follows the work of Halverson, Naskar and Tian
[61] and uses the embedding space formalism of a D-dimensional CFT in flat space,
detailed in Chapter 1, Section 1.5. We also restrict the current discussion to scalar
conformal primary fields, ϕ(x). We will propose a similar formalism for spinning fields
at the end of Section 8.4.

Firstly, recall that under any special conformal transformations (SCTs) of the
coordinates a conformal primary field must transform by a power of the scaling factor.
This power is called the scaling dimension of ϕ, denoted ∆. If bµ are the parameters of
this transformation, then xµ ↦→ xµ − 2b · xxµ + x2bµ and the scalar conformal primary
obeys

ϕ(x′) =

⃓⃓⃓⃓
∂x′

∂x

⃓⃓⃓⃓−∆

. (8.4)

In general, the action of Kµ, the generators of SCTs, is non-linear on RD and imposing
such a constraint on a neural-network architecture might be highly non-trivial.
Thankfully, when utilising the embedding space formalism, the action of SO(1,D+ 1) is
linear and such a constraint can be imposed on neural-network architectures. The idea is
then as follows. Define a neural-network-CFT (nn-CFT) as a neural-network-QFT on
the embedding space R1,D+1 such that the architecture Φθ is both homogeneous and
obeys the conformal primary constraint. In practice, however, we will often work with a
Euclidean version of the embedding space, RD+2.

While we can always Wick rotate the embedding space back to R1,D+1, in doing so,
however, we are spoiling the SO(D+ 2)-symmetry that was built into the measure µE .
It is, therefore, also necessary to “Wick rotate” the measure, making it
SO(1,D+ 1)-invariant instead. The downside to this approach is that Wick rotation is
not well-defined on the space of measures. For instance, the Cauchy distribution defined
using the SO(D+ 2)-invariant dot product on the embedding space

µP(RD+2) =
dD+2θ

θ · θ+ 1, (8.5)

can be Wick rotated by simply changing the dot product to the Lorentzian one.
Unfortunately, the object this defines violates the first axiom of probability – the
measure is no longer positive and bounded.
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There are two conceptual ways around this hurdle. The first is to consider the theory
and its correlators built from the Euclidean embedding space, as the fundamental
objects. All integrals are performed in that setting, and only the final output is Wick
rotated to the standard theory. This way of thinking completely sidesteps the measure
problem by doing everything on RD+2. The second way is to relax the conditions on µE .
Instead of strictly requiring a probability measure, we allow for non-positive (and
potentially non-bounded) measures as long as the integrals

∫︁
E µE Φn

θ can be regulated.
This approach is similar to the standard QFT approach, where all but a few integrals
must be regulated and renormalised. In essence, the specific interpretation will not be
relevant to us, as we will sometime perform the integrals in Euclidean signature, and
some other times in Lorentzian signature.

To conclude this section, we collect here the various ingredients needed to define a
nn-CFT. Restricting this discussion to nn-CFT built from scalar conformal primaries
only, those are

1. a SO(1,D+ 1)-invariant measure (or SO(D+ 2)-invariant probability density),

2. a neural-network architecture Φθ(X) on R1,D+1 (or RD+2) which is

(a) Homogeneous: Φθ(λX) = λ−∆Φθ(X),

(b) Conformal Primary: Φθ(K(b) ·X) = (1 + 2b ·X + b2X2)∆Φ(X),

where K(b) ·X denotes the action of a SCT with parameter b on the coordinate X.
With these ingredients set, the final requirement, which is also the hardest to ensure, is

3 well defined (finite) correlators.

[61] illustrate this construction with a couple of examples, all based on the same
architecture, dubbed the standard architecture. It is labelled so because it is the simplest
such architecture that obeys the homogeneity and conformal primary conditions set
above.

Definition 8.1. The spinless nn-CFT architecture The standard nn-CFT architecture
with scaling dimension ∆ is defined as [61]

Φθ(X) = (X · θ)−∆, (8.6)

where the dot product is performed either on the standard embedding space, R1,D+1, or
on its Euclidean counterpart, RD+2.



160 Chapter 8. nn-dCFT

8.3 Neural-network-defect-CFTs

We now wish to extend the previously-described formalism to accommodate
defect-Conformal Field Theories (dCFTs) [9]. As before, we wish to consider a CFT in
D-dimensions. We will take the defect to be p-dimensional and flat. In that setting, the
embedding space has a natural splitting in terms of p+ 2 defect directions XA and
q = D− p transverse direction XI . A more thorough treatment can be found in
Chapter 1, Section 1.6 or in the original article [107].

Since introducing a defect breaks down the conformal group to its defect subgroup, we
must allow for measures µE that preserve this subgroup. A general p-dimensional
conformal defect may break down SO(1,D+ 1) fully to SO(1, p+ 1), but can also
preserve a subgroup of SO(q) on top of that. For this flat-defect case that we are
interested in, the full transverse subgroup is preserved, which implies that we must
choose a measure that is SO(1, p+ 1)× SO(q)-invariant. Following this choice, we must
also find a nn-CFT analogue of the defect and ambient conformal primaries. We label
these the defect architecture and ambient architecture. The defect architecture should
obey all the conditions placed on a standard nn-CFT architecture, be it restricted to the
p+ 2 defect directions of the embedding space. The ambient architecture on the other
hand, should obey those of a nn-CFT architecture that lives on the full
D+ 2-dimensional embedding space.

These choices can be justified as follows. The scalar defect insertions in any dCFT still
form a well-defined CFT on their own. Thus, their nn-dCFT counterparts should also
behave as such, on the p+ 2-dimensional subspace of the embedding space. The scalar
ambient insertions, on the other hand, behave like SO(1,D+ 1) scalar conformal
primaries whose correlators are supplemented by a defect operator. This defect operator
insertion, is what the SO(1, p+ 1)× SO(q)-invariant measure engineers for us.

Extending the construction in [61], we define the simplest scalar neural-network
architectures for defect and ambient insertions in Definition 8.2.

Definition 8.2. The spinless nn-dCFT architecture In the language of nn-QFTs, defect
insertions are represented by the defect architecture φ(X), the standard form of which
we define as follows

φ(X) = (X • θ)−∆̂. (8.7)

Any such insertion is restricted to the defect, and thus obeys the constraints XI = 0.

The ambient architecture, representing ambient operator insertions, follows the standard
nn-CFT architecture described in the previous section

ϕ(X) = (X · θ)−∆. (8.8)
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Here, the coordinate X has no further restrictions, until brought down to the Poincaré
section.

8.3.1 Example: monomial nn-dCFTs

In this first example, we wish to illustrate the effectiveness of our formalism at
describing dCFT correlation functions for non-unitary theories. Indeed, we will focus on
architectures with negative scaling dimensions, ∆, ∆̂ < 0. To facilitate things, we will
take the measure µE to be a product of two centred multivariate normal distributions,
one along the defect directions with variance matrix σ̂AB = µ̂2δAB , and the other in the
transverse directions with variance matrix σ̃IJ = µ̃2δIJ ,

µE = N (0, σ̂)N (0, σ̃)dD+2θ. (8.9)

This choice preserves the full defect symmetry SO(p+ 2)× SO(q), which will be
reflected in the correlators we will compute. One can also choose a measure that breaks
all the transverse symmetry, or only part of it, by either changing σ̃ or by choosing a
different distribution altogether, however, that would be a departure from the flat defect
description we wish to stick to.

The correlation function between n-defect insertions φ, and m-ambient insertions ϕ is
given by the expectation value

E

⎡⎣ n∏︂
i=1

φi(Xi)
m∏︂
j=1

ϕj(Yj)

⎤⎦ =
∫︂

Rp+2
dp+2θN (0, σ̂)

n∏︂
i=1

φi(Xi)

⎛⎝∫︂
Rq
dqθN (0, σ̃)

m∏︂
j=1

ϕj(Yj)

⎞⎠ .

(8.10)

Since all scaling dimensions considered in this example are negative, we wil adopt the
notation ∆i = −ni, where ni is positive. All correlators below will reference this
“inverse” scaling dimension for better readability.

Before proceeding, we also note the binomial expansion of the ambient architecture ϕ,
which will be useful in our computations

ϕ(X) = (X · θ)n =
n∑︂
d=0

(︄
n

d

)︄
(X • θ)d(X ◦ θ)n−d. (8.11)

Note that the expansion above, while obvious for negative scaling dimensions, is a
prototypical example of the defect operator product expansion (dOPE) of ambient
architectures. This OPE not only is finite, but also only involves scalar conformal
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primaries. None of the spinning fields, or descendents are required for this expansion to
work.5

One-point functions

There are two types of one-point functions – the defect and the ambient ones. In both
cases, the embedding space formalism requires us to restrict them to the Poincaré
section (P.S.) in order to get a physical-space correlator. The defect one-point function
should always vanish, when restricted to the defect P.S., and indeed, our explicit
calculations show that these expectation values obey this and are exactly of the form in
equation (1.43).

E[φ(X)] = E[(X • θ)n] =

⎧⎨⎩ 2n/2π−1/2Γ
(︂
n+1

2

)︂
(µ̂2X •X)

n
2 n ∈ 2Z

0 otherwise
P .S.
= 0 (8.12a)

E[ϕ(X)] = E[(X · θ)n] =

⎧⎪⎨⎪⎩
Γ(n+1)

2
n
2 Γ(n

2 +1)
(µ̂2X •X + µ̃2X ◦X)

n
2 n ∈ 2Z

0 otherwise

P .S.
=

⎧⎪⎨⎪⎩
Γ(n+1)

2
n
2 Γ(n

2 +1)
(µ̃2 − µ̂2)

n
2 (X ◦X)

n
2 n ∈ 2Z

0 otherwise
(8.12b)

A detailed proof of these results can be found below Lemma C.1.

Two-point functions

The two-point functions, on the other hand, come in three varieties. The defect-defect,
mixed and ambient-ambient correlators. As discussed in Section 1.6, both the mixed and
ambient-ambient correlators gain more structure thanks to the additional OPE channels
that are available to them. Nevertheless, the structure of these correlators in known
[107] and our computations show perfect agreement with those.

Starting with the defect-defect correlator,

E[φ1(X1)φ2(X2)]
P .S.
= δn1,n2 Γ(n1 + 1)µ̃n1

2 (X1 •X2)
n1 . (8.13a)

5The fact that no descendents appear in this expansion might not be as surprising as one would think.
Indeed, given the simplicity of the network architecture, any descendent is directly proportional to a
scalar primary with neighbouring scaling dimension

∂A(X • θ)n̂ = n̂θA(X • θ)n̂−1.
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The mixed defect-ambient correlator takes the form

E[φ1(X1)ϕ2(X2)]
P .S.
=

Γ(n2 + 1)
Γ
(︁n2−n1

2 + 1
)︁2 n1−n2

2 µ̃n1
2 (µ̂2 − µ̃2)

n2−n1
2 (X2 ◦X2)

n2−n1
2 (X1 •X2)

n1 ,

(8.13b)

when n2 ≥ n1 and n1 + n2 ∈ 2Z, and vanishes otherwise.

The two-point correlator between two ambient insertions requires the result from
Theorem C.3. After resumming that result, we find

E[ϕ1(X1)ϕ2(X2)] =
Γ(n2 + 1)

Γ(n1 + 1)Γ
(︁n2−n1

2 + 1
)︁ (︃α22

2

)︃n2−n1
2

αn1
12

2F1

(︃1− n1
2 ,−n1

2 ; n2 − n1
2 + 1; α11α22

α2
12

)︃
(8.13c)

when n1 ≤ n2 and n1 + n2 ∈ 2Z,

E[ϕ1(X1)ϕ2(X2)] =
Γ(n1 + 1)

Γ(n2 + 1)Γ
(︁n1−n2

2 + 1
)︁ (︃α11

2

)︃n1−n2
2

αn2
12

2F1

(︃1− n2
2 ,−n2

2 ; n1 − n2
2 + 1; α11α22

α2
12

)︃
(8.13d)

when n1 ≥ n2 and n1 + n2 ∈ 2Z, and zero otherwise. In both expressions above, we also
defined αij = µ̃2Xi •Xj + µ̂2Xi ◦Xj . In the special cases i = j, these simplify to
αii

P .S.
= (µ̂2 − µ̃2)Xi ◦Xi on the Poincaré section.

Higher-point functions

Given the simplicity of these architectures and distributions, it is a surprise to no one
that the non-unitary dCFT this constructs is fully solvable. Indeed, while we gave
closed-form expressions for the one- and two-point functions, all higher-point functions
can simply be determined by performing various Wick contractions between the
insertion vectors Xi. The elementary example of such a contraction is presented in
Lemma C.2. Let us illustrate how one would construct a correlator between arbitrary
number of insertions.

For every insertion Xi with weight ni, one can perform ni/2 contractions Xi •Xi iff ni

is even. Every self contraction gives a factor of Q(n) (see C.45). We must then also
consider all possible contractions between Xi and Xj , summing over these possibilities
with appropriate weights. All-in-all, the correlator E[(X1 • θ)n1 · · · (Xk • θ)nk ] will
contain many constrained sums based on the evenness of the inverse scaling dimensions
ni.

In this construction, the difficulty lies in resumming these integrals into closed-form
expressions, such as into the hypergeometric functions given previously.
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E[(X1 • θ)n1 · · · (Xk • θ)nk ] = X1

X2
X3

Xk

···

+ · · ·+ X1

X2
X3

Xk

···

Figure 8.2: A pictorial representation of all possible Wick contractions that build the
k-point expectation value E[(X1 • θ)n1 · · · (Xk • θ)nk ].

The correlators above contain the necessary information to fully describe the defect
structure of this theory. Indeed, abstracted behind the hypergeometric functions is an
OPE expansion in the defect conformal primaries. For every such hypergeometric
function, we are in possession of the full finite expansion, and thus, know everything
about the defect theory.

8.3.2 Second example: reciprocal nn-dCFT

We now wish to consider defect and ambient insertions, φ(X) = (X • θ)−∆̂ and
ϕ(X) = (X · θ)−∆, with positive scaling dimensions ∆̂, ∆ > 0. It is possible to
analytically continue the Gaussian integrals with those positive scaling dimensions.
Without going into details, let us outline the main formulae needed to calculate those
partition functions.

Firstly, the moments of a single θ-parameter vanish for odd values and equals

∫︂
R
N (0,µ2)θ

sdθ =
1√
π

(︃
µ2
2

)︃− s
2

Γ
(︃1 + s

2

)︃
, (8.14)

for even values. We can further extend the validity of the above formula to any s even,
positive or negative.

Secondly, the various correlation functions can be written in a manifestly
hypergeometric form, using the Feynman reparametrisation trick

1
An1

1
Bn2

=
Γ(n1 + n2)

Γ(n1)Γ(n2)

∫︂ 1

0
du

∫︂ 1

0
dvδ(1− u− v) un1−1vn2−1

(uA+ vB)n1+n2
. (8.15)

This holds whenever 0 is not included in the segment from A to B. We can make a
choice of regularisation, wherein the segment is either above or below the real line. We
argue that any of these choices leads to the correct dCFT correlator structure.

One-point function
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The one-point function of ambient insertions ϕ(X) obey the desired structure given in
equation (??eq:dCFT-1pt-ES)). They are

E[ϕ(X)]
P.S.
= (−1)

∆
2 2− ∆

2
π1/2

Γ
(︂

∆+1
2

)︂ (µ̂2 − µ̃2)
∆
2

(X ◦X)∆/2 , (8.16)

when ∆ is even and zero otherwise.

Two-point functions

The two-point functions also obey the desired dCFT correlator structure, as in the
polynomial nn-dCFT example. For conciseness, we only report here the ambient-ambient
correlator, and urge the reader to refer to our publication [9] for more details. We find

E[ϕ(X1)ϕ(X2)] ∝ (1− β)−∆1α
− ∆1+∆2

2
22 2F1

(︃
∆1, ∆1 + ∆2

2 ; ∆1 + ∆2; α− β1− β

)︃
, (8.17)

where αij = Xi•Xj

µ̂2
+

Xi◦Xj

µ̃2
and α = α−1

22 (−α12 + α22 −
√
α12 − α11α22) and

β = α−1
22 (−α12 + α22 +

√
α12 − α11α22). The proportionality indicates the additional

presence of combinatorial factors of ∆1 and ∆2 which we do not specify here.

8.4 Spinning nn-dCFT

Before concluding this chapter, we wish to write down our proposal for describing
nn-CFTs and nn-dCFTs with spinning fields. This proposal has only been tested on a
handful of examples and lacks a proper proof. However, we still wish to commit it to
writing, as it may prove useful, were it to work out in general6.

Spinning nn-CFTs

Since the embedding space formalism uses an auxiliary variable Z, we wish to do the
same with our parameters. We take θ ∼ P (θ) and η ∼ P (η) to be two sets of D+ 2
random variables, distributed according to centred multivariate distributions with
σij = δµ2. We propose the following nn-CFT with scaling dimension ∆ and spin J ,

Φ∆,J (X,Z) = (θ ·X)−∆−J (CMNθ
MηN )J

= (θ ·X)−∆−J (Z · θP · η−Z · ηP · θ)J . (8.18)

Critically, this ansatz obeys the conditions required by a STT conformal primary
6I would like to take accountability for any errors in the proposals below. As these were solely proposed

by myself, my collaborators are in no way responsible for their failure, were that to happen.
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1. Homogeneity: Φ∆,J (λX,Z) = Φ∆,J (λX,Z),

2. Spin-J: Φ∆,J (X,λZ) = λJΦ∆,J (X,Z),

3. Transversality: Φ∆,J (X,Z + λX) = Φ∆,J (X,Z).

One can evaluate the various correlators by performing an integration over P (θ) and
P (η),

G(X1,X2;Z1,Z2) = ⟨Φ∆1,J1(X1,Z1)Φ∆2,J2(X2,Z2)⟩

=
∫︂
dD+2θdD+2ηP (θ)P (η)Φ∆1,J1(X1,Z1)Φ∆2,J2(X2,Z2). (8.19)

Using a few explicit values for the spin and scaling dimensions, the above ansatz
produces the expected form for the two-point function of spinning fields, equation (1.35),
and three-point function of spinning fields, equation (1.36).

Spinning nn-dCFTs

When inserting a defect, the dot product in the embedding space · splits into its defect
part • and its transverse part ◦. We will also split the distributions for each random
variables into a defect part and a transverse part. To accommodate defect spinning
fields we also introduce a second auxiliary random variable, ζ, which will encode the
SO(q)-indices. The defect neural network CFT with scaling dimension ∆̂, defect spin j

and transverse spin s is postulated to be

φ∆̂,j,s = (θ •X)−∆̂−j−s(Z • θX • η−Z • ηX • θ)j(W • θX • η−W • ηX • θ)s. (8.20)

The ambient insertions keep the same functional form as in the non-defect case.

Again, the ansatz there given passes multiple checks for the one-point and two-point
functions of defect-defect and ambient-defect correlators.

8.5 Conclusion/Remarks

In this chapter, we successfully extended the formalism of [61] to the defect-CFT case.
We proposed two neural-network architectures — one for ambient insertions and the
other for defect insertions. Through the explicit calculation of correlation functions, we
demonstrated how our non-unitary data satisfies the properties of a defect-CFT. The
power behind this formalism lies in the ability to generate families of CFTs (or dCFTs)
from a finite-dimensional integral. While we only demonstrated this for single neurons of
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simple scalar primaries, one can combine multiple of these neurons to create new dCFTs.
One then has access to an infinite family of dCFTs, built from recurring, finite integrals.

A proposal was also given to extend both construction to include STT conformal
primaries. If the proposals hold true, this opens up an even larger class of dCFTs to be
constructed from this neuron construction.

Given how recent this field is, relatively few results can be found. Nevertheless, it would
be interesting to see if, through the nn-CFT formalism, one can engineer known CFT
data. Naturally, any spinorial data is out of reach for the moment as the formalism
doesn’t yet accommodate spinors. A generalisation in that direction would also be
interesting.

The formalism also allows for the construction of CFT data in any number of dimensions,
whose conformal block decomposition is generically not that of a free CFT. One might
wonder whether the simple architecture in equation (8.6) applied to the D = 6 case can
engineer non-trivial, unitary, interacting CFTs; given that those have yet to be found.7

Recently, the fuzzy-sphere regularisation has emerged as a powerful tool for studying
CFTs in 3d. By placing them on a product manifold R× S2, where the S2 promoted to
the fuzzy-sphere, the space of functions gets truncated (as expected from
non-commutative field theory) providing a suitable regularisation scheme [428]. For
instance, He was able to place the free boson CFT on this fuzzy geometry and ended up
with a theory which approximates the 3d Ising CFT [429]. This way of regularising the
CFT partition function shares some similarities with our construction of neural-network
CFTs, wherein the space of functions is also truncated in a way which still preserves
conformal invariance. It would be interesting to see if those two topics are somehow
related.

7I thank N. Benjamin for bringing that observation to light.
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Chapter 9

Conclusion

In this thesis we presented three main avenues along which one can study conformal
field theories — the holographic picture, the exact supersymmetric picture, and the
neural-network picture. Respectively, these make up Part II, III and IV of the present
work. Our contributions in each domain, while small, were meaningful. We detail below
what those were and what their possible extensions are.

In Part II, we reproduced our publications [7, 8] which aimed at computing defect Weyl
anomaly coefficients for codimension-4 and codimension-2 superconformal defects in the
6d N = (2, 0) SCFTs at large-N . More specifically, in [8] (Chapter 4) studied a
particular limit of the 11d supergravity solutions in [2], wherein the superisometry
parameter γ was taken to infinity. This degenerate limit of the superisometry
d(2, 1; γ)⊕ d(2, 1; γ) required a careful rescaling of the singularities on the Riemann
surface found in the foliation. The supergravity solutions one ended up with were of the
type constructed in [1], be it with a finite Ricci scalar, and describe certain
codimension-4 defects in the 6d theory. What separates this solution from other
constructions is the apparent inability to “turn off the defect”. In other words, the field
theory in which the defect is present is a deformation of the 6d theory. This, in turn,
rendered the study of Weyl anomaly coefficients more complex. Indeed, the holographic
entanglement entropy allowed us to extract a linear combination of A-type and B-type
defect Weyl anomaly coefficients, however, separating them out requires the use of
another holographic observable. One such observable is the stress-tensor one point
function, which dictates the B-type coefficient, and can be computed using standard
holographic renormalisation in seven dimensions. The problem lies in that our
supergravity solution doesn’t exhibit the correct asymptotics to allow for such an
analysis — the four-form field strength contains leading-order terms which, upon
dimensional reduction to 7d, don’t give Einstein gravity. It would be interesting to know
whether one can devise such a holographic renormalisation scheme, in the presence of
flux.
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In [7] (Chapter 5) we performed a similar analysis for solutions that describe 1/4- and
1/2-BPS codimension-2 defects. These are holographically described by two supergravity
solutions — the two-charge and electrostatic solutions. In both cases, we computed the
stress-energy tensor one-point function and holographic entanglement entropy, allowing
us to extract the A-type and one of the B-type anomaly coefficients.

For both types of defects described above, we computed the holographic entanglement
entropy for a spherical region around the defect; leading to a quantity which is a linear
combination of the A-type and one of the B-type anomaly coefficients. Our work,
therefore, was only able to probe (at most) two of the many coefficients these defects
come equipped with. A natural extension to this would be to probe for other coefficients
by, for instance, deforming the entangling region. It would be interesting to see if one
can perform such a computation, and see which coefficients are computationally
attainable that way. Another way would be via the computation of other observables,
such as the on-shell action or the partition function on S4.

In Part III, we studied various supersymmetric configurations of background conformal
supergravity in four dimensions. We introduced, in Chapter 6, a supergravity
background which interpolates between two known configurations — the twisted index
and the Coulomb-branch index. Any 4d N = 2 SCFT coupled to that background can
see its partition function evaluated at any point along the interpolation. This defines an
index which we coined the interpolating index. At one end of the interpolation, the
partition function of the coupled theory evaluates to the twisted index, which computes
Donaldson-Witten invariants of the manifold; while on the other end it evaluates to a
point on the moduli of Coulomb-branch indices. Not only is the interpolation
supersymmetric, it is also exact in the sense that both indices are rendered equal to one
another. Furthermore, we derived a formula that recasts the supersymmetry variation of
a current multiplet into that of the background supergravity fields; allowing us to derive
our exactness statement in a theory-agnostic way. Thus, we proved that the twisted
index and a point on the moduli of Coulomb-branch indices are equal for all 4d N = 2
SCFTs. An interesting question arises when looking at potential generalisations of this
equality. Indeed, the twisted index is known to admit a refinement, called equivariant
Donaldson-Witten, or Ω-deformed twisted index. Most of the relations derived in this
chapter hold true in this more general case; where, instead of interpolating to a point on
the moduli of Coulomb-branch indices, we can interpolate to the full Coulomb-branch
index moduli. The background there-defined is supersymmetric, however, it does not
seem to be exact. A more thorough treatment of our exactness equations would be
required to definitely conclude whether that is the case or not. If it were true, this could
spell out an interesting duality between these two types of indices. Indeed, their known
holographic completions are very different AdS black hole configurations, and equating
the indices would indicate a relation between the black hole microstate countings.
Naturally, a field theory understanding would also be warranted.
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In Chapter 7, on the other hand, we strayed away from the 4d N = 2 constructions
described above and focused our attention on the N = 4 case. We proposed a
formulation of 4d N = 4 conformal supergravity by extending the know Weyl multiplet
to the Euclidean case. This description of the Weyl multiplet is a novel finding, and
allows us to look for supersymmetric configurations that engineer the various twists of
N = 4. We enumerated configurations of the background fields that describe the half-,
Kapustin-Witten and Vafa-Witten twists of these 4d theories. We further searched for
Ω-deformations of these twists, which are typically found by turning on the bosonic
two-form field in the Weyl multiplet. We do so for all three twists, and find satisfactory
results for the half- and Kapustin-Witten twists; but fail to do so for the Vafa-Witten
twist. It would be interesting to see whether such a configuration can be found using our
Euclidean formulation. Naturally, given the preliminary nature of our results, some
errors might be present within the Euclidean formulation itself. Furthermore, a
thorough analysis of these Ω-deformations is warranted. Notably, one should look at the
algebra generated by their Killing spinors and compare it to the known literature. Our
results are, nevertheless, interesting to those who wish to study the twisted partition
functions of 4d N = 4 theories, as we provide the suitable conformal supergravity
background to do so.

Finally, in Part IV (Chapter 8), we presented a new formalism that allows one to
construct dCFT data using finite-dimensional integrals. Most of the work there will
appear in an upcoming paper [9]. The non-defect case is a known formalism [61],
wherein a conformal primary is represented by a node within a neural-network, and is
given a functional form on the embedding space. By integrating over all parameters in
this function, one arrives at a partition function for a CFT with said conformal primary.
We introduced two new “nodes” — one for the defect conformal primaries and one for
the bulk ones. By integrating over all their parameters, whose distribution is only
invariant under the defect subgroup, we arrived at a partition function for a dCFT. We
showed, through explicit examples, that the various correlation functions do obey the
functional form for dCFT correlators. The power behind this formalism is two-fold.
Firstly, it allows one to generate (d)CFT data using a finite number of parameters —
this data always obeys crossing symmetry, defect OPE constraints, etc. Secondly, one
can take any such (d)CFT and combine its nodes into a diagram, called neural-network;
leading to an infinite family of (d)CFT data — one for each neural-network. One of the
main hurdles this formalism currently faces is the lack of a description for conformal
primaries other than the scalar ones. We, nevertheless, proposed a functional form for a
node that encodes symmetric traceless tensors, and leave its study to a future
publication. It would also be interesting to see whether fermionic CFTs can be
incorporated in this framework. On a similar note, it would be interesting to see
whether these neural-network-CFTs can be used to generate CFT data of known models,
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such as strongly interacting SCFTs in six dimensions or otherwise. As the topic is quite
recent, we have high hopes for the number of results one can get out of it.
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Part V

Appendices
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Appendix A

Appendix to Chapter 4

A.1 Fefferman-Graham parametrization

In this Appendix, we will be concerned with finding a reparametrization
{w, w̄} → {v,ϕ} of the Riemann surface Σ2 under which the 11d SUGRA solution in
(4.18) can be asymptotically (in particular, for small v) recast into the following form,

ds2 =
4L2

S4

v2

[︂
dv2 + α1ds2

AdS3 + α2ds2
S3

]︂
+ L2

S4

[︂
α3dϕ2 + α4s

2
ϕds2

S̃
3

]︂
, (A.1)

for some O(v0) metric factors {αi}4i=1. By imposing that the metric factor in the v
direction be exact in v, as above, we can reconstruct the asymptotic reparametrization
order by order in v and in terms of polar coordinates

r =
√︂
z2 + ρ2 and θ = arctan(ρ/z) (A.2)

on Σ2 to be the following,

r(v,ϕ) = −2(γ + 1)2m1
γv2 +

(2γ + 1)m1 (c2ϕ − 3)
24γ +

m2cϕ
2m1

+

⎡⎣3γ2m2
2 (7c2ϕ + 1)
4m3

1
(A.3a)

− γ2m3 (5c2ϕ + 3)
m2

1
−

2γ(2γ + 1)m2cϕs
2
ϕ

m1
− 1

16 (8γ(γ + 1) + 3)m1c2ϕ

+
37
48γ(γ + 1)m1 +

73m1
192 +

19
192 (2γ + 1)2m1c4ϕ

⎤⎦ v2

48γ(γ + 1)2 +O(v4),

θ(v,ϕ) = ϕ+
(2γ + 1)m2

1cϕ + 3γm2
12(γ + 1)2m2

1
sϕv

2 +

⎡⎣9γ2m2
2s2ϕ

8m4
1
− 5γ2m3s2ϕ

6m3
1

(A.3b)

+
cϕsϕ

(︁
5(2γ + 1)2c2ϕ − 24γ(γ + 1)− 7

)︁
48



176 Chapter A. Appendix to Chapter 4

+
γ(2γ + 1)m2 (3c2ϕ − 1) sϕ

12m2
1

⎤⎦ v4

16(γ + 1)4 +O(v6) ,

where we introduced the moments

mk :=
2n+2∑︂
j=1

(−1)jξkj . (A.4)

Under this mapping, the metric takes the desired form of (A.1) with the following metric
factors

α1(γ) = 1 + 2γ + 3− (1 + 2γ)c2ϕ
16(γ + 1)2 v2 +

[︂
9
(︂
4(3γ − 13)γ + 16γ2κ− 17

)︂
(A.5a)

−67(2γ + 1)2c4ϕ + 12
(︂
8(3γ + 1)γ + 20γ2κ+ 3

)︂
c2ϕ
]︂ v4

18432(γ + 1)4 +O(v6) ,

α2(γ) =
(γ + 1)2

γ2 +
2γ − 1− (1 + 2γ)c2ϕ

16γ2 v2 +
[︂
9
(︂
4(3γ + 19)γ + 16γ2κ+ 47

)︂
(A.5b)

−67(2γ + 1)2c4ϕ + 12
(︂
8(3γ + 5)γ + 20γ2κ+ 19

)︂
c2ϕ
]︂ v4

18432γ2(γ + 1)2 +O(v6) ,

α3(γ) = 1 +
(2γ + 1)c2

ϕ

4(γ + 1)2 v
2 +

[︂
−12(γ + 1)γ − 24γ2κ− 9 + 6(2γ + 1)2c2ϕ (A.5c)

+7(2γ + 1)2c4ϕ
]︂ v4

768(γ + 1)4 +O(v6) ,

α4(γ) = 1 + (2γ + 1)(2c2ϕ + 1)
12(γ + 1)2 v2 +

[︂
−52(γ + 1)γ − 24γ2κ− 19 (A.5d)

+79(2γ + 1)2c4ϕ + 12
(︂
−2(γ + 1)γ − 10γ2κ− 3

)︂
c2ϕ
]︂ v4

4608(γ + 1)4 +O(v6) ,

where, to the order shown, the moments {mi} enter the metric factors only in the
combination

κ ≡ 3m2
2 − 4m1m3
m4

1
. (A.6)

Note that κ is invariant under coordinate transformations {ξi ↦→ ξi + λ}, even though
m2 and m3 are not individually. From this mapping, we also deduce the curvature scale
of the asymptotic local S4 in FG gauge,

L3
S4 =

|1 + γ|3

γ2
h1m1

2 . (A.7)

We can now take the γ → −∞ limit, accompanied by appropriate rescalings as described
in 4.4, to determine the asymptotic local behaviour of the metric in (4.36). In this limit,
we find that

κ

γ2 →
12(n̂2

1 − m̂1n̂2)

m̂4
1

, (A.8)
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where we introduced the additional moments

n̂k :=
2n+2∑︂
j=1

(−1)jνkj ξ̂j . (A.9)

Furthermore, we find that this limiting procedure trivialises the relative warping between
AdS3 and S3; that is, α1(γ → −∞) = α2(γ → −∞). Overall, the limit γ → −∞
produces the FG line element advertised in (4.51), with the following metric factors,

α1(γ → −∞) = 1 + (3 + 5c2ϕ)(n̂
2
1 − m̂1n̂2)

32m̂4
1

v4 (A.10a)

− 5(1 + 7c2ϕ)(2n̂3
1 − 3m̂1n̂1n̂2 + m̂2

1n̂3)cϕ
144m̂6

1
v6 +O(v8),

α3(γ → −∞) = 1 + 3(m̂1n̂2 − n̂2
1)

8m̂4
1

v4 +
5(2n̂3

1 − 3m̂1n̂1n̂2 + m̂2
1n̂3)cϕ

12m̂6
1

v6 +O(v8),

(A.10b)

α4(γ → −∞) = 1 + (1 + 5c2ϕ)(m̂1n̂2 − n̂2
1)

16m̂4
1

v4 (A.10c)

+
5(5cϕ + 7c3ϕ)(2n̂3

1 − 3m̂1n̂1n̂2 + m̂2
1n̂3)

144m̂6
1

v6 +O(v8) ,

and with S4 radius given by (4.53).

Finally, we note that, if all points are taken to collapse to the origin, νj = 0 for
j ∈ {1, 2, . . . , 2n+ 2}, the asymptotic reparametrization in (A.3) becomes exact,

r(v,ϕ) = 2m̂1
v2 (A.11a)

θ(v,ϕ) = ϕ . (A.11b)

A.2 Area of the Ryu-Takayanagi hypersurface

In this appendix, we fill in the technical details of the computation of the holographic
entanglement entropy in (4.83).

We begin by treating the integral in (4.82). In order to exploit the geometry of the
internal space and facilitate an easier path to evaluating the remaining integral, we first
transform to polar coordinates {r, θ}, introduced in (A.2), with θ ∈ [0,π]. We can then
expand the summands in (4.82) on the complete basis of L2(0,π) functions spanned by
the Legendre polynomials, Pk(cθ). The harmonic function H can then be written in two
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equivalent representations

H(r, θ) =

⎧⎪⎨⎪⎩
h1
2
∑︁2n+2
j=1 (−1)j ξ̂j |νj |−3

(︂∑︁∞
k=0 r

kν−k
j Pk(cθ)

)︂3
, r ∈ [0, |νj |),

h1
2
∑︁2n+2
j=1 (−1)j ξ̂jr−3

(︂∑︁∞
k=0 r

−kνkj Pk(cθ)
)︂3

, r ∈ (|νj |, Λr(ϵv, 0)],
(A.12)

which converge when integrated in r over their respective domains. We have also
introduced in the second line of (A.12) a cutoff scale Λr at large r, which from the
transformation to FG gauge in (A.3) can be expressed in a small ϵv expansion as

Λr(ϵv, θ) =
2m̂1
ϵ2v

+
n̂1cθ
m̂1

+
(3 + 5c2θ)m̂1n̂2 − (5 + 3c2θ)n̂

2
1

16m̂3
1

ϵ2v +O(ϵ4v). (A.13)

Thus, the remaining integral in the area functional can be partitioned into two separate
contributions

A[ζRT] =
32π4L9

S4

m̂3
1

log
(︃2R
ϵu

)︃ 2n+2∑︂
j=1

(−1)j ξ̂j
(︂
I(1)j + I(2)j

)︂
+O(ϵ2u), (A.14)

where both integrals

I(1)j =
∫︂ π

0
dθ
∫︂ |νj |

0
dr r4s3

θ

⎛⎝ 1
|νj |

∞∑︂
k=0

(︄
r

νj

)︄k
Pk(cθ)

⎞⎠3

, (A.15a)

I(2)j =
∫︂ π

0
dθ
∫︂ Λr(ϵv ,θ)

|νj |
dr r s3

θ

(︄ ∞∑︂
k=0

(︃
νj
r

)︃k
Pk(cθ)

)︄3

, (A.15b)

are convergent.

At first glance, (A.15) may not seem to put us in a better position to evaluate the
integral, but we can exploit the properties of Pk(cθ) over the interval θ ∈ [0,π]. In
particular, we can make use of the orthogonality relation of the triple-product of
Legendre polynomials

∫︂ π

0
dθ sθ Pℓ1(cθ)Pℓ2(cθ)Pℓ3(cθ) = 2

(︄
ℓ1 ℓ2 ℓ3

0 0 0

)︄2

, (A.16)

where the right-hand side is the Wigner 3j-symbol. Since this particular 3j-symbol has
vanishing magnetic quantum numbers, if ℓ ≡ ℓ1 + ℓ2 + ℓ3 is even and together the ℓi
satisfy the triangle inequality, then it can neatly be expressed as

(︄
ℓ1 ℓ2 ℓ3

0 0 0

)︄
=

(−1)ℓ/2(ℓ/2)!√︂
(ℓ+ 1)!

3∏︂
i=1

√︂
(ℓ− 2ℓi)!

(ℓ/2− ℓi)!
. (A.17)
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Otherwise, if ℓ is not even or the triangle inequality is violated, the 3j-symbol vanishes.
Additionally, the following identity

Pℓ1Pℓ2 =
ℓ1+ℓ2∑︂

ℓ3=|ℓ1−ℓ2|

(︄
ℓ1 ℓ2 ℓ3

0 0 0

)︄2

(2ℓ3 + 1)Pℓ3 , (A.18)

is particularly useful in the evaluation of the θ-integrals in (A.15), where for brevity we
denoted Pℓ ≡ Pℓ(cθ). Eventually, after applying both eqs. (A.16) and (A.18), we find
that the θ-integrals in I(1)j can be handled with the help of

∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 =
4
3

(︄
ℓ1 ℓ2 ℓ3

0 0 0

)︄2

− 4
3

2+ℓ1∑︂
k=|2−ℓ1|

(2k+ 1)
(︄

2 ℓ1 k

0 0 0

)︄2(︄
k ℓ2 ℓ3

0 0 0

)︄2

.

(A.19)

The integrals I(1)j and I(2)j may be further simplified by considering the convergence
properties of the sum, which allow us to integrate each term in r separately. Doing so, we
rapidly see the usefulness of the previous θ-integral formulae, which appear explicitly as

I(1)j =
∑︂

ℓ1,ℓ2,ℓ3

1
5 + ℓ

νℓ+2
j

|νj |ℓ
∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 , (A.20a)

I(2)j =
∑︂

ℓ1,ℓ2,ℓ3
ℓ̸=2

νℓj
2− ℓ

∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3

[︄
Λ2−ℓ
r (ϵv, θ)−

ν2
j

|νj |ℓ

]︄

+
∑︂

ℓ1,ℓ2,ℓ3
ℓ=2

ν2
j

∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 ln
(︄

Λr(ϵv, θ)
|νj |

)︄
, (A.20b)

where we have isolated the ℓ = 2 mode in I(2)j in order to handle the potential log
divergence as a separate case.

Starting with the sum on the second line of (A.20b), we first expand the integral in
small ϵv using (A.13). Using the integral formulae for the Legendre polynomials above,
we find that the leading ln

(︁
2m̂1/ϵ2v

)︁
divergence contains no additional θ-dependence,

and so due to the constraint that ℓ = 2, is weighted with P 2
1 + P2, and vanishes upon

integration. Thus, we find that

2n+2∑︂
j=1

(−1)j ξ̂j
∑︂

ℓ1,ℓ2,ℓ3
ℓ=2

ν2
j

∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 ln
(︄

Λr(ϵv, θ)
|νj |

)︄
= O(ϵ4v) . (A.21)

Hence, the only meaningful contributions to A[ζRT] from I(2)j come from the first line in
(A.20b).

Moving on to the cutoff-dependent integrand on the first line of (A.20b), we can again
utilise the small ϵv expansion in (A.13). Since the leading divergence in Λr(ϵv, θ) is
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O(1/ϵ2v), we can neglect any integral for ℓ > 2 as it will vanish as O(ϵ2v). Truncating to
the sum to ℓ < 2, expanding in small ϵv, and evaluating the sum over j, we find that the
total contribution to A[ζRT] from the first sum in (A.20b) is

2n+2∑︂
j=1

(−1)j ξ̂j
∑︂

ℓ1,ℓ2,ℓ3
ℓ ̸=2

νℓj
2− ℓ

∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 Λ2−ℓ
r (ϵv, θ) =

8m̂3
1

3ϵ4v
+

2n̂2
1

5m̂1
+O(ϵ2v). (A.22)

Finally, we treat the remaining sums in (A.20a) and the second term on the first line of
(A.20b) together. Firstly, we note that the integral at ℓ = 2 in I(1)j vanishes due the
integrand being of the form P 2

1 + P2. Secondly, we make use of (A.19) explicitly and
observe that only the ℓ = 0 term contributes. That is, if we decompose the sum as
partial sums in ℓ,

∑︂
ℓ1,ℓ2,ℓ3
ℓ̸=2

(︃ 1
5 + ℓ

− 1
2− ℓ

)︃∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 =
∞∑︂
a=0
a ̸=2

(︃ 1
5 + a

− 1
2− a

)︃ ∑︂
ℓ1,ℓ2,ℓ3
ℓ=a

∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3

= −2
5 −

5
6
∑︂

ℓ1,ℓ2,ℓ3
ℓ=1

∫︂ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 + . . . ,

(A.23)

we find that all the partial sums with ℓ > 0 vanish and −2/5 is the exact result.

Putting all of the results above together and taking the sum over j, we find

2n+2∑︂
j=1

(−1)j ξ̂j(I
(1)
j + I(2)j ) =

8m̂3
1

3ϵ4v
+

2
5
n̂2

1 − n̂2m̂1
m̂1

+O(ϵ2v). (A.24)

Plugging in to (A.14), the unregulated area of the RT hypersurface is

A[ζRT] = π4L9
S4 log

(︃2R
ϵu

)︃[︄256
3

1
ϵ4v

+
64
5
n̂2

1
m̂4

1
− 64

5
n̂2
m̂3

1
+O(ϵ2v)

]︄
+O(ϵ2u). (A.25)

It is then straightforward to see that SEE is given by (4.83).
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Appendix B

Appendix to Chapter 5

B.1 Fefferman-Graham coordinates

The starting point for computing holographic quantities associated with the two-charge
solutions and electrostatic solutions is finding the asymptotic transformation which
maps their respective metrics into FG gauge. In this appendix, we will first derive the
transformations of (5.16) and find the asymptotic expressions for the metric functions in
FG gauge. We will also derive the transformation of (5.21a) into FG gauge. In this
process, we will find necessary conditions on the mixing of two of the angular
coordinates that allow for the metrics to be put into FG form. The interpretation of this
mixing of angular coordinates is interpreted in the field theory language as an
identification of the defect superconformal R-symmetry.

B.1.1 Two-charge solutions

In this subsection, we will focus on putting the two-charge solutions in FG gauge. The
explicit forms of the metric functions in (5.16) are as follows:

f̂
2
AdS = κ2/3

[︄
c2
ζ

(︁
q1 + y2)︁ (︁q2 − q2c2ψ + 2y2)︁

2y + y
(︂
q2 + y2

)︂
s2
ζ

]︄1/3

, (B.1a)

f̂
2
y = κ2/3 f̂

2
AdSy

4 (q1 + y2) (q2 + y2)− 4y3 , (B.1b)

f̂
2
z = κ2/3

⎡⎣c2
ζ

(︁
c2ψ

(︁
(a2 + 1) 2q2y + a2

2y
3 − q2

(︁
q1 + y2)︁)︁+ (a2 + 1) 2q2y +

(︁
a2

2 − 2
)︁
y3)︁

2yf̂4
AdS

+
s2
ζ

(︁
y
(︁(︁
a2

1 − 1
)︁
y +

(︁
q2 + y2)︁)︁+ (a1 + 1) 2q1

)︁
f̂

4
AdS

+
c2
ζ

(︁
q1 + y2)︁ (︁q2 + 2y2)︁

2f̂4
AdSy

⎤⎦ ,

(B.1c)
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f̂
2
ϕ1 = κ2/3

(︁
q1 + y2)︁ s2

ζ

4f̂4
AdS

, (B.1d)

f̂
2
ϕ2 = κ2/3 c

2
ψc

2
ζ

(︁
q2 + y2)︁

4f̂4
AdS

, (B.1e)

f̂
2
zϕ1 = κ2/3 s

2
ζ

(︁
a1q1 + a1y

2 + q1
)︁

f̂
4
AdS

, (B.1f)

f̂
2
zϕ2 = κ2/3 c

2
ψc

2
ζ

(︁
a2q2 + a2y

2 + q2
)︁

f̂
4
AdS

, (B.1g)

f̂
2
ψ = κ2/3 c

2
ζ

(︁
q2 − q2c2ψ + 2y2)︁

8f̂4
AdS

, (B.1h)

f̂
2
ζ = κ2/3 q1c2ζ + 2q2c

2
ψs

2
ζ + q1 + 2y2

8f̂4
AdS

, (B.1i)

f̂
2
ψζ = κ2/3 q2cψcζsψsζ

2f̂4
AdS

, (B.1j)

where we denote κ = ĝ3Nℓ3P/2.

We seek an asymptotic map from {y, ψ, ζ} to the FG coordinates {u,ℵ, θ} in the
large-y/small-u regime. By solving

f̂
2
ydy

2 + f̂
2
ψdψ

2 + f̂
2
ζdζ

2 + f̂
2
ψζdψdζ =

L2

u2 du
2 +

L2

4
(︂
c2
θα̂ℵdℵ2 + α̂θdθ

2 + α̂θℵdθdℵ
)︂

(B.2)

order by order in u, we find that the appropriate asymptotic map is

y =
1
u2 +

1
2 +

(2q1 − q2) c2θ − 2q2c2ℵc
2
θ − 10q1 − 9q2 + 3

48 u2 + . . . ,

ψ = ℵ+ q2s2ℵ
24 u4 + . . . ,

ζ = θ− s2θ
(︁
q1 − q2c

2
ℵ
)︁

24 u4 + . . . ,

(B.3)

where we have suppressed higher orders in u due to their cumbersome expressions. To
complete this map, we need to identify κ = L3, where L denotes the radius of the
asymptotic AdS7 spacetime.

Mapping all of the other metric functions in (5.16), we find the FG form of the metric to
be

ds2
FG =

L2

u2 (du
2 + α̂AdSds

2
AdS5 + α̂zdz

2) + L2s2
θα̂zφ1dzdφ1 + L2c2

ℵc
2
θα̂zφ2dzdφ2

+
L2

4 (α̂θdθ
2 + s2

θα̂φ1dφ
2
1 + c2

θ(α̂ℵdℵ2 + c2
ℵα̂φ2dφ

2
2) + α̂θℵdθdℵ),

(B.4)
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where we have transformed the angular coordinates using

ϕI = φI − 2aIz. (B.5)

Note that since ϕI and z are all 2π-periodic and aI ∈ Z/2, the new angular coordinates
φI are also 2π-periodic. The metric functions have the asymptotic behaviour

α̂AdS = 1 + u2

2 +
3− 2q1 + 3q2 − 10q2c2ℵc

2
θ + 5(2q1 − q2)c2θ

48 u4 + . . . , (B.6a)

α̂z = 1− u2

2 +
3− 2q1 + 3q2 − 10q2c2ℵc

2
θ + 5(2q1 − q2)c2θ

48 u4 + . . . , (B.6b)

α̂φ1 = 1 + 10q2c2ℵc
2
θ + 5(q2 − 2q1)c2θ + 14q1 − 11q2

24 u4 + . . . , (B.6c)

α̂φ2 = 1 + 10q2c2ℵc
2
θ + 5(q2 − 2q1)c2θ − 6q1 + 9q2

24 u4 + . . . , (B.6d)

α̂zφ1 = q1u
4 − q1u

6 + . . . , (B.6e)

α̂zφ2 = q2u
4 − q2u

6 + . . . , (B.6f)

α̂θ = 1 + 5q2c2ℵ + 2q1 − 3q2
12 u4 + . . . , (B.6g)

α̂ℵ = 1 + 5(q2 − 2q1)c2θ − 10q2c2ℵs
2
θ − 6q1 − q2

24 u4 + . . . , (B.6h)

α̂θℵ =
5q2s2θs2ℵ

12 u4 + . . . . (B.6i)

If we had not transformed to φI , we would not have been able to put the metric in FG
form. We can see this in the original ϕI coordinates, where α̂zϕI

has an O(1) term
which is proportional to aI . FG gauge requires α̂zϕI

∼ u4, which would mean setting
aI = 0. However, the values of the aI ’s are set by regularity, i.e.

aI = −
qI

qI + y2
+

, (B.7)

and so, we cannot simply tune them to zero without also setting the corresponding
qI = 0, which lands us on the pure AdS7 × S4 solution.

B.1.2 Electrostatic solutions

We now turn to deriving the FG form of the metric for the electrostatic solutions.
Finding the asymptotic expansions of the metric factors in (5.21a) requires explicit
expressions for V̇ , V̈ , V̇ ′, V ′′, and σ. We can compute the indefinite integral in V for a
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trial line charge distribution ϖa(η) = p1+aη + δ1+a,

−1
2

∫︂
dη′G(r, η, η′)ϖa(η

′) =
p1+a

2

(︄√︂
r2 + (η + η′)2 −

√︂
r2 + (η− η′)2 (B.8)

− η tanh−1
(︃

η + η′√︂
r2 + (η + η′)2

)︃
+ η tanh−1

(︃
η− η′√︂

r2 + (η− η′)2

)︃)︄

+
δ1+a

2

⎛⎝tanh−1
(︃

η + η′√︂
r2 + (η + η′)2

)︃
+ tanh−1

(︃
η− η′√︂

r2 + (η− η′)2

)︃⎞⎠ ,

and then build up the full potential by summing over the intervals. Clearly, evaluating
the result above in the η′ →∞ region leads to linear and logarithmic divergences.
However, when evaluating derivatives of the right-hand side above, these divergences are
eliminated, and only derivatives of V appear in all of the computations carried out
below and in the main body of the text.

The asymptotically AdS7 × S4 region corresponds to the limits r, η →∞. In order to
facilitate the expansion of the derivatives of the electrostatic potential in this region, we
redefine r = ϱcω and η = ϱsω, with ω ∈ [0,π/2], so that

f2
3 (dr

2 + dη2)→ f2
ϱdϱ

2 + f2
ωdω

2, (B.9)

with f2
ϱ = f2

3 and f2
ω = f2

3ϱ
2. The AdS7 × S4 region now lies in the ϱ→∞ limit. We

can compute the asymptotic expansions of the derivatives of the electrostatic potential
in this region in terms of its moments as follows,

V̇ = ϱsω +m1sω −
m3c

2
ωsω

2ϱ2 +
m5 (7c2ω − 1) c2

ωsω
16ϱ4 + . . . , (B.10a)

V̈ = −m1c
2
ωsω +

m3 (5c2ω + 1) c2
ωsω

4ϱ2 − m5 (28c2ω + 63c4ω + 29) c2
ωsω

64ϱ4 + . . . , (B.10b)

V̇
′
= 1 + m1c

2
ω

ϱ
+
m3 (3− 5c2ω) c2

ω

4ϱ3 +
3m5 (21c4ω − 28c2ω + 15) c2

ω

64ϱ5 + . . . , (B.10c)

V ′′ =
m1sω
ϱ2 − m3 (5c2ω + 1) sω

4ϱ4 +
m5 (28c2ω + 63c4ω + 29) sω

64ϱ6 + . . . . (B.10d)

From these expressions, we can also find the asymptotic behaviour of σ in terms of the
moments of the electrostatic potential to be

σ = 1 + 2m1
ϱ
− m2

1 (c2ω − 3)
2ϱ2 +

m3 (1− 3c2ω)

2ϱ3 +
m3m1 (1− 12c2ω + 3c4ω)

8ϱ4 + . . . .

(B.10e)
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Together, these expansions can be inserted into the definitions of the metric functions in
(5.21a) to give

(2m1)1/3

κ2/3
11

f2
AdS = 4ϱ+ 4m1 +

5m3c2ω + 4m3
1s

2
ω +m3

3m1ϱ
+

4
(︁
m3 −m3

1
)︁
s2
ω

3ϱ2 + . . . , (B.11a)

(2m1)1/3

s2
ωκ

2/3
11

f2
S2 = 2m1 −

(1 + 5c2ω)m3 + 4s2
ωm

3
1

3ϱ2 +
8m1

(︁
m3

1 −m3
)︁
s2
ω

3ϱ3 + . . . , (B.11b)

(2m1)1/3

κ2/3
11

f2
ϱ =

2m1
ϱ2 −

(1 + 5c2ω)m3 − 2s2
ωm

3
1

3ϱ4 +
4m1

(︁
m3 −m3

1
)︁
s2
ω

3ϱ5 + . . . , (B.11c)

(2m1)1/3

κ2/3
11

f2
β = 4ϱ+m1 (c2ω − 3) + (1 + 5c2ω)m3 + 4m3

1s
2
ω

3m1ϱ
+ . . . , (B.11d)

(2m1)1/3

κ2/3
11

f2
χ = 4ϱ+ 4m1c2ω +

5m3c2ω + 4m3
1s

2
ω +m3

3m1ϱ
+ . . . , (B.11e)

(2m1)1/3

κ2/3
11

f2
βχ = 8ϱ− 8m1s

2
ω +

2
(︁
5m3c2ω + 4m3

1s
2
ω +m3

)︁
3m1ϱ

+ . . . . (B.11f)

We again look for an asymptotic map to a set of coordinates {u, θ} in terms of which the
metric is in FG form. By taking ϱ = ϱ(u, θ) and ω = ω(u, θ), and expanding in small u
to solve

f2
ϱdϱ

2 + f2
ωdω

2 =
L2

u2 du
2 +

L2

4 αθdθ
2 (B.12)

order by order, we find

ρ =
2m1
u2 +

2m3
1c

2
θ +m3 (5c2θ − 1)

48m2
1

u2 +

(︁
m3 −m3

1
)︁
c2
θ

36m2
1

u4 + . . . , (B.13a)

ω = θ+
π

2 −
(︁
m3

1 + 5m3
)︁
s2θ

96m3
1

u4 +

(︁
m3

1 −m3
)︁
s2θ

216m3
1

u6 + . . . . (B.13b)

The asymptotic expansions of f2
χ, f2

β , and f2
βχ under the above transformation reveal an

ambiguity as to which of the angular coordinates should be identified as parametrizing
the external S1 ⊂ AdS7 and which as parametrizing the internal S1 ⊂ S4 upon mapping
to FG gauge. That is, both are characterised by 1/u2 divergences at small-u, so that the
resulting asymptotic metric is not in FG gauge. To resolve this issue, we introduce

χ = (1 + Cz)z + aφφ, β = −Czz + bφφ, (B.14)

where Cz ∈ Z and aφ and bφ are arbitrary constants. Note that this transformation
parallels the one taken in [339], where Cz = 1/C is fixed by the ratio of four-form flux
through two 4-cycles, which in turn fixes the mixing parameter between the U (1)
symmetries leading to U (1)r symmetry ∂χ = ∂z +

1
C∂φ in the field theory. Here we are

following the conventions of [4] where the corresponding C is negative. We then find that
the metric functions for the transformed coordinates display the following asymptotic
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behaviour,

f2
φ

L2 =
(aφ + bφ)2

u2 − 1
8
(︂
(2aφ + bφ)

2c2θ + bφ(4aφ + 3bφ)
)︂
+ . . . , (B.15a)

f2
zφ

L2 =
2(aφ + bφ)

u2 +
1
4 (2aφCz + bφ(Cz − 2)− (2aφ + bφ)(Cz + 2)c2θ) + . . . , (B.15b)

f2
z

L2 =
1
u2 +

1
8 (Cz(Cz + 4)− (Cz + 2)2c2θ) + . . . , (B.15c)

where we introduced the AdS7 radius L = (16m1κ11)1/3. Setting aφ = −bφ = −1
removes the 1/u2 divergences in the asymptotic expansions of f2

φ and f2
zφ. In particular,

f2
φ = L2s2

θ/4 + . . .. This identifies the φ-circle as the internal S1 ⊂ S4. Furthermore,
f2
z = L2/u2 + . . ., as required for the external S1 ⊂ AdS7. The final requirement to

achieve an FG parametrization is that f2
zφ ∼ O(u2). Eliminating the u0 behaviour of

f2
zφ fixes Cz ≡ −2. Recalling the role of Cz, we see that the defect superconformal

R-symmetry is ∂χ = ∂z − 2∂φ.

Having identified the correct combination of angular variables, we can at once express
the metric in FG gauge as

ds2
FG =

L2

u2 (du
2 + αAdSds

2
AdS5 + αzdz

2) + L2s2
θαzφdzdφ

+
L2

4
(︂
s2
θαφdφ

2 + c2
θαS2dΩ2

2 + αθdθ
2
)︂

,
(B.16)

where the metric functions have asymptotic behaviour

αAdS = 1 + u2

2 +
1
96

(︃
10c2

θ +
m3 (1− 5c2θ)

m3
1

)︃
u4 +

(︁
m3 −m3

1
)︁
c2
θ

18m3
1

u6 . . . , (B.17a)

αz = 1− u2

2 +
1
96

(︃
10c2

θ +
m3 (1− 5c2θ)

m3
1

)︃
u4 +

(︁
m3 −m3

1
)︁
(5c2θ − 13)

72m3
1

u6 + . . . ,

(B.17b)

αφ = 1 +
(︁
m3 −m3

1
)︁
(5c2θ − 7)

48m3
1

u4 +

(︁
m3

1 −m3
)︁
(10c2θ − 17)

108m3
1

u6 + . . . , (B.17c)

αS2 = 1 +
(︁
m3 −m3

1
)︁
(5c2θ + 3)

48m3
1

u4 +

(︁
m3

1 −m3
)︁
(5c2θ + 4)

54m3
1

u6 + . . . , (B.17d)

αzφ =
m3

1 −m3
4m3

1
u4 − m3

1 −m3
4m3

1
u6 + . . . , (B.17e)

αθ = 1 + m3
1 −m3
24m3

1
u4 +

(︁
m3 −m3

1
)︁
(5c2θ + 9)

216m3
1

u6 + . . . . (B.17f)

Note that, upon being evaluated on the single kink electrostatic profile in (5.27), the
asymptotic metric above recovers the q2 = 0 instance of (B.4); in particular, the
coordinate φ maps over to φ1, while ℵ and φ2 correspond to, respectively, the polar and
azimuthal angles on the asymptotic internal S2 ⊂ S4 in the electrostatic description.
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B.2 On-shell action

Given a solution to SUGRA equations of motion, one of the most basic quantities that
one can compute is the on-shell action. Holographically, the on-shell action is mapped to
the free energy of the theory, and so with an even dimensional spherical boundary, has
universal divergences that are related to anomalies. In this section, we will compute the
on-shell action for the 11d uplift of the two-charge solutions and compare the results of
the log-divergent parts to the holographic defect anomalies computed in the preceding
sections.

B.2.1 Two-charge solutions

In this subsection, we consider the on-shell action for the two-charge solutions. The
computation of the on-shell action for the two-charge solutions was originally carried out
in their realization as 7d N = 4 gauged SUGRA domain wall solutions [3]. Here, we will
work with the 11d uplift in 5.2.2 using the regulating scheme where we subtract off the
on-shell action for the AdS7 × S4 vacuum computed in B.3.1.

The starting point for computing the on-shell action for the electrostatic solution is the
bosonic part of the 11d SUGRA action

S =
1

16πG(11)
N

∫︂
M
d11x

√
−g11

(︃
R− 1

48FMNPQF
MNPQ

)︃
+

1
8πG(11)

N

∫︂
∂M

KΥ∂M + SCS,

(B.18)

where Υ∂M is the natural volume form associated to the metric induced on the
boundary ∂M, while K is the trace of the boundary extrinsic curvature
KMN = −1

2 (∇MνN +∇NνM ) with νM denoting the components of the
outward-pointing normal vector to ∂M and where capital Latin indices
M , N ∈ {0, . . . , 10}. Using the equations of motion for the 11d metric we can write the
bulk term as

√
−g11

(︃
R− 1

48FMNPQF
MNPQ

)︃
d11x = −1

3F4 ∧ ⋆F4. (B.19)

Note that for this particular solution, the four-form flux obeys the equation

d ⋆ F4 = 0, (B.20)

and consequently the Chern-Simons term SCS vanishes. As a further consequence of the
equations of motion for the four-form flux, we can freely exchange ⋆F4 for dC6, which
due to C6 being better behaved will make the following computation a bit easier. Using
this fact and the bulk equations of motion, the bulk integrand can be expressed as a
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total derivative. Thus, the on-shell action can be written as a boundary integral

SOS =
1

16πG(11)
N

∫︂
∂M

(︃
2KΥ∂M −

1
3F4 ∧C6

)︃
=: SOS,GHY + SOS,bulk. (B.21)

The particular solutions we are interested in are asymptotically locally AdS7 × S4. So,
in order to regularise the boundary integral, we first map the metric into FG form as in
(B.4) using the explicit asymptotic coordinate transformation derived in (B.3). That is,
we will define a regulating hypersurface at u = ϵu that will become ∂M as we take
ϵu → 0. Note that due to the presence of an AdS5 factor, an additional regularization
procedure will have to be applied, which we will address later.

Before beginning the computation in earnest, we will need the asymptotic u≪ 1
expansions of F4 and C6. First, we compute C6 from (5.19), which yields

C6 = L6

⎧⎨⎩1
2q2c

2
ζc

2
ψdϕ2 −

1
2q1c

2
ζdϕ1 +

⎡⎣y(y2 + q2)−
c2
ζ

2y (q2c2ψ (y (y− a2 − 1) + q1)

+2q1y (a1 − y + 1) + q2y (y− a2 − 1)− q2q1)

⎤⎦dz
⎫⎬⎭∧ ΥAdS5 . (B.22)

We can then use the residual gauge freedom to shift C6 ↦→ C6 + dΛ5 =: C̃6 such that C̃6

is regular at y = y+. At y = y+, we can use the values for aI determined from
AI(y+) = 0 to show

C6(y+) = L6
{︃1

2q2c
2
ζc

2
ψdϕ2 −

1
2q1c

2
ζdϕ1 + y+H2(y+)dz

}︃
∧ ΥAdS5 , (B.23)

where the terms in ΥAdS5 ∧ dz depending on the angular coordinates vanish due to a
common factor of Q(y+) appearing in their coefficients. By demanding that the
ΥAdS5 ∧ dz part of C6 vanishes at y = y+, we find the appropriate gauge transformation
to be

Λ5 =− zL6y+H2(y+)ΥAdS5 . (B.24)

Using the gauge transformation by Λ5, we map ϕI → φI and find the asymptotic
expansion of C̃6 to be

C̃6 = L6
[︃(︃ 1
u6 +

3
2u4 −

1
16u2 (2q1 − 3(5 + q2) + 10q2c2ℵc

2
θ + 5(q2 − 2q1)c2θ)

)︃
dz

]︃
∧ ΥAdS5 + . . . .

(B.25)

Next, we need to find F4, which we can easily compute from (5.19). We then map into
FG coordinates, fix ĝ = 2, and expand in small u. Keeping the most relevant singular
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terms, we find

F4 =
L3

8

⎧⎨⎩
[︄
3c2
θsθdφ1 ∧ dθ+

c3
θ

2
(︂
5s2
θ (2q1 − q2c2ℵ − q2) du∧ dφ1 + 16q1du∧ dz

)︂
u3
]︄
∧ ΥS2

+
sθ|cℵ|

2 du∧ dφ1 ∧
(︃

5q2c
2
θs2ℵdθ ∧ dφ2 + 8q2dz ∧

(︃2sℵ
cℵ

dθ− s2θdℵ
)︃)︃

u3

⎫⎬⎭+ . . . .

(B.26)

Now that we have the asymptotics of the metric, C̃6, and F4, we are in position to
compute the on-shell action for the two-charge solutions. To begin, we first examine the
Gibbons-Hawking-York (GHY) term. We note that after mapping to FG coordinates as
in (B.4), the volume form on the regulating cutoff slice at u = ϵu can be easily seen to
have small ϵu expansion

Υ∂M =
L10

16

(︄
1
ϵ6u

+
1
ϵ4u

+
5

16ϵ2u
+

5
(︁
5c2θ(q2 − 2q1) + 2q1 + q2(10c2

θc2ℵ − 3)
)︁

432

)︄
ΥAdS5 ∧ dz ∧ ΥS4 + . . . .

(B.27)

where we denote ΥS4 := |cℵ|c2
θsθdϕ1 ∧ dϕ2 ∧ dθ ∧ dℵ. A quick calculation also shows the

trace of the extrinsic curvature on the cutoff slice to be given by

K = − 6
L
+

2ϵ2u
L
− 3ϵ4u

4L +

(︁
25c2θ(q2 − 2q1) + 10q1 + 50q2c

2
θc2ℵ − 15q2 + 9

)︁
ϵ6u

72L + . . . ,

(B.28)

where we have dropped terms at O(ϵu)8 that depend on the charges but do not
contribute to the final result as ϵu → 0. Thus, we find

SOS,GHY = −vol(AdS5)
π2L9

8G(11)
N

(︃ 2
ϵ6u

+
4

3ϵ4u
+

5
24ϵ2u

)︃
+ . . . . (B.29)

Note that despite K and Υ∂M containing non-trivial dependence on the charges, the end
result in (B.29) is independent of the charges to O(ϵu)0, and the ϵ0u part of the GHY
term explicitly vanishes.

Moving on to find SOS, bulk, combining eqs. (B.26) and (B.25) and pulling back on to the
u = ϵu hypersurface, we arrive at

SOS, bulk =− vol(AdS5)
π2L9

16G(11)
N

(︃ 2
3ϵ6u

+
1
ϵ4u

+
5

8ϵ2u
− 2q1(q2 + y+(2 + 3y+))

15y+
(B.30)

−
32q2 + 48q2y+ + 80y3

+ − 25
120

)︄
+ . . . .

Thus, combining eqs. (B.29) and (B.30) and subtracting of the on-shell action for the
AdS7 × S4 vacuum in (B.41), which is recovered by setting qI = aI = 0 and y+ = 1, the
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full regulated on-shell action is

SOS − S
(vac)
OS =

vol(AdS5)π2L9

120y+G(11)
N

(︂
q1q2 + (q1 + q2)y+(2 + 3y+) + 5y+(y3

+ − 1)
)︂

. (B.31)

Note that choosing a different Λ5 while maintaining regularity at y = y+ does not
change the final result. Further, using the form of the regulated AdS5 volume in B.3.2,
the log divergent part of the on-shell action for the two-charge solution is given by

S
(ren)
OS

⃓⃓⃓
log

= − N3

1920y+

(︂
q1q2 + (q1 + q2)y+(2 + 3y+) + 5y+(y3

+ − 1)
)︂

=
N3(4q1q2 − 2(q1 + q2)y+(1− y+) + 5y+(1− y2

+))

1920y+
, (B.32)

where in the second line we used Q(y+) = 0. Taking the one-charge (q2 → 0) limit, we
find

S
(ren)
OS

⃓⃓⃓
log,1-charge

=
N3

1920 (1− y+) (5− 2q1 + 5y+)

=
N3

7680 (1−
√︁

1− 4q1)(5(3 +
√︁

1− 4q1)− 4q1). (B.33)

Finally, let us compare (B.32) to the on-shell action of the domain wall solution in 7d
gauged SUGRA. In [3], the authors, using a similar background subtraction regulating
scheme as above, found that the coefficient of the log divergent part of regulated on-shell
action for the domain wall solution to be given by

S
(ren)
OS

⃓⃓⃓
log

= − πL5

8G(7)
N

(1− y2
+) = −

N3

768π (1− y
2
+), (B.34)

where in the last equality we mapped to field theory variables using
G

(7)
N = G

(11)
N /vol(S4). We can immediately see a discrepancy with the on-shell action

computed in the 11d uplift owing to the different dependence on the qI and y+. An
explanation for the mismatch is not entirely obvious, but it could be rooted in the
background subtraction scheme in some way being inadequate for the purpose of this
computation. This potential failure mode for such a simple regulating scheme could be
interrogated if we had access to a full holographic renormalization scheme for defects in
11d SUGRA.

B.3 Regulating the on-shell action

In this appendix, we collect some of the details of the regulating scheme for the
computation of the on-shell action for both the two-charge and electrostatic solutions.
Below we compute the vacuum AdS7 × S4 on-shell action, which we will use in the
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background subtraction scheme. This value will also give a good diagnostic for the
known limit case, qI = aI = 0 for the two charge solutions, that recovers the vacuum
geometry. We also briefly discuss computing the renormalised volume of the AdS5 part
of the geometry.

B.3.1 AdS7 × S4

In this subsection, we compute the on-shell action for the vacuum AdS7 × S4 geometry
that we use in our background subtraction scheme. The data relevant to specify this
solution to bosonic theory in (B.18) is the metric

ds2
11 = L2

(︂
dx2 + cosh2(x)ds2

AdS5 + sinh2(x)dz2
)︂
+
L2

4 dΩ2
4, (B.35)

with 0 ≤ x ≤ ∞, and the four-form flux and its Hodge dual

F4 = −3L3

8 ΥS4 , (B.36a)

⋆11F4 = 6L6 cosh5(x) sinh(x)dx∧ dz ∧ ΥAdS5 . (B.36b)

Since we are working with vacuum AdS7 × S4, the transformation to FG gauge is simply

x = − ln(u/2), (B.37)

where the FG radial coordinate is valued 0 ≤ u ≤ 2. In FG gauge, the metric takes the
form

ds2
11 =

L2

u2

(︄
du2 +

(︄
1 + u2

2 +
u4

16

)︄
ds2

AdS5 +

(︄
1− u2

2 +
u4

16

)︄
dz2

)︄
+
L2

4 dΩ2
4. (B.38)

The four-form flux has no functional dependence on x and is unchanged in transforming
to FG gauge, while the seven-form flux becomes

⋆11F4 = 6L6
(︄

1
u7 +

1
u5 +

5
16u3 −

5u
256 −

u3

256 −
u5

4096

)︄
du∧ dz ∧ ΥAdS5 + . . . . (B.39)

With the asymptotics of the metric and fluxes in hand, we can easily compute the
on-shell action. Note that the GHY term for the vacuum AdS7 × S4 solution is trivially
identical to the expression found in (B.29), and so we will not reproduce it here. The
bulk action is then computed from the F4 ∧ ⋆F4 term, which after inserting eqs. (B.36a)
and (B.39), introducing a radial cutoff at u = ϵu ≪ 1, and integrating over the
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AdS7 × S4 geometry gives

S
(vac)
OS,bulk = − L9π2

8G(11)
N

vol(AdS5)

(︃ 1
3ϵ6u

+
1

2ϵ4u
+

5
16ϵ2u

− 11
48

)︃
+ . . . . (B.40)

Combining with the GHY term, we find

S
(vac)
OS = − π2L9

8G(11)
N

vol(AdS5)

(︃ 1
3ϵ6u

+
5

3ϵ5u
+

1
2ϵ4u

+
1
ϵ3u

+
5

16ϵ2u
+

5
48ϵu

− 11
48

)︃
+ . . . .

(B.41)

Finally, we note that since d ⋆ F4 = 0 we can introduce C6 so that dC6 = ⋆11F4. We can
then perform the bulk integral of F4 ∧C6 over the radial cutoff slice at ϵu with the
pullback of the six-form potential being given by

C6 = 3L6
(︄

1
3ϵ6u

+
1

2ϵ4u
+

5
16ϵ2u

− 11
48 +

5ϵ2u
256 +

ϵ4u
512 +

ϵ6u
12288

)︄
dz ∧ ΥAdS5 . (B.42)

Crucially, we have used the residual gauge freedom to fix the six-form potential to be
regular at the origin of AdS7, i.e. we pick a gauge such that C6

⃓⃓⃓
u=2

= 0. The
computation using C6 then gives the same result as above.

B.3.2 Renormalised AdS5 volume

Even accounting for the removal of divergences coming from the asymptotically AdS7

part of the geometry via background subtraction, we are still left to deal with the volume
of the AdS5 factor in the on-shell action. In order to regularise the remaining polynomial
divergences and read off the universal log-divergent part of the on-shell action, we will
simply treat the intrinsic parts of the AdS5 geometry using standard counterterms in
holographic renormalization and neglecting any divergences associated with the
embedding. This renormalization scheme is admittedly simplistic as it only treats the
set of counterterms associated with the intrinsic geometry of the AdS5 submanifold.
However, since the background subtraction scheme leaves behind only divergences from
the volume of the AdS5 and we choose the boundary geometry to be S4 ↪→ R6, only
defect Weyl anomalies constructed purely from the intrinsic geometry should contribute,
which will be accounted for in the scheme we have chosen. The caveat is that there may
be structures for which we have not accounted in the full set of 11d counterterms, which
is difficult to construct, whose pullback to the AdS5 submanifold contains terms that
contribute to the log divergence in a similar way. Absent a full holographic
renormalization scheme for solutions to SUGRA dual to defects, which would replace
background subtraction scheme as well, this scheme choice constructing counterterms
only for the intrinsic geometry of the AdS5 submanifold is the best tool available.
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Moving on, the volume of AdS5 has well known divergences. In order to systematically
remove them and reveal any universal log-divergent terms, we consider AdS5 in global
coordinates with an S4 boundary:

ds2
AdS5 = dx2 + sinh2(x) dΩ2

4. (B.43)

For simplicity, we consider the round metric on S4. Computing the AdS5 volume
requires regulating the large x behaviour, and so we introduce a radial cutoff
Λx ≡ − log ϵx

2 for ϵx ≪ 1. Then, expanding in small ϵx

vol(AdS5) =
8π2

3

∫︂ Λx

0
dx sinh4(x) =

2π2

3ϵ4x
− 4π2

3ϵ2x
− π2 log ϵx2 + . . . . (B.44)

We regulate the volume using covariant counterterms1 added on the radial cutoff slice
that are standard in AdS5 holographic renormalization [288, 325]

SCT,1 = −1
4

∫︂
dΩ4

√︂
|gϵx | = −

2π2

3ϵ4x
+

2π2

3ϵ2x
− π2

4 + . . . , (B.45a)

SCT,2 =
1
48

∫︂
dΩ4

√︂
|gϵx |Rϵx =

2π2

3ϵ2x
− π2

3 + . . . , (B.45b)

where
√︁
|gϵx | = (1− ϵx)4√︁|gS4 |/16ϵ2x and Rϵx = 12 csch2(ϵx) are the volume form and

the intrinsic Ricci scalar on the cutoff slice, respectively, built from the induced AdS5

metric. Adding these counterterms to the bulk action, we see that the holographically
renormalised volume of the unit AdS5 takes the well-known form

vol(AdS5) = −π2 log ϵx2 + . . . . (B.46)

To complete the regularization of the on-shell actions for the vacuum AdS7 × S4 and
two-charge solutions and extract the universal contributions to the defect free energy, we
replace vol(AdS5) = −π2 log(ϵx/2) wherever it appears.

1To be complete, we should also fix finite counterterms to ensure that we are in a supersymmetry
preserving scheme, but we will forego addressing this here as it is not germane to the problem at hand.
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Appendix C

Useful identities

猿も木から落ちる

(Even monkeys fall from trees)

Japanese idiom

In this appendix, we enumerate various useful identities and conventions that we used
throughout the thesis. We have organised them as follows. Section C.1 is dedicated to
differential geometry conventions and identities. Most conventions follow [194]. For
completeness, we also include basic identities which are not explicitly used within the
thesis, but could prove useful to the reader. Section C.2 is entirely dedicated to the
geometric conventions of Chapter 6. Section C.4 will present some basic definitions and
useful formulae for Young tableaux. They can prove useful in understanding our Young
tableaux description of the SU (4) representations of Weyl multiplet field content in
Chapter 7. Finally, Section C.5 presents basic definitions and identities of the
hypergeometric functions. These are used to resum the various correlation functions
found in Chapter 8.

C.1 Differential Geometry Identities

Let M be a (smooth) differential manifold of dimension d. Throughout this thesis, we
only consider such manifolds which are orientable and equipped with a metric g. When
the metric is positive-definite, we say that M is a Riemannian manifold and its metric
has signature (0, d)1. We are also interested in the setup where the signature is so-called
Lorentzian, (1, d− 1), for which the metric is no-longer positive. In both cases, the
metric g is an example of a structure on M which reduces its structure group from

1Importantly, we always use the notation where we indicate the number of negative eigenvalues first.
This extends to our notation for groups whose elements preserve such metrics. eg. SO(1, d − 1).
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GL(d, R) to one of its subgroups. We give a (non-exhaustive) list of these additional
structures and their structure group in Table C.1.

Structure on M G-structure

Orientation SL(d, R)

Metric O(p, q), p+ q = d

Complex GL(d/2, C)

Hermitian U (d/2, C)

Kähler U (d/2, C)

Calabi-Yau SU (d/2, C)

Symplectic Sp(d, R)

Table C.1: List of common structures on a differential manifold M, together with
their corresponding G-structure group. The map is not one-to-one as many structures
can require additional integrability conditions which are not made explicit from the
G-structures. Almost complex and complex structures for instance share the same

G-structures but the former requires the vanishing of the Nijenhuis tensor.

Not every smooth differential manifold can admit a given structure, and determining
which manifold M can admit which structure has been long standing topic of research.
Certain obstructions to endowing M with a given structure can be measured through a
set of differential invariants known as characteristic classes. These are cohomology
classes of the manifold’s vector bundles or principal bundles. The Stiefel-Whitney
classes for instance are used to determine whether the manifold is orientable w0, admits
a spin structure w1, or a spin-c structure w2, etc. Unless stated otherwise, we only
consider oriented, Riemannian/Lorentzian, spin manifolds in this thesis.

Summary of conventions:

1. In Lorentzian signature, we used the mostly plus convention η =

diag(−1, 1, . . . , 1). We denote the signature by the number of negative
eigenvalues followed by the number of positive ones, eg (1, d− 1) for the
Lorentzian one.

2. The spin connection is so that the spheres has positive Ricci scalar curvature,
ωµ

ab = eaν(∂µebν + Γνµρebρ).

3. In Lorentzian signature, the Levi-Civita symbol obeys ϵ01···d = −1 and
ϵ01···d = 1.
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C.1.1 The ϵ-δ identities (3d Cartesian)

Let us now consider a Riemannian manifold of dimension 3 with the standard Euclidean
metric, δ. Its local patches Ui admits a set of coordinates xi, i ∈ {1, 2, 3} for which δij is
the Kronecker delta symbol. The Levi-Civita tensor on this manifold is the totally
anti-symmetric tensor of rank 3 for which ϵ123 = 1. The indices are raised and lowered
using the Euclidean metric, ϵikl = δijϵjkl. The following identities then follow

ϵijkϵijk = 3! (C.1a)

ϵijkϵijl = 2δkl (C.1b)

ϵijkϵilm = δj lδ
k
m − δjmδkl := δjklm (C.1c)

ϵijkϵlmn = δijklmn (C.1d)

C.1.2 The ϵ-δ identities (4d Lorentzian)

Here we consider a Lorentzian manifold of dimension 4 with the standard Minkowski
metric, η. Its local patches Ui admits a set of coordinates xµ, µ ∈ {0, 1, 2, 3} for which
ηµν is represented by the matrix diag(−1, 1, 1, 1)2. The Levi-Civita tensor on this
manifold is the totally anti-symmetric tensor of rank 4 for which ϵ0123 = 1. The indices
are raised and lowered using the Minkowski metric, ϵµαβγ = ηµνϵναβγ . A direct
consequence of this is that the tensor with all indices raised obeys ϵ0123 = −1. The
following identities then follow

ϵµναβϵµναβ = −4! (C.2a)

ϵµνρσϵανρσ = −3!δµα (C.2b)

ϵµνρσϵαβρσ = −2δµναβ (C.2c)

ϵµνρσϵαβγσ = −δµνραβγ (C.2d)

ϵµνρσϵαβγδ = −δµνρσαβγδ (C.2e)

C.1.3 General identities

Let M be a pseudo-Riemannian (smooth) manifold of dimension d. Pick a patch Ui and
a set of local coordinates on Ui, say xµ. If g denotes the metric on M, we can be slightly
abusive with the notation and define gµν as the local representation of it on this patch.
The Levi-Civita tensor is an element of Γ(

⋀︁d T ∗M), in other words it is a top form on
M. Its components on Ui, ϵµ1···µd

, can be defined using a local parallelisation of the
frame bundle, i.e. the vielbeins eaµ

ϵµ1···µd
= ea1

µ1 · · · ea1
µd
ϵa1···ad

, (C.3)
2We follow our conventions and use the mostly plus metric.
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where ϵa1···ad
is the Levi-Civita symbol in d dimensions. We decide on the convention

where ϵ12···m = 1. Its indices can be lowered and raised using the metric and its inverse,
as usual for tensorial quantities.

We are now ready to formulate the following identities involving the Levi-Civita tensor
and the metric components

ϵµ1···µd = det(g)−1ϵµ1···µd
, (C.4a)

ϵµ1···µdϵµ1···µd
= d! det(g), (C.4b)

ϵµ1···µrµr+1···µdϵµ1···µrνr+1···νd
=
r!(d− r)!

det(g) δ[µr+1
νr+1 · · · δµd]

νd
. (C.4c)

Furthermore, if aµν are the components of an element of Γ(TM⊕ T ∗M), the following
holds true on Ui

aµ1
ν1 · · · aµd

νdϵν1···νd
= det(a)ϵµ1···µd

. (C.5)

The Hodge star operator maps p-forms to (d− p)-forms,
⋆ : Γ(

⋀︁p T ∗M) −→ Γ(
⋀︁d−p T ∗M) bijectively. This is possible since the vector space of

p-forms at a point in M has the same dimension as that of (d− p)-forms, namely (dp).
On the patch Ui, we can use the Levi-Civita tensor to define the star of any p-form ω,

ω =
1
p!
ωµ1···µpdx

µ1 ∧ · · · ∧ dxµp , (C.6a)

⋆ω =

√︁
|g|

p!(d− p)!
ωµ1···µpϵ

µ1···µp
µp+1···µmdx

µp+1 ∧ · · · ∧ dxµd . (C.6b)

Taking two instances of the Hodge dual gives a automorphism of the space of p-forms.
Depending on the dimension d, rank of the forms p and signature of the manifold, this
maps a p-form to plus or minus itself,

⋆ ⋆ ω = (−1)p(d−p)ω Riemannian, (C.7a)

⋆ ⋆ ω = −(−1)p(d−p)ω Lorentzian. (C.7b)

Let α and β be two p-forms on M, i.e. α,β ∈ Γ(
⋀︁p T ∗M). The Hodge dual can be used

to define a natural inner product on p-forms given as the integral of α∧ ⋆β. In terms of
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components, this is written as

α =
1
p!
αµ1···µpdx

µ1 ∧ · · · ∧ dxµp , (C.8a)

β =
1
p!
βµ1 · · ·µpdxµ1 ∧ · · · ∧ dxµp , (C.8b)

α∧ ⋆β =
1
p!
αµ1···µpβ

µ1···µp ⋆ 1 (C.8c)

=

√︁
|g|
p!

αµ1···µpβ
µ1···µpdx1 ∧ · · · dxd. (C.8d)

In other words α∧ ⋆β is proportional to the canonical volume form
√︁
|g|dx1 ∧ · · · ∧ dxd.

To derive the above formulae we used the following way of rewriting a generic top-form
basis, in therms of the Levi-Civita tensor,

dxµ1 ∧ · · · ∧ dxµd = −ϵµ1···µddx1 ∧ · · · ∧ dxd. (C.9)

C.1.3.1 Cartan structure equations

Our conventions of the spin connection will always follow that of [194], namely that for
which the sphere has positive Ricci curvature. Given a set of vielbeins for M, the spin
connection ω ∈ Γ(so(p, q)⊗ T ∗M) (given as an so(p, q)-valued one form) obeys the
Cartan structure equations

T a = dea + ωab ∧ eb, (C.10a)

Rab = dωab + ωac ∧ ωcb. (C.10b)

Where T a are the torsion one-forms and Rab the curvature two-forms. Requiring a
torsion-free connection, one can solve the above equation for ω either implicitly or using
the explicit formulation in terms of its components on a local patch,

ωµ
ab = eaν∇µebν , (C.11a)

∇µebν = ∂µe
bν + Γνµρebρ, (C.11b)

where Γµνρ are the Christoffel symbols associated to the Levi-Civita connection ∇.
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C.2 Geometric conventions of Chapter 6

We will now describe the various geometric conventions used throughout Chapter 6.
Importantly, we will describe the metric fibration of S3 × S1 in terms of two parameters,
ϵ1 and ϵ2, and detail our choice of vielbeins for the resulting Riemannian manifold
S3 ×Ω S

1. Finally, we will display the corresponding spin connection one-form.

However, before introducing the metric fibration, allow us to consider a geometry which
is that of the Cartesian product between a unit three-sphere, S3 and a one-sphere, S1

β ,
of radius β. We will use toroidal coordinates on the former and write the metric as

ds2 = dθ2 + sin2(θ)dφ2 + cos2(θ)dτ2 + β2dt2, (C.12)

θ ∈ [0, π2 [ , φ ∈ [0, 2π[ , τ ∈ [0, 2π[ , t ∈ [0, 2π[ .

The vielbeins allow us to identify the tangent bundle of S3 × S1
β with a vector bundle of

structure group SO(4). In other words, in any patch on the base manifold, we can
express the metric in terms of the vielbeins via gµν = eaµe

b
νδab. Then, eaµ are the local

component expressions of the vielbein one-form ea = eaµdx
µ. While it is possible to

construct diagonal vielbeins for this metric, such a choice would lead to a rather verbose
expression for the spin connection one-form. Instead, we will consider the following
vielbeins,

e1 = sin(φ+ τ )dθ+ cos(θ) sin(θ) cos(φ+ τ )dφ− cos(θ) sin(θ) cos(φ+ τ )dτ , (C.13a)

e2 = − cos(φ+ τ )dθ+ cos(θ) sin(θ) sin(φ+ τ )dφ− cos(θ) sin(θ) sin(φ+ τ )dτ ,
(C.13b)

e3 = sin2(θ)dφ+ cos2(θ)dτ , (C.13c)

e4 = βdt . (C.13d)

The spin connection, a connection on the tangent bundle, is locally a 1-form ω valued in
the special orthogonal Lie algebra so(d), where d is the dimension of the base manifold.

By this fact, the matrix representation of so(d) allows us to identify ωab as the
components of a skew-symmetric, traceless matrix. After identifying a set of vielbeins,
the one-form ω is completely determined by solving the Cartan structure equations with
vanishing torsion, dea + ωab ∧ eb = 0. This can either be done via ansatz methods or by
using the coordinate expression ωµ

ab = eaν∇µebν , where ∇µ is the Levi-Civita
connection along the unit vector ∂µ. Its action on the vielbein component ebν takes the
form ∇µebν = ∂µe

bν + Γνµρebρ, where Γνµρ are the Christoffel symbols associated to the
metric. One can easily check that the one-form built from the components defined above
automatically satisfies the torsion-less Cartan structure equations. Using either of the
two methods, and with the choice of vielbeins made above, the spin connection 1-form
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takes the simple form

ωab =

⎧⎪⎪⎨⎪⎪⎩
3∑︂
c=1

εabce
c if a, b ∈ {1, 2, 3},

0 otherwise.
(C.14)

Our sign convention for the curvature of the spin connection is given in equation (3.12).

We now wish to introduce a geometric deformation of S3 × S1
β in the form of a metric

fibration of the S3 along the S1
β . This is similar to the Ω-deformation of R4 first

introduced in [395–397] in the context of Seiberg-Witten theory. However, the
deformation here will remain purely geometric and will not further grade the twisted
theory. The constants ϵ1 and ϵ2 parameterise this fibration, as written in equation (6.5),

ea → ea + eaµv
µdt, where v = ϵ1∂φ + ϵ2∂τ . (C.15)

More explicitly, the deformed vielbeins take the following form,

e1 = sin(φ+ τ )dθ+ cos θ sin θ cos(φ+ τ )dφ− cos θ sin θ cos(φ+ τ )dτ

+ cos θ sin θ cos(φ+ τ )(ϵ1 − ϵ2)dt , (C.16a)

e2 = − cos(φ+ τ )dθ+ cos θ sin θ sin(φ+ τ )dφ− cos θ sin θ sin(φ+ τ )dτ

+ cos θ sin θ sin(φ+ τ )(ϵ1 − ϵ2)dt , (C.16b)

e3 = sin2 θ dφ+ cos2 θ dτ + (ϵ1 sin2 θ+ ϵ2 cos2 θ)dt , (C.16c)

e4 = βdt . (C.16d)

Following this deformation, the metric is given by equation (6.6). Naturally, in the limit
of vanishing ϵ1,2, it recovers equation (C.12), as expected.

Finally, we may note that the deformation changes the spin connection only by a single
factor along the fourth vielbein,

ωab =

⎧⎪⎪⎨⎪⎪⎩
3∑︂
c=1

εabce
c − β(ϵ1 + ϵ2)εab3e

4 if a, b ∈ {1, 2, 3},

0 otherwise.
(C.17)

C.3 Complexification of the equivariant parameters

In this section, we briefly review how the complexification of the equivariant parameters
ϵ1,2 = Re(ϵ1,2) + iIm(ϵ1,2) which specify (together with β) a primary Hopf surface Mp,q

4
leads to a violation of the local roundness condition |p| = |q|. As mentioned before, the
local holomorphicity of the partition function in the complex structure moduli p and q
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guarantees that any such squashing would be invisible in our analysis, which is why we
could retain full generality while restricting to the |p| = |q| fugacity subspace.

Consider the following Hermitian metric on a primary Hopf surface Mp,q
4 ,

gMp,q
4

=

√︄
β + Im(ϵ1)

β + Im(ϵ2)
e2(β+Im(ϵ2))tdwdw̄+

√︄
β + Im(ϵ2)

β + Im(ϵ1)
e2(β+Im(ϵ1))tdzdz̄ . (C.18)

Via the transformation

w = pteiτ cos θ , z = qteiφ sin θ , (C.19)

we find the following metric

gMp,q
4

= ds2
S3

ℓ
+ 2ℓ−1Re(ϵ1) sin2 θdφdt+ 2ℓRe(ϵ2) cos2 θdτdt (C.20)

+
1
β−2

[︂
ℓ−1(1 + 2β−1Im(ϵ1) + β−2|ϵ1|2) sin2 θ

+ℓ(1 + 2β−1Im(ϵ2) + β−2|ϵ2|2) cos2 θ
]︂
dt2

where the squashed S3 metric is

gS3
ℓ
= (ℓ−1 cos2 θ+ ℓ sin2 θ)dθ2 + ℓ−1 sin2 θdφ2 + ℓ cos2 θdτ2 (C.21)

with squashing parameter

ℓ =

√︄
1 + β−1Im(ϵ1)

1 + β−1Im(ϵ2)
. (C.22)

Note that, if ϵ1,2 are taken to be real again, then ℓ = 1: the S3 unsquashes, and the
metric in equation (C.20) recovers precisely the deformed metric on S3 ×Ω S

1.
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C.4 Young Tableau

To every irreducible representation of SU (N ) there is a corresponding Young tableau
with at most N rows.3

It is customary to denote a representation using its dimension alone. Whenever two
irreps have the same dimension, we add a prime. If two irreps are conjugate to each
other, we prefer the overline notation. For instance, the fundamental representation of
SU (N ) is N -dimensional and its Young tableau is given by the one box . We denote it
by N. Its conjugate representation, on the other hand, has the same dimension but is

described by N − 1-stacked boxes ... . We denote it by N. While we will try our best, no
guaranteed is made that we will stick to this refined notation. More often than not, we
might omit primes or overlines, and only specify the dimension.

C.4.1 Calculating the dimension

Let λ be a Young tableau for a given irrep of SU (N ). We wish to determine the
dimension of said irrep from the tableau alone. This can be done by counting the total
number of standard Young tableau λ can accommodate. One can alleviate the need to
explicitly count those via the following algorithm.

First, in each box, count the total number of boxes below b and to the right r plus one.
Each box within the Young tableau will then contain the numbers bi + ri + 1. The hook
length hλ is defined as the product of all these numbers for all the cells in λ

hλ =
∏︂
i∈λ

(bi + ri + 1). (C.23)

Example C.1. For the Young tableau , the labelling described above gives

6 4 3 1

4 2 1

1

From this, we find that the hook length is hλ = 6 · 4 · 3 · 1 · 4 · 2 · 1 · 1 = 576.
3Young tableaux are also useful in classifying irreducible representations of GL(N , C), SL(N , C),

U(N), O(N), SO(N) and Sp(2N). However, we will only need this machinery for SU(N) representations.
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The number of standard Young tableaux is then given as the ratio between two
quantities. The numerator is calculated as follows. Label the top left cell with N . For
every cell to the right, increase the number by one. Repeat this construction on the
second row, starting from N − 1 and on the third row and so on until all cells are
assigned a number. Finally, take the product of all these numbers to get the numerator.
The denominator is the hook length described previously. If we give each cell in the
tableau a coordinate (i, j), where (1, 1) labels the top left cell, and i increases
downwards and j rightwards, the dimension formula is more easily given as the product

dim(λ) =
∏︂

(i,j)∈λ

N + j − i
hλ

. (C.24)

Example C.2. For example, consider the Young tableau used in example C.1 for the
group SU (4). We apply the construction described above to the numerator and
denominator, which gives the following ratio.

dim
(︄ )︄

=

4 5 6 7
3 4 5
2

6 4 3 1
4 2 1
1

=
4 · 5 · 6 · 7 · 3 · 4 · 5 · 2
6 · 4 · 3 · 1 · 4 · 2 · 1 · 1 = 174 (C.25)

Relevant to this thesis, are the Young tableaux for SU (4) representations. The ones
that appear in the 4d N = 4 conformal supergravity multiplet from Chapter 7 are
4 = , 4̄ = , 20 = , 20 = , 6 = , 10 = , 10 = , 20′ = .

C.4.2 Tensor product of Young tableaux

Very often, one would like to consider the tensor product of irreducible representations
of SU (N ). These are, in general, decomposable into a direct sum of irreducible
representations. One way of finding such decomposition is by working directly with the
Young tableau representations.4 Taking the tensor product of two Young tableaux, λA
and λB, amounts to following the algorithm described below.

1. Label the cells in the second Young tableau, λB with a’s in the first row, b’s in the
second etc..

2. Add all the a cells to the first Young tableau in all possible ways that still result in
a Young tableau and remove them from the second tableau. The only exception
being that a cells cannot appear in an antisymmetrised way (i.e. two a in the same
column). If identical tableaux appear in that construction, only keep one.

4Another popular way is to deal with the highest weight representations directly.
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3. Repeat that step with all the b cells, then the c cells, etc. The only difference now
being that tableaux which are identical up to an exchange of a, b,.. labels count as
distinct ones.

4. Counting from left-to-right and top-to-bottom the number of a cells, b cells etc, if
at any point the number of b cells exceeds that of a cells, or the number of c cells
that of b cells,... that tableau must be removed. One direct consequence of this
rule is that, from right-to-left and top-to-bottom, the first a cell must appear
before the first b cell which must appear before the first c cell etc.

5. Finally, unlabel the remaining tableaux and add them using a direct sum, ⊕.

Example C.3. 6⊗ 6 As an illustrative example, let us consider the tensor product
between two copies of the 6 representation of SU (4). In terms of Young tableaux, we
add the labels a and b to the second copy and proceed with the algorithm detailed above.

⊗
a
b =

⎛⎝
a
⊕ a

⎞⎠⊗ b

= a
b
⊕

a

b
⊕

a
b

= 1⊕ 15⊕ 20′

As a sanity check, we see that dimensions match on both sides of the equality.

Example C.4. 20⊗ 20 To make sure we understand the algorithm, let us consider the
tensor product between two copies of the 20 representation of SU (4). In terms of Young
tableaux, we add the labels a and b an c to the second copy and proceed.

⊗
a a
b b
c

=

⎛⎜⎜⎝ a
a

⊕
a

a
⊕

a

a
⊕

a a
⎞⎟⎟⎠⊗ b b

c

=

⎛⎜⎜⎝
a

a
b b

⊕

a
b

a
b

⊕

a a

b
b

⊕

a a
b

b
⊕

a a
b

b
⊕

a a
b b

⎞⎟⎟⎠⊗ c

=

a
b

a
b c

⊕

a
b

a c
b

⊕

a a

b
b c

⊕

a a
b

c
b

⊕
a a
b

b
c

⊕
a a
b

b c

⊕
a a
b b

c
⊕

a a
b b

c

= 6⊕ 10⊕ 10⊕ 64⊕ 64⊕ 70⊕ 50⊕ 126
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Again, we can see that on both sides of the equality the dimensions match. In other
words, they are both 400.
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C.5 Hypergeometric functions

Hypergeometric series often pop up in conformal field theory. In this instance, they
appear as closed-form solutions for the correlators of our nn-dCFTs in Chapter 8. Let us
outline a few definition and properties of these series that are useful for our applications.

A generalised hypergeometric function of one variable takes the form

pFq

(︄
a1, . . . , ap
b1, . . . , bq

; z
)︄
=

∞∑︂
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, (C.28)

where (a)k is the Pochhammer symbol, defined as (a)k =
Γ(a+k)

Γ(a) , for k ≥ 0 and a not a
negative integer. We can extend the symbol’s definition to negative integers as follows.
If a < 0 then (a)k is defined for all k ≤ −a as

(a)k = (−1)k Γ(−a+ 1)
Γ(−a− k+ 1) . (C.29)

Consequently, whenever one of the top arguments ai is negative, the infinite sum
terminates and the function is well defined for all values of z.

If one wishes to derive many results from this section, they will find useful these
following identities that involve the gamma function. There is the Euler reflection
formula

Γ(z − n) = (−1)n−1 Γ(−z)Γ(1 + z)

Γ(1− z + n)
n ∈ Z, z /∈ Z, (C.30a)

and the Legendre duplication formula

Γ(2z) = π−1/222z−1Γ(z)Γ
(︃
z +

1
2

)︃
. (C.30b)

Out of the family of functions in (C.28), the Gauß hypergeometric function is the most
common one. We denote it by 2F1(a, b; c; z), the semi-colon indicating the switch to the
bottom set of Pochhammer symbols. Its definition in terms of the infinite sum converges
for |z| < 1

2F1(a, b; c; z) =
∞∑︂
k=0

(a)k(b)k
(c)k

zk

k!
, (C.31)

but as pointed out above, for negative a or b, this sum terminates and we find

2F1(−m, b; c; z) =
m∑︂
k=0

(︄
m

k

)︄
(b)k
(c)k

(−z)k, (C.32a)

2F1(−m,−n; c; z) =
min(m,n)∑︂
k=0

(︄
m

k

)︄(︄
n

k

)︄
k!
(c)k

zk. (C.32b)
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Generalising the previous construction to hypergeometric series in two-variables gives
the so-called Kampé de Fériet hypergeometric function

F p,r,t
q,s,u

(︄
a1, . . . ap
b1, . . . bq

; c1, . . . cr
d1, . . . ds

; e1, . . . et
f1, . . . fu

;x, y
)︄
=

∞∑︂
n,m=0

(a⃗)n+m(c⃗)m(e⃗)n

(b⃗)n+m(d⃗)m(f⃗)n

xm

m!
yn

n!
, (C.33)

where (a⃗)m = (a1)m · · · (ap)m and similarly for the other Pochhammer symbols. There
are multiple ways of recovering the generalised hypergeometric in one variable, of which
we list a few

F 0,p,0
0,q,0

(︄
; c1, . . . cp
d1, . . . dq

; ;x, 0
)︄
= pFq

(︄
c1, . . . , cp
d1, . . . , dq

;x
)︄

, (C.34a)

F 0,0,p
0,0,q

(︄
; ; e1, . . . ep
f1, . . . fq

; 0, y
)︄
= pFq

(︄
e1, . . . , ep
f1, . . . , fq

; y
)︄

, (C.34b)

F p,0,0
q,0,0

(︄
a1, . . . ap
b1, . . . bq

; x2 , x2

)︄
= pFq

(︄
a1, . . . , ap
b1, . . . , bq

; y
)︄

. (C.34c)

An important subset of these are the four Appell functions,

F1(a, b1, b2; c;x, y) =
∞∑︂

n,m=0

(a)m+n(b1)m(b2)n
(c)m+nm!n!

xmyn, (C.35a)

F2(a, b1, b2; c1, c2;x, y) =
∞∑︂

n,m=0

(a)m+n(b1)m(b2)n
(c1)m(c2)nm!n!

xmyn, (C.35b)

F3(a1, a2, b1, b2; c;x, y) =
∞∑︂

n,m=0

(a1)m(a2)n(b1)m(b2)n
(c)m+nm!n!

xmyn, (C.35c)

F4(a, b; c1, c2;x, y) =
∞∑︂

n,m=0

(a)m+n(b)m+n

(c1)m(c2)nm!n!
xmyn. (C.35d)

C.5.1 Special values

We list here a few examples where these hypergeometric functions reduce to well-known
functions.

When multiple parameters are identical, the series expansion coincide precisely with the
generalised binomial and trinomial expansions,

2F1(a, b; b; z) = (1− z)−a, (C.36)
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F2(a, b, b; b, b;x, y) = (1− x− y)−a. (C.37)

C.5.2 Integral formulae

See [430] Section 7.5 for a more complete list of integral formulae.

First, we have the beta function integral formula, valid for Re(a), Re(b) > 0,
∫︂ 1

0
ua−1(1− u)b−1du =

Γ(a)Γ(b)
Γ(a+ b)

. (C.38)

Second, we have that of the Gauß hypergeometric, valid for Re(b), Re(c) > 0,
∫︂ 1

0
ua−1(1− u)c−b−1(1− xu)−adu =

Γ(b)Γ(c− b)
Γ(c) 2F1(a, b; c;x). (C.39)

Finally, we have that of the Appell function, valid for Re(a), Re(c) > 0,
∫︂ 1

0
ua−1(1− u)c−a−1(1− xu)−b1(1− yu)−b2du =

Γ(a)Γ(c− a)
Γ(c)

F1(a, b1, b2; c;x, y).

(C.40)

An analytic continuation of E[(θ ·X)−n]

In general the Gaussian integral
∫︁

RN (0,µ2)θ−sdθ diverges when s ≥ 15. However, we
can analytically continue it to any complex s as follows. Using Cauchy’s principal value
method, we see that the integral is trivial for all s ∈ 2Z + 1,∫︂

R
N (0,µ2)θ

−sdθ = lim
θ0→0

√︃
µ2
2π (1 + (−1)s)

∫︂ ∞

θ0
e−θ2 µ2

2 θ−sdθ = 0. (C.41)

For s ∈ 2Z, it evaluates to∫︂
R
N (0,µ2)θ

−sdθ =
1√
π

2−s/2µs/2
2 Γ

(︃1− s
2

)︃
. (C.42)

All other values of s are irrelevant to our examples.

Finding the value of E[(θ ·X)−n] comes down to the following simple steps.

Firstly, we use the Feynman reparametrisation trick, which says that for Re(ni) > 0
[431],

A−n1
1 · · ·A−nk

k =
Γ(n1 + · · ·+ nk)

Γ(n1) · · · Γ(nk)

∫︂
[0,1]k

dku
δ(1−∑︁k

i=1 ui)u
n1−1
1 · · ·unk−1

k

(n⃗ · A⃗)
∑︁k

i=1 ni

. (C.43)

5We remind the reader that N (0, µ2) =
√︁

µ2
2π e−θ2 µ2

2 is the Gaussian distribution for one random
variable, centred at the origin.
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This, however, is only valid as long as the convex hull created by the complex numbers
Ai does not contain the origin.
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C.6 Lemmas of Chapter 8

Lemma C.1. Let N (0,σ) be multivariate Gaussian distribution centred at the origin
with variance matrix σAB = µ2̃δAB. The expectation value of the defect variables θ̃ then
obeys

E[(X • θ)2λ] = Q(2λ)(X •X)λµ̃λ2
P .S.
= 0 (C.44)

for all λ ∈N∗.

The function Q(n) is defined as counting all possible pairings between n (even) objects

Q(n) = 2n/2π−1/2Γ
(︃
n+ 1

2

)︃
(C.45)

Proof. Let us prove this statement recursively.

When λ = 1, we explicitly find E[(X • θ)2] = X •X µ̃2.

Let us assume that E[(X • θ)2λ] = (2λ−1)!
2λ−1(λ−1)! (X •X)λµ̃λ2 for some λ ∈N∗. Then, using

Stein’s lemma (with µ̃1 = 0 and σAB = µ̃2δAB)

E[g(θ)θA] = µ̃2
∑︂
B

δABE[∂Bg(θ)], (C.46)

we find the intermediate result

E[θA1 · · · θA2λ
θB1θB2 ] = µ̃2

2λ∑︂
i=1

δB2AiE[θA1 · · ·ˆ︃θAi · · · θA2λ
θB1 ] + µ̃2δB1B2E[θA1 · · · θA2λ

].

(C.47)

Contracting this with the vector components of X, we are able to evaluate the
expression at λ+ 1,

E[(X • θ)2λ+2] = XA1 · · ·XA2λXB1XB2E[θA1 · · · θA2λ
θB1θB2 ]

= (2λ+ 1)(X •X)µ̃2E[(X •X)2λ]

=
(2λ+ 1)!

2λλ!
(X •X)λ+1µ̃λ+1

2 . (C.48)

Lemma C.2. Let N (0,σ) be multivariate Gaussian distribution centred at the origin
with variance matrix σAB = µ2δAB. Let X1, X2 be two distinct D+ 2-dimensional
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vectors. Then the expectation value of the random variables θ̃ obeys

E[(X1 • θ)n1(X2 • θ)n2 ] =
min(n1,n2)∑︂

n=0
n1−n=0 [2]
n2−n=0 [2]

(X1 •X2)
n(X1 •X1)

n1−n

2 (X2 •X2)
n2−n

2

µ̃
n1+n2

2
2

2
2n−n1−n2

2 Γ(n1 + 1)Γ(n2 + 1)
Γ(n+ 1)Γ(n1−n+2

2 )Γ(n2−n+2
2 )

(C.49)

for all n1,n2 ∈N. A similar expression holds for the tangent space random variables
X1 ◦ θ, where • should be replaced by ◦ and µ̃2 by µ̂2.

For defect variables, all terms proportional to X1 •X1 and X2 •X2 vanish on the defect
Poincaré section, and so the expectation value simplifies to

E[(X1 • θ)n1(X2 • θ)n2 ]
P .S.
= δn1n2 Γ(n1 + 1)(X1 •X2)

n1 µ̃n1
2 . (C.50)

Proof. The expectation value is given by all possible contractions between n1 copies of
the vector X1 and n2 copies of the vector X2. We can classify them according to the
number of contractions X1 •X2, call it n.

For a given n, there are 1
n!P (n1,n)P (n2,n) ways of constructing these n contractions of

X1 and X2. P (m,n) denotes the number of permutations of n objects within a set of m
objects, and is defined as P (m,n) = m!

(m−n)! . The remaining n1 − n copies of X1 must
then be contracted within themselves. Similarly for the n2 − n copies of X2. Of course,
this is only possible if both n1− n and n2− n are even. Whenever that is the case, there
are Q(n1 − n)Q(n2 − n) ways of contracting these vectors among themselves, as shown
in lemma C.1.

One can show that the right-hand-side of Lemma C.2 is resummable into
hypergeometric functions. This, however, must be done separately for even and odd
n1 + n2, leading to the following result.

Theorem C.3. Let N (0,σ) be multivariate Gaussian distribution centred at the origin
with variance matrix σAB = µ2δAB. Let X1, X2 be two distinct D+ 2-dimensional
vectors. Then the expectation value of the random variables θ̃ obeys

E[(X1 • θ)n1(X2 • θ)n2 ] =

(︃
µ̃2
2 X1 •X1

)︃n1
2
(︃
µ̃2
2 X2 •X2

)︃n2
2

Γ(n1 + 1)Γ(n2 + 1)
Γ
(︁n1

2 + 1
)︁

Γ
(︁n2

2 + 1
)︁2F1

(︄
−n1

2 ,−n2
2 ; 1

2; (X1 •X2)2

X1 •X1X2 •X2

)︄
(C.51)
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when n1 + n2 is even,

E[(X1 • θ)n1(X2 • θ)n2 ] = 2
(︃
µ̃2
2 X1 •X2

)︃(︃
µ̃2
2 X1 •X1

)︃n1−1
2
(︃
µ̃2
2 X2 •X2

)︃n2−1
2

Γ(n1 + 1)Γ(n2 + 1)
Γ
(︂
n1−1

2 + 1
)︂

Γ
(︂
n2−1

2 + 1
)︂2F1

(︄
−n1 − 1

2 ,−n2 − 1
2 ; 3

2; (X1 •X2)2

X1 •X1X2 •X2

)︄
(C.52)

when n1 + n2 is odd, and vanishes otherwise.
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Appendix D

Spinor Conventions

Avec tout ce que je sais, on pourrait
faire un livre. . . il est vrai qu’avec
tout ce que je ne sais pas, on pourrait
faire une bibliothèque

Sacha Guitry

In this appendix we will present the various spinor conventions used throughout
Chapters 5,4 and Chapters 6,7. We will also detail some basic definitions and formulae
that are useful in this context. As such, you can see this chapter as a hybrid between a
background material chapter from Part I and an appendix.

We start by outlining the main definitions of a Clifford algebra in Section D.1. Most of
the definitions and theorems there can be found in reviews [121, 432–434].

D.1 Clifford Algebras

Clifford algebras are a type of algebra associated to a quadratic form Q on a vector
space V . Our main motivation for introducing these objects lies in the fact that they are
the central objects used to describe the action of the spin group on spinors.
Understanding how to construct such algebras, one can understand the corresponding
spinor representations. Unless stated otherwise, in this section K = R or C.

First and foremost, allow us to to introduce the first ingredient in constructing Clifford
algebras, namely a quadratic vector space.

Definition D.1. Quadratic Vector Space Let V be a finite-dimensional K-vector space,
let B : V × V → K be a symmetric bilinear form and let Q : V → K denote the
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corresponding quadratic form, defined by Q(x) = B(x,x). Note that one can recover B
from Q by polarisation, namely

B(x, y) = 1
2 (Q(x+ y)−Q(x)−Q(y)) (D.1)

The pair (V ,Q) is called a quadratic K-vector space.

The symmetric bilinear form B plays the role of a metric on V , and indeed, in most
cases we will consider B = η or B = δ (the Minkowski metric or the Euclidean metric).

Example D.1. real pre-Hilbert space Recall that a real pre-Hilbert space E is an
R-vector space equipped with an inner product ⟨·, ·⟩ : E ×E :→ R. In other words, the
map ⟨·, ·⟩ must obey the following properties. It must be

1. bilinear: ∀x, y, z ∈ E, ∀λ ∈ R

⟨x+ λy, z⟩ = ⟨x, z⟩+ λ⟨y, z⟩

⟨x,λy + z⟩ = λ⟨x, y⟩+ ⟨x, z⟩

2. symmetric: ∀x, y ∈ E, ⟨x, y⟩ = ⟨y,x⟩

3. positive definite: ∀x ∈ E, ⟨x,x⟩ ≥ 0 and ⟨x,x⟩ = 0⇔ x = 0E

Notice how the inner product on E is simply a special case of the symmetric bilinear
form B in Definition. D.1. We may also recall that from an inner product, we can
immediately define a norm by

∥x∥ =
√︂
⟨x,x⟩ (D.2)

Using the properties of the inner product we can see that ∥·∥ does indeed obey the
required properties of a norm (positive definite, homogeneity, triangular inequality).
However, one may also notice that ∥·∥2 obeys the axioms of a quadratic form on E. In
that way we see that both finite dimensional pre-Hilbert spaces and finite-dimensional
normed K-vector spaces can be extended into quadratic vector spaces.

The following two definitions are the main ones we wish to focus on. The Clifford map
will also make an appearance in our definitions for the Killing spinor equations in
Section D.3. There,

Definition D.2. Clifford Map Let (V ,Q) be a quadratic vector space and let A be an
associative, unital associative K-algebra. We say that a K-linear map ϕ : V → A is
Clifford if for all x ∈ V

ϕ(x) · ϕ(x) = Q(x)1A (D.3)

where · is the product on A and 1A is its associated unit.
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Definition D.3. Clifford Algebra Let (V ,Q) be a quadratic vector space. The Clifford
algebra, if it exists, is given by an associative algebra Cl(V ,Q) together with a Clifford
map i : V → Cl(V ,Q) such that for every Clifford map ϕ : V → A there is a unique
algebra morphism Φ : Cl(V ,Q)→ A making the following triangle commute

V
i ϕ

Cl(V ,Q) Φ
A (D.4)

D.1.1 Relation to the Physics language

Let us choose a basis on V , given by (ei)1≤i≤dim(V ). Relative to this basis, the bilinear
form B(·, ·) may be decomposed into its components B(ei, ej) = Bij = Bji

1. Let Γi
denote the image of ei under i : V → Cl(V ,Q). We recall from Definition D.3 that since
i is Clifford, equation (D.3) will hold in Cl(V ,Q). Hence, we may proceed by defining
xjk = ej + ek ∈ V for any j, k ∈ {1, . . . , dim(V )}. By linearity of the Clifford map the
left-hand-side of equation (D.3) becomes

i(xjk)i(xjk) = (i(ej) + i(ek)) (i(ej) + i(ek)) = Γ2
j + ΓjΓk + ΓkΓj + Γ2

k

= Bjj1 + ΓjΓk + ΓkΓjBkk1

On the other hand, by bilinearity of B, the right-hand-side becomes

B(xjk,xjk)1 = B(ej + ek, ej + ek)1 = Bjj1 + 2Bjk1 +Bkk1

Comparing both sides, it is now straightforward to see that the Γi satisfy

ΓiΓj + ΓjΓi = 2Bij1 (D.5)

where 1 is the unit in Cl(V ,Q).

The expression above is the familiar way in which Clifford algebras are defined in
Physics, where the Γj are called Gamma matrices and the symmetric product of those
may be packaged into the anti-commutator {Γi, Γj}.

The Clifford algebra is consequently the associative algebra generated by the Γi subject
to the above relation. In other words, any element X of Cl(V ,Q) may be written as a
linear combination of these elements.

X = X01 +
dim(V )∑︂
i=1

XiΓi +
dim(V )∑︂
i,j=1

Xi,jΓiΓj + . . . (D.6)

1Again, think of this as a basis of Rd with which we decompose a metric into its matrix components.
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Since the product of gamma matrices are generally not independent, we can simplify
these using the previously-described identities. Using eq. D.5 we find

ΓiΓj =
1
2 (ΓiΓj − ΓjΓi) +

1
2 (ΓiΓj + ΓjΓi) = Γij −Bij1 (D.7)

ΓiΓjΓk = ΓiΓjk −BjkΓi = Γijk −BijΓk +BikΓj −BjkΓi (D.8)

and so one and so forth. One can then prove that any product of these matrices may be
decomposed into the antisymmetrised products Γi1···in and lower order products of
generators. In that way Cl(V ,Q) is the linear span of 1, Γi, Γij , . . . , Γi1···idim(V )

. Its
dimension is thus

dim(Cl(V ,Q)) = 1 + dim(V ) +

(︄
2

dim(V )

)︄
+ . . .+

(︄
dim(V )

dim(V )

)︄
= 2dim(V ) (D.9)

Whenever one looks at the vector space V = Rd together with the quadratic form
generated by the Euclidean metric δ, the shorthand notation Cl(V ,Q) = Cl(d) is used.
When describing such an algebras built from metrics with different signature, say (p, q),
where p+ q = d, then we used the notation Cl(p, q) instead. As such, the dimensions of
Cl(d) and Cl(p, q) are both 2d.

D.1.2 A basis in any dimension and any signature

The constructive approach described in the previous subsection is only useful if one can
find a systematic way of generating a representation of Cl(p, q) in any dimension. Let us
briefly describe here one way of doing so.

Starting in three-dimensions, recall that the Pauli matrices

σ1 =

(︄
0 1
1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, σ3 =

(︄
1 0
0 −1

)︄
. (D.10)

obey the following condition on their anticommutator2

{σi,σj} = 2δij . (D.11)

Consequently, the vector space of matrices spanned by the Pauli matrices is a
representation of the Clifford algebra Cl(3). To make the identification more clear, we
will write Γi = σi (abusively). The other two signatures in three dimension, can be had
by setting Γ1 → iΓ1 and/or Γ2 → iΓ2. This idea will extend to any dimension, for which
the substitutions Γi → iΓi will lead to a representation of the algebra in all other

2This can easily be derived if one starts with the formula σiσj = δij + iϵijkσk and takes the
symmetrised product.
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signatures. Without loss of generality, let us illustrate how to construct a basis of Cl(d).
The other signature then follow from that.

In d dimensions, the Clifford algebra has dimension 2d and the gamma matrices are
represented by 2⌊d/2⌋ × 2⌊d/2⌋ matrices. These can be built as follows

Γ1 = σ1 ⊗ I2 ⊗ I2 ⊗ · · · ⊗ I2,

Γ2 = σ2 ⊗ I2 ⊗ I2 ⊗ · · · ⊗ I2,

Γ3 = σ3 ⊗ σ1 ⊗ I2 ⊗ · · · ⊗ I2,

Γ4 = σ3 ⊗ σ2 ⊗ I2 ⊗ · · · ⊗ I2,
...

Γd = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ2,

(D.12)

where the tensor product ⊗ is performed 2⌊d/2⌋ times and I2 is the 2× 2 identity matrix.
The algebra obeyed by the Pauli matrices automatically ensures these Γi matrices
generate the Clifford algebra Cl(d).
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D.2 Spin(4) conventions

In four-dimensional Euclidean field theory, every field falls under projective
representations of the isometry group SO(4). These representations can equivalently be
identified with ordinary representations of the double cover of SO(4), namely the group
Spin(4). This spin group exhibits an accidental isomorphism

Spin(4) ∼= SU (2)ℓ × SU (2)r . (D.13)

Every representation of the spin group can consequently be written in terms of
representations of the left- and right-handed SU (2) factors. This implies that every
Dirac spinor can then be decomposed into two Weyl spinors, each transforming with
respect to one of the above SU (2) factors, and inert with respect to the other. The
Weyl representations (2, 1) and (1, 2) are pseudoreal, or quaternionic, meaning that they
are related to their respective complex conjugate representations by a similarity
transformation.

Since each symmetry group will require its own matrix representation, including the
R-symmetry group, we need to make a clear distinction between their respective indices.
Our choices are summarised in table D.1.

Indices Description Range
α,β, . . . left-handed spinor indices {1, 2}
α̇, β̇, . . . right-handed spinor indices {1, 2}
µ, ν, . . . coordinate indices for local chart {1, 2, 3, 4}
a, b, . . . non-coordinate indices for local frame {1, 2, 3, 4}
i, j, . . . su(N ) R-symmetry indices {1, . . . ,N}

Table D.1: Description of the various index labels used in Chapters 6 and 7.

First and foremost, we will describe our choice of conventions for the Clifford algebra
generators used throughout Chapters 6 and 7. This choice does differ from the basis
described in equation D.12. To make the distinction clearer, we will denote the gamma
matrices with the lowercase gamma letter. The Clifford algebra Cl(4), associated to the
Euclidean metric on R4, is an associative algebra generated by elements γa subject to
the condition {γa, γb} = 2δab1, where 1 denotes the unit element. The group Spin(4) is
then seen as a certain subgroup of units of Cl(4). By a suitable choice of representation
of the latter algebra, we can make explicit the accidental isomorphism of Spin(4), as will
been seen by the diagonal nature of the chirality matrix γ5.
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Let us start by writing down the Pauli matrices, which will serve as the starting point
for building a representation of Cℓ(4),

σ1 =

(︄
0 1
1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, σ3 =

(︄
1 0
0 −1

)︄
. (D.14)

We then define

σ̄1,2,3 = σ1,2,3 , σ4 = −σ̄4 = −iI2 , (D.15)

where Ik is the k× k identity matrix, and note that these exhibit the index structure
(σa)α̇β and (σ̄a)αβ̇ . As is standard, those indices may be raised and lowered using the
su(2)ℓ-invariant (resp. su(2)r-invariant) tensor, namely the Levi-Civita symbol εαβ
(resp. εα̇β̇). In our conventions, ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = 1. Introducing the
anti-symmetric product of these Pauli matrices as

σab =
1
2 (σaσ̄b − σbσ̄a) , (D.16)

σ̄ab =
1
2 (σ̄aσb − σ̄bσa) , (D.17)

we can define the gamma matrices in block form,

γa =

(︄
0 σ̄a

σa 0

)︄
. (D.18)

One can readily check that they obey the anti-commutator relation {γa, γb} = 2δabI4.
The Clifford algebra can be generated by considering the antisymmetric products of the
γ-matrices, γab = 1

2 (γaγb − γbγa), γabc = . . . and so on. See Section D.1 for a more
details on this. The Euclidean chirality matrix, written in this basis, takes the
conventional form

γ5 = γ1γ2γ3γ4 =

(︄
I2 0
0 −I2

)︄
, (D.19)

exhibiting the decomposition of Spin(4) representations as two SU (2) representations.
The chirality matrix γ5 can be used to project spinors onto those chiral components, via
Pℓ =

1
2 (I4 + γ5) and Pr =

1
2 (I4 − γ5). With this choice, we have implicitly defined the

Weyl spinors of SU (2)ℓ (resp. SU (2)r) as having positive (resp. negative) chirality.

This, in turn, means that the four-component vector representation of the Dirac spinors
admits an orthogonal split in terms of two-component vector representations of the
chiral Weyl spinors, ψ±,

ψ =

(︄
ψ+

ψ−

)︄
. (D.20)
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The charge conjugation matrix C acts on our γ-matrices and is defined to satisfy

C−1γaC = −γTa , (D.21)

C−1γ5C = γT5 . (D.22)

In particular, it takes the explicit form

C =

(︄
C+ 0
0 C−

)︄
, (D.23)

where (C−)α̇β̇ = εα̇β̇ and (C+)αβ = εαβ . The Euclidean analogue of the Dirac conjugate
of the spinor ψ is then defined as

ψ = (Cψ)T . (D.24)

Throughout Chapter 6, however, we work with spinors that form a representation of the
N = 2 supersymmetric algebra in four dimensions, while for Chapter 7 we do so with
N = 4 spinors. In both cases, we utilise the so-called chiral SU (N ) notation, whereby
spinors with opposing chirality are assigned a conjugate representation of the SU (N )

R-symmetry algebra. To avoid any repetition, please see Chapter 3 for a more detailed
explanation, together with references. This chiral notation, however, is anecdotal in
N = 2 as all representations are isomorphic to their conjugate. In that case, we will
simply denote spinors with opposing chirality with the same R-symmetry index.

N = 2 spinors

In four dimensions, the R-symmetry algebra of N = 2 supersymmetry3 is
su(2)R ⊕ u(1)R. It is then in our best interest to define N = 2 spinors as SU (2)R
doublets, with i ∈ {1, 2},

ψi =

(︄
ψi+

ψi−

)︄
. (D.25)

The notion of Dirac conjugation extends onto these doublets via an additional action on
the R-symmetry components as

ψi = εij(Cψ
j)T . (D.26)

We will frequently write the chiral components of these spinor doublets as 2× 2 matrices
with components ψαi+ or ψα̇i− . For completeness, allow us to rewrite the Dirac conjugates

3This corresponds to eight supercharges, which we will describe explicitly in flat space later.
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of these chiral spinors in terms of their matrix representation,

ψ± = −εψ±ε. (D.27)
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D.3 Killing Spinors

The Killing spinor equation plays a central role in this thesis. Its role is to determine the
number of allowed supersymmetries in a given theory and classifies the BPS
configurations therein. As this construct is referenced in almost every chapter, let us
give a brief overview of the main definitions and their extensions, namely that of Killing
spinor equations and generalised Killing spinor equations. All definitions and theorems
can be found in [432, 434].

Killing Spinor Equation

Definition D.4. Killing spinor Let ϵ be a section of the Spin bundle of a smooth
manifold, M. The spinor ϵ is said to be Killing if it satisfies the Killing spinor equation

∀X ∈ Γ(TM), ∇Xϵ = λX · ϵ, (D.28)

for some λ ∈ C. Here · denoted the Clifford product and ∇ the Levi-Civita connection
on M.

We will note that λ is strongly constrained by the geometry of the manifold. Indeed,
acting on the definition with ∇Y and taking the antisymmetric product, we recover the
relation R = 4λ2d(d− 1), where R is the Ricci scalar and d is the dimension of M.

Note that the existence of such a spin bundle on M is not guaranteed. Following our
notation from Section D.1, we need a vector bundle S with some action of the spin
group which carries a globally well-defined Clifford product. If such a structure exists, S
becomes a bundle of modules over the fibres of the Clifford bundle Cl(TM, g). We then
say that M admits a spin structure. However, some supergravity theories might exist
without requiring that M is spin and indeed one can construct vector bundles with a
globally well-defined Clifford products without it. In this case, one needs a Lipschitz
structure on M [435].

In Definition D.4, reality conditions on the metric constrains λ2 to be real, and as such
there are three cases to consider. When λ is pure imaginary (real), the Killing spinor is
said to be imaginary (real). The particular case when λ = 0 corresponds to parallel
Killing spinors. We immediately see that if our manifold admits Killing spinors, it is
automatically Einstein and if it admits parallel Killing spinors it is Ricci flat.

Example D.2. Killing spinors on R3 Consider the flat metric on R3 written in
Cartesian coordinates

g = dx2 + dy2 + dz2. (D.29)
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We choose the vielbeins to be e1 = dx, e2 = dy and e3 = dz. It is straightforward to see
that the Cartan structure equations are solved by the trivial spin connection ωab = 0.
The Ricci scalar being null, we look for parallel Killing spinors on that manifold. The
Killing spinor equation simply reads

dϵ = 0. (D.30)

Its solutions are simply given by constant spinors ϵ =
(︄
ϵ1

ϵ2

)︄
.

When dealing with more complicated manifold, such as those constructed in [2] (see
Chapter 4), one might wish to solve for the Killing spinors without explicitly evaluating
every spinor component. A firs path towards that is to find a smart way of solving for
the spin connection on such fibred manifolds.

Example D.3. Spin-connection on any fibered space This example will show how to
compute the spin-connection of any product manifold or manifold fibred over an interval
(can probably be extended to higher fibre). Let our metric be given by

g =
∑︂
i

f2
i (x)gMi + g2(x)dx2, (D.31)

where Mi are the manifolds fibred on the x-interval.
We introduce the vielbeins

eai = fi(x)ê
ai
i , ed−1 = g(x)dx, (D.32)

where êi are the vielbeins on Mi and ai ∈ {
∑︁i−1
j=1 dim(Mj), . . . ,

∑︁i
j=1 dim(Mj)}.

If we define ω̂ai
i bi

to be the spin connection on Mi, then it must obey the Cartan
structure equation

dêai
i + ω̂ai

i bi
∧ êbi

i = 0. (D.33)

Consequently, one can easily check that the spin connection on the fibred space has
non-vanishing components

ωai
bi
= ω̂ai

i bi
ωai

x =
f ′
i(x)

g(x)
êai
i (D.34)

As an example, we may take the AdS5 × S1 fibration of AdS7 and look at the metric of
AdS7 × S4

g = L2(cosh2(x)gAdS5 + sinh2(x)dz2 + dx2) +
L2

4 gS4 . (D.35)
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We introduce the vielbeins,

eµ = L cosh(x)êµ, ez = L sinh(x)dz, ex = Ldx, eα =
L

2 ẽ
α, (D.36)

where êµ are those of AdS5 and ẽα, those of S4. The spin connection of AdS7 × S4

written is these coordinates is given by

ωµν = ω̂µν , ωαβ = ω̃αβ , ωµ6 = sinh(x)êµ, ωα6 = cosh(x)ẽα.

A similar computation for AdS7 × S4 written in FG form

g =
L2

z2 (gR1,5 + dz2) +
L2

4 gS4 , (D.37)

yields the spin connection

ωµν = ω̂µν , ωαβ = ω̃αβ , ωµ6 = −1
z
êµ, (D.38)

where ·̂ refers to quantities in R1,5 and ·̃ in S4.

Generalised Killing Spinor Equation

As shown in Chapters 2 and 3, the Killing spinor equation gets supplemented with fields
other than the Levi-Civita connection when dealing with supergravity theories. This
calls for a generalisation of Definition D.4 to more general connections4.

Definition D.5. Generalised Killing Spinor [436] Let (M, g) be a pseudo-Riemannian
manifold of signature (p, q), equipped with a bundle of irreducible real Clifford modules
S. Let D : Γ(S)→ Γ(T ⋆M⊗ S) be a connection on S, which may depend on various
geometric structures on (M, g). A section of S, ξ ∈ Γ(S), is called generalised Killing
spinor if it obeys the generalised Killing spinor equation

Dξ = 0. (D.39)

4It is the author’s belief that when taking M to be the total space of all the vector bundles of a given
theory, the Koszul connection on M should decompose in such a way that the ‘standard’ Killing spinor
equation in Definition D.4 becomes the generalised Killing spinor equation in Definition D.5. However,
lacking a proper proof of that statement in the general case, the author will not state it as fact.
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D.4 Mapping S3× S1 KS to R4 KS

In Chapter 6 we constructed a supergravity background which engineers a particular
limit of the superconformal index of 4d N = 2 theories [28, 29]. In attempting to relate
our background supergravity notation from de Wit [259] to that of Gadde, Rastelli,
Razamat and Yan [5], we are forced to consider how to map S3 × S1 spinors to R4

spinors. Since the superconformal index language developed in [5] is based on the
canonical spinors of R4, we must suitably adapt our notation to theirs. As we will see
below, given that S3 ×R and R4 are one conformal compactification away from each
other, translating between their spinors amounts to a change of basis of the local frame.

Let us write the metric of R4 in its Cartesian form,

gR4 = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2, (D.40)

and choose the canonical vierbeins ea
R4 = dxa. Then, a basis for the conformal Killing

spinors on this space can be constructed by embedding the following spinors

ξ(1) =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ , ξ(2) =

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠ , ξ(3) =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ , ξ(4) =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎟⎟⎠ , (D.41)

ξ(5) = −xaγaξ(1), ξ(6) = −xaγaξ(2), ξ(7) = −xaγaξ(3), ξ(8) = −xaγaξ(4), (D.42)

as left- and right-handed spinors ξ(A)
R4 satisfying the conformal Killing spinor equation

∂aξ
(A)
R4 =

1
4γaγ

b∂bξ
(A)
R4 , (D.43)

where A ∈ {1, 2, . . . , 8}.

We can now perform a change of variables to translate the metric into a form more
reminiscent of our parametrisation of S3. We perform the change of coordinates

x1 = e−tβ sin θ cosφ,

x2 = e−tβ sin θ sinφ,

x3 = e−tβ cos θ cos τ ,

x4 = e−tβ cos θ sin τ ,

(D.44)

where t ∈ [0,∞[, θ ∈ [0,π/2], φ ∈ [0, 2π] and τ ∈ [0, 2π]. Under this new
parametrisation of R4 the metric reads

gR4 = e−2tβ
(︂
β2dt2 + dθ2 + sin2(θ)dφ2 + cos2(θ)dτ2

)︂
. (D.45)
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From (D.45), one can readily see that the conformal transformation that takes gR4 to
e2tβgR4 is the one which maps the Euclidean space to S3 ×R.

The change of coordinates described above will affect our expression for the canonical
vierbeins ea

R4 , naturally. However, after performing a Weyl rescaling of these by a factor
of e−tβ it is possible to bring them into the form in equation (C.12) via an SO(4)
rotation. In other words, our vierbeins for S3 × S1 are related to those of R4 as follows

eaS3×S1 = e−tβRabe
b
R4 , (D.46)

where R is the SO(4) matrix

R =

⎛⎜⎜⎜⎜⎜⎝
cθsτ cθcτ −sθsφ −cφsθ
−cθcτ cθsτ cφsθ −sθsφ
−sθsφ cφsθ −cθsτ cθcτ

−cφsθ −sθsφ −cθcτ −cθsτ

⎞⎟⎟⎟⎟⎟⎠ . (D.47)

The shorthand notation cθ = cos(θ) and sθ = sin(θ) was used to simplify the expressions
above. Any global SO(4) rotation of the coordinates in (D.44) will lead to the same
conformal metric to that of S3 ×R, and as such will require its own SO(4) rotation of
the vierbeins. The one given above follows from our choice of canonical vierbeins of R4.

Now, consider a rotation of the frame bundle, described as an SO(4) rotation of the
vierbeins, just like that described previously,

eaR4 ↦→ Rabe
b
R4 , R ∈ SO(4). (D.48)

This will induce a rotation of the spin bundle, given by the uplift of the SO(4) action to
a Spin(4) action. One way of finding this uplift is by considering the following surjective
homomorphism from Spin(4) to SO(4), whose matrix components are given by

Rab =
1
4 tr (γaRγbR) . (D.49)

In the above, γi are the gamma matrices that form a basis of Cl(4), and R is the
(non-unique) uplift of the SO(4) rotation R to a Spin(4) action. With a given SO(4)
matrix R, one can determine a suitable uplift by solving for R in the above.
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Using the SO(4) frame rotation in equation (D.47), and together with the uplift formula
(D.49), we can solve for one (of the two) uplifts R,

R =

⎛⎜⎜⎜⎜⎜⎝
−e−iτ cθ −e−iφsθ 0 0
eiφsθ −eiτ cθ 0 0

0 0 −i 0
0 0 0 i

⎞⎟⎟⎟⎟⎟⎠ . (D.50)

This, in turn, implies that for any Killing spinor on S3 × S1, ξS3×S1 , the corresponding
Killing spinor on R4 is given by5

ξR4 = R−1ξS3×S1 . (D.51)

For instance, consider the following two Killing spinors preserved by the supergravity
background (??)

ξ =

⎛⎜⎜⎜⎜⎜⎝
0 0
a 0
0 b

0 0

⎞⎟⎟⎟⎟⎟⎠ , (D.52)

where the second matrix direction counts the SU (2) R-symmetry components. These
are mapped to the R4 conformal Killing spinors ξ(3) and ξ(7). In the notation used in
[5], these parametrise the supercharges Q2+̇ and S1 −̇ 6.

5The Spin(4) action is sufficient as the Killing spinor equation is Weyl covariant.
6The eight constant conformal Killing spinors on R4 parametrised the Q-supersymmetries labelled by

their R-symmetry index and non-vanishing spinor component, Qiα. The other eight conformal Killing
spinors, have non-vanishing S-supersymmetry parameter ηiα and such parametrise the eight S-susy
parameters Siα.
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D.5 Supergroups and Lie superalgebras

The aim of this section will be to give a brief introduction to Lie superalgebras and their
supergroups. This section might seem rather tangential at first. However, we will see
that the various supergravity solutions in Chapter 4 necessarily exhibit supergroup
symmetry. That is, they are invariant under a given supergroup which describes the
usual “bosonic” symmetry of the spacetime as well the “fermionic” symmetry, generated
by the Killing spinors. Furthermore, we also wish to elaborate on the construction of the
exceptional groups D(2, 1; γ) that appears in the supergravity solutions of [2].

Most of the elementary definitions presented here are a watered-down version of the
original presentation in [437]. We encourage the reader to consult this reference for a
more thorough presentation of the topic.

Starting from the original building block, let us give a brief description of what a Lie
superalgebra is, from first principles.

Definition D.6. Superalgebra Let (A, ·) be a K-algebra. We call superalgebra the
Z2-grading of A. In other words, for A to be a superalgebra it must admit a
decomposition into a direct sum of subspaces

A = A0 ⊕A1 (D.53)

such that

∀α,β ∈ Z2, Aα ·Aβ ⊆ Aα+β (D.54)

The elements of A0 are called even, those of A1 odd. If a ∈ Aα, we say that a is
homogenous of degree α and we write deg(a) = α.

The tensor product of two superalgebras A⊕B can be defined though the induced
Z2-grading and the operation

∀a1, a2 ∈ A, ∀b1, b2 ∈ B, (a1 ⊗ b1) · (a2 ⊗ b2) = (−1)deg(a2) deg(b1)a1a2 ⊗ b1b2 (D.55)

Definition D.7. Lie superalgebra A Lie superalgebra is a superalgebra L endowed with
a bilinear map [ , ] : L×L ↦→ L, satisfying for all homogenous a, b, c ∈ L,

anticommutativity : [a, b] = −(−1)deg(a) deg(b)[b, a] (D.56)

Jacobi identity : [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]] (D.57)

Let us briefly comment on the naming choice for the above algebra. Many authors
choose super Lie algebras or graded Lie algebras, however, we will follow Victor Kac in
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calling them Lie superalgebras [437]. While all Lie algebras are indeed Lie superalgebras,
the converse isn’t true. Lie superalgebras are, in general, not Lie algebras.

Example D.4. If A is an associative superalgebra, then the bracket

[a, b] = ab− (−1)deg(a) deg(b)ba (D.58)

turns A into a Lie superalgebra.

Given a graded vector space V , one can consider the set of endomorphisms of V , End(V ).
Together with the composition operation ◦, End(V ) can be turned into a superalgebra.

Definition D.8. superalgebra l(V ) Let V = V0 ⊕ V1 be a Z2-graded K-space. The
algebra End(V ) is endowed with a Z2-grading and so becomes a superalgebra, denoted
l(V ) or l(m|n), where m = dim(L0) and n = dim(L1).

Following Example D.4, we can introduce a bracket on End(V ) turning it into a Lie
superalgebra. For completeness we also note here the following definition.

Definition D.9. Let (ei)1≥i≥m be a basis of V0 and (ej)m+1≥j≥m+n a basis of V1.
Together these form a so-called homogeneous basis of V . In this basis, a matrix
representation of elements of l(V ) is given by

l(V ) ∋ a ↦→
(︄
α β

γ δ

)︄
(D.59)

where α is an (m×m)−, δ an (n× n)−, β an (m× n)−, and γ an (n×m)−matrix.
The supertrace of such an element is then defined as

str(a) = tr(α)− tr(δ) (D.60)

D.5.1 Classification of classical Lie superalgebras

A finite-dimensional Lie superalgebra L = L0 ⊕L1 is called classical if it is simple and
the representation of L0 on L1 is completely reducible.

We may now follow a similar construction to the classical Lie algebras, namely, we look
at the ideals of l(m|n). One such ideal is the subspace defined by the vanishing of the
supertrace

sl(m|n) = {a ∈ l(m|n) | str(a) = 0}. (D.61)

This subspace defines the first set of classical Lie superalgebras, those of type A,

A(m,n) = sl(m+ 1|n+ 1) m,n ≥ 0,m ̸= n, (D.62a)

A(n,n) = sl(n+ 1|n+ 1)/⟨12n+2⟩ n > 0. (D.62b)
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Other other three, non-exceptional, Lie superalgebras are constructed as follows. Let F
be a non-degenerate consistent supersymmetric bilinear form on V , so that V0 and V1

are orthogonal and the restriction of F to V0 is symmetric and to V1 skew-symmetric.
We define in l(m|n), the orthogonal-symplectic superalgebra osp(m|n) by

osp(m|n)α = {a ∈ l(m|n)α |F (a(x), y) = −(−1)α deg(x)F (x, a(y))}. (D.63)

The classical Lie superalgebras of type B, D and C are then defined as

B(m,n) = osp(2m+ 1|2n) m ≥ 0,n > 0, (D.64)

D(m,n) = osp(2m|2n) m ≥ 2,n > 0, (D.65)

C(n) = osp(2|2n− 2) n ≥ 2. (D.66)

By virtue of their definitions, the Lie superalgebras of type A, B, C, and D mirror the
classical Cartan series An, Bn, Cn and Dn, explaining the naming scheme. To this
classification, however, one must supplement the 40-dimensional F (4) and
31-dimensional G(3) exceptional Lie superalgebras, as well a family of deformations of
the 17-dimensional D(2, 1), denoted by D(2, 1; γ). This latter algebra is unique in that
is depends on a continuous parameter γ. As pointed out in Chapter 4, for certain values
of γ this degenerates to other known Lie superalgebras. Surprisingly, the classification
doesn’t stop there as there are also two so-called ‘strange’ Lie superalgebras: P (n) and
Q(n).

This classification can be package into one theorem, curtsey of Victor Kac [437].

Theorem D.10. Kac A simple finite-dimensional Lie superalgebra over an algebraically
closed field K of characteristic 0 is isomorphic either to one of the simple Lie algebras or
to one of the Lie superalgebras A(m,n), B(m,n), C(n), D(m,n), D(2, 1; γ), F (4),
G(3), P (n), Q(n), W (n), S(n), S̃(n) or H(n).
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