- 1 Binding Affinity Ranking at the Molecular Initiating Event (BARMIE): An open-
- 2 source computational pipeline for ecological hazard ranking of endocrine
- 3 disrupting chemicals.
- 4 Fernando Calahorro 1*, Parsa Fouladi2*, Alessandro Pandini2, Matloob Khushi2, Yogendra
- 5 Gaihre¹, Nic Bury^{1#}

9

10

11

12

- University of Southampton, School of Ocean and Earth Science, National
 Oceanography Centre, European Way, Southampton, SO14 2ZH, United Kingdom.
 - Brunel University of London, College of Engineering, Design and Physical Sciences, Department of Computer Science, Wilfred Brown Building, Uxbridge, UB8 3PH, United Kingdom.
- 13 * Contributed equally
- 14 # Corresponding author

Abstract

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

One of the key challenges in ecological risk assessment lies in identifying the chemicals that pose the greatest threat and determining the species that are most vulnerable to their effects. Computational prediction of protein binding affinity can help in assessing the risk of chemicals to species. In this study we developed and validated an open-source tool called BARMIE (Binding Affinity Ranking at the Molecular Initiating Event) to rank chemical hazards and identify species that are most susceptible based on the binding affinity of the chemical to steroid receptor proteins. As an exemplar of BARMIE's output we focus on 163 teleost fish glucocorticoid receptors (GRs) and the natural ligand cortisol and 10 synthetic glucocorticoid (GCs) drugs and five other potential chemical GR agonists. The hazard ranking is based on the likelihood that the chemicals with the highest binding affinity are likely to outcompete cortisol at the receptor binding site. In this analysis, halcinonide, a GC, was predicted to be the most hazardous based on its binding affinity and the superorder Protacanthopterygii species, including the Esociformes and Salmoniformes, were identified as the most vulnerable. This computational pipeline can be expanded to evaluate more chemicals, species, and proteins as part of an in silico chemical hazard assessment tool.

Introduction

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Approximately 350,000 synthetic chemicals are produced globally, yet most have not undergone any human or environmental risk assessment¹. Consequently, the impact of these novel substances on human and wildlife health is likely underestimated. To protect wildlife, hazard assessors, who evaluate the potential of a chemical to cause harm, and risk assessors, who determine the likelihood of that harm occurring, face the challenge of identifying which of these chemicals are of concern and the species that are most vulnerable to them. All vertebrates have a similar steroid hormone/receptor based endocrine system that regulates a plethora of physiological and developmental processes. These processes are controlled via the binding of the steroid ligand to their steroid receptor to initiate ligand inducible transactivation or transrepression, or other cellular signalling pathways². Due to their significance the steroid receptors (glucocorticoid, mineralocorticoid, androgen, oestrogen, and progesterone) are highly conserved within the vertebrate subphylum³. The importance of this system for health is also reflected in concerns over endocrine active substances that may perturb hormonal actions via these receptors leading to reproductive and metabolic disorders as well as neural development. In response to this concern national and international governments implemented testing programs over 10 years ago to elucidate the endocrine disrupting potential of synthetic and natural compounds^{4,5}. These initially focused on the EATS (estrogen, androgen, thyroid and steroidogenesis) modalities, but in more recent years several New Approach Methodologies (NAMs) utilizing in silico techniques and novel in vitro methodologies have expanded the screening of chemical hazards for non-EATS modalities⁶ (e.g. glucocorticoid and progesterone receptor and non-steroidal receptors). NAMs provide valuable insights into a chemical's mode of action (MOA) and its potential effects⁷⁻¹¹, and it is expected that NAMs will be integrated into regulatory frameworks in the future 12. The majority of NAMs research efforts have concentrated on human risk assessment, which aims to protect the individual. In

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

contrast, environmental and ecological risk assessments are far more ambitious, seeking to protect numerous species and maintain ecosystem function. Models such as EcoDrug³ and Sequence Alignment to Predict Across Species Susceptibility (SegAPASS)¹³ make use of protein conservation across phyla to identify non-target species susceptible to drugs based on the presence of human or veterinary drug targets. Two recent studies have combined the sequence information with empirical toxicity information to provide greater information on the potential environmental impacts of chemicals. SegAPASS in combination with Genes to Pathway – Species Conservation Analysis (G2P-SCAN) uses network analysis, based on Adverse Outcome Pathway (AOP) information, to identify conserved Reactome¹⁴ pathways and points of departure in toxic outcomes¹⁵, and RASRTox (Rapidly Acquire, Score, and Rank Toxicology data) links the sequence information with toxicological databases (ECOTOX, ToxCast21) and QSAR models to develop tool for ranking chemicals for hazard assessment¹⁶. However, one issue that is difficult to avoid if the aim is to protect species and ecosystem function, is the lack of species-specific chemical impact data and the models are restricted to data-rich resources for only a few species (e.g. humans, mice, zebrafish). It is known that there are huge differences in the concentrations of a chemical that induce a toxic response between species within a taxon¹⁷ likely due to species specific toxicokinetic and/or toxicodynamic parametres¹⁸. Within the AOP framework¹⁵ a potential reason for enhanced or decreased chemical sensitivity are differences in binding affinity at the molecular initiating protein. If the mutations in the protein that confer different binding affinity characteristics 19 are conserved within orders or families of species or are species specific, then it is possible to develop a more granular chemical hazard assessment based on interaction at the MIE for groups of species, species or individuals. This study focuses on glucocorticoid receptors (GRs) in teleost fish as an exemplar of this approach, however examples for other EATS and non-EATS modalities are provided in Supplementary Information (SI 4). The reason for focusing on the GR is two-fold. Firstly,

there are species differences in the binding affinity (K_d), transactivation (EC50) and trans repression activity for both natural and synthetic glucocorticoids (GCs)²⁰⁻²⁴, and previous research has indicated a correlation between GR hormone binding affinity and hormone EC50 for ligand-inducible gene transactivation in rainbow trout GR mutants²⁵. Secondly, synthetic glucocorticoids, which are commonly used to treat various health conditions, pose growing environmental concerns with 17% of the GCs assessed are predicted to exist at concentrations that pose a risk to fish¹⁶. The computational pipeline [Binding Affinity Ranking at the Molecular Initiating Event (BARMIE)] ranks chemical binding affinities to GR across a wide range of fish species to determine the binding affinity of synthetic glucocorticoids and other chemicals to identify chemicals and species of concern. This is based on the hypothesis that species with GRs exhibiting the highest binding affinity are more likely to respond to lower concentrations of natural GCs or GR agonists or antagonists in the bloodstream.

Materials and Methods

The novel computational pipeline Binding Affinity Ranking at the Molecular Initiating Event (BARMIE) uses open-source database APIs and software (UniProt²⁷, Chembl²⁸, OpenBabel²⁹, PyMol³⁰ and AutoDock Vina³¹). The code to estimate receptor binding affinities, summary of the procedural steps and user instructions are available at https://github.com/ParsaFouladi/Barmie. The pipeline was run on the University of Southampton HPC Iridis 6, and the example provide is specific to teleost fish GRs. The pipeline can be adapted for use with other HPC architecture as well as other species and proteins.

Several steps were necessary in developing BARMIE. Firstly, genome annotation is based on sequence homology to proteins of known function, and the level of validation may vary depending on the database. There are over 250 genomes available from Ensembl and

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

UniProt provides verified and non-verified protein structures, and it is recommended to use only those verified. Secondly, several receptor isoforms (e.g., splice variants) are predicted in Uniport. Because very few isoforms have been characterized in fish³² we did not remove these. Thirdly, we only used the Uniport proteins with confirmed structures. However, bespoke structures predicted from amino acid sequence information³³ can be integrated in the pipeline. Fourthly, the absolute orientation of the receptor structure when imported into AutoDock Vina generally differs between structures, making it difficult to automate the definition of the box coordinates to correctly encompass the ligand binding domain. To overcome this, structures are automatically aligned using PyMol scripting, so that the LBD location is aligned for all the proteins. The only manual step in the pipeline is the definition of the box coordinates for docking exploration of the ligand binding pocket. This is set to a reference protein, in this example Oncorhynchus mykiss GR AF-P49843, and is identical for all receptor due to the three- dimensional alignment in PyMol. For the GR used in this study, the box size was set to 20, 20, 20 Å, and the coordinates X=5, Y=2, Z=-15. Docking binding affinity were estimated for 163 teleost GR proteins (SI 1 contains the Uniprot ID codes) in complex with the natural ligand cortisol (CHEMBL389621), the synthetic glucocorticoids beclomethasone (CHEMBL1586), clobetasol (CHEMBL1201362), dexamethasone (CHEMBL 384467), flumetasone (CHEMBL1201392), halcinonide (CHEMBL1200845), mapracorat (CHEMBL2103876), mometasone (CHEMBL1201404), prednicarbate (CHEMBL1200386), prednisolone (CHEMBL131), and triamcinolone (CHEMBL1451) as well as the herbicide atrazine [CHEMBL15063. Unlikely to interact with the GR]³⁴, insecticide glyphosate [CHEMBL95764. Reported interactions with GR]³⁵, anesthetic sevoflurane [CHEMBL1200694. Reported to affect the immune system but interaction with the GC pathway unknown] 36, cortisol synthesis inhibitor osilodrosat [CHEMBL3099695]³⁷ and antibiotic triclocarban [CHEMBL1076347. A reported GR antagonist]³⁸. AutoDock Vina has a stochastic algorithm to explore ligand binding poses, and thus, docking searches were run 5 times and an average binding affinity are reported.

Docking simulations were run with exhaustiveness of 8, 32, and 128 to assess consistency of results. Amino acid interaction fingerprint was conducted with the protein/ligand pose in LigPlot⁺ v2.2 (https://www.ebi.ac.uk/thornton-srv/software/LigPlus/).

Results and Discussion

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

The described pipeline referred to as BARMIE (Binding Affinity Ranking at the molecular initiating event) predicts the binding affinity of 163 fish GRs to the natural ligand cortisol (Figure 1a, for an example of cortisol docking with Pygocentrus nattereri AOA3B4D0J0 GR and the amino acid interaction fingerprint), various synthetic GCs, and potential GR agonists. We observed no difference between results with AutoDock Vina at exhaustiveness 8, 32. and 128 (SI 3) and we have reported an average at exhaustiveness of 32. This produces a ranking of binding affinity highlighting those species whose GRs bind with the highest affinity to these chemicals and provides an in-silico hazard screening protocol based on binding to the receptor, or in AOP parlance the MIE³⁹. As an example of the potential outputs in the top five out of 2822 combinations, we find the GC halcinonide is predicted to bind to 4 GRs with the greatest affinity, and of these 4 GRs belong to the superorder Protacanthopterygii containing the Esociformes and Salmoniformes (Figure 1b) and suggesting in this exercise that the synthetic GC halcinonide may be considered the most significant chemical hazard and the Protacanthopterygii as a group that may be vulnerable. However, the data generated can be used in more nuanced ways by focusing on specific chemicals (Figure 2) and species (Table 1) and for all GCs, we see that 55% of the five most sensitive species belong to the Protacanthopterygii, with the species Northern pike (Esox lucius) ranked 1st for 7 of the 11 GCs tested (Table 1). There is limited empirical data on fish GR cortisol binding and transactivation activity, but where this is available, there is a correlation between measured GR hormone binding affinity and hormone EC50 for ligand-inducible gene transactivation for rainbow trout GR²⁵. The variance in binding in rainbow trout is due to mutations within the receptors²⁵, similarly human receptor mutants that cause disease show differences in hormone binding and transactivation characteristics e.g., 40,41.

Our analysis shows that the Protacanthopterygii, which include the commercially important salmon and trout, are an order of fish particularly susceptible to synthetic glucocorticoids. However, a limitation should be noted that only 86 fish genomes have been annotated out of the potentially 30,000 teleost species⁴², and of these genomes, a high proportion, 8%, are Protacanthopterygii. Thus, this order is overrepresented. The number of species genomes sequenced is rapidly expanding for example the Earth BioGenome Project Network⁴³ has 63 global partners with an ambitious target of "[...] characteriz(ing) the genomes of all of Earth's eukaryotic biodiversity over a period of ten years". This will provide the necessary genetic information for BARMIE to provide a more granular order, family or species chemical risk assessment. The range of binding affinities is reduced for the non-GC chemicals atrazine, glyphosate, sevoflurane, and osilodrosat (~-5 to ~-6 Kcal/mol,) compared to natural and synthetic GCs (Figure 2 and SI 1). This would suggest that these chemicals would be classed low in an MIE binding affinity-based hazard assessment because they are unlikely to out-compete cortisol at the binding site. However, for risk assessment, the potential to cause harm is based on the exposure concentration as well as the hazard. Thus, if fish accumulate these chemicals to such an extent that this level far exceeds those of the natural ligand, it poses a risk.

Environmental Implications

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

The challenge for ecological risk assessors is identifying those chemicals of concern amongst the thousands in production and those species most vulnerable. The current pipeline that has been developed enables us to rank chemicals and species based on the receptor's binding affinity. This can be used for hazard assessment because the chemical with a higher binding affinity is likely to out-compete the natural ligand and thus be a more potent agonist or antagonist. The results are an exemplar of what the pipeline can offer, it can be applied to any protein where the binding affinity of a ligand is crucial for its function.

This is particularly relevant for all steroid and non-steroid receptors enabling the identification of potent endocrine-disrupting chemicals. BARMIE is a screening tool that allows a toxicity testing program for regulatory purposes focusing on those chemicals and species of concern, reducing costs and the number of animals used for testing.

Acknowledgements: This study was funded by the Natural Environment Research Council in the United Kingdom, grant nos: NE/X000192/1 awarded to NB and MK.

References

204

209

210

211

212213

214

215

216

217

218

219

220

221

222223

224 225

226

227228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244245

246

247

- Wang, Z., Walker, G.W., Muir, D.C.G., Nagatani-Yoshida, K et al., 2020. Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584. DOI: 10.1021/acs.est.9b06379.
 - Oakley, R.H., Cidlowski, J.A. 2013. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 132, 1033– 1044. doi: 10.1016/j.jaci.2013.09.007.
 - Verbruggen, B., Gunnarsson, L., Kristiansson, E., Österlund, T., Owen, S.F., Snape, J.R., Tyler, C.R. 2018. ECOdrug: a database connecting drugs and conservation of their targets across species. Nucleic Acids Res. 46, D930-D936. DOI:10.1093/nar/gkx1024.
 - Rotroff, D.M., Dix, D.J., Houck, K.A., Knudsen, T.B., Martin, M.T., McLaurin, K.W., Reif, D.M., Crofton, K.M., Singh, A.V., Xia, M., Huang, R., Judson, R.S. 2013. Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals Environ. Health Perspect. 121, 7–14. http://dx.doi.org/10.1289/ehp.1205065
 - 5. Hecker, M., Hollert, H. 2011. Endocrine disruptor screening: regulatory perspectives and needs. Environ. Sci. Eur. 23, 15 https://doi.org/10.1186/2190-4715-23-15.
 - Martyniuk, C.J., Martínez, R., Navarro-Martin, L., Kamstra, J.H., Schwednt, A., Reynaud, S., Chalifour, L. 2022. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. Environ. Res. 204, 111904. https://doi.org/10.1016/j.envres.2021.111904
 - 7. Mondou, M., Hickey, G.M., Rahman, H.M.T., Maguire, s., Pain, G., Crump, D., Hecker, M., Basu, N. 2020. Factors affecting the perception of New Approach Methodologies (NAMs) in the ecotoxicology community. Integr. Environ. Asses. 16, 269–28. DOI:10.1002/jeam.4244.
 - 8. Di Nicola, M.R., Cattaneo, I., Nathanail, A.V., Carnesecchi, E., Astuto, M.C., Steinbach, M., Williams, A.J., Charles, S., Gestin, O., Lopes, C., Lamonica, D., Tarazona, J.V., Dorne, J.M.C.M. 2023. The use of new approach methodologies for the environmental risk assessment of food and feed chemicals. Curr. Opin. Environ. Sci. Health. 31, 1-8. DOI: 10.1016/j.coesh.2022.100416.
 - 9. van der Zalm, A.J., Barroso, J., Browne, P., Casey, W., Gordon, J., Henry, T.R., Kleinstreuer, N.C., Lowit, A.B., Perron, M., Clippinger, A.J. 2022. A framework for establishing scientific confidence in new approach methodologies. Arch. Toxicol. 96, 2865-2879. DOI:10.1007/s00204-022-03365-4.
 - Parish, S.Y., Aschner, S.T., Casey, W., Corvaro, M., Embry, M.R., Fitzpatrick, S., Kidd, D., Kleinstreuer, N.C., Lima, B.S., Settivari, R.S., Wolf, D.C., Yamazaki, D., Boobis, A. 2020. An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul. Toxicol. Pharmacol. 112, 104592. DOI: 10.1016/j.yrtph.2020.104592.
 - Lee, K-C., Guiney, P.D., Menzie, C.A., Belanger, S.E. 2023. Advancing the weight of evidence approach to enable chemical environmental risk assessment for decisionmaking and achieving protection goals. Integr. Environ. Asses. 19, 1188-1191. DOI: 10.1002/ieam.4803.
- 12. Schmeisser, S., Miccoli, A., von Bergen, M., Berggren, E., Braeuning, A., Busch, W.,
 Desaintes, C., Gourmelon, A., Grafström, R., Harrill, J., Hartung, T., Herzler, M.,
 Kass, J.E.N., Kleinstreuer, N., Leist, M., Luijten, M., Marx-Stoelting, P., Poetz O., van
 Ravenzwaay, B., Roggeband, R., Rogiers, V., Roth, A., Sanders, P., Thomas, R.S.,
 Vinggaard, A. M., Vinken, M., van de Water, B., Luch, A., Tralau, T. 2023. New
- approach methodologies in human regulatory toxicology Not if, but how and when! Environ Int. 178:108082. doi: 10.1016/j.envint.2023.108082.

13. Lalone, C.A., Villeneuve, D.L., Lyons, D., Helgen, H.W., Robinson, S.L., Swintek,
 J.A., Saari, T.W., Ankley, G.T. 2016. Sequence Alignment to Predict Across Species
 Susceptibility (SeqAPASS): A web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity. Toxicol. Sci. 153, 228-45. doi:
 10.1093/toxsci/kfw119.

261262

263

264

265266

267 268

269

270

271

272

273

274

275

276

277

278

279

280

281

282 283

284

285

286

287 288

289 290

291

292

293

294

295

296

297

298

299

300

301

302

303

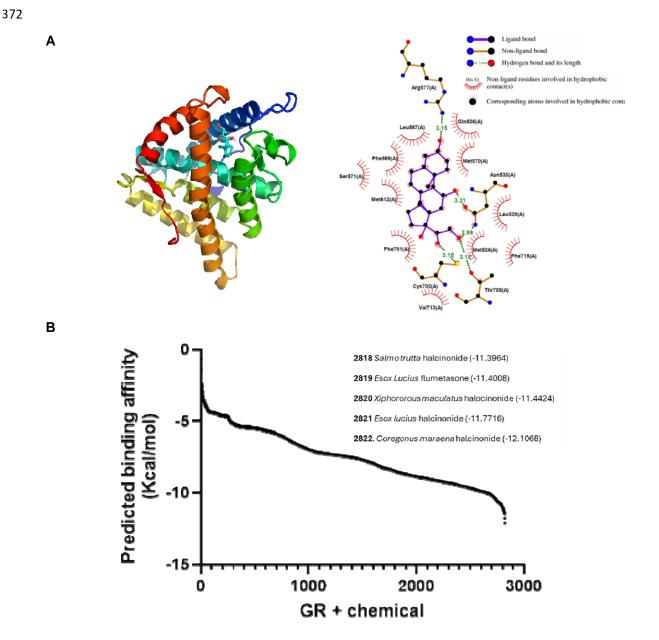
304

305

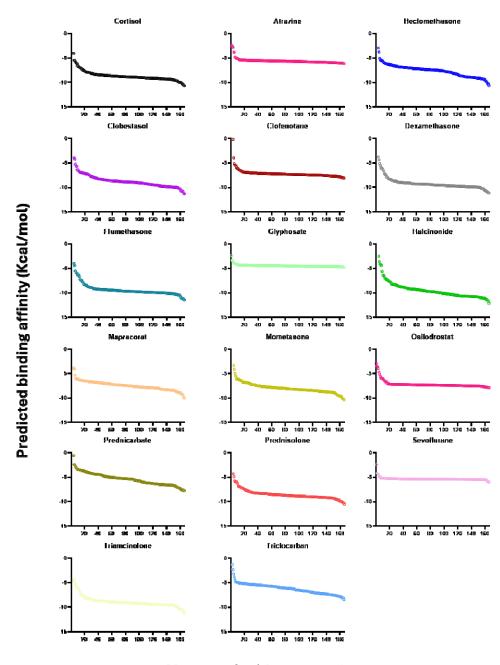
306

307

308


- Milacic, M., Beavers, D., Conley, P., Gong, C., Gillespie, M., Griss, J., Haw, R., Jassal, B., Matthews, L., May, B., Petryszak, R., Ragueneau, W., Rothfels, K., Sevilla, G., Shamovsky, V., Stephan, R., Tiwari, K., Varusai, T., Weiser, J., Wright, A., Wu, G., Stein, L., Hermjakob, H., D'Eustachio, P. 2024 The Reactome Pathway Knowledgebase 2024. Nucleic Acids Res. 52, D672–D678. https://doi.org/10.1093/nar/gkad1025.
- Schumann, P., Rivetti, C., Houghton, J., Campos, B., Hodges, G., LaLone, C. 2024. Combination of computational new approach methodologies for enhancing evidence of biological pathway conservation across species. Sci Total Environ 912:168573. doi: 10.1016/j.scitotenv.2023.168573
- Schaupp, C.M., Byrne, G., Chan, M., Haggard, D.E., Hazemi, M., Jankowski, M.D., LaLone, C.A., LaTier, A., Mattingly, K.Z., Olker, J.H., Renner, J., Sharma, B., Villeneuve, D.L.. 2024. An automated computational data pipeline to rapidly acquire, score, and rank toxicological data for ecological hazard assessment. Integr Environ Assess Manag 20:2203-2217. doi: 10.1002/jeam.4945.
- 17. Posthuma, L., van Gils, J., Zijp, M.C., van de Meent, D., de Zwart, D. 2019. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12□386 chemicals. Environ. Toxicol. Chem. 38, 905-917. DOI:10.1002/etc.4373.
- Nyman, A.M., Schirmer, K., Ashauer, R. 2014. Importance of toxicokinetics for interspecies variation in sensitivity to chemicals. Environ. Sci. Tecnolo. 48, 5946-5954. https://doi.org/10.1021/es5005126
- 19. Gerasimavicius, L., Livesey, B.J. Marsh, J.A. 2022. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat Commun 13, 3895. https://doi.org/10.1038/s41467-022-31686-6
- Bury, N.R., Sturm, A., Le Rouzic, P., Lethimonier, C., Ducouret, B., Guiguen, Y., Robinson-Rechavi, M., Laudet, V., Rafestin-Oblin, M.E., Prunet, P. 2013. Evidence for two distinct functional glucocorticoid receptors in teleost fish. J. Mol. Endocrinol. 31. 141-56. doi: 10.1677/jme.0.0310141.
- 21. Bury, N.R., Sturm, A. 2007. Evolution of the corticosteroid receptor signalling pathway in fish. Gen. Comp. Endocrinol. 153, 47-56. doi: 10.1016/j.ygcen.2007.03.009.
- Stolte, E.H., de Mazon, A.F., Leon-Koosterziel, K.M., Jesiak, M., Bury, N.R., Sturm, A., Savelkoul, H.F., van Kemenade, B.M., Flik, G. 2008. Corticosteroid receptors involved in stress regulation in common carp, *Cyprinus carpio*. J. Endocrinol. 198, 403-17. doi: 10.1677/JOE-08-0100.
- 23. Bury, N.R. 2017. The evolution, structure and function of the ray finned fish (Actinopterygii) glucocorticoid receptors. Gen. Comp. Endocrinol. 251, 4-11. doi: 10.1016/j.ygcen.2016.06.030.
- 24. Kugathas, S., Sumpter, J.P. 2011. Synthetic glucocorticoids in the environment: first results on their potential impacts on fish. Environ Sci Technol. 45, 2377-83. doi: 10.1021/es104105e.
- 25. Sturm, A., Colliar, L., Leaver, M.J., Bury, N.R. 2011. Molecular determinants of hormone sensitivity in rainbow trout glucocorticoid receptors 1 and 2. Mol. Cell. Endocrinol. 333, 181-9. doi: 10.1016/j.mce.2010.12.033.
- 26. Hamilton, C.M., Winter, M.J., Margiotta-Casaluci, L., Owen, S.F., Tyler, C.R. 2022. Are synthetic glucocorticoids in the aquatic environment a risk to fish? Environ. Int. 162, 107163. doi: 10.1016/j.envint.2022.107163.
- 27. UniProt Consortium T. 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699. doi: 10.1093/nar/gky092.

- 28. Zdrazil, B., Felix, E., Hunter, F., Manners, E.J., Blackshaw, J., Corbett, S., de Veij, M.,
 loannidis, H., Lopez, D.M., Mosquera, J.F., Magarinos, M.P., Bosc, N., Arcila, R.,
 Kizilören, T., Gaulton, A., Bento, A.P., Adasme, M.F., Monecke, P., Landrum, G.A.,
 Leach, A.R. 2024. The ChEMBL Database in 2023: a drug discovery platform
 spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 52,
 D1180-D1192. doi: 10.1093/nar/qkad1004.
 - 29. OpenBabbel. https://openbabel.org/index.html


- 30. Schrödinger, L., DeLano, W. PyMOL [Internet]. 2020. http://www.pymol.org/pymol
 - 31. Eberhardt, J., Santos-Martins, D., Tillack, A.F., Forli, S., 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61, 3891-3898. doi: 10.1021/acs.jcim.1c00203.
 - 32. Romero, A., Vega. M., Santibáñez, N., Spies, J., Pérez, T., Enríquez R., Kausel G., Oliver C., Oyarzún R., Tort L., Vargas-Chacoff L. 2020. *Salmo salar* glucocorticoid receptors analyses of alternative splicing variants under stress conditions. Gen. Comp. Endocrinol. 293, 113466. doi: 10.1016/j.ygcen.2020.113466.
 - 33. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. doi: 10.1038/s41586-021-03819-2.
 - 34. Devos, S., De Bosscher, K., Staels, B., Bauer, E., Roels, F., Vanden Berghe, W., Haegeman, G., Hooghe, R., Hooghe-Peters, E.L. 2016. Inhibition of cytokine production by the herbicide atrazine Search for nuclear receptor targets. Bioche, Pharmacol. 65, 303-308. DOI10.1016/S0006-2952(02)01507-1
 - 35. Spulber, S., Reis, L., Alexe, P., Ceccatelli, S. 2024. Decreased activity in zebrafish larvae exposed to glyphosate-based herbicides during development-potential mediation by glucocorticoid receptor. Front. Toxicol. 6 DOI10.3389/ftox.2024.1397477
 - 36. Hajjo, R., Sabbah, D.A., Bardaweel, S.K. 2020. Chemocentric informatics analysis: Dexamethasone versus combination therapy for COVID-19. ACS OMEGA 5, 29765-29779. DOI10.1021/acsomega.0c03597
 - 37. Fleseriu, M., Pivonello, R., Young, J., Hamrahian, A.H., Molitch, M.E., Shimizu, C., Tanaka, T., Shimatsu, A., White, T., Hilliard, A., Tian, C., Sauter, N., Biller, B.M.K., Bertagna, X. 2015. Osilodrostat, a potent oral 11β-hydroxylase inhibitor: 22-week, prospective, Phase II study in Cushing's disease. Pituitary, 19, 138-148. doi: 10.1007/s11102-015-0692-z.
 - 38. Kenda, M., Kuzelicki, N.K., Iida, M., Kojima, H., Dolenc, M.S. 2020. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole Effects on Nuclear Receptors: An in Silico and in Vitro Study. Environ. Health Perspec. 128 (10). DOI10.1289/EHP6596.
 - 39. Villeneuve, D.L., Crump, D., Garcia-Reyero, N., Hecker, M., Hutchinson, T.H., LaLone, C.A., Landesmann, B., Lettieri, T., Munn, S., Nepelska, M., Ottinger, M.A., Vergauwen, L., Whelan M., 2014. Adverse Outcome Pathway (AOP) Development I: Strategies and Principles. Toxicol. Sci. 142, 312-320. https://doi.org/10.1093/toxsci/kfu199
 - 40. Malchoff, D.M., Brufsky, A., Reardon, G., McDermott, P., Javier, E.C., Bergh, C.H., Rowe, D. 1993. A mutation of the glucocorticoid receptor in primary cortisol resistance. J. Clin. Invest. 91, 1918–1925. doi: 10.1172/JCI116410
- 41. Kino, T. 2018. Single nucleotide variations of the human GR gene manifested as pathologic mutations or polymorphisms. Endocrinology 159, 2506-2519. doi: 10.1172/JCI116410.

- 42. Ravi, V., Venkatesh, B. 2018. The Divergent Genomes of Teleosts. Annu Rev Anim Biosci. 6, 47-68. doi: 10.1146/annurev-animal-030117-014821. 43. https://www.earthbiogenome.org/
 - .

Figure 1. A. Image of cortisol docking into the *Pygocentrus nattereri* AOA3B4D0J0 glucocrticoid receptor with a binding affinity -8.43 Kcal/mol and the corresponding amino acid interaction fingerprint. B. The predicted binding affinity for all chemical and species combinations. Inset, the top 5 species + chemical binding affinities (see supplementary information for values).

Figure 2. Binding affinities for the 163 teleost fish glucocorticoid receptors per chemical (see supplementary information for values)

Glucocorticoid receptor #

Table 1 The five species with the highest binding affinity to each chemical.

		Species Rank (<i>Latin name</i> and UniProt ID) of 5 most sensitive to each chemical [ΔG (kcal/mol)]				
Chemical	Class	1	2	3	4	5
Cortisol	Natural	Esox lucius	Coregonus maraena	Anabas testudineus	Salmo trutta	Scophthalmus maximus
	steroid	A0A6Q2WV38 (-10.6856)	A0A0D6E1Q9 (-10.456)	A0A7N6BVF0 -10.4278	A0A673WVI2 -10.2504	A0A2U9C6P4 -10.1376
Atrazine	Herbicide	Anabas testudineus	Mastacembulus armateus	Scophthalmus maximus	Poecilia lapipinna	Xiphororous maculatus
		A0A7N6B9C8 -6.216	A0A7N9ALU0 -6.0674	A0A2U9C6P4 -6.0612	A0A3B3V5Z8 -6.0596	M4AXU0 -6.0576
Beclomethasone	GC	Esox lucius	Coregonus maraena	Anabas testudineus	Mastacembulus armateus	Salmo trutta
		A0A6Q2WV38 -10.6038	A0A0D6E1Q9 -10.3024	A0A7N6BVF0 -10.1674	A0A7N8X2D0 -9.9236	A0A673WVI2 -9.7614
Clobetasol	GC	Esox lucius	Coregonus maraena	Scophthalmus maximus	Anabas testudineus	Salmo trutta
		A0A6Q2WV38 -11.2956	A0A0D6E1Q9 -11.1776	A0A2U9C6P4 -10.7898	A0A7N6BVF0 -10.746	A0A673WVI2 -10.742
Clofenotane,	Insecticide	Oncorhynchus mykiss	Nothobranchius pienaari	Xiphororous maculatus	Scophthalmus maximus	Sinocyclocheilus rhinocerous
		Q6RKQ3 -8.1072	A0A1A8M2D1 -8.0478	M4AXU0 -8.0214	A0A2U9C6P4 -7.9704	A0A673HKV4 -7.91
Dexamethasone	GC	Esox lucius	Coregonus maraena	Xiphororous maculatus	Scophthalmus maximus	Salmo trutta
		A0A6Q2WV38 -11.144	A0A0D6E1Q9 -11.0824	M4AXU0 -10.9068	A0A2U9C6P4 -10.8816	A0A673WVI2 -10.7178
Flumetasone	GC	Esox lucius	Coregonus maraena	Xiphororous maculatus	Scophthalmus maximus	Oncorhynchus mykiss
		A0A6Q2WV38 -11.4008	A0A0D6E1Q9 -11.2524	M4AXU0 -11.1978	A0A2U9C6P4 -11.1266	Q6RKQ3 -11.0974
Glyphosate	Herbicide	Amphilophus citrinellus	Anabas testudineus	Hucho hucho	Ictalurus punctatus	Electrophorus electricus
		A0A3Q0S1C3 -4.7726	A0A7N6BVF0 -4.7142	A0A4W5NMM7 -4.6994	A0A2D0SEE8 -4.6884	A0A4W4EHL7 -4.6826
Halcinonide	GC	Coregonus maraena	Esox lucius	Xiphororous maculatus	Salmo trutta	Astatotilapia calliptera
		A0A0D6E1Q9 -12.1068	A0A6Q2WV38 -11.7716	M4AXU0 -11.4424	A0A673WVI2 -11.3964	A0A3P8PIE4 -11.3412
Mapracorat	GC	Electrophorus electricus	Stegastes partitus	Salarias fasciatus	Stegastes partitus	Anabas testudineus
		A0A4W4EII3 -10.0314	A0A3B5AC37 -9.8402	A0A672FRL6 -9.3478	A0A3B4ZYN2 -9.2704	A0A7N6BVF0 -9.1282
Momentasone	GC	Salarias fasciatus	Coregonus maraena	Esox lucius	Scophthalmus maximus	Anabas testudineus
		A0A672FRL6 -10.371	A0A0D6E1Q9 -10.138	A0A6Q2WV38 -10.1016	A0A2U9C6P4 -9.8704	A0A7N6BVF0 -9.6366
Osilodrosat	Synthesis	Nothobranchius pienaari	Nothobranchius kadleci	Nothobranchius kuhntae	Scophthalmus maximus	Iconisemion striatum
	Inhibitor	A0A1A8MV28 -7.8638	A0A1A8C987 -7.8162	A0A1A8HYB3 -7.7868	A0A2U9C6P4 -7.7864	A0A1A7WDX0 -7.7602
Prednicarbate	GC	Paralichthys olivaceus	Coregonus maraena	Esox lucius	Electrophorus electricus	Salmo trutta
		O73673 -7.7606	A0A0D6E1Q9 -7.7018	A0A6Q2WV38 -7.6118	A0A4W4EII3 -7.6044	A0A673WVI2 -7.5676
Prednisolone	GC	Esox lucius	Anabas testudineus	Coregonus maraena	Salmo trutta	Scophthalmus maximus
		A0A6Q2WV38 -10.5004	A0A7N6BVF0 -10.2672	A0A0D6E1Q9 -10.184	A0A673WVI2 -9.9726	A0A2U9C6P4 -9.9648
Sevoflurane	Anaesthetic	Pundamilia nyererei	Electrophorus electricus	Hucho hucho	Hucho hucho	Seriola lalandi dorsalis
		A0A3B4GAN3 -6.0414	A0A4W4EIA3 -5.9786	A0A4W5NM33 -5.8264	A0A4W5NMM7 -5.7428	A0A3B4WZ32 -5.5394
Triamcinolone	GC	Esox lucius	Coregonus maraena	Anabas testudineus	Salmo trutta	Scophthalmus maximus
		A0A6Q2WV38 -11.198	A0A0D6E1Q9 -10.8506	A0A7N6BVF0 -10.7634	A0A673WVI2 -10.5826	A0A2U9C6P4 -10.4684
Triclocarban	Antimicrobial	Hucho hucho	Hucho hucho	Electrophorus electricus	Fundulus heteroclitus	Gasterosteus aculeatus
		A0A4W5NM33 -8.4626	A0A4W5NMM7 -8.1526	A0A4W4EII3 -8.1472	A0A3Q2Q9J2 -7.9158	G3QBY4 -7.9082

Species order colour code: Escociformes & Salmoniformes; Pleuronectiformes; Anabantiformes; Synbranchiformes; Cyprinodontiformes; Cypriniformes; Cypriniform

Siluriformes; Blenniiformes; Gymnotiformes; Carangiformes; Scorpaeniformes.