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Abstract—Sparse Bayesian learning (SBL)-aided target local-
ization is conceived for a bistatic mmWave MIMO radar system
in the presence of unknown clutter, followed by the development
of an angle-Doppler (AD)-domain representation of the target-
plus-clutter echo model for accurate target parameter estimation.
The proposed algorithm exploits the three-dimensional (3D)
sparsity arising in the AD domain of the scattering scene and
employs the powerful SBL framework for the estimation of
target parameters, such as the angle-of-departure (AoD), angle-
of-arrival (AoA) and velocity. To handle a practical scenario
where the actual target parameters typically deviate from their
finite-resolution grid, a super-resolution-based improved off-
grid SBL framework is developed for recursively updating the
parameter grid, thereby progressively refining the estimates. We
also determine the Cramér-Rao bound (CRB) and Bayesian
CRB for target parameter estimation in order to benchmark the
estimation performance. Our simulation results corroborate the
superior performance of the proposed approach in comparison
to the existing algorithms, and also their ability to approach the
bounds derived.

Index Terms—Target imaging, sparsity, localization, Bayesian
learning, parameter estimation, bistatic MIMO radar, clutter.

I. INTRODUCTION

Next-generation (NG) wireless systems are expected to
support high-accuracy localization services in indoors for
robot navigation [1], human sensing [2], Wi-Fi sensing for
smart homes [3]], radar sensing for autonomous vehicles [4]],
location-assisted communication [3], [6]], user positioning [[7]],
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[8] and location-aware applications [9], [10], among others.
Estimation of distance and angle is also crucial for distance-
aware resource allocation and precoding in NG wireless sys-
tems [L1]. The primary objective of localization is to identify
the position and velocity of a target via estimating the direction
of arrival, Doppler shift, and time delay. As a further advance,
multiple-input multiple-output (MIMO) radar promises signif-
icant diversity and multiplexing gains [12], [13]. MIMO radar
systems can be classified into colocated and distributed MIMO
[14], wherein the transmitter and receiver are at the same
position in the former, while they are distributed in different
locations in the latter.

Millimetre wave (mmWave) carriers, which belong to the
extremely high frequency (EHF) range spanning from 30
GHz to 300 GHz, have extraordinarily short wavelength.
This enables the packing of a large number of antennas
in devices having compact form factor [15], which in turn
enables ultra-high angular resolutions that make them ideally
suited for radar operation [16]]. Millimetre wave (mmWave)
technology is expected to become increasingly dominant in
the near future due to the availability of sizeable unlicensed
frequency blocks [[17], which makes it eminently suitable for
demanding applications like ultra-high-definition (UHD) 3D
video, virtual and augmented realities, internet-of-things (IoT),
satellite communications, unmanned aerial vehicles (UAV),
V2X, among others [18]. The MIMO technology [19] relying
on a large number of transmit and receive antennas, coupled
with the huge bandwidth of the mmWave regime, has the
potential of significantly improving radar performance.

A mmWave distributed MIMO radar, composed of multiple
bistatic transmitter/ receiver pairs, offers several advantages
over its colocated counterpart, such as spatial diversity, high
resolution, reduced transmitter-receiver antenna interference,
while dispensing with switches or duplexers [20]. Exploiting
the angular and temporal sparsity of the mmWave channel in
such a system may lead to a significant improvement in target
detection and localization performance [21l], [22]. Therefore,
we conceive techniques for joint parameter estimation in target
localization of bistatic mmWave MIMO radar. An overview of
the existing contributions in this area is presented next.

A. Importance of location-aware Interaction in the mmWave
Band

A specific drawback of operating at high frequencies, such
as in the mmWave band, is that propagation losses increase



with the carrier frequency. Potential solutions to overcome
such losses in 5G networks is to utilize accurate location
information [5]. Firstly, knowing the positions and thus the
distances between nodes can help estimate received power and
interference levels. In dense networks, the shortest-distance
multihop path between a source and destination is often the
most efficient. Additionally, distance and angle estimation
helps in location-aware resource allocation [11]. Traditional
resource allocation relies heavily on real-time channel state
information (CSI), which must be frequently updated through
pilot signals and feedback leading to overhead and delay
However, location-aware systems can predict future channel
conditions by using the known or estimated position and mo-
bility pattern of a device [23], [24]]. Since the path loss, inter-
ference, and even shadowing can be correlated with position,
the system can estimate the CSI ahead of time—especially
in slowly varying environments or when user trajectories are
predictable (e.g., vehicles on roads, users on foot). The angle
and distance estimation also helps attain improved energy and
spectral efficiency by steering beams accurately in directional
mmWave communication and turning off the antennas or
reduce transmit power when coverage is known to be sufficient
[25]]. Location-aware precoding is also beneficial in near-field
communications which must account for both distance and
angle information [26], [27].

B. Literature Review

He et al. [28] proposed a two-dimensional multiple signal
classification (2D-MUSIC) algorithm for joint angle-of-arrival
(AoA) and angle-of-departure (AoD) estimation in MIMO
radar that imposes high computational cost. To reduce this,
Zhang et al. [29] developed a reduced-dimensional MUSIC
(RD-MUSIC) algorithm that searches for peaks over a single
dimension. Another novel subspace-based method dissemi-
nated by Zheng et al. [30] is the estimation of signal param-
eters via rotational invariance techniques (ESPRIT) algorithm
that is significantly faster than the RD-MUSIC since a closed-
form angle estimation solution is obtained by exploiting the
invariance property between the transmit and receive arrays.
Nevertheless, their algorithm is unable to achieve the same
level of accuracy as the family of MUSIC-related techniques.
For precisely determining the signal/noise subspaces, both the
ESPRIT and MUSIC-based approaches necessitate an exces-
sively large number of snapshots, whose accuracy significantly
degrades in scenarios of low signal-to-noise ratios (SNR) and/
or insufficient snapshots. With objective of joint AoD and
AoA estimation, Tang er al. [31] developed an innovative
maximum likelihood scheme, wherein an alternating projec-
tion algorithm was devised for resolving the associated high-
dimensional nonlinear optimization. While it yields improved
performance, its convergence is not guaranteed. The treatises
[32], [33] predominantly focus on the localization of targets
in distributed radar based on time-of-arrival (ToA) and time
difference of arrival (TDOA) measurements, respectively. Qin
et al. [32] exploit the bistatic range (BR) and TDOA mea-
surements for developing an interesting two-step least squares
algorithm for target localization. By contrast Nguyen et al.

[33] conceive a ToA based geometric model for minimizing
the estimation confidence area by maximizing the determinant
of the pertinent Fisher information matrix (FIM). However, the
above contributions do not include velocity or Doppler shift
estimation in the localization problem. As a further advance,
the authors of [34], [35] designed potent schemes for location
and Doppler estimation based on BR, TDOA and Doppler shift
measurements. Nevertheless, it is imperative to mention that
TOA-based schemes require accurate time synchronization
between the transmitters and receivers, which is challenging
to achieve in practical systems. Furthermore, the scattering
environment at mmWave frequencies is inherently sparse, a
feature that can be exploited for bolstering performance, and
one which none of the aforementioned studies fully exploit.
The literature specifically related to compressive sensing (CS)-
based localization is reviewed next. CS-based methods exhibit
several key advantages over both the conventional signal
processing methods and over the existing subspace based
schemes. For example, they require a remarkably reduced
number of snapshots for reliable signal recovery even for an
unknown number of sources. Furthermore, they exhibit sub-
stantially improved robustness to noise [40]. Chen et al. [41]
developed a sparse Bayesian learning (SBL)-based technique
for direction of arrival (DOA) estimation in colocated MIMO
radar. The joint estimation of the AoA and AoD parameters
of point targets in MIMO-aided radar systems using SBL was
successfully carried out in [36]]. As a further developement,
Maity et al. [37] proposed an SBL scheme to jointly estimate
the AoA, range and velocity of the targets in mmWave MIMO
radar systems. Traditional SBL approaches require the targets
to lie on a predefined grid of the AoD/AoA parameters. This
in turn mandates the fixed parameter grid to be finely spaced
in order for the sparse assumption to be reliable, which could
lead to a high computational cost and violate the restricted iso-
metric property (RIP) to be satisfied for sparse recovery [42].
The pioneering work by Yang et al. [38] addressed the grid
mismatch problem by proposing an off-grid model obtained by
linearly approximating the dictionary and updating it in every
iteration. However, it does not fully eliminate the unavoidable
off-grid performance erosion. To address this impediment, Cao
et al. [39] jointly estimated the AoDs and AoAs in bistatic
MIMO radar by introducing a modified linear approximation
model, where the grid points are directly updated in every
iteration for ensuring that the updated estimates approach
the true AoAs and AoDs upon convergence. However, the
exhaustive list of papers discussed above ignore the mobile
targets and ground clutter. The undesired echo imposed by
the ground clutter such as land, buildings, roads, etc [43],
[44] further degrade the sensing performance, if not mitigated.
This limits the localization performance in practical integrated
sensing and communication (ISAC) systems.

Several clutter suppression techniques [45]], [46], [47] iden-
tify and eliminate clutter by relying on time-domain and space-
time-domain approaches. However, these do not exploit the
angular domain sparsity. Mishra er al. [48]] leveraged the target
sparsity and estimated the target parameters using the SBL
framework in the presence of ground clutter for colocated radar
systems. However, they assumed the clutter covariance matrix



TABLE I: Boldly contrasting our new contributions against the state-of-the-art

Features [N 281, [29], [31] 133] 135] 136] 137] 38! 139! [48] Proposed
mmWave band v v
Distributed radar v v v v v v v
Off-grid SBL v v v v
Multiple targets v v v v v
Multiple parameter estimation 0, ) P, v 0 RCS, 6,v 0 0,¢ | RCS, 0,v | RCS, 0,¢,v
Target localization v v v v v
CRB for joint parameter estimation v v

3D sparsity v v v v v
Unknown clutter v v v
Geometric calculation of location from AoA and AoD v

to be known, which is challenging to estimate in real-world
systems. To fill these research gaps, this treatise conceives a
Bayesian learning-based localization scheme that is capable
of jointly estimating the AoA, AoD, velocity and radar cross-
section (RCS) parameters of multiple targets in the presence
of clutter having unknown statistics, while exploiting the 3D
sparsity arising in the angular and Doppler (AD)-domain. The
main contributions of this study are itemized next and they
are also boldly contrasted to the literature in Table{ll The
symbols ¢, 0, v used in the table denote the target AoA, AoD
and velocity, respectively.

C. Contributions of our work

¢ A novel bistatic mmWave MIMO radar system is devel-
oped for the localization of multiple mobile targets and
joint estimation of target parameters such as AoA, AoD,
Doppler shift and RCS coefficients in the presence of
unknown noise-plus-clutter components.

o The localization problem is viewed from a fresh perspec-
tive of the emerging field of compressive sensing (CS)
that exploits the 3D sparsity in the angle-Doppler (AD)-
domain. To overcome the drawback of uniform sampling
of the grids toward dictionary matrix formulation, this
work presents a framework for non-uniform sampling of
the 3D grid, where no two grid points share the same
AoA, AoD and Doppler shift values.

e As a result of non-uniform sampling, modeling error
arises due to the gap between the true target parameter
and its closest grid point. In order to address the off-
grid problem, the adjustable grid points are updated
recursively, until convergence is reached. Subsequently, a
novel block majorization-minimization (MM) procedure
is developed for Bayesian inference.

o Furthermore, the proposed algorithm helps filter out the
unknown clutter components from the estimated target
components. Subsequently, a localization algorithm is
devised for determining the position coordinates and
velocity of the targets from the estimated AoAs, AoDs
and Doppler shifts.

e Next, the Cramér Rao bounds (CRB) are determined for
joint AoA, AoD and velocity vector estimation, which
benchmark the estimation performance of the proposed
design. Furthermore, the Bayesian CRB (BCRB) is de-
rived for RCS coefficient estimation in order to charac-
terize its estimation performance.

o Lastly, our simulation findings comprehensively validate
the performance of the proposed schemes and clearly
evidence their enhanced performance over the existing
methods, even at low signal to clutter-plus-noise ratio
(SCNR).

The rest of the paper is outlined as follows, The system
model of bistatic mmWave MIMO radar is developed in
Section || in presence of clutter. Section discusses the
off-grid SBL-based algorithm conceived for joint AoA-AoD-
Doppler shift estimation, followed by our localization algo-
rithm in Section and complexity analysis in Section
Section [[V] derives the CRB whereas our simulation
results are discussed in Section [Vl Section [VI] concludes the

paper.

D. Notation

The operator §R{ } denotes the real part of a complex-valued
argument, while |a|, ||a]lo and ||a||2 denote the element-
wise absolute value, the ¢y norm and the Euclidean norm
of the vector a, respectively. For a matrix A, |A|, Tr(.)
and ||A||r represent its determinant, trace and the Frobenius
norm, respectively. The notations rect(.) and sign(.) stand
for the rectangular pulse and signum function, respectively.
Furthermore, 1 and Iy represent an N x 1 vector with entries
as 1 and N x N identity matrix, respectively. The operator
diag(.) results in a diagonal matrix having the elements of
its argument vector on the principal diagonal. Operator vec(.)
performs vectorization of its argument matrix by stacking its
columns. The operators (.),(.)*, (.)T denote the Hermitian,
conjugate and transpose operation applied to the argument,
respectively. The operations A ©® B and A ® B denote
the Hadamard and Kronecker matrix products, respectively.
The operator [E(.) represents the statistical expectation, while
J(.)dw and -2 (.) are the integration and partial derivative of
the argument with respect to w.

II. SYSTEM MODEL FOR BISTATIC MMWAVE MIMO
RADAR

A. Signal Model

A bistatic mmWave MIMO radar setup comprising a trans-
mitter and a receiver is considered, which are equipped with
N, transmit and N, receive antennas, respectively, as shown
in Fig. [I} The transmitter is situated at the origin and the
receiver’s coordinates are given [R,., .| € R?, where R, is the
distance between the receiver and transmitter, while ¢,. is the
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Fig. 1: System model for target localization in bistatic mmWave MIMO radar

orientation. The wth target’s unknown polar coordinates are
[Ruw, pw] € R?. Note that this model can be easily extended
to a 3D geometry, where the wth target’s unknown polar
coordinates can be identified as [R,,, 0.,, ... Here, 0,, and ¢,
represent the azimuth and elevation angle, respectively. Fur-
thermore, the proposed localization framework can be easily
adapted to a 3D scenario where the sparsity in the azimuth
angle-elevation angle-Doppler domain will be leveraged. For
simplicity, the study is limited to the 2D geometry. Let W
denote the number of unknown moving targets present in the
network and let the velocity of the wth target be v,,. The signal
impinging from the tth transmit antenna, 1 <t < N, can be
represented as

sz = [xt(1)7 x(2), ..., .’L’t(Uﬂ e CxU, )

where U is the total number of sub-pulses. Thus, X =
[x1 x2 th]T € CN+xU denotes the overall transmit
signal matrix. The Doppler-shifted signal corresponding to the
tth antenna and wth target is defined as x;! (w,) = X} ©
¢ (wy), where ¢ (wy,) = [1, efww edwwU-D] ¢
C'*U is a vector corresponding to the Doppler shift w,, of
the wth target, which is defined as

Wy = 27waTp7 (2)

where f, = denotes the Doppler frequency and 7T,
is the sub-pulse interval. We define the matrix X,, =

Vw
A

T
[xl(ww),xQ(ww),-~- ,th(ww)] € CMxVU which repre-
sents the transmitted signal matrix associated with the motion
of the wth target. Upon considering N.; ground clutter com-
ponents, the signal Y € CN"*U reflected from the W targets
and arriving at the receiver is modeled as

d.c;X+Q,

Z e
3)

where 5, € C and 3, € C are the RCS coefficients of the

j2 w

wth target and zth clutter, respectively. The factors e —=
—j2=RE

and e =

5wd c., X +Ze

represent the roundtrip delay corresponding to

the wth target and zth clutter, respectively, where R2 and RD
are the corresponding sum distances of the transmitter-wth
target-receiver pair and transmitter-zth clutter-receiver pair,
respectively. The quantities c,, € CV**! and d,, € CN**1 are
the transmit and receive array response vectors, respectively,
corresponding to the wth target, which are given as

“4)

i i T
j2mdy j2mdy .
Cow = |:17 e~ x sm(Ou,)’ . 7€7A (Nt—1)51n(6w):|

d, = |:17 ewsm((ﬁw% e 76@(]\%71)81“@”)} ' &)

where d;, and d, denote the transmit and receive antenna spac-
ings, respectively, whereas 6,,, ¢,, denote the AoD and AoA
corresponding to the wth target, respectively. The quantities
c, € CM>1 and d, € CN**1 are the transmit and receive
array response vectors, respectively, corresponding to the zth
clutter. Finally, the quantity Q € CMXU is the complex
additive white Gaussian noise (AWGN) matrix, the elements
of which are independently and identically distributed with
zero mean and variance o2. Upon vectorizing the expression
in (3), the system model can be recast as

y=98+aq, (6)

N,Ux1 N,Ux1
CHr CHr&x

v~vhere y = vec(Y) € . q = vec (Q) €
[Y, -, y] € CN UxW" is the sensing matrix,

~ ]27I'R1 J2 R ’ .

ﬁ = [ Bi,-- e ﬁw/] € C" *l is the RCS
coefficient vector and W/ = W_+ Ng. Each column of
the sensing matrix is given by 1, = vec (dy ek, Xo).
As observed from Fig. |1 the parameters to be estimated for
localization of the wth mobile target in the bistatic scenario

are AoD 6,,, AoA ¢,, and Doppler shift w,,.

Remark. Note that one can also utilize the classic cyclic
prefix-orthogonal frequency division multiplexing (CP-OFDM)
waveform for target localization [49], [50] in bistatic mmWave
MIMO ISAC systems in the presence of clutter. The lth received
sample at the rth receive antenna corresponding to the mth



OFDM symbol can then be expressed as

w
yr [l = Z B [du], ej27rfmesej27rT§Nicfwc7w~X
w=1

1 N.—1
o [
§ Xn,mej TR e 72TnA fTy

v Nc n=0

Ncl 1
Z B [d-], cl
z=1

N.—1
§ : Xn,m€]2ﬂ.nNC6 j27rnAf‘rz7 (7)
n=0

V.

where Xy ., € CNeX1 s the complex transmit data vec-

tor corresponding to the nth subcarrier of the mth OFDM
symbol, T is the total OFDM symbol duration given by
T =T, + T, Ts is the OFDM symbol duration, T, is the
cyclic prefix duration and A f = T% is the subcarrier spacing.
The spectral steering vector and inter-carrier interference
(ICI) phase rotation vector are defined as follows:

. . T
bw’ — |:17 e—_]27'rAf‘rw/7 . 7e—j27r(NC—l)AfTw/:| c (CNC><17
_ T
27Ty - jorT, Ne=1
Ay = |:176‘7 7T chfw/,... ’e] Tl Neo fw/ c (CN(;Xl' (8)

As shown in our previous work [37], upon stacking the
received samples y! [l],1 < | < N, the received vector at
the receiver in the mth OFDM symbol is given as

w'
Ym = Z Bw’{duﬂ ® {aw' O] <Fﬁc (bw’ © (chuﬂ))> }}
w’'=1

+am = CI}B +am € CNCNTXl; &)

where each column of the sensing matrix ¥ is given as

":Nbu/ = {dw’ ® {aw’ © (F%C (b’w’ © (chw’))> }}

B =[B1, B2, -, Bw] € CW'*1 is the RCS coefficient vector.
It can be readily inferred that (9) is similar to (6).

and

B. Sparse Problem Formulation

To formulate the joint AoA, AoD and Doppler shift
estimation as a sparse problem, let the imaging scene be
divided into G AoA bins, G AoD bins and G Doppler bins.
The uniform sampling of the 3D grid leads to G* 3-tuples:
{01, ¢1,w1), (01, P1,w2), - -+, (01, b1, we), (01, P2, w1), -+
(0, ¢, wea) ). However, this leads to high computational
complexity for the ensuing search and a high correlation
between the adjacent grid points [39]. For example, two
nearby 3-tuples (30°,50°,0.075), (25°,50°,0.25) share the
same AoA leading to a high correlation between these two
bases of the dictionary matrix. This significantly degrades the
angle and Doppler shift estimation accuracies. This motivates
us to perform non-uniform sampling of the 3D grid, where
no two grid points share the same AoA, AoD and Doppler
shift, i.e. we have

091, 5& 09j7¢g71 # ¢gjvwgi 7£ ng’VQi 7é gj-

Therefore, the received signal in (6) can be expressed as

(10)

y=¥8+aq, (11)

where ¥ — [¢1,¢2,--- RIS 71/:4 € CNUXG g the

dictionary matrix. Each column vector ¢, € CN"U*1 of the
dictionary matrix ¥ is expressed as

P, = vec (dgchg) . (12)
Furthermore, 3 = [ﬂl,ﬂg, -+, Ba ! € C“*1 is the vector
of the complex RCS coefficients. Note that, the vector 3 is
sparse in nature since it has a support of only W' non-zero
elements within its support length G, with G > W'. The
target parameters 1) = [0, ¢, w] € R¥W <1 typically do not lie
on the grid of the dictionary matrix ¥ due to the non-uniform
sampling of the 3D grid. This grid mismatch often leads
to large estimation errors, thus, degrading the performance
of the system. This off-grid gap can be handled by linearly
approximating the steering vectors using a first-order Taylor
expansion as follows

Q/’ (Qw/, ¢w’»ww/) = Q/’ (égv ng,d)g) + ‘Et (597 qgg’a)g) X
() 46 (063) (0 )

€ (860005 ) (w0 = 3y), (13)

where we have:
& (00,003 ) = W o) (Qg'@f”%) PR
¢ (597559’%) - W . (15)
& (00 00:29) = W IR
Here, ég,ng,djg are the nearest grid points to
the wth  target (0, dw,wy). Upon  assuming
2 = [&(06101), & (0o b0.06) |, B =
3 (91@1,@1 v &y (9~G,¢~5G,UJG)} ; Eo =
&, (@@1@1) v € (5@,&6;,@@)}, the  off-grid

model for y is formulated as

y = (¥(0,6,0) + Ediag(e;) + B, diag(e,) + E.diag(e.) ) A

+q:D(€t76r7€w)/6+qa 17
where
Op —0,, w=1,2,....,W
€ = o , (18)
0, otherwise
w —Gg w=1,2,... W
€ = P W =1 , (19)
0, otherwise
w — W ) = 13 27 ceey !
. — w Wy, W : w . 20)
0, otherwise

Here € denotes the gap between the actual parameter value
and its closest grid point. Next, we formulate a row sparse
estimation model for the mmWave MIMO radar considered



with the aid of multiple transmission snapshots [48]. The
received vector corresponding to the I/th snapshot, 1 <[ < L,
where L denotes the total number of snapshots, is expressed
as

yi=Dg; +a. 2y

Upon concatenating the received vector over L snapshots,
so that Y = [yl,yg,...yL} € CN-UXL
matrix is given by

, the output signal

Y = DB + Q. (22)

The targets are assumed to be stationary with respect to the
tuple for the duration T, = LUT),, where T}, is the sub-pulse
interval. Under this assumption, it can be observed that the
vectors [3; have a common sparsity profile, which in turn

makes the matrix B = |3, 8,, - ,,BL] € CY*L row-sparse

in nature. The next section describes the SBL algorithm con-
ceived for our joint angle-velocity-RCS estimation problem.

III. BAYESIAN INFERENCE FOR JOINT TARGET
PARAMETER ESTIMATION AND LOCALIZATION

The powerful SBL scheme is employed for exploiting the
3D sparsity and for the estimation of the sparse RCS matrix
B. The SBL framework imposes a parameterized Gaussian
prior on each gth row of the unknown RCS sparse matrix B,
denoted by ,Bg, as follows:

p(ﬁg; Zg) ~ CN (01><La Z_(;lIL)

L
-11 Z;gexp (—21B84.41%) , (23)
=1

where the hyperparameter z,,0 < g < G — 1, specifies the
precision matrix of the multivariate prior associated with 3.
The prior for the matrix B is given by:

G
p(Biz) = [ [ p(By: zq). (24)
g=1

Observe from (23) that as the hyperparameter obeys z, —
oo, the associated gth row of the RCS coefficient matrix
follows B, — Opx1 [S1]. Therefore, the estimation of the
hyperparameter matrix is crucial for the estimation of the
sparse matrix B. However, the received signal model is over-
parameterized, since the number of observations is close to the
total number of parameters to be estimated. For this purpose,
the hyperparameter vector z = (zg, ..., zg_1)’ is constrained
by imposing a Gamma prior, that is,

G-1 G-1 —
b 2% bzy

=Tlc +1,0) =[] =&—, @5
p(2) glz]o amma(zg|a +1,0) gf:[or(aﬂ) (25)

where the Gamma function obeys I'(a) = [;° ¢ te~dt.
To render these priors non-informative (i.e. flat), we assign
these parameters very small values, e.g. ¢ = b = 1074, and
assume that €, €., €, have non-informative uniform priors.
One can now maximize the posterior distribution of the hidden

variables Q5 = {B, z, €, €, €, } conditioned on the observed
data Y as follows

Q) = arg max In p(Q|Y) = arg max Inp(Y, Q). (26)
h h

Bayesian inference requires the computation of the posterior
distribution

p (Y7 Qh)
p(Qu]Y) = D
) =T v ) an,
_ p(Y‘z76t7€T7ew)p(z)’ (27)
p(Y)
Here, the numerator denotes the joint probability distribution,
while the denominator, termed marginal likelihood or Bayesian
evidence, serves as the normalization constant. We further
define the likelihood of the observation as

p(Y|z, €, €., €,) = CN(Y|DB,0?).

(28)

However, since the multidimensional integration in cannot
be carried out analytically, a closed-form expression of the
posterior p (Q2;[Y) is challenging to obtain. To circumvent
this issue, we harness the block MM algorithm of [52].
A surrogate (lower bound) function is computed for the
objective function Inp (Y, €2;), which is maximized with
respect to the parameters z, €, €, €,,. The surrogate function
oflnp(Y,z, €€, €,), at a fixed point (z, €, €., €,,), is given
as

L (Z7 €, €, Ewlia éta éra ew) =

)dB.

/p(BY,z,ét,ér,éw)ln‘z((mY’Z)éhé“éw) (29)
The parameters z, €, €,, €,, are updated as
21 = argmax E(z, egk), e, eg“)|z(k)7 eik), e, 65,]“) )
’ (30)
egkﬂ) = argmax E(z(kﬂ), €4, egk), e&k)
€t
|z(k+1), egk), egk), eg“)>, (31)
e§k+1) = argmax E(z(’“l), egkﬂ), €r, e&k)
er
|Z(k+1)’egk-i-l)’egk)?q(uk))’ (32)
eF Y — argmax E(z(k“), eikﬂ), elF Y,
ez, egk+1)’ b+, 65}k)>. (33)

The posterior distribution of each column of B is given by

q(B)) ~CN (Hl(k+1), E(kﬂ)), where we have
-1
s(k+1) (12DHD+Z(k+1)) , (34)
g
uk+) — {ugkﬂ), - _’N(L’Hl)] - %2(k+1)DHY. (35)
g

The update expressions of the parameters z, €, €,., €, are



Step 1. Main Objective
Maximize the a posteriori distribution p(,|Y) of the hidden
4 variables given the observed data given in Eq. (25)

Step 2. Optimization Problem

Difficult to obtain closed-form expression for multidimensional
integration in (26). Employ the MM algorithm to obtain the
closed-form expressions of B, z, €, €., €,

Step 3. Unique solution for hyperparameter and off-grid errors

The hyperparameter z and the off-grid errors € ¢€,,€,, are
updated as Eq. (29-32) and the closed-form expressions are
given in Eq. (35-38)

Step 4. Grid refinement

Update the grid points 0, ¢, w as given in Eq. (39-41). Repeat
the steps 3-4 till convergence

Step 5. RCS coefficient, AoA, AoD, Doppler shift estimation

Compare the estimated hyperparameters with a suitable
threshold z,,, and select the indices above the threshold to obtain
the target parameter estimates given in Eq. (42)

Step 6. Clutter identification

1 Identify and filter out the clutter components using Eq. (43)
Step 7. Localization of targets

l Estimate the 2D-coordinates and the velocities of the targets

from AoAs, AoDs, Doppler shifts using Eqgs. (46), (52)

Fig. 2: Flow of the proposed algorithm

given as follows:

(k+1) _ a+ L
L(kt1) , (36)
g b+ ZlL:l T, (egk),egnk),e&k)>
;
i
lrl) = ( {E ETQ(UUH+LE)}) b, (38)
i
kD) — ( {E Ew@(UUHJrLz)}) po,  (39)
where T, (egk),eg,k),e&k)) = Hl“’l + X,
Pt = R {ZZL:I diag(p)E;’ ‘I’tﬂl)}
LR {dlag (Ef’\pfz } with o,
V(0,0,0) + =, diag(e, ) + Ewdiag(ew),
pr = %{Zlediag(m)ﬁfl (yz—‘Ilrul)} -
LR {dlag (Ef’ \I'TE) } with w, -
V0, 0,0) + E.diag(e;) 4+  E,diag(e,),
po = R{DlL diag(u)BL (- Pom)} -
L% { diag (Ef@wz with ¥, = (0,0,

E.diag(e;) + E,diag(e,). The detailed derivations are
presented in Appendix [A]l The grid points are then updated

as follows

(k+1) _ Z(k)

0 =0 +e, (40)
" =" 4, 1)
Q) = o) e, (42)

The steps described above are repeated until convergence.
Since the hyperparameters control the sparsity in B, the
performance attained can be further enhanced by thresholding
the hyperparameter estimates with respect to a suitably chosen
threshold z;,. The rows B(g,:) with hyperparameters z,
higher than z;;, are set to zero. The pruned estimate B is
given by

o Ukt (g,:), 2 < 2y,

B(g,:) = (43)

01«1, otherwise.

Subsequently, instead of updating all the G grid points in
(@0), @T), @2), one can only update those corresponding to the
significant rows of B. Next, we exploit an interesting property
to identify the clutter components in the environment. The
ground clutter strength decays with the increase in Doppler
frequency [53l], [54]. Thus, the significant clutter components
can be assumed to be confined to a maximum Doppler shift
of w};, beyond which the clutter effect can be neglected. In
the above formulation, the parameter 0 is set for ensuring that

W
wh | < §max 44
| cl|7 G ) ( )

where wpax 1S the maximum Doppler shift of any target in
the sensing environment. This implies that if the estimated
Doppler shift w(kﬂ) is lower than or equal to the parameter
o+ 1, (kH < 6 + 1, then the estimated AoA-AoD-

Doppler tuple (@UGH), 555“), @1(5“)

1ew

o’ ) belongs to the clutter.
This step filters out the N clutter components from the W’
signal-plus-clutter components to yield the estimated AoA,
AoD and Doppler shift values corresponding to the W targets.
Next, we devise an innovative algorithm for localizing the
targets by computing their 2D coordinates and velocities from

the estimated AoDs, AoAs and Doppler shifts.

wth Target
wth Target x

RS AT
Transmitter

Fig. 3: Point representation of transmitter-wth target-receiver
pair under different conditions of receiver orientation ¢,

A. Localization Algorithm

2D Coordinate estimation: Fig. [3] represents the point
based representation of the transmitter-wth target-receiver pair
under both conditions of receiver orientation ¢, < 7 and



©or > g Using the law of sines for triangles, the distance of
the wth target from the transmitter R,, can be formulated as

sin(r —du+o,)

jus

= _ T SinA(é)w*éW) ’ QOT S 2 (45)
w sin(dw+m—¢r) >
T sin(éw—éw) e z

Furthermore, since the transmitter is assumed to be located
at the origin, the orientation of the wth target ¢,, equals the
estimated AoD éw R

@w - 9w~ (46)
Subsequently, the = and y coordinates of the wth target are
given respectively as

G = Rucos(Bu), G = Rusin(Py). 47

Sum distance Estimation: Using geometry, the following
expressions can be deduced for ¢, < 7

Ry,c08 (0w, — ©r) + Ryrcos (1 — ¢y + 1) = R,

7RU,SiI1 (Gw - 907") + RwrSin (Tl' - ¢w + 901) =0. (48)

The unknown vector r £ [R,,, Ry,]” can be determined by
solving the pair of linear equations above, and it is given as

T= Pill‘d, 49)
where
_ [eos (0w — ) cos(m—dute)] | [Rr
T | =sin(0y — @) sin(mr—¢u )| 0]

The estimated range for the transmitter- wth target-receiver
pair is thus given as

sin (7T — ¢w + 907')
"sin (m — ¢y, —1—01%)'
R R R (50
The estimated sum distance Rf = Ryr + R, can now be
derived as

D sin (aw — 907') 3)
R = By sin (M — Gy + Ou)

sin (6, — @) + sin (7 — ¢y + @1 )]

sin (7 — @y + Ou) S

ﬁﬁer[

Similarly, for ¢, > 7, the sum distance ﬁf is given as
Eﬁ _ Rr [Sin (QDT 79111) + sin (7T - Pr + ¢w)] )
Sin (7 + ¢ — Ou)

Velocity estimation: The estimated velocity v, of the wth
target is expressed as

(52)

- WA
Uy = .
4n'T,

(53)

The flow of the proposed algorithm is summarized in Fig. [2]

B. Complexity Analysis

The computational complexity of the proposed algorithm is
as follows:
o The complexities of calculating U and X are O (LG?)
and O [G%.max(G, N, U)], respectively.
o The complexity in updating the hyperparameter vector z
is O (LG).

o Since €, ¢, and ¢, are jointly sparse with B, the com-
plexity in updating €, €, and €, can be ignored.

Therefore, the overall computational complexity of the pro-
posed design is O[NG?x max(G, N,U)], where N is the to-
tal number of SBL iterations. The computational complexity of

TABLE II: Computational Complexities of Various

Algorithms
Algorithm Computational Complexity
Proposed Scheme O[NG?x max(G, N.-U)]
OMP [55] O(LNN,UG)
MUSIC [56] O(N3U3 + G®°N2U?)

the proposed SBL algorithm is also compared with the existing
OMP [55]] and MUSIC [56]] schemes and summarized in Table
Our method and MUSIC have comparable computational
complexities, whereas OMP has a lower computational burden
than both SBL and MUSIC. However, it can be observed in
Section V that the proposed SBL scheme achieves a significant
improvement in estimation performance, especially in the case
of low SCNR.

IV. CRAMER RAO BOUND FOR AOD, AOA, VELOCITY
ESTIMATION AND BAYESIAN CRAMER RAO BOUND FOR
RCS COEFFICIENT MATRIX ESTIMATION

The CRBs for the AoDs, AoAs, velocity estimation and
Bayesian CRB (BCRB) for RCS coefficient estimation of the
multiple targets are derived next.

A. CRBs for joint AoD, AoA, Velocity Estimation

The unknown channel domain parameter vector can be

T
constructed as n = |07, ¢, wT| , where we have 6 =

[917927"'79W] e R Xl, (b: [¢1a¢27"'7¢W] ERWXI
and w = [wy,ws, - ,ww] € RW*L The Fisher information
matrix (FIM) J¢ € R3W>3W gatisfies the information inequal-
ity of [57]

E{G-m@-n"}»3," (54)
for any unbiased estimator ) of 1. The FIM J,, can be further
written as
Jo Jop Jow
Joo  Jo  Jgw
Jw@ de) Jw

I, = (55)

The log-likelihood function £(Y;n) = In p(Y;n) is given
by

L

LYim)=c - (yi—DB)" (yi—Dg),

=1

(56)

where the constant obeys ¢; = —N,log(r) — log(2.'). The
diagonal entries of the FIM J¢ are computed next. For a



parameter vector, { = 6 or ¢ or w, the (e, f)th element of
the FIM J¢ is given by
0?L(Y;
[J¢ EY{ L }
9Oy
(DB)" (3 (Dﬁz))
= 2R
{; (75e) ("%
L H
o < oY >
= 2R B < By, . (57)
Let us now evaluate the off-diagonal entries of the FIM J,,.
For1l <e, f <W,the (e, f)th element of the FIMs Jg¢, Jo.,
and Jg., can be written as

= (L ol (0Y

Jogl.; = 2%{; (ﬁe,z 29, (%51‘,1) ,  (58)
L H

* a’l;be a’lpf

[JBw]ef = 2% {lz ( e,l 89 ) <awﬂf,l) } 5 (59)
L o

Tol, _2%{§:< ela¢e> ( fﬁfl)} (60)

Furthermore, we have:
Jpo =I5, Joo =I5, Jog=J0,.

e CRB of 6: Let us introduce the vector p = [¢”,wT]T.
The FIM in (33) can be rewritten as

3, = {JG Jep} ,

61
I 3, (61)

where we have:
J Jpw
Jop=[Jop Jow| =T55 , I, = [Jj:p J¢w ] )
(62)
Invoking the Woodbury matrix identity for the partitioned
matrices, we eventually obtain the CRB of 0 as

E {||é - 0||2} > Tr ((Jg - Jng;,lJpg)_l) . (63)

where J ;1 can be obtained by once again invoking
the Woodbury matrix identity for partitioned matrices as
follows

S W4, J5t

w
-1
p _J;1JW¢W (Jw — J“,¢J;1J¢w) ’
(64)
where we have W = (Jg — J¢wJ;1J“,¢)71
o CRB of ¢: Similar to (63), the CRB of the delay vector

¢ can be obtained as

E {Hc}b _ ¢|\2} > Tr ((qu _ J¢pJ;1Jp¢)‘1) . (65)

where, p = [0, w”]" and correspondingly, we have
Jo Jo
Jopp = [J¢9 J¢w] _']mb’ Jp = [Jwﬂ J:] .
(66)

The term J;l can be derived in a similar fashion as

shown in (64).

e CRB of v: The structure of the FIM J,, for the Doppler
shift vector w can be obtained similar to (63) and it is
expressed as

E{||& - w||?} > Tr ((Jw _ Jw,,J,;lJ,,w)’l) (67
where p = [07,¢"]". The terms J,, and J, are
similar to (66), while the evaluation of J* follows (64).
For obtaining the CRB of the velocity estimate, one

can use () for defining the transformation matrix T =
BwT c RWXW as

Owy  Odwy ., Oww
s e S
2 oww
oo 00" o ow 7 ow | _4AnT,
N x
Ow1 Ows ww
dvw Ovw Ovw
(68)
Therefore, the FIM of the velocity vector can be deter-
mined as
J, =TI, T, (69)
Finally, we have the CRB of the velocity estimate given
as

E{[v v} = Tr (I = 3035 Tpw) ). 0)

B. Bayesian CRB (BCRB) for RCS Coefficient Matrix

This section derives the BCRB in the mean squared error
(MSE) of estimation of the RCS coefficient matrix B. Upon
vectorizing (22), the received signal y = vec (Y) € CLN-Ux1
can be expressed as

y=(I.9D)B+aq,
—_———

D

(71)

where the effective parameter vector obeys 3 = vec (B) €
CLE>! and similarly q = vec (Q) € CEV-U*1_ The Bayesian
Fisher information matrix (BFIM) Jp € CLGXLC {5 defined

as [57]]
0L A 0L (B, Z
0= B0 i) " agopr ) 7

Jp Jp
where the matrices Jp and Jp denote the FIMs with respect
to the prior density of the parameter vector 3 and the output
vector y, respectively. After neglecting the constant terms, the
FIM Jp can be expressed as

2 .
- ton (G505 00
The FIM component Jp is given by
Jp=I T\ (74)
Thus, the BCRB is given by
E{IB-BI}} =E{I8 - BI3}
=Tr{J5'}

:Tr{(DHD+IL®Z_1)1}. (75)
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Fig. 4: (a) True target and (b) reconstructed target image of
target RCS values in AD domain at SCNR = —3 dB

TABLE III: Simulation Setup

Parameter Value
Number of grids G 150
Number of targets W 3
Number of clutter N 2
Number of snapshots L 6
Number of transmit antennas /N 6
Number of transmit sub-pulses U 16
Number of receive antennas N, 6
Signal frequency f. 30 GHz
Sub-pulse duration 7}, 40us
Polar coordinate of receiver [Ry, ©r] (95,0°)
Polar coordinates of the targets [Rw, pw]| | (20.66,52.64°),
(Ww,w=1,2,--- | W) (25.11,54.73°) ,

(51.13,12.08°)
Velocity of targets (ve) (5,2,—10)m/s

V. SIMULATION RESULTS

For characterizing the algorithm’s target localization perfor-
mance, we consider a mmWave MIMO radar system having
the parameters specified in Table Each element of the
transmit signal matrix X € CN¢*V is a QPSK symbol of the
form {+\/E}, & j\/E, }, where E, is the energy per bit of the
QPSK symbol. The RCS coefficients of the targets and clutter
are generated as i.i.d. samples of a zero-mean symmetric
complex Gaussian distribution with target and clutter variances
of 02 = 10dB, 0?2 = 12dB, respectively. The noise samples
are also i.i.d. zero-mean symmetric complex Gaussian of unit
variance. The radar imaging scene spans the AoA and AoD
region of [0,7) and the Doppler shift spans in the region
[—1.5,1.5]. Furthermore, let us define the target to clutter ratio
(TCR) as the ratio of target variance to clutter variance. A high
TCR represents a weaker clutter in comparison to the targets,
and vice versa. The signal to clutter-plus-noise ratio (SCNR)
is defined as SCNR = Eba;;i“}g

Fig. [ juxtaposes the image of the radar scattering scene for
the true target parameters to that of the respective estimated
values. The color bars at the side denote the RCS coefficient.
One can observe that the proposed SBL-based algorithm is
capable of accurately identifying the locations of all the
targets considered. Interestingly, it can be observed from the
reconstructed image that the clutter components appear around
the zero velocity, thereby, helping in the identification of the
target parameter estimates from the clutter components.

We define the root mean squared error (RMSE) metric
to quantify the algorithm’s parameter estimation accuracy as

follows

RMSE, =

1 M. W
T 2 2 (e —na)(6)

=1 w=1

where we have 7, € {04, Pw, Vw }-

Fig. 5] (a) and (b) plot the RMSE of the estimated AoD and
Ao0A values corresponding to different SCNR values both for
the proposed SBL method and for the existing techniques.
It can be observed that the RMSE values decrease upon
increasing the SCNR. The proposed scheme outperforms both
the existing CS-based OMP scheme [55] and the subspace-
based MUSIC scheme [56] in the low SCNR regime, despite
its lower dictionary overhead. The OMP scheme does not
optimize the off-grid error between the true parameter and dic-
tionary grid value and hence yields the poorest performance.
The MUSIC algorithm deviates from the true values because
it frequently suffers from rank deficiency of the covariance
matrix for the case of correlated angles formed by closely
spaced targets. Moreover, as observed in the low SCNR regime
of Fig. [5] the MUSIC algorithm has a poor performance in
comparison to OMP. This is due to the fact that at low SCNR
values, the signal is heavily corrupted by the clutter-plus-
noise components and leads to a lower signal subspace. By
contrast, the OMP algorithm exploits the 3D sparsity in the
AD domain and yields a marginally improved performance
over MUSIC. Additionally, the MUSIC technique is prone to
falsely identifying the peaks at clutter positions instead of the
real targets, hence leading to poor performance. The proposed
scheme also performs close to the root CRB approach, thus
validating its supremacy.

Fig. [6] (a), (b) and (c) plot the RMSE of the estimated
x-coordinate, y-coordinate and velocity, respectively, corre-
sponding to different SCNR values both for the proposed SBL
method and for the existing techniques. Since the position
coordinates are directly derived from the angles as given in
(7)), the location RMSE performance of the proposed scheme
is superior to other schemes. Furthermore, the velocity RMSE
performance seen in Fig. [6] () is also as expected.

Fig. [/| depicts the AoD and velocity RMSE performance
achieved versus the number of snapshots L for different values
of TCR. The RMSE performance improves upon increasing
the number of snapshots. However, the performance of the
proposed scheme saturates at approximately L = 22 snapshots,
which evidences its ability to provide accurate results with
fewer snapshots. As a further benefit, the RMSE performance
does not suffer at high TCR values, since it is capable of
successfully isolating the clutter components from the targets.
Both the above properties render it ideally suited for practical
scenarios associated with a lower number of snapshots and
high clutter.

Fig. [§] portrays the normalized mean squared error (NMSE)
of the RCS coefficient matrix estimate B corresponding to
different receive SCNR yaluesz. The NMSE can be defined
as, NMSE = ﬁ vai”l ”T];‘]?Q“?, where M. is the number of
Monte Carlo trials. The propésed SBL technique is observed
to provide approximately 5 dB and 10 dB improvements over
the OMP [55] and the focal under-determined system solver
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Fig. 5: RMSE versus SCNR for estimation of (a) AoD and (b) AoA of targets for the proposed SBL, MUSIC and OMP
algorithms
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Fig. 6: RMSE versus SCNR for estimation of a) x-coordinate b) y-coordinate c¢) velocity of targets for the proposed SBL,
MUSIC, and OMP algorithms

TABLE IV: True target parameter values for Fig. |§|

Parameter Target 1 Target 2 Target 3
x-coordinate (pg ) 12.5 m 12.5 m 12.5 m
y-coordinate (py) 16.95 m 17.3 m 16.375 m

velocity (v) 2 m/s 3 m/s 5 m/s

(FOCUSS) [59] schemes, respectively. This is because the
FOCUSS scheme is sensitive to the choice of the regularization
parameter, whereas the OMP is affected both by the stopping
criterion and the choice of the dictionary matrix, while the
SBL performance is robust to these scenarios. Additionally, the
NMSE of our algorithm is close to the BCRB, which validates
its efficiency.

Fig. [)illustrates the ability of the proposed super-resolution
SBL technique to resolve closely spaced targets. The target
parameter values are as shown in Table [[V] As observed
from the figure, the proposed super-resolution SBL scheme is
able to successfully distinguish multiple targets with a range
resolution of 0.6 m and velocity resolution of approximately
1 m/s.

Fig. [T0] depicts the estimation performance of both the
proposed scheme and of the on-grid SBL, where the latter
is configured by changing the granularity of the grid points
chosen. It can be readily deduced that the RMSE performance
of our scheme conceived is robust, leading to successful
localization of the target. However, the on-grid SBL perfor-
mance degrades significantly in comparison to the proposed
off-grid SBL for coarser grids. The on-grid SBL requires
approximately twice the dictionary size compared to the off-
grid SBL in order to achieve the same RMSE performance.
These results collectively imply that the proposed algorithm
offers a higher parameter estimation accuracy at a substantially
reduced complexity, rendering it ideally suited for practical
implementation.

To substantiate the proposed scheme’s contributions in com-
munication systems, we have presented the spectral efficiency
(SE) comparison of the hybrid precoding and combining
using the proposed positioning scheme with existing multiple
measurement vector (MMV)-based sparse Bayesian learning
(MSBL)-based hybrid precoding and combining scheme in
[58]]. We assume that the targets act as scatterers in mmWave
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MIMO channel H = 23/:1 Buwdyclelww e CMrxMe,
Consider a setup with N, transmit symbols and Ngg RF
chains. Once one obtains the path state information of the
targets (scatterers) such as AoA ¢, AoD 6, Doppler shift w
and RCS coefficients(channel coefficients) 3, the RF precoder
Frr € CMeXNer gnd RF combiner Wgp € CMrxNer cap
be designed by choosing the dominant transmit and receive
steering matrices, respectively. Specifically, we arrange the
estimated RCS coefficients (channel coefficients) in a decreas-
ing order, |,Bwl\ > |,8w2\ > > |ﬁww| Thereafter, the RF
precoder Frr and RF combiner Wgr are designed as

Frr = [c(wy), c(ws), - -

1 (77
Wrgr = [d(w1), d(ws), - - -

(78)

) C(wNRF>]7
) d(wNRF)]'
Upon performing singular value decomposition (SVD) of the

effective channel H = WﬁIFHFRp = UXVH, the baseband
precoder Fgg and combiner Wpg can be designed as Fgg =
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Fig. 11: Spectral Efficiency comparison of the proposed
positioning scheme and existing MSBL-based hybrid
precoding and combining scheme in [S8]

V,Wgg = U. One can observe from Fig. [IT] a significant
SE performance gain using the proposed positioning scheme.
The improved SE performance is attributed to the fact that the
RF precoder Frr and RF combiner Wgg designed from the
proposed positioning scheme provides significant beamform-
ing gain compared to the scheme proposed in [58] which does
not account for the off-grid errors.

VI. CONCLUSIONS

A joint angle-velocity-RCS coefficient estimation algorithm
was devised for the localization of multiple targets in a bistatic
mmWave MIMO radar system operating in the face of clutter.
The proposed scheme exploits the 3D-sparsity of the target in
the AD domain for jointly estimating the target parameters,
such as its velocity, angles and RCS coefficients. In order to
mitigate the estimation errors arising due to grid mismatch,
an innovative SBL algorithm was formulated for recursively
updating the parameter grid points in each iteration, thereby
ensuring that they approach the true target parameter values
upon convergence. The AD-domain representation also helps
us to distinguish the estimated target parameters from the
clutter. We also derived the CRBs for target parameter estima-
tion to benchmark the estimation performance. Our simulation
results validated the superiority of the proposed framework
compared to the existing solutions. Possible future extension
of this work might consider the introduction of reconfigurable
intelligent surface (RIS) to tackle the challenging problem of
target localization in the blind zone, wherein the transmitted
signal is unable to reach the target due to obstacles in the LoS
path.

APPENDIX A

PROOFS OF (36), (37), (38), (39
We present the detailed derivations for (36), 37), (38), (39).

A. Update for z in (36)

The objective function in (30) can be rewritten as follows
after ignoring the independent terms

€M) €M) =

YR ) tw

[0 (BIY. 20, e e, ) 1n p(Bla) B

L(z, egk)

+ /p (B\Y,z(k), egk)7 e, efﬁ) In p(z)dB

G G L
=(a+ L) Zlnzg - bZzg —Tr (Z T, <€§k’)’ k), 65;“)) ’
g=1 g=1 =1
(719)
where we have Y, (egk), eS,’“>, e‘(dk)) = MNZH + 3. Upon
differentiating the above expression with respect to z, and
equating it to zero, we obtain (36).

B. Update for €; in

After ignoring independent terms, the objective function in
(3T can be rewritten as follows

E(z(k+l),et,e

[P BV p (VB e, ). ) B

B )., ...) =

T Tw -
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(30)
where {Ivlt = W, + E,diag (¢;) and c is a constant term. Upon

differentiating the above expression with respect to the offset
vector €; and equating it to zero, we obtain (37).

C. Update for €, in (38)

Upon ignoring the independent terms, the objective function
in (32) can be rewritten as follows

L, e ) =

/p <B|Ya ) ) In p(Y‘B,Z(kJrl), 6§k+1)7 [ E&k))dB

L
= - Z (YI — C]:}rl,l,l)H(yl — \ilrul) — LTr(lilTE\ilf>

S (3% {EflET © (UUH 4 LE)}) e +2pfe, +c,
(81)
where ¥, = W, + =E,diag(e€,), and c is a constant term. Eq.

(38) is obtained after differentiating the above expression with
respect to the offset vector €, and equating it to zero.



D. Update for €, in (39)

After ignoring the independent terms, the objective function
in (33) can be rewritten as follows

£(Z(k+1)’ Engrl)7 6$k+1)

76w|'a'a'a') =

/p (B|Y7 RIS ) In p(Y|B7 Z(k+1)7 61(£k+1)7 6'(rk+1)a ew)dB

- Z (Yz - ‘iwﬂl)H(Yl — \f'wul) — LTr(EIWE'if)

el (afe {Ewa ® (UU¥ + Lz)}) € +2pe, ngcz,)

where \ilw = W, + E,diag(e,), and ¢ is a constant term.
Upon differentiating the above expression with respect to the
offset vector €, and equating it to zero, we obtain (39).
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