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A B S T R A C T   

Energy yield estimation for photovoltaics (PV) plays a crucial role in the growth of renewable energy. To reduce 
uncertainty in these estimations, having a spectral resolved irradiance is key. In the field of PV, radiative transfer 
models (RTMs) and spectroradiometers are commonly utilised to determine spectral solar irradiance, which is 
crucial for assessing spectral effects. However, these methodologies have inherent limitations; RTMs require 
precise and complex inputs of aerosol and meteorological data, while spectroradiometers entail significant costs. 
With the advancement of machine learning (ML) techniques, a data-driven spectral irradiance model is proposed 
in this study, which only requires the global horizontal irradiance (GHI) measured by pyranometer and the 
reference cell as input. Spectral data and meteorological data collected by Solar Energy Research Institute of 
Singapore (SERIS) at four sites across three continents are used for the training and testing of our models. We 
examined the viability on spectra modelling of three ML techniques including Long Short-Term Memory net
works (LSTM), Random Forest (RF) algorithms and Extreme Gradient Boost (XGBoost). XGBoost achieves re
latively good accuracy; additionally, the computational cost is much lower compared to LSTM and RF. The 
proposed ML model shows an overall R2 of 0.974 in comparison with 0.646 of the SMARTS model in the 
spectrum range 350.4–1052.4 nm. The ML models outperform the SMARTS model particularly under inter
mediate and overcast conditions. We have also shown that a model trained on data from a specific site cannot be 
effectively applied to other locations.   

1. Introduction 

Solar irradiance is one of the key factors determining the perfor
mance of photovoltaic devices (PV). Most modern PV devices are de
veloped and tested under the AM1.5 STC conditions defined in ASTM 
G173–23 (ASTM, 2013) [3], which is modelled using SMARTS2 with 
1976 U.S Standard Atmosphere [15]. However, the solar irradiance at 
the location of the actual deployment could be significantly different 
compared to AM1.5 depending on the composition of the atmosphere, 
the position of the sun and the angle of incidence (AOI). This leads to a 
range of spectral effects on PV system components and applications. 
Dirnberger et al. [10] analysed the impact of solar spectral irradiance 
on different cell technologies with measured data from Fraunshofer ISE 
in Germany, demonstrating that the spectral gain varies from 0.6% for 
copper indium gallium selenide solar cell (CIGS) cell to 3.4% for a-Si 
cell. In a similar study, [11] with spectra data modelled using 
SPCTRAL2 [30], reported an efficiency difference ranging from −10 to 
15% between different seasons for a-Si cells and 4% for c-Si cells. For 

more recent tandem solar cells and perovskites solar cells, which show a 
very different spectral response, the research from Hörantner and 
Snaith [23] shows that their optimisations and band-gap tuning can be 
related to regional spectral distribution. It is evident that access to the 
spectral solar irradiance data is of great importance. 

In this research, we use global horizontal irradiance (GHI) as the 
target to measure the performance of the model, since it is the funda
mental input for solar decomposition models [34], transposition models  
[40], or empirical models [4]. 

The acquisition of solar spectra falls into two categories: field 
measurement with spectroradiometers and modelling with radiative 
transfer models. The ground measured data are considered more ac
curate compared with radiative transfer models. However, the avail
ability of measured spectral irradiance is very limited due to the high 
cost of these devices [39]. 

Therefore, site-specific spectra data are commonly generated using 
radiative transfer models (RTMs), which generate the spectra based on the 
location-specific information. A range of RTMs have been developed and 
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have been proven to have precision in atmospheric research, such as 
SBDART [32], SMARTS [15], Lowtran [24], Hitran [33], LibRadTran [12], 
FAScode [36], SPCTRAL2 [5]. Generally, the SMARTS model is preferred, 
as it requires much simpler input and offers fast execution speed, while 
maintaining 1–2% typical difference from the reference model and 5% 
overall experimental error when compared with the spectrally resolved 
measurements [16]. In addition, it can be used to calculate multiple dif
ferent output variables (43), including direct normal irradiance (DNI), 
GHI, diffused horizontal irradiance (DHI), albedo, which are commonly 
used for PV applications. However, like any other RTM, it relies on ac
curate aerosol and meteorological data input, which can be difficult to 
obtain. In addition, the SMARTS model is developed and validated for 
cloudless skies, which generates additional uncertainty when applying 
under overcast conditions. 

In recent years, the advancement of machine learning (ML) tech
niques is widely applied in solar irradiance predictions. Antonanzas 
et al. [1] reviews over 70 different solar irradiance prediction techni
ques, where 53% of the research utilises machine learning, namely, 
Artificial - (Neural Networks)(A-(NNs) - 24%), k-Nearest Neighbours (k- 
NN - 18%), Support Vector Machines (SVM - 18%) and Random Forests 
(RF - 5%). Gupta et al. [17] used auto-seasonal autoregressive in
tegrated moving average (auto-SARIMA) to perform long-term estima
tion on GHI for the next 5 years. In a more recent publication from 
Ramadhan et al. [31], for estimating solar irradiance, a comparison 
between the physical model and the machine learning model has been 
made utilising RNN, LSTM and Grated Recurrent Unit (GRU), demon
strating that machine learning models outperform physical models; 
LSTM and GRU were recommended for modelling time-series data with 
high data volume capacity. Gupta et al. [19] shows that the feature 
selection (FS) method gives better predictive performance than the 
feature combination (FC) method for GHI estimation. Successive work  
[18] shows that extra-trees (ET) outperforms Decision Tree (DT), RF, 
Gradient Boost (GB), Light Gradient Boost Machine (LGBM) when 
predicting GHI using FS. Gupta et al. [20] proposed a stacking ensamble 
(SE) model that integrates a range of models to ET model. It shows that 
the SE model works better than any individual base models. 

However, few studies focus on wavelength-resolved irradiance. 
Zhang et al. [42] built a low-cost spectrophotometer using data from a 
few irradiance sensors and then processed using an ANN ML model for a 
wavelength range of 360–790 nm. In a separate study, Le et al. [26] 
emphasised the correlation between irradiance at different wavelengths 
and proposed principal component analysis (PCA) and NN models to 
recreate the spectra with the irradiance value of representative wave
lengths. The success of ML in predicting and analysing data is the 
motivation for the current study. 

Solar spectra estimation using ML techniques is comparatively less 
explored while utilising multiple spectral wavelengths. Del Rocco et al.  
[9] demonstrates a method for estimating spectral irradiance using a 
machine learning regression model and high dynamic range (HDR) sky 
images, incorporating computer vision techniques, where the target 
spectrum range is between 350 and 1780 nm. A range of ML regression 
models were tested and presented, including ET, RF, KNN and linear 
regression (LNR). It was shown that tree-based model performed better, 
subsequently, ETR was determined to be the better model. Im
plementing such models requires complicated training data sets, where 
a sky scanner is required for spectral data and an all-sky HDR camera is 
required for sky images. As the trained model is not universal; it needs 
to be fine-tuned for the site of interest. 

In a separate study, del Campo-Ávila et al. [7] developed a data 
mining system that estimates solar global spectral irradiance in the 
range of 350–900 nm. In the reported model, the spectrum distribution 
is first determined using a cluster selection procedure, then a normal
isation factor is calculated and applied; RF was used for both clustering 
and normalisation. This model requires meteorological and atmo
spheric input and can be deployed under various conditions. However, 
the model accuracy for air masses greater than 2.1 is not validated. 

Additionally, exploratory data analysis on input features is lacking; 
therefore, the requirement of multiple different features is not justifi
able. 

A more recent study from Chen et al. [8] demonstrates a machine 
learning approach to decompose broadband solar irradiance into visible 
(VIS) and infrared (NIR) components. Their study shows that XGBoost 
is the most accurate and reliable model for VIS and NIR decomposition. 
Easily accessible meteorological data have been used as predictors for 
the solar spectral components, which is a challenge to perform a wa
velength-resolved spectral irradiance estimation study. 

This work aims to provide further understanding on the interaction 
between meteorological data and spectral irradiance using a data-driven 
statistical method; additionally, determining which machine learning 
model out of the selected ones suits the spectral data best. In this study, 
three different ML models are investigated, XGBoost, LSTM, and RF. 
XGBoost algorithm was first developed by Friedman in 2001 [13]. With 
good regularisation in regression, it can show good tolerance against the 
variance and noise in long time series data. XGBoost also comes with good 
non-linear relationship handle and scalability for larger data sets. RF was 
first designed by Breiman [6]. RF is a set of decision trees that can be 
helpful in avoiding overfitting. It also shows good ability in handing 
missing data. LSTM was developed by Hochreiter and Schmidhuber [21] 
in 1977 and is a type of Recurrent Neural Network (RNN), famous for 
handling sequential time-series data. Published work has shown that LSTM 
behaves better in processing time series data [25,38,41]. 

Therefore, the aim of the present study is to investigate and un
derstand the interaction between meteorological data and spectral ir
radiance through data-driven statistical methods, identifying which 
machine learning model from XGBoost, LSTM, or RF is the most ef
fective for spectral data estimation. By developing an accurate ap
proach for predicting spectral solar irradiance using readily available 
meteorological input, we address the limitations of SMARTS model and 
ML methods constraints. 

2. Model tunings and comparisons 

2.1. Data sources 

The training and testing sets for the presented ML models are based 
on site-specific data obtained from the Solar Energy Research Institute 
of Singapore (SERIS), with a temporal resolution of one minute for 
Germany, Australia, Singapore and China. The data set includes spec
tral GHI in Wm−2 nm, broadband GHI in W m−2, broadband DNI in W 
m−2, global tilted broadband irradiance (GTI) in W m−2 and meteor
ological parameters such as relative humidity (RH) in percentage, am
bient temperature (Tair) in degree Celsius, wind speed in ms−1, wind 
direction in degrees, and rainfall depth in mm. Broadband GHI and GTI 
are measured using both pyranometers and reference cells, covering a 
wide range of spectrum. The coordinates of the measurement site, the 
spectral range of the spectroradiometer, the tilt angle of the GTI sensors 
are presented in Table 1. 

For a fair comparison, it is crucial to use the accuracy of the 
SMARTS model as a reference. To generate spectra with the same 
minute-by-minute temporal resolution and maintain accuracy, we used 
RH and Tair data on site from SERIS data sets, and aerosol optical depth 
at 500 nm (AOD500) and ozone abundance (AbO3) from Aerosol 
Robotic Network (AERONET) [22] as input variables. AERONET data 
are Level 2.0, validated with manual quality assurance, post-field ca
libration, and are recommended for publications by Holben et al. [22]. 
Additional fixed inputs for the site are listed in Table 2. 

2.2. Selections of features 

The data from SERIS contain a series of data measured simulta
neously with the spectral irradiance data, including global horizontal 
irradiance measured by pyranometer (GHI), reference solar cells (GHISi) 
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and UV sensor (GHIUV), global tilted horizontal irradiance measured by 
pyranometer (GTI) and reference solar cell (GTISi), direct normal irra
diance measured by pyrheliometer (DNI), the temperature of the GHI 
reference cell (TGHI) and GTI reference cell (TGTI), rain depth, wind 
speed, wind direction and ambient humidity. Exploratory data analysis 
was performed for statistical measure of the different parameters to 
better use computational resources, reduce complexity, and gain a 
better understanding of the feature-to-target relations. 

Initially, linear regression was performed for all possible combina
tions of features with the 0.8 training ratio to obtain the baseline mean 
squared error (MSE). Then MSE% relative to the target variance was 
calculated, given by Eq. (1a) below: 

= ×MSE MSE 100%,
y

% 2
(1a) 

where y
2 is given by Eq. (1b): 

=
=n

y y1 ( ¯) ,y
i

n

i
2

1

2
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where n is the number of timestamps in the dataset, yi is the average of 
the irradiance value. Based on MSE%, the occurrence of each feature in 
the top 100 combinations with the lowest MSE percentage was calcu
lated, presented in Fig. 1. 

It is evident that GHI has a significant relationship with spectral 
irradiance. The UV irradiance, DNI, and temperature of the reference 
cells demonstrate a high correlation. However, these were not selected 
as training features due to limited data availability. As a primary aim of 
this study, we seek to minimise the number of meteorological inputs 
required for the determination of spectral irradiance. For this purpose, 
GHI data from reference cells and pyranometers are selected as key 
training features in the models because they are widely available across 
observation sites. Due to the sequential nature of the dataset, it is es
sential to include cyclic temporal features. However, this cyclical 
nature is not well represented by raw timestamps; the numerical integer 
difference between 23:00 and 00:00 is large, but they are only one hour 
apart in reality. Using sine and cosine transformations allows smooth 
transitions between the end and the beginning of cycles. For instance, 
the transformation ensures that the transition from December (12th 
month) to January (1st month) is consistent. Eqs. (2a) and (2b) are used 
for the transitions of the time series index: 

=n n
N

sin 2 ,sin (2a)  

=n n
N

cos 2 ,cos (2b) 

Eqs. (2a) and (2b) are applied to all cyclical variables, including month, 
date, day, hour and minute, where n is the cyclical variable and N is the 
upper limit of n. 

2.3. Model tunings 

To evaluate the performance of different models on spectral irra
diance, 18 wavelengths between 350.4 and 1052.4 nm were selected. 
To find the optimal parameters for different models, the model-related 
parameters were hyperparameter tuned. The hyperparameters used and 
their corresponding ranges, if applicable, for each model are presented 
in Table 3, Table 4 and Table 5. 

Table 1 
Data from SERIS       

Location Germany Australia Singapore China  

Coordinate (∘) 51.77, 11.77 −23.76, 133.88 1.28, 103.87 32.14, 114.03 
Phase (Year) 2017–2023 2017–2023 2019–2023 2020–2023 
Bandwidth (nm) 350.4–1052.4 350.4–1055.6 349.0–1053.0 363.7–1138.6 
GTI angle (∘) 35 24 10 32 

GTI = global tilted broadband irradiance; SERIS = Solar Energy Research Institute of Singapore.  

Table 2 
Fixed inputs for SMARTS    

Parameter Value  

Bandwidth (nm) 300.0–1200.0 
Altitude (km) 0.08 
Height (km) 0.002 
Solar constant (W m−2) 1366.1 [2] 
Aerosol model S&F_RURAL [29] 
Ground material Soil 

Fig. 1. Feature frequency as a function of wavelength.  
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3. Results and discussions 

After performing hyperparameter tuning for LSTM, XGBoost and RF 
for each of the selected wavelength using the aforementioned hy
perparameter parameter ranges, the model with the lowest root mean 
squared error (RMSE) is selected as the best performance model. To 
further increase the accuracy of the model, two stacking models, 
namely XGB_LSTM and RF_LSTM, were investigated, which are struc
tured using the best performance model of its own class. XGB is used as 
an abbreviation of XGBoost here. The stacking was defined in Eqs. (3a) 
and (3b): 

= × + ×XGB LSTM a XGB X a LSTM X_ ( ) (1 ) ( ), (3a)  

= × + ×RF LSTM a RF X a LSTM X_ ( ) (1 ) ( ), (3b) 

where X is the input feature, and a is a number between 0 and 1, which 
will be looped through to optimise the stacking model with the lowest 
RMSE. 

After constructing models from different classes for each wave
length, metrics of each model class is represented using the average 
value of the metrics of the best performance model on each selected 
wavelength, using Eqs. (4a), (4b) and (4c): 

= =MAE
MAE
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n
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where λi represents selected wavelengths, n is the total number of se
lected wavelengths. The performance of each model class on the se
lected wavelengths is shown in Fig. 2. The 2018 data are divided into 
80% training and 20% testing/validation, and all data from the 2019 
data were used for the unseen test. 

As shown in Fig. 2, the performance of all models in 2018 and 
2019 shows similar trends, helping to prove that the model is not 
overfitting. For nonstacking models, the LSTM model performs the 
worst for all three metrics. RF performs noticeably better than 
XGBoost, with 0.3% higher R2, 4.8% lower mean absolute error (MAE) 
and 4.9% lower RMSE. However, considering the significantly higher 
computational resources and the longer training time, XGBoost is in 
general a better alternative. Considering the case of stacking models, 
no significant variations were observed. When stacking RF and 
LSTM, the stacked model shows 0.05% higher R2, 0.7% lower MAE 
and 1. 1% lower RMSE compared to the RF model. When stacking 
XGBoost and LSTM, the stacked model shows 0.05% higher R2, 0.3% 
lower MAE and 1% lower RMSE. XGBoost is chosen for its relatively 
good accuracy and shorter training time. 

To better evaluate the performance of different models, the data 
sets were classified into clear, overcast, and intermediate using the 
clearness index (Kt), where Kt below 0.3 is classified as overcast, Kt 
between 0.3 and 0.78 is classified as intermediate, Kt above 0.78 is 
considered clear by Mercier et al. [28]. Kt is calculated using 
Eq. (5a): 

=K GHI
G

,t
0 (5a) 

where G0 is the extraterrestrial solar irradiance given by Eq. (5b): 

= +G I ncos( ) 1 0.034 cos 360
365

,z0 0 (5b) 

where I0 is the solar constant (1366.1 W m−2), and θz is the solar 
zenith angle calculated using Eq. (5c): 

= + Hcos( ) sin( )sin( ) cos( )cos( )cos( ),z (5c) 

where θ and H are given by Eqs. (5d) and (5e): 

Table 3 
LSTM hyperparameters    

Hyperparameter Range  

Hidden dimensions 50, 100, 150, 200, 250, 300 
Learning rate 10−6, 10−5, 10−4, 10−3, 10−2, 10−1 

Batch size 32, 64 
Number of layers 1, 2 
Dropout rate 0.2 

LSTM = long short-term memory.  

Table 4 
XGBoost hyperparameters    

Hyperparameter Range  

Max depth 3, 6, 9 
Learning rate 10−3, 10−2, 10−1 

Number of estimators 100, 200 
Subsample 0.7, 0.9 
Colsample per tree 0.7, 0.9 

Table 5 
RF hyperparameters    

Hyperparameter Range  

Number of estimators 100, 700 
Max depth 50, 300 
Minimum sample split 2, 9 
Number of layers 1, 9 

RF = random forest.  

Fig. 2. Model comparisons using different evaluation metrics: (a) R2, (b) RMSE, (c) MAE. R^2 = R-squared; MAE = mean absolute error; RMSE = root mean squared 
error. 
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= DOY23.45 sin 360
365

( 81) ,
(5d)  

=H Time15 ( 12),solar (5e) 

where DOY refers to day of the year. 
To show the variations between each model, finer hourly resolution was 

investigated, and three wavelengths are picked, including 373.7, 671.1, and 
939 nm. The predictions against timestamps for each wavelength under 
clear, intermediate, and overcast conditions are plotted in Fig. 3. 

From Figs. 3(a1)−(a3), it can be concluded that all models effec
tively capture the trend of underlying changes in irradiance over time. 
The difference between a standalone model and a stacking model is 
minor on a minute-by-minute scale, which aligns with observations 
with overall model performance. Categorised by sky type, it is notice
able that ML models work particularly well under overcast conditions 
and intermediate conditions, under which RTMs cannot accurately es
timate or require additional meteorological data to process. It can also 
be seen that the ML models capture the trend worse at a longer wa
velength from Figs. 3(a3), (b3) and (c3), which resulted from the lack of 
highly dependent humidity data at longer wavelength. 

Stacking models make minor differences compared to standalone 
models; scatter plots of the XGBoost model at 3 wavelengths are shown 

in Fig. 4, where solar zenith angles that are over 85 degrees are 
trimmed as they involve artificial errors when calculating extra
terrestrial solar irradiance. 

The subgroups of overcast data are well clustered along the trend 
line, showing the least number of outliers. Data under intermediate 
conditions are more scattered, followed by the most discrete data under 
clear conditions. Similarly to the findings from the timestamp plots, 
model predictions globally also deviate further from the actual values at 
longer wavelengths, as irradiance outside the visible spectrum experi
ences more absorption. 

Given that XGBoost provides relatively good accuracy and computa
tional efficiency, we performed a full-spectrum exploratory data analysis 
to demonstrate the impact of different input features on each wavelength. 
As shown in Fig. 5, we plotted the R-squared (R2) at each wavelength for 
the highlighted input features identified in the preliminary linear regres
sions in Fig. 1. The models here were hyperparameter tuned using the 
same hyperparameter range as in Table 3. From the plot, it is evident that 
using GHI alone results in poorer performance across the spectrum. By 
adding GHI measured by a reference cell, the model performance improves 
significantly, especially at longer wavelengths in the NIR zone. In
corporating GHI measured by UV sensors leads to a significant improve
ment at shorter wavelengths. The improvements from introducing DNI and 
humidity are minor. In particular, the addition of temperature results in 

Fig. 3. Model predictions for wavelengths 373.2 nm, 671.1 nm, and 939.0 nm: (a1)–(a3) Clear day predictions, (b1)–(b3) Intermediate day predictions, (c1)–(c3) 
Overcast day predictions. 
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slight improvements in the NIR zone. Apart from that, it is noticeable that 
the accuracy of the model gradually drops towards NIR. At longer wave
lengths, the sensor sensitivity typically declines, atmospheric absorption 
intensifies, and the signal-to-noise ratio worsens. Additionally, calibration 
drift or limited data coverage in this spectral region can hamper learning. 
Combined with potential complexities in infrared interactions, these con
ditions can reduce the accuracy of the model compared to lower wave
lengths. To gain deeper insights into the role of each predictor, SHapley 
Additive exPlanations (SHAP) analysis was conducted on 10 evenly spaced 
wavelengths within the measurement spectrum range. The Shapley value, 
originally formulated in cooperative game theory as a unique solution for 
fairly distributing payoff among coalition members [35], has become a 
cornerstone for explaining complex machine-learning (ML) models [14]. 
By enumerating all possible feature coalitions, it quantifies the marginal 
contribution of each input while preserving axioms of efficiency, sym
metry and additivity. Lundberg and Lee [27] introduced SHAP, an effi
cient framework that embeds Shapley values in additive feature-attribu
tion models, enabling fast, model-agnostic explanations even for deep 
networks and ensemble learners. In photovoltaic (PV) research, SHAP 
analyses are increasingly used to uncover the physical drivers behind 
predictions of solar irradiance, module temperature and power output. 

Fig. 4. Scatter plots for three wavelengths 373.2 nm, 671.1 nm, and 939.0 nm using different models: (a1)–(a3) XGBoost Model, (b1)–(b3) LSTM Model, (c1)–(c3) RF 
Model. LSTM = long short-term memory; RF = random forest; XGBoost = extreme gradient boost. 

Fig. 5. Exploratory data analysis of input features for XGBoost. XGBoost = 
extreme gradient boost. 
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Tree-based ensembles coupled with SHAP have clarified how aerosols, 
cloud fraction and solar geometry influence global radiation forecasts  
[37]. Chen et al. [8] used SHAP to explain the contributions from me
teorological data on reconstructing the narrow-band solar spectra using 
XGBoost. In our SHAP analysis, XGBoost models for each wavelength have 
been hyperparameter tuned based on Table 3 with a 0.8 training ratio. As 
shown in Fig. 6, we observe that GHI and GHISi have the highest impact 
across the spectrum. In the UV zone, a higher value of GHI corresponds to 
an increased prediction, while this turns to the opposite in the VIS and NIR 
zones. It is noticeable that the impact of the lower GHI increases from UV 
to VIS zone. Across the spectrum, the lower GHISi value has less influence 
on the models’ output compared to the higher GHISi value. Another no
ticeable pattern is how GHIUV affects the model’s output in UV and near 
VIS, which can be understood from both a data-driven and a physical 
perspective. The UV sensor is specifically designed to respond to ultra
violet radiation, so its prominence in UV predictions aligns well with its 
intended sensing function. This suggests that the model not only captures 
statistical correlations, but also utilises physically meaningful features. The 
SHAP analysis supports the selection of GHI and GHISi as important 

features, highlighting their strong contribution to the predictions of the 
models. 

As shown in Fig. 7, comparisons of spectral irradiance between 
SMARTS and proposed XGBoost models have been made under 3 
timestamps, representing clear sky conditions, intermediate condi
tions, and overcast conditions. Under clear sky conditions, both the 
SMARTS and XGBoost models perform well, showing a R2 value of 
0.89 and 0.93 respectively. However, as clarity increases, the per
formance of the SMARTS model drops dramatically with R2 values of 
−2.17 and −345.04 for intermediate conditions and overcast con
ditions, reflecting its limited application scenarios under clear con
ditions only. In contrast, the XGBoost model demonstrates precise 
estimation of the spectrum under 3 conditions, especially for over
cast conditions, which agrees with the conclusion drawn from the 
scatter plots. 

The model derived from Germany data is evaluated at other sites, 
including Australia in 2020, China in 2021 and Singapore in 2020. As 
shown in Fig. 8, the performance of the models is significantly worse at 
some absorption bands, indicating that the models are site specific. 

Fig. 6. Feature importance for XGBoost at 10 evenly spaced wavelengths. XGBoost = extreme gradient boost.  

Fig. 7. Comparison between SMARTS and XGBoost models under different sky conditions: (a) Clear, (b) Intermediate, (c) Overcast. XGBoost = extreme gradient 
boost. 
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4. Summary and conclusions 

This study has demonstrated that machine learning (ML) models can 
effectively estimate solar spectra based on GHI measured only by a pyr
anometer and a solar reference cell. The models employed in this research, 
including LSTM, RF and XGBoost, have been shown to be more precise 
than the SMARTS model with 45.2%, 51.2%, 50.8% lower R2 respectively. 

Although model stacking provided minor performance improve
ments compared to standalone models, it was observed that LSTM 
models performed significantly worse than RF and XGBoost models 
with 4% and 3.6% lower R2 respectively. Among the models, RF slightly 
outperformed XGBoost but at the cost of significantly higher compu
tational resources, making XGBoost an efficient alternative. 

To evaluate the performance of the model under varying sky conditions, 
the data were classified into clear, intermediate, and overcast skies. All ML 
models demonstrated robust adaptability throughout the day in different 
sky conditions and wavelengths. In particular, LSTM models exhibited 
fewer abnormal peaks, likely due to their tolerance for overfitting, whereas 
RF and XGBoost models provided better fits over extended time-spans. 

Compared to the SMARTS model, the machine learning (ML) models 
generally exhibited better fitting accuracy under overcast conditions 
compared to intermediate and clear conditions. Specifically, LSTM 
models tended to underestimate spectral irradiance under overcast 
skies and overestimate it under clear skies. This accounts for their re
latively poorer performance compared to the RF and XGBoost models. 
The tendency for overestimation under clear conditions, particularly at 
longer wavelengths, may be due to the lack of additional input, such as 
humidity. From the exploratory data analysis conducted for XGBoost, it 
can be concluded that GHI measured by UV sensors can significantly 
improve model performance in the UV zone. GHI measured by a re
ference cell improves performance throughout the spectrum. Including 
temperature can slightly improve model performance in the NIR zones. 

This research underscores the viability of ML techniques for solar 
spectra estimation, revealing significant improvements over the widely 
used radiative transfer model, SMARTS. However, ML methods appear 
to be site-specific. Future works will focus on improving the general 
applicability of ML models. 
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