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ABSTRACT 
The vibration of a tyre is predicted using the wave finite element (WFE) method. The material 
properties are considered to be frequency dependent. The WFE method starts from a 
conventional finite element (FE) model of only a short section of a structure, which is uniform in 
one direction. Existing element libraries can be fully utilised and the size of the FE model can be 
very small. Free wave propagation characteristics are extracted from the dynamic stiffness 
matrix of the FE model. The forced response is calculated using the wave approach. An 
approach for determining the amplitudes of the directly excited wave is proposed to reduce 
numerical difficulties. The method is applied to a tyre FE model formed using ANSYS. The 
material properties of rubber are considered to be frequency dependent. The free wave 
propagation is shown including nearfield waves. The predicted forced response is compared 
with experimental data. Good agreement can be seen on the whole.  
 
 
1. INTRODUCTION  
Tyre noise is becoming a significant source of traffic noise [1] and understanding the vibrational 
behaviour of a tyre is thus becoming more important. At high frequencies, where FE models 
become impractically large, knowledge of the wave properties of a structure is of great value. 
Wave approaches can then be used. In this paper, the WFE method [2,3] is applied to model 
the free and forced vibration of a tyre. The formulation is first reviewed. Element matrices of a 
short section of a uniform structure are post-processed to yield the wave behaviour. The 
matrices can be obtained from a conventional FE method and a commercial package. This is in 
contrast to the spectral finite element method [4]. A short section of an unloaded tyre is 
modelled in ANSYS. Complete structural details can be included, which may be difficult in 
analytical approaches (e.g. [5]).  
 
 
2. FORMULATION OF THE WFE METHOD 
This section describes the formulation of the eigenvalue problem for determining free wave 
propagation characteristics from a conventional FE model. 
 
2.1 Dynamic stiffness matrix 

Consider a short section of length ∆  of a uniform waveguide. The dynamic equation of the 
section can be written as [3] 
 

 =Dq f ;  
2

jω ω= + −D K C M  (Eq. 1) 
 

where D  is the dynamic stiffness matrix, q  is the displacement vector, f  is the force vector 

and , ,K C M  are the stiffness, damping and mass matrices, which may be formed using a 

commercial FE package. Time harmonic motion 
j t
e

ω
 is implicit through this paper. If the section 

has interior nodes, the associated degrees of freedom (DOF) can be condensed by assuming 

that no external force is applied to the interior nodes [2]. (Eq. 1) can then be expressed in matrix 
form as 
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where the subscripts L  and R  represent the left and right hand side of the section.  
 
2.2 Free wave propagation in a uniform waveguide 

After applying the periodicity condition R Lλ=q q , the transfer matrix can be expressed in the 

form of an eigenvalue problem as [2] 
 

 
q q

f f

λ
   

=   
   

φ φ
T
φ φ

 (Eq. 3) 

 

where the transfer matrix T  is formed from the elements of the dynamic stiffness matrix. The 

eigenvalues of (Eq. 3) represent the wavenumbers k , i.e. 
 

 
jk
i

i eλ − ∆
=  (Eq. 4) 

 

for the ith wave mode. The wavenumbers may be real, imaginary or complex. The associated 
ith wave mode is given by the eigenvector;  

 

 
T

T T

i qi fi
 =  φ φ φ  (Eq. 5) 

 

where 
T⋅  is the transpose. The wave mode contains information about both the nodal 

displacements and associated internal forces. For uniform waveguides, there exist positive- and 

negative-going wave pairs of the form ijk

i eλ ∆± = ∓
 and the eigenvalues and associated 

eigenvectors are ( ),i iλ +
φ  and ( )1 ,i iλ −

φ . The superscripts ±  represent positive- and negative-

going waves. Positive-going waves are such that 1iλ <  or, if 1iλ = , the energy flow is 

positive, i.e. { }HRe 0>f q�  where 
H⋅  represents the complex conjugate transpose. 

 

Numerical difficulties may occur when the eigenvalue problem, (Eq. 3), is formed and solved. 
Zhong’s method [6] may be used to improve the matrix conditioning. Numerical issues and 
implementations are discussed in detail in [7]. 
 
 
3. FORCED RESPONSE CALCULATION USING THE WAVE APPROACH 
The forced response can be obtained using the wave approach. The amplitude of the directly 
excited waves is first found and the total wave amplitudes are determined by considering the 
propagation and reflection of the directly excited waves in general. A well-conditioned 
formulation to determine the amplitude of the excited waves is proposed. 
 
3.1 Excited wave amplitude 
When an external force is applied to an infinite waveguide, continuity of displacement and force 
equilibrium give 

 

 ,
q q ext f f

+ + − − + + − −= + − =Φ e Φ e f Φ e Φ e 0  (Eqs. 6) 
 

where 
±
e  is a column vector of excited wave amplitudes, 

ext
f  is the external force vector and the 

matrices 
q

±
Φ ,

f

±
Φ  contain the displacement or force eigenvectors, i.e.  1q q qn

± ± ±=   Φ φ φ�  

and n  is the number of wave modes. The excited wave amplitudes, 
±
e , may be determined 

from (Eqs. 6). However, numerical problems are likely to occur because of ill-conditioning. A 
numerical implementation is therefore proposed which exploits the orthogonality of the left and 
right eigenvectors of the transfer matrix [2]. When all the eigenvalues are distinct, orthogonality 

of eigenvectors implies ( )T

1 ndiag d d=Ψ Φ � , where Ψ  is the left eigenvector matrix 
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formed in the same manner as the right eigenvector matrix. The eigenvectors can be 

normalised so that 1id =  and 
T =Ψ Φ I , where I  is the identity matrix. With the normalised 

eigenvectors, premultiplying (Eqs. 6) by 
T

Ψ  leads to 
 

 
T T
, .

q ext q ext

+ + − −= − = −e Ψ f e Ψ f  (Eqs. 7) 
 

(Eqs. 7) are always well-conditioned. In practice, only the first ( )m n≤  waves might be retained, 

these being waves for which ( )Im k  are small. The rapidly decaying waves often give a small 

contribution to the response. 
 
3.2 Total wave amplitude 

When a waveguide forms a ring or a toroidal shape such as a tyre, the wave amplitudes 
±
a  at 

the excitation point are given by 
 

 ( ){ } ( ){ }1 1

,L L
− −+ + − − −= − = − −a I τ e a I τ e e  (Eqs. 8) 

 

where ( )Lτ  is the wave propagation matrix whose diagonal elements are ijk Le
−

, and L  is the 

circumferential length of the waveguide. The displacement is then given by 

( )
1

n

i qi i qi

i

a a+ + − −

=

= +∑q φ φ .  

 
 
4. APPLICATION TO TYRE VIBRATION ANALYSIS 
The WFE method is applied to a tyre model. The dispersion relationship is determined including 
nearfield waves. The point mobility is calculated and compared with experimental data. 
 
4.1 Tyre model 
A test tyre with smooth tread (195/65R15) was provided by Bridgestone Corporation together 
with geometric and material property data. A section of the tyre was modelled using ANSYS 7.1 
as shown in Figure 1. A tyre is a complicated structure which is composed of several different 
rubbers, steel and textile fibres. The solid element SOLID46, which generates equivalent single 
material properties for a layer structure, was used. A series of elements was concatenated to 
represent the curvature in the circumferential direction. The angle of 1.8 degrees in the 
circumferential direction was modelled. An internal pressure of 200kPa was simulated by the 
application of surface loads on the elements. Necessary constraints including the fixed 
boundary conditions at the bottom of the section were imposed. The number of DOFs was 324 
after the condensation of interior DOFs. 
 

         
 

Figure 1.-Tyre model; (a) in the section, (b) in the circumferential direction. 
 
 
4.2 Frequency dependent material property 
The material properties of a rubber depend on frequency. The stiffness matrix was decomposed 

as ( ) ( )fibre rubber tensionf f= + +K K K K  where 2f ω π=  is frequency, the stiffness matrices 

(a) (b) 
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fibreK  and tensionK  represent the frequency independent contributions of the fibres and the in-

plane tension due to internal pressure. The latter was derived from the difference between two 
stiffness matrices associated with FE models with and without internal pressure. The frequency 

dependent properties of the rubber were included into ( )rubber fK . Since the stiffness matrix is 

proportional to the Young’s modulus E  if the Poisson ratio is assumed constant, ( )rubber fK  at 

a frequency f  is given by 
 

 ( ) ( )
( )

( ) ( ){ }0

0

1rubber rubber

E f
f f j f

E f
η= +K K  (Eq. 9) 

 

where ( )fη  is the frequency dependent loss factor and 0f  is a reference frequency at which 

the stiffness matrix ( )0rubber fK  is evaluated. 

 
In this numerical example, rubbers are assumed to behave like the American National 
Standards Institute (ANSI) standard polymer for which data is available in the literature [8]. In 

the frequency range of interest ( )0 2kHzf< ≤ , E  and η  may be approximated by  
 

 ( )( ) ( )log logE EE f fα β= ⋅ + , (Eq. 10) 

 ( ) ( )2logf fη ηη α β= ⋅ + . (Eq. 11) 
 

The coefficients 0.1, 0.01, 0.1E η ηα α β= = =  were estimated from the literature [8] and Eβ  was 

determined from given material data. For the tyre model, the effect of the stiffness change is 

small in the frequency range analysed because the magnitude of fibreK  (and tensionK ) is much 

larger than that of the change in ( )rubber fK . 

 
4.3 Free wave propagation 
The dispersion relationship is determined for an undamped case for the sake of clarity. Figure 2 
shows the polar wavenumber (rad/rad) below 600Hz for modes where the tread motion is 
predominantly in the plane of the tyre cross-section and not in the circumferential direction. 
Results for real, imaginary and complex (conjugates) wavenumbers are shown. Complex 
conjugate wavenumbers are only plotted close to their cut-off frequencies for clarity. Natural 
frequencies occur if Re(k)=1,2,··· and also if Re(k)=0 for the purely breathing modes [9] although 
they do not occur in the frequency range shown for the tyre model. 
 
The anti-symmetric A1 mode cuts-on first. This comprises the side-to-side motion of the tread as 
illustrated in the figure. In the illustrations of wave modes, the solid line is the original shape and 
the dashed line is the deformed shape. The A1 and symmetric S1 wave modes are bouncing 
modes where the belt mass is vibrating on the sidewall stiffness. The A2, S2 wave modes are 
typical cross-sectional modes. Curve veering between two wave modes implies that the two 
wave modes are not orthogonal, and the deformed shape in general changes with frequency.  
 
Negative group velocity can be observed especially for lower order wave modes. As the 
imaginary part of the complex conjugate wavenumbers becomes zero, two waves cut-on with a 
nonzero real wavenumber. One wavenumber increases with frequency while the other 
decreases implying a negative group velocity. The wave associated with the negative group 
velocity becomes a pure nearfield (with imaginary wavenumber) as frequency increases, and 
cuts-on again as a predominantly shear wave. The wave mode shapes change relatively rapidly 
with frequency, as the wave modes for TS1 at different frequencies illustrate. Above about 
400Hz, the existence of branches with negative group velocity cannot be clearly seen and the 
dispersion relationship becomes similar to that of a flat structure. The ‘apparent’ ring frequency 
is therefore estimated to be around 400 Hz, which agrees with previous literature [9]. 
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Figure 2.-Relationship between frequency and the polar wavenumber: ―: real, ····: imaginary, 
−·−: complex conjugate wavenumbers. Anti-symmetric (Ai) and symmetric (Si) wave modes, 

i=1,2,3. Ti denotes shear wave modes. 
  
4.4 Forced response 

The input mobility at the centre of the tread is calculated using the formulation of (Eqs. 7). For a 
point force excitation, only symmetric modes are then excited. The frequency dependent loss 

factor (Eq. 11) is now included in rubberK . All wavenumbers become complex because of the 

damping. Figure 3 shows the magnitude of the predicted and measured mobility. The 
experiment was performed in a freely supported condition using rubber strings such that the 
response below 30Hz is dominated by the boundary conditions. Good agreement can be seen 
on the whole. It should be noted that only about 70 pairs of positive- and negative-going wave 
modes are used to extract the numerical result. This implies that only 140 DOFs can express 
the dynamic behaviour of the tyre model below 2kHz. 
 
The response may be characterised by four frequency regions, i.e. (I) below the first resonance 
(at which the S1 mode cuts-on) where the sidewall stiffness dominates the system motion, (II) 
between the first resonance and the frequency where the S2 mode cuts on, in which the 
response is like that of a beam on a flexible foundation, (III) at middle frequencies where the 
response is somewhat constant and plate-like and (IV) at high frequencies where the response 
is similar to that of an elastic half space. However, the experiment shows more or less a flat 
response even at high frequencies. Possible reasons for this are as follows. In the experiment, 
the excitation area is finite (a circular area of diameter 23.5mm is excited) so that higher order 
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wave modes cannot be properly excited. In addition, there is a resonance of the experimental 
rig around 4kHz, which could contaminate the result. Agreement at low and middle frequencies 
could be improved by updating the FE model parameters.  
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Figure 3.-Magnitude of the Input mobility at the centre of the tread;  

―: the WFE result, ····: experiment. 
 
 
5. CONCLUSIONS 
The wave finite element (WFE) method has been applied to a tyre, including the frequency 
dependent material properties. The free and forced vibration of the tyre was determined. The 
FE model of a short section of the tyre was formed using the commercial package ANSYS and 
subsequently post-processed. The model had only 324 DOFs. Geometrical and structural 
details were included. Only 70 wave mode pairs (140 DOFs) were retained to predict the forced 
response. The dispersion relationship was found including nearfield waves and complex wave 
behaviour was observed. The forced response was determined by the wave approach in 
conjunction with a numerical implementation, which is always well-conditioned. Good 
agreement with experimental data was seen. It can be concluded that the WFE method is a 
powerful tool to investigate the dynamic behaviour of a complex structure with small calculation 
cost.  
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