
Towards Hardware Trojan Resilient Convolutional

Neural Networks Accelerators

Peiyao Sun1. Basel Halak1. Tom J. Kazmierski1

Abstract

Convolutional neural network accelerators are increasingly used in safety-critical applications, including

autonomous vehicles. Therefore, particularly vulnerable to hardware Trojan insertion, a security attack that takes

place during the development of integrated circuits. This work presents for the first time, a large-scale study of the

impact of hardware Trojan insertion on convolutional neural network accelerators, focusing on those that use

approximate commuting techniques, prevalent in embedded applications. We investigate three types of such

networks, MobileNet V2, ShuffleNet V2, and GhostNet, trained in datasets of grayscale speed limit sign images and

GTSRB. Our results show that certain parts of these architectures are more susceptible to hardware Trojan attacks,

specifically a specific set of procession elements, referred to as “important”, in the classification, Relu6, and Max

pooling layers, respectively. These findings are subsequently used to develop two countermeasures, the first relies

on selective hardware redundancy(SHR), and the second uses a combination of hardware and time

redundancy(SHTR). The proposed defenses are experimentally validated. Our results show that the SHR provides

speedy recovery from an attack while incurring between 6-10% area overheads. Whereas SHTR requires more time

to detect the Trojan, and its area overhead is much smaller (~ 0.3%).

Keywords Approximate Computing · CNN accelerator · Hardware Trojan · Lightweight countermeasure · Run-time

monitoring

1 Introduction

Convolutional neural networks (CNNs), a subset of Artificial

Intelligence algorithms, are essential for image recognition

tasks [1], with ubiquitous applications such as facial

recognition, and autonomous vehicles. and biometric

authentication. However, the integration of CNNs into edge

computing devices is challenging due to their constrained

energy budget and computation resources[2]. This contrast has

highlighted the need for CNN optimization and the creation of

specialized CNN accelerators [2-4], spurring research and

Peiyao Sun (corresponding author)

ps1a18@soton.ac.uk

Basel Halak

basel.halak@soton.ac.uk

Tom J. Kazmierski

t.j.kazmierski@soton.ac.uk
1 Electronics and Computer Science School, University of

Southampton, United Kingdom

development in this field. This led to the emergence of

lightweight CNN architectures such as MobileNet [5], [6],

ShuffleNet [7], [8], and GhostNet [9]. Additionally,

employing approximate computing (AC) technology has been

suggested to enhance CNNs, by utilizing approximate

multipliers, clipping networks, and reducing data lengths [10]–

[12]. These strategies facilitate the feasibility of conducting

CNN computations on edge devices. Simultaneously, in the

area of hardware CNN accelerators, a multitude of designs

have been put forward, including the DNNbuilder and Multi-

CLP accelerator [13], [14], yet the question of hardware

security persists as a pivotal concern to be addressed.

While safety is a theoretical prerequisite in the design and

manufacturing of accelerators [15], [16], the current market

conditions pose significant challenges. With the IC (integrated

circuits) supply chain distributed across global companies,

opportunities for hardware-level attacks increase significantly

[17], [18]. It is not feasible to assure the trustworthiness of all

personnel involved in IC production, exposing every stage of

the supply chain to potential hardware-level attacks [17], [18].

Furthermore, successful attacks on CNN accelerators can lead

to sensitive data breaches, degraded performance, and

hardware piracy [17], [18]. For instance, Hardware Trojans

(HTs) can be used to compromise CNN accelerators and such

设置了格式: 字体: (中文) DengXian, (中文) 简体中文(中

国大陆)

mailto:ps1a18@soton.ac.uk
mailto:basel.halak@soton.ac.uk
mailto:basel.halak@soton.ac.uk
mailto:t.j.kazmierski@soton.ac.uk

attacks are not rare. Several HTs aimed at CNN accelerators

have been proposed [19]–[24], underscoring the need for

robust protections against HT attacks in CNN accelerators.

Given the acute threats posed by HTs, a plethora of

countermeasures have been introduced. These

countermeasures combat not only general HTs but also those

specifically targeting CNN hardware accelerators. General

countermeasures include techniques like functional filler cells

[25], layout filling [26], design obfuscation [27], and encoded

circuits [28] aimed at preventing HT insertion. Pre-silicon

detection [29], structural testing, functional testing [30], [31],

and run-time detection methods [32] have been employed for

detecting HTs. Specialized countermeasures against HTs

targeting CNN accelerators include FM-ModComp [33],

which enhances the likelihood of HT triggering during testing,

and CLEANN [34], [35], which detects if the CNN input

images carry malicious information as trigger signals. Further,

two run-time detection methods from [36] successfully

identify abnormal behaviors in the PEs of MaxPooling layers.

However, all these countermeasures, barring run-time

detection methods, may falter under certain conditions, for

instance, when attacks involve a combination of hardware and

software Trojans [18] or use special sequences of

classification results to activate HTs [35]. To combat these

challenges, run-time detection methods are proposed as a final

line of defense. Although run-time detection methods usually

perform well against HTs, they introduce significant

overheads [18]. While some lightweight run-time detection

methods have been proposed to mitigate this issue, the

robustness of existing lightweight run-time detection methods

remains a concern [36].

Current research dominantly explores methods for inserting

HTs into CNN accelerators [19]–[24], while countermeasures

receive less attention [33], [34], and [36]. Remarkably, none

of these protection-oriented works provides a comprehensive

vulnerability analysis of the whole CNN accelerator system, a

crucial step for designing effective countermeasures,

particularly in the context of run-time detection methods. This

lack of vulnerability analysis is especially concerning for

accelerators based on AC, given that AC-based systems

inherently possess more vulnerabilities [37]–[40], leading to a

more complex protection design. Consequently, this paper

aims to fill this gap by conducting a thorough vulnerability

analysis of AC-based CNN accelerators, built on three popular

CNN architectures [6], [8], [9]. The goal of this analysis is to

determine which layer in each architecture, a hardware trojan

causes the most reduction in classification accuracy. This

knowledge is subsequently used to selectively protect these

vulnerable points in each design, which significantly reduces

the potential impact of a hardware Trojan while incurring

minimal implementation overheads. The contributions of this

work are twofold:

• A comprehensive vulnerability analysis of CNN

accelerators of ShuffleNet V2, MobileNet V2, and

GhostNet is carried out, wherein a hardware Trojan is

inserted in each layer of these architectures and its impact

on the classification accuracy was measured. The CNN

accelerators studied use TOSAM approximate multiplier

[41] and the HT which utilized to evaluate the vulnerable

level of every type of layers are based on the function

tampering HT proposed on [36]. Experiment results show

that PEs for ReLU6 layers, classification layers and

MaxPooling layers are the most vulnerable points in these

designs.

• Two countermeasures are proposed. The first combines

the traditional hardware redundancy [32] and

vulnerability analysis result, called selective hardware

redundancy. The second technique further reduce the

hardware overheads of the first countermeasure by

combing selective hardware redundancy and time

redundancy mechanism. Both countermeasures have

certain ability to correct errors. A comparison of the

overheads and performance of these defenses is also

included.
The remainder of this paper is structured as follows: In

Section 2 outline the research methodology and assumptions,

including the threat model and the analysis approach. Section

3 explains the experimental setups and discussed the results of

the vulnerability analysis. Section 4 developed the two defense

techniques and evaluate their security, detection time, and area

overheads. Finally, conclusions are drawn in Section 5.

2 Methodology

This section introduces the threat model adopted in this work

and explains the rationale of the analysis methodology.

2.1 Threat Modelling

Hardware Trojans refer to a hardware-level security attack

wherein, an adversary makes malicious modifications to the

integrated circuits during the design (e.g., IP companies),

implementation (e.g., SoC integration), or even the fabrication

stage (e.g., malicious IC factory). These changes aim to

sabotage the design functionality, and introduce a backdoor, or

facilitate information leakage [18], [42], [43]. The attacker is

typically assumed to have access to design files design tools or

the physical layout, as well as be proficient in IC design [18].

Hardware trojans inserted at the design stage by malicious IP

developers are difficult to detect, as they may involve subtle

modifications to the circuit designs that are hidden or

obfuscated. Techniques to defend against this type of attack

include the Unused Circuit identification technique [29],

which consists of identifying and removing suspicious

circuitry-those circuits not used or otherwise activated by any

of the design verification tests. However, such an approach

cannot protect against malicious modification of the design

specifications, which can feasibly take place at the IP

development place, for example, tampering with the training

data of a machine learning model can be used to generate a

malicious implementation of the model (e.g. machine learning

model for an autonomous car that does not recognize certain

traffic signs when a trojan is triggered), therefore the best

strategy to defend against a trojan insertion at the IP

development stage is to only use trustworthy companies and

avoid integrating open-source designs unless thoroughly

checked[18], [31]. Attacks at SoC integration and fabrication

stages are harder to avoid because of the outsourcing of the IC

implementation and fabrication, a trend that is very difficult to

reverse due to the significant costs associated with these tasks

and the need for affordable electronic systems[18]. Contrary to

a hardware trojan attacker at the IP development stage, an

adversary at the implementation/fabrication stage can only

make limited modifications to the original circuit not to

introduce an increase in the area or degradation in the

performance, which makes it easy for such Trojan to be

detected by typical verification and sign off tools[18], [31],

[43].

The threat model of this work is based on the threat model

proposed in the [44]. Comparing with the threat model in the

[44], we narrow down the range of the steps where adversaries

may be appeared. We only consider that HT attacks at the SoC

or fabrication stage, wherein the adversary can make limited

modifications to the digital design. The threat model is shown

in Fig.1.

The adversary's target is to manipulate the processing

elements (PEs) of the CNN accelerator to degrade its

performance. Specifically, the attacker aims to ensure that the

CNN accelerator operates normally when the hardware Trojan

(HT) is inactive, but misclassifies images when the HT is

triggered.

The primary challenges for the adversary in these two

phases are: first, gaining a deep understanding of the

integrated circuit (IC) design to insert the Trojan without

disrupting the normal functionality of the system; second,

remaining covert enough to bypass the verification and testing

stages [45].

Moreover, in both the SoC and manufacturing stages, any

modification may affect critical parameters such as system

timing and power consumption, which are commonly used to

detect hardware Trojans. As a result, attackers face significant

limitations, as tampering with large-scale processing elements

(PEs) can easily be detected through such deviations [45].

Attacks at the IP development stage such as those involving

malicious modification of specifications or training data are

beyond the scope of this work.

Fig. 1. Threat Modeling of Hardware Trojans

2.2 Principles of the Proposed Vulnerability

Analysis

The study aims to identify locations for a hardware trojan

insertion in the architecture or a CNN that leads to the most

degradation in the accuracy classification. To achieve this, the

first step is to modularize the CNN system and locate the

attackable area, this is done by dividing the network layers

into separate modules that are universally present in all

architectures, namely CONVLs, FCLs, BNLs, pooling layers,

activation layers, and CLLs. Three lightweight CNN

architectures are considered here, MobileNet V2 [6],

ShuffleNet V2 [8], and GhostNet [9], and a hardware

implementation was developed for each design. The second

phase is to devise a bespoke hardware trojan tailored for each

layer. Thirdly, each design is modified, and evaluated

experimentally, wherein only one processing element (PE) is

attacked each time. The subsequent analysis included an

estimation classification accuracy of the architecture before

and after each hardware trojan insertion. The outcome of this

analysis is subsequently used to develop an enhanced design

for the CNN accelerators that is more resilient.

3 Experimental Setups and

Implementation

This section outlines the hardware architecture of the CNN

accelerator, the structure of the hardware trojans used in this

work, and the experimental setups. It also provides a summary

of the evaluation results.

3.1 Hardware Architecture of CNN

Accelerators

The architecture of the three CNN structures used here,

MobileNet V2, ShuffleNet V2, and GhostNet, can be divided

into the following layers convolution (CONVL), Batch

Normalization Layer(BNL), activation layers, Max Pooling

layer (MPL)s global average pooling layers, concat layers, add

layers, fully connected layer (FCL), classification

layers(CLL), channel shuffle layers and channel split layers.

We did not adopt existing CNN accelerator architectures

because most do not employ approximate computing

components and are not open source. Instead, we designed a

custom accelerator incorporating approximate multipliers to

enable our security-focused analysis[46,47,48].

The core contribution of this work is a general strategy for

defending against hardware Trojans: when attacker

capabilities are limited, we identify and selectively protect the

most vulnerable components. This idea applies broadly to

RTL-level CNN accelerators. Furthermore, our mitigation

leverages the structural uniformity of processing elements

(PEs) in CNN accelerators[46,47,48] to reduce hardware

overheads of the runtime detection units, making the approach

architecture-independent and widely applicable. For RTL-

level CNN hardware accelerators with a large number of

identical processing elements (PEs), our general strategy for

defending against hardware Trojans is applicable, as are the

countermeasures we will describe later.

Each of these layers is implemented using its unique

procession elements (PE) to adhere to the modular design

approach explained in Section 2. The elements associated

with each layer have been implemented using either precision

or approximate computing multipliers. The work in [38] has

shown that the input data provided for a CNN image have

varied levels of importance with respect to the accuracy of the

resulting classification. Therefore, all the feature maps have

been divided into the critical region and the insignificant

region. The important features are processed with high-

precision PEs or important PEs and the unimportant features

can be processed with low-precision PEs or unimportant PEs.

The channel shuffle layer, channel split layer, and concat

layer are typically implemented as lockup tables in the system

memory, an approach that was also adopted in this work.

The structures of the CONVL and BNL are shown in Fig. 2

and Fig. 3. PEs for the CONVL mainly consist of one

approximate multiplier used to handle the multiplication

operation in the CONV operation, one register, one adder used

to handle the sum operation, and one counter used to match

the dimensions of the CONV kernels.

Fig. 2. Structure of processing element that for processing

convolutional layers and fully connected layers

The PEs for the BNL consists of one approximate multiplier

and two adders for processing BN calculation. In addition,

based on the content in the last paragraph, these two kinds of

PE have two different working accuracy levels with different

approximate multiplier accuracy levels. For activation layers,

the ReLU6 activation function which can limit the value of

feature between 0 to 6, is utilized instead of the ReLU

function in these three CNNs. This design decision was made

to align the implementation with the use case of CNN for edge

computing devices, most of which have constrained data

length. The structure of the ReLU6 units is shown in Fig. 4.

The structure of the PE of the FCL is the same as the PE in

Fig. 3.

Fig. 3. Structure of processing element that for processing

batch normalization layers

(a) Clean ReLU6 PE

 (b) Trojan inserted ReLU6 PE

Fig. 4. Structure of hardware units for processing activation

layers (ReLU6). (a) shows the structure of the clean ReLU6

PE and (b) shows the structure of the Trojan inserted ReLU6

PE. The section enclosed by the dashed line represents the

payload of the hardware Trojan.

The high-precision mode of the TOSAM approximate

multiplier shown in Fig. 5 used in the high-precision PE is

backward-compatible with the low-precision modes.

The additional layer adds the two features together and

stores them in memory. The functionality of this layer has

been implemented with only one adder.

Then, the three network structures used in this article

mainly use two types of pooling, the MPL, and the global

average pooling layer. The PEs of these two pooling layers are

shown in Fig.7 and Fig.6. The MPL selects the maximum

value through digital comparators. The PE of global average

pooling calculates the average value of every channel. When

the total number of features (assuming equal to N) in the one

channel is a power of two, shifting accumulated results is used

instead of the division, which can further reduce the overheads

of the whole system. Finally, for the CLL, the calculation of

the CLL is the same as that of the MPL, which is extracting

the maximum feature. The specific structure of PEs for

processing CLL is the same as the structure of Pes for

processing MPL which is shown in Fig.7.

In addition, the structure of the CNN accelerator adopted in

this paper is shown in Fig. 8. This accelerator is based on the

work in [49]. Different modules are formed by different PEs

that deal with different layers. Each module starts to work

after receiving the enabled signal from the controller. When

the corresponding work is done, a complete signal is given to

the controller so that the controller knows when to give the

start signal to the next sequential module.

Each module receives inputs (features, weights, parameters)

from memory and sends outputs (features) to memory.

The memory mapping unit in the controller determines

which memory address each PEs reads data from and sends

data to. The PEs for the CONVLs, BNLs, and FCLs are also

divided into low-precision PEs (unimportant PEs) and high-

precision PEs (important PEs).

In addition, although all ReLU6 layers’ PEs, MPLs’ Pes,

and addition layers’ PEs are at the same precision level, they

will also be divided into important PEs and unimportant PEs

for processing important features and unimportant PEs

respectively. Finally, the ratio of the number of PEs in the

low-precision mode to the number of PEs in the high-precision

mode is approximately equal to the ratio of the size of the

important region to the non-important region in the feature

map corresponding to this layer.

3.2 Hardware Trojan Insertion

In this section, several types of HTs which used to evaluate

the vulnerable level of every type of layers in CNN are

introduced. These HTs based on the HT designed in [36],

which was used to attack the MaxPooling layer. In this

section, this HT will be used to attack other layers including

CONVLs, BNLs, FCLs, MPLs, ReLU6 layers, and CLLs.

However, it is important to note that the design of hardware

Trojans is not the focus of this paper. The following

description of the hardware Trojan design is provided to offer

a comprehensive experimental background, enabling readers

to reproduce our work.

3.2.1 Hardware Trojan design

The HT in this paper is composed of two parts, the trigger

recognition unit, and the payload unit, the same as the HT in

work [36]. The accelerator architecture with HTs is shown in

Fig. 8. The modules circled by dashed boxes are all places

where HTs will be injected in this paper and the dashed unit is

the trigger recognition unit. The methods of injecting the HTs

are explained in detail in the following paragraphs.

(a) Clean TOSAM Multiplier

(b) Trojan inserted TOSAM Multiplier

Fig. 5. Structure of Clean and Trojan inserted TOSAM

multiplier which supports multiple accuracy working modes.

(a) shows the structure of the clean TOSAM Multiplier and (b)

shows the structure of the Trojan inserted TOSAM Muliplier.

The section enclosed by the dashed line represents the payload

of the hardware Trojan.

First, consider the trigger recognition unit. Because the HT

is not main content in this paper, the trigger mechanism of the

HT is same the most of the existing HTs [21]–[23]. The

trigger signal is hidden in the feature value, it reads the feature

value from the target memory address and then processes this

feature value to identify if the HT is activated. The result will

be sent to the payload section. When the trigger condition is

met, the result of the trigger recognition unit will activate the

payload unit.

This attack can be implemented on the convolutional layers,

batch normalization layers, and fully connected layers. The

payload units of HTs proposed in this paper can modify the

function of the compatible module in the high-precision

approximate multipliers in the PEs of the CONVLs, BNLs, or

FCLs. They also can modify the functions of the PEs in the

ReLU6 layers and MPLs. The specific attack purposes of HT

in different modules are introduced below.

• HTs in the high-precision approximate multiplier

change their mode to low-precision. The specific

structure of the attacked high-precision multiplier is

shown in Fig.5 (b). These HTs can be utilized to attack

CONVLs, BNLs, and FCLs.

• HTs in the ReLU6 cause the output of the ReLU6 to be

outside the expected range (0 to 6). The specific

structure of the attacked PEs of ReLU6 layers is shown

in Fig.4 (b).

• HTs in the MaxPooling PEs force modify its output

such that the minimum value is obtained as opposed to

the expected maximum. The specific structure of the

attacked PEs of MPLs is shown in Fig.7 (b).

Fig. 6. Structure of global average layer’s processing element

(a) Clean MaxPooling PE

(b) Trojan inserted MaxPooling PE

Fig. 7. Structure of processing elements that for processing

classification layers and MaxPooling layers. (a) shows the

structure of the clean MaxPooling PE and (b) shows the

structure of the Trojan inserted MaxPooling PE. The section

enclosed by the dashed line represents the payload of the

hardware Trojan.

Fig. 8. CNN accelerator

architecture based on

MobileNet V2, ShuffleNet

V2, and GhostNet and

injected with HT.

3.3 Implementation

and Analysis

The experiment setups have included building approximate

accelerators of MobileNetV2, ShuffleNetV2, and Ghost-Net

based on the TOSAM approximate multiplier, inserting all

types of

HTs

mentioned

above into these

three accelerators, and analyzing the impact of each of these

HTs on the classification accuracy of each design.

 In this study, the data used are GTSRB dataset in grayscale.

For this dataset, we first use a subset of them, traffic signs for

speed limits, with a total of 10 kinds of images, of which there

are 18207 images as the training set, 1440 images as the

validation set, and 180 images as the test set. After this

experiment, the overall dataset of GTSRB is used, with a total

of 43 kinds of images, of which 38000 images are used as the

training set, 1209 images are used as the validation set, and

12630 images are used as the test set.

3.3.1 Structure of Nets

The three CNN architectures selected in this paper are

MobileNetV2, ShuffleNetV2, and GhostNet. The data length

used was 32 bits given the target application in edge

computing. The structures of the three networks are shown in

Fig.9, Fig.10, and Fig.11. In addition, for detecting if the

impact of the HT will be varied with the different number of

kernels, for MobileNetV2 CNN, we design an additional CNN

with the different number of kernels. For both groups of

networks, ShuffleNetV2 and GhostNet, the numbers of kernels

are 32 for the first CONVLs in the speed limit sign network

(the CONV layer used to increase the number of channels),

and for the first CONVLs in the GTSRB network, The

numbers of kernels are 128. For the MobileNetV2 network,

the number of kernels of the first CONVL in the speed limit

sign network is 32. However, for the first CONVL in the

GTSRB network, the numbers of kernels are 32 and 64,

respectively.

In addition, the function of TOSAM approximation

multiplier is 2 2 (1 () () ()A B
K K

A t B t A APX
A B Y Y Y  +  + + +

())
B APX
Y . In this function, AK and BK are the positions of

the first '1' bit of A and B, respectively. Truncate data A and B

to (h+1) bits and the approximate value of the truncated date

are ()
A APX
Y and ()

B APX
Y . Truncate data A and B to t bits and

truncated data are ()
A t
Y and ()

B t
Y . The high-precision mode

of TOSAM approximate multipliers for processing important

parts of the feature map is the mode (h, t) = (2,6). In addition,

for high-precision approximate multiplier also supports the
low-precision mode, (h, t)=(1,4).

Furthermore, for the low-precision approximate multiplier,

the working mode is the mode (h,t)=(1,4) and if the multiplier

or multiplicand cannot provide enough valid bits, the result is

0.

Each layer consists of several processing elements, some of

which will be responsible for processing “important” data that

are essential for accurate classification, while other processing

elements will be processing data that do not significantly

impact the classification's accuracy. This depends on the

nature of the data being processed.

Fig. 9. The structure of the net based on the ShuffleNet V2.

Then, we have experimentally found that for a feature map

of size 32 32 elements (32 bits), the 8 outermost layers of

features are insignificant regions. For the feature map of size

16 16 , the features of the 4 outermost layers are

insignificant regions. For a feature map of size 8 8 , the

features of the 2 outermost layers are insignificant regions. For

a feature map of size 4 4 , the features of the 1 outermost

layer are insignificant regions.

These findings are justified by the fact that the traffic signs

in the images analyzed are typically placed at the center of the

picture, or the outer part of the diagram does not have

important information.

Fig. 10. The structure of the net based on the GhostNet.

Fig. 11. The structure of the net based on the MobileNet V2.

As shown in the Fig.12 the channels of the feature map are

equally divided into 4 groups (because the number of the

channel of the output feature map are 16, 32, 64 for speed

limit sign and the number of the channel of the output feature

maps are 32, 64, 128 for GTSRB dataset all of them are

divisible by the factor of 4), which are assigned to the 4

important PEs (It means that there are 4 important PEs in

every layer). The important data is the data located at the

center of the feature map(dark regions). Each important PEs

only processes the calculation related to the important data in

the channels that are assigned to it. The rest data (unimportant

data) will be processed by the unimportant PEs. To allow all

PEs to complete all calculations of one feature map at the

same time, the ratio of unimportant PE to important PE is

equal to the ratio of the number of important data to the

number of non-important data. So, there are 12 unimportant

PEs in every layer.

The four important PEs assigned to each layer in all

architectures, each tasked with processing a group of the

output channels' important data. The twelve unimportant PEs

are dedicated to processing less significant data and every 4

unimportant PEs are dedicated to process a group of the output

channel’s unimportant data. Additionally, within the FCLs , 9

PEs or 43 PEs are allocated, defined as important and every

PE is dedicated to representing the possibility of the input

image to be classified into one category. Finally, within the

CLLs, 1 PE is allocated, defined as an important PE.

Fig. 12. The assignment of the important PEs in each layer.

3.3.2 Impact of Hardware Trojans

For detecting the impact of these HTs, the different

probabilities of the picture being misclassified are detected,

when HTs are not activated or HTs are activated and attacking

on different kinds of layers. To prevent chance events, three

networks were trained for every different CNN with different

architectures or different number of kernels. The results shown

in this section are the average of three sets of network

simulation results. The simulations of this investigation were

established in both System Verilog and MATLAB. Initially,

the network training was conducted using MATLAB to

ascertain the critical parameters, predominantly the network

weights. Subsequently, Three CNN accelerators, focused

solely on forward propagation, were constructed at the

Register-Transfer Level (RTL) using the System Verilog

language, facilitated by the Quartus and Questasim platforms.

Then, HTs were built with System Verilog and injected into

these accelerators. To expedite results, an emulation of these

RTL-level accelerators, with and without the HT, was

conducted using MATLAB. After making sure that the key

data, such as the feature maps corresponding to each layer,

were critically examined to ensure consistency between the

MATLAB emulation and the RTL-level simulation results,

MATLAB served as the principal platform for conducting

subsequent experiments, including those aimed at assessing

the impact of HTs.

As described in Section 3, the attacker’s ability is limited to

making one modification per architecture. For example, they

are only able to attack one MUX in one PE, but they can select

which PE to target.

The possibility of images being misclassified of the

accelerators studied have been evaluated for all HT insertion

scenarios. Firstly, the impacts of HTs when HTs are utilized to

attack different kinds of important PEs are introduced.

The results, listed in Table 1, Table 2 and Table 3, show

that the impact caused by the attacks on CONVLs, BNLs, and

FCLs is not significant. When HTs attack important PEs in

these layers, the possibility of the image being misclassified is

nearly same as when no HT is injected.

On the other hand, an attack on classification, ReLU6, or

Max Pooling layers leads to that images will have a high

probability of being misclassified. More specifically, the

probabilities of images being misclassified are 100% when a

HT injected in classification layer for all studied architectures.

The probabilities of images being misclassified are in the

range of 68% to 91% for all studied architectures, when

important PEs of ReLU6 layers are under attacking.

Table 1 The possibility of image being misclassified of

MobileNet V2 before or after HTs being activated and when

being attacked on different kinds of important PEs of all layers

and unimportant PEs of MPLs and ReLU6 Layers.

Attacked

Layer

GTSRB

(More

Kernels)

GTSRB

(Less

Kernels)

Speed

Limit Sign

CONVL 6% 8% 6%

BNL 6% 8% 6%

ReLU6

(Important)

73% 75% 78%

ReLU6

(Unimportant)

71% 73% 71%

MPL

(Important)

16% 35% 28%

MPL 11% 12% 9%

(Unimportant)

FCL 6% 8% 5%

CLL 100% 100% 100%

Without

Attack

4%

6%

6%

Table 2 The possibility of image being misclassified of

ShuffleNet V2 before or after HTs being activated and when

being attacked on different kinds of important PEs of all layers

and unimportant PEs of MPLs and ReLU6 Layers.

Attacked Layer GTSRB Speed Limit Sign

CONVL 8% 14%

BNL 7% 10%

ReLU6 (Important) 88% 89%

ReLU6 (Unimportant) 68% 72%

MPL (Important) 24% 31%

MPL (Unimportant) 11% 12%

FCL 6% 9%

CLL 100% 100%

Without Attack 5% 9%

Table 3 The possibility of image being misclassified of

GhostNet before or after HTs being activated and when being

attacked on different kinds of important PEs of all layers and

unimportant PEs of MPLs and ReLU6 Layers.

Attacked Layer GTSRB Speed Limit Sign

CONVL 4% 11%

BNL 5% 11%

ReLU6 (Important) 91% 88%

ReLU6 (Unimportant) 70% 68%

MPL (Important) 25% 33%

MPL (Unimportant) 10% 8%

FCL 5% 9%

CLL 100% 100%

Without Attack 5% 9%

Then, the probabilities of images being misclassified are in

range 16-35%, when important PEs of MPL are under

attacking.

Then the impact of HTs when HTs are utilized to attacked

different kinds of unimportant PEs are introduced. Because the

impacts of HTs when they are utilized to attack CONVLs’,

BNLs’ and FCLs’ important PEs are not serious, the impact of

attacking on these layers’ will be not introduced. In addition,

because for CLLs, there are only important PEs, so PEs in

CLLs will be also not considered in this part. The simulation

results are shown in Table 1, Table 2, Table 3. Based on the

data shown in these tables, the ReLU’s unimportant PEs are

also vulnerable, but the unimportant PEs of MPL are

robustness.

The above analysis demonstrates that different part of the

CNN architectures exhibits various level of vulnerability to a

HT attack. The classification layer is the weakest followed by

the ReLU6 layer. Next is the MPLs, CONVLs and BNLs, and

FCLs are robustness to this kind of function tampering HT

attack. It is also worth noting that all PEs in the ReLU6 layers

are vulnerable.

4 Countermeasure

In this section, we will introduce the design of the two

countermeasures and related evaluation.

4.1 Selective Hardware Redundancy (SHR)

The essence of this approach is to use the outcome of the

vulnerability analysis from the previous section to introduce

hardware redundancy selectively, which suggests that only the

selected vulnerable PEs will be protected. The analysis has

shown that the CLLs, MPLs and Relu6 layers are the most

vulnerable, and For MPLs, only the important PEs are

vulnerable. Therefore, only the important PEs MPLs and all

PEs in ReLU6 layers and CLLs need to be protected. This

approach uses the simple majority voting mechanism

described in [32].

The structure of this approach is elaborated in Fig.13,

wherein triple modular hardware redundancy is introduced for

each processing element to be protected, and a majority voter

is then used to determine the final output. This means that

even if an adversary attack one of those elements, redundant

hardware is still able to perform correct computation.

Fig. 13. The structure of Selective hardware redundancy.

4.2 Selective Hardware and Time

Redundancy (SHTR)

This second approach relies on the intrinsic similarity of the

hardware structure of the processing elements in CNN

accelerators to further reduce the implementation overheads.

For example, the PEs used for the convolution module, no

matter in MobileNetV2, ShuffleNetV2 or GhostNet, have the

same structure. The only difference is that the input data and

the number in the calculation loop are not the same. This

allows the countermeasure, RIA in a recent paper in [36], has

the potential ability to protect the accelerators of CNNs. The

RIA is a lightweight real-time monitoring method. This also

fits well with the premise of lightweight protection. Here, the

second countermeasure proposed in this paper is combining

the RIA with the SHR mechanism. In the following content in

this paper, we will call the countermeasure in this section the

SHTR.

The working principles of this method are as follows. The

procession elements to be protected are identified based on the

vulnerability analysis outcome from Section 3. Additional two

security processing elements are also added to each layer and

used to verify the correctness of the output of each

“important” processing element. This verification is performed

by applying the same input data to these two modules and

using a majority voter to compare the output of the two

security elements and the processing element being checked.

Every clock cycle, the control circuitry chooses one

“important” processing element to check once all elements

have been checked the process repeats. The hardware

architecture of this approach is shown in Fig.14.

The control unit is responsible for coordinating the

checking process by fetching the input and corresponding

output data of the PE being checked from the memory.

The output from the processing element being checked (O)

and from the two security elements (S1, S2) are stored in

register A.

The checker compares (O) with the output of the majority

voter. The outcome of this comparison is monitored by the

control unit. If a mismatch is found, this means the processing

element being checked has been compromised and will

subsequently be replaced by the backup PE.

Fig. 14. The Structure

of the Selective

Hardware and Time

Redundancy

Approach

4.3 Evaluation of Proposed

Countermeasures

This section compares the two proposed defenses in terms of

security, and overheads.

4.3.1 Security Analysis

From a security perspective, both defenses assume that a

hardware trojan is likely to be inserted in parts of the design

such that it has a significant impact on the accuracy of the

classification. Consequently, both defenses only protect

vulnerable PEs as defined in the architecture of each

accelerator. The vulnerable PEs in this experiment including

the important PEs of MPLs, CLLs and all PEs of the ReLU6

PE. The SHR defense approach allows the system to function

correctly even if all protected elements have a trojan inserted.

However, if the adversary is to maliciously modifies the

processing element and one of its replicas, the self-correct

ability will be failed. Increasing the number of the replicas is

able to solve this problem. For example, if the adversaries are

able to attack two PEs, the number of the replicas of every PEs

need to be increased to 4.

The SHTR approach can invalidate a single HT attack on

any of the protected procession elements by using the backup

module. This method also works if one of the security

processing elements or backup processing elements is

attacked. Because the Majority Voting unit make sure only

when most of voters are attacked, the voting result is wrong.

But if the ability of adversaries is increased, the Majority

Voting unit also face the invalidation risk. In this condition,

the solving method is same as the SHR, increasing the number

of the security PEs and backup PEs. For example, if the

adversaries are able to attack 3 PEs, the number of security PE

need to be increased to 6 and the number of backup PEs need

to be increased to 3.

To compare the two approaches, we implemented

protection on the three most sensitive layers (CLL, Relu6

layers, and MPLs). In this experiment, there are some

differences in the protected objects between the two protection

modes of SHR and SHTR. For SHR, the important PEs of

MPLs and all PEs of ReLU6 layers and CLLs are protected.

For SHTR, because the structure of PEs of MPLs’ important

PEs and unimportant PEs are the same, so without any

additional overheads, the unimportant PEs of MPLs also can

be protected, just required more time to finish one loop

checking. In addition, this extra time is tolerable compared to

the time it takes to classify an image. So, for SHTR, all PEs of

ReLU6 layers MPLs and CLLs are protected.

We consider a scenario, wherein an adversary at the system

integration stage can insert a single trojan in the accelerator.

We assume that the adversary has sufficient knowledge of the

implementation to choose a location for this trojan to cause the

maximum degradation in the classification accuracy. In this

case, the attacker would insert a HT in the PE of the CLL,

which will cause the most serious impact, in the design that is

not protected. For the two protected designs, the attackers are

able to pay attention the protect circuit, but because that they

are only able to insert one HT in one PE, so they would target

the unimportant PE in the MPL.

The performance of each implementation was then

measured ad shown in Table 4. The results show the defense

techniques proposed in this work can significantly reduce the

impact of such an attack. In addition, for SHTR mechanism,

the impact of unimportant PEs of MPLs being attacked also

can be recovered.

Table 4 The possibility of image being misclassified of GhostNet, MobileNetV2, ShuffleNetV2 accelerator before or after HT

being activated and without protection or with SHR or SHTR.

Network Dataset Original Attacked Attacked

with SHR

Attacked

with SHTR

MobileNetV2 GTSRB (More Kernels) 4% 100% 11% 6%

GTSRB (Less Kernels) 6% 100% 12% 8%

Speed Limit Sign 6% 100% 9% 6%

ShuffleNetV2 GTSRB 5% 100% 11% 8%

Speed Limit Sign 9% 100% 14% 14%

GhostNet GTSRB 4% 100% 10% 5%

Speed Limit Sign 8% 100% 11% 11%

4.3.2 Hardware Trojan Impact Recovery Time

The SHR approach allows immediate recovery from a Trojan

insertion attack, as the output compromised processing

element will be overridden by the majority voting circuitry.

On the other hand, the SHTR scheme requires more time to

detect and recover from a trojan insertion because important

processing elements are checked sequentially, this means the

accelerator with a trojan inserted will produce the wrong

results for a period required to check all processing elements,

and subsequently substitute a compromised module with one

of the backup PE.

Let us take the example, analyzed previously where the

SHTR approach is used to protect the three most sensitive

layers (all PEs of CLLs, Relu6 layers, and MPLs).

Furthermore, This implementation uses one protection module

for both the MPLs and CLLs, the structure of the processing

element in these two layers is the same, so we only need one

backup PE.

In this case, the checking process runs in two parallel

threads. The first checks the ReLU6 layers’ PEs serially, and

the second serially examines MPLs’ and CLLs’ PEs.

In Thread 1, the ReLU6 layers’ PEs requires one clock

cycle to produce the result, during which the output of one PE

can be examined. Furthermore, the checking process includes

five phases: (1) security PE result generation, (2) Register A

data reading, (3) majority voting, (4) checker unit result

comparison, and (5) controller's result generation. Every phase

need one clock cycle to complete operation. Therefore, in

total, we need 6 clock cycles to complete check one PE and

the implementations are pipelined. The specific timing

diagram of SHTR units of Thread 1 is shown in Fig.15.

Fig. 15. The timing diagram of the all units of SHTR

Therefore, for Thread 1, ShuffleNetV2, MobileNetV2, and

GhostNet need 148 (9*16+4), 116 (7*16+4), and 52 (12+4)

clock cycles respectively to check one round. Here, the first

part of the calculation represents the time to scan all PEs, and

the latter part represents the remaining clock cycle required to

complete the checking for the final PE.

Similarly, for Thread 2, the MPLs’ PEs requires 4 clocks

cycles to produce the final result, but Security PEs can utilize

the intermediate results to check the performance of the

monitored PEs, so still requiring 1 clock cycle for checking

one PE. Hence, 52, 36, and 20 clock cycles are required for

ShuffleNetV2, MobileNetV2, and GhostNet respectively.

Thread 1 requires more time, hence should be considered as

the worst-case scenario detection time for the SHTR approach.

4.3.3 Implementation Overheads

To estimate the area overheads of proposed countermeasures,

the six architectures studied here have been implemented

using System Verilog. Three versions of each design were

constructed, without countermeasures, with selective hardware

redundancy (SHR), and with Selective Hardware and Time

Redundancy (SHTR). In the last two cases, the protection is

applied to the three most sensitive layers (classification,

Relu6, and Max Pooling).

All designs have been synthesized using Quartus on the

FPGA device 5CGXFC9A6U19A7. The respective areas are

obtained from the synthesis report in terms of the Adaptive

Logic Module (ALM) used in each case, these are listed in

Table 5.

The Results show the area overheads associated with the

SHR approach rages between 10-6% of the original design

areas. Comparing with the traditional Majority Voting

mechanism which will protect all PEs, the additional overhead

of the SHR is significantly reduced. While those associated

with the SHTR one only a fraction of additional overheads of

SHR, estimated to be around 0.4-0.2 %. This was expected

given, comparing with overheads of PEs which contain

multipliers, the overheads of the PEs of the MPL, CLL and

ReLU6 is tiny. So, the additional overheads of the SHR is less

than the Majority Voting. Furthermore, the additional

hardware requirements of the SHR approach that triplicate

each important procession element, compared to only using

three additional PE for each type of PEs by the SHTR

techniques, the overheads of SHTR is able to be further

reduced.

4.4 Discussion

The countermeasures proposed in this paper demonstrate

broad applicability to existing CNN hardware accelerator

architectures. These countermeasures require only that the

CNN hardware accelerator include buffers capable of

temporarily storing the input and output data of PEs (features

and weights). As many modern CNN hardware accelerators

are equipped with on-chip memory buffers for storing data and

filter weights [13,50,51,52], the proposed countermeasures

can be readily applied to a wide range of such accelerators.

The primary focus of the proposed solutions is the

mitigation of function-tampering hardware Trojans—those

designed to produce erroneous outputs. However, these

countermeasures exhibit limited efficacy against hardware

Trojans that do not affect functionality, such as those designed

to leak sensitive information. This represents a key limitation

of the approach.

Nevertheless, there are additional limitations to consider

regarding the proposed countermeasures. If an adversary

successfully compromises the Majority Voting unit, the SHR

mechanism would become ineffective. However, the SHTR

mechanism remains effective under the threat model assumed

in this work. This is because SHTR is capable of detecting

discrepancies between the output of the Majority Voting unit

and that of the monitored PE. Upon detection, SHTR disables

the monitored PE and activates a backup PE. The system

continues to function until all backup PEs are exhausted. In

this context, since the attacker is assumed to only target the

Majority Voting unit and cannot compromise other processing

units, the data generated by the backup PE remains correct,

thereby attacking on Majority Voting unit cannot cause

serious impact.

To make SHTR ineffective, an adversary would need to

compromise multiple components of the CNN hardware

accelerator, including both the PEs and the Majority Voting

unit. This significantly increases the complexity of executing a

successful attack, which can be seen as enhancing the overall robustness of the hardware accelerator.

Table 5 Comparison of overheads of accelerators, with or without protection

Network Type Area overheads (ALM)

(Speed Limit Signs CNN / GTSRB CNN)

Original Majority

Voting

With

SHR

With SHTR Majority

Voting

Increase

With SHR

Increase

With SHTR

Increase

ShuffleNet V2 78188/

84478

156309/

168889

85677/

91967

78316/

84606

99%/

99%

10%/

9%

0.2%/

0.2%

MobileNet V2 60404/

66694

120741/

133321

66198/

72488

60532/

66822

99%/

99%

10%/

9%

0.2%/

0.2%

GhostNet 36404/

42694

72741/

85321

39085/

45375

36532/

42822

99%/

99%

7%/

6%

0.4%/

0.3%

5 Conclusion

This work presents the first large-scale study of the impact

of function tampering HTs insertion on CNN accelerators,

with a specific focus on those that use approximate

commuting techniques, which are prevalent in embedded

applications. The work investigates three main types of such

networks, MobileNet V2, ShuffleNet V2, and GhostNet,

which have been trained in the grayscale version of whole

dataset of GTSRB and speed limit sign images subset of

GTSRB. Next, hardware accelerators of these designs were

developed using System Verilog. The work then proceeded to

develop a unique hardware Trojan for each layer of the

network, such as it can feasibly be inserted by an attacker.

Next, a comprehensive experimental analysis was carried out

to determine the insertion locations in each hardware

architecture that causes the largest drop in classification

accuracy. For the network under consideration, there is found

to be a specific set of procession elements, which we have

referred to as “important”, in the classification, Relu6, and

Max pooling layers. These findings have subsequently been

used to develop two countermeasures, the first relies on

hardware redundancy (SHR), and the second on a combination

of hardware and time redundancy(SHTR). Such techniques are

only applied to the most vulnerable points in each architecture

to reduce overheads. The two proposed defenses were

evaluated in terms of security, attack detection/recovery time,

and area overheads. The results show that the SHR provides

speedy recovery from an attack while incurring between 10-

6% area overheads. On the other hand, SHTR requires more

time to recover the impact caused by HT, but its area overhead

is much smaller (~ 0.3%). In addition, when the abilities of

attackers are limited, the performance of SHTR is better than

SHR, in terms of the possibility of images being misclassified

when HTs are injected into the accelerators. Future research

will focus on other types of hardware-level attacks, such as

fault injections.

Declarations

Ethical Approval There was no involvement of humans or

animals in this study. We give consent to Springer to publish

this paper.

Competing interests The authors declare no competing

interests.

Authors' contributions P.S. and B.H. wrote the main

manuscript. B.H. and T.J.K. reviewed the manuscript and

proposed the critical suggestion.

Funding Not applicable

Availability of data and materials Not applicable

References

1. K. O’Shea and R. Nash, “An introduction to

convolutional neural networks,” arXiv preprint

arXiv:1511.08458, 2015.

2. N. Abderrahmane, E. Lemaire, and B. Miramond,

“Design space exploration of hardware spiking

neurons for embedded artificial intelligence,” Neural

Networks, vol. 121, pp. 366–386, 2020.

3. R. Struharik, B. Vukobratovic´, A. Erdeljan, and D.

Rakanovic´, “Conna– compressed cnn hardware

accelerator,” in 2018 21st Euromicro Conference on

Digital System Design (DSD). IEEE, 2018, pp. 365–

372.

4. C.-Y. Chen, J. Choi, K. Gopalakrishnan, V.

Srinivasan, and S. Venkatara- mani, “Exploiting

approximate computing for deep learning

acceleration,” in 2018 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE,

2018, pp. 821–826.

5. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.

Wang, T. Weyand, M. Andreetto, and H. Adam,

“Mobilenets: Efficient convolutional neural networks

for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.

6. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and

L.-C. Chen, “Mobilenetv2: Inverted residuals and

linear bottlenecks,” in Proceedings of the IEEE

Conference on computer vision and pattern

recognition, 2018, pp. 4510–4520.

7. X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet:

An extremely efficient convolutional neural network

for mobile devices,” in Proceedings of the IEEE

Conference on computer vision and pattern

recognition, 2018, pp. 6848–6856.

8. N. Ma, X. Zhang, H.-T. Zheng, and J. Sun,

“Shufflenet v2: Practical guidelines for efficient CNN

architecture design,” in Proceedings of the European

Conference on computer vision (ECCV), 2018, pp.

116–131.

9. K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu,

“Ghostnet: More features from cheap operations,” in

Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020, pp.

1580– 1589.

10. S. Venkataramani, X. Sun, N. Wang, C.-Y. Chen, J.

Choi, M. Kang, A. Agarwal, J. Oh, S. Jain, T.

Babinsky, et al., “Efficient ai system design with

cross-layer approximate computing,” Proceedings of

the IEEE, 2020.

11. Y. Wang, H. Li, and X. Li, “Real-time meets

approximate computing: An elastic cnn inference

accelerator with an adaptive trade-off between QoS

and qor,” in 2017 54th ACM/EDAC/IEEE Design

Automation Conference (DAC). IEEE, 2017, pp. 1–6.

12. Z. Liu, A. Yazdanbakhsh, T. Park, H. Esmaeilzadeh,

and N. S. Kim, “Simul: An algorithm-driven

approximate multiplier design for machine learning,”

IEEE Micro, vol. 38, no. 4, pp. 50–59, 2018.

13. X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m.

Hwu, and D. Chen, “Dnnbuilder: An automated tool

for building high-performance dnn hardware

accelerators for FPGAs,” in 2018 IEEE/ACM

International Conference on Computer-Aided Design

(ICCAD). ACM, 2018, pp. 1–8.

14. Y. Shen, M. Ferdman, and P. Milder, “Maximizing

cnn accelerator efficiency through resource

partitioning,” ACM SIGARCH Computer

Architecture News, vol. 45, no. 2, pp. 535–547, 2017.

15. P. Marwedel, Embedded system design. Springer,

2006, vol. 1.

16. P. Kocher, R. Lee, G. McGraw, and A. Raghunathan,

“Security as a new dimension in embedded system

design,” in Proceedings of the 41st annual Design

Automation Conference, 2004, pp. 753–760.

17. Y. Jin, “Introduction to hardware security,”

Electronics, vol. 4, no. 4, pp. 763–784, 2015.

18. Halak, “Cist: A threat modeling approach for

hardware supply chain security,” in Hardware Supply

Chain Security. Springer, 2021, pp. 3–65.

19. Y. Nozaki, S. Takemoto, Y. Ikezaki, and M.

Yoshikawa, “Lut oriented hardware trojan for FPGA

based ai module,” in 2020 6th International

Conference on Applied System Innovation (ICASI).

IEEE, 2020, pp. 46–49.

20. Z. Liu, J. Ye, X. Hu, H. Li, X. Li, and Y. Hu,

“Sequence triggered hardware trojan in neural

network accelerator,” in 2020 IEEE 38th VLSI Test

Symposium (VTS). IEEE, 2020, pp. 1–6.

21. J. Ye, Y. Hu, and X. Li, “Hardware trojan in FPGA

CNN accelerator,” in 2018 IEEE 27th Asian Test

Symposium (ATS). IEEE, 2018, pp. 68–73.

22. T. A. Odetola, H. R. Mohammed, and S. R. Hasan,

“A stealthy hardware trojan exploiting the

architectural vulnerability of deep learning

architectures: Input interception attack (ii),” arXiv

preprint arXiv:1911.00783, 2019.

23. Yang, J. Hou, M. Wu, K. Mei, and L. Geng,

“Hardware trojan attacks on the reconfigurable

interconnections of convolutional neural networks

accelerators,” in 2020 IEEE 15th International

Conference on Solid-State & Integrated Circuit

Technology (ICSICT). IEEE, 2020, pp. 1–3.

24. J. Clements and Y. Lao, “Hardware trojan attacks on

neural networks,” arXiv preprint arXiv:1806.05768,

2018.

25. K. Xiao, D. Forte, and M. Tehranipoor, “A novel

built-in self-authentication technique to prevent

inserting hardware trojans,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 33, no. 12, pp. 1778–1791, 2014.

26. S. C. Konigsmark, D. Chen, and M. D. Wong,

“Information dispersion for trojan defense through

high-level synthesis,” in Proceedings of the 53rd

Annual Design Automation Conference, 2016, pp. 1–

6.

27. X. T. Ngo, S. Guilley, S. Bhasin, J.-L. Danger, and Z.

Najm, “Encoding the state of integrated circuits: a

proactive and reactive protection against hardware

trojans horses,” in Proceedings of the 9th Workshop

on Embedded Systems Security, 2014, pp. 1–10.

28. X. T. Ngo, S. Bhasin, J.-L. Danger, S. Guilley, and Z.

Najm, “Linear complementary dual code

improvement to strengthen encoded circuit against

hardware trojan horses,” in 2015 IEEE International

Symposium on Hardware Oriented Security and Trust

(HOST). IEEE, 2015, pp. 82–87.

29. M. Hicks, M. Finnicum, S. T. King, M. M. Martin,

and J. M. Smith, “Overcoming an untrusted

computing base: Detecting and removing malicious

hardware automatically,” in 2010 IEEE Symposium

on security and privacy. IEEE, 2010, pp. 159–172.

30. G. Voyiatzis, K. G. Stefanidis, and P. Kitsos,

“Efficient triggering of trojan hardware logic,” in

2016 IEEE 19th International Symposium on Design

and Diagnostics of Electronic Circuits & Systems

(DDECS). IEEE, 2016, pp. 1–6.

31. S. Dupuis, M.-L. Flottes, G. Di Natale, and B.

Rouzeyre, “Protection against hardware trojans with

logic testing: Proposed solutions and challenges

ahead,” IEEE Design & Test, vol. 35, no. 2, pp. 73–

90, 2017.

32. H. A. Amin, Y. Alkabani, and G. M. Selim, “System-

level protection and hardware trojan detection using

weighted voting,” Journal of Advanced Research,

vol. 5, no. 4, pp. 499–505, 2014.

33. T. A. Odetola, A. Adeyemo, F. Khalid, and S. R.

Hasan, “Fm-mod comp: Feature map modification

and hardware-software co-comparison for secure

hardware accelerator-based cnn inference,”

Microprocessors and Microsystems, p. 104827, 2023.

34. M. Javaheripi, M. Samragh, G. Fields, T. Javidi, and

F. Koushanfar, “Cleann: Accelerated trojan shield for

embedded neural networks,” in Proceedings of the

39th International Conference on Computer-Aided

Design, 2020, pp. 1–9.

35. Q. Xu, M. T. Arafin, and G. Qu, “Security of neural

networks from a hardware perspective: A survey and

beyond,” in Proceedings of the 26th Asia and South

Pacific Design Automation Conference, 2021, pp.

449– 454.

36. P. Sun, B. Halak, and T. Kazmierski, “Towards

hardware trojan resilient design of convolutional

neural networks,” in 2022 IEEE 35th International

System-on-Chip Conference (SOCC). IEEE, 2022,

pp. 1–6.

37. P. Yellu, M. R. Monjur, T. Kammerer, D. Xu, and Q.

Yu, “Security threats and countermeasures for

approximate arithmetic computing,” in 2020 25th

Asia and South Pacific Design Automation

Conference (ASP- DAC). IEEE, 2020, pp. 259–264.

38. P. Yellu, L. Buell, D. Xu, and Q. Yu, “Blurring

boundaries: A new way to secure approximate

computing systems,” in Proceedings of 2020 on Great

Lakes Symposium on VLSI, 2020, pp. 327–332.

39. F. Regazzoni, C. Alippi, and I. Polian, “Security: the

dark side of approximate computing?” in 2018

IEEE/ACM International Conference on Computer-

Aided Design (ICCAD). IEEE, 2018, pp. 1–6.

40. S. Keshavarz and D. Holcomb, “Privacy leakages in

approximate adders,” in 2017 IEEE International

Symposium on Circuits and Systems (ISCAS). IEEE,

2017, pp. 1–4.

41. S. Vahdat, M. Kamal, A. Afzali-Kusha, and M.

Pedram, “Tosam: An energy-efficient truncation-and

rounding-based scalable approximate multiplier,”

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 27, no. 5, pp. 1161–1173, 2019.

42. V. Venugopalan and C. D. Patterson, “Surveying the

hardware trojan threat landscape for the internet-of-

things,” Journal of Hardware and Systems Security,

vol. 2, no. 2, pp. 131–141, 2018.

43. S. Bhunia, M. S. Hsiao, M. Banga, and S.

Narasimhan, “Hardware trojan attacks: Threat

analysis and countermeasures,” Proceedings of the

IEEE, vol. 102, no. 8, pp. 1229–1247, 2014.

44. Clements J, Lao Y. Hardware trojan attacks on neural

networks[J]. arXiv preprint arXiv:1806.05768, 2018.

45. Xue M, Gu C, Liu W, et al. Ten years of hardware

Trojans: a survey from the attacker's perspective[J].

IET Computers & Digital Techniques, 2020, 14(6):

231-246.

46. Yanamala R M R, Pullakandam M. A high-speed

reusable quantized hardware accelerator design for

CNN on constrained edge device[J]. Design

Automation for Embedded Systems, 2023, 27(3):

165-189.

47. He J, Zhang M, Xu J, et al. Optimizing CNN

Hardware Acceleration with Configurable Vector

Units and Feature Layout Strategies[J]. Electronics,

2024, 13(6): 1050.

48. Rosero-Montalvo P D, Tözün P, Hernandez W.

Optimized CNN architectures benchmarking in

hardware-constrained edge devices in IoT

environments[J]. IEEE Internet of Things Journal,

2024.

49. Zhang C, Li P, Sun G, et al. Optimizing FPGA-based

accelerator design for deep convolutional neural

networks[C]//Proceedings of the 2015 ACM/SIGDA

international symposium on field-programmable gate

arrays. 2015: 161-170.

50. Lian X, Liu Z, Song Z, et al. High-performance

FPGA-based CNN accelerator with block-floating-

point arithmetic[J]. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 2019, 27(8): 1874-

1885.

51. Wang Z, Xu K, Wu S, et al. Sparse-YOLO:

Hardware/software co-design of an FPGA accelerator

for YOLOv2[J]. IEEE Access, 2020, 8: 116569-

116585.

52. Huang W, Wu H, Chen Q, et al. FPGA-based high-

throughput CNN hardware accelerator with high

computing resource utilization ratio[J]. IEEE

Transactions on Neural Networks and Learning

Systems, 2021, 33(8): 4069-4083.

