Towards Hardware Trojan Resilient Convolutional
Neural Networks Accelerators

Peiyao Sun'. Basel Halak'. Tom J. Kazmierski!

Abstract

Convolutional neural network accelerators are increasingly used in safety-critical applications, including
autonomous vehicles. Therefore, particularly vulnerable to hardware Trojan insertion, a security attack that takes
place during the development of integrated circuits. This work presents for the first time, a large-scale study of the
impact of hardware Trojan insertion on convolutional neural network accelerators, focusing on those that use
approximate commuting techniques, prevalent in embedded applications. We investigate three types of such
networks, MobileNet V2, ShuffleNet V2, and GhostNet, trained in datasets of grayscale speed limit sign images and
GTSRB. Our results show that certain parts of these architectures are more susceptible to hardware Trojan attacks,
specifically a specific set of procession elements, referred to as “important”, in the classification, Relu6, and Max
pooling layers, respectively. These findings are subsequently used to develop two countermeasures, the first relies
on selective hardware redundancy(SHR), and the second uses a combination of hardware and time
redundancy(SHTR). The proposed defenses are experimentally validated. Our results show that the SHR provides
speedy recovery from an attack while incurring between 6-10% area overheads. Whereas SHTR requires more time
to detect the Trojan, and its area overhead is much smaller (~ 0.3%).

Keywords Approximate Computing - CNN accelerator - Hardware Trojan - Lightweight countermeasure - Run-time

monitoring

1 Introduction

Convolutional neural networks (CNNs), a subset of Artificial
Intelligence algorithms, are essential for image recognition
tasks [1], with ubiquitous applications such as facial
recognition, and autonomous vehicles. and biometric
authentication. However, the integration of CNNs into edge
computing devices is challenging due to their constrained
energy budget and computation resources[2]. This contrast has
highlighted the need for CNN optimization and the creation of
specialized CNN accelerators [2-4], spurring research and

Peiyao Sun (corresponding author),

slal8@soton.ac.uk

Basel Halak

basel.halak@soton.ac.uk

Tom J. Kazmierski

t.j.kazmierski@soton.ac.uk

!'Electronics and Computer Science School, University of
Southampton, United Kingdom

development in this field. This led to the emergence of
lightweight CNN architectures such as MobileNet [5], [6],
ShuffleNet [7], [8], and GhostNet [9]. Additionally,
employing approximate computing (AC) technology has been
suggested to enhance CNNs, by utilizing approximate
multipliers, clipping networks, and reducing data lengths [10]—
[12]. These strategies facilitate the feasibility of conducting
CNN computations on edge devices. Simultaneously, in the
area of hardware CNN accelerators, a multitude of designs
have been put forward, including the DNNbuilder and Multi-
CLP accelerator [13], [14], yet the question of hardware
security persists as a pivotal concern to be addressed.

While safety is a theoretical prerequisite in the design and
manufacturing of accelerators [15], [16], the current market
conditions pose significant challenges. With the IC (integrated
circuits) supply chain distributed across global companies,
opportunities for hardware-level attacks increase significantly
[17], [18]. It is not feasible to assure the trustworthiness of all
personnel involved in IC production, exposing every stage of
the supply chain to potential hardware-level attacks [17], [18].
Furthermore, successful attacks on CNN accelerators can lead
to sensitive data breaches, degraded performance, and
hardware piracy [17], [18]. For instance, Hardware Trojans
(HTs) can be used to compromise CNN accelerators and such

BB T K (F30) DengXian, (XY) EfAR3Z(F
EXbE)

mailto:ps1a18@soton.ac.uk
mailto:basel.halak@soton.ac.uk
mailto:basel.halak@soton.ac.uk
mailto:t.j.kazmierski@soton.ac.uk

attacks are not rare. Several HTs aimed at CNN accelerators

have been proposed [19]-[24], underscoring the need for

robust protections against HT attacks in CNN accelerators.

Given the acute threats posed by HTs, a plethora of
countermeasures have been introduced. These
countermeasures combat not only general HTs but also those
specifically targeting CNN hardware accelerators. General
countermeasures include techniques like functional filler cells
[25], layout filling [26], design obfuscation [27], and encoded
circuits [28] aimed at preventing HT insertion. Pre-silicon
detection [29], structural testing, functional testing [30], [31],
and run-time detection methods [32] have been employed for
detecting HTs. Specialized countermeasures against HTs
targeting CNN accelerators include FM-ModComp [33],
which enhances the likelihood of HT triggering during testing,
and CLEANN [34], [35], which detects if the CNN input
images carry malicious information as trigger signals. Further,
two run-time detection methods from [36] successfully
identify abnormal behaviors in the PEs of MaxPooling layers.
However, all these countermeasures, barring run-time
detection methods, may falter under certain conditions, for
instance, when attacks involve a combination of hardware and
software Trojans [18] or use special sequences of
classification results to activate HTs [35]. To combat these
challenges, run-time detection methods are proposed as a final
line of defense. Although run-time detection methods usually
perform well against HTs, they introduce significant
overheads [18]. While some lightweight run-time detection
methods have been proposed to mitigate this issue, the
robustness of existing lightweight run-time detection methods
remains a concern [36].

Current research dominantly explores methods for inserting
HTs into CNN accelerators [19]-[24], while countermeasures
receive less attention [33], [34], and [36]. Remarkably, none
of these protection-oriented works provides a comprehensive
vulnerability analysis of the whole CNN accelerator system, a
crucial step for designing effective countermeasures,
particularly in the context of run-time detection methods. This
lack of vulnerability analysis is especially concerning for
accelerators based on AC, given that AC-based systems
inherently possess more vulnerabilities [37]-[40], leading to a
more complex protection design. Consequently, this paper
aims to fill this gap by conducting a thorough vulnerability
analysis of AC-based CNN accelerators, built on three popular
CNN architectures [6], [8], [9]. The goal of this analysis is to
determine which layer in each architecture, a hardware trojan
causes the most reduction in classification accuracy. This
knowledge is subsequently used to selectively protect these
vulnerable points in each design, which significantly reduces
the potential impact of a hardware Trojan while incurring
minimal implementation overheads. The contributions of this
work are twofold:

e A comprehensive vulnerability analysis of CNN
accelerators of ShuffleNet V2, MobileNet V2, and
GhostNet is carried out, wherein a hardware Trojan is
inserted in each layer of these architectures and its impact
on the classification accuracy was measured. The CNN

accelerators studied use TOSAM approximate multiplier
[41] and the HT which utilized to evaluate the vulnerable
level of every type of layers are based on the function
tampering HT proposed on [36]. Experiment results show
that PEs for ReLU6 layers, classification layers and
MaxPooling layers are the most vulnerable points in these
designs.

® Two countermeasures are proposed. The first combines
the traditional hardware redundancy [32] and
vulnerability analysis result, called selective hardware
redundancy. The second technique further reduce the
hardware overheads of the first countermeasure by
combing selective hardware redundancy and time
redundancy mechanism. Both countermeasures have
certain ability to correct errors. A comparison of the
overheads and performance of these defenses is also
included.

The remainder of this paper is structured as follows: In
Section 2 outline the research methodology and assumptions,
including the threat model and the analysis approach. Section
3 explains the experimental setups and discussed the results of
the vulnerability analysis. Section 4 developed the two defense
techniques and evaluate their security, detection time, and area
overheads. Finally, conclusions are drawn in Section 5.

2 Methodology

This section introduces the threat model adopted in this work
and explains the rationale of the analysis methodology.

2.1 Threat Modelling

Hardware Trojans refer to a hardware-level security attack
wherein, an adversary makes malicious modifications to the
integrated circuits during the design (e.g., IP companies),
implementation (e.g., SoC integration), or even the fabrication
stage (e.g., malicious IC factory). These changes aim to
sabotage the design functionality, and introduce a backdoor, or
facilitate information leakage [18], [42], [43]. The attacker is
typically assumed to have access to design files design tools or
the physical layout, as well as be proficient in IC design [18].
Hardware trojans inserted at the design stage by malicious IP
developers are difficult to detect, as they may involve subtle
modifications to the circuit designs that are hidden or
obfuscated. Techniques to defend against this type of attack
include the Unused Circuit identification technique [29],
which consists of identifying and removing suspicious
circuitry-those circuits not used or otherwise activated by any
of the design verification tests. However, such an approach
cannot protect against malicious modification of the design
specifications, which can feasibly take place at the IP
development place, for example, tampering with the training
data of a machine learning model can be used to generate a
malicious implementation of the model (e.g. machine learning
model for an autonomous car that does not recognize certain

traffic signs when a trojan is triggered), therefore the best
strategy to defend against a trojan insertion at the IP
development stage is to only use trustworthy companies and
avoid integrating open-source designs unless thoroughly
checked[18], [31]. Attacks at SoC integration and fabrication
stages are harder to avoid because of the outsourcing of the IC
implementation and fabrication, a trend that is very difficult to
reverse due to the significant costs associated with these tasks
and the need for affordable electronic systems[18]. Contrary to
a hardware trojan attacker at the IP development stage, an
adversary at the implementation/fabrication stage can only
make limited modifications to the original circuit not to
introduce an increase in the area or degradation in the
performance, which makes it easy for such Trojan to be
detected by typical verification and sign off tools[18], [31],
[43].

The threat model of this work is based on the threat model
proposed in the [44]. Comparing with the threat model in the
[44], we narrow down the range of the steps where adversaries
may be appeared. We only consider that HT attacks at the SoC
or fabrication stage, wherein the adversary can make limited
modifications to the digital design. The threat model is shown
in Fig.1.

The adversary's target is to manipulate the processing
elements (PEs) of the CNN accelerator to degrade its
performance. Specifically, the attacker aims to ensure that the
CNN accelerator operates normally when the hardware Trojan
(HT) is inactive, but misclassifies images when the HT is
triggered.

The primary challenges for the adversary in these two
phases are: first, gaining a deep understanding of the
integrated circuit (IC) design to insert the Trojan without
disrupting the normal functionality of the system; second,
remaining covert enough to bypass the verification and testing
stages [45].

Moreover, in both the SoC and manufacturing stages, any
modification may affect critical parameters such as system
timing and power consumption, which are commonly used to
detect hardware Trojans. As a result, attackers face significant
limitations, as tampering with large-scale processing elements
(PEs) can easily be detected through such deviations [45].

Attacks at the IP development stage such as those involving
malicious modification of specifications or training data are
beyond the scope of this work.

Tampering methad

frampering\ | ap | 1]
Lo " Vendors = {iint
’ S

codes/

PCB
Assembler

- Chip |

Consum Dtlr_m‘ .
festing

4

Recyling

iThese two
1will be col
ithis paper

Fig. 1. Threat Modeling of Hardware Trojans

2.2 Principles of the Proposed Vulnerability

Analysis

The study aims to identify locations for a hardware trojan
insertion in the architecture or a CNN that leads to the most
degradation in the accuracy classification. To achieve this, the
first step is to modularize the CNN system and locate the
attackable area, this is done by dividing the network layers
into separate modules that are universally present in all
architectures, namely CONVLs, FCLs, BNLs, pooling layers,
activation layers, and CLLs. Three lightweight CNN
architectures are considered here, MobileNet V2 [6],
ShuffleNet V2 [8], and GhostNet [9], and a hardware
implementation was developed for each design. The second
phase is to devise a bespoke hardware trojan tailored for each
layer. Thirdly, each design is modified, and evaluated
experimentally, wherein only one processing element (PE) is
attacked each time. The subsequent analysis included an
estimation classification accuracy of the architecture before
and after each hardware trojan insertion. The outcome of this
analysis is subsequently used to develop an enhanced design
for the CNN accelerators that is more resilient.

3 Experimental Setups and

Implementation

This section outlines the hardware architecture of the CNN
accelerator, the structure of the hardware trojans used in this
work, and the experimental setups. It also provides a summary
of the evaluation results.

3.1 Hardware Architecture of CNN

Accelerators

The architecture of the three CNN structures used here,
MobileNet V2, ShuffleNet V2, and GhostNet, can be divided
into the following layers convolution (CONVL), Batch
Normalization Layer(BNL), activation layers, Max Pooling
layer (MPL)s global average pooling layers, concat layers, add
layers, fully connected layer (FCL), classification
layers(CLL), channel shuffle layers and channel split layers.

We did not adopt existing CNN accelerator architectures
because most do not employ approximate computing
components and are not open source. Instead, we designed a
custom accelerator incorporating approximate multipliers to
enable our security-focused analysis[46,47,48].

The core contribution of this work is a general strategy for
defending against hardware Trojans: when attacker
capabilities are limited, we identify and selectively protect the
most vulnerable components. This idea applies broadly to
RTL-level CNN accelerators. Furthermore, our mitigation
leverages the structural uniformity of processing elements

(PEs) in CNN accelerators[46,47,48] to reduce hardware
overheads of the runtime detection units, making the approach
architecture-independent and widely applicable. For RTL-
level CNN hardware accelerators with a large number of
identical processing elements (PEs), our general strategy for
defending against hardware Trojans is applicable, as are the
countermeasures we will describe later.

Each of these layers is implemented using its unique
procession elements (PE) to adhere to the modular design
approach explained in Section 2. The elements associated
with each layer have been implemented using either precision
or approximate computing multipliers. The work in [38] has
shown that the input data provided for a CNN image have
varied levels of importance with respect to the accuracy of the
resulting classification. Therefore, all the feature maps have
been divided into the critical region and the insignificant
region. The important features are processed with high-
precision PEs or important PEs and the unimportant features
can be processed with low-precision PEs or unimportant PEs.

The channel shuffle layer, channel split layer, and concat
layer are typically implemented as lockup tables in the system
memory, an approach that was also adopted in this work.
The structures of the CONVL and BNL are shown in Fig. 2
and Fig. 3. PEs for the CONVL mainly consist of one
approximate multiplier used to handle the multiplication
operation in the CONV operation, one register, one adder used
to handle the sum operation, and one counter used to match
the dimensions of the CONV kernels.

-

Feature(From
memary)
TOSAM
MULTIPLIER

Enable(From
controller)

Weight (From
memory)

CLK

The counter range(Size of the
kernel)(From controller,

Fig. 2. Structure of processing element that for processing
convolutional layers and fully connected layers

The PEs for the BNL consists of one approximate multiplier
and two adders for processing BN calculation. In addition,
based on the content in the last paragraph, these two kinds of
PE have two different working accuracy levels with different
approximate multiplier accuracy levels. For activation layers,
the ReLUG6 activation function which can limit the value of
feature between 0 to 6, is utilized instead of the ReLU
function in these three CNNs. This design decision was made
to align the implementation with the use case of CNN for edge
computing devices, most of which have constrained data
length. The structure of the ReLU6 units is shown in Fig. 4.
The structure of the PE of the FCL is the same as the PE in
Fig. 3.

Scale/(sgrt{var+0.0001))
(Value is precalculated
before storing in the
memory)

(From memory)

L

Mean(From
memory)

TOSAM
MULTIPLIER
(Low-precision/High-
precision)

I [— Offset (From
memory)
ADDER

'—J

Feature(From
memory)

Fig. 3. Structure of processing element that for processing

batch normalization layers

Feature| Compa
rator

(a) Clean ReLU6 PE
Payload of HT

Compa
rator

e

1 ¢ ===
1

1 = ! ! !
=] ! 1 1
1 1 N \

! 1
1 [H : é’l :
1 Triggen f -~ \
U _ _|signal 1 Trigger |
1 Signal |

(b) Trojan inserted ReLU6 PE
Fig. 4. Structure of hardware units for processing activation
layers (ReLUS). (a) shows the structure of the clean ReLU6
PE and (b) shows the structure of the Trojan inserted ReLU6
PE. The section enclosed by the dashed line represents the
payload of the hardware Trojan.

The high-precision mode of the TOSAM approximate
multiplier shown in Fig. 5 used in the high-precision PE is
backward-compatible with the low-precision modes.

The additional layer adds the two features together and
stores them in memory. The functionality of this layer has
been implemented with only one adder.

Then, the three network structures used in this article
mainly use two types of pooling, the MPL, and the global
average pooling layer. The PEs of these two pooling layers are
shown in Fig.7 and Fig.6. The MPL selects the maximum
value through digital comparators. The PE of global average
pooling calculates the average value of every channel. When
the total number of features (assuming equal to N) in the one

channel is a power of two, shifting accumulated results is used
instead of the division, which can further reduce the overheads
of the whole system. Finally, for the CLL, the calculation of
the CLL is the same as that of the MPL, which is extracting
the maximum feature. The specific structure of PEs for
processing CLL is the same as the structure of Pes for
processing MPL which is shown in Fig.7.

In addition, the structure of the CNN accelerator adopted in
this paper is shown in Fig. 8. This accelerator is based on the
work in [49]. Different modules are formed by different PEs
that deal with different layers. Each module starts to work
after receiving the enabled signal from the controller. When
the corresponding work is done, a complete signal is given to
the controller so that the controller knows when to give the
start signal to the next sequential module.

Each module receives inputs (features, weights, parameters)
from memory and sends outputs (features) to memory.

The memory mapping unit in the controller determines
which memory address each PEs reads data from and sends
data to. The PEs for the CONVLs, BNLs, and FCLs are also
divided into low-precision PEs (unimportant PEs) and high-
precision PEs (important PEs).

In addition, although all ReLU6 layers’ PEs, MPLs’ Pes,
and addition layers’ PEs are at the same precision level, they
will also be divided into important PEs and unimportant PEs
for processing important features and unimportant PEs
respectively. Finally, the ratio of the number of PEs in the
low-precision mode to the number of PEs in the high-precision
mode is approximately equal to the ratio of the size of the
important region to the non-important region in the feature
map corresponding to this layer.

3.2 Hardware Trojan Insertion

In this section, several types of HTs which used to evaluate
the vulnerable level of every type of layers in CNN are
introduced. These HTs based on the HT designed in [36],
which was used to attack the MaxPooling layer. In this
section, this HT will be used to attack other layers including
CONVLs, BNLs, FCLs, MPLs, ReLU6 layers, and CLLs.
However, it is important to note that the design of hardware
Trojans is not the focus of this paper. The following
description of the hardware Trojan design is provided to offer
a comprehensive experimental background, enabling readers
to reproduce our work.

3.2.1 Hardware Trojan design

The HT in this paper is composed of two parts, the trigger
recognition unit, and the payload unit, the same as the HT in
work [36]. The accelerator architecture with HTs is shown in
Fig. 8. The modules circled by dashed boxes are all places
where HTs will be injected in this paper and the dashed unit is
the trigger recognition unit. The methods of injecting the HTs
are explained in detail in the following paragraphs.

Truncation length

Compatible
module

3<\ ~ 4
4{3—-\ MUX

Selected
Truncation length

(¥xlt=keep the t
decimal of x

Compar l
ator
(¥xJarn=keep the

- Y
a [[weading i (%)
ane Truncation
absolute| | W | gatactor unit SYB)
B lunit TBT unit Ke h decimal of x

Ke then
approximate it

zero | [siGN Ka

shift |
Uity (
Vo) (¥a)
(Ve

(a) Clean TOSAM Multiplier

Truncation length

Compatible
Case(Mode selection module ‘
signal):
2'b00 {h,1)=(0,0); 4;:‘ S MUX
2'601 (h.t)=(0.2); i T
2'b11 {ht)=(3,7); Compar | ==
i ator signab

(rxji=kesp the t
decimal of x

A (¥a)

A

jactivated;

(tujarkeep the
I decimal of x VTrigger signal =0
then IHardware Trojan is
spproximate it | inot activared

'

zERD

shift
unit e
Yale(Ya)
= (Yhara

P = Payload
[! Unit

(b) Trojan inserted TOSAM Multiplier
Fig. 5. Structure of Clean and Trojan inserted TOSAM
multiplier which supports multiple accuracy working modes.
(a) shows the structure of the clean TOSAM Multiplier and (b)
shows the structure of the Trojan inserted TOSAM Muliplier.
The section enclosed by the dashed line represents the payload
of the hardware Trojan.

First, consider the trigger recognition unit. Because the HT
is not main content in this paper, the trigger mechanism of the
HT is same the most of the existing HTs [21]-[23]. The
trigger signal is hidden in the feature value, it reads the feature
value from the target memory address and then processes this
feature value to identify if the HT is activated. The result will
be sent to the payload section. When the trigger condition is
met, the result of the trigger recognition unit will activate the
payload unit.

This attack can be implemented on the convolutional layers,
batch normalization layers, and fully connected layers. The
payload units of HTs proposed in this paper can modify the
function of the compatible module in the high-precision
approximate multipliers in the PEs of the CONVLs, BNLs, or
FCLs. They also can modify the functions of the PEs in the
ReLU6 layers and MPLs. The specific attack purposes of HT
in different modules are introduced below.

e HTs in the high-precision approximate multiplier

change their mode to low-precision. The specific

structure of the attacked high-precision multiplier is
shown in Fig.5 (b). These HTs can be utilized to attack
CONVLs, BNLs, and FCLs.

HTs in the ReLU6 cause the output of the ReLU6 to be
outside the expected range (0 to 6). The specific
structure of the attacked PEs of ReLU®6 layers is shown
in Fig.4 (b).

HTs in the MaxPooling PEs force modify its output
such that the minimum value is obtained as opposed to
the expected maximum. The specific structure of the
attacked PEs of MPLs is shown in Fig.7 (b).

Feature_1 If N is a power
g of two, Division
: 2. | Result |block can be
f’_: instead by the
>)
FeatureN = shift block

Fig. 6. Structure of global average layer’s processing element

=
Compa S — Register ||
Featurel rator =
Enable(From
controller)
Counter
CLK

The counter range (The number of output neurons
or the size of the kernel in the MaxPooling layer)
(From controller)

(a) Clean MaxPooling PE

Payload of HT

Featurel L

Compa
rator

Enable{From
controller)

Counter

CLK

The counter range (The number of output neurons
or the size of the kernel in the MaxPaoling layer)

(From controller)

Register

(b) Trojan inserted MaxPooling PE

Fig. 7. Structure of processing elements that for processing
classification layers and MaxPooling layers. (a) shows the
structure of the clean MaxPooling PE and (b) shows the
structure of the Trojan inserted MaxPooling PE. The section
enclosed by the dashed line represents the payload of the
hardware Trojan.

Data which may
contain trigger

—_——— .
L1 Possible attack targets information
—] Memory |- Trigger
e 1 recognition §
. . 7% 7 g3 f|s i Uni
Fig. 8. CNN accelerator i i: E iy | g PRI i
L] = &l g - 3 & '
) z a g s o= ! Trigger signal
architecture based on Ay, %, ¥ e bt wl wind B = L } (This signal
— 2 %
. =) ‘ RSl = N . ' will be sent to
MobileNet V2, ShuffleNet = 1 ! - =1 nf = 1" g ! the payload
sllilllE]y g ! 8- I = g |1 % 1 unit of the
V2, and GhostNet and gl s : | H : SE Lzl 0 : : g ! Hardware
2 £ H g : :
injected with HT : 2 I g ' £3 } : H £ (1] 2 iTmla":
= B ol — 7]
pected it 25 g il = PlEs | aflg| | g (1] % :
P4 E ‘ jE===cH t f
| [Jl Enabio | | I Ft— Enable/ ypes o
i - o HEE [3 | |cnser Elw| memverer HTs
3.3 Implementation : B Siwoof’| 2 Bl | wumeror SE| outone
. : e ||
and Analysis £ mentioned
Controller |

N o |

above into these

The experiment setups have included building approximate
accelerators of MobileNetV2, ShuffleNetV2, and Ghost-Net
based on the TOSAM approximate multiplier, inserting all

three accelerators, and analyzing the impact of each of these
HTs on the classification accuracy of each design.
In this study, the data used are GTSRB dataset in grayscale.

For this dataset, we first use a subset of them, traffic signs for
speed limits, with a total of 10 kinds of images, of which there
are 18207 images as the training set, 1440 images as the
validation set, and 180 images as the test set. After this
experiment, the overall dataset of GTSRB is used, with a total
of 43 kinds of images, of which 38000 images are used as the
training set, 1209 images are used as the validation set, and
12630 images are used as the test set.

3.3.1 Structure of Nets

The three CNN architectures selected in this paper are
MobileNetV2, ShuffleNetV2, and GhostNet. The data length
used was 32 bits given the target application in edge
computing. The structures of the three networks are shown in
Fig.9, Fig.10, and Fig.11. In addition, for detecting if the
impact of the HT will be varied with the different number of
kernels, for MobileNetV2 CNN, we design an additional CNN
with the different number of kernels. For both groups of
networks, ShuffleNetV2 and GhostNet, the numbers of kernels
are 32 for the first CONVLs in the speed limit sign network
(the CONV layer used to increase the number of channels),
and for the first CONVLs in the GTSRB network, The
numbers of kernels are 128. For the MobileNetV2 network,
the number of kernels of the first CONVL in the speed limit
sign network is 32. However, for the first CONVL in the
GTSRB network, the numbers of kernels are 32 and 64,
respectively.

In addition, the function of TOSAM approximation

multiplier is AxB~2% +2% x(1+(¥)), +(¥,), +(¥,)

APX
X(Y,) ,,) - In this function, K, and K, are the positions of

the first '1' bit of A and B, respectively. Truncate data A and B
to (h+1) bits and the approximate value of the truncated date

are (Y,) ,, and (Y;),,, . Truncate data A and B to t bits and

truncated data are (Y,), and (¥,),. The high-precision mode

of TOSAM approximate multipliers for processing important
parts of the feature map is the mode (h, t) = (2,6). In addition,
for high-precision approximate multiplier also supports the
low-precision mode, (h, t)=(1,4).

Furthermore, for the low-precision approximate multiplier,
the working mode is the mode (h,t)=(1,4) and if the multiplier
or multiplicand cannot provide enough valid bits, the result is
0.

Each layer consists of several processing elements, some of
which will be responsible for processing “important” data that
are essential for accurate classification, while other processing
elements will be processing data that do not significantly
impact the classification's accuracy. This depends on the
nature of the data being processed.

CeO-Be0eE0a448

Fig. 9. The structure of the net based on the ShuffleNet V2.

Then, we have experimentally found that for a feature map
of size 32x32 elements (32 bits), the 8 outermost layers of
features are insignificant regions. For the feature map of size
16x16 , the features of the 4 outermost layers are
insignificant regions. For a feature map of size §x8, the
features of the 2 outermost layers are insignificant regions. For
a feature map of size 4x4, the features of the 1 outermost
layer are insignificant regions.

These findings are justified by the fact that the traffic signs
in the images analyzed are typically placed at the center of the
picture, or the outer part of the diagram does not have
important information.

g-8-6-g-8-0-0-8-4
| fe

Fig. 10. The structure of the net based on the GhostNet.

o-a-6-6-8-0-a-a-0-8-g

18200
T
I
ye2u0)
10av

Fig. 11. The structure of the net based on the MobileNet V2.

As shown in the Fig.12 the channels of the feature map are
equally divided into 4 groups (because the number of the
channel of the output feature map are 16, 32, 64 for speed
limit sign and the number of the channel of the output feature
maps are 32, 64, 128 for GTSRB dataset all of them are
divisible by the factor of 4), which are assigned to the 4
important PEs (It means that there are 4 important PEs in

every layer). The important data is the data located at the
center of the feature map(dark regions). Each important PEs
only processes the calculation related to the important data in
the channels that are assigned to it. The rest data (unimportant
data) will be processed by the unimportant PEs. To allow all
PEs to complete all calculations of one feature map at the
same time, the ratio of unimportant PE to important PE is
equal to the ratio of the number of important data to the
number of non-important data. So, there are 12 unimportant
PEs in every layer.

The four important PEs assigned to each layer in all
architectures, each tasked with processing a group of the
output channels' important data. The twelve unimportant PEs
are dedicated to processing less significant data and every 4
unimportant PEs are dedicated to process a group of the output
channel’s unimportant data. Additionally, within the FCLs , 9
PEs or 43 PEs are allocated, defined as important and every
PE is dedicated to representing the possibility of the input
image to be classified into one category. Finally, within the
CLLs, 1 PE is allocated, defined as an important PE.

\ 4 tant data {pro mportant data (processed
portant ¥ in the important PE)

[~ Important PE1

I Important PE2

+ Important PE3

L Important PE4

Fig. 12. The assignment of the important PEs in each layer.

3.3.2 Impact of Hardware Trojans

For detecting the impact of these HTs, the different
probabilities of the picture being misclassified are detected,
when HTs are not activated or HTs are activated and attacking
on different kinds of layers. To prevent chance events, three
networks were trained for every different CNN with different
architectures or different number of kernels. The results shown
in this section are the average of three sets of network
simulation results. The simulations of this investigation were
established in both System Verilog and MATLAB. Initially,
the network training was conducted using MATLAB to
ascertain the critical parameters, predominantly the network
weights. Subsequently, Three CNN accelerators, focused
solely on forward propagation, were constructed at the

Register-Transfer Level (RTL) using the System Verilog
language, facilitated by the Quartus and Questasim platforms.
Then, HTs were built with System Verilog and injected into
these accelerators. To expedite results, an emulation of these
RTL-level accelerators, with and without the HT, was
conducted using MATLAB. After making sure that the key
data, such as the feature maps corresponding to each layer,
were critically examined to ensure consistency between the
MATLAB emulation and the RTL-level simulation results,
MATLAB served as the principal platform for conducting
subsequent experiments, including those aimed at assessing
the impact of HTs.

As described in Section 3, the attacker’s ability is limited to
making one modification per architecture. For example, they
are only able to attack one MUX in one PE, but they can select
which PE to target.

The possibility of images being misclassified of the
accelerators studied have been evaluated for all HT insertion
scenarios. Firstly, the impacts of HTs when HTs are utilized to
attack different kinds of important PEs are introduced.

The results, listed in Table 1, Table 2 and Table 3, show
that the impact caused by the attacks on CONVLs, BNLs, and
FCLs is not significant. When HTs attack important PEs in
these layers, the possibility of the image being misclassified is
nearly same as when no HT is injected.

On the other hand, an attack on classification, ReLU6, or
Max Pooling layers leads to that images will have a high
probability of being misclassified. More specifically, the
probabilities of images being misclassified are 100% when a
HT injected in classification layer for all studied architectures.
The probabilities of images being misclassified are in the
range of 68% to 91% for all studied architectures, when
important PEs of ReLU6 layers are under attacking.

Table 1 The possibility of image being misclassified of
MobileNet V2 before or after HT's being activated and when
being attacked on different kinds of important PEs of all layers
and unimportant PEs of MPLs and ReLU6 Layers.

Attacked GTSRB GTSRB Speed

Layer (More (Less Limit Sign
Kernels) Kernels)

CONVL 6% 8% 6%

BNL 6% 8% 6%

ReLU6 73% 75% 78%

(Important)

ReLU6 1% 73% 71%

(Unimportant)

MPL 16% 35% 28%

(Important)

MPL 11% 12% 9%

(Unimportant)

FCL 6% 8% 5%
CLL 100% 100% 100%
Without 4% 6% 6%
Attack

Table 2 The possibility of image being misclassified of
ShuffleNet V2 before or after HTs being activated and when
being attacked on different kinds of important PEs of all layers
and unimportant PEs of MPLs and ReLU6 Layers.

Attacked Layer GTSRB Speed Limit Sign
CONVL 8% 14%

BNL 7% 10%

ReLU6 (Important) 88% 89%

ReLU6 (Unimportant) 68% 72%

MPL (Important) 24% 31%

MPL (Unimportant) 11% 12%

FCL 6% 9%

CLL 100% 100%

Without Attack 5% 9%

Table 3 The possibility of image being misclassified of
GhostNet before or after HT's being activated and when being
attacked on different kinds of important PEs of all layers and
unimportant PEs of MPLs and ReLU6 Layers.

Attacked Layer GTSRB Speed Limit Sign
CONVL 4% 11%

BNL 5% 11%

ReLU6 (Important) 91% 88%

ReLU6 (Unimportant) ~ 70% 68%

MPL (Important) 25% 33%

MPL (Unimportant) 10% 8%

FCL 5% 9%

CLL 100% 100%

Without Attack 5% 9%

Then, the probabilities of images being misclassified are in
range 16-35%, when important PEs of MPL are under
attacking.

Then the impact of HTs when HTs are utilized to attacked
different kinds of unimportant PEs are introduced. Because the
impacts of HTs when they are utilized to attack CONVLs’,

BNLs’ and FCLs’ important PEs are not serious, the impact of
attacking on these layers’ will be not introduced. In addition,
because for CLLs, there are only important PEs, so PEs in
CLLs will be also not considered in this part. The simulation
results are shown in Table 1, Table 2, Table 3. Based on the
data shown in these tables, the ReLU’s unimportant PEs are
also vulnerable, but the unimportant PEs of MPL are
robustness.

The above analysis demonstrates that different part of the
CNN architectures exhibits various level of vulnerability to a
HT attack. The classification layer is the weakest followed by
the ReL U6 layer. Next is the MPLs, CONVLs and BNLs, and
FCLs are robustness to this kind of function tampering HT
attack. It is also worth noting that all PEs in the ReLU6 layers
are vulnerable.

4 Countermeasure

In this section, we will introduce the design of the two
countermeasures and related evaluation.

4.1 Selective Hardware Redundancy (SHR)

The essence of this approach is to use the outcome of the
vulnerability analysis from the previous section to introduce
hardware redundancy selectively, which suggests that only the
selected vulnerable PEs will be protected. The analysis has
shown that the CLLs, MPLs and Relu6 layers are the most
vulnerable, and For MPLs, only the important PEs are
vulnerable. Therefore, only the important PEs MPLs and all
PEs in ReLU6 layers and CLLs need to be protected. This
approach uses the simple majority voting mechanism
described in [32].

The structure of this approach is elaborated in Fig.13,
wherein triple modular hardware redundancy is introduced for
each processing element to be protected, and a majority voter
is then used to determine the final output. This means that
even if an adversary attack one of those elements, redundant

fControlunit ceueees Control signal ! Securityunit =+ Security signal
S Lot !
D Memory and . Data from memory
protected PE and protected PE
- -----I Memory
Parameter/
Weight/ Feature
Feature
- :
a i
o . =
3 Majority 1
2 T voting ! ; B
Enadle/ I S
Size of Kernelff.—y PE be-eee= ¢ flog
______ 1
P
'

Controller

Fig. 13. The structure of Selective hardware redundancy.

4.2 Selective Hardware and Time
Redundancy (SHTR)

This second approach relies on the intrinsic similarity of the
hardware structure of the processing elements in CNN
accelerators to further reduce the implementation overheads.
For example, the PEs used for the convolution module, no
matter in MobileNetV2, ShuffleNetV2 or GhostNet, have the
same structure. The only difference is that the input data and
the number in the calculation loop are not the same. This
allows the countermeasure, RIA in a recent paper in [36], has
the potential ability to protect the accelerators of CNNs. The
RIA is a lightweight real-time monitoring method. This also
fits well with the premise of lightweight protection. Here, the
second countermeasure proposed in this paper is combining
the RIA with the SHR mechanism. In the following content in
this paper, we will call the countermeasure in this section the
SHTR.

The working principles of this method are as follows. The
procession elements to be protected are identified based on the

vulnerability analysis outcome from Section 3. Additional two
security processing elements are also added to each layer and
used to verify the correctness of the output of each
“important” processing element. This verification is performed
by applying the same input data to these two modules and
using a majority voter to compare the output of the two
security elements and the processing element being checked.
Every clock cycle, the control circuitry chooses one
“important” processing element to check once all elements
have been checked the process repeats. The hardware
architecture of this approach is shown in Fig.14.

The control unit is responsible for coordinating the
checking process by fetching the input and corresponding
output data of the PE being checked from the memory.

The output from the processing element being checked (O)
and from the two security elements (S1, S2) are stored in
register A.

The checker compares (O) with the output of the majority
voter. The outcome of this comparison is monitored by the
control unit. If a mismatch is found, this means the processing
element being checked has been compromised and will
subsequently be replaced by the backup PE.

IAddresses in this figure indicates where in memory the outputs of the corresponding Backup .
Lunits will be stored and the inputs of the corresponding units will be read. | PE Fig. 14. The Structure
!_ of the Selective
/ | j PE!
TrTE < L N “—+= Hardware and Time
v = 177 Features :
& f !
: : z Main i Vinat are the [Redundancy
H : :
A IERRE autputs of o Approach
N - s the security 2y
(- - It £ PEs and the clx
8 E| - R o5
el I e main PE |
EL =T < .
Iz 2 |3 2 (51,52,0). :
=TT - - |
I3 (8 =
o :
il ;!
b 18 5 [. .
o NI ; % .
[JA A I I i & 8 :
le o (g -T0IiI 'E :
L g i e B R
£ é’ S I Majority ! ;> ! Checker i i
h -3 . re bimem g
2 R 3 ! Voting ; ' :
il]) ' : : !
i :
Controller e _
Countermeasure

block and wire

4.3 Evaluation of Proposed

Countermeasures

This section compares the two proposed defenses in terms of
security, and overheads.

4.3.1 Security Analysis

From a security perspective, both defenses assume that a
hardware trojan is likely to be inserted in parts of the design
such that it has a significant impact on the accuracy of the
classification. Consequently, both defenses only protect
vulnerable PEs as defined in the architecture of each
accelerator. The vulnerable PEs in this experiment including
the important PEs of MPLs, CLLs and all PEs of the ReLU6
PE. The SHR defense approach allows the system to function

correctly even if all protected elements have a trojan inserted.
However, if the adversary is to maliciously modifies the
processing element and one of its replicas, the self-correct
ability will be failed. Increasing the number of the replicas is
able to solve this problem. For example, if the adversaries are
able to attack two PEs, the number of the replicas of every PEs
need to be increased to 4.

The SHTR approach can invalidate a single HT attack on
any of the protected procession elements by using the backup
module. This method also works if one of the security
processing elements or backup processing elements is
attacked. Because the Majority Voting unit make sure only
when most of voters are attacked, the voting result is wrong.
But if the ability of adversaries is increased, the Majority
Voting unit also face the invalidation risk. In this condition,
the solving method is same as the SHR, increasing the number
of the security PEs and backup PEs. For example, if the
adversaries are able to attack 3 PEs, the number of security PE
need to be increased to 6 and the number of backup PEs need
to be increased to 3.

To compare the two approaches, we implemented
protection on the three most sensitive layers (CLL, Relu6
layers, and MPLs). In this experiment, there are some
differences in the protected objects between the two protection
modes of SHR and SHTR. For SHR, the important PEs of

MPLs and all PEs of ReLU6 layers and CLLs are protected.
For SHTR, because the structure of PEs of MPLs’ important
PEs and unimportant PEs are the same, so without any
additional overheads, the unimportant PEs of MPLs also can
be protected, just required more time to finish one loop
checking. In addition, this extra time is tolerable compared to
the time it takes to classify an image. So, for SHTR, all PEs of
ReLUG6 layers MPLs and CLLs are protected.

We consider a scenario, wherein an adversary at the system
integration stage can insert a single trojan in the accelerator.
‘We assume that the adversary has sufficient knowledge of the
implementation to choose a location for this trojan to cause the
maximum degradation in the classification accuracy. In this
case, the attacker would insert a HT in the PE of the CLL,
which will cause the most serious impact, in the design that is
not protected. For the two protected designs, the attackers are
able to pay attention the protect circuit, but because that they
are only able to insert one HT in one PE, so they would target
the unimportant PE in the MPL.

The performance of each implementation was then
measured ad shown in Table 4. The results show the defense
techniques proposed in this work can significantly reduce the
impact of such an attack. In addition, for SHTR mechanism,
the impact of unimportant PEs of MPLs being attacked also
can be recovered.

Table 4 The possibility of image being misclassified of GhostNet, MobileNetV2, ShuffleNetV2 accelerator before or after HT

being activated and without protection or with SHR or SHTR.

Network Dataset Original Attacked Attacked Attacked
with SHR with SHTR

MobileNetV2 GTSRB (More Kernels) 4% 100% 11% 6%

GTSRB (Less Kemels) 6% 100% 12% 8%

Speed Limit Sign 6% 100% 9% 6%
ShuffleNetV2 GTSRB 5% 100% 11% 8%

Speed Limit Sign 9% 100% 14% 14%
GhostNet GTSRB 4% 100% 10% 5%

Speed Limit Sign 8% 100% 11% 11%

4.3.2 Hardware Trojan Impact Recovery Time

The SHR approach allows immediate recovery from a Trojan
insertion attack, as the output compromised processing
element will be overridden by the majority voting circuitry.
On the other hand, the SHTR scheme requires more time to
detect and recover from a trojan insertion because important
processing elements are checked sequentially, this means the
accelerator with a trojan inserted will produce the wrong
results for a period required to check all processing elements,
and subsequently substitute a compromised module with one
of the backup PE.

Let us take the example, analyzed previously where the

SHTR approach is used to protect the three most sensitive
layers (all PEs of CLLs, Relu6 layers, and MPLs).
Furthermore, This implementation uses one protection module
for both the MPLs and CLLs, the structure of the processing
element in these two layers is the same, so we only need one
backup PE.

In this case, the checking process runs in two parallel
threads. The first checks the ReLUG6 layers’ PEs serially, and
the second serially examines MPLs” and CLLs’ PEs.

In Thread 1, the ReLU6 layers” PEs requires one clock
cycle to produce the result, during which the output of one PE
can be examined. Furthermore, the checking process includes
five phases: (1) security PE result generation, (2) Register A
data reading, (3) majority voting, (4) checker unit result
comparison, and (5) controller's result generation. Every phase

need one clock cycle to complete operation. Therefore, in
total, we need 6 clock cycles to complete check one PE and

ch
Input dt
Cutpit D

ol
Register St Nl
§2: Null

0 e
S1: Fei
52: o

ol ol e
ikl ikl

Checker Error signal: bl Error signal: bl Error signal; Nl

L Erable: Null Erable: Null Enable: Null Enable: Null Enabie:

Clock Clock Closk Clock 4

Fig. 15. The timing diagram of the all units of SHTR

Therefore, for Thread 1, ShuffleNetV2, MobileNetV2, and
GhostNet need 148 (9*16+4), 116 (7*16+4), and 52 (12+4)
clock cycles respectively to check one round. Here, the first
part of the calculation represents the time to scan all PEs, and
the latter part represents the remaining clock cycle required to
complete the checking for the final PE.

Similarly, for Thread 2, the MPLs’ PEs requires 4 clocks
cycles to produce the final result, but Security PEs can utilize
the intermediate results to check the performance of the
monitored PEs, so still requiring 1 clock cycle for checking
one PE. Hence, 52, 36, and 20 clock cycles are required for
ShuffleNetV2, MobileNetV2, and GhostNet respectively.
Thread 1 requires more time, hence should be considered as
the worst-case scenario detection time for the SHTR approach.

4.3.3 Implementation Overheads

To estimate the area overheads of proposed countermeasures,
the six architectures studied here have been implemented
using System Verilog. Three versions of each design were
constructed, without countermeasures, with selective hardware
redundancy (SHR), and with Selective Hardware and Time
Redundancy (SHTR). In the last two cases, the protection is
applied to the three most sensitive layers (classification,
Relu6, and Max Pooling).

All designs have been synthesized using Quartus on the
FPGA device 5SCGXFC9A6U19A7. The respective areas are
obtained from the synthesis report in terms of the Adaptive
Logic Module (ALM) used in each case, these are listed in
Table 5.

The Results show the area overheads associated with the
SHR approach rages between 10-6% of the original design
areas. Comparing with the traditional Majority Voting
mechanism which will protect all PEs, the additional overhead
of the SHR is significantly reduced. While those associated
with the SHTR one only a fraction of additional overheads of
SHR, estimated to be around 0.4-0.2 %. This was expected
given, comparing with overheads of PEs which contain
multipliers, the overheads of the PEs of the MPL, CLL and
ReLUG6 is tiny. So, the additional overheads of the SHR is less
than the Majority Voting. Furthermore, the additional
hardware requirements of the SHR approach that triplicate

or signal A}

the implementations are pipelined. The specific timing
diagram of SHTR units of Thread 1 is shown in Fig.15.

Enable; (Ervor signal 8] | Enable: {Errar signal C) | Enable: (Error signal 0) | Enable: [Error signal €]

lock ok 7 ekt Chock §

each important procession element, compared to only using
three additional PE for each type of PEs by the SHTR
techniques, the overheads of SHTR is able to be further
reduced.

4.4 Discussion

The countermeasures proposed in this paper demonstrate
broad applicability to existing CNN hardware accelerator
architectures. These countermeasures require only that the
CNN hardware accelerator include buffers capable of
temporarily storing the input and output data of PEs (features
and weights). As many modern CNN hardware accelerators
are equipped with on-chip memory buffers for storing data and
filter weights [13,50,51,52], the proposed countermeasures
can be readily applied to a wide range of such accelerators.

The primary focus of the proposed solutions is the
mitigation of function-tampering hardware Trojans—those
designed to produce erroneous outputs. However, these
countermeasures exhibit limited efficacy against hardware
Trojans that do not affect functionality, such as those designed
to leak sensitive information. This represents a key limitation
of the approach.

Nevertheless, there are additional limitations to consider
regarding the proposed countermeasures. If an adversary
successfully compromises the Majority Voting unit, the SHR
mechanism would become ineffective. However, the SHTR
mechanism remains effective under the threat model assumed
in this work. This is because SHTR is capable of detecting
discrepancies between the output of the Majority Voting unit
and that of the monitored PE. Upon detection, SHTR disables
the monitored PE and activates a backup PE. The system
continues to function until all backup PEs are exhausted. In
this context, since the attacker is assumed to only target the
Majority Voting unit and cannot compromise other processing
units, the data generated by the backup PE remains correct,
thereby attacking on Majority Voting unit cannot cause
serious impact.

To make SHTR ineffective, an adversary would need to
compromise multiple components of the CNN hardware
accelerator, including both the PEs and the Majority Voting
unit. This significantly increases the complexity of executing a

successful attack, which can be seen as enhancing the overall

robustness of the hardware accelerator.

Table 5 Comparison of overheads of accelerators, with or without protection

Network Type Area overheads (ALM)
(Speed Limit Signs CNN / GTSRB CNN)
Original Majority With With SHTR Majority With SHR With SHTR
Voting SHR Voting Increase Increase
Increase

ShuffleNet V2 78188/ 156309/ 85677/ 78316/ 99%/ 10%/ 0.2%/

84478 168889 91967 84606 99% 9% 0.2%
MobileNet V2 60404/ 120741/ 66198/ 60532/ 99%/ 10%/ 0.2%/

66694 133321 72488 66822 99% 9% 0.2%
GhostNet 36404/ 72741/ 39085/ 36532/ 99%/ 7%/ 0.4%/

42694 85321 45375 42822 99% 6% 0.3%
5 Conclusion .

Declarations

This work presents the first large-scale study of the impact
of function tampering HTs insertion on CNN accelerators,
with a specific focus on those that use approximate
commuting techniques, which are prevalent in embedded
applications. The work investigates three main types of such
networks, MobileNet V2, ShuffleNet V2, and GhostNet,
which have been trained in the grayscale version of whole
dataset of GTSRB and speed limit sign images subset of
GTSRB. Next, hardware accelerators of these designs were
developed using System Verilog. The work then proceeded to
develop a unique hardware Trojan for each layer of the
network, such as it can feasibly be inserted by an attacker.
Next, a comprehensive experimental analysis was carried out
to determine the insertion locations in each hardware
architecture that causes the largest drop in classification
accuracy. For the network under consideration, there is found
to be a specific set of procession elements, which we have
referred to as “important”, in the classification, Relu6, and
Max pooling layers. These findings have subsequently been
used to develop two countermeasures, the first relies on
hardware redundancy (SHR), and the second on a combination
of hardware and time redundancy(SHTR). Such techniques are
only applied to the most vulnerable points in each architecture
to reduce overheads. The two proposed defenses were
evaluated in terms of security, attack detection/recovery time,
and area overheads. The results show that the SHR provides
speedy recovery from an attack while incurring between 10-
6% area overheads. On the other hand, SHTR requires more
time to recover the impact caused by HT, but its area overhead
is much smaller (~ 0.3%). In addition, when the abilities of
attackers are limited, the performance of SHTR is better than
SHR, in terms of the possibility of images being misclassified
when HTs are injected into the accelerators. Future research
will focus on other types of hardware-level attacks, such as
fault injections.

Ethical Approval There was no involvement of humans or
animals in this study. We give consent to Springer to publish

this paper.

Competing interests The authors declare no competing

interests.

Authors’ contributions P.S. and B.H. wrote the main
manuscript. B.H. and T.J.K. reviewed the manuscript and

proposed the critical suggestion.
Funding Not applicable

Availability of data and materials Not applicable

References

1. K. O’Shea and R. Nash, “An introduction to
convolutional neural networks,” arXiv preprint
arXiv:1511.08458, 2015.

2. N. Abderrahmane, E. Lemaire, and B. Miramond,
“Design space exploration of hardware spiking
neurons for embedded artificial intelligence,” Neural
Networks, vol. 121, pp. 366-386, 2020.

10.

R. Struharik, B. Vukobratovic’, A. Erdeljan, and D.
Rakanovic’, “Conna— compressed cnn hardware
accelerator,” in 2018 21st Euromicro Conference on
Digital System Design (DSD). IEEE, 2018, pp. 365—
372.

C.-Y. Chen, J. Choi, K. Gopalakrishnan, V.
Srinivasan, and S. Venkatara- mani, “Exploiting
approximate computing for deep learning
acceleration,” in 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE,
2018, pp. 821-826.

G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.
Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and
linear bottlenecks,” in Proceedings of the IEEE
Conference on computer vision and pattern
recognition, 2018, pp. 4510-4520.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet:
An extremely efficient convolutional neural network
for mobile devices,” in Proceedings of the IEEE
Conference on computer vision and pattern
recognition, 2018, pp. 6848—6856.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun,
“Shufflenet v2: Practical guidelines for efficient CNN
architecture design,” in Proceedings of the European
Conference on computer vision (ECCV), 2018, pp.
116-131.

K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu,
“Ghostnet: More features from cheap operations,” in
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp.
1580- 1589.

S. Venkataramani, X. Sun, N. Wang, C.-Y. Chen, J.
Choi, M. Kang, A. Agarwal, J. Oh, S. Jain, T.
Babinsky, et al., “Efficient ai system design with

11.

13.

14.

17.

18.

19.

20.

cross-layer approximate computing,” Proceedings of
the IEEE, 2020.

Y. Wang, H. Li, and X. Li, “Real-time meets
approximate computing: An elastic cnn inference
accelerator with an adaptive trade-off between QoS
and qor,” in 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2017, pp. 1-6.

. Z.Liu, A. Yazdanbakhsh, T. Park, H. Esmaeilzadeh,

and N. S. Kim, “Simul: An algorithm-driven
approximate multiplier design for machine learning,”
IEEE Micro, vol. 38, no. 4, pp. 50-59, 2018.

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m.
Hwu, and D. Chen, “Dnnbuilder: An automated tool
for building high-performance dnn hardware
accelerators for FPGAs,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD). ACM, 2018, pp. 1-8.

Y. Shen, M. Ferdman, and P. Milder, “Maximizing
cnn accelerator efficiency through resource
partitioning,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 535-547, 2017.

. P. Marwedel, Embedded system design. Springer,

2006, vol. 1.

. P. Kocher, R. Lee, G. McGraw, and A. Raghunathan,

“Security as a new dimension in embedded system
design,” in Proceedings of the 41st annual Design
Automation Conference, 2004, pp. 753-760.

Y. Jin, “Introduction to hardware security,”
Electronics, vol. 4, no. 4, pp. 763-784, 2015.

Halak, “Cist: A threat modeling approach for
hardware supply chain security,” in Hardware Supply
Chain Security. Springer, 2021, pp. 3-65.

Y. Nozaki, S. Takemoto, Y. Ikezaki, and M.
Yoshikawa, “Lut oriented hardware trojan for FPGA
based ai module,” in 2020 6th International
Conference on Applied System Innovation (ICAST).
1EEE, 2020, pp. 46-49.

Z.Liu, J. Ye, X. Hu, H. Li, X. Li, and Y. Hu,

“Sequence triggered hardware trojan in neural

21.

22.

23.

24.

25.

26.

27.

28.

network accelerator,” in 2020 IEEE 38th VLSI Test
Symposium (VTS). IEEE, 2020, pp. 1-6.

J.Ye, Y. Hu, and X. Li, “Hardware trojan in FPGA
CNN accelerator,” in 2018 IEEE 27th Asian Test
Symposium (ATS). IEEE, 2018, pp. 68—73.

T. A. Odetola, H. R. Mohammed, and S. R. Hasan,
“A stealthy hardware trojan exploiting the
architectural vulnerability of deep learning
architectures: Input interception attack (ii),” arXiv
preprint arXiv:1911.00783, 2019.

Yang, J. Hou, M. Wu, K. Mei, and L. Geng,
“Hardware trojan attacks on the reconfigurable
interconnections of convolutional neural networks
accelerators,” in 2020 IEEE 15th International
Conference on Solid-State & Integrated Circuit
Technology (ICSICT). IEEE, 2020, pp. 1-3.

J. Clements and Y. Lao, “Hardware trojan attacks on
neural networks,” arXiv preprint arXiv:1806.05768,
2018.

K. Xiao, D. Forte, and M. Tehranipoor, “A novel
built-in self-authentication technique to prevent
inserting hardware trojans,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 12, pp. 1778-1791, 2014.

S. C. Konigsmark, D. Chen, and M. D. Wong,
“Information dispersion for trojan defense through
high-level synthesis,” in Proceedings of the 53rd
Annual Design Automation Conference, 2016, pp. 1—-
6.

X. T. Ngo, S. Guilley, S. Bhasin, J.-L. Danger, and Z.
Najm, “Encoding the state of integrated circuits: a
proactive and reactive protection against hardware
trojans horses,” in Proceedings of the 9th Workshop
on Embedded Systems Security, 2014, pp. 1-10.

X. T. Ngo, S. Bhasin, J.-L. Danger, S. Guilley, and Z.
Najm, “Linear complementary dual code
improvement to strengthen encoded circuit against
hardware trojan horses,” in 2015 IEEE International
Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2015, pp. 82-87.

29.

30.

31

32.

33.

34.

35.

36.

M. Hicks, M. Finnicum, S. T. King, M. M. Martin,
and J. M. Smith, “Overcoming an untrusted
computing base: Detecting and removing malicious
hardware automatically,” in 2010 IEEE Symposium
on security and privacy. IEEE, 2010, pp. 159-172.
G. Voyiatzis, K. G. Stefanidis, and P. Kitsos,
“Efficient triggering of trojan hardware logic,” in
2016 IEEE 19th International Symposium on Design
and Diagnostics of Electronic Circuits & Systems
(DDECS). IEEE, 2016, pp. 1-6.

S. Dupuis, M.-L. Flottes, G. Di Natale, and B.
Rouzeyre, “Protection against hardware trojans with
logic testing: Proposed solutions and challenges
ahead,” IEEE Design & Test, vol. 35, no. 2, pp. 73—
90, 2017.

H. A. Amin, Y. Alkabani, and G. M. Selim, “System-
level protection and hardware trojan detection using
weighted voting,” Journal of Advanced Research,
vol. 5, no. 4, pp. 499-505, 2014.

T. A. Odetola, A. Adeyemo, F. Khalid, and S. R.
Hasan, “Fm-mod comp: Feature map modification
and hardware-software co-comparison for secure
hardware accelerator-based cnn inference,”
Microprocessors and Microsystems, p. 104827, 2023.
M. Javaheripi, M. Samragh, G. Fields, T. Javidi, and
F. Koushanfar, “Cleann: Accelerated trojan shield for
embedded neural networks,” in Proceedings of the
39th International Conference on Computer-Aided
Design, 2020, pp. 1-9.

Q. Xu, M. T. Arafin, and G. Qu, “Security of neural
networks from a hardware perspective: A survey and
beyond,” in Proceedings of the 26th Asia and South
Pacific Design Automation Conference, 2021, pp.
449-454.

P. Sun, B. Halak, and T. Kazmierski, “Towards
hardware trojan resilient design of convolutional
neural networks,” in 2022 IEEE 35th International
System-on-Chip Conference (SOCC). IEEE, 2022,
pp. 1-6.

38.

39.

40.

41.

42.

43.

44,

45.

. P. Yellu, M. R. Monjur, T. Kammerer, D. Xu, and Q.
Yu, “Security threats and countermeasures for
approximate arithmetic computing,” in 2020 25th
Asia and South Pacific Design Automation
Conference (ASP- DAC). IEEE, 2020, pp. 259-264.
P. Yellu, L. Buell, D. Xu, and Q. Yu, “Blurring
boundaries: A new way to secure approximate
computing systems,” in Proceedings of 2020 on Great
Lakes Symposium on VLSI, 2020, pp. 327-332.

F. Regazzoni, C. Alippi, and I. Polian, “Security: the
dark side of approximate computing?” in 2018
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2018, pp. 1-6.

S. Keshavarz and D. Holcomb, “Privacy leakages in
approximate adders,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE,
2017, pp. 1-4.

S. Vahdat, M. Kamal, A. Afzali-Kusha, and M.
Pedram, “Tosam: An energy-efficient truncation-and
rounding-based scalable approximate multiplier,”
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 5, pp. 1161-1173, 2019.
V. Venugopalan and C. D. Patterson, “Surveying the
hardware trojan threat landscape for the internet-of-
things,” Journal of Hardware and Systems Security,
vol. 2, no. 2, pp. 131-141, 2018.

S. Bhunia, M. S. Hsiao, M. Banga, and S.
Narasimhan, “Hardware trojan attacks: Threat
analysis and countermeasures,” Proceedings of the
IEEE, vol. 102, no. 8, pp. 1229-1247, 2014.
Clements J, Lao Y. Hardware trojan attacks on neural
networks[J]. arXiv preprint arXiv:1806.05768, 2018.
Xue M, Gu C, Liu W, et al. Ten years of hardware
Trojans: a survey from the attacker's perspective[J].
IET Computers & Digital Techniques, 2020, 14(6):
231-246.

46.

47.

48.

49.

50.

51.

52.

Yanamala R M R, Pullakandam M. A high-speed
reusable quantized hardware accelerator design for
CNN on constrained edge device[J]. Design
Automation for Embedded Systems, 2023, 27(3):
165-189.

He J, Zhang M, Xu J, et al. Optimizing CNN
Hardware Acceleration with Configurable Vector
Units and Feature Layout Strategies[J]. Electronics,
2024, 13(6): 1050.

Rosero-Montalvo P D, Toziin P, Hernandez W.
Optimized CNN architectures benchmarking in
hardware-constrained edge devices in loT
environments[J]. IEEE Internet of Things Journal,
2024.

Zhang C, Li P, Sun G, et al. Optimizing FPGA-based
accelerator design for deep convolutional neural
networks[C]//Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate

arrays. 2015: 161-170.

Lian X, Liu Z, Song Z, et al. High-performance
FPGA-based CNN accelerator with block-floating-
point arithmetic[J]. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2019, 27(8): 1874-
1885.

Wang Z, Xu K, Wu S, et al. Sparse-YOLO:
Hardware/software co-design of an FPGA accelerator
for YOLOV2[J]. IEEE Access, 2020, 8: 116569-
116585.

Huang W, Wu H, Chen Q, et al. FPGA-based high-
throughput CNN hardware accelerator with high
computing resource utilization ratio[J]. IEEE
Transactions on Neural Networks and Learning
Systems, 2021, 33(8): 4069-4083.

