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Abstract 

Convolutional neural network accelerators are increasingly used in safety-critical applications, including 

autonomous vehicles. Therefore, particularly vulnerable to hardware Trojan insertion, a security attack that takes 

place during the development of integrated circuits. This work presents for the first time, a large-scale study of the 

impact of hardware Trojan insertion on convolutional neural network accelerators, focusing on those that use 

approximate commuting techniques, prevalent in embedded applications. We investigate three types of such 

networks, MobileNet V2, ShuffleNet V2, and GhostNet, trained in datasets of grayscale speed limit sign images and 

GTSRB. Our results show that certain parts of these architectures are more susceptible to hardware Trojan attacks, 

specifically a specific set of procession elements, referred to as “important”, in the classification, Relu6, and Max 

pooling layers, respectively. These findings are subsequently used to develop two countermeasures, the first relies 

on selective hardware redundancy(SHR), and the second uses a combination of hardware and time 

redundancy(SHTR). The proposed defenses are experimentally validated. Our results show that the SHR provides 

speedy recovery from an attack while incurring between 6-10% area overheads. Whereas SHTR requires more time 

to detect the Trojan, and its area overhead is much smaller (~ 0.3%). 

Keywords Approximate Computing · CNN accelerator · Hardware Trojan · Lightweight countermeasure · Run-time 

monitoring

1  Introduction 

Convolutional neural networks (CNNs), a subset of Artificial 

Intelligence algorithms,  are essential for image recognition 

tasks [1], with ubiquitous applications such as facial 

recognition, and autonomous vehicles.  and biometric 

authentication. However, the integration of CNNs into edge 

computing devices is challenging due to their constrained 

energy budget and computation resources[2]. This contrast has 

highlighted the need for CNN optimization and the creation of 

specialized CNN accelerators [2-4], spurring research and 
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development in this field. This led to the emergence of 

lightweight CNN architectures such as MobileNet [5], [6], 

ShuffleNet [7], [8], and GhostNet [9]. Additionally, 

employing approximate computing (AC) technology has been 

suggested to enhance CNNs, by utilizing approximate 

multipliers, clipping networks, and reducing data lengths [10]– 

[12]. These strategies facilitate the feasibility of conducting 

CNN computations on edge devices. Simultaneously, in the 

area of hardware CNN accelerators, a multitude of designs 

have been put forward, including the DNNbuilder and Multi- 

CLP accelerator [13], [14], yet the question of hardware 

security persists as a pivotal concern to be addressed. 

While safety is a theoretical prerequisite in the design and 

manufacturing of accelerators [15], [16], the current market 

conditions pose significant challenges. With the IC (integrated 

circuits) supply chain distributed across global companies, 

opportunities for hardware-level attacks increase significantly 

[17], [18]. It is not feasible to assure the trustworthiness of all 

personnel involved in IC production, exposing every stage of 

the supply chain to potential hardware-level attacks [17], [18]. 

Furthermore, successful attacks on CNN accelerators can lead 

to sensitive data breaches, degraded performance, and 

hardware piracy [17], [18]. For instance, Hardware Trojans 

(HTs) can be used to compromise CNN accelerators and such 
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attacks are not rare. Several HTs aimed at CNN accelerators 

have been proposed [19]–[24], underscoring the need for 

robust protections against HT attacks in CNN accelerators.  

Given the acute threats posed by HTs, a plethora of 

countermeasures have been introduced. These 

countermeasures combat not only general HTs but also those 

specifically targeting CNN hardware accelerators. General 

countermeasures include techniques like functional filler cells 

[25], layout filling [26], design obfuscation [27], and encoded 

circuits [28] aimed at preventing HT insertion. Pre-silicon 

detection [29], structural testing, functional testing [30], [31], 

and run-time detection methods [32] have been employed for 

detecting HTs. Specialized countermeasures against HTs 

targeting CNN accelerators include FM-ModComp [33], 

which enhances the likelihood of HT triggering during testing, 

and CLEANN [34], [35], which detects if the CNN input 

images carry malicious information as trigger signals. Further, 

two run-time detection methods from [36] successfully 

identify abnormal behaviors in the PEs of MaxPooling layers. 

However, all these countermeasures, barring run-time 

detection methods, may falter under certain conditions, for 

instance, when attacks involve a combination of hardware and 

software Trojans [18] or use special sequences of 

classification results to activate HTs [35]. To combat these 

challenges, run-time detection methods are proposed as a final 

line of defense. Although run-time detection methods usually 

perform well against HTs, they introduce significant 

overheads [18]. While some lightweight run-time detection 

methods have been proposed to mitigate this issue, the 

robustness of existing lightweight run-time detection methods 

remains a concern [36]. 

Current research dominantly explores methods for inserting 

HTs into CNN accelerators [19]–[24], while countermeasures 

receive less attention [33], [34], and [36]. Remarkably, none 

of these protection-oriented works provides a comprehensive 

vulnerability analysis of the whole CNN accelerator system, a 

crucial step for designing effective countermeasures, 

particularly in the context of run-time detection methods. This 

lack of vulnerability analysis is especially concerning for 

accelerators based on AC, given that AC-based systems 

inherently possess more vulnerabilities [37]–[40], leading to a 

more complex protection design. Consequently, this paper 

aims to fill this gap by conducting a thorough vulnerability 

analysis of AC-based CNN accelerators, built on three popular 

CNN architectures [6], [8], [9]. The goal of this analysis is to 

determine which layer in each architecture, a hardware trojan 

causes the most reduction in classification accuracy. This 

knowledge is subsequently used to selectively protect these 

vulnerable points in each design, which significantly reduces 

the potential impact of a hardware Trojan while incurring 

minimal implementation overheads.   The contributions of this 

work are twofold:  

• A comprehensive vulnerability analysis of CNN 

accelerators of ShuffleNet V2, MobileNet V2, and 

GhostNet is carried out, wherein a hardware Trojan is 

inserted in each layer of these architectures and its impact 

on the classification accuracy was measured. The CNN 

accelerators studied use TOSAM approximate multiplier 

[41] and the HT which utilized to evaluate the vulnerable 

level of every type of layers are based on the function 

tampering HT proposed on [36]. Experiment results show 

that PEs for ReLU6 layers, classification layers and 

MaxPooling layers are the most vulnerable points in these 

designs.  

• Two countermeasures are proposed. The first combines 

the traditional hardware redundancy [32] and 

vulnerability analysis result, called selective hardware 

redundancy. The second technique further reduce the 

hardware overheads of the first countermeasure by 

combing selective hardware redundancy and time 

redundancy mechanism. Both countermeasures have 

certain ability to correct errors. A comparison of the 

overheads and performance of these defenses is also 

included. 
The remainder of this paper is structured as follows: In 

Section 2 outline the research methodology and assumptions, 

including the threat model and the analysis approach. Section 

3 explains the experimental setups and discussed the results of 

the vulnerability analysis. Section 4 developed the two defense 

techniques and evaluate their security, detection time, and area 

overheads. Finally, conclusions are drawn in Section 5. 

2  Methodology 

This section introduces the threat model adopted in this work 

and explains the rationale of the analysis methodology.   

2.1  Threat Modelling 

Hardware Trojans refer to a hardware-level security attack 

wherein, an adversary makes malicious modifications to the 

integrated circuits during the design (e.g., IP companies), 

implementation (e.g., SoC integration), or even the fabrication 

stage (e.g., malicious IC factory). These changes aim to 

sabotage the design functionality, and introduce a backdoor, or 

facilitate information leakage [18], [42], [43]. The attacker is 

typically assumed to have access to design files design tools or 

the physical layout, as well as be proficient in IC design [18]. 

Hardware trojans inserted at the design stage by malicious IP 

developers are difficult to detect, as they may involve subtle 

modifications to the circuit designs that are hidden or 

obfuscated. Techniques to defend against this type of attack 

include the Unused Circuit identification technique [29], 

which consists of identifying and removing suspicious 

circuitry-those circuits not used or otherwise activated by any 

of the design verification tests. However, such an approach 

cannot protect against malicious modification of the design 

specifications, which can feasibly take place at the IP 

development place, for example, tampering with the training 

data of a machine learning model can be used to generate a 

malicious implementation of the model (e.g. machine learning 

model for an autonomous car that does not recognize certain 



traffic signs when a trojan is triggered), therefore the best 

strategy to defend against a trojan insertion at the IP 

development stage is to only use trustworthy companies and 

avoid integrating open-source designs unless thoroughly 

checked[18], [31]. Attacks at SoC integration and fabrication 

stages are harder to avoid because of the outsourcing of the IC 

implementation and fabrication, a trend that is very difficult to 

reverse due to the significant costs associated with these tasks 

and the need for affordable electronic systems[18]. Contrary to 

a hardware trojan attacker at the IP development stage, an 

adversary at the implementation/fabrication stage can only 

make limited modifications to the original circuit not to 

introduce an increase in the area or degradation in the 

performance, which makes it easy for such Trojan to be 

detected by typical verification and sign off tools[18], [31], 

[43].  

The threat model of this work is based on the threat model 

proposed in the [44]. Comparing with the threat model in the 

[44], we narrow down the range of the steps where adversaries 

may be appeared. We only consider that HT attacks at the SoC 

or fabrication stage, wherein the adversary can make limited 

modifications to the digital design. The threat model is shown 

in Fig.1.  

The adversary's target is to manipulate the processing 

elements (PEs) of the CNN accelerator to degrade its 

performance. Specifically, the attacker aims to ensure that the 

CNN accelerator operates normally when the hardware Trojan 

(HT) is inactive, but misclassifies images when the HT is 

triggered. 

The primary challenges for the adversary in these two 

phases are: first, gaining a deep understanding of the 

integrated circuit (IC) design to insert the Trojan without 

disrupting the normal functionality of the system; second, 

remaining covert enough to bypass the verification and testing 

stages [45]. 

Moreover, in both the SoC and manufacturing stages, any 

modification may affect critical parameters such as system 

timing and power consumption, which are commonly used to 

detect hardware Trojans. As a result, attackers face significant 

limitations, as tampering with large-scale processing elements 

(PEs) can easily be detected through such deviations [45]. 

Attacks at the IP development stage such as those involving 

malicious modification of specifications or training data are 

beyond the scope of this work. 

 

Fig. 1. Threat Modeling of Hardware Trojans  

2.2  Principles of the Proposed Vulnerability 

Analysis  

The study aims to identify locations for a hardware trojan 

insertion in the architecture or a CNN that leads to the most 

degradation in the accuracy classification.  To achieve this, the 

first step is to modularize the CNN system and locate the 

attackable area, this is done by dividing the network layers 

into separate modules that are universally present in all 

architectures, namely CONVLs, FCLs, BNLs, pooling layers, 

activation layers, and CLLs. Three lightweight CNN 

architectures are considered here, MobileNet V2 [6], 

ShuffleNet V2 [8], and GhostNet [9], and a hardware 

implementation was developed for each design. The second 

phase is to devise a bespoke hardware trojan tailored for each 

layer. Thirdly, each design is modified, and evaluated 

experimentally, wherein only one processing element (PE) is 

attacked each time. The subsequent analysis included an 

estimation classification accuracy of the architecture before 

and after each hardware trojan insertion. The outcome of this 

analysis is subsequently used to develop an enhanced design 

for the CNN accelerators that is more resilient. 

3  Experimental Setups and 

Implementation 

This section outlines the hardware architecture of the CNN 

accelerator, the structure of the hardware trojans used in this 

work, and the experimental setups. It also provides a summary 

of the evaluation results.  

3.1  Hardware Architecture of CNN 

Accelerators 

The architecture of the three CNN structures used here, 

MobileNet V2, ShuffleNet V2, and GhostNet, can be  divided 

into the following layers convolution (CONVL), Batch 

Normalization Layer(BNL), activation layers, Max Pooling 

layer (MPL)s global average pooling layers, concat layers, add 

layers, fully connected layer (FCL), classification 

layers(CLL), channel shuffle layers and channel split layers. 

We did not adopt existing CNN accelerator architectures 

because most do not employ approximate computing 

components and are not open source. Instead, we designed a 

custom accelerator incorporating approximate multipliers to 

enable our security-focused analysis[46,47,48]. 

The core contribution of this work is a general strategy for 

defending against hardware Trojans: when attacker 

capabilities are limited, we identify and selectively protect the 

most vulnerable components. This idea applies broadly to 

RTL-level CNN accelerators. Furthermore, our mitigation 

leverages the structural uniformity of processing elements 



(PEs) in CNN accelerators[46,47,48] to reduce hardware 

overheads of the runtime detection units, making the approach 

architecture-independent and widely applicable. For RTL-

level CNN hardware accelerators with a large number of 

identical processing elements (PEs), our general strategy for 

defending against hardware Trojans is applicable, as are the 

countermeasures we will describe later. 

Each of these layers is implemented using its unique 

procession elements (PE) to adhere to the modular design 

approach explained in Section 2.  The elements associated 

with each layer have been implemented using either precision 

or approximate computing multipliers.  The work in [38] has 

shown that the input data provided for a CNN image have 

varied levels of importance with respect to the accuracy of the 

resulting classification. Therefore, all the feature maps have 

been divided into the critical region and the insignificant 

region. The important features are processed with high-

precision PEs or important PEs and the unimportant features 

can be processed with low-precision PEs or unimportant PEs. 

The channel shuffle layer, channel split layer, and concat 

layer are typically implemented as lockup tables in the system 

memory, an approach that was also adopted in this work.    

The structures of the CONVL and BNL are shown in Fig. 2 

and Fig. 3. PEs for the CONVL mainly consist of one 

approximate multiplier used to handle the multiplication 

operation in the CONV operation, one register, one adder used 

to handle the sum operation, and one counter used to match 

the dimensions of the CONV kernels.  

 

Fig. 2. Structure of processing element that for processing 

convolutional layers and fully connected layers 

The PEs for the BNL consists of one approximate multiplier 

and two adders for processing BN calculation. In addition, 

based on the content in the last paragraph, these two kinds of 

PE have two different working accuracy levels with different 

approximate multiplier accuracy levels. For activation layers, 

the ReLU6 activation function which can limit the value of 

feature between 0 to 6, is utilized instead of the ReLU 

function in these three CNNs. This design decision was made 

to align the implementation with the use case of CNN for edge 

computing devices, most of which have constrained data 

length. The structure of the ReLU6 units is shown in Fig. 4. 

The structure of the PE of the FCL is the same as the PE in 

Fig. 3. 

 

Fig.  3. Structure of processing element that for processing 

batch normalization layers 

 
(a) Clean ReLU6 PE 

 (b) Trojan inserted ReLU6 PE 

Fig. 4. Structure of hardware units for processing activation 

layers (ReLU6). (a) shows the structure of the clean ReLU6 

PE and (b) shows the structure of the Trojan inserted ReLU6 

PE. The section enclosed by the dashed line represents the 

payload of the hardware Trojan. 

The high-precision mode of the TOSAM approximate 

multiplier shown in Fig. 5 used in the high-precision PE is 

backward-compatible with the low-precision modes. 

The additional layer adds the two features together and 

stores them in memory. The functionality of this layer has 

been implemented with only one adder. 

Then, the three network structures used in this article 

mainly use two types of pooling, the MPL, and the global 

average pooling layer. The PEs of these two pooling layers are 

shown in Fig.7 and Fig.6. The MPL selects the maximum 

value through digital comparators. The PE of global average 

pooling calculates the average value of every channel. When 

the total number of features (assuming equal to N) in the one 



channel is a power of two, shifting accumulated results is used 

instead of the division, which can further reduce the overheads 

of the whole system. Finally, for the CLL, the calculation of 

the CLL is the same as that of the MPL, which is extracting 

the maximum feature. The specific structure of PEs for 

processing CLL is the same as the structure of Pes for 

processing MPL which is shown in Fig.7. 

In addition, the structure of the CNN accelerator adopted in 

this paper is shown in Fig. 8. This accelerator is based on the 

work in [49]. Different modules are formed by different PEs 

that deal with different layers. Each module starts to work 

after receiving the enabled signal from the controller. When 

the corresponding work is done, a complete signal is given to 

the controller so that the controller knows when to give the 

start signal to the next sequential module.  

Each module receives inputs (features, weights, parameters) 

from memory and sends outputs (features) to memory. 

The memory mapping unit in the controller determines 

which memory address each PEs reads data from and sends 

data to. The PEs for the CONVLs, BNLs, and FCLs are also 

divided into low-precision PEs (unimportant PEs) and high-

precision PEs (important PEs).  

In addition, although all ReLU6 layers’ PEs, MPLs’ Pes, 

and addition layers’ PEs are at the same precision level, they 

will also be divided into important PEs and unimportant PEs 

for processing important features and unimportant PEs 

respectively. Finally, the ratio of the number of PEs in the 

low-precision mode to the number of PEs in the high-precision 

mode is approximately equal to the ratio of the size of the 

important region to the non-important region in the feature 

map corresponding to this layer. 

3.2  Hardware Trojan Insertion 

In this section, several types of HTs which used to evaluate 

the vulnerable level of every type of layers in CNN are 

introduced. These HTs based on the HT designed in [36], 

which was used to attack the MaxPooling layer. In this 

section, this HT will be used to attack other layers including 

CONVLs, BNLs, FCLs, MPLs, ReLU6 layers, and CLLs. 

However, it is important to note that the design of hardware 

Trojans is not the focus of this paper. The following 

description of the hardware Trojan design is provided to offer 

a comprehensive experimental background, enabling readers 

to reproduce our work. 

3.2.1  Hardware Trojan design 

The HT in this paper is composed of two parts, the trigger 

recognition unit, and the payload unit, the same as the HT in 

work [36]. The accelerator architecture with HTs is shown in 

Fig. 8. The modules circled by dashed boxes are all places 

where HTs will be injected in this paper and the dashed unit is 

the trigger recognition unit. The methods of injecting the HTs 

are explained in detail in the following paragraphs. 

 

 
(a) Clean TOSAM Multiplier 

 
(b) Trojan inserted TOSAM Multiplier 

Fig. 5. Structure of Clean and Trojan inserted TOSAM 

multiplier which supports multiple accuracy working modes. 

(a) shows the structure of the clean TOSAM Multiplier and (b) 

shows the structure of the Trojan inserted TOSAM Muliplier. 

The section enclosed by the dashed line represents the payload 

of the hardware Trojan. 

First, consider the trigger recognition unit. Because the HT 

is not main content in this paper,  the trigger mechanism of the 

HT is same the most of the existing HTs [21]–[23]. The 

trigger signal is hidden in the feature value, it reads the feature 

value from the target memory address and then processes this 

feature value to identify if the HT is activated. The result will 

be sent to the payload section. When the trigger condition is 

met, the result of the trigger recognition unit will activate the 

payload unit. 

This attack can be implemented on the convolutional layers, 

batch normalization layers, and fully connected layers. The 

payload units of HTs proposed in this paper can modify the 

function of the compatible module in the high-precision 

approximate multipliers in the PEs of the CONVLs, BNLs, or 

FCLs. They also can modify the functions of the PEs in the 

ReLU6 layers and MPLs. The specific attack purposes of HT 

in different modules are introduced below.  

• HTs in the high-precision approximate multiplier 

change their mode to low-precision.  The specific 



structure of the attacked high-precision multiplier is 

shown in Fig.5 (b). These HTs can be utilized to attack 

CONVLs, BNLs, and FCLs.  

• HTs in the ReLU6 cause the output of the ReLU6 to be 

outside the expected range (0 to 6). The specific 

structure of the attacked PEs of ReLU6 layers is shown 

in Fig.4 (b).  

• HTs in the MaxPooling PEs force modify its output 

such that the minimum value is obtained as opposed to 

the expected maximum.  The specific structure of the 

attacked PEs of MPLs is shown in Fig.7 (b). 

 

 

 

Fig. 6. Structure of global average layer’s processing element 

 

 
(a) Clean MaxPooling PE 

 
(b) Trojan inserted MaxPooling PE  

Fig. 7. Structure of processing elements that for processing 

classification layers and MaxPooling layers. (a) shows the 

structure of the clean MaxPooling PE and (b) shows the 

structure of the Trojan inserted MaxPooling PE. The section 

enclosed by the dashed line represents the payload of the 

hardware Trojan. 

Fig. 8. CNN accelerator 

architecture based on 

MobileNet V2, ShuffleNet 

V2, and GhostNet and 

injected with HT. 

3.3  Implementation 

and Analysis 

The experiment setups have included building approximate 

accelerators of MobileNetV2, ShuffleNetV2, and Ghost-Net 

based on the TOSAM approximate multiplier, inserting all 

types of 

HTs 

mentioned 

above into these 

three accelerators, and analyzing the impact of each of these 

HTs on the classification accuracy of each design. 

 In this study, the data used are GTSRB dataset in grayscale. 



For this dataset, we first use a subset of them, traffic signs for 

speed limits, with a total of 10 kinds of images, of which there 

are 18207 images as the training set, 1440 images as the 

validation set, and 180 images as the test set. After this 

experiment, the overall dataset of GTSRB is used, with a total 

of 43 kinds of images, of which 38000 images are used as the 

training set, 1209 images are used as the validation set, and 

12630 images are used as the test set. 

3.3.1  Structure of Nets 

The three CNN architectures selected in this paper are 

MobileNetV2, ShuffleNetV2, and GhostNet. The data length 

used was 32 bits given the target application in edge 

computing. The structures of the three networks are shown in 

Fig.9, Fig.10, and Fig.11. In addition, for detecting if the 

impact of the HT will be varied with the different number of 

kernels, for MobileNetV2 CNN, we design an additional CNN 

with the different number of kernels. For both groups of 

networks, ShuffleNetV2 and GhostNet, the numbers of kernels 

are 32 for the first CONVLs in the speed limit sign network 

(the CONV layer used to increase the number of channels), 

and for the first CONVLs in the GTSRB network, The 

numbers of kernels are 128. For the MobileNetV2 network, 

the number of kernels of the first CONVL in the speed limit 

sign network is 32. However, for the first CONVL in the 

GTSRB network, the numbers of kernels are 32 and 64, 

respectively. 

In addition, the function of TOSAM approximation 

multiplier is 2 2 (1 ( ) ( ) ( )A B
K K

A t B t A APX
A B Y Y Y  +  + + +  

( ) )
B APX
Y . In this function, AK  and BK  are the positions of 

the first '1' bit of A and B, respectively. Truncate data A and B 

to (h+1) bits and the approximate value of the truncated date 

are ( )
A APX
Y  and ( )

B APX
Y . Truncate data A and B to t bits and 

truncated data are ( )
A t
Y  and ( )

B t
Y . The high-precision mode 

of TOSAM approximate multipliers for processing important 

parts of the feature map is the mode (h, t) = (2,6). In addition, 

for high-precision approximate multiplier also supports the 
low-precision mode, (h, t)=(1,4). 

Furthermore, for the low-precision approximate multiplier, 

the working mode is the mode (h,t)=(1,4) and if the multiplier 

or multiplicand cannot provide enough valid bits, the result is 

0.  

Each layer consists of several processing elements, some of 

which will be responsible for processing “important” data that 

are essential for accurate classification, while other processing 

elements will be processing data that do not significantly 

impact the classification's accuracy. This depends on the 

nature of the data being processed.  

 

 

Fig. 9. The structure of the net based on the ShuffleNet V2. 

Then, we have experimentally found that for a feature map 

of size 32 32  elements (32 bits), the 8 outermost layers of 

features are insignificant regions. For the feature map of size 

16 16 , the features of the 4 outermost layers are 

insignificant regions. For a feature map of size 8 8 , the 

features of the 2 outermost layers are insignificant regions. For 

a feature map of size 4 4 , the features of the 1 outermost 

layer are insignificant regions.  

These findings are justified by the fact that the traffic signs 

in the images analyzed are typically placed at the center of the 

picture, or the outer part of the diagram does not have 

important information.  

 

Fig. 10. The structure of the net based on the GhostNet. 

 

Fig. 11. The structure of the net based on the MobileNet V2. 

As shown in the Fig.12 the channels of the feature map are 

equally divided into 4 groups (because the number of the 

channel of the output feature map are 16, 32, 64 for speed 

limit sign and the number of the channel of the output feature 

maps are 32, 64, 128 for GTSRB dataset all of them are 

divisible by the factor of 4), which are assigned to the 4 

important PEs (It means that there are 4 important PEs in 



every layer). The important data is the data located at the 

center of the feature map(dark regions). Each important PEs 

only processes the calculation related to the important data in 

the channels that are assigned to it. The rest data (unimportant 

data) will be processed by the unimportant PEs. To allow all 

PEs to complete all calculations of one feature map at the 

same time, the ratio of unimportant PE to important PE is 

equal to the ratio of the number of important data to the 

number of non-important data. So, there are 12 unimportant 

PEs in every layer. 

The four important PEs assigned to each layer in all 

architectures, each tasked with processing a group of the 

output channels' important data. The twelve unimportant PEs 

are dedicated to processing less significant data and every 4 

unimportant PEs are dedicated to process a group of the output 

channel’s unimportant data. Additionally, within the FCLs , 9 

PEs or 43 PEs are allocated, defined as important and every 

PE is dedicated to representing the possibility of the input 

image to be classified into one category. Finally, within the 

CLLs, 1 PE is allocated, defined as an important PE. 

 
 

Fig. 12. The assignment of the important PEs in each layer. 

3.3.2  Impact of Hardware Trojans  

For detecting the impact of these HTs, the different 

probabilities of the picture being misclassified are detected, 

when HTs are not activated or HTs are activated and attacking 

on different kinds of layers. To prevent chance events, three 

networks were trained for every different CNN with different 

architectures or different number of kernels. The results shown 

in this section are the average of three sets of network 

simulation results. The simulations of this investigation were 

established in both System Verilog and MATLAB. Initially, 

the network training was conducted using MATLAB to 

ascertain the critical parameters, predominantly the network 

weights. Subsequently, Three CNN accelerators, focused 

solely on forward propagation, were constructed at the 

Register-Transfer Level (RTL) using the System Verilog 

language, facilitated by the Quartus and Questasim platforms. 

Then, HTs were built with System Verilog and injected into 

these accelerators. To expedite results, an emulation of these 

RTL-level accelerators, with and without the HT, was 

conducted using MATLAB. After making sure that the key 

data, such as the feature maps corresponding to each layer, 

were critically examined to ensure consistency between the 

MATLAB emulation and the RTL-level simulation results, 

MATLAB served as the principal platform for conducting 

subsequent experiments, including those aimed at assessing 

the impact of HTs. 

As described in Section 3, the attacker’s ability is limited to 

making one modification per architecture. For example, they 

are only able to attack one MUX in one PE, but they can select 

which PE to target.  

The possibility of images being misclassified of the 

accelerators studied have been evaluated for all HT insertion 

scenarios. Firstly, the impacts of HTs when HTs are utilized to 

attack different kinds of important PEs are introduced. 

The results, listed in Table 1, Table 2 and Table 3, show 

that the impact caused by the attacks on CONVLs, BNLs, and 

FCLs is not significant. When HTs attack important PEs in 

these layers, the possibility of the image being misclassified is 

nearly same as when no HT is injected. 

On the other hand, an attack on classification, ReLU6, or 

Max Pooling layers leads to that images will have a high 

probability of being misclassified. More specifically, the 

probabilities of images being misclassified are 100% when a 

HT injected in classification layer for all studied architectures.  

The probabilities of images being misclassified are in the 

range of 68% to 91% for all studied architectures, when 

important PEs of ReLU6 layers are under attacking. 

Table 1 The possibility of image being misclassified of 

MobileNet V2 before or after HTs being activated and when 

being attacked on different kinds of important PEs of all layers 

and unimportant PEs of MPLs and ReLU6 Layers. 

Attacked 

Layer 

GTSRB 

(More 

Kernels) 

GTSRB 

(Less 

Kernels) 

Speed 

Limit Sign 

CONVL 6% 8% 6% 

BNL 6% 8% 6% 

ReLU6 

(Important) 

73% 75% 78% 

ReLU6 

(Unimportant) 

71% 73% 71% 

MPL 

(Important) 

16% 35% 28% 

MPL 11% 12% 9% 



(Unimportant) 

FCL 6% 8% 5%  

CLL 100% 100% 100% 

Without  

Attack 

4% 

 

6% 

 

6% 

 

Table 2 The possibility of image being misclassified of 

ShuffleNet V2 before or after HTs being activated and when 

being attacked on different kinds of important PEs of all layers 

and unimportant PEs of MPLs and ReLU6 Layers. 

Attacked Layer GTSRB Speed Limit Sign 

CONVL 8% 14% 

BNL 7% 10% 

ReLU6 (Important) 88% 89% 

ReLU6 (Unimportant) 68% 72% 

MPL (Important) 24% 31% 

MPL (Unimportant) 11% 12% 

FCL 6% 9% 

CLL 100% 100% 

Without Attack 5% 9% 

Table 3 The possibility of image being misclassified of 

GhostNet before or after HTs being activated and when being 

attacked on different kinds of important PEs of all layers and 

unimportant PEs of MPLs and ReLU6 Layers. 

Attacked Layer GTSRB Speed Limit Sign 

CONVL 4% 11% 

BNL 5% 11% 

ReLU6 (Important) 91% 88% 

ReLU6 (Unimportant) 70% 68% 

MPL (Important) 25% 33% 

MPL (Unimportant) 10% 8% 

FCL 5% 9% 

CLL 100% 100% 

Without Attack 5% 9% 

 

Then,  the probabilities of images being misclassified are in 

range 16-35%, when important PEs of MPL are under 

attacking. 

Then the impact of HTs when HTs are utilized to attacked 

different kinds of unimportant PEs are introduced. Because the 

impacts of HTs when they are utilized to attack CONVLs’, 

BNLs’ and FCLs’ important PEs are not serious, the impact of 

attacking on these layers’ will be not introduced. In addition, 

because for CLLs, there are only important PEs, so PEs in 

CLLs will be also not considered in this part. The simulation 

results are shown in Table 1, Table 2, Table 3. Based on the 

data shown in these tables, the ReLU’s unimportant PEs are 

also vulnerable, but the unimportant PEs of MPL are 

robustness. 

The above analysis demonstrates that different part of the 

CNN architectures exhibits various level of vulnerability to a 

HT attack.  The classification layer is the weakest followed by 

the ReLU6 layer. Next is the MPLs, CONVLs and BNLs, and 

FCLs are robustness to this kind of function tampering HT 

attack. It is also worth noting that all PEs in the ReLU6 layers 

are vulnerable. 

4  Countermeasure 

In this section, we will introduce the design of the two 

countermeasures and related evaluation. 

4.1  Selective Hardware Redundancy (SHR) 

The essence of this approach is to use the outcome of the 

vulnerability analysis from the previous section to introduce 

hardware redundancy selectively, which suggests that only the 

selected vulnerable PEs will be protected. The analysis has 

shown that the CLLs, MPLs and Relu6 layers are the most 

vulnerable, and For MPLs, only the important PEs are 

vulnerable. Therefore, only the important PEs MPLs and all 

PEs in ReLU6 layers and CLLs need to be protected.  This 

approach uses the simple majority voting mechanism 

described in [32].  

The structure of this approach is elaborated in Fig.13, 

wherein triple modular hardware redundancy is introduced for 

each processing element to be protected, and a majority voter 

is then used to determine the final output. This means that 

even if an adversary attack one of those elements, redundant 

hardware is still able to perform correct computation.    

 

Fig. 13. The structure of Selective hardware redundancy. 



4.2  Selective Hardware and Time 

Redundancy  (SHTR) 

This second approach relies on the intrinsic similarity of the 

hardware structure of the processing elements in CNN 

accelerators to further reduce the implementation overheads.  

For example, the PEs used for the convolution module, no 

matter in MobileNetV2, ShuffleNetV2 or GhostNet, have the 

same structure. The only difference is that the input data and 

the number in the calculation loop are not the same. This 

allows the countermeasure, RIA in a recent paper in [36], has 

the potential ability to protect the accelerators of CNNs. The 

RIA is a lightweight real-time monitoring method. This also 

fits well with the premise of lightweight protection. Here, the 

second countermeasure proposed in this paper is combining 

the RIA with the SHR mechanism. In the following content in 

this paper, we will call the countermeasure in this section the 

SHTR. 

The working principles of this method are as follows.  The 

procession elements to be protected are identified based on the 

vulnerability analysis outcome from Section 3. Additional two 

security processing elements are also added to each layer and 

used to verify the correctness of the output of each 

“important” processing element. This verification is performed 

by applying the same input data to these two modules and 

using a majority voter to compare the output of the two 

security elements and the processing element being checked. 

Every clock cycle, the control circuitry chooses one 

“important” processing element to check once all elements 

have been checked the process repeats. The hardware 

architecture of this approach is shown in Fig.14. 

The control unit is responsible for coordinating the 

checking process by fetching the input and corresponding 

output data of the PE being checked from the memory. 

The output from the processing element being checked (O)  

and from the two security elements (S1, S2) are stored in 

register A.  

The checker compares (O) with the output of the majority 

voter. The outcome of this comparison is monitored by the 

control unit. If a mismatch is found, this means the processing 

element being checked has been compromised and will 

subsequently be replaced by the backup PE. 

Fig. 14. The Structure 

of the Selective 

Hardware and Time 

Redundancy 

Approach 

 

 

 

 

 

 

 

 

 
 

4.3  Evaluation of Proposed 

Countermeasures 

This section compares the two proposed defenses in terms of 

security, and overheads. 

4.3.1  Security Analysis 

From a security perspective, both defenses assume that a 

hardware trojan is likely to be inserted in parts of the design 

such that it has a significant impact on the accuracy of the 

classification. Consequently, both defenses only protect 

vulnerable PEs as defined in the architecture of each 

accelerator. The vulnerable PEs in this experiment including 

the important PEs of MPLs, CLLs and all PEs of the ReLU6 

PE. The SHR defense approach allows the system to function 



correctly even if all protected elements have a trojan inserted. 

However, if the adversary is to maliciously modifies the 

processing element and one of its replicas, the self-correct 

ability will be failed. Increasing the number of the replicas is 

able to solve this problem. For example, if the adversaries are 

able to attack two PEs, the number of the replicas of every PEs 

need to be increased to 4. 

The SHTR approach can invalidate a single HT attack on 

any of the protected procession elements by using the backup 

module. This method also works if one of the security 

processing elements or backup processing elements is 

attacked. Because the Majority Voting unit make sure only 

when most of voters are attacked, the voting result is wrong. 

But if the ability of adversaries is increased, the Majority 

Voting unit also face the invalidation risk. In this condition, 

the solving method is same as the SHR, increasing the number 

of the security PEs and backup PEs. For example, if the 

adversaries are able to attack 3 PEs, the number of security PE 

need to be increased to 6 and the number of backup PEs need 

to be increased to 3. 

To compare the two approaches, we implemented 

protection on the three most sensitive layers (CLL, Relu6 

layers, and MPLs). In this experiment, there are some 

differences in the protected objects between the two protection 

modes of SHR and SHTR. For SHR, the important PEs of 

MPLs and all PEs of ReLU6 layers and CLLs are protected. 

For SHTR, because the structure of PEs of MPLs’ important 

PEs and unimportant PEs are the same, so without any 

additional overheads, the unimportant PEs of  MPLs also can 

be protected, just required more time to finish one loop 

checking. In addition, this extra time is tolerable compared to 

the time it takes to classify an image. So, for SHTR, all PEs of 

ReLU6 layers MPLs and CLLs are protected. 

We consider a scenario, wherein an adversary at the system 

integration stage can insert a single trojan in the accelerator. 

We assume that the adversary has sufficient knowledge of the 

implementation to choose a location for this trojan to cause the 

maximum degradation in the classification accuracy.  In this 

case, the attacker would insert a HT in the PE of the CLL, 

which will cause the most serious impact, in the design that is 

not protected. For the two protected designs, the attackers are 

able to pay attention the protect circuit, but because that they 

are only able to insert one HT in one PE, so they would target 

the unimportant PE in the MPL.  

The performance of each implementation was then 

measured ad shown in Table 4. The results show the defense 

techniques proposed in this work can significantly reduce the 

impact of such an attack. In addition, for SHTR mechanism, 

the impact of unimportant PEs of MPLs being attacked also 

can be recovered. 

Table 4 The possibility of image being misclassified of GhostNet, MobileNetV2, ShuffleNetV2 accelerator before or after HT 

being activated and without protection or with SHR or SHTR.

Network Dataset Original Attacked Attacked  

with SHR 

Attacked  

with SHTR 

MobileNetV2 GTSRB (More Kernels) 4% 100% 11% 6% 

GTSRB (Less Kernels) 6% 100% 12% 8% 

Speed Limit Sign 6% 100% 9% 6% 

ShuffleNetV2 GTSRB 5% 100% 11% 8% 

Speed Limit Sign 9% 100% 14% 14% 

GhostNet GTSRB 4% 100% 10% 5% 

Speed Limit Sign 8% 100% 11% 11% 

 

4.3.2  Hardware Trojan Impact Recovery Time 

The SHR approach allows immediate recovery from a Trojan 

insertion attack, as the output compromised processing 

element will be overridden by the majority voting circuitry. 

On the other hand, the SHTR scheme requires more time to 

detect and recover from a trojan insertion because important 

processing elements are checked sequentially, this means the 

accelerator with a trojan inserted will produce the wrong 

results for a period required to check all processing elements, 

and subsequently substitute a compromised module with one 

of the backup PE.     

Let us take the example, analyzed previously where the 

SHTR approach is used to protect the three most sensitive 

layers (all PEs of CLLs, Relu6 layers, and MPLs). 

Furthermore, This implementation uses one protection module 

for both the MPLs and CLLs, the structure of the processing 

element in these two layers is the same, so we only need one 

backup PE.  

In this case, the checking process runs in two parallel 

threads. The first checks the ReLU6 layers’ PEs serially, and 

the second serially examines MPLs’ and CLLs’ PEs.  

In Thread 1, the ReLU6 layers’ PEs requires one clock 

cycle to produce the result, during which the output of one PE 

can be examined. Furthermore, the checking process includes 

five phases: (1) security PE result generation, (2) Register A 

data reading, (3) majority voting, (4) checker unit result 

comparison, and (5) controller's result generation. Every phase 



need one clock cycle to complete operation. Therefore, in 

total, we need 6 clock cycles to complete check one PE and 

the implementations are pipelined. The specific timing 

diagram of SHTR units of Thread 1 is shown in Fig.15. 

Fig. 15. The timing diagram of the all units of SHTR 

Therefore, for Thread 1, ShuffleNetV2, MobileNetV2, and 

GhostNet need 148 (9*16+4), 116 (7*16+4), and 52 (12+4) 

clock cycles respectively to check one round. Here, the first 

part of the calculation represents the time to scan all PEs, and 

the latter part represents the remaining clock cycle required to 

complete the checking for the final PE. 

Similarly, for Thread 2,  the MPLs’ PEs requires 4 clocks 

cycles to produce the final result, but Security PEs can utilize 

the intermediate results to check the performance of the 

monitored PEs, so still requiring 1 clock cycle for checking 

one PE. Hence, 52,  36, and 20 clock cycles are required for 

ShuffleNetV2, MobileNetV2, and GhostNet respectively. 

Thread 1 requires more time, hence should be considered as 

the worst-case scenario detection time for the SHTR approach.   

4.3.3  Implementation Overheads 

To estimate the area overheads of proposed countermeasures, 

the six architectures studied here have been implemented 

using System Verilog. Three versions of each design were 

constructed, without countermeasures, with selective hardware 

redundancy (SHR), and with Selective Hardware and Time 

Redundancy (SHTR). In the last two cases, the protection is 

applied to the three most sensitive layers (classification, 

Relu6, and Max Pooling). 

All designs have been synthesized using Quartus on the 

FPGA device 5CGXFC9A6U19A7. The respective areas are 

obtained from the synthesis report in terms of the Adaptive 

Logic Module (ALM) used in each case, these are listed in 

Table 5.  

The Results show the area overheads associated with the 

SHR approach rages between 10-6% of the original design 

areas. Comparing with the traditional Majority Voting 

mechanism which will protect all PEs, the additional overhead 

of the SHR is significantly reduced. While those associated 

with the SHTR one only a fraction of additional overheads of 

SHR, estimated to be around 0.4-0.2 %. This was expected 

given, comparing with overheads of PEs which contain 

multipliers, the overheads of the PEs of the MPL, CLL and 

ReLU6 is tiny. So, the additional overheads of the SHR is less 

than the Majority Voting. Furthermore, the additional 

hardware requirements of the SHR approach that triplicate 

each important procession element, compared to only using 

three additional PE for each type of PEs by the SHTR 

techniques, the overheads of SHTR is able to be further 

reduced. 

4.4 Discussion  

The countermeasures proposed in this paper demonstrate 

broad applicability to existing CNN hardware accelerator 

architectures. These countermeasures require only that the 

CNN hardware accelerator include buffers capable of 

temporarily storing the input and output data of PEs (features 

and weights). As many modern CNN hardware accelerators 

are equipped with on-chip memory buffers for storing data and 

filter weights [13,50,51,52], the proposed countermeasures 

can be readily applied to a wide range of such accelerators. 

The primary focus of the proposed solutions is the 

mitigation of function-tampering hardware Trojans—those 

designed to produce erroneous outputs. However, these 

countermeasures exhibit limited efficacy against hardware 

Trojans that do not affect functionality, such as those designed 

to leak sensitive information. This represents a key limitation 

of the approach. 

Nevertheless, there are additional limitations to consider 

regarding the proposed countermeasures. If an adversary 

successfully compromises the Majority Voting unit, the SHR 

mechanism would become ineffective. However, the SHTR 

mechanism remains effective under the threat model assumed 

in this work. This is because SHTR is capable of detecting 

discrepancies between the output of the Majority Voting unit 

and that of the monitored PE. Upon detection, SHTR disables 

the monitored PE and activates a backup PE. The system 

continues to function until all backup PEs are exhausted. In 

this context, since the attacker is assumed to only target the 

Majority Voting unit and cannot compromise other processing 

units, the data generated by the backup PE remains correct, 

thereby attacking on Majority Voting unit cannot cause 

serious impact. 

To make SHTR ineffective, an adversary would need to 

compromise multiple components of the CNN hardware 

accelerator, including both the PEs and the Majority Voting 

unit. This significantly increases the complexity of executing a 



successful attack, which can be seen as enhancing the overall robustness of the hardware accelerator. 

Table 5 Comparison of overheads of accelerators, with or without protection 

Network Type Area overheads (ALM) 

(Speed Limit Signs CNN / GTSRB CNN) 

Original Majority 

Voting 

With 

SHR 

With SHTR Majority 

Voting 

Increase 

With SHR 

Increase 

With SHTR 

Increase 

ShuffleNet V2 78188/ 

84478 

156309/ 

168889 

85677/ 

91967 

78316/ 

84606 

99%/ 

99% 

10%/ 

9% 

0.2%/ 

0.2% 

MobileNet V2 60404/ 

66694 

120741/ 

133321 

66198/ 

72488 

60532/ 

66822 

99%/ 

99% 

10%/ 

9% 

0.2%/ 

0.2% 

GhostNet 36404/ 

42694 

72741/ 

85321 

39085/ 

45375 

36532/ 

42822 

99%/ 

99% 

7%/ 

6% 

0.4%/ 

0.3% 

5  Conclusion 

This work presents the first large-scale study of the impact 

of function tampering HTs insertion on CNN accelerators, 

with a specific focus on those that use approximate 

commuting techniques, which are prevalent in embedded 

applications. The work investigates three main types of such 

networks, MobileNet V2, ShuffleNet V2, and GhostNet, 

which have been trained in the grayscale version of whole 

dataset of GTSRB  and speed limit sign images subset of 

GTSRB. Next, hardware accelerators of these designs were 

developed using System Verilog. The work then proceeded to 

develop a unique hardware Trojan for each layer of the 

network, such as it can feasibly be inserted by an attacker. 

Next, a comprehensive experimental analysis was carried out 

to determine the insertion locations in each hardware 

architecture that causes the largest drop in classification 

accuracy.  For the network under consideration,  there is found 

to be a specific set of procession elements, which we have 

referred to as “important”, in the classification, Relu6, and 

Max pooling layers. These findings have subsequently been 

used to develop two countermeasures, the first relies on 

hardware redundancy (SHR), and the second on a combination 

of hardware and time redundancy(SHTR). Such techniques are 

only applied to the most vulnerable points in each architecture 

to reduce overheads. The two proposed defenses were 

evaluated in terms of security, attack detection/recovery time, 

and area overheads. The results show that the SHR provides 

speedy recovery from an attack while incurring between 10-

6% area overheads. On the other hand, SHTR requires more 

time to recover the impact caused by HT, but its area overhead 

is much smaller (~ 0.3%). In addition, when the abilities of 

attackers are limited, the performance of SHTR is better than 

SHR, in terms of the possibility of images being misclassified 

when HTs are injected into the accelerators. Future research 

will focus on other types of hardware-level attacks, such as 

fault injections. 
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