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Abstract
Convolutional neural network accelerators are increasingly used in safety–critical applications, including autonomous vehi-
cles. Therefore, they are particularly vulnerable to hardware Trojan insertion, a security attack that takes place during the 
development of integrated circuits. This work presents for the first time a large-scale study of the impact of hardware Trojan 
insertion on convolutional neural network accelerators, focusing on those that use approximate commuting techniques, preva-
lent in embedded applications. We investigate three types of such networks, MobileNet V2, ShuffleNet V2, and GhostNet, 
trained in datasets of grayscale speed limit sign images and GTSRB. Our results show that certain parts of these architectures 
are more susceptible to hardware Trojan attacks, specifically a specific set of processing elements, referred to as “important” 
in the classification, ReLU6, and Max pooling layers, respectively. These findings are subsequently used to develop two 
countermeasures; the first relies on selective hardware redundancy (SHR), and the second uses a combination of hardware 
and time redundancy (SHTR). The proposed defenses are experimentally validated. Our results show that the SHR provides 
speedy recovery from an attack while incurring between 6 and 10% area overheads, whereas SHTR requires more time to 
detect the Trojan, and its area overhead is much smaller (~ 0.3%).

Keywords  Approximate computing · CNN accelerator · Hardware Trojan · Lightweight countermeasure · Run-time 
monitoring

1  Introduction

Convolutional neural networks (CNNs), a subset of Artificial 
Intelligence algorithms, are essential for image recognition 
tasks [1], with ubiquitous applications such as facial rec-
ognition, autonomous vehicles, and biometric authentica-
tion. However, the integration of CNNs into edge computing 
devices is challenging due to their constrained energy budget 
and computation resources [2]. This contrast has highlighted 
the need for CNN optimization and the creation of special-
ized CNN accelerators [2–4], spurring research and develop-
ment in this field. This led to the emergence of lightweight 

CNN architectures such as MobileNet [5, 6], ShuffleNet [7, 
8], and GhostNet [9]. Additionally, employing approximate 
computing (AC) technology has been suggested to enhance 
CNNs by utilizing approximate multipliers, clipping net-
works, and reducing data lengths [10–12]. These strategies 
facilitate the feasibility of conducting CNN computations on 
edge devices. Simultaneously, in the area of hardware CNN 
accelerators, a multitude of designs have been put forward, 
including the DNNbuilder and Multi-CLP accelerator [13, 
14], yet the question of hardware security persists as a piv-
otal concern to be addressed.

While safety is a theoretical prerequisite in the design 
and manufacturing of accelerators [15, 16], the current 
market conditions pose significant challenges. With the IC 
(integrated circuits) supply chain distributed across global 
companies, opportunities for hardware-level attacks increase 
significantly [17, 18]. It is not feasible to assure the trustwor-
thiness of all personnel involved in IC production, exposing 
every stage of the supply chain to potential hardware-level 
attacks [17, 18]. Furthermore, successful attacks on CNN 
accelerators can lead to sensitive data breaches, degraded 
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performance, and hardware piracy [17, 18]. For instance, 
hardware Trojans (HTs) can be used to compromise CNN 
accelerators, and such attacks are not rare. Several HTs 
aimed at CNN accelerators have been proposed [19–24], 
underscoring the need for robust protections against HT 
attacks in CNN accelerators.

Given the acute threats posed by HTs, a plethora of coun-
termeasures have been introduced. These countermeasures 
combat not only general HTs but also those specifically 
targeting CNN hardware accelerators. General counter-
measures include techniques like functional filler cells [25], 
layout filling [26], design obfuscation [27], and encoded 
circuits [28] aimed at preventing HT insertion. Pre-silicon 
detection [29], structural testing, functional testing [30, 31], 
and run-time detection methods [32] have been employed for 
detecting HTs. Specialized countermeasures against HTs tar-
geting CNN accelerators include FM-ModComp [33], which 
enhances the likelihood of HT triggering during testing, and 
CLEANN [34, 35], which detects if the CNN input images 
carry malicious information as trigger signals. Further, two 
run-time detection methods from [36] successfully identify 
abnormal behaviors in the PEs of MaxPooling layers. How-
ever, all these countermeasures, barring run-time detection 
methods, may falter under certain conditions, for instance, 
when attacks involve a combination of hardware and soft-
ware Trojans [18] or use special sequences of classification 
results to activate HTs [35]. To combat these challenges, 
run-time detection methods are proposed as a final line of 
defense. Although run-time detection methods usually per-
form well against HTs, they introduce significant overheads 
[18]. While some lightweight run-time detection methods 
have been proposed to mitigate this issue, the robustness of 
existing lightweight run-time detection methods remains a 
concern [36].

Current research dominantly explores methods for insert-
ing HTs into CNN accelerators [19, 24], while countermeas-
ures receive less attention [33, 34, 36]. Remarkably, none of 
these protection-oriented works provides a comprehensive 
vulnerability analysis of the whole CNN accelerator sys-
tem, a crucial step for designing effective countermeasures, 
particularly in the context of run-time detection methods. 
This lack of vulnerability analysis is especially concerning 
for accelerators based on AC, given that AC-based systems 
inherently possess more vulnerabilities [37–40], leading to 
a more complex protection design. Consequently, this paper 
aims to fill this gap by conducting a thorough vulnerability 
analysis of AC-based CNN accelerators, built on three popu-
lar CNN architectures [6, 8, 9]. The goal of this analysis is to 
determine which layer in each architecture a hardware Tro-
jan causes the most reduction in classification accuracy. This 
knowledge is subsequently used to selectively protect these 
vulnerable points in each design, which significantly reduces 
the potential impact of a hardware Trojan while incurring 

minimal implementation overheads. The contributions of 
this work are twofold:

•	 A comprehensive vulnerability analysis of CNN accelera-
tors of ShuffleNet V2, MobileNet V2, and GhostNet is 
carried out, wherein a hardware Trojan is inserted in each 
layer of these architectures, and its impact on the clas-
sification accuracy was measured. The CNN accelerators 
studied use TOSAM approximate multiplier [41], and 
the HT, which utilized to evaluate the vulnerable level of 
every type of layers, are based on the function tampering 
HT proposed in [36]. Experiment results show that PEs 
for ReLU6 layers, classification layers, and MaxPooling 
layers are the most vulnerable points in these designs.

•	 Two countermeasures are proposed. The first combines 
the traditional hardware redundancy [32] and vulnerabil-
ity analysis result, called selective hardware redundancy. 
The second technique further reduces the hardware over-
heads of the first countermeasure by combining selective 
hardware redundancy and time redundancy mechanism. 
Both countermeasures have a certain ability to correct 
errors. A comparison of the overheads and performance 
of these defenses is also included.

The remainder of this paper is structured as follows: In 
Section 2, we outline the research methodology and assump-
tions, including the threat model and the analysis approach. 
Section 3 explains the experimental setups and discusses the 
results of the vulnerability analysis. Section 4 develops the 
two defense techniques and evaluates their security, detec-
tion time, and area overheads. Finally, conclusions are drawn 
in Section 5.

2 � Methodology

This section introduces the threat model adopted in this work 
and explains the rationale of the analysis methodology.

2.1 � Threat Modelling

Hardware Trojans refer to a hardware-level security attack 
wherein an adversary makes malicious modifications to the 
integrated circuits during the design (e.g., IP companies), 
implementation (e.g., SoC integration), or even the fabrica-
tion stage (e.g., malicious IC factory). These changes aim 
to sabotage the design functionality, introduce a backdoor, 
or facilitate information leakage [18, 42, 43]. The attacker 
is typically assumed to have access to design files, design 
tools, or the physical layout, as well as be proficient in IC 
design [18]. Hardware Trojans inserted at the design stage 
by malicious IP developers are difficult to detect, as they 
may involve subtle modifications to the circuit designs that 
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are hidden or obfuscated. Techniques to defend against 
this type of attack include the unused circuit identification 
technique [29], which consists of identifying and removing 
suspicious circuitry—those circuits not used or otherwise 
activated by any of the design verification tests. However, 
such an approach cannot protect against malicious modifi-
cation of the design specifications, which can feasibly take 
place at the IP development stage; for example, tampering 
with the training data of a machine learning model can be 
used to generate a malicious implementation of the model 
(e.g., machine learning model for an autonomous car that 
does not recognize certain traffic signs when a Trojan is 
triggered). Therefore, the best strategy to defend against a 
Trojan insertion at the IP development stage is to only use 
trustworthy companies and avoid integrating open-source 
designs unless thoroughly checked [18, 31]. Attacks at SoC 
integration and fabrication stages are harder to avoid because 
of the outsourcing of the IC implementation and fabrica-
tion, a trend that is very difficult to reverse due to the sig-
nificant costs associated with these tasks and the need for 
affordable electronic systems [18]. Contrary to a hardware 
Trojan attacker at the IP development stage, an adversary 
at the implementation/fabrication stage can only make lim-
ited modifications to the original circuit not to introduce an 
increase in area or degradation in performance, which makes 
it easy for such Trojan to be detected by typical verification 
and sign-off tools [18, 31, 43].

The threat model of this work is based on the threat model 
proposed in the [44]. Comparing with the threat model in the 
[44], we narrow down the range of the steps where adver-
saries may appear. We only consider that HT attacks at the 
SoC or fabrication stage, wherein the adversary can make 
limited modifications to the digital design. The threat model 
is shown in Fig. 1.

The adversary’s target is to manipulate the process-
ing elements (PEs) of the CNN accelerator to degrade its 

performance. Specifically, the attacker aims to ensure that 
the CNN accelerator operates normally when the hardware 
Trojan (HT) is inactive but misclassifies images when the 
HT is triggered.

The primary challenges for the adversary in these two 
phases are as follows: first, gaining a deep understanding of 
the integrated circuit (IC) design to insert the Trojan without 
disrupting the normal functionality of the system; second, 
remaining covert enough to bypass the verification and test-
ing stages [45].

Moreover, in both the SoC and manufacturing stages, any 
modification may affect critical parameters such as system 
timing and power consumption, which are commonly used 
to detect hardware Trojans. As a result, attackers face sig-
nificant limitations, as tampering with large-scale processing 
elements (PEs) can easily be detected through such devia-
tions [45].

Attacks at the IP development stage such as those involv-
ing malicious modification of specifications or training data 
are beyond the scope of this work.

2.2 � Principles of the Proposed Vulnerability 
Analysis

The study aims to identify locations for a hardware Trojan 
insertion in the architecture of a CNN that leads to the most 
degradation in the accuracy classification. To achieve this, 
the first step is to modularize the CNN system and locate 
the attackable area; this is done by dividing the network 
layers into separate modules that are universally present in 
all architectures, namely CONVLs, FCLs, BNLs, pooling 
layers, activation layers, and CLLs. Three lightweight CNN 
architectures are considered here: MobileNet V2 [6], Shuf-
fleNet V2 [8], and GhostNet [9], and a hardware implemen-
tation was developed for each design. The second phase is 
to devise a bespoke hardware Trojan tailored for each layer. 

Fig. 1   Threat modeling of hard-
ware Trojans
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Thirdly, each design is modified and evaluated experimen-
tally, wherein only one processing element (PE) is attacked 
each time. The subsequent analysis included an estimation 
of classification accuracy of the architecture before and after 
each hardware Trojan insertion. The outcome of this analysis 
is subsequently used to develop an enhanced design for the 
CNN accelerators that is more resilient.

3 � Experimental Setups and Implementation

This section outlines the hardware architecture of the CNN 
accelerator, the structure of the hardware Trojans used in 
this work, and the experimental setups. It also provides a 
summary of the evaluation results.

3.1 � Hardware Architecture of CNN Accelerators

The architecture of the three CNN structures used here, 
MobileNet V2, ShuffleNet V2, and GhostNet, can be divided 
into the following layers: convolution (CONVL), Batch Nor-
malization Layer(BNL), activation layers, Max Pooling layer 
(MPL)s global average pooling layers, concat layers, add lay-
ers, fully connected layer (FCL), classification layers (CLL), 
channel shuffle layers, and channel split layers.

We did not adopt existing CNN accelerator architectures 
because most do not employ approximate computing com-
ponents and are not open source. Instead, we designed a 
custom accelerator incorporating approximate multipliers 
to enable our security-focused analysis [46–48].

The core contribution of this work is a general strategy for 
defending against hardware Trojans: when attacker capabili-
ties are limited, we identify and selectively protect the most 
vulnerable components. This idea applies broadly to RTL-
level CNN accelerators. Furthermore, our mitigation lever-
ages the structural uniformity of processing elements (PEs) 
in CNN accelerators [46–48] to reduce hardware overheads 
of the runtime detection units, making the approach archi-
tecture-independent and widely applicable. For RTL-level 

CNN hardware accelerators with a large number of identical 
processing elements (PEs), our general strategy for defend-
ing against hardware Trojans is applicable, as are the coun-
termeasures we will describe later.

Each of these layers is implemented using its unique 
procession elements (PE) to adhere to the modular design 
approach explained in Section. 2. The elements associated 
with each layer have been implemented using either preci-
sion or approximate computing multipliers. The work in [38] 
has shown that the input data provided for a CNN image 
have varied levels of importance with respect to the accu-
racy of the resulting classification. Therefore, all the feature 
maps have been divided into the critical region and the insig-
nificant region. The important features are processed with 
high-precision PEs or important PEs, and the unimportant 
features can be processed with low-precision PEs or unim-
portant PEs.

The channel shuffle layer, channel split layer, and con-
cat layer are typically implemented as lockup tables in the 
system memory, an approach that was also adopted in this 
work. The structures of the CONVL and BNL are shown 
in Figs. 2 and 3. PEs for the CONVL mainly consist of one 

Fig. 2   Structure of processing 
element that is for processing 
convolutional layers and fully 
connected layers

Fig. 3   Structure of processing element that is for processing batch 
normalization layers
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approximate multiplier used to handle the multiplication 
operation in the CONV operation, one register, one adder 
used to handle the sum operation, and one counter used to 
match the dimensions of the CONV kernels.

The PEs for the BNL consist of one approximate multi-
plier and two adders for processing BN calculation. In addi-
tion, based on the content in the last paragraph, these two 
kinds of PE have two different working accuracy levels with 
different approximate multiplier accuracy levels. For activa-
tion layers, the ReLU6 activation function, which can limit 
the value of feature between 0 and 6, is utilized instead of 
the ReLU function in these three CNNs. This design deci-
sion was made to align the implementation with the use case 
of CNN for edge computing devices, most of which have 
constrained data length. The structure of the ReLU6 units 
is shown in Fig. 4. The structure of the PE of the FCL is the 
same as the PE in Fig. 3.

The high-precision mode of the TOSAM approximate 
multiplier shown in Fig. 5 used in the high-precision PE is 
backward-compatible with the low-precision modes.

The additional layer adds the two features together and 
stores them in memory. The functionality of this layer has 
been implemented with only one adder.

Then, the three network structures used in this article 
mainly use two types of pooling, the MPL, and the global 
average pooling layer. The PEs of these two pooling layers 
are shown in Figs. 6 and 7. The MPL selects the maximum 
value through digital comparators. The PE of global aver-
age pooling calculates the average value of every channel. 

When the total number of features (assuming equal to N) in 
one channel is a power of two, shifting accumulated results 
is used instead of the division, which can further reduce the 
overheads of the whole system. Finally, for the CLL, the 
calculation of the CLL is the same as that of the MPL, which 
is extracting the maximum feature. The specific structure of 
PEs for processing CLL is the same as the structure of PEs 
for processing MPL, which is shown in Fig. 7.

In addition, the structure of the CNN accelerator adopted 
in this paper is shown in Fig. 8. This accelerator is based on 
the work in [49]. Different modules are formed by different 
PEs that deal with different layers. Each module starts to 
work after receiving the enabled signal from the controller. 
When the corresponding work is done, a complete signal is 
given to the controller so that the controller knows when to 
give the start signal to the next sequential module.

Each module receives inputs (features, weights, param-
eters) from memory and sends outputs (features) to memory.

The memory mapping unit in the controller determines 
which memory address each PEs reads data from and sends 
data to. The PEs for the CONVLs, BNLs, and FCLs are also 
divided into low-precision PEs (unimportant PEs) and high-
precision PEs (important PEs).

In addition, although all ReLU6 layers’ PEs, MPLs’ PEs, 
and addition layers’ PEs are at the same precision level, they 
will also be divided into important PEs and unimportant 
PEs for processing important features and unimportant Pes, 
respectively. Finally, the ratio of the number of PEs in the 
low-precision mode to the number of PEs in the high-pre-
cision mode is approximately equal to the ratio of the size 
of the important region to the non-important region in the 
feature map corresponding to this layer.

3.2 � Hardware Trojan Insertion

In this section, several types of HTs which are used to evalu-
ate the vulnerable level of every type of layer in CNN are 
introduced. These HTs are based on the HT designed in [36], 
which was used to attack the MaxPooling layer. In this sec-
tion, this HT will be used to attack other layers including 
CONVLs, BNLs, FCLs, MPLs, ReLU6 layers, and CLLs. 
However, it is important to note that the design of hardware 
Trojans is not the focus of this paper. The following descrip-
tion of the hardware Trojan design is provided to offer a 
comprehensive experimental background, enabling readers 
to reproduce our work.

3.2.1 � Hardware Trojan Design

The HT in this paper is composed of two parts, the trigger 
recognition unit and the payload unit, the same as the HT in 
work [36]. The accelerator architecture with HTs is shown 
in Fig. 8. The modules circled by dashed boxes are all places 

Fig. 4   Structure of hardware units for processing activation layers 
(ReLU6). a The structure of the clean ReLU6 PE. b The structure of 
the Trojan-inserted ReLU6 PE. The section enclosed by the dashed 
line represents the payload of the hardware Trojan
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Fig. 5   Structure of clean and Trojan-inserted TOSAM multiplier 
which supports multiple accuracy working modes. a The structure of 
the clean TOSAM multiplier. b The structure of the Trojan-inserted 

TOSAM multiplier. The section enclosed by the dashed line repre-
sents the payload of the hardware Trojan
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where HTs will be injected in this paper, and the dashed unit 
is the trigger recognition unit. The methods of injecting the 
HTs are explained in detail in the following paragraphs.

First, consider the trigger recognition unit. Because the 
HT is not main content in this paper, the trigger mecha-
nism of the HT is the same as that of most of the existing 
HTs [21]–[23]. The trigger signal is hidden in the feature 
value; it reads the feature value from the target memory 
address and then processes this feature value to identify if 
the HT is activated. The result will be sent to the payload 
section. When the trigger condition is met, the result of 
the trigger recognition unit will activate the payload unit.

This attack can be implemented on the convolutional 
layers, batch normalization layers, and fully connected 
layers. The payload units of HTs proposed in this paper 
can modify the function of the compatible module in 
the high-precision approximate multipliers in the PEs of 
the CONVLs, BNLs, or FCLs. They can also modify the 
functions of the PEs in the ReLU6 layers and MPLs. The 
specific attack purposes of HT in different modules are 
introduced below.

•	 HTs in the high-precision approximate multiplier change 
their mode to low-precision. The specific structure of the 
attacked high-precision multiplier is shown in Fig. 5b. 
These HTs can be utilized to attack CONVLs, BNLs, and 
FCLs.

•	 HTs in the ReLU6 cause the output of the ReLU6 to be 
outside the expected range (0 to 6). The specific structure 
of the attacked PEs of ReLU6 layers is shown in Fig. 4b.

•	 HTs in the MaxPooling PEs force modify its output such 
that the minimum value is obtained as opposed to the 
expected maximum. The specific structure of the attacked 
PEs of MPLs is shown in Fig. 7b.

3.3 � Implementation and Analysis

The experiment setups have included building approximate 
accelerators of MobileNetV2, ShuffleNetV2, and Ghost-Net 
based on the TOSAM approximate multiplier, inserting all 
types of HTs mentioned above into these three accelerators 
and analyzing the impact of each of these HTs on the clas-
sification accuracy of each design.

In this study, the data used are GTSRB dataset in gray-
scale. For this dataset, we first use a subset of them, traffic 
signs for speed limits, with a total of 10 kinds of images, 
of which there are 18,207 images as the training set, 1440 
images as the validation set, and 180 images as the test set. 
After this experiment, the overall dataset of GTSRB is used, 
with a total of 43 kinds of images, of which 38,000 images 
are used as the training set, 1209 images are used as the 
validation set, and 12,630 images are used as the test set.

3.3.1 � Structure of Nets

The three CNN architectures selected in this paper are 
MobileNetV2, ShuffleNetV2, and GhostNet. The data 
length used was 32 bits given the target application in 
edge computing. The structures of the three networks are 
shown in Figs. 9, 10, and 11. In addition, to detect if the 
impact of the HT will vary with the different number of 
kernels, for MobileNetV2 CNN, we design an additional 
CNN with the different number of kernels. For both groups 
of networks, ShuffleNetV2 and GhostNet, the numbers of 
kernels are 32 for the first CONVLs in the speed limit sign 
network (the CONV layer used to increase the number of 
channels). For the first CONVLs in the GTSRB network, 
the numbers of kernels are 128. For the MobileNetV2 
network, the number of kernels of the first CONVL in 
the speed limit sign network is 32. However, for the first 
CONVL in the GTSRB network, the numbers of kernels 
are 32 and 64, respectively.

In addition, the function of TOSAM approximation multi-
plier is ×B ≈ 2

KA + 2
KB ×

(

1 +
(

YA

)

t
+

(

YB

)

t
+

(

YA

)

APX
⋅ ⋅ ×

(

YB

)

APX

) . 
In this function, KA and KB are the positions of the first 
“1” bit of A and B, respectively. Truncate data A and B to 
(h + 1) bits and the approximate value of the truncated date 
are (YA)APX and (YB)APX. Truncate data A and B to t bits 
and truncated data are (YA)t and (YB)t. The high-precision 
mode of TOSAM approximate multipliers for processing 
important parts of the feature map is the mode (h, t) = (2, 
6). In addition, high-precision approximate multiplier also 
supports the low-precision mode, (h, t) = (1, 4).

Furthermore, for the low-precision approximate multi-
plier, the working mode is the mode (h, t) = (1, 4), and if 
the multiplier or multiplicand cannot provide enough valid 
bits, the result is 0.

Each layer consists of several processing elements, some 
of which will be responsible for processing “important” data 
that are essential for accurate classification, while other pro-
cessing elements will be processing data that do not signifi-
cantly impact the classification’s accuracy. This depends on 
the nature of the data being processed.

Then, we have experimentally found that for a feature 
map of size 32×32 elements (32 bits), the eight outermost 
layers of features are insignificant regions. For the feature 

Fig. 6   Structure of global average layer’s processing element
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Fig. 7   Structure of processing elements that are for processing clas-
sification layers and MaxPooling layers. a The structure of the clean 
MaxPooling PE. b The structure of the Trojan-inserted MaxPooling 

PE. The section enclosed by the dashed line represents the payload of 
the hardware Trojan
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map of size 16×16, the features of the four outermost layers 
are insignificant regions. For a feature map of size 8×8, the 
features of the two outermost layers are insignificant regions. 
For a feature map of size 4×4, the features of the one outer-
most layer are insignificant regions.

These findings are justified by the fact that the traffic signs 
in the images analyzed are typically placed at the center of 
the picture, or the outer part of the diagram does not have 
important information.

As shown in Fig. 12, the channels of the feature map are 
equally divided into four groups (because the numbers of the 
channel of the output feature map are 16, 32, 64 for speed limit 
sign and the numbers of the channel of the output feature maps 
are 32, 64, 128 for GTSRB dataset, all of them are divisible 
by the factor of 4), which are assigned to the four important 
Pes. (It means that there are four important PEs in every layer.) 
The important data is the data located at the center of the fea-
ture map (dark regions). Each important PE only processes the 

Fig. 9   The structure of the net based on the ShuffleNet V2

Fig. 8   CNN accelerator architecture based on MobileNet V2, ShuffleNet V2, and GhostNet and injected with HT
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calculation related to the important data in the channels that 
are assigned to it. The rest data (unimportant data) will be pro-
cessed by the unimportant PEs. To allow all PEs to complete 
all calculations of one feature map at the same time, the ratio 
of unimportant PE to important PE is equal to the ratio of the 
number of important data to the number of non-important data. 
So there are 12 unimportant PEs in every layer.

The four important PEs assigned to each layer in all archi-
tectures, each tasked with processing a group of the output 
channels’ important data. The 12 unimportant PEs are dedi-
cated to processing less significant data, and every four unim-
portant PEs are dedicated to processing a group of the output 
channel’s unimportant data. Additionally, within the FCLs, 

nine PEs or 43 PEs are allocated, defined as important, and 
every PE is dedicated to representing the possibility of the 
input image being classified into one category. Finally, within 
the CLLs, one PE is allocated, defined as an important PE.

3.3.2 � Impact of Hardware Trojans

For detecting the impact of these HTs, the different probabili-
ties of the picture being misclassified are detected when HTs 
are not activated or HTs are activated and attacking different 
kinds of layers. To prevent chance events, three networks were 
trained for every different CNN with different architectures 
or a different number of kernels. The results shown in this 

Fig. 11   The structure of the net based on the MobileNet V2

Fig. 10   The structure of the net 
based on the GhostNet
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section are the average of three sets of network simulation 
results. The simulations of this investigation were estab-
lished in both System Verilog and MATLAB. Initially, the 
network training was conducted using MATLAB to ascertain 
the critical parameters, predominantly the network weights. 
Subsequently, three CNN accelerators, focused solely on for-
ward propagation, were constructed at the Register-Transfer 
Level (RTL) using the System Verilog language, facilitated by 
the Quartus and Questasim platforms. Then, HTs were built 
with System Verilog and injected into these accelerators. To 
expedite results, an emulation of these RTL-level accelera-
tors, with and without the HT, was conducted using MAT-
LAB. After making sure that the key data, such as the feature 
maps corresponding to each layer, were critically examined 
to ensure consistency between the MATLAB emulation and 

the RTL-level simulation results, MATLAB served as the 
principal platform for conducting subsequent experiments, 
including those aimed at assessing the impact of HTs.

As described in Section 3, the attacker’s ability is limited 
to making one modification per architecture. For example, 
they are only able to attack one MUX in one PE, but they 
can select which PE to target.

The possibility of images being misclassified of the accel-
erators studied has been evaluated for all HT insertion sce-
narios. Firstly, the impacts of HTs when HTs are utilized to 
attack different kinds of important PEs are introduced.

The results, listed in Tables 1, 2, and 3, show that the 
impact caused by the attacks on CONVLs, BNLs, and FCLs 
is not significant. When HTs attack important PEs in these 
layers, the possibility of the image being misclassified is 
nearly the same as when no HT is injected.

On the other hand, an attack on classification, ReLU6, or 
Max Pooling layers leads to images having a high probability 
of being misclassified. More specifically, the probabilities of 
images being misclassified are 100% when a HT is injected 
into the classification layer for all studied architectures. The 

Fig. 12   The assignment of the important PEs in each layer

Table 1   The possibility of image being misclassified of MobileNet 
V2 before or after HTs being activated and when being attacked on 
different kinds of important PEs of all layers and unimportant PEs of 
MPLs and ReLU6 layers

Attacked layer GTSRB 
(more ker-
nels)

GTSRB 
(less ker-
nels)

Speed limit sign

CONVL 6% 8% 6%
BNL 6% 8% 6%
ReLU6 (important) 73% 75% 78%
ReLU6 (unimportant) 71% 73% 71%
MPL (important) 16% 35% 28%
MPL (unimportant) 11% 12% 9%
FCL 6% 8% 5%
CLL 100% 100% 100%
Without attack 4% 6% 6%

Table 2   The possibility of image being misclassified of ShuffleNet 
V2 before or after HTs being activated and when being attacked on 
different kinds of important PEs of all layers and unimportant PEs of 
MPLs and ReLU6 layers

Attacked layer GTSRB Speed limit sign

CONVL 8% 14%
BNL 7% 10%
ReLU6 (important) 88% 89%
ReLU6 (unimportant) 68% 72%
MPL (important) 24% 31%
MPL (unimportant) 11% 12%
FCL 6% 9%
CLL 100% 100%
Without attack 5% 9%

Table 3   The possibility of image being misclassified of GhostNet 
before or after HTs being activated and when being attacked on dif-
ferent kinds of important PEs of all layers and unimportant PEs of 
MPLs and ReLU6 layers

Attacked layer GTSRB Speed limit sign

CONVL 4% 11%
BNL 5% 11%
ReLU6 (important) 91% 88%
ReLU6 (unimportant) 70% 68%
MPL (important) 25% 33%
MPL (unimportant) 10% 8%
FCL 5% 9%
CLL 100% 100%
Without attack 5% 9%
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probabilities of images being misclassified are in the range 
of 68 to 91% for all studied architectures when important 
PEs of ReLU6 layers are under attack.

Then, the probabilities of images being misclassified are 
in the range 16–35%, when important PEs of MPL are under 
attacking.

Then, the impact of HTs when HTs are utilized to attacked 
different kinds of unimportant PEs is introduced. Because the 
impacts of HTs when they are utilized to attack CONVLs’, 
BNLs’, and FCLs’ important PEs are not serious, the impact 
of attacking on these layers’ will be not introduced. In addi-
tion, because for CLLs, there are only important PEs, so PEs 
in CLLs will also be not considered in this part. The simula-
tion results are shown in Tables 1, 2, and 3. Based on the data 
shown in these tables, the ReLU’s unimportant PEs are also 
vulnerable, but the unimportant PEs of MPL are robustness.

The above analysis demonstrates that different part of the 
CNN architectures exhibits various level of vulnerability to 
a HT attack. The classification layer is the weakest followed 
by the ReLU6 layer. Next, the MPLs, CONVLs, BNLs, and 
FCLs demonstrate robustness to this kind of function tam-
pering HT attack. It is also worth noting that all PEs in the 
ReLU6 layers are vulnerable.

4 � Countermeasure

In this section, we will introduce the design of the two coun-
termeasures and related evaluation.

4.1 � Selective Hardware Redundancy (SHR)

The essence of this approach is to use the outcome of the 
vulnerability analysis from the previous section to introduce 
hardware redundancy selectively, which suggests that only the 
selected vulnerable PEs will be protected. The analysis has 
shown that the CLLs, MPLs, and ReLU6 layers are the most 
vulnerable, and for MPLs, only the important PEs are vulner-
able. Therefore, only the important PEs in MPLs and all PEs 
in ReLU6 layers and CLLs need to be protected. This approach 
uses the simple majority voting mechanism described in [32].

The structure of this approach is elaborated in Fig. 13, 
wherein triple modular hardware redundancy is introduced for 
each processing element to be protected, and a majority voter 
is then used to determine the final output. This means that 
even if an adversary attacks one of those elements, redundant 
hardware is still able to perform correct computation.

4.2 � Selective Hardware and Time Redundancy 
(SHTR)

This second approach relies on the intrinsic similarity of 
the hardware structure of the processing elements in CNN 
accelerators to further reduce the implementation over-
heads. For example, the PEs used for the convolution mod-
ule, no matter in MobileNetV2, ShuffleNetV2, or Ghost-
Net, have the same structure. The only difference is that the 
input data and the number in the calculation loop are not 
the same. This allows the countermeasure, RIA, in a recent 

Fig. 13   The structure of selec-
tive hardware redundancy
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paper in [36], to have the potential ability to protect the 
accelerators of CNNs. The RIA is a lightweight real-time 
monitoring method. This also fits well with the premise of 
lightweight protection. Here, the second countermeasure 
proposed in this paper is combining the RIA with the SHR 
mechanism. In the following content of this paper, we will 
call the countermeasure in this section the SHTR.

The working principles of this method are as follows: The 
processing elements to be protected are identified based on 
the vulnerability analysis outcome from Section 3. Addi-
tionally, two security processing elements are also added to 
each layer and used to verify the correctness of the output 
of each “important” processing element. This verification 
is performed by applying the same input data to these two 
modules and using a majority voter to compare the output of 
the two security elements and the processing element being 
checked. Every clock cycle, the control circuitry chooses 
one “important” processing element to check. Once all ele-
ments have been checked, the process repeats. The hardware 
architecture of this approach is shown in Fig. 14.

The control unit is responsible for coordinating the check-
ing process by fetching the input and corresponding output 
data of the PE being checked from the memory.

The output from the processing element being checked 
(O) and from the two security elements (S1, S2) are stored 
in register A.

The checker compares (O) with the output of the majority 
voter. The outcome of this comparison is monitored by the 
control unit. If a mismatch is found, this means the process-
ing element being checked has been compromised and will 
subsequently be replaced by the backup PE.

4.3 � Evaluation of Proposed Countermeasures

This section compares the two proposed defenses in terms 
of security and overheads.

4.3.1 � Security Analysis

From a security perspective, both defenses assume that a 
hardware Trojan is likely to be inserted in parts of the design 
such that it has a significant impact on the accuracy of the 
classification. Consequently, both defenses only protect 
vulnerable PEs as defined in the architecture of each accel-
erator. The vulnerable PEs in this experiment include the 
important PEs of MPLs, CLLs, and all PEs of the ReLU6 
PE. The SHR defense approach allows the system to func-
tion correctly even if all protected elements have a Trojan 
inserted. However, if the adversary is to maliciously modify 
the processing element and one of its replicas, the self-cor-
rect ability will fail. Increasing the number of replicas is 
able to solve this problem. For example, if the adversaries 

Fig. 14   The structure of the selective hardware and time redundancy approach
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are able to attack two PEs, the number of replicas of every 
PE needs to be increased to 4.

The SHTR approach can invalidate a single HT attack 
on any of the protected processing elements by using the 
backup module. This method also works if one of the secu-
rity processing elements or backup processing elements 
is attacked. Because the majority voting unit makes sure 
only when most of the voters are attacked, the voting result 
is wrong. But if the ability of adversaries is increased, the 
majority voting unit also faces the invalidation risk. In this 
condition, the solving method is the same as the SHR, 
increasing the number of the security PEs and backup PEs. 
For example, if the adversaries are able to attack 3 PEs, the 
number of security PEs needs to be increased to 6, and the 
number of backup PEs needs to be increased to 3.

To compare the two approaches, we implemented protec-
tion on the three most sensitive layers (CLL, ReLU6 layers, 
and MPLs). In this experiment, there are some differences 
in the protected objects between the two protection modes 
of SHR and SHTR. For SHR, the important PEs of MPLs 
and all PEs of ReLU6 layers and CLLs are protected. For 
SHTR, because the structure of PEs of MPLs’ important PEs 
and unimportant PEs are the same, without any additional 
overheads, the unimportant PEs of MPLs can also be pro-
tected, just requiring more time to finish one loop checking. 
In addition, this extra time is tolerable compared to the time 
it takes to classify an image. So for SHTR, all PEs of ReLU6 
layers, MPLs, and CLLs are protected.

We consider a scenario, wherein an adversary at the sys-
tem integration stage can insert a single Trojan in the acceler-
ator. We assume that the adversary has sufficient knowledge 
of the implementation to choose a location for this Trojan to 
cause the maximum degradation in the classification accu-
racy. In this case, the attacker would insert a HT in the PE 
of the CLL, which will cause the most serious impact in the 
design that is not protected. For the two protected designs, 
the attackers are able to pay attention to the protect circuit, 
but because they are only able to insert one HT in one PE, 
they would target the unimportant PE in the MPL.

The performance of each implementation was then meas-
ured and shown in Table 4. The results show the defense 
techniques proposed in this work can significantly reduce 
the impact of such an attack. In addition, for the SHTR 
mechanism, the impact of unimportant PEs of MPLs being 
attacked can also be recovered.

4.3.2 � Hardware Trojan Impact Recovery Time

The SHR approach allows immediate recovery from a Tro-
jan insertion attack, as the output compromised processing 
element will be overridden by the majority voting circuitry. 
On the other hand, the SHTR scheme requires more time to 
detect and recover from a Trojan insertion because important 
processing elements are checked sequentially. This means 
the accelerator with a Trojan inserted will produce the 
wrong results for a period required to check all processing 
elements and subsequently substitute a compromised module 
with one of the backup PEs.

Let us take the example, analyzed previously, where the 
SHTR approach is used to protect the three most sensitive 
layers (all PEs of CLLs, ReLU6 layers, and MPLs). Further-
more, this implementation uses one protection module for 
both the MPLs and CLLs; the structure of the processing 
element in these two layers is the same, so we only need 
one backup PE.

In this case, the checking process runs in two parallel 
threads. The first checks the ReLU6 layers’ PEs serially, and 
the second serially examines MPLs’ and CLLs’ PEs.

In Thread 1, the ReLU6 layers’ PEs require one clock cycle 
to produce the result, during which the output of one PE can 
be examined. Furthermore, the checking process includes five 
phases: (1) security PE result generation, (2) Register A data 
reading, (3) majority voting, (4) checker unit result compari-
son, and (5) controller’s result generation. Every phase needs 
one clock cycle to complete operation. Therefore, in total, we 
need six clock cycles to complete checking one PE, and the 
implementations are pipelined. The specific timing diagram of 
SHTR units of Thread 1 is shown in Fig. 15.

Table 4   The possibility of 
image being misclassified of 
GhostNet, MobileNetV2, and 
ShuffleNetV2 accelerator before 
or after HT being activated and 
without protection or with SHR 
or SHTR

Network Dataset Original Attacked Attacked with 
SHR

Attacked 
with 
SHTR

MobileNetV2 GTSRB (more kernels) 4% 100% 11% 6%
GTSRB (less kernels) 6% 100% 12% 8%
Speed limit sign 6% 100% 9% 6%

ShuffleNetV2 GTSRB 5% 100% 11% 8%
Speed limit sign 9% 100% 14% 14%

GhostNet GTSRB 4% 100% 10% 5%
Speed limit sign 8% 100% 11% 11%
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Therefore, for Thread 1, ShuffleNetV2, MobileNetV2, 
and GhostNet need 148 (9*16 + 4), 116 (7*16 + 4), and 52 
(12 + 4) clock cycles, respectively, to check one round. Here, 
the first part of the calculation represents the time to scan all 
PEs, and the latter part represents the remaining clock cycle 
required to complete the checking for the final PE.

Similarly, for Thread 2, the MPLs’ PEs require four clock 
cycles to produce the final result, but Security PEs can utilize 
the intermediate results to check the performance of the moni-
tored PEs, still requiring one clock cycle for checking one PE. 
Hence, 52, 36, and 20 clock cycles are required for Shuffle-
NetV2, MobileNetV2, and GhostNet, respectively. Thread 1 
requires more time; hence, it should be considered the worst-
case scenario detection time for the SHTR approach.

4.3.3 � Implementation Overheads

To estimate the area overheads of proposed countermeas-
ures, the six architectures studied here have been imple-
mented using System Verilog. Three versions of each design 
were constructed, without countermeasures, with selective 
hardware redundancy (SHR), and with selective hardware 
and time redundancy (SHTR). In the last two cases, the 

protection is applied to the three most sensitive layers (clas-
sification, ReLU6, and Max Pooling).

All designs have been synthesized using Quartus on the 
FPGA device 5CGXFC9A6U19A7. The respective areas are 
obtained from the synthesis report in terms of the Adaptive 
Logic Module (ALM) used in each case; these are listed in 
Table 5.

The results show the area overheads associated with the 
SHR approach ranges between 10 and 6% of the original 
design areas. Comparing with the traditional majority vot-
ing mechanism, which will protect all PEs, the additional 
overhead of the SHR is significantly reduced. While those 
associated with the SHTR are only a fraction of the additional 
overheads of SHR, estimated to be around 0.4 to 0.2%. This 
was expected, given the comparison with overheads of PEs 
which contain multipliers; the overheads of the PEs of the 
MPL, CLL, and ReLU6 are tiny. So the additional overheads 
of the SHR are less than the majority voting. Furthermore, the 
SHR approach requires triplicating each critical processing 
element, whereas the SHTR technique only adds three extra 
PEs per PE type. As a result, SHTR incurs significantly lower 
hardware overhead, which can be further reduced less than the 
SHTR technique.

Fig. 15   The timing diagram of all units of SHTR

Table 5   Comparison of 
overheads of accelerators, with 
or without protection

Network type Area overheads (ALM) (speed limit signs CNN/GTSRB CNN)

Original Majority voting With SHR With SHTR Major-
ity voting 
increase

With 
SHR 
increase

With 
SHTR 
increase

ShuffleNet V2 78,188/
84,478

156,309/
168,889

85,677/
91,967

78,316/
84,606

99%/
99%

10%/
9%

0.2%/
0.2%

MobileNet V2 60,404/
66,694

120,741/
133,321

66,198/
72,488

60,532/
66,822

99%/
99%

10%/
9%

0.2%/
0.2%

GhostNet 36,404/
42,694

72,741/
85,321

39,085/
45,375

36,532/
42,822

99%/
99%

7%/
6%

0.4%/
0.3%
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4.4 � Discussion

The countermeasures proposed in this paper demonstrate 
broad applicability to existing CNN hardware accelerator 
architectures. These countermeasures require only that the 
CNN hardware accelerator includes buffers capable of tem-
porarily storing the input and output data of PEs (features and 
weights). As many modern CNN hardware accelerators are 
equipped with on-chip memory buffers for storing data and 
filter weights [13, 50–52], the proposed countermeasures can 
be readily applied to a wide range of such accelerators.

The primary focus of the proposed solutions is the miti-
gation of function-tampering hardware Trojans—those 
designed to produce erroneous outputs. However, these 
countermeasures exhibit limited efficacy against hard-
ware Trojans that do not affect functionality, such as those 
designed to leak sensitive information. This represents a key 
limitation of the approach.

Nevertheless, there are additional limitations to consider 
regarding the proposed countermeasures. If an adversary 
successfully compromises the majority voting unit, the 
SHR mechanism would become ineffective. However, the 
SHTR mechanism remains effective under the threat model 
assumed in this work. This is because SHTR is capable of 
detecting discrepancies between the output of the majority 
voting unit and that of the monitored PE. Upon detection, 
SHTR disables the monitored PE and activates a backup PE. 
The system continues to function until all backup PEs are 
exhausted. In this context, since the attacker is assumed to 
only target the majority voting unit and cannot compromise 
other processing units, the data generated by the backup PE 
remains correct; thereby, attacking the majority voting unit 
cannot cause serious impact.

To make SHTR ineffective, an adversary would need to 
compromise multiple components of the CNN hardware 
accelerator, including both the PEs and the majority voting 
unit. This significantly increases the complexity of execut-
ing a successful attack, which can be seen as enhancing the 
overall robustness of the hardware accelerator.

5 � Conclusion

This work presents the first large-scale study of the impact 
of function tampering HTs insertion on CNN accelerators, 
with a specific focus on those that use approximate comput-
ing techniques, which are prevalent in embedded applications. 
The work investigates three main types of such networks, 
MobileNet V2, ShuffleNet V2, and GhostNet, which have 
been trained in the grayscale version of the whole dataset of 
GTSRB and speed limit sign images subset of GTSRB. Next, 
hardware accelerators of these designs were developed using 

System Verilog. The work then proceeded to develop a unique 
hardware Trojan for each layer of the network, such that it 
can feasibly be inserted by an attacker. Next, a comprehen-
sive experimental analysis was carried out to determine the 
insertion locations in each hardware architecture that cause 
the largest drop in classification accuracy. For the network 
under consideration, there is found to be a specific set of pro-
cessing elements, which we have referred to as “important” 
in the classification, ReLU6, and Max pooling layers. These 
findings have subsequently been used to develop two counter-
measures, the first relying on hardware redundancy (SHR), and 
the second on a combination of hardware and time redundancy 
(SHTR). Such techniques are only applied to the most vulner-
able points in each architecture to reduce overhead. The two 
proposed defenses were evaluated in terms of security, attack 
detection/recovery time, and area overhead. The results show 
that the SHR provides speedy recovery from an attack while 
incurring between 10 and 6% area overhead. On the other 
hand, SHTR requires more time to recover from the impact 
caused by HTs, but its area overhead is much smaller (~ 0.3%). 
In addition, when the abilities of attackers are limited, the per-
formance of SHTR is better than SHR, in terms of the possibil-
ity of images being misclassified when HTs are injected into 
the accelerators. Future research will focus on other types of 
hardware-level attacks, such as fault injections.
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