Journal of Hardware and Systems Security
https://doi.org/10.1007/541635-025-00164-y

=

Check for
updates

Towards Hardware Trojan Resilient Convolutional Neural Network
Accelerators

Peiyao Sun’ - Basel Halak' - Tom J. Kazmierski'

Received: 1 February 2024 / Accepted: 1 July 2025
© The Author(s) 2025

Abstract

Convolutional neural network accelerators are increasingly used in safety—critical applications, including autonomous vehi-
cles. Therefore, they are particularly vulnerable to hardware Trojan insertion, a security attack that takes place during the
development of integrated circuits. This work presents for the first time a large-scale study of the impact of hardware Trojan
insertion on convolutional neural network accelerators, focusing on those that use approximate commuting techniques, preva-
lent in embedded applications. We investigate three types of such networks, MobileNet V2, ShuffleNet V2, and GhostNet,
trained in datasets of grayscale speed limit sign images and GTSRB. Our results show that certain parts of these architectures
are more susceptible to hardware Trojan attacks, specifically a specific set of processing elements, referred to as “important”
in the classification, ReLU6, and Max pooling layers, respectively. These findings are subsequently used to develop two
countermeasures; the first relies on selective hardware redundancy (SHR), and the second uses a combination of hardware
and time redundancy (SHTR). The proposed defenses are experimentally validated. Our results show that the SHR provides
speedy recovery from an attack while incurring between 6 and 10% area overheads, whereas SHTR requires more time to
detect the Trojan, and its area overhead is much smaller (~0.3%).

Keywords Approximate computing - CNN accelerator - Hardware Trojan - Lightweight countermeasure - Run-time
monitoring

1 Introduction

Convolutional neural networks (CNNSs), a subset of Artificial
Intelligence algorithms, are essential for image recognition
tasks [1], with ubiquitous applications such as facial rec-
ognition, autonomous vehicles, and biometric authentica-
tion. However, the integration of CNNs into edge computing
devices is challenging due to their constrained energy budget
and computation resources [2]. This contrast has highlighted
the need for CNN optimization and the creation of special-
ized CNN accelerators [2—4], spurring research and develop-
ment in this field. This led to the emergence of lightweight

P4 Peiyao Sun
pslal8@soton.ac.uk

Basel Halak
basel.halak @soton.ac.uk

Tom J. Kazmierski
t.j.kazmierski @soton.ac.uk

Electronics and Computer Science School, University
of Southampton, Southampton, UK

Published online: 01 August 2025

CNN architectures such as MobileNet [5, 6], ShuffleNet [7,
8], and GhostNet [9]. Additionally, employing approximate
computing (AC) technology has been suggested to enhance
CNNs by utilizing approximate multipliers, clipping net-
works, and reducing data lengths [10—12]. These strategies
facilitate the feasibility of conducting CNN computations on
edge devices. Simultaneously, in the area of hardware CNN
accelerators, a multitude of designs have been put forward,
including the DNNbuilder and Multi-CLP accelerator [13,
14], yet the question of hardware security persists as a piv-
otal concern to be addressed.

While safety is a theoretical prerequisite in the design
and manufacturing of accelerators [15, 16], the current
market conditions pose significant challenges. With the IC
(integrated circuits) supply chain distributed across global
companies, opportunities for hardware-level attacks increase
significantly [17, 18]. It is not feasible to assure the trustwor-
thiness of all personnel involved in IC production, exposing
every stage of the supply chain to potential hardware-level
attacks [17, 18]. Furthermore, successful attacks on CNN
accelerators can lead to sensitive data breaches, degraded

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-025-00164-y&domain=pdf

Journal of Hardware and Systems Security

performance, and hardware piracy [17, 18]. For instance,
hardware Trojans (HTs) can be used to compromise CNN
accelerators, and such attacks are not rare. Several HTs
aimed at CNN accelerators have been proposed [19-24],
underscoring the need for robust protections against HT
attacks in CNN accelerators.

Given the acute threats posed by HTs, a plethora of coun-
termeasures have been introduced. These countermeasures
combat not only general HTs but also those specifically
targeting CNN hardware accelerators. General counter-
measures include techniques like functional filler cells [25],
layout filling [26], design obfuscation [27], and encoded
circuits [28] aimed at preventing HT insertion. Pre-silicon
detection [29], structural testing, functional testing [30, 31],
and run-time detection methods [32] have been employed for
detecting HTs. Specialized countermeasures against HT's tar-
geting CNN accelerators include FM-ModComp [33], which
enhances the likelihood of HT triggering during testing, and
CLEANN [34, 35], which detects if the CNN input images
carry malicious information as trigger signals. Further, two
run-time detection methods from [36] successfully identify
abnormal behaviors in the PEs of MaxPooling layers. How-
ever, all these countermeasures, barring run-time detection
methods, may falter under certain conditions, for instance,
when attacks involve a combination of hardware and soft-
ware Trojans [18] or use special sequences of classification
results to activate HTs [35]. To combat these challenges,
run-time detection methods are proposed as a final line of
defense. Although run-time detection methods usually per-
form well against HTs, they introduce significant overheads
[18]. While some lightweight run-time detection methods
have been proposed to mitigate this issue, the robustness of
existing lightweight run-time detection methods remains a
concern [36].

Current research dominantly explores methods for insert-
ing HTs into CNN accelerators [19, 24], while countermeas-
ures receive less attention [33, 34, 36]. Remarkably, none of
these protection-oriented works provides a comprehensive
vulnerability analysis of the whole CNN accelerator sys-
tem, a crucial step for designing effective countermeasures,
particularly in the context of run-time detection methods.
This lack of vulnerability analysis is especially concerning
for accelerators based on AC, given that AC-based systems
inherently possess more vulnerabilities [37—40], leading to
a more complex protection design. Consequently, this paper
aims to fill this gap by conducting a thorough vulnerability
analysis of AC-based CNN accelerators, built on three popu-
lar CNN architectures [6, 8, 9]. The goal of this analysis is to
determine which layer in each architecture a hardware Tro-
jan causes the most reduction in classification accuracy. This
knowledge is subsequently used to selectively protect these
vulnerable points in each design, which significantly reduces
the potential impact of a hardware Trojan while incurring

@ Springer

minimal implementation overheads. The contributions of
this work are twofold:

e A comprehensive vulnerability analysis of CNN accelera-
tors of ShuffleNet V2, MobileNet V2, and GhostNet is
carried out, wherein a hardware Trojan is inserted in each
layer of these architectures, and its impact on the clas-
sification accuracy was measured. The CNN accelerators
studied use TOSAM approximate multiplier [41], and
the HT, which utilized to evaluate the vulnerable level of
every type of layers, are based on the function tampering
HT proposed in [36]. Experiment results show that PEs
for ReL UG layers, classification layers, and MaxPooling
layers are the most vulnerable points in these designs.

e Two countermeasures are proposed. The first combines
the traditional hardware redundancy [32] and vulnerabil-
ity analysis result, called selective hardware redundancy.
The second technique further reduces the hardware over-
heads of the first countermeasure by combining selective
hardware redundancy and time redundancy mechanism.
Both countermeasures have a certain ability to correct
errors. A comparison of the overheads and performance
of these defenses is also included.

The remainder of this paper is structured as follows: In
Section 2, we outline the research methodology and assump-
tions, including the threat model and the analysis approach.
Section 3 explains the experimental setups and discusses the
results of the vulnerability analysis. Section 4 develops the
two defense techniques and evaluates their security, detec-
tion time, and area overheads. Finally, conclusions are drawn
in Section 5.

2 Methodology

This section introduces the threat model adopted in this work
and explains the rationale of the analysis methodology.

2.1 Threat Modelling

Hardware Trojans refer to a hardware-level security attack
wherein an adversary makes malicious modifications to the
integrated circuits during the design (e.g., IP companies),
implementation (e.g., SoC integration), or even the fabrica-
tion stage (e.g., malicious IC factory). These changes aim
to sabotage the design functionality, introduce a backdoor,
or facilitate information leakage [18, 42, 43]. The attacker
is typically assumed to have access to design files, design
tools, or the physical layout, as well as be proficient in IC
design [18]. Hardware Trojans inserted at the design stage
by malicious IP developers are difficult to detect, as they
may involve subtle modifications to the circuit designs that

Journal of Hardware and Systems Security

are hidden or obfuscated. Techniques to defend against
this type of attack include the unused circuit identification
technique [29], which consists of identifying and removing
suspicious circuitry—those circuits not used or otherwise
activated by any of the design verification tests. However,
such an approach cannot protect against malicious modifi-
cation of the design specifications, which can feasibly take
place at the IP development stage; for example, tampering
with the training data of a machine learning model can be
used to generate a malicious implementation of the model
(e.g., machine learning model for an autonomous car that
does not recognize certain traffic signs when a Trojan is
triggered). Therefore, the best strategy to defend against a
Trojan insertion at the IP development stage is to only use
trustworthy companies and avoid integrating open-source
designs unless thoroughly checked [18, 31]. Attacks at SoC
integration and fabrication stages are harder to avoid because
of the outsourcing of the IC implementation and fabrica-
tion, a trend that is very difficult to reverse due to the sig-
nificant costs associated with these tasks and the need for
affordable electronic systems [18]. Contrary to a hardware
Trojan attacker at the IP development stage, an adversary
at the implementation/fabrication stage can only make lim-
ited modifications to the original circuit not to introduce an
increase in area or degradation in performance, which makes
it easy for such Trojan to be detected by typical verification
and sign-off tools [18, 31, 43].

The threat model of this work is based on the threat model
proposed in the [44]. Comparing with the threat model in the
[44], we narrow down the range of the steps where adver-
saries may appear. We only consider that HT attacks at the
SoC or fabrication stage, wherein the adversary can make
limited modifications to the digital design. The threat model
is shown in Fig. 1.

The adversary’s target is to manipulate the process-
ing elements (PEs) of the CNN accelerator to degrade its

Fig.1 Threat modeling of hard-

performance. Specifically, the attacker aims to ensure that
the CNN accelerator operates normally when the hardware
Trojan (HT) is inactive but misclassifies images when the
HT is triggered.

The primary challenges for the adversary in these two
phases are as follows: first, gaining a deep understanding of
the integrated circuit (IC) design to insert the Trojan without
disrupting the normal functionality of the system; second,
remaining covert enough to bypass the verification and test-
ing stages [45].

Moreover, in both the SoC and manufacturing stages, any
modification may affect critical parameters such as system
timing and power consumption, which are commonly used
to detect hardware Trojans. As a result, attackers face sig-
nificant limitations, as tampering with large-scale processing
elements (PEs) can easily be detected through such devia-
tions [45].

Attacks at the IP development stage such as those involv-
ing malicious modification of specifications or training data
are beyond the scope of this work.

2.2 Principles of the Proposed Vulnerability
Analysis

The study aims to identify locations for a hardware Trojan
insertion in the architecture of a CNN that leads to the most
degradation in the accuracy classification. To achieve this,
the first step is to modularize the CNN system and locate
the attackable area; this is done by dividing the network
layers into separate modules that are universally present in
all architectures, namely CONVLs, FCLs, BNLs, pooling
layers, activation layers, and CLLs. Three lightweight CNN
architectures are considered here: MobileNet V2 [6], Shuf-
fleNet V2 [8], and GhostNet [9], and a hardware implemen-
tation was developed for each design. The second phase is
to devise a bespoke hardware Trojan tailored for each layer.

Tampering method

ware Trojans

Stages that can be
injected with
hardware Trojans

77777777777

Tampering P
RTL

codes

___________ Tampering
Design
files

> N
< Chip PCB N
|Consumption|<—] < S
? Testing Asssr:?ler S
I] 2| SR OeAm e em S e]

4

Recyling

| These two stages !
will be considered in|
| this paper i

@ Springer

Journal of Hardware and Systems Security

Thirdly, each design is modified and evaluated experimen-
tally, wherein only one processing element (PE) is attacked
each time. The subsequent analysis included an estimation
of classification accuracy of the architecture before and after
each hardware Trojan insertion. The outcome of this analysis
is subsequently used to develop an enhanced design for the
CNN accelerators that is more resilient.

3 Experimental Setups and Implementation

This section outlines the hardware architecture of the CNN
accelerator, the structure of the hardware Trojans used in
this work, and the experimental setups. It also provides a
summary of the evaluation results.

3.1 Hardware Architecture of CNN Accelerators

The architecture of the three CNN structures used here,
MobileNet V2, ShuffleNet V2, and GhostNet, can be divided
into the following layers: convolution (CONVL), Batch Nor-
malization Layer(BNL), activation layers, Max Pooling layer
(MPL)s global average pooling layers, concat layers, add lay-
ers, fully connected layer (FCL), classification layers (CLL),
channel shuffle layers, and channel split layers.

We did not adopt existing CNN accelerator architectures
because most do not employ approximate computing com-
ponents and are not open source. Instead, we designed a
custom accelerator incorporating approximate multipliers
to enable our security-focused analysis [46—48].

The core contribution of this work is a general strategy for
defending against hardware Trojans: when attacker capabili-
ties are limited, we identify and selectively protect the most
vulnerable components. This idea applies broadly to RTL-
level CNN accelerators. Furthermore, our mitigation lever-
ages the structural uniformity of processing elements (PEs)
in CNN accelerators [46—48] to reduce hardware overheads
of the runtime detection units, making the approach archi-
tecture-independent and widely applicable. For RTL-level

Scale/(sqrt(var+0.0001))
(Value is precalculated
before storing in the

Mean(From memory)

memory) (From memory)
|7 TOSAM
MULTIPLIER
ADDER }— (Low-precision/High-
Feature(From precision)
memory) l [— Offset (From
memory)
ADDER

‘—I

Fig.3 Structure of processing element that is for processing batch
normalization layers

CNN hardware accelerators with a large number of identical
processing elements (PEs), our general strategy for defend-
ing against hardware Trojans is applicable, as are the coun-
termeasures we will describe later.

Each of these layers is implemented using its unique
procession elements (PE) to adhere to the modular design
approach explained in Section. 2. The elements associated
with each layer have been implemented using either preci-
sion or approximate computing multipliers. The work in [38]
has shown that the input data provided for a CNN image
have varied levels of importance with respect to the accu-
racy of the resulting classification. Therefore, all the feature
maps have been divided into the critical region and the insig-
nificant region. The important features are processed with
high-precision PEs or important PEs, and the unimportant
features can be processed with low-precision PEs or unim-
portant PEs.

The channel shuffle layer, channel split layer, and con-
cat layer are typically implemented as lockup tables in the
system memory, an approach that was also adopted in this
work. The structures of the CONVL and BNL are shown
in Figs. 2 and 3. PEs for the CONVL mainly consist of one

Fig.2 Structure of processing Feature(From

element that is for processing memory) L

convolutional layers and fully - TOSAM

connected layers MULTIPLIER ADDER P, [\ Result
Weight (From
memory)

Enable(From
controller)

Counter

CLK

The counter range(Size of the
kernel)(From controller

@ Springer

Journal of Hardware and Systems Security

approximate multiplier used to handle the multiplication
operation in the CONV operation, one register, one adder
used to handle the sum operation, and one counter used to
match the dimensions of the CONV kernels.

The PEs for the BNL consist of one approximate multi-
plier and two adders for processing BN calculation. In addi-
tion, based on the content in the last paragraph, these two
kinds of PE have two different working accuracy levels with
different approximate multiplier accuracy levels. For activa-
tion layers, the ReLLU6 activation function, which can limit
the value of feature between 0 and 6, is utilized instead of
the ReLU function in these three CNNs. This design deci-
sion was made to align the implementation with the use case
of CNN for edge computing devices, most of which have
constrained data length. The structure of the ReLU®6 units
is shown in Fig. 4. The structure of the PE of the FCL is the
same as the PE in Fig. 3.

The high-precision mode of the TOSAM approximate
multiplier shown in Fig. 5 used in the high-precision PE is
backward-compatible with the low-precision modes.

The additional layer adds the two features together and
stores them in memory. The functionality of this layer has
been implemented with only one adder.

Then, the three network structures used in this article
mainly use two types of pooling, the MPL, and the global
average pooling layer. The PEs of these two pooling layers
are shown in Figs. 6 and 7. The MPL selects the maximum
value through digital comparators. The PE of global aver-
age pooling calculates the average value of every channel.

Feature| Compa —)5 t
rator —l—T Compa —
0 rator
6

MUX

(a) Clean ReLU6 PE
Payload of HT

Feature

6]

OR

(b) Trojan inserted ReLU6 PE

Fig.4 Structure of hardware units for processing activation layers
(ReLU6). a The structure of the clean ReLU6 PE. b The structure of
the Trojan-inserted ReLU6 PE. The section enclosed by the dashed
line represents the payload of the hardware Trojan

When the total number of features (assuming equal to N) in
one channel is a power of two, shifting accumulated results
is used instead of the division, which can further reduce the
overheads of the whole system. Finally, for the CLL, the
calculation of the CLL is the same as that of the MPL, which
is extracting the maximum feature. The specific structure of
PEs for processing CLL is the same as the structure of PEs
for processing MPL, which is shown in Fig. 7.

In addition, the structure of the CNN accelerator adopted
in this paper is shown in Fig. 8. This accelerator is based on
the work in [49]. Different modules are formed by different
PEs that deal with different layers. Each module starts to
work after receiving the enabled signal from the controller.
When the corresponding work is done, a complete signal is
given to the controller so that the controller knows when to
give the start signal to the next sequential module.

Each module receives inputs (features, weights, param-
eters) from memory and sends outputs (features) to memory.

The memory mapping unit in the controller determines
which memory address each PEs reads data from and sends
data to. The PEs for the CONVLs, BNLs, and FCLs are also
divided into low-precision PEs (unimportant PEs) and high-
precision PEs (important PEs).

In addition, although all ReLU®6 layers’ PEs, MPLs’ PEs,
and addition layers’ PEs are at the same precision level, they
will also be divided into important PEs and unimportant
PEs for processing important features and unimportant Pes,
respectively. Finally, the ratio of the number of PEs in the
low-precision mode to the number of PEs in the high-pre-
cision mode is approximately equal to the ratio of the size
of the important region to the non-important region in the
feature map corresponding to this layer.

3.2 Hardware Trojan Insertion

In this section, several types of HTs which are used to evalu-
ate the vulnerable level of every type of layer in CNN are
introduced. These HTs are based on the HT designed in [36],
which was used to attack the MaxPooling layer. In this sec-
tion, this HT will be used to attack other layers including
CONVLs, BNLs, FCLs, MPLs, ReLU®6 layers, and CLLs.
However, it is important to note that the design of hardware
Trojans is not the focus of this paper. The following descrip-
tion of the hardware Trojan design is provided to offer a
comprehensive experimental background, enabling readers
to reproduce our work.

3.2.1 Hardware Trojan Design
The HT in this paper is composed of two parts, the trigger
recognition unit and the payload unit, the same as the HT in

work [36]. The accelerator architecture with HTs is shown
in Fig. 8. The modules circled by dashed boxes are all places

@ Springer

Journal of Hardware and Systems Security

Compatible Truncation length
module
=| = /
S X
= F _MUX_
Compar
ator Selected
Truncation length
\ {¥Yx)t=keep the t
A |ApProxi | Teading 1 (Ya) decimal of x
——{mate ion |
A one KA Truncation
? absolute Al detector unit EYB) {Yx)arx=keep the
unit [B] unit Ke h decimal of x
ZERO SIGN Ka Ke then
approximate it
sign or
zero Shift Arithmetic
detector i it
unit unit L +(YA)t+(o
Yel+(Ya)
e {YB)epx
(a) Clean TOSAM Multiplier
. Truncation length
Compatible gt
Case{Mode selection module _ I ‘
signal): -
2'b00 (h,1)=(0,0); ——— 35 MUx
Z‘bpl (h,t)=(0,2); £ Mode —----- |
2’b10 {h,t)=(2,6); selection’ o) Trigger
! = . Compar == - - — - i
2'b11 {h,t)=(3,7); p sipnah P Signal
ator E “~ MUX 2T T T -
. N — _J_ —
——————— L |
. 1 i (YA) (Yx)}:keep thet Frigger signal =1 1
A Ap2r0x| | Teading : decimal of x jHardware Trojanis |
——mate Al ane Ka | Truncatian (Ys) jactivated; 1
?— ab;olute Bl detectar unit \ {¥x)arx=keep the I 1
unit unit Ks h decimal of x 1Trigger signal =0 1
ZEROD SIGN Ka Ke then)) IHardware Trojanis |
approximate it Inot activated 1
sign ar 1 !
Zero Shift I Arithmetic N, 1
cie;i?:or unit 1+(Y e+ unit
Yeh+(Ya):
DX*{YB);.P):
i - -T-=-=== 7 Payload
S R R S ! Unit

(b) Trojan inserted TOSAM Multiplier

Fig.5 Structure of clean and Trojan-inserted TOSAM multiplier TOSAM multiplier. The section enclosed by the dashed line repre-
which supports multiple accuracy working modes. a The structure of sents the payload of the hardware Trojan
the clean TOSAM multiplier. b The structure of the Trojan-inserted

@ Springer

Journal of Hardware and Systems Security

Feature 1 N is a power
gj of two, Division
: & 2. | Result |plock can be
< % instead by the
= .
Feature N = shift block

Fig.6 Structure of global average layer’s processing element

where HTs will be injected in this paper, and the dashed unit
is the trigger recognition unit. The methods of injecting the
HTs are explained in detail in the following paragraphs.

First, consider the trigger recognition unit. Because the
HT is not main content in this paper, the trigger mecha-
nism of the HT is the same as that of most of the existing
HTs [21]-[23]. The trigger signal is hidden in the feature
value; it reads the feature value from the target memory
address and then processes this feature value to identify if
the HT is activated. The result will be sent to the payload
section. When the trigger condition is met, the result of
the trigger recognition unit will activate the payload unit.

This attack can be implemented on the convolutional
layers, batch normalization layers, and fully connected
layers. The payload units of HTs proposed in this paper
can modify the function of the compatible module in
the high-precision approximate multipliers in the PEs of
the CONVLs, BNLs, or FCLs. They can also modify the
functions of the PEs in the ReLU®6 layers and MPLs. The
specific attack purposes of HT in different modules are
introduced below.

e HTs in the high-precision approximate multiplier change
their mode to low-precision. The specific structure of the
attacked high-precision multiplier is shown in Fig. 5b.
These HTs can be utilized to attack CONVLs, BNLs, and
FCLs.

e HTs in the ReLU6 cause the output of the ReLUS6 to be
outside the expected range (0 to 6). The specific structure
of the attacked PEs of ReLLU6 layers is shown in Fig. 4b.

e HTs in the MaxPooling PEs force modify its output such
that the minimum value is obtained as opposed to the
expected maximum. The specific structure of the attacked
PEs of MPLs is shown in Fig. 7b.

3.3 Implementation and Analysis

The experiment setups have included building approximate
accelerators of MobileNetV2, ShuffleNetV2, and Ghost-Net
based on the TOSAM approximate multiplier, inserting all
types of HTs mentioned above into these three accelerators
and analyzing the impact of each of these HTs on the clas-
sification accuracy of each design.

In this study, the data used are GTSRB dataset in gray-
scale. For this dataset, we first use a subset of them, traffic
signs for speed limits, with a total of 10 kinds of images,
of which there are 18,207 images as the training set, 1440
images as the validation set, and 180 images as the test set.
After this experiment, the overall dataset of GTSRB is used,
with a total of 43 kinds of images, of which 38,000 images
are used as the training set, 1209 images are used as the
validation set, and 12,630 images are used as the test set.

3.3.1 Structure of Nets

The three CNN architectures selected in this paper are
MobileNetV?2, ShuffleNetV2, and GhostNet. The data
length used was 32 bits given the target application in
edge computing. The structures of the three networks are
shown in Figs. 9, 10, and 11. In addition, to detect if the
impact of the HT will vary with the different number of
kernels, for MobileNetV2 CNN, we design an additional
CNN with the different number of kernels. For both groups
of networks, ShuffleNetV2 and GhostNet, the numbers of
kernels are 32 for the first CONVLs in the speed limit sign
network (the CONV layer used to increase the number of
channels). For the first CONVLs in the GTSRB network,
the numbers of kernels are 128. For the MobileNetV2
network, the number of kernels of the first CONVL in
the speed limit sign network is 32. However, for the first
CONVL in the GTSRB network, the numbers of kernels
are 32 and 64, respectively.

In addition, the function of TOSAM approximation multi-
plier is xB ~ 2K1 + 25 x (1+ (YA)[+ (YB)z + (YA)APX X (YB)APX)'
In this function, K, and Kp are the positions of the first
“1” bit of A and B, respectively. Truncate data A and B to
(h+1) bits and the approximate value of the truncated date
are (Y,)apx and (Yp)apx- Truncate data A and B to ¢ bits
and truncated data are (Y,), and (Yp),. The high-precision
mode of TOSAM approximate multipliers for processing
important parts of the feature map is the mode (h, 1) =(2,
6). In addition, high-precision approximate multiplier also
supports the low-precision mode, (4, £) =(1, 4).

Furthermore, for the low-precision approximate multi-
plier, the working mode is the mode (4, f)=(1, 4), and if
the multiplier or multiplicand cannot provide enough valid
bits, the result is 0.

Each layer consists of several processing elements, some
of which will be responsible for processing “important” data
that are essential for accurate classification, while other pro-
cessing elements will be processing data that do not signifi-
cantly impact the classification’s accuracy. This depends on
the nature of the data being processed.

Then, we have experimentally found that for a feature
map of size 32x32 elements (32 bits), the eight outermost
layers of features are insignificant regions. For the feature

@ Springer

Journal of Hardware and Systems Security

g

/

Compa

Register
Featurel —4———— rator

Enable(From
controller)

Counter

|

The counter range (The number of output neurons
or the size of the kernel in the MaxPooling layer)
(From controller)

CLK

(a) Clean MaxPooling PE

! ' Ppayload of HT

Campa [Register I\

Featurel rator

Enable(From 1| |
controller) | :
Counter [I
r'—- —— — ———
CLK T J :
I 1! 1 § | |
The counter range (The number of output neurons ! : 1 S r 1
or the size of the kernel in the MaxPooling layer) : - qu,"I :
(From controller) ! :Trigger I
: , Signal :

(b) Trojan inserted MaxPooling PE

Fig. 7 Structure of processing elements that are for processing clas- PE. The section enclosed by the dashed line represents the payload of
sification layers and MaxPooling layers. a The structure of the clean the hardware Trojan
MaxPooling PE. b The structure of the Trojan-inserted MaxPooling

@ Springer

Journal of Hardware and Systems Security

Data which may
contain trigger

——— .
Possible attack targets) ;
L—_—]1 information
—| Memory F--— Trigger
| recognition
- o s »”
4l g [z 43 |2 7| 5 £83 Z|s Lot
g8 e (2 95 |5 - I 523 |« £l '
112 Y |5 i f° S1E e cFE s SlB. i
2 g P 8 3 2 % ~LLE 3|3 : Trigger signal
‘2, &, ¥ % 3 rram S N | ol ® 1 (This signal
— _p%_-/qxr"-—'—-f%\;- — 41— 2 'r__ 0% €
o — .. — VR T NRE4 .
=8 | ’ I: T(g. % | <P c : o 1 will be sent to
. < [1
z|! > I o II z || o @ | > I < 1R ' thg payload
a1 {INE]! s | 5 g g B S 1 1 unit of the
= (=]
al! s S |I o El | 3 I 2 @ | Hardware
LI (T g Nl & | @ o Nl ESEI = I ! Trojan)
o o II —- | o> O U?: (0] I = 1
| 51 | o 5 <L = | il I o o 1
7| I 1111 = T & L g || 3 v
O O 1 R G I S T T A
L L 1]
| d[[= | o (! | I | 4 I -‘L_ H
| | [. | } Enable [|—— }— - Enable/
— e e — _m..n__—lg.—aa_j—-l / 5 Sl) l==a <
m B E == o |25 2 S mo 3 = v Number of
HEE E ol &2 2 |™E sizeof’| & |3 @ #[oy | Enable/ EI2] outout
o |z = 500 u feature o E|E | Numberof EfS] OUPU
™ £ 3] map/ o input neurons reurons njFC
a| | in FC layer ayer
— Memory map unit Controller

Fig.8 CNN accelerator architecture based on MobileNet V2, ShuffleNet V2, and GhostNet and injected with HT

map of size 16X16, the features of the four outermost layers
are insignificant regions. For a feature map of size 8x8, the
features of the two outermost layers are insignificant regions.
For a feature map of size 4x4, the features of the one outer-
most layer are insignificant regions.

These findings are justified by the fact that the traffic signs
in the images analyzed are typically placed at the center of
the picture, or the outer part of the diagram does not have
important information.

Ayt gy

As shown in Fig. 12, the channels of the feature map are
equally divided into four groups (because the numbers of the
channel of the output feature map are 16, 32, 64 for speed limit
sign and the numbers of the channel of the output feature maps
are 32, 64, 128 for GTSRB dataset, all of them are divisible
by the factor of 4), which are assigned to the four important
Pes. (It means that there are four important PEs in every layer.)
The important data is the data located at the center of the fea-
ture map (dark regions). Each important PE only processes the

1e5u0)
IHNys

Fig.9 The structure of the net based on the ShuffleNet V2

@ Springer

Journal of Hardware and Systems Security

Fig. 10 The structure of the net
based on the GhostNet

d-4-8-

d-0-8-0-8-8

l

calculation related to the important data in the channels that
are assigned to it. The rest data (unimportant data) will be pro-
cessed by the unimportant PEs. To allow all PEs to complete
all calculations of one feature map at the same time, the ratio
of unimportant PE to important PE is equal to the ratio of the
number of important data to the number of non-important data.
So there are 12 unimportant PEs in every layer.

The four important PEs assigned to each layer in all archi-
tectures, each tasked with processing a group of the output
channels’ important data. The 12 unimportant PEs are dedi-
cated to processing less significant data, and every four unim-
portant PEs are dedicated to processing a group of the output
channel’s unimportant data. Additionally, within the FCLs,

1e3U0)
|
|
je3U0)
1aav

nine PEs or 43 PEs are allocated, defined as important, and
every PE is dedicated to representing the possibility of the
input image being classified into one category. Finally, within
the CLLs, one PE is allocated, defined as an important PE.

3.3.2 Impact of Hardware Trojans

For detecting the impact of these HTs, the different probabili-
ties of the picture being misclassified are detected when HT's
are not activated or HTs are activated and attacking different
kinds of layers. To prevent chance events, three networks were
trained for every different CNN with different architectures
or a different number of kernels. The results shown in this

g-d-d-g-8-g-8-0-8-u-8

|

1

I
1aay

Fig. 11 The structure of the net based on the MobileNet V2

@ Springer

Journal of Hardware and Systems Security

Important data (processed
in the important PE)

Unimportant data (processed ir
\3?'.‘ unimportant PE

- Important PE1

- Important PE2

- Important PE3

L Important PE4

Fig. 12 The assignment of the important PEs in each layer

section are the average of three sets of network simulation
results. The simulations of this investigation were estab-
lished in both System Verilog and MATLAB. Initially, the
network training was conducted using MATLAB to ascertain
the critical parameters, predominantly the network weights.
Subsequently, three CNN accelerators, focused solely on for-
ward propagation, were constructed at the Register-Transfer
Level (RTL) using the System Verilog language, facilitated by
the Quartus and Questasim platforms. Then, HTs were built
with System Verilog and injected into these accelerators. To
expedite results, an emulation of these RTL-level accelera-
tors, with and without the HT, was conducted using MAT-
LAB. After making sure that the key data, such as the feature
maps corresponding to each layer, were critically examined
to ensure consistency between the MATLAB emulation and

Table 1 The possibility of image being misclassified of MobileNet
V2 before or after HTs being activated and when being attacked on
different kinds of important PEs of all layers and unimportant PEs of
MPLs and ReLUG6 layers

Table2 The possibility of image being misclassified of ShuffleNet
V2 before or after HTs being activated and when being attacked on
different kinds of important PEs of all layers and unimportant PEs of
MPLs and ReLUG6 layers

Attacked layer GTSRB Speed limit sign
CONVL 8% 14%

BNL 7% 10%

ReLU6 (important) 88% 89%

ReLU6 (unimportant) 68% 72%

MPL (important) 24% 31%

MPL (unimportant) 11% 12%

FCL 6% 9%

CLL 100% 100%

Without attack 5% 9%

the RTL-level simulation results, MATLAB served as the
principal platform for conducting subsequent experiments,
including those aimed at assessing the impact of HTs.

As described in Section 3, the attacker’s ability is limited
to making one modification per architecture. For example,
they are only able to attack one MUX in one PE, but they
can select which PE to target.

The possibility of images being misclassified of the accel-
erators studied has been evaluated for all HT insertion sce-
narios. Firstly, the impacts of HTs when HTs are utilized to
attack different kinds of important PEs are introduced.

The results, listed in Tables 1, 2, and 3, show that the
impact caused by the attacks on CONVLs, BNLs, and FCLs
is not significant. When HTs attack important PEs in these
layers, the possibility of the image being misclassified is
nearly the same as when no HT is injected.

On the other hand, an attack on classification, ReLU®6, or
Max Pooling layers leads to images having a high probability
of being misclassified. More specifically, the probabilities of
images being misclassified are 100% when a HT is injected
into the classification layer for all studied architectures. The

Table3 The possibility of image being misclassified of GhostNet
before or after HTs being activated and when being attacked on dif-
ferent kinds of important PEs of all layers and unimportant PEs of

Attacked layer GTSRB GTSRB Speed limit sign MPLs and ReLUG6 layers

(more ker- (less ker-

nels) nels) Attacked layer GTSRB Speed limit sign
CONVL 6% 8% 6% CONVL 4% 11%
BNL 6% 8% 6% BNL 5% 11%
ReLU6 (important) 73% 75% 78% ReLUG6 (important) 91% 88%
ReLUG6 (unimportant) 71% 73% 1% ReLU6 (unimportant) 70% 68%
MPL (important) 16% 35% 28% MPL (important) 25% 33%
MPL (unimportant) 11% 12% 9% MPL (unimportant) 10% 8%
FCL 6% 8% 5% FCL 5% 9%
CLL 100% 100% 100% CLL 100% 100%
Without attack 4% 6% 6% Without attack 5% 9%

@ Springer

Journal of Hardware and Systems Security

probabilities of images being misclassified are in the range
of 68 to 91% for all studied architectures when important
PEs of ReLLU6 layers are under attack.

Then, the probabilities of images being misclassified are
in the range 16-35%, when important PEs of MPL are under
attacking.

Then, the impact of HTs when HTs are utilized to attacked
different kinds of unimportant PEs is introduced. Because the
impacts of HTs when they are utilized to attack CONVLs’,
BNLs’, and FCLs’ important PEs are not serious, the impact
of attacking on these layers’ will be not introduced. In addi-
tion, because for CLLs, there are only important PEs, so PEs
in CLLs will also be not considered in this part. The simula-
tion results are shown in Tables 1, 2, and 3. Based on the data
shown in these tables, the ReLU’s unimportant PEs are also
vulnerable, but the unimportant PEs of MPL are robustness.

The above analysis demonstrates that different part of the
CNN architectures exhibits various level of vulnerability to
a HT attack. The classification layer is the weakest followed
by the ReLU6 layer. Next, the MPLs, CONVLs, BNLs, and
FCLs demonstrate robustness to this kind of function tam-
pering HT attack. It is also worth noting that all PEs in the
ReL U6 layers are vulnerable.

4 Countermeasure
In this section, we will introduce the design of the two coun-

termeasures and related evaluation.

Fig. 13 The structure of selec-
tive hardware redundancy

Control unit

4.1 Selective Hardware Redundancy (SHR)

The essence of this approach is to use the outcome of the
vulnerability analysis from the previous section to introduce
hardware redundancy selectively, which suggests that only the
selected vulnerable PEs will be protected. The analysis has
shown that the CLLs, MPLs, and ReLLU6 layers are the most
vulnerable, and for MPLs, only the important PEs are vulner-
able. Therefore, only the important PEs in MPLs and all PEs
in ReLU6 layers and CLLs need to be protected. This approach
uses the simple majority voting mechanism described in [32].
The structure of this approach is elaborated in Fig. 13,
wherein triple modular hardware redundancy is introduced for
each processing element to be protected, and a majority voter
is then used to determine the final output. This means that
even if an adversary attacks one of those elements, redundant
hardware is still able to perform correct computation.

4.2 Selective Hardware and Time Redundancy
(SHTR)

This second approach relies on the intrinsic similarity of
the hardware structure of the processing elements in CNN
accelerators to further reduce the implementation over-
heads. For example, the PEs used for the convolution mod-
ule, no matter in MobileNetV2, ShuffleNetV2, or Ghost-
Net, have the same structure. The only difference is that the
input data and the number in the calculation loop are not
the same. This allows the countermeasure, RIA, in a recent

[R—

Control signal Security unit = -

Security signal

Memoryand _ Data from memory
protected PE and protected PE
Memory
Parameter/ :
Weight/ iFeature
Feature 1 PE |
> ,. |
3y mem—a , — i
3 = PE R-mimimimesd Majority |
& , e _.: Voting ! :
i ! . b
Enable/ : P ! | R L
Size of Kernel/i.....w PE =---- - + flag
: SR ! |
I
!
Controller

@ Springer

Journal of Hardware and Systems Security

paper in [36], to have the potential ability to protect the
accelerators of CNNs. The RIA is a lightweight real-time
monitoring method. This also fits well with the premise of
lightweight protection. Here, the second countermeasure
proposed in this paper is combining the RIA with the SHR
mechanism. In the following content of this paper, we will
call the countermeasure in this section the SHTR.

The working principles of this method are as follows: The
processing elements to be protected are identified based on
the vulnerability analysis outcome from Section 3. Addi-
tionally, two security processing elements are also added to
each layer and used to verify the correctness of the output
of each “important” processing element. This verification
is performed by applying the same input data to these two
modules and using a majority voter to compare the output of
the two security elements and the processing element being
checked. Every clock cycle, the control circuitry chooses
one “important” processing element to check. Once all ele-
ments have been checked, the process repeats. The hardware
architecture of this approach is shown in Fig. 14.

The control unit is responsible for coordinating the check-
ing process by fetching the input and corresponding output
data of the PE being checked from the memory.

The output from the processing element being checked
(O) and from the two security elements (S1, S2) are stored
in register A.

The checker compares (O) with the output of the majority
voter. The outcome of this comparison is monitored by the
control unit. If a mismatch is found, this means the process-
ing element being checked has been compromised and will
subsequently be replaced by the backup PE.

4.3 Evaluation of Proposed Countermeasures

This section compares the two proposed defenses in terms
of security and overheads.

4.3.1 Security Analysis

From a security perspective, both defenses assume that a
hardware Trojan is likely to be inserted in parts of the design
such that it has a significant impact on the accuracy of the
classification. Consequently, both defenses only protect
vulnerable PEs as defined in the architecture of each accel-
erator. The vulnerable PEs in this experiment include the
important PEs of MPLs, CLLs, and all PEs of the ReLU6
PE. The SHR defense approach allows the system to func-
tion correctly even if all protected elements have a Trojan
inserted. However, if the adversary is to maliciously modify
the processing element and one of its replicas, the self-cor-
rect ability will fail. Increasing the number of replicas is
able to solve this problem. For example, if the adversaries

IAddresses in this figure indicates where in memory the outputs of the corresponding Backup
!_units will be stored and the inputs of the corresponding units will be read. 1 PE
———————————————————————————————————— _ =
Memory g | | PE !
.,'. i . g ﬁ N, 1 N - _T_:
AR Pl|E Mai T7 1 Features :
IR - am 15 1 lthatareth |
‘“—:\I',-.—- I I § PE PE LR PE PES : I - atare fe :
ml ' g v | -] outputs o mlw
|§- !E:i af % |35 P . - the security Sy
B (R g Z : i 1 PEs and the %|§
1208 o & PE PE |..| PE © i *mainPE -
‘w N =1 i
ERE » 1 1(s1,52,0). :
I = 121 . |
B o . - = = = o= - 1
i - . . Imrmrmemememe = RN Voting :
- | I I Security PEs b J |
|3I [|| = ——— e s = s :
LTI - [b ' L EfE.o. - '
S Y I .. e PE Y PE .QJ sLis !
=g g T T Lo [' R -
e N e i = - I ’ M l
g B |3 3 ! Maority | !
§| 5 (8 3 I Majority |
LY ' Voting ' :
< & |* 3 ' Vot ;
M 1 I ;_—Dr R | |
ll | - = T m o mrm == S T T e e a :
Controller koo i
Countermeasure

= block and wire

Fig. 14 The structure of the selective hardware and time redundancy approach

@ Springer

Journal of Hardware and Systems Security

are able to attack two PEs, the number of replicas of every
PE needs to be increased to 4.

The SHTR approach can invalidate a single HT attack
on any of the protected processing elements by using the
backup module. This method also works if one of the secu-
rity processing elements or backup processing elements
is attacked. Because the majority voting unit makes sure
only when most of the voters are attacked, the voting result
is wrong. But if the ability of adversaries is increased, the
majority voting unit also faces the invalidation risk. In this
condition, the solving method is the same as the SHR,
increasing the number of the security PEs and backup PEs.
For example, if the adversaries are able to attack 3 PEs, the
number of security PEs needs to be increased to 6, and the
number of backup PEs needs to be increased to 3.

To compare the two approaches, we implemented protec-
tion on the three most sensitive layers (CLL, ReLU®6 layers,
and MPLs). In this experiment, there are some differences
in the protected objects between the two protection modes
of SHR and SHTR. For SHR, the important PEs of MPLs
and all PEs of ReLU6 layers and CLLs are protected. For
SHTR, because the structure of PEs of MPLs” important PEs
and unimportant PEs are the same, without any additional
overheads, the unimportant PEs of MPLs can also be pro-
tected, just requiring more time to finish one loop checking.
In addition, this extra time is tolerable compared to the time
it takes to classify an image. So for SHTR, all PEs of ReLU6
layers, MPLs, and CLLs are protected.

We consider a scenario, wherein an adversary at the sys-
tem integration stage can insert a single Trojan in the acceler-
ator. We assume that the adversary has sufficient knowledge
of the implementation to choose a location for this Trojan to
cause the maximum degradation in the classification accu-
racy. In this case, the attacker would insert a HT in the PE
of the CLL, which will cause the most serious impact in the
design that is not protected. For the two protected designs,
the attackers are able to pay attention to the protect circuit,
but because they are only able to insert one HT in one PE,
they would target the unimportant PE in the MPL.

The performance of each implementation was then meas-
ured and shown in Table 4. The results show the defense
techniques proposed in this work can significantly reduce
the impact of such an attack. In addition, for the SHTR
mechanism, the impact of unimportant PEs of MPLs being
attacked can also be recovered.

4.3.2 Hardware Trojan Impact Recovery Time

The SHR approach allows immediate recovery from a Tro-
jan insertion attack, as the output compromised processing
element will be overridden by the majority voting circuitry.
On the other hand, the SHTR scheme requires more time to
detect and recover from a Trojan insertion because important
processing elements are checked sequentially. This means
the accelerator with a Trojan inserted will produce the
wrong results for a period required to check all processing
elements and subsequently substitute a compromised module
with one of the backup PEs.

Let us take the example, analyzed previously, where the
SHTR approach is used to protect the three most sensitive
layers (all PEs of CLLs, ReLU®6 layers, and MPLs). Further-
more, this implementation uses one protection module for
both the MPLs and CLLs; the structure of the processing
element in these two layers is the same, so we only need
one backup PE.

In this case, the checking process runs in two parallel
threads. The first checks the ReLU®6 layers’ PEs serially, and
the second serially examines MPLs” and CLLs’ PEs.

In Thread 1, the ReLU6 layers’ PEs require one clock cycle
to produce the result, during which the output of one PE can
be examined. Furthermore, the checking process includes five
phases: (1) security PE result generation, (2) Register A data
reading, (3) majority voting, (4) checker unit result compari-
son, and (5) controller’s result generation. Every phase needs
one clock cycle to complete operation. Therefore, in total, we
need six clock cycles to complete checking one PE, and the
implementations are pipelined. The specific timing diagram of
SHTR units of Thread 1 is shown in Fig. 15.

Table 4 The possibility of

. . | . Network Dataset Original Attacked Attacked with Attacked
image being misclassified of SHR with
GhostNet, MobileNetV?2, and SHTR
ShuffleNetV2 accelerator before
or after HT being activated and - popjleNetv2 GTSRB (more kernels) 4% 100% 11% 6%
E’r‘?ﬁ‘?g“’te“m or with SHR GTSRB (less kernels) 6% 100% 12% 8%
Speed limit sign 6% 100% 9% 6%
ShuffleNetV2 GTSRB 5% 100% 11% 8%
Speed limit sign 9% 100% 14% 14%
GhostNet GTSRB 4% 100% 10% 5%
Speed limit sign 8% 100% 11% 11%

@ Springer

Journal of Hardware and Systems Security

Security
PEs

Register
A

Register
8

Checker

Backup
PE

Checked PE: PE(A)
Input data : Date Set A
Output Date: Feature A

Checked PE: PE(B)
Input data : Date Set B
Output Date: Feature B

Checked PE: PE(C)
Input data : Date Set C
Output Date: Feature C

Checked PE: PE(D)
Input data : Date Set D
Output Date: Feature D

Checked PE: PE(E)
Input data : Date Set E
Output Date: Feature E

O:Null
S1: Null
$2: Null

0: Feature A(Target PE)
S1: Feature A (Secure PE)
52: Feature A(Secure PE)

0: Feature B(Target PE)
S1: Feature B (Secure PE)
52: Feature B(Secure PE)

0: Feature C(Target PE)
S1: Feature C (Secure PE)
52: Feature C(Secure PE

O: Feature D(Target PE)
S1: Feature D (Secure PE)
52: Feature D(Secure PE)

0: Feature E(Target PE)
S1: Feature E (Secure PE)
52: Feature E(Secure PE)

O:Null
V:Null

O:Null
V:Null

0: Feature A(Target PE)
V: Vote Result A

0: Feature B(Target PE)
V: Vote Result B

0: Feature C(Target PE)
V: Vote Result C

0: Feature D(Target PE)
V: Vote Result D

0: Feature E(Target PE)
V: Vote Result £

Error signal: Null

Error signal: Null

Error signal: Null

Error signal: if (Feature A
== Vote Result A)
Error signal A

Error signal: if (Feature B
== Vote Result B)
Error signal B

Error signal: if (Feature C
== Vote Result C)
Error signal C

Error signal: if (Feature D
== Vote Result D)
Error signal D

Error signal: if (Feature E
== Vote Result E)
Error signal E

Enable: Null

Enable: Null

Enable: Null

Enable: Null

Enable: (Error signal A)

Enable: (Error signal B)

Enable: (Error signal C)

Enable: (Error signal D)

Enable: (Error signal E)

Clock 1

Clock 2

Clock 3

Clock 4

Clock 5

Clock 6

Clock 7

Clock 8

Clock 9

Fig. 15 The timing diagram of all units of SHTR

Table 5 Comparison of

. Network type Area overheads (ALM) (speed limit signs CNN/GTSRB CNN)
overheads of accelerators, with
or without protection Original Majority voting With SHR With SHTR Major- With With
ity voting SHR SHTR
increase increase increase
ShuffleNet V2 78,188/ 156,309/ 85,677/ 78,316/ 99%/ 10%/ 0.2%/
84,478 168,889 91,967 84,606 99% 9% 0.2%
MobileNet V2 60,404/ 120,741/ 66,198/ 60,532/ 99%/ 10%/ 0.2%/
66,604 133,321 72,488 66,822 99% 9% 0.2%
GhostNet 36,404/ 72,741/ 39,085/ 36,532/ 99%/ 7%/ 0.4%/
42,694 85,321 45,375 42,822 99% 6% 0.3%

Therefore, for Thread 1, ShuffleNetV2, MobileNetV2,
and GhostNet need 148 (9*%16+4), 116 (7¥16+4), and 52
(12+4) clock cycles, respectively, to check one round. Here,
the first part of the calculation represents the time to scan all
PEs, and the latter part represents the remaining clock cycle
required to complete the checking for the final PE.

Similarly, for Thread 2, the MPLs’ PEs require four clock
cycles to produce the final result, but Security PEs can utilize
the intermediate results to check the performance of the moni-
tored PEs, still requiring one clock cycle for checking one PE.
Hence, 52, 36, and 20 clock cycles are required for Shuffle-
NetV2, MobileNetV2, and GhostNet, respectively. Thread 1
requires more time; hence, it should be considered the worst-
case scenario detection time for the SHTR approach.

4.3.3 Implementation Overheads

To estimate the area overheads of proposed countermeas-
ures, the six architectures studied here have been imple-
mented using System Verilog. Three versions of each design
were constructed, without countermeasures, with selective
hardware redundancy (SHR), and with selective hardware
and time redundancy (SHTR). In the last two cases, the

protection is applied to the three most sensitive layers (clas-
sification, ReLLU6, and Max Pooling).

All designs have been synthesized using Quartus on the
FPGA device SCGXFC9A6U19A7. The respective areas are
obtained from the synthesis report in terms of the Adaptive
Logic Module (ALM) used in each case; these are listed in
Table 5.

The results show the area overheads associated with the
SHR approach ranges between 10 and 6% of the original
design areas. Comparing with the traditional majority vot-
ing mechanism, which will protect all PEs, the additional
overhead of the SHR is significantly reduced. While those
associated with the SHTR are only a fraction of the additional
overheads of SHR, estimated to be around 0.4 to 0.2%. This
was expected, given the comparison with overheads of PEs
which contain multipliers; the overheads of the PEs of the
MPL, CLL, and ReLU6 are tiny. So the additional overheads
of the SHR are less than the majority voting. Furthermore, the
SHR approach requires triplicating each critical processing
element, whereas the SHTR technique only adds three extra
PEs per PE type. As a result, SHTR incurs significantly lower
hardware overhead, which can be further reduced less than the
SHTR technique.

@ Springer

Journal of Hardware and Systems Security

4.4 Discussion

The countermeasures proposed in this paper demonstrate
broad applicability to existing CNN hardware accelerator
architectures. These countermeasures require only that the
CNN hardware accelerator includes buffers capable of tem-
porarily storing the input and output data of PEs (features and
weights). As many modern CNN hardware accelerators are
equipped with on-chip memory buffers for storing data and
filter weights [13, 50-52], the proposed countermeasures can
be readily applied to a wide range of such accelerators.

The primary focus of the proposed solutions is the miti-
gation of function-tampering hardware Trojans—those
designed to produce erroneous outputs. However, these
countermeasures exhibit limited efficacy against hard-
ware Trojans that do not affect functionality, such as those
designed to leak sensitive information. This represents a key
limitation of the approach.

Nevertheless, there are additional limitations to consider
regarding the proposed countermeasures. If an adversary
successfully compromises the majority voting unit, the
SHR mechanism would become ineffective. However, the
SHTR mechanism remains effective under the threat model
assumed in this work. This is because SHTR is capable of
detecting discrepancies between the output of the majority
voting unit and that of the monitored PE. Upon detection,
SHTR disables the monitored PE and activates a backup PE.
The system continues to function until all backup PEs are
exhausted. In this context, since the attacker is assumed to
only target the majority voting unit and cannot compromise
other processing units, the data generated by the backup PE
remains correct; thereby, attacking the majority voting unit
cannot cause serious impact.

To make SHTR ineffective, an adversary would need to
compromise multiple components of the CNN hardware
accelerator, including both the PEs and the majority voting
unit. This significantly increases the complexity of execut-
ing a successful attack, which can be seen as enhancing the
overall robustness of the hardware accelerator.

5 Conclusion

This work presents the first large-scale study of the impact
of function tampering HTs insertion on CNN accelerators,
with a specific focus on those that use approximate comput-
ing techniques, which are prevalent in embedded applications.
The work investigates three main types of such networks,
MobileNet V2, ShuffleNet V2, and GhostNet, which have
been trained in the grayscale version of the whole dataset of
GTSRB and speed limit sign images subset of GTSRB. Next,
hardware accelerators of these designs were developed using

@ Springer

System Verilog. The work then proceeded to develop a unique
hardware Trojan for each layer of the network, such that it
can feasibly be inserted by an attacker. Next, a comprehen-
sive experimental analysis was carried out to determine the
insertion locations in each hardware architecture that cause
the largest drop in classification accuracy. For the network
under consideration, there is found to be a specific set of pro-
cessing elements, which we have referred to as “important”
in the classification, ReLU6, and Max pooling layers. These
findings have subsequently been used to develop two counter-
measures, the first relying on hardware redundancy (SHR), and
the second on a combination of hardware and time redundancy
(SHTR). Such techniques are only applied to the most vulner-
able points in each architecture to reduce overhead. The two
proposed defenses were evaluated in terms of security, attack
detection/recovery time, and area overhead. The results show
that the SHR provides speedy recovery from an attack while
incurring between 10 and 6% area overhead. On the other
hand, SHTR requires more time to recover from the impact
caused by HTs, but its area overhead is much smaller (~0.3%).
In addition, when the abilities of attackers are limited, the per-
formance of SHTR is better than SHR, in terms of the possibil-
ity of images being misclassified when HTs are injected into
the accelerators. Future research will focus on other types of
hardware-level attacks, such as fault injections.

Author Contributions P.S. and B.H. wrote the main manuscript test.
B.H. and T.J.K. reviewed the manuscript and proposed some critical
suggestions. All authors reviewed the manuscript.

Funding Not applicable.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Ethical Approval There was no involvement of humans or animals in
this study. We give consent to Springer to publish this paper.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

Journal of Hardware and Systems Security

References

10.

11.

12.

13.

14.

15.

O'Shea K, Nash R (2015) An introduction to convolutional neu-
ral networks. arXiv preprint arXiv:1511.08458

Abderrahmane N, Lemaire E, Miramond B (2020) Design space
exploration of hardware spiking neurons for embedded artificial
intelligence. Neural Netw 121:366-386

Struharik R, Vukobratovi¢ B, Erdeljan A, Rakanovi¢ D (2018)
CoNNA - compressed CNN hardware accelerator. In: 2018 21st
Euromicro conference on digital system design (DSD), Prague,
Czech Republic. IEEE, pp 365-372. https://doi.org/10.1109/
DSD.2018.00070

Chen CY, Choi J, Gopalakrishnan K, Srinivasan V, Venkata-
ramani S (2018) Exploiting approximate computing for deep
learning acceleration. In: 2018 design, automation & test in
Europe conference & exhibition (DATE). IEEE, Dresden, pp
821-826. https://doi.org/10.23919/DATE.2018.8342119
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Wey-
and T, Andreetto M, Adam H (2017) Mobilenets: efficient con-
volutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018)
MobileNetV2: Inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition (CVPR). IEEE, Salt Lake City, pp 4510-
4520. https://doi.org/10.1109/CVPR.2018.00474

Zhang X, Zhou X, Lin M, Sun J (2018) ShuffleNet: An
extremely efficient convolutional neural network for mobile
devices. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition (CVPR). IEEE, Salt Lake
City, pp 6848-6856. https://doi.org/10.1109/CVPR.2018.00716
Ma N, Zhang X, Zheng H-T, Sun J (2018) ShuffleNet V2: practi-
cal guidelines for efficient CNN architecture design. In: Ferrari
V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision
— ECCV 2018, Lecture notes in computer science, vol 11218.
Springer, Cham. https://doi.org/10.1007/978-3-030-01264-9_8
Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C (2020) GhostNet:
more features from cheap operations. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion (CVPR). IEEE, Seattle, pp 1577-1586. https://doi.org/10.
1109/CVPR42600.2020.00165

Venkataramani S, Sun X, Wang N, Chen CY, Choi J, Kang M,
Agarwal A, Oh J, Jain S, Babinsky T, Cao N (2020) Efficient
Al system design with cross-layer approximate computing. Pro-
ceedings of the IEEE. 108(12):2232-2250

Wang Y, Li H, Li X (2017) Real-time meets approximate com-
puting: an elastic CNN inference accelerator with adaptive
trade-off between QoS and QoR. In: Proceedings of the 54
ACM/EDAC/IEEE design automation conference (DAC). ACM,
Austin, pp 1-6. https://doi.org/10.1145/3061639.3062307

Liu Z, Yazdanbakhsh A, Park T, Esmaeilzadeh H, Kim NS
(2018) Simul: an algorithm-driven approximate multiplier
design for machine learning. IEEE Micro 38(4):50-59

Zhang X, et al (2018) DNNBuilder: An automated tool for
building high-performance DNN hardware accelerators for
FPGAs. In: Proceedings of the 2018 IEEE/ACM international
conference on computer-aided design (ICCAD). ACM, pp 1-8.
https://doi.org/10.1145/3240765.3240801

Shen Y, Ferdman M, Milder P (2017) Maximizing CNN accel-
erator efficiency through resource partitioning. ACM SIGARCH
Comput Architect News 45(2):535-547

Marwedel P (2021) Embedded system design: embedded sys-
tems foundations of cyber-physical systems, and the internet of
things. In: Embedded systems, 4th edn. Springer, Cham. https://
doi.org/10.1007/978-3-030-60910-8

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Kocher P, Lee R, McGraw G, Raghunathan A, Ravi S (2004)
Security as a new dimension in embedded system design. In:
Proceedings of the 41st design automation conference (DAC).
San Diego, ACM, pp 753-760

Jin Y (2015) Introduction to hardware security. Electronics
4(4):763-784

Halak B (2021) CIST: a threat modelling approach for hard-
ware supply chain security. In: Halak B (ed) Hardware sup-
ply chain security. Springer, Cham. https://doi.org/10.1007/
978-3-030-62707-2_1

. Nozaki Y, Takemoto S, Ikezaki Y, Yoshikawa M (2020) LUT

oriented hardware Trojan for FPGA-based Al module. In: Pro-
ceedings of the 6th international conference on applied system
innovation (ICASI). IEEE, Taitung, pp 46—49. https://doi.org/
10.1109/ICAS149664.2020.9426247

LiuZ, YeJ, Hu X, Li H, Li X, Hu Y (2020) Sequence triggered
hardware Trojan in neural network accelerator. In: Proceedings
of the 2020 IEEE 38th VLSI test symposium (VTS). IEEE, San
Diego, pp 1-6. https://doi.org/10.1109/VTS48691.2020.91075
82

YeJ,Hu Y, Li X (2018) Hardware Trojan in FPGA CNN accel-
erator. In: Proceedings of the 2018 IEEE 27th Asian test sym-
posium (ATS). IEEE, Hefei, pp 68-73. https://doi.org/10.1109/
ATS.2018.00024

Odetola TA, Mohammed HR, Hasan SR (2019) A stealthy hard-
ware Trojan exploiting the architectural vulnerability of deep
learning architectures: input interception attack (IIA). arXiv
preprint arXiv:1911.00783. https://doi.org/10.48550/arXiv.
1911.00783

Yang C, Hou J, Wu M, Mei K, Geng L (2020) Hardware Trojan
attacks on the reconfigurable interconnections of convolutional
neural networks accelerators. In: Proceedings of the 2020 IEEE
15th international conference on solid-state & integrated circuit
technology (ICSICT). IEEE, Kunming, pp 1-3. https://doi.org/
10.1109/ICSICT49897.2020.9278162

Clements J, Lao Y (2018) Hardware Trojan attacks on neural
networks. arXiv preprint arXiv:1806.05768

Xiao K, Forte D, Tehranipoor M (2014) A novel built-in
self-authentication technique to prevent inserting hardware
Trojans. IEEE Trans Comput Aided Des Integr Circuits Syst
33(12):1778-1791

Konigsmark STC, Chen D, MDF W (2016) Information disper-
sion for Trojan defense through high-level synthesis. In: Pro-
ceedings of the 2016 53rd ACM/EDAC/IEEE design automation
conference (DAC). ACM, Austin, pp 1-6. https://doi.org/10.
1145/2897937.2898034

Ngo XT, Guilley S, Bhasin S, Danger JL, Najm Z (2014) Encod-
ing the state of integrated circuits: a proactive and reactive
protection against hardware Trojan horses. In: Proceedings of
the 9th workshop on embedded systems security (WESS ’14).
ACM, New Delhi. Article No. 7, 10 pages. https://doi.org/10.
1145/2668322.2668329

Ngo XT, Bhasin S, Danger JL, Guilley S, Najm Z (2015) Linear
complementary dual code improvement to strengthen encoded
circuit against hardware Trojan horses. In: Proceedings of the
2015 IEEE international symposium on hardware oriented
security and trust (HOST). IEEE, Washington, DC, pp 82-87.
https://doi.org/10.1109/HST.2015.7140242

Hicks M, Finnicum M, King ST, Martin MMK, Smith JM
(2010) Overcoming an untrusted computing base: detecting and
removing malicious hardware automatically. In: Proceedings
of the 2010 IEEE symposium on security and privacy (S&P).
IEEE, Oakland, CA pp 159-172. https://doi.org/10.1109/SP.
2010.18

Voyiatzis AG, Stefanidis KG, Kitsos P (2016) Efficient trig-
gering of Trojan hardware logic. In: Proceedings of the 2016

@ Springer

https://doi.org/10.1109/DSD.2018.00070
https://doi.org/10.1109/DSD.2018.00070
https://doi.org/10.23919/DATE.2018.8342119
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1145/3061639.3062307
https://doi.org/10.1145/3240765.3240801
https://doi.org/10.1007/978-3-030-60910-8
https://doi.org/10.1007/978-3-030-60910-8
https://doi.org/10.1007/978-3-030-62707-2_1
https://doi.org/10.1007/978-3-030-62707-2_1
https://doi.org/10.1109/ICASI49664.2020.9426247
https://doi.org/10.1109/ICASI49664.2020.9426247
https://doi.org/10.1109/VTS48691.2020.9107582
https://doi.org/10.1109/VTS48691.2020.9107582
https://doi.org/10.1109/ATS.2018.00024
https://doi.org/10.1109/ATS.2018.00024
https://doi.org/10.48550/arXiv.1911.00783
https://doi.org/10.48550/arXiv.1911.00783
https://doi.org/10.1109/ICSICT49897.2020.9278162
https://doi.org/10.1109/ICSICT49897.2020.9278162
https://doi.org/10.1145/2897937.2898034
https://doi.org/10.1145/2897937.2898034
https://doi.org/10.1145/2668322.2668329
https://doi.org/10.1145/2668322.2668329
https://doi.org/10.1109/HST.2015.7140242
https://doi.org/10.1109/SP.2010.18
https://doi.org/10.1109/SP.2010.18

Journal of Hardware and Systems Security

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

IEEE 19" international symposium on design and diagnostics
of electronic circuits & systems (DDECS). IEEE, Kosice, pp
1-6. https://doi.org/10.1109/DDECS.2016.7482481

Dupuis S, Flottes M-L, Di Natale G, Rouzeyre B (2017) Protec-
tion against hardware Trojans with logic testing: proposed solu-
tions and challenges ahead. IEEE Design & Test 35(2):73-90
Amin HA, Alkabani Y, Selim GM (2014) System-level protec-
tion and hardware Trojan detection using weighted voting. J
Adv Res 5(4):499-505

Odetola TA, Adeyemo A, Khalid F, Hasan SR (2023) Fm-mod-
comp: Feature map modification and hardware—software cocom-
parison for secure hardware accelerator-based CNN inference.
Microprocess Microsyst 1(100):104827

Javaheripi M, Samragh M, Fields G, Javidi T, Koushanfar F
(2020) CleaNN: accelerated Trojan shield for embedded neural
networks. In: Proceedings of the 39th international conference
on computer-aided design (ICCAD '20). Virtual Event, ACM,
Article No. 11, 9 pages. https://doi.org/10.1145/3400302.34156
71

Xu Q, Arafin MT, Qu G (2021) Security of neural networks
from hardware perspective: a survey and beyond. In: Proceed-
ings of the 26th Asia and South Pacific design automation con-
ference (ASPDAC "21). ACM, Tokyo, pp 449-454. https://doi.
org/10.1145/3394885.3431639

Sun P, Halak B, Kazmierski T (2022) Towards hardware Trojan
resilient design of convolutional neural networks. In: Proceed-
ings of the 2022 IEEE 35th international system-on-chip confer-
ence (SOCC). IEEE, Belfast, pp 1-6. https://doi.org/10.1109/
SOCC56010.2022.9908104

Yellu P, Monjur MR, Kammerer T, Xu D, Yu Q (2020) Security
threats and countermeasures for approximate arithmetic com-
puting. In: Proceedings of the 2020 25th Asia and South pacific
design automation conference (ASP-DAC). IEEE, Beijing, pp
259-264. https://doi.org/10.1109/ASP-DAC47756.2020.90453
85

Yellu P, Buell L, Xu D, Yu Q (2020) Blurring boundaries: a new
way to secure approximate computing systems. In: Proceedings
of the 2020 on Great Lakes Symposium on VLSI (GLSVLSI).
Virtual event, China. ACM, pp 327-332. https://doi.org/10.
1145/3386263.3407593

Regazzoni F, Alippi C, Polian I (2018) Security: the dark
side of approximate computing? In: Proceedings of the 2018
IEEE/ACM international conference on computer-aided design
(ICCAD). ACM, San Diego, pp 1-6. https://doi.org/10.1145/
3240765.3243497

Keshavarz S, Holcomb D (2017) Privacy leakages in approxi-
mate adders. In: Proceedings of the 2017 IEEE international
symposium on circuits and systems (ISCAS). IEEE, Baltimore,
MD, pp 1-4. https://doi.org/10.1109/ISCAS.2017.8050882

@ Springer

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Vahdat S, Kamal M, Afzali-Kusha A, Pedram M (2019)
TOSAM: an energy-efficient truncation- and rounding-based
scalable approximate multiplier. IEEE Trans Very Large Scale
Integr (VLSI) Syst 27(5):1161-1173. https://doi.org/10.1109/
TVLSI.2018.2890712

Venugopalan V, Patterson CD (2018) Surveying the hardware
Trojan threat landscape for the internet-of-things. J Hardware
Syst Secur 2(2):131-141

Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hardware
Trojan attacks: threat analysis and countermeasures. Proc IEEE
102(8):1229-1247

Clements J, Lao Y (2018) Hardware Trojan attacks on neural
networks[J]. arXiv preprint arXiv:1806.05768

Xue M, Gu C, Liu W et al (2020) Ten years of hardware Trojans:
a survey from the attacker’s perspective[J]. IET Comput Digital
Tech 14(6):231-246

Yanamala RMR, Pullakandam M (2023) A high-speed reusable
quantized hardware accelerator design for CNN on constrained
edge device[J]. Des Autom Embed Syst 27(3):165-189

He J, Zhang M, Xu J et al (2024) Optimizing CNN hardware
acceleration with configurable vector units and feature layout
strategies[J]. Electronics 13(6):1050

Rosero-Montalvo PD, Toziin P, Hernandez W (2024) Optimized
CNN architectures benchmarking in hardware-constrained
edge devices in IoT environments. IEEE Internet Things J
11(11):20357-20366. https://doi.org/10.1109/J10T.2024.33696
07

Zhang C, Li P, Sun G et al (2015) Optimizing FPGA-based
accelerator design for deep convolutional neural networks. In:
Proceedings of the. ACM/SIGDA international symposium
field-program gate arrays, vol 2015, pp 161-170

Lian X, Liu Z, Song Z, Dai J, Zhou W, Ji X (2019) High-perfor-
mance FPGA-based CNN accelerator with block-floating-point
arithmetic. IEEE Trans Very Large Scale Integr (VLSI) Syst
27(8):1874-1885

Wang Z, Xu K, Wu S et al (2020) Sparse-YOLO: hardware/soft-
ware co-design of an FPGA accelerator for YOLOv2[J]. IEEE
Access 8:116569-116585

Huang W, Wu H, Chen Q et al (2021) FPGA-based high-
throughput CNN hardware accelerator with high computing
resource utilization ratio[J]. IEEE Transact Neur Network Learn
Syst 33(8):4069-4083

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/DDECS.2016.7482481
https://doi.org/10.1145/3400302.3415671
https://doi.org/10.1145/3400302.3415671
https://doi.org/10.1145/3394885.3431639
https://doi.org/10.1145/3394885.3431639
https://doi.org/10.1109/SOCC56010.2022.9908104
https://doi.org/10.1109/SOCC56010.2022.9908104
https://doi.org/10.1109/ASP-DAC47756.2020.9045385
https://doi.org/10.1109/ASP-DAC47756.2020.9045385
https://doi.org/10.1145/3386263.3407593
https://doi.org/10.1145/3386263.3407593
https://doi.org/10.1145/3240765.3243497
https://doi.org/10.1145/3240765.3243497
https://doi.org/10.1109/ISCAS.2017.8050882
https://doi.org/10.1109/TVLSI.2018.2890712
https://doi.org/10.1109/TVLSI.2018.2890712
https://doi.org/10.1109/JIOT.2024.3369607
https://doi.org/10.1109/JIOT.2024.3369607

	Towards Hardware Trojan Resilient Convolutional Neural Network Accelerators
	Abstract
	1 Introduction
	2 Methodology
	2.1 Threat Modelling
	2.2 Principles of the Proposed Vulnerability Analysis

	3 Experimental Setups and Implementation
	3.1 Hardware Architecture of CNN Accelerators
	3.2 Hardware Trojan Insertion
	3.2.1 Hardware Trojan Design

	3.3 Implementation and Analysis
	3.3.1 Structure of Nets
	3.3.2 Impact of Hardware Trojans

	4 Countermeasure
	4.1 Selective Hardware Redundancy (SHR)
	4.2 Selective Hardware and Time Redundancy (SHTR)
	4.3 Evaluation of Proposed Countermeasures
	4.3.1 Security Analysis
	4.3.2 Hardware Trojan Impact Recovery Time
	4.3.3 Implementation Overheads

	4.4 Discussion

	5 Conclusion
	References

