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Abstract

This study investigates the emerging risks associated with integrating Generative
Artificial Intelligence (GenAl) into risk management (RM) within sustainable
construction projects (SCPs). A four-stage methodology was adopted: (1) a systematic
literature review to identify GenAl-related risk factors; (2) the development of a multi-
criteria assessment model to establish evaluation criteria; (3) a structured survey
involving 80 construction experts to assess the identified risks; and (4) the application
of a fuzzy logic-based model to quantify and rank their significance. Thirty risk factors
were identified and grouped into five categories: input quality, technological
adaptability, ethical and governance, information integrity, and financial risks. Fuzzy
analysis highlighted human error, data unavailability, insufficient training, data
breaches, and lack of awareness as the most critical risk factors. The study presents a
novel, fuzzy logic-based risk assessment framework tailored explicitly to GenAl
adoption in sustainable construction, providing enhanced decision-making
capabilities in uncertain environments. It provides actionable insights for project
managers and policymakers to prioritise and mitigate key risks, while also supporting
responsible GenAl implementation. As one of the first studies to systematically
examine these risks, it advances the discourse on AI integration in the built
environment. It presents a replicable model for future assessments, encouraging
context-sensitive research and contributing to the broader digital transformation of
sustainable construction.

Keywords: Generative intelligence; Risk prioritization; Decision support; Expert

evaluation; Fuzzy modelling; Sustainable construction.
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1. Introduction
There is no doubt that artificial intelligence (AI) has become an integral part of projects
and a valuable partner to project managers throughout the project life cycle
(Mohawesh et al., 2025; Bento et al., 2022). Recently Al has significantly evolved,
leveraging massive datasets to train machines and generate new materials (Lachhab
et al., 2018). This advancement has accompanied in a new period of generative
artificial intelligence (GenAl), characterised using complex algorithms and deep
learning approaches (Mohamed et al., 2025a). These methods enable machines to
analyse, process, and derive insights from vast amounts of data. GenAI employs
various approaches, including neural networks, natural language processing (NLP),
reinforcement learning, generative adversarial networks (GANs), and transformers, to
achieve its current capabilities (Bengesi et al., 2024). This transformative technology
has found applications in diverse engineering domains, including construction
management, with a particular focus on risk management (Chenya et al., 2022).
Many organisations now utilise advanced risk management tools that leverage
GenAl to enhance traditional risk management processes, including risk
identification, assessment, and control throughout project execution (Al-Mhdawi et
al., 2023a). These tools enable project managers to make informed, data-driven
decisions, optimise strategies for mitigating risks, and identify opportunities to
improve project outcomes (Regona et al.,, 2022; Chenya et al., 2022). Despite
significant advancements in developing and testing GenAl models across various
engineering disciplines, there remains a notable lack of consensus on the risks
associated with deploying these technologies in risk management (RM) specially
within the context of sustainable construction projects (SCPs) (Mohamed et al.,
2025b). SCPs refer to construction activities that are designed, planned, and executed
to minimise negative environmental, social, and economic impacts while maximising
long-term benefits for society and the environment (Kibert, 2016). In simple terms,
sustainable construction is about building in a way that protects the environment,
supports the community, and uses resources wisely — both during construction and in
the building's operational phase (Zuo and Zhao, 2014). Giesekam et al. (2016), Azhar
et al. (2011) identifies key features of sustainable construction as including the use of
eco-friendly materials, energy efficiency (e.g., solar panels and smart systems), water

conservation strategies, waste reduction practices, green building design, attention to



occupant health and well-being, efforts to reduce carbon footprints, and sustainable

site management that preserves biodiversity and reduces land disturbance.

There is no doubt the uncertainty is exacerbated by the diverse nature of the
construction industry (Aladag, 2023), which spans a wide range of project types, from
residential buildings to large-scale infrastructure projects, each with unique and
technological requirements (Anysz et al., 2021; Parveen, 2018). Furthermore, RM in
SCPs involves a complex network of stakeholders, including project managers,
consultants, contractors, and safety officers, all of whom bring differing expectations
and experiences with GenAl in managing risks associated with environment, society
and economy. These divergent perspectives often lead to conflicting priorities and
ambiguity regarding the perceived benefits and emerging risks associated with GenAl
technologies (Chenya et al., 2022). Therefore, the adoption of GenAl in RM for SCPs
is further complicated by the variability of regulatory environments across regions,
which influence the feasibility and scope of GenAl applications (Taiwo et al., 2024).
This complex and dynamic environment makes the construction industry an ideal
subject for exploring the potential risks of GenAl in RM of sustainable project for
ensuring project success, operational efficiency, cost management, and worker safety

(Regona et al., 2022).

However, integrating GenAl into RM of SCPs presents numerous risks that have
not been thoroughly addressed in existing literature (Mohamed et al., 2024a). These
risks can be categorised into themes such as input quality risks, technological
adaptability risks, ethical and governance risks, information integrity risks, and
financial risks. For instance, input quality risks arise from inaccurate, biased, or
insufficient data used to train GenAI models, which can lead to flawed risk
assessments (Afzal et al., 2021). While technological adaptability risks concern the
integration challenges of GenAl tools within existing RM systems, including
compatibility issues and the need for infrastructure upgrades (Parveen, 2018; An et
al., 2021). Additionally, Aladag (2023) highlighted the ethical and governance risks
include concerns around transparency, accountability, data privacy, and compliance
with legal standards. Information integrity risks involve the potential for GenAl to
produce hallucinated, misleading, or inconsistent outputs, thereby compromising
decision reliability. Lastly, Pillai and Matus (2020) and Regona et al., (2022) revealed

the financial risks relate to the high implementation costs, long-term maintenance,



and possible economic inefficiencies if the technology underperforms. This
categorisation provides a thematic overview of the key risks examined throughout the

study, beyond the specific outputs of the systematic literature review.

While a substantial body of literature has explored the capabilities, benefits, and
comparative performance of GenAl in various aspects of construction management,
only a limited subset has addressed the risks and vulnerabilities associated with its
integration into RM. Most previous studies have predominantly focused on the
advantages of GenAl, such as its ability to enhance predictive accuracy, automate data
processing, and support real-time decision-making. For instance, Pan, and Zhang
(2021) investigated the implementation of GenAl for automating construction project
documentation and forecasting potential delays, emphasising its efficiency in handling
unstructured data, and improving overall project responsiveness. Similarly, Prebanic
and Vukomanovic (2021) examined the use of GenAl-enabled chatbots in facilitating
communication among project stakeholders, finding notable improvements in
stakeholder engagement and information flow. Another study by Al-Mhdawi et al.
(2023a) compared GenAl-driven risk identification models with traditional expert-
based systems, concluding that the GenAl-powered models offered superior

performance in recognising early-stage hazards and uncertainties.

Despite these advancements, there is a notable gap in literature regarding the risks
that accompany GenAl integration into RM processes in SCPs. While a few recent
works, such as Mohamed et al. (2025b), have begun to highlight this underexplored
dimension, they remain exceptions rather than the norm. These emerging studies
highlight a range of risks, including dependencies on data quality, ethical and legal
uncertainties, and integration challenges with existing systems. However, few
investigations have sought to categorise these risks into coherent themes or evaluate
their relative significance within the context of SCPs. This gap underlines the urgent
need for a comprehensive, empirically grounded exploration of GenAl-related risks in
RM of SCPs not only to identify and understand the nature of these risks, but also to
quantify their impact in a manner that supports informed decision-making based on

their impact and potential consequences.

To this end, the aim of this research is to explore the critical risks associated with the
integration of GenAl into RM in SCPs, with a focus on their identification,

categorisation, and prioritisation based on empirical significance assessment, to



support effective decision-making and risk mitigation strategies. Accordingly, the
associated objectives are: (1) to identify the key risks encountered by organisations
when implementing GenAl within RM in SCPs, (2) to categorise these risks into
coherent groups, and (3) to prioritise the identified risks based on their significance
using a structured multi-criteria decision-making approach. Ultimately, the findings
are anticipated to enhance project managers’ and decision-makers’ understanding of
GenAl-related risks into RM within SCPs, enabling them to allocate resources
efficiently, mitigate high-impact risks, and ultimately improve the effectiveness of

GenAl integration. The contributions of this research can be outlined as follows:

1. Weidentified and systematically categorised 30 key risk factors associated with the
integration of GenAl into RM for SCPs. These were classified based on their sources
into five thematic categories: input quality-related, technological adaptability-
related, ethical and governance-related, information integrity-related, and
financial risks-related. This categorisation provides a comprehensive risk
landscape and offers actionable insights for construction practitioners, enabling
them to anticipate and address potential GenAl-related threats in digitalised
project environments. In particular, it supports the early identification of data-
driven and ethical vulnerabilities that may compromise risk assessments,
stakeholder trust, and project outcomes. Academically, this study contributes to
closing a significant research gap by systematically examining the often-overlooked

risks of GenAl adoption in the sustainable built environment.

2. We developed a novel multi-criteria hierarchical risk quantification model based
on fuzzy set theory to assess the significance of identified Gen AI risks for SCPs.
The model employs fuzzy logic controllers to evaluate key risk dimensions—
probability, impact, detectability, and exposure—using twelve sub-criteria. To
address the inherent subjectivity in expert assessments, linguistic judgments are
systematically translated into numerical outputs, which enhances the model’s
precision and reduces inconsistencies often found in traditional evaluation
methods. This approach is particularly valuable in the context of GenAl, where risk
factors tend to be vague, interdependent, and difficult to quantify using
conventional tools. Through its capacity to manage imprecision and reflect the
variability of human reasoning, the model offers a robust and adaptable framework

for risk assessment in SCPs. As data-driven decision-making becomes increasingly



central to managing complex technological risks, the model’s relevance and

practical utility are especially pronounced.

The remainder of the paper is organized as follows: Section 2 presents the adopted
research methodology. Section 3 discusses the results and their implications. Finally,

Section 4 concludes the study and outlines its practical and theoretical contributions.

2. Methodology

The research adopted a four-stage, multi-method approach to systematically identify,
assess, and quantify the risks associated with integrating GenAl into the risk
management of SCPs. In the first stage, a systematic literature review (SLR) was
conducted to identify potential risks. The second stage involved a focus group session
with industry experts to establish appropriate assessment criteria for evaluating each
identified risk. In the third stage, a survey was administered, allowing participants to
assess the significance of each criterion. Finally, in the fourth stage, the survey data
were analysed using fuzzy set theory to develop a risk assessment model capable of
quantifying the level of significance of each risk. The model’s findings were

subsequently validated through a follow-up expert focus group session.

Adopting a multi-method research approach offers significant advantages by
enhancing both the depth and breadth of analysis (Al-Mhdawi et al., 2024a; Almalki,
2016). This methodological pluralism as shown in Figure 1 captures the complexity of
the subject matter, providing a comprehensive framework for data interpretation
(Hantrais, 2014). Similar methodologies have been employed in studies focused on
risk identification and evaluation, such as those conducted by Al-Mhdawi et al. (2025),

Al-Mhdawi et al. (2022), and Elnaggar and Elhegazy (2022).
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Figure 1. Adopted research methodology

Stage Ome: Identification of the key risks emerging from GenAl
integration into RM of SCPs

This stage adopts a structured, three-step methodology for literature collection and
analysis, designed to thoroughly examine existing studies and identify the key risks
associated with integrating GenAlI into RM in SCPs. The first step involves identifying
relevant databases and journals to establish a robust foundation for the literature
search. The second step entails strategically selecting articles using targeted keywords
to ensure the inclusion of the most pertinent studies. Lastly, the third step focuses on
conducting a systematic content analysis to extract valuable insights. This approach is
guided by frameworks outlined in several risk management studies, particularly those

by Al-Mhdawi et al. (2025), Al-Mhdawi et al. (2024b), and Siraj and Fayek, (2019).
Database and journal identification

In this research, the Scopus database was selected due to its extensive coverage of
relevant research disciplines and its established use in similar literature-based studies
within the field of construction management. The target journals for this study were
chosen based on the following criteria: (1) they must be published in English, (2) they
must have a minimum impact factor of 1.0, and (3) they must be ranked in the top
quartile of the Scopus database, reflecting their substantial influence on advancements

in construction management research.



Keyword identification and article selection

In this step, a comprehensive search was performed using the title, abstract, and
keyword (T/A/K) fields within the Scopus search engine. The search keywords
included "GenAl risks", "GenAI", "GenAl in RM", and "GenAl in sustainable
construction project management". Articles containing these terms in the title,
abstract, or keywords were considered to meet the preliminary inclusion criteria for
further analysis. These keywords were carefully chosen to encompass a wide range of
studies addressing the risks and applications of GenAlI in RM for SCPs and related
fields. The search results were then refined by removing duplicate entries, irrelevant
studies, and papers that did not provide a substantive focus on the intersection of
GenAI and RM in SCPs.

Content analysis

Hsieh and Barman et al. (2021) outline three approaches to content analysis:
conventional, directed, and summative. This study adopted the conventional
approach, a data-driven, open-ended method that allows categories to emerge
organically without the constraints of predefined frameworks (Blomkvist, 2015). This
approach, suitable for both qualitative and quantitative analysis, is particularly well-
suited for investigating the emerging integration of GenAl into RM for SCPs, as it
facilitates the extraction of detailed themes directly from the data (Kibiswa, 2019).
Unlike directed analysis, it avoids limitations imposed by existing theories, fostering a
rich and context-specific understanding (Hsieh and Shannon, 2005; Krippendorff,
2018). Using this method, the study systematically refined an initial pool of 471 papers
to 55, identifying key risks and categories associated with integrating GenAl in RM for
SCPs.

Stage Two: Development of a multi-criteria risk analysis model

Failure Mode and Effects Analysis (FMEA) is a widely applied risk assessment
technique that evaluates the significance of risks by analysing three key factors: the
probability level (PL) of occurrence, the impact level (IL) on project objectives, and the
detectability level (DL) of the risk (Kritsky et al., 2018). This approach is extensively
used across various engineering and construction fields (Alvand et al., 2023; Zhang et
al., 2024). To develop the proposed multi-criteria risk analysis model based on IL, PL,

and DL, a Delphi technique was conducted internally among the authors. This



approach leveraged the authors’ combined expertise in construction risk management
and their prior research experience in developing fuzzy-based risk assessment models
(Al-Mhdawi et al., 2024a; Mahammedi et al., 2020; Mohamed et al 2024). Two Delphi
rounds were performed, allowing iterative review and refinement of the model
structure to ensure logical consistency and domain relevance.

The impact dimension was categorised into two main groups project-related
impacts, which include the impact on project cost (ipc), schedule (ips), and quality
(ipq); and organisational impacts, which include the impact on decision-making (idm)
and organisational reputation (ior). A similar structuring was applied to the
probability criterion, which was assessed based on the availability of expertise (ae),
availability of assets (aa), and the organisation’s technological maturity (otm). For
detectability, the relevant factors included ea, the presence of continuous monitoring
mechanisms (acm), and the level of exposure, which was further informed by the risk
duration (rd) and frequency of occurrence (fo). This methodological framework aligns
with validated practices from previous fuzzy risk assessment studies (Al-Mhdawi et al.,
2022; Al-Mhdawi et al.,, 2023b). the model ensures that the developed Risk—
Probability, Impact, and Detectability (R-PID) model offers a context-specific and
reliable tool for evaluating GenAl-related risks in sustainable construction projects.

The overall fuzzy risk number (F-RN) is derived using the formula:
R=DLxPLxIL ............. (1)
Stage Three: Rating risks of integrating GenAI in RM for SCPs

In this stage, the authors employed a questionnaire survey instrument for data
collection, as it enables respondents to provide information in a structured and
standardised format, facilitating systematic data analysis and comparison while also
offering a level of anonymity and confidentiality, which can encourage more honest

and candid responses (Bird, 2019; Chartres et al., 2019).
Survey development

The authors developed a questionary survey to evaluate the significance of risks
associated with integrating GenAl into RM for SCPs, as identified through the SLR. To
quantify risk significance, respondents assessed each risk based on four key criteria:
(1) the probability of occurrence, which measured the likelihood of the risk arising

based on factors such as ea, aa, and otm; (2) the impact on project and organisation,



including ipc, ips, ipq, idm, and ior; (3) the detectability of the risks, based on ea, acm
and the exposure level which could be measure through evaluating risk fo and rd,
which considered the duration and frequency of the risk during the project lifecycle.
The survey consisted of two sections. The first section collected information from
respondents, including their roles in construction field, years of experience,
educational background and level of experience with GenAl in project management.
The second section required respondents to assign relative weights to the identified
risks. To facilitate this assessment, a five-point Likert scale was adopted, ranging from
1 (Very Low - V.L) to 5 (Very High - V.H). This scale enabled respondents to
systematically evaluate the significance of each risk based on predefined assessment

criteria, ensuring consistency and comparability in the collected data.
Survey pilot testing

Pilot testing is a critical preliminary step in survey-based research used to evaluate the
reliability, validity, and overall quality of a questionnaire before deploying it on a
larger scale. It ensures that survey items are clearly understood, appropriately worded,
and capable of capturing the intended data, thereby improving the instrument’s
overall robustness and response accuracy (Saunders et al.,, 2019; Bryman, 2016).
Conducting a pilot also helps identify potential ambiguities that may affect data
collection and respondent experience. In this study, a pilot test was conducted with 10
construction experts from the UK to assess the clarity and effectiveness of the
developed questionnaire. Table 1 presents participants' years of experience, industry
roles, and educational backgrounds. Based on the feedback received, minor revisions
were made to enhance the precision and relevance of the survey. These included
adding a new question to assess respondents' experience with using GenAl in project
management and renaming certain criteria to improve clarity and ease of

understanding during the risk evaluation process.

Table 1. Pilot test profile of participants

No. of Range of Educational level
~ Role experience
participants (Years) B.Sc M.Sc Ph.D.
4 Project manager 5-15 3 1 -
2 Consultant 10-20 - 1 1
4 Academic 5-9 - -

10



Survey administration

The final version of the survey was distributed to 136 construction management
experts in the UK, selected based on two criteria: (1) holding a professional role in the
construction industry or academia related to construction education and (2)
demonstrating proficiency in applying GenAl in construction projects. The respondent
group included project managers, consultants, academics, and other project
management professionals. Of the 136 experts surveyed, 101 responded, with a
response rate of 74.3%. However, 21 responses were incomplete, leaving 80 valid
responses for analysis. A more detailed discussion of the respondents’ profiles is

provided in the results and analysis section.
Stage Four: Development of a fuzzy-based risk quantification model

Fuzzy Set Theory (FST), introduced by Zadeh (1996), extends classical set theory by
providing a framework for addressing uncertainty and imprecision in decision-making
(Lauron et al., 2024; Gholamizadeh et al., 2022). Unlike traditional binary sets, FST
allows for partial membership, making it particularly effective for representing and
analysing linguistic variables such as "very low", "low", "moderate", "high", and "very
high" (Akram et al., 2024). This flexibility enables the handling of vagueness and
subjectivity inherent in human judgments (Mahmood et al., 2020; Chrysostom and
Dwivedi 2016). Therefore, it appears clearly the key advantage of FST of the ability to
formalise and quantify human knowledge by converting qualitative linguistic
assessments into fuzzy numerical values, thus managing imprecise or incomplete
information and reconciling conflicting expert opinions (Adak et al., 2024; Al-
Mhdawi, 2023c). This makes it particularly valuable in scenarios where precise
numerical data are unavailable or insufficient (Al-Mhdawi et al., 2024b). Given these
strengths, FST was employed in this study to assess the significance of risks associated
with integrating GenAl into RM of SCPs. Its capacity to accommodate ambiguity and
incorporate expert judgment provided a systematic approach to quantifying risks,
even in cases of uncertain or subjectively defined data. To operationalise this
approach, a fuzzy-based model was developed for quantitatively assessing the
significance of identified risks. The model utilised multiple input variables and a single
output and was implemented using MATLAB R2024b (version 24.2). The following
subsections outline the model’s components and their role in the overall risk

assessment process.
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This research utilised six fuzzy controllers to assess risk significance. The first
controller evaluated the IL of each risk based on its components: ipc, ips, ipq, idm,
and ior. The second controller measured the probability of risk occurrence using ea,
aa, and otm. While the third controller assessed the DL of each risk, incorporating aa,
acm, and the output of the fourth controller, which determined the exposure level
based on rd and fo. Finally, the fifth and main controller computed the overall risk
significance by integrating the three primary assessment criteria (i.e., impact,
probability, and detectability). Additionally, in each controller, the risk assessment
criteria and their respective components were transformed into fuzzy sets using
predefined membership functions. These fuzzy inputs were then processed within a
fuzzy inference engine to estimate the level of each criterion and determine the overall
significance of identified risks.

The architecture of the proposed GenAl risk assessment model is structured
around three essential processes: fuzzification, fuzzy inference, and defuzzification. In
the fuzzification process, both input and output variables were represented using
triangular membership functions. This choice was guided by the functions' simplicity,
computational efficiency, and effectiveness in capturing subjective and imprecise
expert knowledge attributes that have made them widely adopted in similar fuzzy
modelling applications (Gerla, 2013; Yager and Zadeh, 2012). For the inference stage,
Mamdani’s Fuzzy Inference System (MFIS) was employed due to its intuitive
reasoning capabilities, ability to handle linguistic variables, and strong prevalence in
engineering and decision-making literature (Mamdani and Assilian, 1975; Lootsma,
2010). Finally, the defuzzification process was carried out using the centroid of area
method, which is commonly preferred in fuzzy systems for its accuracy in aggregating
fuzzy sets into a single representative crisp output. This method is particularly useful
in modelling expert judgments, as it balances multiple overlapping membership
functions to produce a meaningful outcome (Kaynak et al., 2012). Collectively, these
techniques form a cohesive framework suitable for modelling the uncertainty and
subjectivity inherent in assessing the risks of integrating Generative Al into
construction risk management.

To this end, a five-point Likert scale (ranging from Very Low (V.L) to Very High
(V.H)) was used to define the inputs and outputs of the assessment model.

Accordingly, five membership functions were established for the assessment
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components, criteria, and output variables. Figure 2 illustrated an example for the

output risk significance memberships.

Membership function plots _ _
Very_low Low Medium High Very_high

|_:. .. C
outout variable "Risk severitv level"

Figure 2. Membership functions for risk significance level

The fuzzy IF-THEN conditional statements were developed by adapting rule structures
from previous fuzzy risk assessment models in construction (Dikmen et al., 2007; Al-
Mhdawi et al., 2024a; Al-Mhdawi et al., 2022). These studies constructed fuzzy rule
bases through systematic analysis of risk factors, linguistic categorization, and domain
knowledge. Similarly, this study formulated the fuzzy rules by aligning with validated
methodologies used for cost overrun risk assessment, oil and gas construction risk
modelling, and emerging risk evaluation in construction, ensuring the model reflects

best practices in fuzzy-based risk assessment.

A total of 550 rules were developed for the model, including 125 for impact on
project insights, 25 for impact on the organisation, 125 for probability measurement,
25 for exposure level assessment, 125 for detectability, and 125 for overall risk
significance. Examples of the developed IF-THEN rules for input variables (impact,
probability, detectability) and their corresponding output (significance level) include:
for the PL controller, Rule 14 states that if (ea) is very low, (aa) is medium, and (otm)
is high, then PL is medium, while Rule 18 states that if (ea) is very low, (aa) is high,
and (otm) is medium, then PL is medium; for the IL controller, Rule 70 states that if
(ipc) is medium, (ips) is high, and (ipq) is very high, then IL is very high, and Rule 74
states that if (ipc) is medium, (ips) is very high, and (ipq) is very high, then IL is very
high; for the DL controller, Rule 118 states that if (ea) is high, (acm) is very high, and
(exposure) is medium, then DL is high, while Rule 122 states that if (ea) is very high,

(acm) is very low, and (exposure) is high, then DL is low; and for the RL controller

13



(Risk Level), Rule 4 states that if (IL) is very low, (PL) is very low, and (DL) is low, then
RL is medium, while Rule 8 states that if (IL) is very low, (PL) is low, and (DL) is
medium, then RL is low. A sensitivity analysis was then conducted to evaluate the
model’s robustness and identify key risk drivers, following the approach proposed by
Rathore et al. (2021). Key input variables were systematically varied by +10%, and the
corresponding changes in F-RN were monitored. The objective was to determine
whether small variations in inputs would cause significant shifts in model outputs or
rankings, thereby validating the model’s stability. This approach aligned with the
sensitivity analysis standards adopted in previous studies (Jain et al., 2016) and

ensured that the model provided reliable insights for GenAl in RM for SCPs.

3. Results and Discussion

3.1 Risks identification and classification

The SLR identified 30 key risks associated with integrating GenAl into RM for SCPs.
These risks were categorised into five main groups, namely: Input quality risks,
technological adaptability risks, ethical and governance risks, information integrity
risks, and financial risks, as outlined in Figure 3, along with their respective sources.
The identification methods varied across studies, including GenAI model training and
testing, case studies, interviews, questionnaire surveys, and focus group sessions
(Mohamed et al., 2025a). In addition, research suggests that employing multiple
methodologies to identify risks in construction projects is generally more effective
than relying on a single approach, as it enhances the depth and reliability of findings
(Sharma and Gupta, 2019). However, using a single method provides advantages such
as simplicity, consistency, efficiency, and a more focused approach, facilitating
detailed insights and improving replicability (Runeson, 2018). Despite these benefits,
a single-method approach may introduce bias and the risk of overlooking critical
factors, potentially limiting the comprehensiveness of risk identification. Therefore,
integrating multiple identification methods is essential to ensure a robust and holistic

assessment.

14



risks

Input guality

Technological adaptability risks

Risks
RO1. Inaccurate or incomplete data
R02. Data unavailability
R03. Data bias
R04. Extensive data complexity
R05. data Overfitting
R06. Inconsistent connectivity
R07. Insufficient training
RO08. Incompatibility with legacy system
R09. Absence of expertise
R10. Misinterpretation of Results
ER11. Human Error
R12. Failure of model training
R13. Wrong model selection
R14. Lack of awareness
R15. Cultural resistance
R16. Lack of trust
R17. Algorithm Bias
ER18. Absence of regulatory frameworks
R19. Confidentially breach

—
oo

o =

=z — =l

= i~ =

= -

Lo RN =1

— == — G

= [t

oo™ C— = g -

o~ =/ 3 =

T - SR A =)

=82 TE =

S8 ag 8 o

=4 = s e

S8 ggt 5]

= == = .

e R =

L -

DR Ee ZTEAZ =

Eber { 2020)
| Lee and Shin (2020}

rvar (2021

Adekunle et al. (20223

etal. (2022)
nann & [Lechiara (2022)

Wijayasekera et al. (2022)
2023)

nd Mlatus (2020)

| Anysz et al. (2021
elal, (2021)

getal (2024)
gand Lee (2024)

Yaseen et al. (20207
ioye etal. (2021)
Davahli et al. (20213

Afzal elal, (20213
Al-Mhdawi el al. (2023¢)

Aladag (2023)
MWuller et al. (20247

Legand Yu (2023
Nyqvist et al. (2024)

Zhou et al

[T Anetal (2021

=

Ethical and
governance risks

Info
integrity
risks

risks

Financial

. Unclear responsibility and accountability

. Legal risk due to data retention and breach
. Incompliance with data Privacy policies

. Data breach

4. Overdependence on synthetic data

5. Inconsistent data formatting

. Vulnerability to Adversarial Cyberattacks

. High initial cost investment

. Return of mvestment outcome discrepancies
. Training cost and staff

. Customisation and integration expenses

O DH

Figure 3. Mapping of identified GenAl-related risks across existing studies (2015—2025)




3.2 Profile of survey respondents

The survey respondents represented a range of roles within the construction industry,
with the majority being Project Managers (62%), followed by other project
management roles (23%), Academics (10%), and Consultants (5%). This distribution
indicates a significant bias towards project management professionals, suggesting that
most respondents were directly involved in supervising and managing construction
projects. However, the relatively small proportion of consultants and academics may
limit the diversity of perspectives, particularly in terms of expert advice and theoretical
insights. In terms of professional experience, the respondents demonstrated a range
of project management backgrounds. Most had between 1-5 years of experience
(37%), followed by those with 6—15 years (32%) and 16—25 years (24%), whilst only a
small portion reported having more than 25 years (6%). This indicates that the sample
is predominantly composed of early to mid-career professionals, reflecting the views
of those who are actively engaged in contemporary project management practices. The
range of experience levels helps to provide a balanced understanding of challenges
across different stages of professional development.

Educational qualifications among respondents were generally high, with 51%
holding bachelor’s degrees, 42% holding master’s degrees, and 6% having completed
doctorate degrees. This suggests that the majority of participants were well-educated,
with a significant proportion possessing postgraduate qualifications. The strong
educational background among the respondents enhances the reliability of the
insights gathered, particularly in discussions related to advanced construction and risk
management practices. Regarding familiarity with GenAI in construction
management, the survey revealed varying levels of experience. The majority of
participants identified themselves as having Intermediate experience (51%), followed
by Beginner level (41%), and only a small group being classified as Experienced (9%).
This distribution shows that whilst GenAl is gaining traction within the field, it
remains relatively new, with most professionals still at the early or developing stages
of adoption. These findings highlight opportunities for further training and capacity
building to enhance the effective integration of GenAl into construction management
practices. Figures 4—7 provide detailed illustrations of the respondents' profiles based
on their roles, years of experience, educational qualifications, and experience levels

with GenAl in construction management.
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3.3 Architecture of the developed GenAl risk assessment model and its

outputs

As described in stage three of the research methodology, the proposed risk assessment
model was designed using six fuzzy controllers via MATLAB R2024b, with each
controller dedicated to evaluating a specific risk dimension. The first controller
assessed the impact on project insights, using three input variables: ipc, ips, and ipq.
The second controller evaluated the impact on the organisation, incorporating idm
and ior, the summation of the outputs of first and second controller represented the
overall IL. Moreover, the third controller measured the probability of risk occurrence,
with inputs ae, aa, and otm, producing the PL as the output. The fourth controller
assessed the DL, utilising ae, acm, and the output from the fifth controller, which
measured exposure level based on fo and rd. Finally, the sixth controller integrated

the outputs of the IL, PL, and DL, generating the overall risk significance level for
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integrating GenAI into RM for SCPs. This structured approach ensured a
comprehensive and systematic evaluation of risk factors, enabling a more robust and
data-driven assessment of potential risks.

The fuzzy controllers were designed using the IF-THEN rules presented in stage
four of methodology, while Figure 8 illustrates the architecture of the proposed risk
assessment model. To visualise the relationships between fuzzy controllers’ input and
output variables, three-dimensional mappings were generated using the Fuzzy Logic
Surface Viewer. These graphical representations illustrate how the output variables
vary in response to changes in the input variables, enhancing interpretability.
Furthermore, Figures 9—14 depict the dependencies for each controller, where each
surface plot includes two input variables and one output variable—specifically, for
impact, probability, detectability, exposure, and overall significance level. For
instance, Figure 14 illustrates the risk significance surface based on total impact and
probability. the risk significance level is represented by colour intensity, with higher
risk significance corresponding to more intense colour gradients. These visualisations
provide a clear and intuitive understanding of the interactions between risk factors,

supporting a more informed risk assessment process.

IPC
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1PS KJ 3
in out
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Figure 8. The proposed risk assessment model
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To this end, the mean values of ipc, ips, ipq, idm, ior, ae, aa, otm, acm, fo, and rd were

used as crisp inputs, as presented in columns 2 to 13 of Table 4. These values were then
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processed through the following steps: (1) Fuzzification using triangular membership
functions, (2) Inference processing through IF-THEN rules, (3) Control mechanism
using a Mamdani-type inference system and defuzzification using the centre of area
method. Ultimately, the risk significance level of each risk factor associated with
integrating GenAlI into RM for SCPs was computed, represented as F-RN, along with
its ranking, as shown in columns 14 and 15 of Table 2.

Table 2. Fuzzy analysis

Detecting | Exposure
oo p] o mpact v Ovean e do, | e, | e fategoryrers
values) values) [RN)| rank [ .
ea aa otm |ipc ips ipq idm ior | ea acm| rd fo
P Ro1 | 352 343 33639 382 374 386 3.75|3.52 3.59 [3.46 3.3 | 3.52 3 8
E Ro2 3.6 351 333|391 4 382 4.04 372| 3.6 352|347 3.18] 3.63 1 2
% Ro3 [ 359 342 318 (344 343 3.62 3.75 3.53(3.59 3.43|3.34 3.17 | 3.59 2 4
; Rog4 | 337 336 335 (342 3.5 3.37 344 3.11|3.37 3.37 3.34 3.22| 3.37 5 21
E Ro5 | 34 327 33 |346 347 348 348 3.35| 34 343[3.23 3.01| 34 4 18
Ro6 | 3.34 3.27 3.23 331 345 349 3.34 3.29(3.34 3.28|3.06 3 |3.34 8 22
Ro7 | 359 3.24 3.34 |3.54 3.55 3.58 3.64 347[3.59 34 | 34 3.19| 3.61 2 3
% Ro8 | 325 325 316 349 348 347 3.42 3.31(3.25 3.29 |3.24 3.05] 3.25 9 25
E, Ro9 | 351 3.27 3.34 |3.86 3.75 3.67 3.62 3.69|3.51 3.45[3.26 3.07| 3.51 4 9
% Ri0 | 349 3.39 3.31 381 3.77 3.68 3.84 3.79|3.49 3.41(3.32 3.19 | 3.49 5 10
,g Ri11 3.64 353 3.4 |375 3.65 3.71 3.61 3.64|3.64 3.67|3.28 3.33| 3.64 1 1
% R12 | 3.25 3.23 3.27 |3.55 3.63 3.59 3.56 3.47|3.25 3.44 | 3.19 3.08] 3.24 10 26
é R13 | 342 347 34 [3.78 3.64 321 3.53 3.67[3.42 3.39 | 3.31 2.93| 3.42 6 15
§ Ri4 | 356 3.44 3.36 [3.51 3.49 3.57 3.37 3.45(3.56 3.31|3.08 2.96] 3.56 3 6
3 R15 | 3.23 3.14 3.22 |3.04 3.12 3.16 3.28 3.23(3.23 3.23 | 3.16 3.08]| 3.23 11 27
R16 | 3.38 3.24 3.29 [3.03 3.18 3.05 3.44 3.35|3.38 3.19 | 3.22 3.16 | 3.38 7 20
o R17 |3.29 327 314 |33 324 329 348 3.32(3.29 3.5 |3.36 3.11]3.29 4 24
§ Ri8 | 341 345 311|351 34 3.34 347 348|341 343 [3.35 2.96| 3.41 3 16
E R19 | 345 348 345 |34 344 311 355 3.92(3.45 3.29 |3.52 3.16 | 3.45 2 12
¥
E'i R20 | 355 3.39 3.26 |3.51 3.55 348 3.5 3.56(3.55 3.34[3.31 3.09( 3.55 1 7
E R21 | 341 339 318 (371 3.5 347 3.31 3.87(341 3.44|3.23 3.05| 3.41 3 16
E R22 | 345 3.27 3.36 |3.36 3.38 3.35 3.23 3.59|3.45 3.19 [3.04 3.04( 3.45 2 12
53‘ R23 | 359 341 3.03 [3.68 347 3.34 3.46 4.03]|3.59 3.58 [3.24 3.04| 3.59 1 4
é%% R24 (341 335 333 (337 322 3.2 327 313341 3.26 |3.33 3.07| 3.39 3 19
“EE - R25 | 342 345 3.21 344 34 311 341 338|342 3.56 | 3.15 3.09( 3.44 2 14
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R26 | 3.39 336 342 | 3.6 3.43 3.22 341 3.75(3.39 3.43|3.27 3.14| 3.33 4 o
P R27 | 3.43 338 3.23 [3.81 318 312 3.22 333343 3.26 [3.36 3 | 3.21 Py 58
‘E R28 | 347 353 344 |35 311 314 3.3 349|347 318 |3.17 2.89| 3.47 1 1
.g R29 | 338 3.26 3.21 |3.58 3.04 3.12 3.15 3.19|3.38 3.37 | 3.13 2.93]| 3.11 4 30
'E R3o | 3.31 344 329 (341 3.27 3.22 3.06 3.14(3.31 3.33 |3.23 3.05| 3.17 3 29

3.4 Sensitivity analysis

To evaluate the robustness of the fuzzy risk assessment model, a sensitivity analysis
was conducted following the approach outlined in the methodology. Each input
parameter was varied by +10%, and the resulting changes in the risk significance
scores (F-RN) were observed. The analysis showed that the variation in F-RN values
remained within a £+6% to +6.5% range across the top risk categories, indicating strong
model stability. Importantly, these variations did not alter the relative ranking of the

risks. Figure 15 present changing one of the inputs to the F-RN.

—e— Original F-RN
—e— +10% Inputs
3.8} —e— -10% Inputs
3.71
L
o
@
> 3.6 ‘\ﬁ/‘\\/
o
w
3.5F
34 i T '/’\\‘/.”,’A
R0O2 RO7 R12 R17 R22 R25 R30
Risk ID

Figure 15. Sensitivity Analysis of Fuzzy Risk Scores under +10% Input Variations

3.5 Discussion of Research Findings

This section discusses the top risk categories associated with the integration of GenAl
into RM for SCPs, based on the findings of the developed assessment model. As
outlined in the preceding stages of the research methodology, these risks in each
category were evaluated for their significance levels, enabling the identification of the

most critical areas.
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Input quality-related risks

Input quality risks encompass factors related to the accuracy, completeness,
consistency, and contextual relevance of data used in training and deploying GenAl
models (Chenya et al.,, 2022; Holzmann and Lechiara, 2022). These risks are
particularly salient in Sustainable Construction Projects (SCPs), where GenAl-enabled
RM relies heavily on clean, diverse, and current datasets to generate reliable
predictions and inform effective decision-making (Wijayasekera et al., 2022).
Findings from the fuzzy analysis highlight the criticality of input quality risks.
Specifically, Ro2 (data unavailability) was ranked 2nd overall (F-RN: 3.63), Ro3 (data
bias) ranked 4th (F-RN: 3.59), and Ro1 (inaccurate or incomplete data) ranked 8th (F-
RN: 3.52). These high rankings clearly demonstrate that substandard data inputs can
severely undermine the predictive validity and reliability of GenAI models used in SCP

risk assessments.

The effective deployment of GenAlI in SCPs hinges critically on the quality and
availability of input data, where inaccuracies, omissions, or biases can significantly
compromise the integrity of risk identification and mitigation strategies (Aldoseri et
al., 2023). Data unavailability—often due to fragmented data silos or inaccessible
historical records—restricts GenAl’s ability to learn from past risk occurrences,
thereby limiting its capacity to generalize effectively and produce reliable forecasts for
future project scenarios (Chen and Chen, 2024). Similarly, data bias introduces
systematic distortions in model outputs, potentially misclassifying emerging threats
or ignoring contextual factors unique to SCPs, such as regulatory, environmental, or

stakeholder-driven complexities (Chenais et al., 2022).

Inaccurate or incomplete data further compounds the challenge by introducing
noise, uncertainty, and missing contextual signals. These deficiencies not only degrade
model performance but also jeopardize decision outcomes across project planning,
risk assessment, and stakeholder communication (Kumar et al., 2024; Delello et al.,
2025). Erroneous data points or poorly annotated training samples can lead to biased
parameter estimation, flawed mitigation strategies, and ineffective prioritization of
risks. As Zhang and Zhang (2023) note, poor data annotation practices significantly
reduce Al system reliability, especially in dynamic and risk-sensitive environments
such as SCPs. Moreover, the implications of data quality issues extend beyond

technical performance. As Steimers and Schneider (2022) highlight, data governance
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also encompasses ethical and operational dimensions, especially in SCPs where RM
decisions often have long-term sustainability implications—including financial losses,
safety breaches, or environmental degradation. Addressing these challenges demands
a multi-pronged strategy involving stringent data validation protocols, robust data
governance frameworks, and cross-stakeholder collaboration to enable seamless data

sharing and integration (Ambasht, 2023; Adesina, Iyelolu and Paul, 2024).

Technological adaptability-related risks

Technological adaptability risks refer to the challenges involved in embedding GenAI
into existing construction management workflows, systems, and decision-making
processes. These risks are especially significant in the construction industry, where
human judgment, domain expertise, and contextual interpretation remain
indispensable to project delivery (Hu & Castro, 2019; Adekunle et al., 2022;
Chowdhury et al., 2024). Fuzzy analysis highlights human error (R11) as the most
critical risk in this category, ranking 1st overall with an F-RN of 3.68. This underscores
a key vulnerability: while GenAl can produce sophisticated and valuable insights, its
effectiveness is ultimately constrained by the competence and attentiveness of the
human actors interpreting and applying those outputs (Grewal et al., 2024). This
finding highlights the critical importance of the human-machine interface in
construction workflows, where the quality of decision-making is only as strong as the
human ability to engage meaningfully with GenAlI systems, as emphasized by Epstein
et al. (2023), Ghimire et al. (2023), and Hilgard et al. (2019).

The second most significant risk in this category is insufficient training (Ro7),
which ranks 3rd overall (F-RN: 3.60). This reflects a pervasive lack of readiness among
construction professionals to effectively utilize and collaborate with GenAl
technologies, leading to potential inefficiencies, poor system adoption, and suboptimal
integration outcomes (Taiwo et al., 2024). Inadequate exposure to digital tools or
unfamiliarity with GenAI functionality can result in dependency without
understanding, weakening confidence in Al-assisted decisions and increasing the
likelihood of operational errors. Closely related is the risk of misinterpretation of
GenAl results (R10), which ranks 10th overall (F-RN: 3.46). Limited GenAl literacy
can precipitate misguided conclusions, particularly when outputs are taken at face
value without a thorough understanding of underlying assumptions, model

limitations, or contextual nuances (Grewal et al., 2024; Hassoun et al., 2024). These
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misjudgments can undermine project outcomes and erode stakeholder trust,
especially when decisions based on flawed interpretations lead to delays, cost

overruns, or misaligned risk responses.

These findings are echoed in broader literature emphasizing the need for not only
technical training but also the cultivation of higher-order cognitive skills. Construction
professionals must be equipped not just to operate GenAl tools, but also to critically
evaluate, contextualize, and apply GenAl-derived insights within complex, dynamic
project environments (Pan & Zhang, 2021; Lee & Shin, 2020). This requires the
development of GenAl-focused curricula and comprehensive training programs that
bridge the gap between algorithmic output and practical project requirements.
Proactively managing these technological adaptability risks is essential for unlocking
the full potential of GenAl in construction. It calls for a multidimensional strategy that
includes continuous workforce upskilling, intuitive system design, and strong digital
leadership to reduce friction and resistance (Ghimire et al., 2023). Such efforts foster
innovation while minimizing the risk of errors and misapplications that could

otherwise undermine project success (Reis & Melao, 2023).

Ethical and governance-related risks

Ethical and governance risks encompass the legal, regulatory, and ethical challenges
arising from the deployment of GenAl in SCPs. These risks are particularly significant
in data-sensitive, high-stakes environments where decisions influenced by AI may
have far-reaching consequences (Rane, 2023; Regona et al., 2024). As GenAl
technologies become more integrated into project decision-making, questions of
fairness, transparency, and accountability become increasingly pressing. Based on the
fuzzy analysis, the most critical risk in this category is unclear responsibility and
accountability (R20), which ranks 1st within the category and 7th overall with an F-
RN of 3.55. This highlights a major concern in GenAl-assisted decision-making:
determining who is liable when Al-generated insights contribute to negative project
outcomes (Evans et al., 2022). As construction projects become more digitized and AI-
reliant, ambiguity in accountability can create legal grey areas—particularly in hybrid
decision-making settings where responsibilities are shared between human actors and

Al systems (Hendrycks et al., 2023).

Building on this concern, confidentiality breaches (R19) and noncompliance with

organisational data privacy policies (R22) are also ranked prominently—tied at 2nd
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within the category and 12th overall (F-RN: 3.45). These risks reflect heightened
anxieties about the misuse of sensitive data, unauthorized access, and the potential
exposure of confidential project information. The reliance of GenAl models on large
and often sensitive datasets exacerbates these concerns, making data protection a
central issue (Stahl, 2021; Palaniappan et al., 2024). Beyond the risk of regulatory
penalties, such breaches can significantly damage the reputational standing of
construction firms, particularly those involved in publicly funded or regulated SCPs
(Ghimire et al., 2024). Closely related are the risks associated with non-transparent
decision-making processes, namely R18 and R21, both of which rank 3rd in the
category and 16th overall with an F-RN of 3.41. These risks highlight the intrinsic
opacity of many GenAl systems—especially deep learning models—that often function
as "black boxes," where the internal logic driving decisions is not easily
understandable to users. This lack of explainability can diminish trust, hinder
stakeholder engagement, and limit the practical adoption of GenAl in critical project

functions (Compton et al., 2024; Kandasamy, 2024).

Together, these findings reinforce the broader call in the literature for the
development of robust legal, ethical, and governance frameworks tailored to the
unique context of GenAl in the built environment (Parveen, 2018; Pillai and Matus,
2020; Regona et al., 2022). The absence of clearly delineated roles, enforceable
standards, and transparent auditing mechanisms presents a substantial barrier to
responsible GenAl deployment. Legal uncertainty over liability, combined with ethical
challenges surrounding data use and algorithmic fairness, necessitates proactive
governance approaches capable of managing these evolving risks. Integrating ethical
and regulatory considerations into GenAl adoption strategies therefore demands more
than baseline compliance (Zhang and Zhang, 2023; Raza et al., 2025). It requires the
establishment of clear accountability structures, alignment with data governance
policies, and the embedding of responsible AI practices into construction project
workflows (Xue and Pang, 2022). These efforts are essential for building stakeholder
confidence and ensuring that GenAl contributes meaningfully and sustainably to risk

management in SCPs.
Information integrity-related risks
Information integrity risks encompass threats related to data security, authenticity,

and system reliability in GenAl-powered RM. As construction firms increasingly

25



digitise workflows and integrate Al-driven tools, maintaining the integrity of the
information supporting these systems becomes essential (Rane, 2023). These risks are
particularly pertinent in SCPs, where risk assessments often rely on complex, multi-
source data environments. The broader literature emphasises that vulnerabilities in
data handling not only undermine trust in Al systems but also increase the likelihood
of flawed project decisions, cost escalations, and reputational damage (Gupta et al.,

2023; Sai et al., 2024).

The fuzzy analysis identifies data breach (R23) as the most critical risk in this
category, ranking 1st within the group and 4th overall with an F-RN of 3.59. This
finding aligns with prior research that highlights cybersecurity as a foundational
challenge in Al integration, particularly in sectors handling sensitive, high-value data
(Jada and Mayayise, 2023). In construction, where data-sharing across partners,
contractors, and regulatory bodies is routine, the threat of unauthorized access or
malicious exploitation is significantly amplified. Compounding this concern, earlier
studies have noted the lack of sector-specific cybersecurity protocols as a key barrier
to the safe deployment of Al in construction (Ghimire et al., 2024), reinforcing the

urgency of addressing this risk.

The second-highest risk in this category is data fabrication or manipulation (R25),
which ranks 14th overall with an F-RN of 3.44. This concern is well-documented in the
Al ethics literature, where tampered or falsified data is known to compromise model
outputs by introducing bias or misleading patterns (Kandasamy, 2024; Raza et al.,
2025). In the context of SCPs—where project conditions are often dynamic, localised,
and non-standardised—unverified or manipulated data can distort GenAI’s ability to
accurately assess risk exposures. These results echo previous calls for implementing
data provenance systems and real-time validation mechanisms as critical safeguards
in GenAl-driven decision environments (Compton et al., 2024). The third major
concern is overdependence on synthetic data (R24), which ranks 19th overall with an
F-RN of 3.39. While synthetic data offers scalability and addresses data privacy
constraints, it may fall short in capturing the complexity, variability, and contextual
nuances inherent in real-world construction projects (Breugel and Schaar, 2023).
Prior studies have cautioned that an excessive reliance on synthetic datasets may result

in blind spots during risk prediction, especially in industries like construction where
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workflows are heterogeneous and non-standardised (Stahl, 2021; Sandhaus et al.,

2024).

Together, these findings reinforce a growing body of literature advocating for
comprehensive strategies to ensure information integrity in GenAlI implementation.
This includes the development of robust cybersecurity infrastructure, data
authenticity protocols, and balanced data sourcing practices (Jallan and Ashuri, 2020;
Regona et al., 2022; Yao and Soto, 2024). Cybersecurity must go beyond basic
protections to encompass Al-specific safeguards such as encrypted model pipelines
and context-sensitive intrusion detection systems (Singh and Joshi, 2024).
Simultaneously, ensuring data authenticity through validation tools, audit trails, and
provenance tracking is essential to prevent flawed or manipulated inputs from
undermining trust in Al-generated outputs. Moreover, the risks associated with
synthetic data highlight the need for thoughtful integration of real-world data to
maintain model reliability. While synthetic data can supplement scarce datasets, it
should not substitute the richness and unpredictability of actual project conditions
(Marwala et al., 2023). Without these safeguards in place, the use of GenAl in RM
remains susceptible to both technical failures and ethical breaches, which can
significantly erode stakeholder trust and jeopardise project success (Barrett et al.,
2023; Stanovsky et al.,, 2025). Ultimately, aligning technical measures with
construction-specific standards and ethical guidelines is vital to ensure responsible

and effective GenAl integration in risk management.
Financial-related risks

Financial risks represent the economic uncertainties and cost-related concerns tied to
the adoption and integration of GenAl technologies into risk management practices
for SCPs. These risks are especially significant in a sector where project budgets are
tightly managed and investments in emerging technologies are often scrutinized for
their long-term value (Regona et al., 2024; Salzano et al., 2024). In such settings, the
perceived financial viability of GenAl becomes a key factor influencing its acceptance
among construction stakeholders (Ghimire, Kim, and Acharya, 2024), particularly

when the return on investment (ROI) is not immediately evident.

In this study, the fuzzy analysis identified ROI outcome discrepancies (R28) as the

most critical risk within the financial category. It ranked 1st in this domain and 11th
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overall, with an F-RN of 3.47. This finding underscores the prevalent uncertainty
regarding the actual value GenAl may deliver over time (Masood, 2025). While GenAl
has the potential to enhance decision-making accuracy, reduce exposure to risk, and
streamline operational processes, many project managers remain cautious (Sai et al.,
2025). A major contributor to this caution is the gap between the anticipated benefits
and the realized outcomes, which discourages resource allocation in the absence of

reliable financial forecasting and ROI evaluation tools (Fabricius and Biittgen, 2015).

Following closely is the risk of high initial investment cost (R27), ranked 2nd in
the financial category and 28th overall, with an F-RN of 3.21. Although high
implementation costs are often seen as a barrier to digital innovation, the relatively
lower overall ranking suggests that stakeholders might be open to absorbing these
upfront costs—provided there is a well-defined path to long-term value. However, the
magnitude of investment required for GenAl infrastructure, licensing, workforce
training, and integration poses a substantial challenge, especially for small to medium-
sized firms with limited financial flexibility and digital maturity (Gurjar et al., 2024).
The third-highest risk in this category, customization and integration expenses (R30),
ranks 3rd within the financial domain and 29th overall, with an F-RN of 3.17. This risk
highlights the financial burden associated with tailoring GenAlI tools to specific project
or organizational needs. Ensuring system compatibility, modifying workflows, and
training personnel all incur additional costs (Ghimire, Kim, and Acharya, 2024). These
often hidden or underestimated expenses can further complicate investment planning
and hinder the scalability of GenAl implementation, particularly in resource-

constrained construction environments.

These findings are consistent with prior studies that underline the importance of
strategic financial planning when introducing advanced digital technologies into
traditional project environments. As Liddell (2025), Tajuddin (2025), and Xu and Cho
(2025) argue, the lack of structured cost—benefit frameworks and performance-
tracking mechanisms can obscure the financial justification for GenAl investment.
Developing transparent ROI assessment tools, aligning GenAI adoption with broader
business objectives, and setting realistic performance expectations are necessary steps
to ensure financially sound and sustainable implementation in SCP risk management

contexts.
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4. Conclusion

This research presents a novel risk assessment model designed to evaluate the
significance level of risks associated with integrating GenAl into RM for SCPs. The
study aimed to (1) identify and categorise key risk factors related to GenAl integration
and (2) quantify their significance level based on probability of occurrence, impact on
project objectives, and DL. To achieve these objectives, a structured multi-stage
methodology was adopted. Initially, a SLR was conducted, analysing 55 high-quality
articles selected based on rigorous inclusion and exclusion criteria. Following this, a
multi-criteria risk assessment model, grounded in FST, was developed to
systematically evaluate these risks, incorporating expert insights to enhance accuracy
and reliability. The subsequent stage involved a survey of 80 construction
professionals, who assessed the identified risks across three key dimensions:
probability, impact, and detectability. Each dimension was evaluated in detail using
criteria established through a group session with five construction risk management
experts. Finally, the risks were analysed using the proposed model and validated
through a follow-up focus group session with industry experts, ensuring both accuracy
and practical relevance. The research identified 30 distinct risks, classified into five
overarching categories, as summarised in Table 3.

Among the identified risks, three emerged as the most significant challenges to
GenAl integration: (1) human error, (2) data unavailability, and (3) insufficient
training. The findings highlight that GenATI’s effectiveness is highly dependent on
human expertise and the reliability of data, with errors in interpretation and
application posing substantial risks. Data unavailability remains a critical barrier, as
inconsistent or incomplete datasets can undermine AlI-driven decision-making.
Additionally, insufficient training limits the industry’s ability to implement and
manage GenAl effectively. To ensure successful adoption, it is essential to enhance
data accessibility, invest in structured GenAl training, and develop strategies to
mitigate human error. Without these measures, the industry's ability to leverage

GenAl at scale remains uncertain, restricting its transformative potential.

4.1 Theoretical and practical implications
This study provides both theoretical and practical contributions to construction risk
management by introducing a novel risk assessment model tailored to evaluate the

significance level of risks associated with GenAlI integration. Theoretically, it advances
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the understanding of GenAl-driven risk management by systematically identifying
and categorising key risk factors through SLR. This framework can serve as a
foundation for future theoretical research and provide a structured approach for
prioritising critical risks, guiding further studies on mitigation strategies. Additionally,
the quantification of risks offers insights into their relative significant, enabling
researchers to explore targeted solutions for high-impact risks.

Practically, the proposed model provides construction professionals with a structured
framework to assess, prioritise, and mitigate GenAl-related risks. By addressing these
risks, organisations can refine their AI adoption strategies, enhance decision-making
processes, and reduce project uncertainties. Furthermore, the model can serve as a
decision-support tool, aiding industry stakeholders in proactively managing risks
associated with GenAl integration. Ultimately, this research strengthens the industry's
readiness for Al-driven transformation, ensuring its responsible and effective

implementation in construction risk management.

4.2 Research limitation

Despite its valuable contributions, this study has several limitations. First, while the
research incorporates expert judgment through questionnaire surveys, it should be
noted that although 30% of the participants had over 16 years of experience in
construction management, only 9% were classified as advanced users of GenAlI in RM
of SCPs. This may have impacted the depth of insights into the integration of GenAl in
construction risk management, and the results could have differed had more experts
with advanced experience in GenAl applications been included. Secondly, the study
primarily focused on experts from the UK, which may limit the generalizability of the
findings to the broader international construction industry. Different countries may
face unique challenges related to GenAl integration, especially in the context of
financial risks. For instance, countries with limited resources or funding might
perceive financial risks as more severe than those with more developed infrastructures
and budgets. Therefore, including experts from a variety of international settings could
offer a more comprehensive understanding of the global implications of integrating
GenAl into RM for SCPs and highlight potential regional differences in risk

perceptions and priorities.
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