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Abstract 

This study investigates the emerging risks associated with integrating Generative 

Artificial Intelligence (GenAI) into risk management (RM) within sustainable 

construction projects (SCPs). A four-stage methodology was adopted: (1) a systematic 

literature review to identify GenAI-related risk factors; (2) the development of a multi-

criteria assessment model to establish evaluation criteria; (3) a structured survey 

involving 80 construction experts to assess the identified risks; and (4) the application 

of a fuzzy logic-based model to quantify and rank their significance. Thirty risk factors 

were identified and grouped into five categories: input quality, technological 

adaptability, ethical and governance, information integrity, and financial risks. Fuzzy 

analysis highlighted human error, data unavailability, insufficient training, data 

breaches, and lack of awareness as the most critical risk factors. The study presents a 

novel, fuzzy logic-based risk assessment framework tailored explicitly to GenAI 

adoption in sustainable construction, providing enhanced decision-making 

capabilities in uncertain environments. It provides actionable insights for project 

managers and policymakers to prioritise and mitigate key risks, while also supporting 

responsible GenAI implementation. As one of the first studies to systematically 

examine these risks, it advances the discourse on AI integration in the built 

environment. It presents a replicable model for future assessments, encouraging 

context-sensitive research and contributing to the broader digital transformation of 

sustainable construction. 

Keywords: Generative intelligence;  Risk prioritization; Decision support;  Expert 

evaluation; Fuzzy modelling; Sustainable construction. 
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1. Introduction  

There is no doubt that artificial intelligence (AI) has become an integral part of projects 

and a valuable partner to project managers throughout the project life cycle 

(Mohawesh  et al., 2025; Bento et al., 2022). Recently AI has significantly evolved, 

leveraging massive datasets to train machines and generate new materials (Lachhab 

et al., 2018). This advancement has accompanied in a new period of generative 

artificial intelligence (GenAI), characterised using complex algorithms and deep 

learning approaches (Mohamed et al., 2025a). These methods enable machines to 

analyse, process, and derive insights from vast amounts of data. GenAI employs 

various approaches, including neural networks, natural language processing (NLP), 

reinforcement learning, generative adversarial networks (GANs), and transformers, to 

achieve its current capabilities (Bengesi et al., 2024). This transformative technology 

has found applications in diverse engineering domains, including construction 

management, with a particular focus on risk management (Chenya et al., 2022).  

       Many organisations now utilise advanced risk management tools that leverage 

GenAI to enhance traditional risk management processes, including risk 

identification, assessment, and control throughout project execution (Al-Mhdawi et 

al., 2023a). These tools enable project managers to make informed, data-driven 

decisions, optimise strategies for mitigating risks, and identify opportunities to 

improve project outcomes (Regona et al., 2022; Chenya et al., 2022).  Despite 

significant advancements in developing and testing GenAI models across various 

engineering disciplines, there remains a notable lack of consensus on the risks 

associated with deploying these technologies in risk management (RM) specially 

within the context of sustainable construction projects (SCPs) (Mohamed et al., 

2025b). SCPs refer to construction activities that are designed, planned, and executed 

to minimise negative environmental, social, and economic impacts while maximising 

long-term benefits for society and the environment (Kibert, 2016). In simple terms, 

sustainable construction is about building in a way that protects the environment, 

supports the community, and uses resources wisely — both during construction and in 

the building's operational phase (Zuo and Zhao, 2014). Giesekam et al. (2016), Azhar 

et al. (2011) identifies key features of sustainable construction as including the use of 

eco-friendly materials, energy efficiency (e.g., solar panels and smart systems), water 

conservation strategies, waste reduction practices, green building design, attention to 
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occupant health and well-being, efforts to reduce carbon footprints, and sustainable 

site management that preserves biodiversity and reduces land disturbance. 

       There is no doubt the uncertainty is exacerbated by the diverse nature of the 

construction industry (Aladag, 2023), which spans a wide range of project types, from 

residential buildings to large-scale infrastructure projects, each with unique   and 

technological requirements (Anysz et al., 2021; Parveen, 2018). Furthermore, RM in 

SCPs involves a complex network of stakeholders, including project managers, 

consultants, contractors, and safety officers, all of whom bring differing expectations 

and experiences with GenAI in managing risks associated with environment, society 

and economy. These divergent perspectives often lead to conflicting priorities and 

ambiguity regarding the perceived benefits and emerging risks associated with GenAI 

technologies (Chenya et al., 2022). Therefore, the adoption of GenAI in RM for SCPs 

is further complicated by the variability of regulatory environments across regions, 

which influence the feasibility and scope of GenAI applications (Taiwo et al., 2024). 

This complex and dynamic environment makes the construction industry an ideal 

subject for exploring the potential risks of GenAI in RM of sustainable project for 

ensuring project success, operational efficiency, cost management, and worker safety 

(Regona et al., 2022). 

       However, integrating GenAI into RM of SCPs presents numerous risks that have 

not been thoroughly addressed in existing literature (Mohamed et al., 2024a). These 

risks can be categorised into themes such as input quality risks, technological 

adaptability risks, ethical and governance risks, information integrity risks, and 

financial risks. For instance, input quality risks arise from inaccurate, biased, or 

insufficient data used to train GenAI models, which can lead to flawed risk 

assessments (Afzal et al., 2021). While technological adaptability risks concern the 

integration challenges of GenAI tools within existing RM systems, including 

compatibility issues and the need for infrastructure upgrades (Parveen, 2018; An et 

al., 2021). Additionally, Aladag (2023) highlighted the ethical and governance risks 

include concerns around transparency, accountability, data privacy, and compliance 

with legal standards. Information integrity risks involve the potential for GenAI to 

produce hallucinated, misleading, or inconsistent outputs, thereby compromising 

decision reliability. Lastly, Pillai and Matus (2020) and Regona et al., (2022) revealed 

the financial risks relate to the high implementation costs, long-term maintenance, 
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and possible economic inefficiencies if the technology underperforms. This 

categorisation provides a thematic overview of the key risks examined throughout the 

study, beyond the specific outputs of the systematic literature review. 

       While a substantial body of literature has explored the capabilities, benefits, and 

comparative performance of GenAI in various aspects of construction management, 

only a limited subset has addressed the risks and vulnerabilities associated with its 

integration into RM. Most previous studies have predominantly focused on the 

advantages of GenAI, such as its ability to enhance predictive accuracy, automate data 

processing, and support real-time decision-making. For instance, Pan, and Zhang 

(2021) investigated the implementation of GenAI for automating construction project 

documentation and forecasting potential delays, emphasising its efficiency in handling 

unstructured data, and improving overall project responsiveness. Similarly, Prebanic 

and Vukomanovic (2021) examined the use of GenAI-enabled chatbots in facilitating 

communication among project stakeholders, finding notable improvements in 

stakeholder engagement and information flow. Another study by Al-Mhdawi et al. 

(2023a) compared GenAI-driven risk identification models with traditional expert-

based systems, concluding that the GenAI-powered models offered superior 

performance in recognising early-stage hazards and uncertainties. 

       Despite these advancements, there is a notable gap in literature regarding the risks 

that accompany GenAI integration into RM processes in SCPs. While a few recent 

works, such as Mohamed et al. (2025b), have begun to highlight this underexplored 

dimension, they remain exceptions rather than the norm. These emerging studies 

highlight a range of risks, including dependencies on data quality, ethical and legal 

uncertainties, and integration challenges with existing systems. However, few 

investigations have sought to categorise these risks into coherent themes or evaluate 

their relative significance within the context of SCPs. This gap underlines the urgent 

need for a comprehensive, empirically grounded exploration of GenAI-related risks in 

RM of SCPs not only to identify and understand the nature of these risks, but also to 

quantify their impact in a manner that supports informed decision-making based on 

their impact and potential consequences. 

To this end, the aim of this research is to explore the critical risks associated with the 

integration of GenAI into RM in SCPs, with a focus on their identification, 

categorisation, and prioritisation based on empirical significance assessment, to 
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support effective decision-making and risk mitigation strategies. Accordingly, the 

associated objectives are: (1) to identify the key risks encountered by organisations 

when implementing GenAI within RM in SCPs, (2) to categorise these risks into 

coherent groups, and (3) to prioritise the identified risks based on their significance 

using a structured multi-criteria decision-making approach. Ultimately, the findings 

are anticipated to enhance project managers’ and decision-makers’ understanding of 

GenAI-related risks into RM within SCPs, enabling them to allocate resources 

efficiently, mitigate high-impact risks, and ultimately improve the effectiveness of 

GenAI integration.  The contributions of this research can be outlined as follows: 

1. We identified and systematically categorised 30 key risk factors associated with the 

integration of GenAI into RM for SCPs. These were classified based on their sources 

into five thematic categories: input quality-related, technological adaptability-

related, ethical and governance-related, information integrity-related, and 

financial risks-related. This categorisation provides a comprehensive risk 

landscape and offers actionable insights for construction practitioners, enabling 

them to anticipate and address potential GenAI-related threats in digitalised 

project environments. In particular, it supports the early identification of data-

driven and ethical vulnerabilities that may compromise risk assessments, 

stakeholder trust, and project outcomes. Academically, this study contributes to 

closing a significant research gap by systematically examining the often-overlooked 

risks of GenAI adoption in the sustainable built environment. 

2. We developed a novel multi-criteria hierarchical risk quantification model based 

on fuzzy set theory to assess the significance of identified Gen AI risks for SCPs. 

The model employs fuzzy logic controllers to evaluate key risk dimensions—

probability, impact, detectability, and exposure—using twelve sub-criteria. To 

address the inherent subjectivity in expert assessments, linguistic judgments are 

systematically translated into numerical outputs, which enhances the model’s 

precision and reduces inconsistencies often found in traditional evaluation 

methods. This approach is particularly valuable in the context of GenAI, where risk 

factors tend to be vague, interdependent, and difficult to quantify using 

conventional tools. Through its capacity to manage imprecision and reflect the 

variability of human reasoning, the model offers a robust and adaptable framework 

for risk assessment in SCPs. As data-driven decision-making becomes increasingly 
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central to managing complex technological risks, the model’s relevance and 

practical utility are especially pronounced. 

The remainder of the paper is organized as follows: Section 2 presents the adopted 

research methodology. Section 3 discusses the results and their implications. Finally, 

Section 4 concludes the study and outlines its practical and theoretical contributions. 

2. Methodology  

The research adopted a four-stage, multi-method approach to systematically identify, 

assess, and quantify the risks associated with integrating GenAI into the risk 

management of SCPs. In the first stage, a systematic literature review (SLR) was 

conducted to identify potential risks. The second stage involved a focus group session 

with industry experts to establish appropriate assessment criteria for evaluating each 

identified risk. In the third stage, a survey was administered, allowing participants to 

assess the significance of each criterion. Finally, in the fourth stage, the survey data 

were analysed using fuzzy set theory to develop a risk assessment model capable of 

quantifying the level of significance of each risk. The model’s findings were 

subsequently validated through a follow-up expert focus group session. 

       Adopting a multi-method research approach offers significant advantages by 

enhancing both the depth and breadth of analysis (Al-Mhdawi et al., 2024a; Almalki, 

2016). This methodological pluralism as shown in Figure 1 captures the complexity of 

the subject matter, providing a comprehensive framework for data interpretation 

(Hantrais, 2014). Similar methodologies have been employed in studies focused on 

risk identification and evaluation, such as those conducted by Al-Mhdawi et al. (2025), 

Al-Mhdawi et al. (2022), and Elnaggar and Elhegazy (2022). 
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Figure 1. Adopted research methodology 

Stage One: Identification of the key risks emerging from GenAI 

integration into RM of SCPs 

This stage adopts a structured, three-step methodology for literature collection and 

analysis, designed to thoroughly examine existing studies and identify the key risks 

associated with integrating GenAI into RM in SCPs. The first step involves identifying 

relevant databases and journals to establish a robust foundation for the literature 

search. The second step entails strategically selecting articles using targeted keywords 

to ensure the inclusion of the most pertinent studies. Lastly, the third step focuses on 

conducting a systematic content analysis to extract valuable insights. This approach is 

guided by frameworks outlined in several risk management studies, particularly those 

by Al-Mhdawi et al. (2025), Al-Mhdawi et al. (2024b), and Siraj and Fayek, (2019). 

Database and journal identification 

In this research, the Scopus database was selected due to its extensive coverage of 

relevant research disciplines and its established use in similar literature-based studies 

within the field of construction management. The target journals for this study were 

chosen based on the following criteria: (1) they must be published in English, (2) they 

must have a minimum impact factor of 1.0, and (3) they must be ranked in the top 

quartile of the Scopus database, reflecting their substantial influence on advancements 

in construction management research. 
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Keyword identification and article selection 

In this step, a comprehensive search was performed using the title, abstract, and 

keyword (T/A/K) fields within the Scopus search engine. The search keywords 

included "GenAI risks", "GenAI", "GenAI in RM", and "GenAI in sustainable 

construction project management". Articles containing these terms in the title, 

abstract, or keywords were considered to meet the preliminary inclusion criteria for 

further analysis. These keywords were carefully chosen to encompass a wide range of 

studies addressing the risks and applications of GenAI in RM for SCPs and related 

fields. The search results were then refined by removing duplicate entries, irrelevant 

studies, and papers that did not provide a substantive focus on the intersection of 

GenAI and RM in SCPs. 

Content analysis 

Hsieh and Barman et al. (2021) outline three approaches to content analysis: 

conventional, directed, and summative. This study adopted the conventional 

approach, a data-driven, open-ended method that allows categories to emerge 

organically without the constraints of predefined frameworks (Blomkvist, 2015). This 

approach, suitable for both qualitative and quantitative analysis, is particularly well-

suited for investigating the emerging integration of GenAI into RM for SCPs, as it 

facilitates the extraction of detailed themes directly from the data (Kibiswa, 2019). 

Unlike directed analysis, it avoids limitations imposed by existing theories, fostering a 

rich and context-specific understanding (Hsieh and Shannon, 2005; Krippendorff, 

2018). Using this method, the study systematically refined an initial pool of 471 papers 

to 55, identifying key risks and categories associated with integrating GenAI in RM for 

SCPs. 

Stage Two: Development of a multi-criteria risk analysis model  

Failure Mode and Effects Analysis (FMEA) is a widely applied risk assessment 

technique that evaluates the significance of risks by analysing three key factors: the 

probability level (PL) of occurrence, the impact level (IL) on project objectives, and the 

detectability level (DL) of the risk (Kritsky et al., 2018). This approach is extensively 

used across various engineering and construction fields (Alvand et al., 2023; Zhang et 

al., 2024). To develop the proposed multi-criteria risk analysis model based on IL, PL, 

and DL, a Delphi technique was conducted internally among the authors. This 
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approach leveraged the authors’ combined expertise in construction risk management 

and their prior research experience in developing fuzzy-based risk assessment models 

(Al-Mhdawi et al., 2024a; Mahammedi et al., 2020; Mohamed et al 2024). Two Delphi 

rounds were performed, allowing iterative review and refinement of the model 

structure to ensure logical consistency and domain relevance.  

       The impact dimension was categorised into two main groups project-related 

impacts, which include the impact on project cost (ipc), schedule (ips), and quality 

(ipq); and organisational impacts, which include the impact on decision-making (idm) 

and organisational reputation (ior). A similar structuring was applied to the 

probability criterion, which was assessed based on the availability of expertise (ae), 

availability of assets (aa), and the organisation’s technological maturity (otm). For 

detectability, the relevant factors included ea, the presence of continuous monitoring 

mechanisms (acm), and the level of exposure, which was further informed by the risk 

duration (rd) and frequency of occurrence (fo). This methodological framework aligns 

with validated practices from previous fuzzy risk assessment studies (Al-Mhdawi et al., 

2022; Al-Mhdawi et al., 2023b). the model ensures that the developed Risk–

Probability, Impact, and Detectability (R-PID) model offers a context-specific and 

reliable tool for evaluating GenAI-related risks in sustainable construction projects. 

The overall fuzzy risk number (F-RN) is derived using the formula:  

R=DL×PL×IL …………. (1) 

Stage Three: Rating risks of integrating GenAI in RM for SCPs  

In this stage, the authors employed a questionnaire survey instrument for data 

collection, as it enables respondents to provide information in a structured and 

standardised format, facilitating systematic data analysis and comparison while also 

offering a level of anonymity and confidentiality, which can encourage more honest 

and candid responses (Bird, 2019; Chartres et al., 2019). 

Survey development   

The authors developed a questionary survey to evaluate the significance of risks 

associated with integrating GenAI into RM for SCPs, as identified through the SLR. To 

quantify risk significance, respondents assessed each risk based on four key criteria: 

(1) the probability of occurrence, which measured the likelihood of the risk arising 

based on factors such as ea, aa, and otm; (2) the impact on project and organisation, 
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including ipc, ips, ipq, idm, and ior; (3) the detectability of the risks, based on ea, acm 

and the exposure level which could be measure through evaluating risk fo and rd, 

which considered the duration and frequency of the risk during the project lifecycle. 

The survey consisted of two sections. The first section collected information from 

respondents, including their roles in construction field, years of experience, 

educational background and level of experience with GenAI in project management. 

The second section required respondents to assign relative weights to the identified 

risks. To facilitate this assessment, a five-point Likert scale was adopted, ranging from 

1 (Very Low - V.L) to 5 (Very High - V.H). This scale enabled respondents to 

systematically evaluate the significance of each risk based on predefined assessment 

criteria, ensuring consistency and comparability in the collected data. 

Survey pilot testing 

Pilot testing is a critical preliminary step in survey-based research used to evaluate the 

reliability, validity, and overall quality of a questionnaire before deploying it on a 

larger scale. It ensures that survey items are clearly understood, appropriately worded, 

and capable of capturing the intended data, thereby improving the instrument’s 

overall robustness and response accuracy (Saunders et al., 2019; Bryman, 2016). 

Conducting a pilot also helps identify potential ambiguities that may affect data 

collection and respondent experience. In this study, a pilot test was conducted with 10 

construction experts from the UK to assess the clarity and effectiveness of the 

developed questionnaire. Table 1 presents participants' years of experience, industry 

roles, and educational backgrounds. Based on the feedback received, minor revisions 

were made to enhance the precision and relevance of the survey. These included 

adding a new question to assess respondents' experience with using GenAI in project 

management and renaming certain criteria to improve clarity and ease of 

understanding during the risk evaluation process. 

Table 1. Pilot test profile of participants 

No. of 
participants 

Role 
Range of 

experience 
(Years) 

Educational level 

B.Sc M.Sc Ph.D. 
4 Project manager 5-15 3 1 - 
2 Consultant 10-20 - 1 1 
4 Academic 5-9 - - 4 
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Survey administration 

The final version of the survey was distributed to 136 construction management 

experts in the UK, selected based on two criteria: (1) holding a professional role in the 

construction industry or academia related to construction education and (2) 

demonstrating proficiency in applying GenAI in construction projects. The respondent 

group included project managers, consultants, academics, and other project 

management professionals. Of the 136 experts surveyed, 101 responded, with a 

response rate of 74.3%. However, 21 responses were incomplete, leaving 80 valid 

responses for analysis. A more detailed discussion of the respondents’ profiles is 

provided in the results and analysis section. 

Stage Four: Development of a fuzzy-based risk quantification model 

Fuzzy Set Theory (FST), introduced by Zadeh (1996), extends classical set theory by 

providing a framework for addressing uncertainty and imprecision in decision-making 

(Lauron et al., 2024; Gholamizadeh et al., 2022). Unlike traditional binary sets, FST 

allows for partial membership, making it particularly effective for representing and 

analysing linguistic variables such as "very low", "low", "moderate", "high", and "very 

high" (Akram et al., 2024). This flexibility enables the handling of vagueness and 

subjectivity inherent in human judgments (Mahmood et al., 2020; Chrysostom and 

Dwivedi 2016).  Therefore, it appears clearly the key advantage of FST of the ability to 

formalise and quantify human knowledge by converting qualitative linguistic 

assessments into fuzzy numerical values, thus managing imprecise or incomplete 

information and reconciling conflicting expert opinions (Adak et al., 2024; Al-

Mhdawi, 2023c). This makes it particularly valuable in scenarios where precise 

numerical data are unavailable or insufficient (Al-Mhdawi et al., 2024b). Given these 

strengths, FST was employed in this study to assess the significance of risks associated 

with integrating GenAI into RM of SCPs. Its capacity to accommodate ambiguity and 

incorporate expert judgment provided a systematic approach to quantifying risks, 

even in cases of uncertain or subjectively defined data. To operationalise this 

approach, a fuzzy-based model was developed for quantitatively assessing the 

significance of identified risks. The model utilised multiple input variables and a single 

output and was implemented using MATLAB R2024b (version 24.2). The following 

subsections outline the model’s components and their role in the overall risk 

assessment process. 
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This research utilised six fuzzy controllers to assess risk significance. The first 

controller evaluated the IL of each risk based on its components: ipc, ips, ipq, idm, 

and ior. The second controller measured the probability of risk occurrence using ea, 

aa, and otm. While the third controller assessed the DL of each risk, incorporating aa, 

acm, and the output of the fourth controller, which determined the exposure level 

based on rd and fo. Finally, the fifth and main controller computed the overall risk 

significance by integrating the three primary assessment criteria (i.e., impact, 

probability, and detectability). Additionally, in each controller, the risk assessment 

criteria and their respective components were transformed into fuzzy sets using 

predefined membership functions. These fuzzy inputs were then processed within a 

fuzzy inference engine to estimate the level of each criterion and determine the overall 

significance of identified risks. 

       The architecture of the proposed GenAI risk assessment model is structured 

around three essential processes: fuzzification, fuzzy inference, and defuzzification. In 

the fuzzification process, both input and output variables were represented using 

triangular membership functions. This choice was guided by the functions' simplicity, 

computational efficiency, and effectiveness in capturing subjective and imprecise 

expert knowledge attributes that have made them widely adopted in similar fuzzy 

modelling applications (Gerla, 2013; Yager and Zadeh, 2012). For the inference stage, 

Mamdani’s Fuzzy Inference System (MFIS) was employed due to its intuitive 

reasoning capabilities, ability to handle linguistic variables, and strong prevalence in 

engineering and decision-making literature (Mamdani and Assilian, 1975; Lootsma, 

2010). Finally, the defuzzification process was carried out using the centroid of area 

method, which is commonly preferred in fuzzy systems for its accuracy in aggregating 

fuzzy sets into a single representative crisp output. This method is particularly useful 

in modelling expert judgments, as it balances multiple overlapping membership 

functions to produce a meaningful outcome (Kaynak et al., 2012). Collectively, these 

techniques form a cohesive framework suitable for modelling the uncertainty and 

subjectivity inherent in assessing the risks of integrating Generative AI into 

construction risk management. 

       To this end, a five-point Likert scale (ranging from Very Low (V.L) to Very High 

(V.H)) was used to define the inputs and outputs of the assessment model. 

Accordingly, five membership functions were established for the assessment 
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components, criteria, and output variables. Figure 2 illustrated an example for the 

output risk significance memberships. 

 

Figure 2. Membership functions for risk significance level 
 

The fuzzy IF-THEN conditional statements were developed by adapting rule structures 

from previous fuzzy risk assessment models in construction (Dikmen et al., 2007; Al-

Mhdawi et al., 2024a; Al-Mhdawi et al., 2022). These studies constructed fuzzy rule 

bases through systematic analysis of risk factors, linguistic categorization, and domain 

knowledge. Similarly, this study formulated the fuzzy rules by aligning with validated 

methodologies used for cost overrun risk assessment, oil and gas construction risk 

modelling, and emerging risk evaluation in construction, ensuring the model reflects 

best practices in fuzzy-based risk assessment. 

       A total of 550 rules were developed for the model, including 125 for impact on 

project insights, 25 for impact on the organisation, 125 for probability measurement, 

25 for exposure level assessment, 125 for detectability, and 125 for overall risk 

significance. Examples of the developed IF-THEN rules for input variables (impact, 

probability, detectability) and their corresponding output (significance level) include: 

for the PL controller, Rule 14 states that if (ea) is very low, (aa) is medium, and (otm) 

is high, then PL is medium, while Rule 18 states that if (ea) is very low, (aa) is high, 

and (otm) is medium, then PL is medium; for the IL controller, Rule 70 states that if 

(ipc) is medium, (ips) is high, and (ipq) is very high, then IL is very high, and Rule 74 

states that if (ipc) is medium, (ips) is very high, and (ipq) is very high, then IL is very 

high; for the DL controller, Rule 118 states that if (ea) is high, (acm) is very high, and 

(exposure) is medium, then DL is high, while Rule 122 states that if (ea) is very high, 

(acm) is very low, and (exposure) is high, then DL is low; and for the RL controller 
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(Risk Level), Rule 4 states that if (IL) is very low, (PL) is very low, and (DL) is low, then 

RL is medium, while Rule 8 states that if (IL) is very low, (PL) is low, and (DL) is 

medium, then RL is low. A sensitivity analysis was then conducted to evaluate the 

model’s robustness and identify key risk drivers, following the approach proposed by 

Rathore et al. (2021). Key input variables were systematically varied by ±10%, and the 

corresponding changes in F-RN were monitored. The objective was to determine 

whether small variations in inputs would cause significant shifts in model outputs or 

rankings, thereby validating the model’s stability. This approach aligned with the 

sensitivity analysis standards adopted in previous studies (Jain et al., 2016) and 

ensured that the model provided reliable insights for GenAI in RM for SCPs. 

3. Results and Discussion 

3.1 Risks identification and classification  

The SLR identified 30 key risks associated with integrating GenAI into RM for SCPs. 

These risks were categorised into five main groups, namely: Input quality risks, 

technological adaptability risks, ethical and governance risks, information integrity 

risks, and financial risks, as outlined in Figure 3, along with their respective sources. 

The identification methods varied across studies, including GenAI model training and 

testing, case studies, interviews, questionnaire surveys, and focus group sessions 

(Mohamed et al., 2025a). In addition, research suggests that employing multiple 

methodologies to identify risks in construction projects is generally more effective 

than relying on a single approach, as it enhances the depth and reliability of findings 

(Sharma and Gupta, 2019). However, using a single method provides advantages such 

as simplicity, consistency, efficiency, and a more focused approach, facilitating 

detailed insights and improving replicability (Runeson, 2018). Despite these benefits, 

a single-method approach may introduce bias and the risk of overlooking critical 

factors, potentially limiting the comprehensiveness of risk identification. Therefore, 

integrating multiple identification methods is essential to ensure a robust and holistic 

assessment. 
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Figure 3. Mapping of identified GenAI-related risks across existing studies (2015–2025) 
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3.2 Profile of survey respondents 

The survey respondents represented a range of roles within the construction industry, 

with the majority being Project Managers (62%), followed by other project 

management roles (23%), Academics (10%), and Consultants (5%). This distribution 

indicates a significant bias towards project management professionals, suggesting that 

most respondents were directly involved in supervising and managing construction 

projects. However, the relatively small proportion of consultants and academics may 

limit the diversity of perspectives, particularly in terms of expert advice and theoretical 

insights. In terms of professional experience, the respondents demonstrated a range 

of project management backgrounds. Most had between 1–5 years of experience 

(37%), followed by those with 6–15 years (32%) and 16–25 years (24%), whilst only a 

small portion reported having more than 25 years (6%). This indicates that the sample 

is predominantly composed of early to mid-career professionals, reflecting the views 

of those who are actively engaged in contemporary project management practices. The 

range of experience levels helps to provide a balanced understanding of challenges 

across different stages of professional development. 

       Educational qualifications among respondents were generally high, with 51% 

holding bachelor’s degrees, 42% holding master’s degrees, and 6% having completed 

doctorate degrees. This suggests that the majority of participants were well-educated, 

with a significant proportion possessing postgraduate qualifications. The strong 

educational background among the respondents enhances the reliability of the 

insights gathered, particularly in discussions related to advanced construction and risk 

management practices. Regarding familiarity with GenAI in construction 

management, the survey revealed varying levels of experience. The majority of 

participants identified themselves as having Intermediate experience (51%), followed 

by Beginner level (41%), and only a small group being classified as Experienced (9%). 

This distribution shows that whilst GenAI is gaining traction within the field, it 

remains relatively new, with most professionals still at the early or developing stages 

of adoption. These findings highlight opportunities for further training and capacity 

building to enhance the effective integration of GenAI into construction management 

practices. Figures 4–7 provide detailed illustrations of the respondents' profiles based 

on their roles, years of experience, educational qualifications, and experience levels 

with GenAI in construction management. 
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    Figure 4. participants construction role            Figure 5. Years of experience 
 

   

        Figure 6. Education level                          Figure 7. Level of experience with GenAI  

3.3 Architecture of the developed GenAI risk assessment model and its 

outputs 

As described in stage three of the research methodology, the proposed risk assessment 

model was designed using six fuzzy controllers via MATLAB R2024b, with each 

controller dedicated to evaluating a specific risk dimension. The first controller 

assessed the impact on project insights, using three input variables: ipc, ips, and ipq. 

The second controller evaluated the impact on the organisation, incorporating idm 

and ior, the summation of the outputs of first and second controller represented the 

overall IL. Moreover, the third controller measured the probability of risk occurrence, 

with inputs ae, aa, and otm, producing the PL as the output. The fourth controller 

assessed the DL, utilising ae, acm, and the output from the fifth controller, which 

measured exposure level based on fo and rd. Finally, the sixth controller integrated 

the outputs of the IL, PL, and DL, generating the overall risk significance level for 

62%

5%

10%

23%

Project managers Consultants

Academics Other PM roles

38%

32%

24%

6%

1-5 years 6-15 years

16-25 years More than 25 years

51%

42%

7%

Bachelor Degree Master Degree PhD

41%

51%
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integrating GenAI into RM for SCPs. This structured approach ensured a 

comprehensive and systematic evaluation of risk factors, enabling a more robust and 

data-driven assessment of potential risks. 

       The fuzzy controllers were designed using the IF-THEN rules presented in stage 

four of methodology, while Figure 8 illustrates the architecture of the proposed risk 

assessment model. To visualise the relationships between fuzzy controllers’ input and 

output variables, three-dimensional mappings were generated using the Fuzzy Logic 

Surface Viewer. These graphical representations illustrate how the output variables 

vary in response to changes in the input variables, enhancing interpretability. 

Furthermore, Figures 9–14 depict the dependencies for each controller, where each 

surface plot includes two input variables and one output variable—specifically, for 

impact, probability, detectability, exposure, and overall significance level. For 

instance, Figure 14 illustrates the risk significance surface based on total impact and 

probability. the risk significance level is represented by colour intensity, with higher 

risk significance corresponding to more intense colour gradients. These visualisations 

provide a clear and intuitive understanding of the interactions between risk factors, 

supporting a more informed risk assessment process. 

 

Figure 8. The proposed risk assessment model 
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            Figure 9. Impact level on project insights                              Figure 10. Impact level on organisation 

 

   Figure 11. Probability level surface plot                   Figure 12. Exposure level surface plot 

Figure 13. Detectability level surface plot        Figure 14. Risk significance level surface plot  

To this end, the mean values of ipc, ips, ipq, idm, ior, ae, aa, otm, acm, fo, and rd were 

used as crisp inputs, as presented in columns 2 to 13 of Table 4. These values were then 
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processed through the following steps: (1) Fuzzification using triangular membership 

functions, (2) Inference processing through IF-THEN rules, (3) Control mechanism 

using a Mamdani-type inference system and defuzzification using the centre of area 

method. Ultimately, the risk significance level of each risk factor associated with 

integrating GenAI into RM for SCPs was computed, represented as F-RN, along with 

its ranking, as shown in columns 14 and 15 of Table 2. 

Table 2. Fuzzy analysis 

Category Risk ID 

Probability Level                      

(Mean Values) 
Impact level (Mean values) 

Detecting 

level 

(Mean 

values) 

Exposure 

level 

(Mean 

values) 

(F-

RN) 

Category 

rank 

Overall 

rank 

ea aa otm ipc ips ipq idm ior ea acm rd fo 

In
p

u
t 

q
u

a
li

ty
 r

is
k

s
 R01 3.52 3.43 3.36 3.9 3.82 3.74 3.86 3.75 3.52 3.59 3.46 3.3 3.52 3 8 

R02 3.6 3.51 3.33 3.91 4 3.82 4.04 3.72 3.6 3.52 3.47 3.18 3.63 1 2 

R03 3.59 3.42 3.18 3.44 3.43 3.62 3.75 3.53 3.59 3.43 3.34 3.17 3.59 2 4 

R04 3.37 3.36 3.35 3.42 3.5 3.37 3.44 3.11 3.37 3.37 3.34 3.22 3.37 5 21 

R05 3.4 3.27 3.3 3.46 3.47 3.48 3.48 3.35 3.4 3.43 3.23 3.01 3.4 4 18 

T
e

c
h

n
o

lo
g

ic
a

l 
a

d
a

p
ta

b
il

it
y

 r
is

k
s

 

R06 3.34 3.27 3.23 3.31 3.45 3.49 3.34 3.29 3.34 3.28 3.06 3 3.34 8 22 

R07 3.59 3.24 3.34 3.54 3.55 3.58 3.64 3.47 3.59 3.4 3.4 3.19 3.61 2 3 

R08 3.25 3.25 3.16 3.49 3.48 3.47 3.42 3.31 3.25 3.29 3.24 3.05 3.25 9 25 

R09 3.51 3.27 3.34 3.86 3.75 3.67 3.62 3.69 3.51 3.45 3.26 3.07 3.51 4 9 

R10 3.49 3.39 3.31 3.81 3.77 3.68 3.84 3.79 3.49 3.41 3.32 3.19 3.49 5 10 

R11 3.64 3.53 3.4 3.75 3.65 3.71 3.61 3.64 3.64 3.67 3.28 3.33 3.64 1 1 

R12 3.25 3.23 3.27 3.55 3.63 3.59 3.56 3.47 3.25 3.44 3.19 3.08 3.24 10 26 

R13 3.42 3.47 3.4 3.78 3.64 3.21 3.53 3.67 3.42 3.39 3.31 2.93 3.42 6 15 

R14 3.56 3.44 3.36 3.51 3.49 3.57 3.37 3.45 3.56 3.31 3.08 2.96 3.56 3 6 

R15 3.23 3.14 3.22 3.04 3.12 3.16 3.28 3.23 3.23 3.23 3.16 3.08 3.23 11 27 

R16 3.38 3.24 3.29 3.03 3.18 3.05 3.44 3.35 3.38 3.19 3.22 3.16 3.38 7 20 

E
th

ic
a

l 
a

n
d

 g
o

v
e

r
n

a
n

c
e

 

r
is

k
s

 

R17 3.29 3.27 3.14 3.3 3.24 3.29 3.48 3.32 3.29 3.5 3.36 3.11 3.29 4 24 

R18 3.41 3.45 3.11 3.51 3.4 3.34 3.47 3.48 3.41 3.43 3.35 2.96 3.41 3 16 

R19 3.45 3.48 3.45 3.4 3.44 3.11 3.55 3.92 3.45 3.29 3.52 3.16 3.45 2 12 

R20 3.55 3.39 3.26 3.51 3.55 3.48 3.5 3.56 3.55 3.34 3.31 3.09 3.55 1 7 

R21 3.41 3.39 3.18 3.71 3.5 3.47 3.31 3.87 3.41 3.44 3.23 3.05 3.41 3 16 

R22 3.45 3.27 3.36 3.36 3.38 3.35 3.23 3.59 3.45 3.19 3.04 3.04 3.45 2 12 

In
fo

r
m

a
ti

o
n

 

in
te

g
r

it
y

 

r
is

k
s

 

R23 3.59 3.41 3.03 3.68 3.47 3.34 3.46 4.03 3.59 3.58 3.24 3.04 3.59 1 4 

R24 3.41 3.35 3.33 3.37 3.22 3.2 3.27 3.13 3.41 3.26 3.33 3.07 3.39 3 19 

R25 3.42 3.45 3.21 3.44 3.4 3.11 3.41 3.38 3.42 3.56 3.15 3.09 3.44 2 14 
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R26 3.39 3.36 3.42 3.6 3.43 3.22 3.41 3.75 3.39 3.43 3.27 3.14 3.33 4 23 
F

in
a

n
c

ia
l 

r
is

k
s

 R27 3.43 3.38 3.23 3.81 3.18 3.12 3.22 3.33 3.43 3.26 3.36 3 3.21 2 28 

R28 3.47 3.53 3.44 3.5 3.11 3.14 3.3 3.49 3.47 3.18 3.17 2.89 3.47 1 11 

R29 3.38 3.26 3.21 3.58 3.04 3.12 3.15 3.19 3.38 3.37 3.13 2.93 3.11 4 30 

R30 3.31 3.44 3.29 3.41 3.27 3.22 3.06 3.14 3.31 3.33 3.23 3.05 3.17 3 29 

 

3.4  Sensitivity analysis 

To evaluate the robustness of the fuzzy risk assessment model, a sensitivity analysis 

was conducted following the approach outlined in the methodology. Each input 

parameter was varied by ±10%, and the resulting changes in the risk significance 

scores (F-RN) were observed. The analysis showed that the variation in F-RN values 

remained within a ±6% to ±6.5% range across the top risk categories, indicating strong 

model stability. Importantly, these variations did not alter the relative ranking of the 

risks. Figure 15 present changing one of the inputs to the F-RN. 

 

Figure 15. Sensitivity Analysis of Fuzzy Risk Scores under ±10% Input Variations 

 

3.5 Discussion of Research Findings 

This section discusses the top risk categories associated with the integration of GenAI 

into RM for SCPs, based on the findings of the developed assessment model. As 

outlined in the preceding stages of the research methodology, these risks in each 

category were evaluated for their significance levels, enabling the identification of the 

most critical areas. 
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Input quality-related risks 

Input quality risks encompass factors related to the accuracy, completeness, 

consistency, and contextual relevance of data used in training and deploying GenAI 

models (Chenya et al., 2022; Holzmann and Lechiara, 2022). These risks are 

particularly salient in Sustainable Construction Projects (SCPs), where GenAI-enabled 

RM relies heavily on clean, diverse, and current datasets to generate reliable 

predictions and inform effective decision-making (Wijayasekera et al., 2022). 

Findings from the fuzzy analysis highlight the criticality of input quality risks. 

Specifically, R02 (data unavailability) was ranked 2nd overall (F-RN: 3.63), R03 (data 

bias) ranked 4th (F-RN: 3.59), and R01 (inaccurate or incomplete data) ranked 8th (F-

RN: 3.52). These high rankings clearly demonstrate that substandard data inputs can 

severely undermine the predictive validity and reliability of GenAI models used in SCP 

risk assessments. 

       The effective deployment of GenAI in SCPs hinges critically on the quality and 

availability of input data, where inaccuracies, omissions, or biases can significantly 

compromise the integrity of risk identification and mitigation strategies (Aldoseri et 

al., 2023). Data unavailability—often due to fragmented data silos or inaccessible 

historical records—restricts GenAI’s ability to learn from past risk occurrences, 

thereby limiting its capacity to generalize effectively and produce reliable forecasts for 

future project scenarios (Chen and Chen, 2024). Similarly, data bias introduces 

systematic distortions in model outputs, potentially misclassifying emerging threats 

or ignoring contextual factors unique to SCPs, such as regulatory, environmental, or 

stakeholder-driven complexities (Chenais et al., 2022). 

       Inaccurate or incomplete data further compounds the challenge by introducing 

noise, uncertainty, and missing contextual signals. These deficiencies not only degrade 

model performance but also jeopardize decision outcomes across project planning, 

risk assessment, and stakeholder communication (Kumar et al., 2024; Delello et al., 

2025). Erroneous data points or poorly annotated training samples can lead to biased 

parameter estimation, flawed mitigation strategies, and ineffective prioritization of 

risks. As Zhang and Zhang (2023) note, poor data annotation practices significantly 

reduce AI system reliability, especially in dynamic and risk-sensitive environments 

such as SCPs. Moreover, the implications of data quality issues extend beyond 

technical performance. As Steimers and Schneider (2022) highlight, data governance 
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also encompasses ethical and operational dimensions, especially in SCPs where RM 

decisions often have long-term sustainability implications—including financial losses, 

safety breaches, or environmental degradation. Addressing these challenges demands 

a multi-pronged strategy involving stringent data validation protocols, robust data 

governance frameworks, and cross-stakeholder collaboration to enable seamless data 

sharing and integration (Ambasht, 2023; Adesina, Iyelolu and Paul, 2024). 

Technological adaptability-related risks 

Technological adaptability risks refer to the challenges involved in embedding GenAI 

into existing construction management workflows, systems, and decision-making 

processes. These risks are especially significant in the construction industry, where 

human judgment, domain expertise, and contextual interpretation remain 

indispensable to project delivery (Hu & Castro, 2019; Adekunle et al., 2022; 

Chowdhury et al., 2024). Fuzzy analysis highlights human error (R11) as the most 

critical risk in this category, ranking 1st overall with an F-RN of 3.68. This underscores 

a key vulnerability: while GenAI can produce sophisticated and valuable insights, its 

effectiveness is ultimately constrained by the competence and attentiveness of the 

human actors interpreting and applying those outputs (Grewal et al., 2024). This 

finding highlights the critical importance of the human–machine interface in 

construction workflows, where the quality of decision-making is only as strong as the 

human ability to engage meaningfully with GenAI systems, as emphasized by Epstein 

et al. (2023), Ghimire et al. (2023), and Hilgard et al. (2019). 

       The second most significant risk in this category is insufficient training (R07), 

which ranks 3rd overall (F-RN: 3.60). This reflects a pervasive lack of readiness among 

construction professionals to effectively utilize and collaborate with GenAI 

technologies, leading to potential inefficiencies, poor system adoption, and suboptimal 

integration outcomes (Taiwo et al., 2024). Inadequate exposure to digital tools or 

unfamiliarity with GenAI functionality can result in dependency without 

understanding, weakening confidence in AI-assisted decisions and increasing the 

likelihood of operational errors. Closely related is the risk of misinterpretation of 

GenAI results (R10), which ranks 10th overall (F-RN: 3.46). Limited GenAI literacy 

can precipitate misguided conclusions, particularly when outputs are taken at face 

value without a thorough understanding of underlying assumptions, model 

limitations, or contextual nuances (Grewal et al., 2024; Hassoun et al., 2024). These 
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misjudgments can undermine project outcomes and erode stakeholder trust, 

especially when decisions based on flawed interpretations lead to delays, cost 

overruns, or misaligned risk responses. 

       These findings are echoed in broader literature emphasizing the need for not only 

technical training but also the cultivation of higher-order cognitive skills. Construction 

professionals must be equipped not just to operate GenAI tools, but also to critically 

evaluate, contextualize, and apply GenAI-derived insights within complex, dynamic 

project environments (Pan & Zhang, 2021; Lee & Shin, 2020). This requires the 

development of GenAI-focused curricula and comprehensive training programs that 

bridge the gap between algorithmic output and practical project requirements. 

Proactively managing these technological adaptability risks is essential for unlocking 

the full potential of GenAI in construction. It calls for a multidimensional strategy that 

includes continuous workforce upskilling, intuitive system design, and strong digital 

leadership to reduce friction and resistance (Ghimire et al., 2023). Such efforts foster 

innovation while minimizing the risk of errors and misapplications that could 

otherwise undermine project success (Reis & Melão, 2023). 

Ethical and governance-related risks 

Ethical and governance risks encompass the legal, regulatory, and ethical challenges 

arising from the deployment of GenAI in SCPs. These risks are particularly significant 

in data-sensitive, high-stakes environments where decisions influenced by AI may 

have far-reaching consequences (Rane, 2023; Regona et al., 2024). As GenAI 

technologies become more integrated into project decision-making, questions of 

fairness, transparency, and accountability become increasingly pressing. Based on the 

fuzzy analysis, the most critical risk in this category is unclear responsibility and 

accountability (R20), which ranks 1st within the category and 7th overall with an F-

RN of 3.55. This highlights a major concern in GenAI-assisted decision-making: 

determining who is liable when AI-generated insights contribute to negative project 

outcomes (Evans et al., 2022). As construction projects become more digitized and AI-

reliant, ambiguity in accountability can create legal grey areas—particularly in hybrid 

decision-making settings where responsibilities are shared between human actors and 

AI systems (Hendrycks et al., 2023). 

       Building on this concern, confidentiality breaches (R19) and noncompliance with 

organisational data privacy policies (R22) are also ranked prominently—tied at 2nd 
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within the category and 12th overall (F-RN: 3.45). These risks reflect heightened 

anxieties about the misuse of sensitive data, unauthorized access, and the potential 

exposure of confidential project information. The reliance of GenAI models on large 

and often sensitive datasets exacerbates these concerns, making data protection a 

central issue (Stahl, 2021; Palaniappan et al., 2024). Beyond the risk of regulatory 

penalties, such breaches can significantly damage the reputational standing of 

construction firms, particularly those involved in publicly funded or regulated SCPs 

(Ghimire et al., 2024). Closely related are the risks associated with non-transparent 

decision-making processes, namely R18 and R21, both of which rank 3rd in the 

category and 16th overall with an F-RN of 3.41. These risks highlight the intrinsic 

opacity of many GenAI systems—especially deep learning models—that often function 

as "black boxes," where the internal logic driving decisions is not easily 

understandable to users. This lack of explainability can diminish trust, hinder 

stakeholder engagement, and limit the practical adoption of GenAI in critical project 

functions (Compton et al., 2024; Kandasamy, 2024). 

       Together, these findings reinforce the broader call in the literature for the 

development of robust legal, ethical, and governance frameworks tailored to the 

unique context of GenAI in the built environment (Parveen, 2018; Pillai and Matus, 

2020; Regona et al., 2022). The absence of clearly delineated roles, enforceable 

standards, and transparent auditing mechanisms presents a substantial barrier to 

responsible GenAI deployment. Legal uncertainty over liability, combined with ethical 

challenges surrounding data use and algorithmic fairness, necessitates proactive 

governance approaches capable of managing these evolving risks. Integrating ethical 

and regulatory considerations into GenAI adoption strategies therefore demands more 

than baseline compliance (Zhang and Zhang, 2023; Raza et al., 2025). It requires the 

establishment of clear accountability structures, alignment with data governance 

policies, and the embedding of responsible AI practices into construction project 

workflows (Xue and Pang, 2022). These efforts are essential for building stakeholder 

confidence and ensuring that GenAI contributes meaningfully and sustainably to risk 

management in SCPs. 

Information integrity-related risks 

Information integrity risks encompass threats related to data security, authenticity, 

and system reliability in GenAI-powered RM. As construction firms increasingly 
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digitise workflows and integrate AI-driven tools, maintaining the integrity of the 

information supporting these systems becomes essential (Rane, 2023). These risks are 

particularly pertinent in SCPs, where risk assessments often rely on complex, multi-

source data environments. The broader literature emphasises that vulnerabilities in 

data handling not only undermine trust in AI systems but also increase the likelihood 

of flawed project decisions, cost escalations, and reputational damage (Gupta et al., 

2023; Sai et al., 2024). 

       The fuzzy analysis identifies data breach (R23) as the most critical risk in this 

category, ranking 1st within the group and 4th overall with an F-RN of 3.59. This 

finding aligns with prior research that highlights cybersecurity as a foundational 

challenge in AI integration, particularly in sectors handling sensitive, high-value data 

(Jada and Mayayise, 2023). In construction, where data-sharing across partners, 

contractors, and regulatory bodies is routine, the threat of unauthorized access or 

malicious exploitation is significantly amplified. Compounding this concern, earlier 

studies have noted the lack of sector-specific cybersecurity protocols as a key barrier 

to the safe deployment of AI in construction (Ghimire et al., 2024), reinforcing the 

urgency of addressing this risk. 

       The second-highest risk in this category is data fabrication or manipulation (R25), 

which ranks 14th overall with an F-RN of 3.44. This concern is well-documented in the 

AI ethics literature, where tampered or falsified data is known to compromise model 

outputs by introducing bias or misleading patterns (Kandasamy, 2024; Raza et al., 

2025). In the context of SCPs—where project conditions are often dynamic, localised, 

and non-standardised—unverified or manipulated data can distort GenAI’s ability to 

accurately assess risk exposures. These results echo previous calls for implementing 

data provenance systems and real-time validation mechanisms as critical safeguards 

in GenAI-driven decision environments (Compton et al., 2024). The third major 

concern is overdependence on synthetic data (R24), which ranks 19th overall with an 

F-RN of 3.39. While synthetic data offers scalability and addresses data privacy 

constraints, it may fall short in capturing the complexity, variability, and contextual 

nuances inherent in real-world construction projects (Breugel and Schaar, 2023). 

Prior studies have cautioned that an excessive reliance on synthetic datasets may result 

in blind spots during risk prediction, especially in industries like construction where 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5289325

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



   

27 

 

workflows are heterogeneous and non-standardised (Stahl, 2021; Sandhaus et al., 

2024). 

       Together, these findings reinforce a growing body of literature advocating for 

comprehensive strategies to ensure information integrity in GenAI implementation. 

This includes the development of robust cybersecurity infrastructure, data 

authenticity protocols, and balanced data sourcing practices (Jallan and Ashuri, 2020; 

Regona et al., 2022; Yao and Soto, 2024). Cybersecurity must go beyond basic 

protections to encompass AI-specific safeguards such as encrypted model pipelines 

and context-sensitive intrusion detection systems (Singh and Joshi, 2024). 

Simultaneously, ensuring data authenticity through validation tools, audit trails, and 

provenance tracking is essential to prevent flawed or manipulated inputs from 

undermining trust in AI-generated outputs. Moreover, the risks associated with 

synthetic data highlight the need for thoughtful integration of real-world data to 

maintain model reliability. While synthetic data can supplement scarce datasets, it 

should not substitute the richness and unpredictability of actual project conditions 

(Marwala et al., 2023). Without these safeguards in place, the use of GenAI in RM 

remains susceptible to both technical failures and ethical breaches, which can 

significantly erode stakeholder trust and jeopardise project success (Barrett et al., 

2023; Stanovsky et al., 2025). Ultimately, aligning technical measures with 

construction-specific standards and ethical guidelines is vital to ensure responsible 

and effective GenAI integration in risk management. 

Financial-related risks 

Financial risks represent the economic uncertainties and cost-related concerns tied to 

the adoption and integration of GenAI technologies into risk management practices 

for SCPs. These risks are especially significant in a sector where project budgets are 

tightly managed and investments in emerging technologies are often scrutinized for 

their long-term value (Regona et al., 2024; Salzano et al., 2024). In such settings, the 

perceived financial viability of GenAI becomes a key factor influencing its acceptance 

among construction stakeholders (Ghimire, Kim, and Acharya, 2024), particularly 

when the return on investment (ROI) is not immediately evident. 

       In this study, the fuzzy analysis identified ROI outcome discrepancies (R28) as the 

most critical risk within the financial category. It ranked 1st in this domain and 11th 
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overall, with an F-RN of 3.47. This finding underscores the prevalent uncertainty 

regarding the actual value GenAI may deliver over time (Masood, 2025). While GenAI 

has the potential to enhance decision-making accuracy, reduce exposure to risk, and 

streamline operational processes, many project managers remain cautious (Sai et al., 

2025). A major contributor to this caution is the gap between the anticipated benefits 

and the realized outcomes, which discourages resource allocation in the absence of 

reliable financial forecasting and ROI evaluation tools (Fabricius and Büttgen, 2015). 

       Following closely is the risk of high initial investment cost (R27), ranked 2nd in 

the financial category and 28th overall, with an F-RN of 3.21. Although high 

implementation costs are often seen as a barrier to digital innovation, the relatively 

lower overall ranking suggests that stakeholders might be open to absorbing these 

upfront costs—provided there is a well-defined path to long-term value. However, the 

magnitude of investment required for GenAI infrastructure, licensing, workforce 

training, and integration poses a substantial challenge, especially for small to medium-

sized firms with limited financial flexibility and digital maturity (Gurjar et al., 2024). 

The third-highest risk in this category, customization and integration expenses (R30), 

ranks 3rd within the financial domain and 29th overall, with an F-RN of 3.17. This risk 

highlights the financial burden associated with tailoring GenAI tools to specific project 

or organizational needs. Ensuring system compatibility, modifying workflows, and 

training personnel all incur additional costs (Ghimire, Kim, and Acharya, 2024). These 

often hidden or underestimated expenses can further complicate investment planning 

and hinder the scalability of GenAI implementation, particularly in resource-

constrained construction environments. 

These findings are consistent with prior studies that underline the importance of 

strategic financial planning when introducing advanced digital technologies into 

traditional project environments. As Liddell (2025), Tajuddin (2025), and Xu and Cho 

(2025) argue, the lack of structured cost–benefit frameworks and performance-

tracking mechanisms can obscure the financial justification for GenAI investment. 

Developing transparent ROI assessment tools, aligning GenAI adoption with broader 

business objectives, and setting realistic performance expectations are necessary steps 

to ensure financially sound and sustainable implementation in SCP risk management 

contexts. 
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4.  Conclusion 

This research presents a novel risk assessment model designed to evaluate the 

significance level of risks associated with integrating GenAI into RM for SCPs. The 

study aimed to (1) identify and categorise key risk factors related to GenAI integration 

and (2) quantify their significance level based on probability of occurrence, impact on 

project objectives, and DL. To achieve these objectives, a structured multi-stage 

methodology was adopted. Initially, a SLR was conducted, analysing 55 high-quality 

articles selected based on rigorous inclusion and exclusion criteria. Following this, a 

multi-criteria risk assessment model, grounded in FST, was developed to 

systematically evaluate these risks, incorporating expert insights to enhance accuracy 

and reliability. The subsequent stage involved a survey of 80 construction 

professionals, who assessed the identified risks across three key dimensions: 

probability, impact, and detectability. Each dimension was evaluated in detail using 

criteria established through a group session with five construction risk management 

experts. Finally, the risks were analysed using the proposed model and validated 

through a follow-up focus group session with industry experts, ensuring both accuracy 

and practical relevance. The research identified 30 distinct risks, classified into five 

overarching categories, as summarised in Table 3. 

       Among the identified risks, three emerged as the most significant challenges to 

GenAI integration: (1) human error, (2) data unavailability, and (3) insufficient 

training. The findings highlight that GenAI’s effectiveness is highly dependent on 

human expertise and the reliability of data, with errors in interpretation and 

application posing substantial risks. Data unavailability remains a critical barrier, as 

inconsistent or incomplete datasets can undermine AI-driven decision-making. 

Additionally, insufficient training limits the industry’s ability to implement and 

manage GenAI effectively. To ensure successful adoption, it is essential to enhance 

data accessibility, invest in structured GenAI training, and develop strategies to 

mitigate human error. Without these measures, the industry's ability to leverage 

GenAI at scale remains uncertain, restricting its transformative potential. 

4.1  Theoretical and practical implications   

This study provides both theoretical and practical contributions to construction risk 

management by introducing a novel risk assessment model tailored to evaluate the 

significance level of risks associated with GenAI integration. Theoretically, it advances 
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the understanding of GenAI-driven risk management by systematically identifying 

and categorising key risk factors through SLR. This framework can serve as a 

foundation for future theoretical research and provide a structured approach for 

prioritising critical risks, guiding further studies on mitigation strategies. Additionally, 

the quantification of risks offers insights into their relative significant, enabling 

researchers to explore targeted solutions for high-impact risks. 

Practically, the proposed model provides construction professionals with a structured 

framework to assess, prioritise, and mitigate GenAI-related risks. By addressing these 

risks, organisations can refine their AI adoption strategies, enhance decision-making 

processes, and reduce project uncertainties. Furthermore, the model can serve as a 

decision-support tool, aiding industry stakeholders in proactively managing risks 

associated with GenAI integration. Ultimately, this research strengthens the industry's 

readiness for AI-driven transformation, ensuring its responsible and effective 

implementation in construction risk management. 

4.2  Research limitation 

Despite its valuable contributions, this study has several limitations. First, while the 

research incorporates expert judgment through questionnaire surveys, it should be 

noted that although 30% of the participants had over 16 years of experience in 

construction management, only 9% were classified as advanced users of GenAI in RM 

of SCPs. This may have impacted the depth of insights into the integration of GenAI in 

construction risk management, and the results could have differed had more experts 

with advanced experience in GenAI applications been included. Secondly, the study 

primarily focused on experts from the UK, which may limit the generalizability of the 

findings to the broader international construction industry. Different countries may 

face unique challenges related to GenAI integration, especially in the context of 

financial risks. For instance, countries with limited resources or funding might 

perceive financial risks as more severe than those with more developed infrastructures 

and budgets. Therefore, including experts from a variety of international settings could 

offer a more comprehensive understanding of the global implications of integrating 

GenAI into RM for SCPs and highlight potential regional differences in risk 

perceptions and priorities. 
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