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ABSTRACT

Nonverbal behaviours are integral parts of human social interaction. Equipping social robots with
human nonverbal communication skills has been an active research area for decades, where data-
driven, end-to-end learning approaches have become predominant in recent years, offering scala-
bility and generalisability. However, most of the current works only consider social signals of a single
character to model co-speech gestures in non-interactive settings. To address this shortcoming, this
paper introduces a context-aware Generative Adversarial Network, intending to produce social cues
for robots. The approach captures both intra- and interpersonal social signals of two interlocutors
to model body gestures in dyadic interaction. We conducted a series of experiments to validate the
proposed solution under different interaction settings. First, the experimental results conducted in
the JESTKOD dataset demonstrate the contribution of encoding context, namely the behaviours of
the interaction partner, in the prediction of target person’s gestures in agreement situations. Sec-
ond, the experiments conducted in the new LISI-HHI dataset show that combining Discriminator
and Context Encoder results in a gesture generation framework that is effective across various social
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communication contexts.

1. Introduction

Social robots are envisioned to have a profound impact
on many sectors, including education, healthcare, work-
place, and home. All of such practical applications require
that humans and robots interact and collaborate with
each other seamlessly. Along with verbal communication,
successful social interaction is closely coupled with the
exchange of nonverbal cues, such as gaze, facial expres-
sions, body movements, and hand gestures. Humans
tend to use a wide range of nonverbal cues to signal
their emotions, intentions, or verbal contents of their
speech to their interaction partners. Motivated by this,
imitating nonverbal communication has been an active
area of research to enhance the clarity of the human-
robot interaction (HRI) interfaces and the sense of rap-
port, hence maximize the user trust and acceptance
of them.

A considerable effort has gone into designing non-
verbal interaction skills for social robots. For humanoid
robot platforms, nonverbal cues are commonly inspired
by human behaviours. One of the main reasons is to
ensure communicative messages, encoded in robots’
body movements, are interpretable by humans [1].

Previous work on nonverbal generation can be briefly cat-
egorized into two groups: (1) the rule-based approach
and (2) the data driven-approach. Early methods have
focussed on rule-based approaches [2, 3], requiring the
design of interaction logic manually, which is limited,
not transferable to unforeseen interaction contexts, and
not robust to unpredicted inputs from the robot’s envi-
ronment (e.g. sensor noise). Therefore, data-driven, end-
to-end learning approaches [4-6] have been a promising
solution to address these shortcomings. However, so far,
only a handful of works [7-12] aim to model behaviours
by taking into account the interaction context, namely,
the nonverbal signals of the interaction partner. Although
social interaction is an open-ended concept, it can be
formalized through two main processes: (i) Perception
perception process involves receiving visual stimuli about
the behaviours of others, or the state of the interaction;
and (ii) Action - action process is the generation of a
behaviour by taking into account all aspects of interaction
including current perceived states and history. Therefore,
it is necessary to consider the interaction partner’s way of
speaking and acting to be able to create socially suitable
behaviours for robots.
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This paper introduces a context-aware Generative
Adversarial Network (GAN) towards modelling robots’
nonverbal behaviours in dyadic interactions. The
approach takes speech features of a target person together
with nonverbal signals of their interaction partner, mod-
elled by a novel Context Encoder, to produce appropri-
ate body gestures supporting for social interaction. We
comprehensively validated the proposed framework on
two datasets, namely JESTKOD and LISI-HHI, cover-
ing human dyadic interactions in affective contexts and
social communication contexts, respectively. The main
contributions of this paper are: (1) a novel co-speech ges-
ture generation framework that captures both intra- and
interpersonal social signals to model body gestures of
the target person in dyadic interactions; (2) a series of
experiments carried out in different scenarios to exam-
ine the impact of interaction context on generated cues;
and (3) a newly created LISI-HHI dataset which aims to
serve as a high-accuracy multimodal database for HRI
community and related research domains. The experi-
mental results conducted in the LISI-HHI dataset aims
to serve as a benchmark of the context-aware nonverbal
behaviour synthesis task.

The rest of this paper is organized as follows. In
Section 2, we review previous studies on nonverbal
behaviours generation inspired by data-driven approach.
Section 3 describes the proposed end-to-end learn-
ing framework in detail. It is followed by a series of
experiments conducted to verify the proposed network.
We validate the model performance on an affective inter-
action dataset in Section 5 and a social communication
database in Section 6. As a proof concept, we demonstrate
the proposed framework on the Pepper humanoid robot
in Section 7. Finally, the experimental results and future
work are summarized in Section 8.

2. Data-driven nonverbal behaviour synthesis

2.1. Nonverbal behaviour synthesis from
intrapersonal social signals

The data-driven approach provides a solution to trans-
fer human nonverbal communication skills to robots
in an end-to-end manner using large-scale datasets
of human behaviours [13, 14]. The approach receives
social signals (e.g, speech audio, speech text) of a tar-
get person to model their co-speech gestures conveying
their emotions or intentions. Different learning frame-
works have been introduced to capture the relationship
between human audio [6, 15], speech text [4, 5, 16]
and human co-speech gestures. The network architecture
could be constructed in various ways, ranging from auto-
regressive [17], encoder-decoder [6], Long Short Term
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Memory (LSTM) [15] to generative adversarial network
(GAN) [16]. Although these approaches are promising
solutions to address the shortcomings of the rule-base
approach, they only consider social signals of a single
character to model co-speech gestures in non-interactive
settings.

2.2. Nonverbal behaviour synthesis from intra- and
interpersonal social signals

In small-group social interaction, an essential aspect of
communication is the dynamic exchange of nonverbal
signals among interlocutors, with the aim of adapting
to interacting social norms [18], for building or break-
ing a common ground [19-21]. This factor suggests
that when modelling human or social robots” nonverbal
behaviours in small-group interaction settings, partic-
ularly dyadic interaction, both intra- and interpersonal
nonverbal signals should be taken into consideration.
However, only a few studies [7-12] aim to generate
behaviours by taking into consideration the interaction
context, namely, the nonverbal signals of the interaction
partner.

The problem of modelling human facial expressions in
an interaction between an interviewee and an interviewer
could be addressed by a conditional GAN framework [7]
or a variational autoencoder (VAE) [8]. On the other
hand, the idea of forecasting nonverbal cues was demon-
strated by a residual attention network [10] to forecast
human upper body motions or a GAN network [11]
to predict interlocutors’ upper body gestures and their
facial landmarks. In the scenario of triadic interaction,
the authors [9] introduced a generative framework that
observes nonverbal signals of all interlocutors to fore-
casts nonverbal signals of a target person. However,
none of these approaches has investigated the problem
of co-speech gesture synthesis in dyadic interaction and,
importantly, the effect of interaction contexts on gener-
ated actions. Motivating from that, our early work [12]
introduced a context-aware co-speech gesture generation
framework and verified the impact of affective context on
synthesized gestures. In this paper, we further extended
the work [12] by incorporating the early approach with a
new loss function, a modified network architecture, and
an updated audio feature extraction towards enhancing
the model performance. In addition to the experiment
conducted in affective interaction contexts, we further
demonstrated the approach in social communication
contexts using our newly created LISI-HHI dataset [22].
By demonstrating the idea on two different databases
representing for two different settings, this paper aims
to understand the impact of interaction contexts on the
context-aware GAN approach comprehensively.
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3. Context-aware generative adversarial
network

3.1. Problem statement

We define the problem of speech-driven gesture gen-
eration with context awareness as follows: in a dyadic
interaction between a target person Sy, and an interac-
tion partner Sy, A})O:T denotes the speech audio of Sf,
in a temporal time window, namely ¢ € [0, T]. PSLT and
ASZT are the co-speech gesture and the speech audio
simultaneously observed from S,, within the same spa-
tial and temporal window. This research aims to find a
mapping function F that receives A})(;T, P(o):bT, and A(o):hT as
inputs, and predict an output co-speech gesture of S,

namely PJ‘%T.

3.2. Model overview

To address the research question in the aforementioned
section, this paper introduces a co-speech gesture gen-
erative framework with context awareness, as shown in
Figure 1. The framework consists of Context Encoder E,
Generator G, and Discriminator D. At the timestamp ¢
(t € [0, T]), the training pipeline is started by encoding
P!, into cp, A’ into ¢, and A}O into s}o. Then, ¢, and
¢!, are combined into a contextual vector, namely ¢! .
s}o, ¢! ,» and together with the previously generated pose

P};l is injected into Ggpcoder- The internal representation

encoded by Ggpeoder is then fed to Gpecoger for producing
the next motion frame P}o. This process is repeated until

t = T. Finally, the generated co-speech gesture 13190:T and
their corresponding speech feature vector S})(;T, contextual
vector cg’bT are injected into D for identifying samples to
be either fake or real. In the sequel, the proposed network

architecture is described in detail.

3.3. Context encoder E

Context Encoder is designed to encode social signals
simultaneously collected from the interaction partner
in dyadic interaction into a contextual vector. Context
Encoder consists of Motion Encoder and Speech Encoder.
Here, ¢}, encoded by Motion Encoder and ¢, encoded by
Speech Encoder are combined into c.,. ¢!, represents the
contextual information extracted from the interaction
partner sz at the current timestamp ¢.

3.3.1. Motion encoder Ey
The network receives the motion sequence szbT of the
interaction partner P,, as input and delivers the output

feature vector . Motion Encoder is constructed with a
sequence of fully connected (FC) layers and Long-Short
Term Memory (LSTM) layers. Motion Encoder iteratively
encodes P%T into c%7 frame-by-frame.

3.3.2. Speech encoder Es

The network handles the speech audio A, as input and
produces the audio feature vector COA:T. From the raw
audio speech, we first extract the MFCCs and related low-
level speech features. MFCCs are well known to encode
signal frequencies according to how humans perceive
sounds, and such low-level features are widely utilized in
speech recognition or identification tasks [23]. In addi-
tion to MFCCs, the prosodic features representing the
energy of speech are utilized as it encompasses intona-
tion, rhythm, and other information about the speech
outside of the specific words spoken (e.g. semantics and
syntax). Speech prosody is a common candidate for mod-
elling human beat gestures [24]. Similar to the Motion
Encoder, Speech Encoder processes input speech features
frame-by-frame. Speech Encoder is constructed with 4
Convolutional (CONV) layers, 1 LTSM layers, and 1 FC
layer.

3.4. Generator G

Generator G consists of Speech Encoder, Ggpcoder» and
Gpecoder- Speech Encoder implemented in G inherits the
same network architecture as the one implemented in E,
and they share the same weight parameters. Here, at a
time stamp t, Speech Encoder receives the audio speech
AJ’,O as an input and encodes it into s}o. It is followed by

feeding sp, ., and the previously generated pose 15};1
into Ggpcoder- At the initial time stamp (f = 0), a seed
pose P};”t is injected into Ggpeoder instead of the previ-

ously generated pose 13};1 GEncoder 15 designed with a
sequence of FC layers to encode the input vector into an
internal representation h!. Finally, &’ is fed to Gpecoder
for generating the next motion frame f’}o. We designed
GpDecoder With a sequence of FC layers and LSTM layers.
As illustrated in Figure 1, for better modelling the veloc-
ity of generated motion, a residual connection is added
between the previously generated pose and the new out-
put pose produced by Gpecoder- This approach allows
Gpecoder to model the differences between }3}0—1 and }3}0
that encourages the continuity of generated motions.
Note that Generator can also be used independently
without the need of integrating with ContextEncoder and
Discriminator. In this case, G receives AJ%T to predict the

co-speech gesture IA)})(;T. Further details are presented in
Sections 5 and 6.
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Figure 1. The proposed framework based on conditional GAN to generate body gestures for a target person taking into consideration
the target person’s speech (or audio) and their interaction partner’s nonverbal signals encoded by the Context Encoder.

3.5. Discriminator D

During the training phase, both real P})(;T and fake co-

speech gestures 13190:T are injected into the Discriminator
D. Additionally, D also takes both speech feature SJQU:T of

the target user Py, and the contextual vector cgsz of the
interaction partner P,, into consideration for produc-
ing the adversarial loss y. Here, D is able to work as a
smart adaptive loss function where s})(;T delivers infor-
mation allowing D to validate the speech synthesis while
c%T contains information for verifying the context syn-
chrony. D is designed with 2 LSTM layers and followed
by a sequence of FC layers. Output values from the last
FC layer are passed through a sigmoid function to pro-
duce a probability indicating whether the input motion
is real or fake.

Overall, the framework demonstrated in Figure 1 is
trained with the loss functions Lg and Lp defined in
Equations (1) and (2), respectively. The training proce-
dure is summarized in Algorithm 1. AP};T and Af’flo‘T

represents the velocity of ground truth motion P}(;T and

the generated one IS}ST, respectively. «, B, and y are
weight parameters to manipulate the corresponding loss
terms. Note that the newly implemented velocity loss can

be considered as an improvement of the loss function Lg
introduced in [5]. By incorporating velocity loss into the
total loss L, along with adversarial loss and position loss,
the new approach enhances the smoothness of generated
motions.

Lo =ax||PET = PETIS + B+ ||APET — APET|

+y xlog (1 -D <cg;T,5190:T, 130;T>) (1)
Lp = —log (D (Cng S P 00:T>>
— log (1 -D (ngbT’ s})OZT,IA’OOZT)) (2)

4. Evaluation metrics

The following metrics are used to validate the accuracy
and the quality of generation actions based on the related
literature [6, 15, 25]. In short, Average Position Error is
used to to measure the differences between ground truth
and the predicted motions while Acceleration and Jerk are
implemented for assessing the smoothness of the actions.

Average Position Error (APE) : APE measures the
average distance between the predicted joint angles and
the ground truth ones as given in Equation (3), where T
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Algorithm 1 The proposed algorithm for the training

Table 1. Low-level features extracted from audio input.

phase Feature Dimension
Input: pY : ,A o PO T AOIT Mel Frequency Cepstral Coefficients (MFCCs) 13
0 0 0 delta-MFCC (1st) 13
1: for s=0 to training step S do delta-MFCC (2nd) 13
2 for t 0to T do ézg:@t};’al (centroid, bandwidth, rolloff, poly features) 513
3: < Es(Atb) Total 48
t
4: p < EM(A h)
5 ctb <« concat(c}, cb) . L . L
0 : disagreement situations. For instance, soccer can initi-
6: Sfo < ES(A o) ate controversial discussions between two participants
7. P« G( L Sf , p=1y supporting different teams. The dataset consists of 56
N end for dyadic 1ntera§t10ns in agreen.lent and 42 sessions in dis-
9 yr < DT, So T po: T) agreem.ent, with a total duration of 154 and 105 minutes,
respectively.
;. yp < Dy st PET)

11: Update D with L£p
12: Update G, Es, and Eyy with L
13: end for

denotes the time sequence of motion, D is the total num-
ber of joints. The closer APE scores to 0, the more similar
to the ground truth motions.

1 )
APE (PRI IRT) = — ;; 1P, =Pl (3)

Acceleration and Jerk: Acceleration is calculated based
on the rate of change of joint velocity while Jerk is defined
as the rate of change of Acceleration. The two metrics are
commonly used for verifying the smoothness of motion;
the lower values, the smoother motions are [26].

5. Experimental results in affective contexts

5.1. JESTKOD - a dataset of dyadic interactions in
affective contexts

The proposed approach was validated on the JESTKOD
dataset [27], a time-synchronized speech and gesture
dataset in affective dyadic interactions. The body data
was collected by a motion capture system and was defined
by Euler angles. This dataset allows us to model the full
body gesture of a target person from speech while tak-
ing into consideration the contextual information simul-
taneously acquired from an interaction partner. The
JESTKOD dataset covers a wide range of agreement and
disagreement discussions on different topics (e.g. movies,
sport, music, etc.) with 10 participants (4 females, 6
males). The dataset was collected in such a way that
the participants’ profiles were considered to put them
into proper conversational topics to create agreement and

5.2. Dataset preprocessing

We divided the dataset into training and testing sets.
To better understand the contribution of affective con-
texts to generated motions, we trained and evaluated
the approach on two separate interaction tasks, namely,
agreement and disagreement scenarios. Specifically, for
agreement scenarios, 41 sessions were used for training,
and 15 sessions were utilized for testing. For disagree-
ment scenarios, the training set includes 30 sessions,
while the testing set consists of 12 sessions. The record-
ings of motion and speech were down-sampled into a
common frame rate of 20 frames per second (fps). On
each interaction session, from the audio recordings, we
extracted low-level features as illustrated in Table 1 with
a total dimension of 48. In terms of motion data, on
each motion frame, 63 features representing 21 joints of
human body motion in Roll, Pitch, and Yaw were selected
(POT € RSXT), Speech features and motion features
were normalized by taking into consideration their corre-
sponding min-max values over the whole time sequence.
Finally, data was split into a set of training instances using
atime window T' = 6 (secs) and a sliding window AT =
2 (secs). On each motion instance, we stored as an initial
pose P of the motion sequence P*T and used it as a
seed pose as discussed in Section 3.4.

5.3. Ablation studies

The network was firstly trained on the training set of
agreement scenarios as mentioned in Section 5.2. The
training data was fed to the network with a batch size of
1024. We use the Adam optimizer with a learning rate
a = 0.0001, B; = 0.9, B2 = 0.999. The learning rate was
decayed after completing the first 700 training epochs, it
was then reduced with a decay factor 0.9 for every next
20 epochs. In the loss function Lg, we seta = 5, 8 = 5,
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Table 2. Key components of ablation models.

Components

Context Encoder E

No Model Generator G Em Es Discriminator D
1 full model v v v v

2 Tuyen el al. [12] v v v v

3 without D v v v none

4 without £ and D v none none none

5 Speech to Gesture [15] v none none none

and y = 1. All values of these parameters were chosen
empirically. The network was trained for 1000 epochs. In
the first 50 warm-up epochs, the adversarial loss was not
included in Lg. This training pipeline was repeated for
the JESTKOD training set of disagreement scenarios.

In addition to the full model consisting of Genera-
tor, Context Encoder, and Discriminator, ablation experi-
ments were conducted to verify the impact of individual
model components. Table 2 summarizes the key com-
ponents of 5 implemented models: (1) the full model is
composed of G, Ejy, Es, and D as introduced in Section 3.
Compared to [12], the network architectures of E, G, and
D of full model were improved by updating several hid-
den layers to better present output features. Audio inputs
were described by a higher number of relevant low-level
features as shown in Table 1. Indeed, L was incorporated
with the velocity loss to better encourage the smoothness
of generated motions. (2) the model is comprised of G,
Eym, Es, and D as introduced in [12]. (3) the approach
without D was implemented by removing D out of the
proposed framework. In other words, the adversarial loss
was not contributed to the loss function Lg. (4) the model
without E and D was designed by removing both D and
E. (5) the Speech to Gesture network is introduced in [15],
Similar to the without E and D framework, Speech to
Gesture receives Ag‘bT as an input for modelling speech
gestures PJ?(;T. 5 models were trained on the JESTKOD
training set of agreement and disagreement scenarios
using the same training pipeline mentioned above.

5.4. The impact of affective context on body
gestures in dyadic interaction

The results shown in Table 3 indicated that the full model
and the network [5] demonstrate a similar performance
in terms of APE scores in Agreement and Disagreement
scenarios. However, motions produced by full model have
lower Acceleration and Jerk values. The result can be
interpreted taking into consideration the improved loss
function Lg of full model, which aims to enhance the
smoothness of generated actions.

A closer look at the APE scores reported in Table 3(a
,b), except for the full model and the approach [12] in

which the difference in terms of APE values is negligible,
other models implemented in the scenarios of Agreement
always showed better performance with respect to all
metrics defined in Section 4 as compared to the same
network architecture employed in disagreement scenar-
ios. In other words, implemented models conducted in
agreement scenarios were able to produce co-speech ges-
tures }A’})OZT more similar to the ground truth motions PJ?O:T.
Indeed, generated motions were smoother with respect
to the smaller Acceleration and Jerk values obtained. The
differences of APE values were even more obvious in the
case of Speech to Gesture and without E and D networks in
which Context Encoder was not implemented. This result
suggests that in affective conversations, it is more difficult
to model co-speech gestures of the target person Py, since
their speech feature 5}0 is not the only factor manipulat-

ing their body gesture f’j%T. In other words, the impact of
interaction context on the prediction of co-speech ges-
tures is unavoidable. Thus, Context Encoder should be
employed for better modelling the dynamic exchange of
social signals in dyadic interaction.

From interpersonal perspectives, there are several
moderating variables (e.g. mimicry, synchrony, etc.) that
have a high impact on the way human behave, in
particular, their body gestures during affective inter-
actions [20, 21, 28]. For instance, the non-conscious
behavioural mimicry can be detected when interlocu-
tors have affiliative motivations during interaction [28],
or the synchrony of movements in dyadic interactions is
established between people who has pre-existing friend-
ship [21]. Vice versa, the synchrony of behaviours has
been observed to decrease in situations in which the
relationship between interlocutors is not well estab-
lished [20]. The aforementioned studies provide empir-
ical evidence that the impact of moderating variables
on the interlocutors’ nonverbal behaviours is unavoid-
able in affective dyadic interactions. Specifically, consid-
ering agreement and disagreement scenarios presented
in this work, the synchrony and mimicry of nonver-
bal signals between two interlocutors tend to decrease
when they are involved in a controversial communica-
tion. Contrarily, when two partners share convergent
opinions for building a common ground, this process
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Table 3. Performances of 5 implemented models in terms of APE, Acceleration, Jerk, and

FGD.
(a) Agreement Scenarios

No Model APE (degree) Acceleration (degree/s?) Jerk (degree/s?)
1 full model 3.852 + 1.988 4.675 £0.716 121.367 + 19.885
2 Tuyen el al.[12] 3.966 + 1.961 5.064 + 0.870 134.418 + 26.040
3 without D 4.518 +£1.878 40.829 £ 7.546 909.959 4 158.248
4 without £ and D 4.949 £+ 1.818 147.026 + 37.627 4037.629 4+ 976.420
5 Speech to Gesture [15] 6.470 + 1.789 201.008 £ 41.942 6769.455 + 1447.205

(b) Disagreement Scenarios
No Model APE (degree) Acceleration (degree/s?) Jerk (degree/s?)
1 full model 3.888 + 2.220 3.304 + 0.325 87.501 £ 10.198
2 Tuyen el al.[12] 3.891 + 2.207 6.270 £ 1.448 170.298 + 41.463
3 without D 5.363 £ 1.885 50.407 £ 7.298 1150.785 + 169.108
4 without £ and D 5.603 £ 2.285 163.651 4 49.227 4445693 + 1281.226
5 Speech to Gesture [15] 7.400 + 2.008 240.050 £ 42.073 8061.153 &+ 1434.751

Note: The results are reported on the test set of: (a) agreement scenarios and
(b) disagreement scenarios of the JESTKOD dataset.

R t 1
Ak £ b

(b) full model

Figure 2. Sample generated body gestures (colored in red - right side) from the agreement scenario: (a) ground truth; (b) full model.

The human skeleton coloured in black represents the body motion of the interaction partner Py
(a) GT

)
3 HR [

(b) full model

Figure 3. Sample generated body gestures (colored in red — left side) from the disagreement scenario: (a) ground truth; (b) full model.
The human skeleton coloured in black represents the body motion of the interaction partner Pyp.



encourages the dynamic exchange of nonverbal signals
during interactions. As a result, information encoded
from our proposed Context Encoder can better contribute
to the prediction of co-speech gestures.

Figures 2 and 3 present examples of generated co-
speech body gestures derived from the test set of agree-
ment and disagreement scenarios, respectively. Here,
human motions represented by 3D angle rotations were
converted into joint coordinates and presented in 3D
coordinate space. It can be seen that in this dataset, inter-
locutors tend to use hand gestures to communicate their
messages to their interaction partner, while the lower
body remains relatively static. In particular, one of the fre-
quently occurring cues was ‘head tilting > motion related
to the disagreement scenario as illustrated in Figure 3.
As also highlighted in [29], this is a common behaviour
used to communicate a disagreement or confusion to the
interaction partner in controversial conversations.

6. Experimental results in social communication
contexts

6.1. LISI-HHI - a multimodal dataset of dyadic
interactions in social communication contexts

The LISI-HHI (Learning to Imitate Social Interaction
— Human-Human Interaction) dataset [22] consists of
multimodal signals, including multiple RGBD views, eye
gaze, audio, and motion data. Figure 4 illustrates an
example of multimodal data collected from the dataset.
The experiment was conducted in a motion capture
room, where all sensors are synchronized together in
the time domain. The LISI-HHI dataset complements
the previous databases by incorporating a multi-sensory
setup with a novel design of social communication
scenarios. Without creating a dataset limited to a spe-
cific context, for instance, agree and disagree discus-
sions [27], theatrical narratives [30], LISI-HHI covers a
wider range of human daily communication scenarios,
which are practical to transfer into social HRI. To the
best of our knowledge, LISI-HHI is among the few avail-
able databases that cover a high number of modalities,
camera views, participants, and social interaction ses-
sions. Putting all together, LISI-HHI aims to serve as a
high-accuracy and multimodal dataset for many different
research domains, especially HRI.

With the aim of collecting a diverse set of verbal
and nonverbal behaviours in different communication
contexts, participants are not given any narrations, and
no constraints are put into them regarding their way
of speaking and acting. LISI-HHI comprises 5 designed
scenarios, including: (1) small talk; (2) meal planning;
(3) tangram game; (4) role playing; (5) way finding.
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Figure 4. Multimodal data featuring in the LISI-HHI dataset. (SC1:
Statistic RGBD 1, SC2: Statistic RGBD 2, EC1: Egocentric RGB 1,
EG1: Eye-gaze of person P1, EC2: Egocentric RGB 2,EG2: Eye-gaze
of person P2, SC3: Statistic RGBD 3, MC: motion data).

The LISI-HHI dataset covers a total of 160 interaction
sessions performed by 64 participants (38 females, 26
males). Each pair of participants were instructed to con-
duct 5 interaction sessions under 5 different scenarios
mentioned above. The dataset is composed of a total of
8.3 hours.

In addition to the experiment conducted in affective
contexts discussed in Section 5, the LISI-HHI dataset
was utilized to verify the model performance in social
communication contexts. Regarding motion data, body
gestures are presented by a sequence of joint angles in the
JESKOD, while they are defined as joint coordinates in
LISI-HHI. Putting all together, conducting experiments
with two datasets, recorded in two different dyadic con-
texts and defined by two different motion types, allowed
us to validate the proposed approach comprehensively.

6.2. Dataset preprocessing

From the audio recording, we first extracted low-level
audio features resulting in a total dimension of 48 (A%” ¢
R#*xT) as explained in Table 1. The audio vectors
were then normalized based on their min-max values
over the whole time sequence, similar to the prepro-
cessing of the JESTKOD dataset. Concerning motion
data, in the LISI-HHI dataset, human gestures are
defined by 39 joints in 3D Cartesian space. To elimi-
nate the differences in body size, we reconstructed human
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Figure 5. Sample generated body gestures (coloured in red —
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left side) from the scenario Small Talk.
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Figure 6. Sample generated body gestures (coloured in red -

joints with respect to their top-chest joint coordinates.
Motion values were then normalized, taking into con-
sideration their min-max values over the whole time
sequence. From 39 joints of the dataset, 30 main joints
were selected out to represent a whole human body
pose, which results in a 90-dimensional motion vector
(PO:T e R%XT).

The LISI-HHI dataset consists of 5 social communica-
tion scenarios, each of them is composed of 32 sessions.
To better examine the effects of interaction context on
generated motions, the network was trained and evalu-
ated on individual scenarios. For each scenario, 25 ses-
sions were used for training, and 7 sessions were utilized
for testing.

6.3. The effects of social communication context on
motion synthesis

An ablation study was conducted with 5 implemented
frameworks. Their model components are illustrated in
Table 2. We sequentially trained them on each of 5 sce-
narios. Due to a higher joint dimension P%T ¢ R%*T,
the training process was conducted with a batch size
of 512. Apart from the batch size of 512, we used the
same training parameters and strategies as introduced in
Section 5.3. Table 4 summarizes the performance of 5
implemented frameworks across 5 different social com-
munication scenarios. Figures 5-9 present examples of

left side) from the scenario Meal Planning.

generated co-speech body gestures derived from the test-
ing set of the LISI-HHI dataset.

The results depicted in Table 4 indicates that differ-
ences between full model and the approach introduced
in [12] were not noticeable in term of APE. However,
Acceleration and Jerk of generated motions produced by
full model tend to be lower than the ones generated by
the approach [12]. The differences in Acceleration and
Jerk values could be explained by the differences in their
loss functions Lg. In full model, the addition of velocity
loss to L enhances the smoothness of generated motion,
resulting lower values of Acceleration and Jerk.

Compared to full model and the network in [12], the
performances of without D, without E and D, and Speech
to Gestures were significantly reduced, even though with-
out D demonstrated a comparable performance with full
model and the network in [12] in some scenarios. It
is interesting to observe that APE values significantly
increased by removing D from the framework. Taking
into consideration the setting of LISI-HHI dataset in
which a wider range of body and hand gestures were
exhibited to support communicators’ messages during
dyadic conversations, the adversarial loss from D could
provide G informative feedback to better imitate the dis-
tribution of human communicative gestures, with a final
goal of producing fake gestures f’)%T as much similar as

the real ones PJ%T. In other words, despite the fact that



Table 4. Performances of 5 implemented models in terms of APE, Acceleration, Jerk, and FGD.
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(a) Scenario 1 - Small talk

No Model APE (cm) Acceleration (cm/s?) Jerk (cm/s3)

1 full model 3.245+1.514 95.374 + 36.929 1073.883 + 355.641
2 Tuyen el al. [12] 3.143 £ 1.543 97.767 % 35.905 1108.112 + 348.140
3 without D 4,723 +1.724 109.198 4 29.484 1295.615 4+ 330.364
4 without Eand D 7.798 £ 3.570 138.821 £ 19.595 1768.489 + 259.950
5 Speech to Gesture [15] 12.791 £8.518 146.659 + 52.284 1884.253 +514.419

(b) Scenario 2 — Meal planning

No Model APE (cm) Acceleration (cm/s?) Jerk (cm/s3)

1 full model 32154+ 1.184 96.776 + 29.192 1098.390 + 285.767
2 Tuyen el al. [12] 3.292 +£1.198 96.775 + 28.778 1096.135 + 283.586
3 without D 10.380 & 7.269 168.508 + 52.462 2459.331 + 839.200
4 without Eand D 12.043 £7.818 166.812 4+ 16.783 2367.214 +231.778
5 Speech to Gesture [15] 13.935 +£9.317 154.368 4+ 35.170 1937.501 4+ 625.290

(c) Scenario 3 — Tangram game

No Model APE (cm) Acceleration (cm/s?) Jerk (cm/s3)

1 full model 5.696 £ 3.134 102.334 4 28.500 1166.565 + 312.031
2 Tuyen el al. [12] 6.178 £ 2.338 155.633 4+ 54.812 1805.334 + 593.727
3 without D 10.366 + 7.581 162.776 4+ 68.921 2334.365 £ 923.377
4 without Eand D 19.898 £ 10.007 153.555 + 28.499 2015.589 +390.419
5 Speech to Gesture [15] 23.453 +12.215 220.623 £71.180 2805.664 4 605.881

(d) Scenario 4 - Role playing

No Model APE (cm) Acceleration (cm/s?) Jerk (cm/s3)

1 full model 3.784 £ 3.227 91.299 + 34.296 1015.391 £ 350.710
2 Tuyen el al. [12] 3.867 £3.190 92.718 + 32.963 1036.304 + 337.131
3 without D 7.052 £+ 3.632 138.532 4 36.820 1721.840 + 403.241
4 without Eand D 9.043 4+ 3.408 139.858 4 27.865 1848.502 +396.816
5 Speech to Gesture [15] 13.753 £ 2.612 142.529 £+ 45.177 1754.926 + 602.244

(f) Scenario 5 — Way finding

No Model APE (cm) Acceleration (cm/s?) Jerk (cm/s3)

1 full model 422142336 146.281 = 83.594 1629.757 + 923.318
2 Tuyenelal.[12] 4.429 4+ 2.280 146.348 + 76.281 1645.545 + 833.795
3 without D 10.869 =+ 6.991 160.828 + 37.050 2280.928 + 550.136
4 without Eand D 11.712 £ 6.131 222.550 + 28.340 3080.263 +431.174
5 Speech to Gesture [15] 30.997 + 11.224 200.174 +71.431 2487.976 £+ 602.155

Note: The results are reported on the test set of: (a) Scenario 1, (

Figure 7. Sample generated body gestures (coloured in red —

Context Encoder E contributes to the prediction of gener-
ated action, E should be incorporated with D to form an
efficient context-aware generative framework operating

b) Scenario 2, (c) Scenario 3, (

d) Scenario 4, and (f) Scenario 5 of the LISI-HHI dataset.

(a) GT

TR S TR

AW

Rl

in such social communication contexts.

The performance of all implemented models exhib-
ited variations across different scenarios. In particular,

(b) full model

left side) from the scenario Tangram game.

APE, Acceleration, and Jerk were higher in the scenar-
ios of Tangram game and Way finding for all networks. A
closer look at Figure 7 illustrating an example of Tangram

game, a higher range of body movements can be seen

as compared to the other scenarios. In Tangram game,
iconic and metaphoric gestures are commonly utilized
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Figure 8. Sample generated body gestures (coloured in red -
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(b) full model

Figure 9. Sample generated body gestures (coloured in red

by participants to better explain semantic contents of
their speech, for instance, shapes of tangram cards. Such
nonverbal behaviours tend to produce a higher range of
movements compared to beat gestures [31] as displayed
in Figures 5 and 8. Consequently, a higher position error
is predictable in that scenario. Similarly, in the example of
Way finding shown in Figure 9, iconic and pointing ges-
tures were commonly performed by participants for nav-
igating and localizing purposes. This context encourages

- left side) from the scenario Way finding.

participants to perform more energetic hand movements
resulting higher Acceleration and Jerk values. In gen-
eral, the variations of motion accuracy across 5 scenarios
highlighted the influence of communication contexts on
the performance of co-speech generative networks. To
some extent, the experimental results in Table 4 demon-
strated that the combination of E and D as in the full
model can mitigate the effect of interaction contexts on
the accuracy of actions produced by G. It also suggests

e I I e
(- .- ‘!v -
| i | \ ﬁ-..;; -_h; h-L;i
e | i
Sy == L] - S b

(b) Disagreement Scenario

Figure 10. Transferring the generated motion of the target person Py, into the Pepper social robot. The human skeleton coloured in
black represents for the body motion of the interaction partner P,y



that discussions about the performance of co-speech ges-
ture framework should consider the nature of interaction
context settings.

7. Transferring human gestures to social robots

The generated motions in dyadic human-human inter-
action can be transferred into social robots, being
robots’ nonverbal gestures supporting social human-
robot interaction. As a proof of concept, we imple-
mented the generated motion f)});T of the target person
Py, in affective contexts on the Pepper robot. The pro-
cess was started by converting IA’JQO‘T into a set of 3D

human joint coordinates. The motion 13})0:T defined in
human motion space was then transferred into the Pep-
per robot’s motion space using the transformation model
introduced in [32]. Consequently, the robot’s motion is
presented by a list of the robot’s joint angles over the
time sequence. Figure 10 presents generated actions col-
lected in the test set of agreement and disagreement
interactions.

8. Conclusion

This paper introduces a context-aware GAN approach
towards modelling robots’ nonverbal behaviours in
dyadic interactions. The framework consists of Context
Encoder, Generator, and Discriminator. The approach
receives speech features of a target person together with
nonverbal signals of their interaction partner, modelled
by a novel Context Encoder, to generate appropriate
co-speech gestures supporting for dyadic interaction. A
series of experiments were conducted to validate the pro-
posed framework comprehensively. We first evaluated
our method against agreement and disagreement situ-
ations using the JESTKOD dataset. The experimental
results show that Context Encoder can better contribute
to the prediction of co-speech gestures in agreement sit-
uations, implying the importance of interaction context.
To verify model performance in social communication
settings, we conducted an experiment using our new
LISI-HHI dataset. The experimental results confirm the
contribution of Context Encoder to the accuracy of gener-
ated gestures. The results also highlight the combination
of Discriminator and Context Encoder to form an efficient
co-speech generation network that can work across dif-
ferent social communication settings. As a proof concept,
we demonstrated the idea of modelling body gestures
with context awareness on the Pepper robot.

In small group interaction, especially dyadic interac-
tion, an essential aspect of communication is the dynamic
exchange of nonverbal signals among interlocutors. The
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interaction context could influence interlocutors’ way of
speaking and acting, either for adapting to interaction
social norms, building or breaking a common ground.
Consequently, this social factor should be considered
when modelling nonverbal signals in dyadic interactions,
particularly for generating appropriate robots’ gestures in
social HRI settings.

From human behaviour studies, interpersonal coor-
dination in dyadic interactions can be observed either
in the same time window or with several seconds
lag [33-35]. In other words, the contribution of inter-
action context to generated gestures should be inves-
tigated not only in the nonverbal behaviour synthesis
task, as discussed in this paper, but also in the forecast-
ing task. Hence, potential avenues for future research
include demonstrating gesture synthesis and gesture fore-
casting within HRI scenarios, as well as investigating
their effectiveness using both objective and subjective
evaluation techniques.
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