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Sampling Effort and Uncertainty Assessment in Capture Recapture Studies

by Su Na Chin

This thesis examines the optimal allocation of sampling effort in capture-recapture stud-
ies, with the aim of improving population size estimation. Sampling effort is a critical
component of study design, yet it is often determined without a systematic approach.
To address this gap, a simple, practical framework is developed using theoretical insights,
basic mathematical computations, and computer simulations. The analysis begins with
the Lincoln—Petersen model, which involves two primary capture occasions, each com-
prising multiple sub-occasions. When capture probabilities are either constant or follow
a consistent pattern, distributing sub-occasions equally across primary occasions yields
the most accurate estimates. However, when capture probabilities vary and are known
in advance, optimal allocation is better achieved through numerical methods such as the
Newton—Raphson algorithm and simple estimation techniques that incorporate prior infor-
mation. These targeted strategies outperform equal allocation, particularly when capture
probabilities fluctuate significantly over time. The investigation then extends to the
Schnabel model, which focuses on determining the optimal number of capture occasions.
To account for unobserved individuals, the model incorporates zero-truncated count data.
In cases where closed-form solutions are unavailable, the Expectation—-Maximisation
algorithm is employed to estimate parameters. The hierarchical structure is expanded to
scenarios involving multiple capture occasions. When capture probabilities remain stable
or change predictably, uniform sampling effort remains effective. However, in contexts
where capture probabilities decline over time, allocating greater effort in later occasions
leads to more accurate population estimates by compensating for reduced detectability.
The thesis also provides practical recommendations for real-world applications where
resources are limited. The proposed methods support informed decisions about sampling
effort, avoiding reliance on arbitrary or overly conservative designs. By clarifying the
relationship between detectability, study design, and estimation precision, the framework

enables more efficient planning.
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Chapter 1

Introduction

1.1 Background Study

1.1.1 Overview of Capture-Recapture

Capture-recapture methodology has emerged as a vital statistical tool for population
estimation across diverse disciplines including ecology, epidemiology, criminology, and
social sciences (King and McCrea, 2019). In most real-world contexts, observing all
individuals in a population is not possible. This approach addresses the challenge of

incomplete population enumeration by offering robust methods for indirect estimation.

The core methodology involves capturing, uniquely marking, and releasing individuals,
followed by subsequent recapture sessions. Population size is then estimated by analysing
the proportion of marked individuals in recapture samples (Seber and Schofield, 2023;
Amstrup et al., 2006). First developed for wildlife population assessment (Petersen,
1896; Lincoln, 1930), these methods have demonstrated remarkable versatility, finding
applications in human population studies (Sekar and Deming, 1949), linguistics (Williams
et al., 2014), and digital technology research (Lu and Li, 2010).

In public health, capture-recapture offers a cost-effective solution for disease surveillance,
particularly for estimating prevalence of under-reported conditions (Ramos et al., 2020;
Bohning et al., 2020). Its ability to quantify hidden populations and uncover concealed
phenomena has made it an indispensable analytical tool. The method’s strength lies in
its capacity to integrate data from multiple independent sources, thereby enhancing the
evidence base for health policy decisions (Bailly et al., 2019). The broad use of capture-
recapture methods across diverse fields highlights their adaptability and real-world

usefulness.
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1.1.2 Uncertainty Assessment

Providing only a point estimate without showing its reliability can be misleading in
population studies (Williams et al., 2002). This is particularly true for capture-recapture
studies, where researchers work with incomplete data to estimate population sizes
(Borchers et al., 2002; Seber, 1982). Since these estimates rely on indirect observations,
they carry more potential for error, making it crucial to measure and report their

uncertainty.

Uncertainty represents the possible error in population estimates. Researchers typically
measure it using confidence intervals, standard errors, and coefficients of variation
(Buckland and Garthwaite, 1991). These measures help determine if the data quality
supports strong conclusions. For instance, wide confidence intervals indicate low precision,

suggesting a need for more data or improved methodology.

Proper uncertainty assessment has real-world importance. In conservation, healthcare, or
policy-making, decisions based on uncertain data may lead to poor outcomes (Williams
et al., 2002). Transparent reporting of uncertainty helps decision-makers understand the

limitations of the data, leading to better-informed choices.

1.1.3 The Challenges of Sampling Effort

Sampling effort refers to the amount of resources, such as the number of capture occasions
or the intensity of sampling activities, allocated toward capturing and recapturing
individuals from a target population (Xi et al., 2008). The magnitude of sampling effort
directly affects the precision of population size estimates, as it governs the amount of

information available for analysis.

Designing an effective capture-recapture study involves a balancing resource constraints
against the desired level of estimation precision (Robson and Regier, 1964; Thompson
et al., 1998). Practical constrains such as limited funding, labour and time often restrict
sampling intensity, potentially resulting in imprecise or biased population estimates.
Generally, greater sampling effort leads to more precise estimates by reducing uncertainty.
However, this relationship follows a law of diminishing returns. While initial increases in
effort produce substantial gains in precision, further additions yield progressively smaller

improvements (Kordjazi et al., 2016).

The acceptable level of uncertainty in a study directly influences the required sampling
effort (Robson and Regier, 1964). Studies that can tolerate broader confidence intervals
may proceed with fewer sampling occasions, conserving resources. Conversely, achieving
highly precise estimates necessitates more sampling effort, increasing the demand for

time, labour, and funding.

Determining sampling effort for a study is a self-starting process. The accuracy of

estimates associated with a given sampling effort depends on the population size being
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sampled. Since the study’s goal is often to estimate this unknown population size,
predicting accuracy in advance is difficult. Essentially, estimating the study’s precision is
like trying to determine the population size before the experiment, which makes it hard

to define the necessary sampling efforts.

The solution to this dilemma can be found in a pilot study, or by making an informed
judgement about the population size based on prior knowledge and experience. To avoid
planning the experiment entirely in the dark, it is necessary to make educated guesses,
at the very least about the order of magnitude of the population.The purpose of the
experiment can then be regarded as the objective confirmation or refinement of these
earlier estimates (Robson and Regier, 1964). Prior empirical work or expert knowledge
can be incorporated into simulation-based methods for the purpose of determining the

required sampling efforts (Broder et al., 2020; Paterson et al., 2019)

1.2 Problem Statement

Although capture-recapture strategies are widely utilized, insufficient consideration is
given to the level of sampling effort. Quantifying the necessary sampling effort for
accurate estimations in a capture-recapture study is challenging, particularly when the
sample size depends on multiple aspects, including the detectability of the animals,

desired level of precision, and scope of the investigation (Schorr et al., 2014).

Choosing the right sample intensity and length to achieve a desired degree of precision is
a difficult task that might introduce bias or impact estimations if there is insufficient data
(Kordjazi et al., 2016). One of the most critical considerations to make when designing a
capture-recapture technique is the quantity of resources to be put in the experiment in
terms of personnel, time, and money. The higher the investment, the more accurate the
population size estimate will be if resources are allocated properly (Robson and Regier,
1964). A good planning requires (1) marking enough animals to in-sure recapture in
other populations, (2) sampling enough populations to detect the range of dispersal, and

(3) sampling for a duration sufficient to allow movements among populations.

Previous researchers have emphasised the necessity of reporting measures of uncertainty
alongside population size estimates (Borchers et al., 2002; Seber and Schofield, 2023), yet
practical guidelines on balancing this uncertainty against available sampling resources
remain limited. Without a clear framework for assessing the relationship between
sampling effort, detectability, and uncertainty, researchers may resort to arbitrary or
suboptimal study design. This gap in methodology is particularly critical in cases
involving heterogeneity or elusive species, where capturabilities can vary considerably

across sampling occasions (Pollock et al., 1990; Borchers et al., 2002).
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Thus, this study addresses the need to develop and validate a structured framework for
systematically determining optimal sampling effort allocation and explicitly assessing

uncertainty in capture-recapture studies.
The research questions for this study include: -
1. How often should one plan for recapture occasions in capture-recapture method?

2. How precise is the population size estimation with the optimum design?

1.3 Aim and Objectives

This study aims to investigate how the sampling effort can be effectively determined in

capture-recapture studies to improve the precision of population size estimates.
The specific objectives of this study includes:

1. To develop a theoretical framework for identifying the optimal allocation of sampling

effort in capture-recapture studies.

2. To examine the application of a hierarchical structure within the Lincoln-Petersen

design .

3. To determine the optimal sampling effort allocation for population estimation in

Schnabel census.

4. To extend the hierarchical sampling effort framework to Schnabel census models.

1.4 Underlying Assumptions

The validity of the capture-recapture method relies heavily on a set of core assumptions

underlying the data collection process (Gerritse et al., 2015).

1. The population is assumed to be closed, meaning no birth, death, immigration, or

emigration occurs during the sampling period.

2. Captures are assumed to be independent events. Each individual must have the

same probability of being captured on each occasion, regardless of past captures.

3. Homogeneous capture probability is assumed across all individuals, implying equal
likelihood of detection.

4. No tag loss or misidentification occurs, ensuring that individuals can be accurately

matched between capture events.

This thesis primarily considered models in which these assumptions are fully satisfied.

However, to reflect more realistic conditions, some models introduced in later chapters
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incorporate heterogeneity in capture probabilities, allowing for individual or time variation

in detectability.

1.5 Report Organisation

Chapter One provides an an overview of capture-recapture method, highlights the
importance of uncertainty assessment, and discusses the challenges in determining
sampling effort for reliable and efficient study design. The chapter also presents the
problem statement and outlines the aim and objectives set to be achieved. Additionally,

the scope of the study and the underlying assumptions are defined in this chapter.

Chapter Two provides review of the existing literature and relevant studies related to
the capture-recapture method. This includes an explanation of the basic concepts and
assumptions of capture-recapture studies, as well as the estimation and analysis methods.
The chapter also highlights the importance of sampling efforts in capture-recapture

studies.

Chapter Three focuses on the Lincoln-Petersen experiment with a hierarchical design.
This chapter proposes the sampling strategies for this type of study and demonstrates the
impact of different levels of sampling effort on the accuracy and precision of population

size estimates.

Chapter Four examines sampling efforts within the context of a Schnabel census, employ-
ing the framework of the zero-truncated binomial distribution. This chapter explores
how the application of this specific method can enhance the accuracy and precision of

population estimates through careful consideration of sampling efforts.

Chapter Five extends the hierarchical Lincoln-Petersen method to the hierarchical
Schnabel census approach. It explores how different strategies for distributing effort

across sub-occasions influence the precision of population size estimates.

Chapter Six summarises the main findings of the thesis, highlighting key insights on
optimal sampling effort and uncertainty in capture-recapture studies. It also discusses

limitations of the current work, and directions for future research.
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1.5.1 Notation and Definition

The statistical methods for capture-recapture study in this thesis involves some parameters
and statistics. In this section, some general notations and definitions are explained here

so that readers could easily understand the context.

N actual population size of the target population.

N estimator of population size.

T total number of capture occasions.

n number of individuals captured at least once during the study.

0 individual capture probability on a single capture occasion.

I frequency of capturing an individual for exactly x times.

fo frequency of unobserved individuals.

Do probability of non- detection across the study.

Yi; indicator variable of the i-th individual being identified on the j-th occasion,

v 1 if the i-th individual is captured on the j-th occasion.
0 otherwise.



Chapter 2

Literature Reviews

2.1 Introduction

The capture-recapture method is a widely used technique for estimating the size of
animal or human populations. Applying this method requires careful consideration of
various factors, such as the sampling design, the assumptions, and the estimation and
analysis methods. In this chapter, a comprehensive review of the existing literature and
relevant studies on the capture-recapture method are presented. This chapter highlights
the importance of sampling efforts in capture-recapture studies, and how they affect the
accuracy and precision of the estimates. This chapter also describes the basic concepts
and assumptions of capture-recapture studies, as well as the different estimation and

analysis methods that have been developed over the years.

2.2 A Brief History of Capture-Recapture

Historically, capture-recapture method can be traced back to Graunt’s use in estimating
England’s population in 1662 (Graunt, 1939; Cochran, 1978) and Laplace’s similar work
in France during 1783 (Laplace, 1786). Nevertheless, the formal conceptualization of
the capture-recapture technique is attributed to Petersen (1896), who initially applied
it to assess fish populations. Subsequently, Lincoln (1930) independently rediscovered
the method to estimate waterfowl abundance in North America. Since then, capture-
recapture techniques have widely been adopted to study animal abundance (Pollock
et al., 1990; Hickey and Sollmann, 2018), survival probabilities (Lebreton et al., 1992;
Reinke et al., 2020), mortality rates (Kordjazi et al., 2016; Jiménez-Ruiz et al., 2023),
and migratory patterns (Matechou and Caron, 2017; Matechou and Argiento, 2023).

In human population research, an early significant use was by Sekar and Deming (1949),
who employed capture-recapture methods to estimate birth and death rates as well as
the completeness of civil registration systems. This study marked the emergence of

capture-recapture as an important technique in public health and epidemiology, providing
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an alternative to traditional prevalence research methods such as cross-sectional surveys
and case counting. The strength of capture-recapture in epidemiological contexts lies in
its ability to estimate undetected cases by combining data from independent registers.
Initial epidemiological applications appeared in studies estimating the incidence of birth
defects (Wittes and Sidel, 1968) and hospital infections (Lewis and Hassanein, 1969).

Since then, its scope in health research has broadened considerably.

Capture-recapture methods are frequently employed to assess the prevalence and incidence
of birth defects (Akkaya-Hocagil et al., 2017; Egeland et al., 1995), drug abuse (Plettinckx
et al., 2021; Raag et al., 2019), infectious diseases (Rocchetti et al., 2020; Straetemans
et al., 2020), cancer cases (Ghojazadeh et al., 2013; Plouvier et al., 2019), and dementia
prevalence (Bailly et al., 2019; Sanderson et al., 2003). Beyond health sciences, the
capture-recapture approach has demonstrated versatility in fields such as criminology
(Tajuddin et al., 2022; Charette and van Koppen, 2016), information and communication
technology (Lu and Li, 2010; Petersson et al., 2004), and linguistics (Williams et al., 2014;
Alderete and Davies, 2019). The profound significance of the capture-recapture method
in the domain of data analysis is substantiated by the recent emergence of extensive list
of books, which provide comprehensive introductions and elaborate discussions pertaining
to this methodology (Bohning et al., 2018; Borchers et al., 2002; McCrea and Morgan,
2015; Seber and Schofield, 2023).

2.3 Importance of Sampling Efforts

Sample size and sampling effort influence precision and accuracy of estimates. This was
shown quite early on by Robson and Regier (1964), who investigated how the performance
of the Lincoln-Petersen estimator is affected by varying sample sizes. Likewise, Otis
et al. (1978) stressed that live-capture work needs to have a high number of unique
animals caught as well as maximum numbers of recaptures. Applying 26 years of slider
turtle capture-recapture data, Burke et al. (1995) examine the impact on accuracy in

estimating meta-population size through sample size and study duration.

Reducing sample size or effort can result in reduced precision in estimates. According to
McKelvey and Pearson (2001), 98 percent of samples in small animal populations were
not enough to measure population density. Similarly, Howe et al. (2013) revealed that
15-25 traps were insufficient for calculating female black bear density. In reality, greater
sample size is often desirable to get a more precise estimate, but that is not feasible
at all times based on constraints in terms of logistics or finance. Kordjazi et al. (2016)
illustrates that precision improves marginally with increased level of effort in sampling.
This suggests that there is some point at which sampling effort and precision could both
be optimised, where high-quality data can be collected at non-excessive costs in terms of
effort and resources. At the end, it is a trade-off between desired precision on one hand

and study feasibility on another (Conner et al., 2015).
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Previous research has suggested minimum sampling requirements to minimize bias.
Gaskell and George (1972) mentioned that less than ten recaptures tend to lead to
bad estimation. Similarly, Seber (1982) and Krebs (2014) advised that for a Lincoln-
Petersen design, product of sample sizes on both occasions must be higher than that
for the population size with at least seven recaptures of marked animals. Robson and
Regier (1964) presented an even more conservative rule, suggesting that ny X ng > 4N is
needed to achieve minimum estimation bias under random sampling. Supporting this,
Greenwood and Robinson (2006) demonstrated that the estimates in Lincoln-Petersen
studies become biased when fewer than eight marked individuals are recaptured in the
second sample. Xi et al. (2008) tested minimum proportion to be captured in order to
achieve reliable estimates for population size under multiple capture-recapture models,

including discrete-time models that can be used for the Schnabel census.

Despite these recommendations, sampling efficacy can be limited by biological, en-
vironmental, and logistical constraints. Catchability is dependent on individuals in
capture-recapture experiments, which is subject to seasonal fluctuations, behaviour, or
environmental factors (Kordjazi et al., 2016). Catchability in animals such as lobsters
(Frusher et al., 2003), crabs (Williams and Hill, 1982), and crayfish (Somers and Stechey,
1986) is smaller in colder months. Physiological processes such as moulting and copula-
tion may decrease chances of being caught, thus compromising precision and validity in

estimates of survival rates (Kelly et al., 1999; Ziegler et al., 2004).

Capture probability is another primary determinant influencing sampling efficiency.
Simulation experiments with different sample sizes (ranging from 1,000 to 100,000
marked items per year) by Schorr et al. (2014) have shown that making individuals more
detectable improves the precision in estimates considerably. This is in agreement with
Burnham et al. (1987), who emphasized that detectability is an important determinant
for the required sample size. Furthermore, Papadatou et al. (2012) provided evidence
that enhancing detectability combined with using contemporary analytical methodology

reduces sample numbers while making estimates stronger.

2.4 Concept of Capture-Recapture

The fundamental concept of capture-recapture involves sampling or capturing individuals,
marking them, releasing them back into the population, and then conducting a second
survey to recapture them, count them, and mark them again. Subsequently, a tally is
taken of the number of individuals recorded in the subsequent surveys that have been
previously marked. The survey can be conducted for a total of T iterations. The number
of individuals being identified from all the surveys is recorded as the capture-recapture
histories. The observed frequencies derived from the capture-recapture histories are
utilized to estimate the size of the targeted population, or the count of individuals that

are either missing or have not been observed. In ecological studies, models are often
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applied to data collected from several capture events. However, in research involving
human populations, the data typically comes from multiple lists or repeated observations

on a single list instead of multiple capture occasions (Bird and King, 2018).

In typical capture-recapture studies, each individual can be uniquely identified during
every capture event. This allows researchers to create detailed capture histories for
each individual, documenting when they were captured or missed throughout the study.
Traditionally, unique identification is achieved by marking the individual during its first
observation. New technologies enable researchers to uniquely identify individual, such as
the use of DNA and motion sensor trap. Marking using these technologies has several
benefits as they do not affect the subjects by the additional markings and such marking
are generally not prone to being lost. However, the downside is that uniquely identifying
individuals can become more challenging, potentially leading to increased uncertainty in
the capture histories (King and McCrea, 2019).

2.4.1 Fundamental Assumptions

The results of the capture-recapture method are highly dependent on several assumptions

underlying the data (Gerritse et al., 2015). These assumptions include:

e Closed population - The population must remain constant throughout the study
period, with no immigration, emigration, births, or deaths. For example, if individ-
uals appear in one sample but are not present in others, this will alter the capture
probability across samples and lead to either an underestimation or overestimation

of the population size V.

e Independence - Each capture event must be independent of the others. Positive
dependence (trap-happy behaviour) increases recaptures and can underestimate
population size, whereas negative dependence (trap-shy behaviour) decreases re-

captures and can overestimate population size.

e Equal catchability - Every individual in the population should have an equal chance
of being captured. If some individuals have a lower capture probability than others,

N is likely to be underestimated.

e Reliable marks or tags - No marks or tags should be lost, ensuring that individuals
can be accurately matched from initial capture to recapture. Missing true matches
will falsely reduce the number of recaptured individuals, leading to an overestimation
of N.

Violation of assumptions may affect the accuracy of the estimate. To address this issue,
researchers have developed various variants of models that accommodate the violation of
these assumptions (Gaskell and George, 1972; Skalski and Robson, 1982; Wolter, 1990;
Seber et al., 2000).
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2.5 Two-Occasion Model

The Lincoln-Petersen estimator, named after biologists F.C. Lincoln and C.J.G. Petersen,
is a fundamental capture-recapture method that involves a single marking occasion
followed by a single recapture event. This method is widely used to estimate population
sizes in both animal and human populations, with the latter often referred to as the dual-
list method. While the Lincoln-Petersen estimator is relatively simple, it is important
to recognize that its results are heavily dependent on the assumptions outlined in
Section 2.4.1. It is worth noting that capture probabilities can vary between occasions,

with 0y representing the probability on the first occasion and 65 on the second.

An individual’s capture history during the study can be denoted as (y1,y2), where y;
takes the value 0 if the individual was not observed and 1 if observed at sampling occasion

j, for j = 1,2. There are three possible observed capture history patterns:

(1,1), (1,0), (0,1).

The pattern (1,1) means the individual was detected in both sampling events, (1,0)
indicates detection only in the first event, and (0,1) represents detection only in the

second. There is also an unobserved case, (0,0), where the individual was never detected.

The data can be summarized in a contingency table, as shown in Table 2.1. The observed
data consists of m, nig, and ng1, representing the number of individuals with each specific
combination of observations at the capture occasions. The count of individuals with
the capture history (0,0), denoted by ngg, is unknown. The total number of observed
individuals is n = m + n19 + np1, while the actual population size, which is the key

parameter of interest, is given by N = ngg + n.

TABLE 2.1: Capture-recapture data with two occasions model.

Occasion 2
1 0
1 m ni0 niy
Occasion 1
0 no1 noo
no N

2.5.1 Lincoln-Petersen Estimator

Assuming a population of size NV, a sample of ny = nig + m individuals was captured and
tagged during the first capture occasion and then released. Consequently, the proportion

of the population that is marked is given by:

n1

N
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During the second capture occasion, ne individuals were captured, of which m were
m
already tagged. The proportion of tagged individuals in this second sample is —.
n2
Assuming that this proportion matches the tagged proportion in the population, we have

m n1

~
~

nag N’

which yields the estimate of the population size:
- n1no
Npp=—=. (2.1)
m
The approximate variance of Nz p is given by:

Var(NLp) _ ning(ny —m)(ng — m)

m3

Further explanation and derivation of this variance formula can be found in Section 3.4.

Various sampling models have been proposed to justify the Lincoln-Petersen estimator
and to estimate its standard error. One commonly used model assumes a multinomial
distribution, which presumes that each individual has an identical capture probability at
each occasion (Chao and Hugginns, 2006). Under this multinomial model, the number of
captures during each occasion is treated as a stochastic variable. In this framework, there
are three distinct capture patterns (10, 01, and 11) and three parameters (N, 71, and
m9), where mp and 79 denote the detection probabilities for the initial and subsequent

occasions.

It is also notable that the Lincoln-Petersen estimator serves as an approximate maximum
likelihood estimator (MLE) for N in this context (Seber, 1982; Bailey, 1951). Applying
large sample theory, where nq, no, and m tend to infinity while maintaining constant

ratios, the likelihood function is given by:

= () ()

Therefore,

¢ =log (Zj) + mlog(ny) + (ng — m)log(N — ny) — nalog(N). (2.2)

Differentiate Equation (2.2) with respect to N gives:

o  ng—m ng
ON N-n; N’
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Hence the MLE of N is:
N . ning

ot
An alternative method uses the hypergeometric model, treating the sample sizes n;
and ngy as constants. This model involves only one parameter, N, and one stochastic

variable, m. Assuming uniform catchability, the MLE for NV is the integer value of the

Lincoln-Petersen estimator (Chao and Hugginns, 2006).

2.5.2 Chapman Estimator

When nj 4+ ng > N, Chapman (1951) proposed an unbiased estimator:

N 1 1
R = (n1+1)(n2 + )_1‘
m—+1

The rationale behind the effectiveness of this estimator in reducing bias lies in addressing
the bias inherent in the Lincoln-Petersen estimator, which is particularly pronounced
when m is small, especially in the scenario where m = 0. When m = 0, indicating that
no individuals are captured twice, the estimate from Equation (2.1) becomes infinite. To
address this issue, an additional individual is added to the count of those captured on
both occasions, thereby ensuring that m is at least one. Consequently, the values of nq,
ng, and N are each incremented by one.

(n1+1)(n2 +1)

m-1
estimate for N + 1. In cases where ni1 + no < IN, the bias of Chapman’s estimator is

1 1
(n1 +1)(n2 + >] (Chao and Hugginns, 2006). Addi-

Chapman’s estimator is based on the insight that provides a valid

N
tionally, Seber (1982) derived the variance for Chapman’s estimator:

approximately given by —N exp [—

n1+1)(n2 +1)(ny —m)(n2 —m)
(m+1)2(m+2)

Var(NC) = (

2.6 Multiple Occasions Model

The extension of two-occasion capture-recapture models into multiple occasions was
introduced by Schnabel (1938) and further refined by Darroch (1958). In this extended
framework, individuals are captured, examined for tags, marked if untagged, and released
across successive capture occasions. Each sampling event contributes to a cumulative
dataset from which population size is inferred. The Schnabel method assumes a closed
population and is widely used for estimating abundance when repeated sampling is
possible (McCrea and Morgan, 2015).

Capture-recapture data in this context are typically recorded as individual capture
histories, where each entry is a binary indicator variable. Let Y;; denote whether individual

i is captured (Y;; = 1) or not (Yj; = 0) on capture occasion j, with i = 1,2,..., N
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and j = 1,2,...,T. These capture histories form the basis for estimating the total
population size. The total number of captures for individual 7 is defined as Y; = Z;‘-le Yi;.
Individuals with Y; = 0 are never observed and therefore absent from the data. The
observed distribution is considered zero-truncated. Estimating the number of unobserved

individuals requires statistical models that account for this truncation.

The summarized datasets in Table 2.3 and Table 2.4 (presented later on page 23)
illustrate the count distribution from the Schnabel census. In particular, Table 2.4
demonstrates the zero-truncated characteristic of capture-recapture data, where only

individuals detected at least once are included, while those never observed are omitted.

2.7 Likelihood Analysis

Since the late 1960s, the standard approach for analysing capture-recapture data has
involved using explicitly defined probability models such as Binomial and Poisson dis-
tributions, with mathematically specified likelihood functions, together with MLE to

estimate the unknown parameters (Manly et al., 2005).

2.7.1 Likelihood Based on Binomial Distribution

When assuming homogeneous catchability throughout the study, the number of captures
X for a given individual across T' capture occasions can be modelled using a binomial

distribution. The probability mass function (pmf) is given by:

T

x)ex(l )T r=01,2,...,T.

px:P(X:x):<

Here, po = (1 — )7, T represents the number of trapping occasions, and  is the capture
probability of each individual at each trapping occasion. Let f, denote the number of
individuals captured exactly = times, for x = 1,2,...,T. Since only individuals with
X > 0 are observed, parameter estimation is carried out by maximising the likelihood

function based on the zero-truncated Binomial distribution:

T . - fo
L(9) = 1;[1 [1_<1_@T <x>91(1 —O)Tm] 7

with respect to 6.

2.7.2 Likelihood Based on Poisson Distribution

Assuming the capture count X follows a Poisson distribution, the pmf is:

-\
pe=P(X=12)=""- 2=012,...
ZT.
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Here, py = e~*. Parameter estimation is performed by maximising the likelihood function

based on the zero-truncated Poisson density:

T = fa
1 =11 [x!(ei § 1)] |

with respect to A.

2.7.3 Likelihood Based on Beta-Binomial Distribution

Assuming the capture count X follows a Binomial distribution
X ~ Binomial(T', 6),
while the capture probability 8 follows a Beta distribution
6 ~ Beta.(«, ).

The pmf is

(T)B(a+x,ﬁ—|—T—x) 019 -

B(a, B) ’

where B(-,-) denotes the Beta function. The likelihood function based on the zero-

truncated Beta-Binomial density may be written in the form of:

L) =111, ) 305 - Blap s 1)

r=1

r KT) Bla+z,8+T—x) fﬁ

2.7.4 Likelihood Based on Binomial mixture Distribution

Assume the capture count X follows a Binomial mixture distribution with & components

of the Binomial distribution, the pmf is:
k
P(X =z)= ij Bino(z|T,6;), x==0,1,2,...,T,
j=1

where

T
Bino(z|T,0;) = <m>9§(1—9j)T—w, j=1,2,...,k,

with Z?:l w; = 1. The likelihood based on the zero-truncated Binomial mixture model

may be written as:

fa

T (T\px(1 _p\T—z
L(O,w) = H [Z;;_l w](x)gj(l GJ)T

a1 SE wi(1-6;)7T
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where 8 = (61, ...,0;) and w = (w1, ..., wy) are the component-specific parameters and
weights, respectively. Since both 0 and w are unknown, the likelihood function must

be maximised jointly with respect to both sets of parameters, subject to the constraint
k
Zj:]_ 'LUJ =1.

2.7.5 Model Selection

Choosing an appropriate model for a dataset requires balancing goodness-of-fit against
complexity. The Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) provide quantitative measures for this comparison. The formulas are given by:
AIC = —21log L 4+ 2K,

BIC = -2 log L + K log n,

where L is the model’s maximum likelihood, K the parameter count, and n the number of
observations. The model with lowest AIC or BIC values represents the optimal trade-off

between fit and simplicity.

2.8 Estimating Population Size

While two-occasion estimation is straightforward (see Equation (2.1)), analysing Schnabel
census data (> 3 occasions) requires more sophisticated approaches. MLE is typically
employed, where numerical optimization identifies parameter estimates that maximize
the likelihood function. These estimates then inform the Horvitz-Thompson estimator to

derive population size.

2.8.1 Horvitz-Thompson Estimator

Let pg denote the probability of an individual remaining undetected. Assuming homoge-
neous detection probabilities, the population size N decomposes into observed n, and
unobserved Npg components:

N =n+ Npo.

Rearranging yields the Horvitz-Thompson estimator:

N =

1—po

Two approaches exist for estimating pg under homogeneity: the Good-Turing estimator
and EM algorithm-based MLE.
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2.8.2 Good-Turing Estimator

Developed by Good (1953), this method estimates undetected individuals using capture
frequencies. Let f, denote the number of individuals observed exactly x times across
T capture occasions. Then, the total number of observed individuals is n = 25:1 fas
and the total number of captures is C' = 25:1 x fy.Based on these quantities, the

Good—Turing approach provides an estimate of pg that an individual was never captured.

For example, the Binomial model estimates

fl T/(T-1)
ﬁO = (C) )

yielding the population estimator:

~ n

NGT = 1— (fl/C)T/(T—l).

T
For large values of T', the approximation ﬁ ~ 1 holds, simplifying the estimator to:
~ n
Nor = ———i—1.
T I-(h/0)

Under Poisson model, also simplifies to po = f1/C. As noted by Bohning et al. (2018),

this approach proves particularly useful for large samples.

2.8.3 Expectation-Maximisation Algorithm

The EM algorithm is an iterative computational technique commonly used to estimate
parameters when data are incomplete or partially observed. The method assumes that
individual capture counts follow a discrete distribution, and only those with X > 0 are
observed. The capture events are considered independent, and individuals are assumed

to have identically distributed capture probabilities unless stated otherwise.

Let f, be the number of individuals captured exactly x times, for x = 1,2,...,7T, and
let n = 25:1 fz- Since fy, the count of individuals with zero captures, is unknown, it is

treated as missing data. The complete-data likelihood is:

T
Lcomplete(a) = H px(e)fz7
=0

with corresponding log-likelihood:

T
Ecomplete = Z Ja IngSL‘(e)
=0
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In the E-step, the conditional expectation of fy given the observed frequencies is computed

using the current parameter 0:

e _ . po(0)
1-po(A)

This conditional expected fy is then substituted into the complete-data log-likelihood.

In the M-step, the parameter estimate § is updated by maximizing the completed log-
likelihood fcomplete With respect to . The EM steps are iterated until convergence. The
final 4 is used to estimate py, which is then incorporated into the Horvitz-Thompson

estimator to obtain N.

2.9 Numerical Optimization Methods

Parameter estimation in capture-recapture model is usually done by maximising complex
likelihoods for which closed-form solutions cannot be determined. Two widely used
numerical approaches are employed in this thesis, the Newton-Raphson method, which
is a traditional approach to utilising both first- and second-order derivatives, and the
quasi-Newton methods, which use gradient evaluations to approximate second-order

information in an efficient manner, suitable for large-scale computational effort.

2.9.1 Newton-Raphson Method

The Newton—Raphson method is a well-established technique in numerical optimization,
frequently used to find the maximum or minimum of a differentiable function. It operates
by iteratively updating parameter values to locate a point at which the gradient of the
function equals zero, which is the function’s root or stationary point. The updated

parameter is obtained using:

gr+1) — g(r) _ [H (gm)]*l v (9<r>> _

In this expression, 8(") represents the estimate at the r-th iteration, Vf (B(T)) is the
gradient (first derivative), and H (6(")) denotes the Hessian matrix (second derivative)

of the considered function at that point.

One of the main advantages of the Newton-Raphson method is its quadratic rate of
convergence under regularity conditions and with a good initial guess, it can converge
very rapidly to the true optimum (Ypma, 1995). This efficiency makes it popular in

many statistical contexts, particularly in maximum likelihood estimation.

However, the method is not without challenges. Its performance depends critically on the
accuracy of the gradient and Hessian. In practice, the Hessian matrix may be difficult to

compute or invert, especially in high-dimensional settings or with poorly conditioned
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problems. These limitations can lead to instability or slow convergence, particularly if
the starting value is far from the optimum or the likelihood surface is flat or irregular
(Lange, 2010).

Despite these issues, the Newton—Raphson method remains a powerful and elegant tool
when applied under appropriate conditions. Its speed and theoretical properties make it
valuable for many small- to medium-scale problems, though alternative methods may be

preferred for large-scale or non-convex optimizations (Lange, 2010).

2.9.2 Quasi-Newton Method

Quasi-Newton methods are a family of optimization algorithms that offer a computa-
tionally efficient alternative to the Newton-Raphson method. Rather than calculating
the exact Hessian matrix of second derivatives at each iteration, quasi-Newton methods
build up an approximation to the inverse Hessian using only the gradient information.
This greatly reduces the computational burden, especially in high-dimensional problems

where evaluating or inverting the Hessian can be costly or unstable.

A widely used member of this family is the BFGS (Broyden—Fletcher—Goldfarb—Shanno)

algorithm, which updates the inverse Hessian approximation using the following rule,

T T T
Bfl = (1= Snyn B—l I— ynsn + SnSn
il yq—zrsn " y7—1rsn yq—zrsn 7

where

Sp = 0,41 — 0, is the change in parameter estimates,
Yn = Vf(0,41) — Vf(0,) is the change in gradients,
B-

" 1 is the approximation to the inverse Hessian matrix at iteration n.

In this thesis, the optimization algorithm applied is the L-BFGS-B (Limited-memory
BFGS with Box constraints), which is a modification of BFGS designed for large-scale
problems with boundary constraints on parameters. The "limited-memory" approach
avoids storing the full matrix B, by keeping just a small number of recent update vectors
sp and y,, thus making the algorithm computationally efficient in high dimensions (Byrd
et al., 1995).The approach further enables easy introduction of simple Box constraints
(lower and upper bounds) on parameters, an advantage in applied statistical models to

keep estimates within relevant or interpretable bounds.

2.10 Uncertainty Assessment Methods

Uncertainty is a good indicator in determining the optimal sampling efforts for a capture-

recapture study, as it reflects the precision and accuracy of the population estimate.
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Several approaches can be considered to estimate the variances of the estimate, such as

using bootstrap methods, and using conditional moment.

2.10.1 Conditional Moments

Considering the population size estimator N = n + fo, the variance of this estimator
originates from two factors: one associated with the random variable n and the other
one from the estimator fy (Béhning et al., 2018). Leveraging the Law of Total Variances,
a straightforward formula for the variance of the population size estimator is provided as
follows:

Var(N) = Var, {E(N|n)} + E,{Var(N|n)},

where [E,, and Var,, refer to the first and second moments of the marginal distribution of
n.
2.10.2 The Delta Method

The delta method is a standard statistical tool for approximating the variance of an
estimator that cannot be expressed as a simple sum of observations (Hosmer et al., 2008).
At its core, the method linearises a non-linear function using a first-order Taylor series
expansion around the mean of the underlying random variable. For the delta method to

apply, the function must be continuously differentiable without sharp discontinuities.

Consider a smooth function f(X) of a random variable X. The first-order Taylor

approximation near the mean p of X is:

F(X) = f(p) + (X —p) (1),

where f’(u) is the derivative of f evaluated at . Using this approximation, the variance
of f(X) simplifies to:

Var [f(X)] = Var(X — ) [f" ()]
~a? [ (W),

with o2 denoting the variance of X. The delta method estimator replaces p and o with

their sample counterparts, yielding:

Var [f(X)] = &% [f' (1)) .

2.10.3 Bootstrap Method

Application of the bootstrap or re-sampling approach combined with robust percentile

interval has been studied by Buckland and Garthwaite (1991) for purpose of variance



2.10. Uncertainty Assessment Methods 21

estimation as well as for construction of confidence intervals for estimation in populations.
Bootstrap techniques have an easy implementation irrespective of the particular model

being analysed. The bootstrap algorithm for use in variance estimation is as below.

The bootstrap method is designed based on the assumption that the capture-recapture
history can be defined by multinomial likelihood with 7"+ 2 parameters (N, po, p1,p2, - - -
, pr) (Anan et al., 2017). The pmf is given by:

N fo, f1, f2 fr
bo Py Py - DPr -
<f07f17f2a"')fT> 0 712 T

For simulation studies where the true population size N and the full probability model
(po,p1,- - -, pr) are assumed known, a parametric bootstrap can be used for estimating the
variance of the population size estimator. Each individual is drawn from the multinomial
distribution with full probability model (N, pg, p1,p2,--- ,pr), and the parameters are

estimated. The bootstrap algorithm for variance estimation is as follow:

Bootstrap Algorithm for Variance Estimation of Population Size

1. Use N as described in the previous sections, or use the true N if it’s available. This

provides an estimate of f.

2. The estimates of capture-recapture probabilities p are obtained using the relative

N
NanNv ’N'

frequencies:

3. Re-sample N or N capture histories under multinomial distribution with parameter
estimates (N, p), and count the associated frequencies (f*). This can be done

using the function rmultinorm() in R.

4. For each sample generated, estimate N. In the case when true N is available, the
true fp is ignored. If N is not an integer, Buckland and Garthwaite (1991) suggest

to round it to the nearest integer value.

5. Repeat step 2 and step 3 for B times and compute the following statistics:

a) mean of population size



22 Chapter 2. Literature Reviews

2.11 Application of Capture-Recapture

This section presents several datasets derived from capture-recapture studies. These real
examples illustrate the structure of capture-recapture data and provide insight into the
sampling efforts involved. Examining these datasets offers understanding of how data is

collected and organized in capture-recapture studies.

2.11.1 Alzheimer’s Disease in Alpes-Maritimes

Bailly et al. (2019) used two data sources to estimate the incidence of Alzheimer’s disease
in France in the department of Alpes-Maritimes: the French National Alzheimer Database
(BNA) and the health insurance cohort (HIC). In 2010 or 2011, residents who visited
a specialist in memory clinics, were exempt from co-payment for Alzheimer’s, or were
prescribed medication for Alzheimer’s were included in the study.

TABLE 2.2: Contingency table of Alzheimer’s disease cases identified by the French

National Alzheimer Database (BNA) and the Health Insurance Cohort (HIC) during
2010-2011. ngg represents the number of cases missed by both sources and is

unobserved.
HIC
1 0
1 856 1738 2594
BNA
0 2968 nn)
3824 N

An overall total of n = 5562 was detected, 3824 from HIC, 2594 from BNA, and 856
reported in common. The overlap between sources is indicated in the contingency table in
Table 2.2. In the table, ngy denotes the number of individuals missed by both sources and
is not directly observed. Under an assumption of independence between systems, Lincoln-
Petersen estimator yielded a population size estimate of Nyp = 11588(SE = 285.621),
while the Chapman estimator produced No = 11581(SE = 285.047).

2.11.2 Golf Tees in St. Andrew

Table 2.3 presents data from a controlled capture-recapture experiment conducted in
St. Andrews, Scotland, and described in Borchers et al. (2002). In this study, a total
of 250 golf tee clusters were distributed within a fixed area, simulating a population
of stationary individuals. The goal was to evaluate how well capture-recapture models

could estimate population size under known conditions.

Eight observers independently searched the area once each, mimicking 7' = 8 capture
occasions. A cluster was considered “captured” if it was detected during a particular
search. Table 2.3 shows the frequency distribution of clusters by the number of times
they were detected. Of the 250 golf tee clusters, 162 were detected at least once, while
88 remained undetected (fp = 88).
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TABLE 2.3: Number of identifications per golf tee for the capture-recapture experiment
of recovering 250 golf tees in St. Andrews.

Number of Identifications () Frequency (f.)

88
46
28
21
13
23
14
6
11

)

00 ~J O Ui Wi

2.11.3 Snowshoe Hare in Alaska

The snowshoe hare data were originally collected by Cushwa and Burnham (1974) in
1972, north of Fairbanks, Alaska, and later presented by Otis et al. (1978). Over T' = 6
trapping occasions, n = 68 distinct hares were captured. The number of captures for
each of the six occasions was 16, 28, 20, 26, 23, and 32, respectively. The capture count
distribution is summarized in Table 2.4, which details the frequency of how many times
a hare was captured across the six trapping occasions. For instance, f; = 25 hares
were captured exactly once, while fo = 22 hares were captured exactly twice, and so on.
However, since not all hares in the population were captured, the list is incomplete, and
the number of hares that were never captured, fp, remains unknown.

TABLE 2.4: Frequency distribution of snowshoe hares by number of captures over
T = 6 trapping occasions.

Number of Captures (x) Frequency (f.)
1 25
2 22
3 13
4 5
5 1
6 2

2.11.4 Cottontail Rabbits in Tennessee

The study by McWherter (1991) aims to estimate the density of cottontail rabbits in
a 2b-hectare area at TVA’s Land Between the Lakes, Stewart County, Tennessee. Live
trapping was conducted over three distinct periods: March, August, and December 1985.
Each period consisted of 15 consecutive days, resulting in a total of 7' = 45 trapping
occasions. During these periods, n = 114 rabbits were captured across 241 trap events.

Specifically, the number of individual rabbits captured was 40 in March, 46 in August,
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and 66 in December. Table 2.5 summarises the capture data from the three 15-day

trapping sessions.

TABLE 2.5: Capture data for cottontail rabbits across three 15-Day trapping sessions.

15-day Rabbits New Recaptures” Total
trapping month captured rabbits captures
March 40 40 19 59
August 46 37 18 64
December 66 37 52 118
Total 152 114 89 241

* Number of recaptures within 15-day trapping period.

2.11.5 Cottontail Rabbits in Ohio

The study by Edwards and Eberhardt (1967), later republished by Chao (1987), involved
an investigation on a restricted population of known size using live-trapping techniques.
The research was conducted in a 4-acre rabbit-proof enclosure at the Olentangy Wildlife
Experiment Station, Ohio, in October 1961.

TABLE 2.6: Frequency of capture counts for cottontail rabbits across 18 trapping
occasions. Captures beyond 7 omitted due to zero counts.

Number of Captures (x) Frequency (f.)
1 43

N OO W N
— N O O o

N = 135 wild cottontail rabbits were released into the enclosure. Over T' = 18 consecutive
nights, n = 76 of these rabbits were captured. Specifically, f; = 43 rabbits were captured
once, fo = 16 twice, f3 = 8 three times, fy = 6 four times, fg = 2 six times, and f; =1
seven times, totaling 142 captures. The known true population size allowed for the
calculation of uncaptured rabbits as fy = 135 - 76 = 59. The capture data is summarized
in Table 2.6.

2.11.6 Bangkok Heroin Users

The study by Lanumteang (2011) investigated patterns of heroin user contacts in Bangkok,
Thailand, during the year 2001. Data were collected by the Office of the Narcotics Control
Board (ONCB), in collaboration with the Drug Abuse Prevention and Treatment Division,
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the Health Department, and the Medical Service Department of the Bangkok Metropolitan
Administration. These data were drawn from 61 private and public treatment centres

across the Bangkok metropolitan area.

The dataset, summarized in Table 2.7, comprises records from a total of n = 5515 heroin
users. Each user’s treatment history is represented by the number of treatment episodes
they experienced during the year, ranging from 1 to 11. Specifically, f; = 3137 individuals
were observed only once, while fo = 1129 were observed twice. The remainder were
recorded with between three and eleven treatment episodes. The number of unobserved
or hidden drug users, denoted as fy, remains unknown. In this dataset, the number
of capture occasions, T, is determined by the maximum number of recorded treatment

episodes. Accordingly, T' = 11 represents the highest count of episodes observed in the
dataset.

TABLE 2.7: Frequency distribution of heroin users in Bangkok (2001)
by number of treatment episodes.

Number of Episodes (z) Frequency (f;)

3137
1129
928
314
185

—_

© 00 J O UL i W N
—
\V]
\]

— =
= O
_= o O







27

Chapter 3

Sampling Effort in Hierarchical

Lincoln-Petersen Models

3.1 Introduction

This chapter focuses on how to optimise sampling effort in hierarchical Lincoln-Petersen
models. It begins by introducing the key concepts, including the estimator of the

population size and how the variance of the estimate is calculated.

The chapter then explains how sampling effort can be structured within a hierarchical
design. The chapter first explores scenarios where the capture probabilities are fixed and
known. Two common situations are considered: when capture probabilities are equal

and when they are proportional across occasions.

The second part of the chapter deals with more complex settings where capture probabili-
ties are not known. A pseudo-Bayesian approach is introduced to handle this uncertainty.

The final sections apply the hierarchical design to time-window data.

3.2 Hierarchical Structure in Lincoln-Petersen Model

Lincoln-Petersen method is widely used to estimate population size in both animal and
human population. While Lincoln-Petersen is relatively simple, inefficient designs risk
underestimating the population size, especially of the elusive or rare species, which
exhibit patchy distributions and low detectability, resulting in datasets dominated by
non-detections (Thompson, 2004). In epidemiology, zero-inflated data from incomplete
registries obscure true disease prevalence. The under-reporting of COVID-19 cases, for
instance, led to inaccurate fatality rate estimates and impaired response efforts. (Bohning
et al., 2020).

Hence, it is often practical to employ multi-stage sampling strategies in a capture-

recapture study. Each stage involves sampling within a specific time window, which can
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be continuous or discrete. For example, a researcher may conduct repeated trapping
sessions over several nights during the first capture occasion, followed by a pause before
conducting additional nights of trapping during the subsequent capture occasion. Two
capture occasions in a Lincoln-Petersen model can be hierarchically levelled into a number
of sub-occasions which totals a number T, as illustrated in Figure 3.1. Traditional capture-
recapture method treat capture occasions as single stages, ignoring the hierarchical
potential to subdivide effort into sub-occasions that adaptively boost detectability. By
framing sampling effort as a divisible resource, this hierarchical approach addresses the

‘too few recaptures’ issues in studies of rare or elusive populations.

Total capture
occasions, T=T, +T,

Capture Capture
occasion 1 occasion 2

Sub-occasion Sub-occasion
1 1
2 2

Sub-occasion Sub-occasion
T T

FIGURE 3.1: A hierarchical structure for a Lincoln-Petersen model.

A key limitation in the previous studies is the assumption that sampling effort is evenly
distributed across capture occasions, regardless of changes in detectability. They did
not explore how effort could be strategically shifted between sub-occasions to maximise
detection efficiency. This issue is particularly relevant for rare or spatially scattered
populations, where zero-inflated data and logistical fieldwork constraints make efficient
sampling strategies essential. Current methods fail to provide a systematic way to

optimize effort allocation in hierarchical designs, leaving a gap in the field.

3.3 Lincoln-Petersen Estimator

Let IV represents the population size, n1 the count of subjects captured and tagged on the
first occasion, ny the count of subjects captured on the second occasion, and m the count
of subjects identified on both capture occasions. Observations from a Lincoln-Petersen
model may be presented in a table like in Table 3.1. In the table, ngg denotes the number

of individuals missed by both sources and is not directly observed.



3.4. Variance of Lincoln-Petersen Estimator 29

TABLE 3.1: Observed frequencies from a Lincoln-Petersen model.

Occasion 2
1 0
1 m ny—m ni
Occasion 1
0 ng —m 00
ny N

Let 7; denotes the probability of detecting a subject at occasion i (i = 1,2). Table 3.2
presents the join distribution of a Lincoln-Petersen model, assuming the occasions are

independent.

TABLE 3.2: Joint distribution of identifying a subject in a Lincoln-Petersen model.

Occasion 2
1 0
1 172 <1 —7T1)7T2
Occasion 1
0 m1(1 —m2) (1—m)(1—mg)

The frequency of the missing subjects, ngg, is unknown. Hence, the population size
N = n1 4+ ne —m + ngg remains unknown and become the target of the inference. In

this context, the population size can be estimated using the Lincoln-Petersen estimator:

A ning
N = .

m

3.4 Variance of Lincoln-Petersen Estimator

Let the random variable M represent the number of individuals captured in both the
first and second occasions, with respective detection probabilities m; and 7. Under a

hypergeometric model, the pmf of M is given by:
m ) \ng—m
P(M = m) == )
N

where ny and no are the numbers of individuals captured during the first and second

occasions, respectively (as defined in Table 3.1). In what follows these counts are assumed
to be fixed. Since individuals not captured in either occasion remain unobserved, the

aim is to estimate the total population size V.
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Under the hypergeometric model, the expected value and variance of M are:

and

respectively.

For large N, the approximation N — 1 &~ N is applied. Defining the fractions 71 = n1/N

and mo = ny/ N, the variance simplifies to:

i~ (5 1-3) (57)

== N7T17T2(1 —7'('1)(1 —7T2>.

The Lincoln-Petersen estimator for the population size is given by:

A nin9
N = . 3.1
i (3.1)

Its variance can be approximated as:

1

8) e n? nd Var(—5).
Var(N) ~ nj nzVar(M)

(3.2)

The delta method (Sekar and Deming, 1949) is used to approximate the variance of
the reciprocal of M. This method relies on a first-order Taylor expansion of a smooth

function around its expected value. For a function f(X), this expansion is:

F(X) = f(p) + (X = p) (1),

where = E(X) and f/(u) is the derivative of f evaluated at pu. The variance is then
approximated by:

Var (f(X)) ~ Var(X) - [£' ()]

Applying this to f(M) =1/M gives:

v (1) v
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Substituting into the variance of N in (3.2) yields:

Var(N) ~ n? n}

Var(M)

1
~ n? n Nmyma(1—m)(1 — m2).

To express this variance in observable quantities, the detection probabilities are estimated

using;:

The expected value E(M) and population size N are approximated by their respective

observed values m and N. This leads to the following variance estimator:

—

Var(N) ~ n? n3

satad (o) ¥ () () (-2) (- )
L2\ md ne ) \ng n9 ny
=atnd (o) ¥ (5) () (257) ()
L2\ s na ) \n1 N9 ny
%Nng—m ny—m (3‘3)

This derivation shows that the variance of N decreases as the overlap m increases,
particularly when m approaches ny and ns. Given that IE(M) = Ny, improving the
reliability of the Lincoln-Petersen estimator involves increasing the product of detection

probabilities m17s.

3.5 Optimising Sampling Effort

Since [E(M) = Nmmo, it is apparent that on average, the value of M will not increase
unless either m; or 7o increases. Increasing the target population size N is generally
impractical in most field settings. However, certain studies incorporate repeated sampling
within a single capture occasion. For instance, in live-trapping surveys, animals are often

trapped over multiple nights within the same occasion.

Consider a scenario in which capture occasion 1 consists of T} repeated identification
efforts, and capture occasion 2 consists of T5 repetitions. The probability of not detecting
an individual during capture occasion 1 is 1 —m = (1 —61)t, where 6; is the per-sub-
occasion capture probability. Similarly, the probability of not detecting an individual

during capture occasion 2 is 1 — my = (1 — 62)2. Consequently, the marginal detection
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probabilities are

m=1—(1-6)0,
g =1—(1—6;)",

To maximise the expected number of jointly captured individuals, m, it is necessary to

maximise the product 717y, subject to a fixed total sampling effort 7' = T7 + T5.

Define ¢1 = 1 — 607 and ¢o = 1 — 0, the product of detection probabilities becomes
Ty = (1 - lTl) (1 - QTZ) .
To formalise this optimisation, let

flti o1, d2) = (1— 1) (1— 5 ), (3.4)

where t = 1,2, ..., (T — 1), representing the number of sub-occasions allocated to capture
occasion 1. The objective is to determine the optimal allocation t* that maximises
f(t; 01, d2). The following sections investigate this optimisation under various scenarios,
aiming to identify the most effective allocation of sampling effort between the two caption

occasions.

3.6 Optimising Sampling Effort with Fixed Catchabilities

3.6.1 Scenario 1: Equal Catchabilities ¢1 = ¢>

A general solution to the problem of optimising the function in Equation (3.4) can be

obtained when ¢; = ¢ = ¢. Under this condition, the function simplifies to

fte)=(1-9¢") (1-¢"")
—1— ¢t — Tt 1 4T,

Hence, maximising f(t;¢) is equivalent to minimising the simpler function ¢’ + ¢*~*

with respect to t.

Theorem 3.1. Let f(t;¢) = (1 —¢')(1 —¢T~t) where ¢ € (0,1). Then the function

f(t; @) achieves its mazimum at

if T is even,

-1 T+1
or + , if T is odd,
2 2
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wheret =1,2,...,T —1.

The result from Theorem 3.1 provides a clear practical guideline for allocating sampling
effort between two capture occasions. Specifically, when the total number of sub-occasions
T is even, the optimal allocation evenly divides sampling effort into two sets of T'/2
sub-occasions each. Conversely, when 7T is odd, one capture-occasion receives (T + 1)/2
sub-occasions while the other receives (T'—1)/2. It is noteworthy that the optimal
allocation identified here is independent of both the value of ¢ and the individual
detection probability 6.

Proof of Theorem 3.1 Consider the function g(t) = ¢' + ¢t for ¢ € (0,1). Observed
that g(t) is symmetric about ¢, satisfying g(¢) = g(T' —t). To determine the minimum

of g(t), consider the stepwise decreasing behaviour of the function.

Fort =T —1,
g(T—1)=¢+¢T 1> g(T-2) = ¢> + o772,

as
o(1=9) > ¢' *(1-¢)
or equivalently,
¢=¢"2
holds true because T'—2 > 1 and ¢ € (0,1).

Similarly, for t =T — 2,
g(T=2)=¢*+¢" 22 g(T-3)=¢" +¢" 7,
as
*(1-9¢) > ¢" *(1-9)
or equivalently,
¢2 > ¢T*3
which holds since T'—3 > 1 and ¢ € (0,1).

Generalising this argument for ¢t < T — ¢, it follows that

¢t Z ¢T—(t+1)

I

leading to
g(t) = g(t+1).

Thus, g(t) decreases until reaching the midpoint ¢ = T'/2. Consequently,

o If T is even, the function g(¢) is minimised uniquely at t* = T'/2.
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o If T is odd, due to symmetry, g(¢) attains its minimum at two consecutive points
t*=(T—-1)/2and t* = (T +1)/2.

This completes the proof.

3.6.2 Golf Tees in St. Andrew

Example in this section describes a dataset from a golf tee experiment carried out in St.
Andrews. In the study, 250 golf tee clusters were distributed across a 1680-square-meter
area. Eight students then surveyed the area, aiming to locate as many clusters as possible.
Additional information is available in Borchers et al. (2002). Table 3.3 shows the number
of golf tee clusters detected by each surveyor in the St. Andrews field experiment. In

total, the surveyors detected only 162 clusters, while 88 remained undiscovered.

TABLE 3.3: Number of golf tee clusters detected by each surveyor in St. Andrew field

experiment.
Surveyor 1 2 3 4 5 6 7 8
Number of
Detections 64 67 73 59 69 58 63 93

To test the assumption of equal catchability across surveyors, a chi-square goodness-of-fit
test was performed. The result (x2 = 12.799, df = 7, p = 0.077) indicated no significant
differences in catchability among the surveyors. This suggests that the assumption of

equal capture probabilities is plausible.

For demonstration purposes, the total number of surveyors (7' = 8) was divided into
two groups, with T in the first group and 75 in the second. Group 1 was treated as
the first capture event, and Group 2 as the second. Seven different allocations (71, 7%)
were considered, as shown in Table 3.4. For each configuration, the quantities ny and no
were determined, and the Lincoln-Petersen estimate N and its variance \//;"(]\7 ) were

computed using Equation (3.1) and Equation (3.3), respectively.

The results in Table 3.4 demonstrate that the optimal design, t* = T /2 = 4, yields the
smallest variance among all scenarios considered. This outcome confirms the theoretical

expectation regarding optimal effort allocation under equal catchability.

3.6.3 Scenario 2: Proportional Catchabilities ¢1 = k¢,

When ¢1 # ¢2, Theorem 3.1 no longer applies. Instead, optimal sampling effort allocation
can be determined by finding the value ¢* that maximises the function f(¢; ¢1, ¢2) defined

in Equation (3.4). Consider the scenario where the catchabilities are proportional, i.e.
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TABLE 3.4: Lincoln-Petersen estimates and associated variance under different splits of
eight surveyors into two groups.

Ty T nq n9 m N Var(N)
1 7 64 158 60 169 18.351
2 6 97 153 88 169 12.740
3 9 115 147 100 169 11.918
4 4 124 142 104 169 11.897
b 3 135 127 100 171 16.202
6 2 139 116 93 173 21.208
7 1 144 93 75 179 39.426

¢1 = k¢o, with k as a constant. In this case, the function to maximise becomes

flt,k) = (1= (k¢) ) (1 =" )
=1—(k¢) — Tt +klpT. (3.5)

Maximising f(t; ¢, k) in Equation (3.5) is equivalent to minimising the function

ht; 6, k) = (ko) + ¢ " — k'o". (3.6)

The first and second derivatives of h(t; ¢, k) are:
W (t) = (k)" log(k¢) — &' log(¢) — ¢ k' log(k),

and

W'(t) = (k)" [log(ke)]* — ¢" ~*[log(¢)]* — ¢" k' [log(k)]?,

respectively. The optimisation of function in Equation (3.6) has no closed-form solution
for t. However, numerical methods such as the Newton-Raphson approach can be
employed to identify the optimal solution ¢t*. The following algorithm outlines the steps

involved in finding the optimal value of ¢.
Step 1. Set an initial value t(©) for the optimal solution ¢*.

Step 2. Iteratively update #(r) using the Newton-Raphson formula:
n (")
B h”(t(r))

o (k)" log(ke) — 67" log(¢) — 6"k log(k)
= T e g2 — T g — TR log (W

Hr1) — 4(r)

Step 3. Repeat Step 2 until convergence is achieved.
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To reduce the number of iterations required, it is recommended to initialise the procedure
with t(0) = T/2.

16-

14-

12-

10-

t«k

0.2 0.4 0.6 08 10 12 1.4 16 18 2.0
k

F1GURE 3.2: Optimal allocation t* for various values of k and ¢ when T'=20, with
constrain k¢ € (0,1).

Figure 3.2 illustrates how the optimal allocation t* changes with varying values of k and
¢ for a total of T' = 20 occasions. When k = 1, which corresponds to the previously
discussed case ¢1 = ¢2, the optimal strategy evenly divides the sampling effort between
two occasions. As k increases beyond 1, indicating lower detectability in capture occasion
1 (i.e. higher ¢1), it becomes advantageous to allocate a greater sampling effort to the
first capture occasion. This allocation strategy optimises the precision of population size

estimates.

3.6.3.1 Simulation

In this study, the Bernoulli distribution was used to generate simulated capture-recapture
data. The simulation assumed two capture probabilities: 61 for capture occasion 1 and
0y for the capture occasion 2. For each trial, 6; was assigned to the first half of the
capture occasions t = 1, 2, ..., [T'/2], and 03 to the remaining occasions. Based on these
probabilities, binary outcomes (1, 0) were generated for a population of N individuals
across a total of T' = T} 4+ T5 capture occasions. A value of 1 indicated that an animal was
captured, while a value of 0 indicated no capture. Table 3.5 summarises the parameter

configurations used in the simulation study.
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TABLE 3.5: Parameter settings used in the simulation study.

N T (61 , 62)

1000 20 (0.40 , 0.20)
400 11 (0.40 , 0.04)
200 9 (0.20 , 0.30)
100 6 (0.20 , 0.20)

The simulation consisted of 64 parameter combinations derived from four case population
sizes, N={1000, 400, 200, 100}; four levels of total captures occasions, T={20, 11,
9, 6}; and four pairs of sub-occasions capture probabilities, i.e.: (01,602) = {(0.4,0.2),
(0.4,0.04), (0.2,0.3), (0.2, 0.2)}, representing different ratio of 6, : #2. Each combinations
was simulated with B = 50000 replicate datasets. For each replicate, detection at

sub-occasion j within capture occasion ¢ followed

Xijk ~ Bernoulli(0;) for i=1,2; j=1,...,7; k=1,..,N.

TABLE 3.6: Simulation results of Lincoln-Petersen estimation procedure applied on
data generated with B=50000 replicates for N=1000, T=20, 8; = 0.4, 2 = 0.2.

t mean(N) Var(N) T X o
1 1000.002 1.61412 0.400
2 999.997 1.02507 0.639
3 1000.005 0.82488 0.782
4 1000.003 0.74839 0.866
5 999.988 0.71788 0.915
6 999.995 0.69075 0.940
7 999.997 0.69002 0.949
8 1000.002 0.69101 0.945
9 1000.005 0.69394 0.926
10 1000.005 0.72879 0.887
11 1000.000 0.74907 0.862
12 1000.004 0.78166 0.829
13 999.992 0.83059 0.788
14 999.993 0.88458 0.736
15 1000.001 0.95868 0.671
16 999.997 1.10304 0.589
17 1000.001 1.34057 0.487
18 1000.004 1.79398 0.360
19 1000.003 3.25199 0.200

For each simulated dataset, the population size estimate N was computed using values
of m,ny, and ny. The Chapman estimator was applied to mitigate bias, particularly
in scenarios where m is small or equal to zero. The mean and variance of N across all
replications were recorded. The allocation ¢ that minimised Var(N) was identified as the

optimal allocation allocation, denoted by t*.
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Table 3.6 presents an example of simulation results for N=1000, T=20, ¢;=0.4, and
6,=0.2. Tt illustrates how the variance of N changes across different values of t. The
optimal allocation, t* = 7, corresponds to assigning 7 sub-occasions to capture occasion
1 and 13 to capture occasion 2. This configuration yields the smallest variance and,
therefore, the most precise estimate. The improvement is also reflected in the maximised
product of marginal capture probabilities, m; X mo. Full simulation results for all 64

allocation combinations are provided in Chapter B.

Table 3.7 compares the optimal t* values obtained from the simulation with those derived
using the Newton-Raphson optimization. The results show that the optimal allocation
is largely insensitive to changes in population size N, remaining stable across different
values. However, changes in T or in the capture probabilities (6, 602) do affect the optimal
t. The close agreement between simulation and Newton-Raphson outcome, where each
differing less than one unit, validates the robustness of the findings. Furthermore, the
results in Chapter B indicate that selecting 7" > 10 is advisable in study design to reduce

estimator variance.

3.7 Optimizing Sampling Effort in the Presence of Un-

known Catchabilities

Solutions presented in Section 3.6 require prior knowledge of detection probabilities
for each capture occasion. When these detection probabilities are unknown, a Pseudo-
Bayesian approach can be used by assigning prior distributions to ¢1 and ¢o. The central
idea of this pseudo-Bayesian method is to integrate the prior distribution into the objective
function. By accounting for all potential values of ¢ and ¢, this approach explores
the objective function’s behaviour. The resulting expectation, denoted as ¢(t), provides
an average representation of the objective function, thereby reducing the influence of

extreme or outlier values.

The first step is to calculate the expected value of f(t;¢1,¢2) with respect to the
distribution ¢; and ¢s:

o(t) = E|f(t:61.02)]. (3.7)

The following subsections discuss three different scenarios, assuming ¢ and ¢9 follow

uniform distributions.

3.7.1 Scenario 1: Uninformative Priors for Catchabilities

When no prior information is available regarding ¢; and ¢, it is reasonable to assume
independent uninformative priors, specifically ¢ ~ Uniform (0, 1) and ¢ ~ Uniform (0,
1). These two uniform distributions are considered independent, reflecting the assumption
that the detection probabilities at each capture occasion vary independently in the absence

of prior knowledge.
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Recall that for a standard uniform distribution ¢ ~ Uniform(0, 1), the ¢t-th moment is
given by:
1

1
E(¢) = [ o do= .

Under this assumption, the expectation defined in Equation (3.7) becomes:

g(t) =E[(1-})(1 -] )]
=1-E(¢}) ~E(¢; ') +E(¢1)E(¢3 )

=t ) ()
- t+1 T—t+1 t+1)\T—t+1

A
CTt—1224+T+1

The derivative of g(t) with respect to t is:

(T —2t)(T+1)
Tt—t2+T+1)%

g'(t) = ( (3.8)

Setting Equation (3.8) equal to zero yields the optimal solution t* = T'/2. Figure 3.3

illustrates the behaviour of g(t) when T' = 20, clearly showing that the optimal allocation
occurs at t* = 10.

gt

FIGURE 3.3: ¢(t) function when 7" = 20. Red line marks the optimal value of .

3.7.2 Scenario 2: Higher Re-catchability ¢2 < ¢;

In this scenario, the detection probabilities are modelled such that ¢; ~ Uniform (0,1),
and conditional on ¢, the second detection probability follows ¢9 | ¢1 ~ Uniform (0,

¢1). The conditional density of ¢2 | ¢; is therefore given by:

f(@\qbl):(;l, 0<gr <1 and 0<os< .
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The marginal distribution of ¢; is uniform over [0,1], i.e.,

flp1) =1, 0<¢ <1.

Combining these yields the joint probability density function:

f(@1,02) = f(d2 | d1)f(o1) = qbll’ 0<¢y<¢1 <L.

The marginal density of ¢ is confirmed via integration:
¢1 # 1
flor) = [ foron)din = [ —dr=1.
0 0o 91

The marginal density of ¢o is obtained as:

1 1
() = /qb F (1, 62)dé1 =/¢ ;1 = log(n), 0<da<l.

To calculate the expectation of f(; ¢1, ¢2) from Equation (3.4) with respect to ¢ and
@2, the law of total expectation is applied, giving

{
{B[L -0} — 63" + ol65 "lon]}
{1- 6} —B(6]"|én) + SLE(F '[o1) }

1— ¢t . ,{7t + gb{ }
V(T —t+1)

_ ¢ E(¢1 ") E(¢7)

_1_Ew”_(T—t+U+XT—t+n

1 1 1

S R o R e T

(T—t+1)

The first and second derivatives of g(t) are:

P N 1 2
T G ) T e (T—t11)?2 (Tt 1)

and 5 5 6
g'(t) = - + -

(t+1)° (T+1)(T—t+1)° (T—t4+1)"
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respectively. The function g(¢) in Equation (3.9) does not have a closed-form solution
for its maximum. Therefore, numerical method such as Newton-Raphson approach are

employed. The steps for optimising g(¢) are as follows:
Step 1. Set an initial guess for the optimal ¢*, denoted as #0),

Step 2. Update () iteratively using the formula

(1) 4 9@

Step 3. Repeat Step 2 until convergence is achieved.

Figure 3.4(A) illustrates an example of the function ¢g(¢) when ¢; ~ Uniform (0, 1),
¢2 < ¢1, and T = 20. Using the Newton-Raphson approach, the optimal allocation is
determined as t* = 13.848. Figure 3.4(B) further depicts the relationship between the
total sampling effort 7" and the optimal allocation t* across values of T ranging from 2
to 100.

o
o) [¢¢]
p
o |
0 ©
S
=~ L9
o o |
o |
© N
S
o 4
0 | T T T T T T
© T T T T T T T T T 0 20 40 60 80 100
2 4 6 8 10 12 14 16 18 T
t

(a) (B)

FIGURE 3.4: Optimal allocation ¢t* for the scenario ¢o < ¢1, where ¢1 ~ Uniform (0,
1). (A) Function g(¢) with T = 20; the vertical red line marks the optimal value of ¢.
(B) Relationship between optimal allocation ¢t* and total sampling effort 7.

3.7.3 Scenario 3: Lower Re-catchability ¢1 < ¢2

In the third scenario, capture probability on the second occasion is assumed lower than
on the first occasion (¢1 < ¢2). Specifically, ¢ ~ Uniform (0, 1) and ¢; | ¢p2 ~ Uniform

(0, ¢2). Under these conditions, the joint and marginal probability density functions are
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defined as:
f(¢17¢2):i7 0S¢1S¢2§17
b2
f(¢1) = —log(¢1), 0< ¢ <1,
flp2) =1, 0<¢a <1

The expectation of f(t; ¢1, ¢2), defined in Equation (3.4), with respect to ¢1 and ¢9 is

calculated using the law of total expectation.

g(t) = E[f(t: 61, 02)]
:]E{]E[f(t;¢1,q§2)]¢2]}
= E{E[1 - ¢} — 65"+ ¢loL " | 6]}
—E[1-E(6} | 62) — 03"+ 65 E(h | o)
B ¢ o 93
—E 1—t+1—¢2 t+t+1
L E(6h) , E(9F)
=1- t+21 —IE( 3 t)+ T
1 1 1
—1- —~ +

t+1)2 (T—t+1)  (T+1)(t+1)

The first and second derivatives of g(t) are:

2 1 1
g (t) = - -

(t+1)° (T—t+1)° (T+1)(t+1)*

and ”(t)_ 6 ) N )
S T )Y Tt ) T (D)

respectively. As no closed-form solution exists for maximising ¢(¢), numerical methods
such as the Newton-Raphson approach are employed. Figure 3.5(A) shows the function
g(t) for T = 20. The Newton-Raphson method yields an optimal allocation t* = 6.152.
Figure 3.5(B) illustrates the optimal allocation t* across varying total sampling effort T°

ranging from 2 to 100.

3.7.4 Cottontail Rabbits in Tennesses

A practical example of hierarchical design in capture-recapture studies is demonstrated by
McWherter (1991). The study investigated the capture of cottontail rabbits (Sylvilagus
floridanus) at TVA’s Land Between the Lakes, Stewart County, Tennessee. Rabbits were
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FIGURE 3.5: Optimal allocation t* when ¢ ~ Uniform (0, 1), and ¢1 < ¢2. (A)
Function g(t) for T' = 20; the vertical red line indicates the optimal allocation t*. (B)
Relationship between optimal allocation ¢* and total sampling effort 7.

captured over 15 consecutive days during March, August, and December of 1985. For

illustrative purposes, only data from August and December are analysed here.

TABLE 3.8: Cottontail rabbit captures organized in a hierarchical Lincoln-Petersen
design. August capture events represent capture occasion 1, and December capture
events represent capture occasion 2. ngg denotes the number of rabbits missed during
both occasions and is not directly observed.

Occasion 2 (December)
Captured Not Captured Total
Occasion 1 Captured 17 31 48
(August) Not Captured 46 )
63 N

In the hierarchical Lincoln—Petersen design, August captures form Occasion 1 with
T7 = 15 sub-occasions, and December captures form Occasion 2 with 75 = 15. The
capture data are summarised in Table 3.8. Using the Lincoln—Petersen estimator, the

estimated population size is N = 178, with an estimated variance 877.717.

A ning
N =

= 178.
m

—

Var(N) =

nina(ny —m)(ng —m)

3 = 877.717.

m

Based on the data, catchability was higher in December than in August. A greater
proportion of individuals were detected during the December trapping period, suggesting
that environmental or behavioural conditions at that time were more favourable for

capture. This observed difference in detectability has important implications for study
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design. Instead of distributing sampling effort equally across both months, it is more

efficient to allocate additional effort to August, where catchability was lower.

Using the pseudo-Bayesian allocation method described in Section 3.7.2, the optimal
sampling configuration assigns t* = 22 sub-occasions to August and 8 to December,
keeping the total T' = 30.

3.7.5 Addressing Potential Biases in Estimation

This section investigates whether assuming a uniform prior distribution for catchabilities
introduces bias, particularly by inducing heterogeneity across capture events that could
skew population size estimates. To assess this, simulations were performed for all three
scenarios, with a fixed population size of N = 1000 and T = 20 sampling sub-occasions.

Fach scenario was replicated B = 10000 times for robust inference.

Table 3.9 summarises the proportion of simulations where the estimates are overestimated
(N > N), underestimated (N < N), or approximately equal to the true population
size (]\7 = N). In practice, since N is a continuous quantity, the evaluation of N = N
was based on the rounded estimate, i.e., N was rounded to the nearest integer before

comparison with the true value N = 1000.

These metrics provide a quantitative measure of estimator performance under different
catchability assumptions. The results demonstrate that the method yields highly accurate
estimates, with minimal systematic over- or underestimation. This consistency suggests
that the uniform prior assumption does not substantially bias estimates, supporting the

reliability of the approach for population size inference.

3.8 Hierarchical Lincoln-Petersen Approach with Time
Window

In some studies, capture-recapture results are available in the form of a two-dimensional
table, where each entry n;; represents the number of individuals captured ¢ times during
the first occasion and j times during the second occasion (see Table 3.10). The indices
take values i+ = 0,1,..., ] and 7 = 0,1,...,J, where I and J denote the maximum

number of times an individual is observed in each respective occasion.

In the case study by Lerdsuwansri and Bohning (2014), the 12-month observation period
was divided into two segments, each treated as a distinct capture source, as shown
in Table 3.10. Each source comprises several consecutive time windows, measured in
months. The first segment represents the initial months, while the second segment
includes the remaining months. This division introduces a hierarchical structure into the
Lincoln-Petersen design, as illustrated in Figure 3.6. Throughout the observation period,

individuals could be identified repeatedly across both sources.
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TABLE 3.10: Identification frequency of heroin user in Bangkok, year 2001.

2nd half year
0 1 2 3 4 ) 6
0 - 1401 369 98 23 1 1 1893
1 1736 315 129 50 26 1 0 2257
1st 2 445 137 105 93 20 4 0 764
half 3 164 89 75 49 30 1 2 410
year 4 47 25 48 34 8 0 0 162
) ) 7 8 3 0 0 25
6 1 0 1 1 0 0 0 3
8 0 0 0 1 0 0 0 1
2398 1974 735 288 110 7 3 5515
Total time window, T
Source 1 Source 2

Time window Time window
1to T, (T, +)to T

FIGURE 3.6: A hierarchical structure within a time window.

3.8.1 Maximum Likelihood Estimation

Assume that for each individual d = 1,2,..., N, the observed pair of counts y4 = (ya1, Ya2)

follows a product of two independent Poisson distributions:

F(y1,y2; A1, A2) = Poi(yr; A1) Poi(yz; A2)
_ A Y 5”2 Al
Yar! Yao!

The joint likelihood function for the complete data is then:

N N )\ydl X )\yd2 N
L(y; A, A2) = ] £ya; Ay Aa) = < L e 1) ( Z_ e 2) .
d

= 1 \Yar! Yaz!
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Using the observed frequencies n;; from Table 3.10, the likelihood simplifies to:

I J \ nij
(n; A1, A2) = H H [( )‘1> <'2 e_’\2>] .
i=015=0 J:

This likelihood function is constructed from the observed frequencies n;; for i +j > 1,
along with a single unobserved frequency ngg. Together, these define the complete data:
an observed component n;; with 7 4+ j > 1, and a missing component ngy. The total

observed sample size is given by n = > 37,1 i~q nij.

To address the missing data, the EM algorithm is applied. This method replaces the
unobserved count ngy with its conditional expectation, given the observed frequencies.
Since the observed data arise from a zero-truncated Poisson distribution, the conditional

expectation of ngg is:
fioo = E(noo | nij,i+j > 1)

—n POi(O;)\l)POi(O;Ag)
1 —Poi(0; \)Poi(0; \o)

e—)\1—)\2
Tl e |

This complete the E-step of the EM algorithm. For the subsequent M-step, the goal is

to maximise the joint log-likelihood function, now augmented by the imputed value 7.

The log-likelihood becomes:

ﬁ e M )‘7]2 —A2
0(n; A1, Az) ZZ nijlog | | 7 2 ¢ ,

=0 7=0

in which ngg is replaced by fgg, yielding:

z J
l(n | niji+7 > 1; 1, A2) = figo(—A1 — A2) +ZZ n;j log K LM > (AZ 6’\"’)] .

I
i+j5>1 J:
This is the function we have to maximise with respect to the parameter A\; and Ao. To
do this, we calculate the first derivative (ignoring constants)

To estimate A1 and )Xo, take the partial derivatives of the log-likelihood and set them to

zero. Ignoring constants, the derivative with respect to A; is:
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ot
oy )
=-N+ ZZ inij. (3.10)
z+]>1

Let N = figo + 33 nj, solving the derivative equation in Equation (3.10) yields:
iti>1

Z > ingj.

z+]>1

Applying the same procedure with respect to Ao yields:

These expressions form the basis of the EM algorithm used to compute the maximum

likelihood estimates.

EM Algorithm for MLE with Zero-Truncated Two-Poisson Distribution
5(0)

Step 0. Initialisation: Choose starting values 5\50) and Ay "'. A practical approach is to

initialise using the observed marginal means:

500 _ >0 2 igj>1 g 50 _ 2o g1 i
1 N 2 - -

n n

where n. =323, i~ njj. Alternatively, both values can be initialised at 1.

Step 1. E-step: Compute the expected number of unobserved individuals:
R e—di—Ao
00 =TT R A |
Step 2. M-step: Use the imputed value figg to update the parameter estimates:
A= ZZ ing, o= Z > gnij.

n+n00 o1 n+n00 i1

Step 3. Iterate steps 2 and 3 until convergence.
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3.8.2 Sampling Efforts Determination

In contrast to traditional capture-recapture methods, the maximum number of captures
in such design is a random variable. Assuming independence and homogeneity of capture
events, the capture count during the first half of the time window is modelled as Y; ~
Po(A1, T1), and for the second half, as Yo ~ Po(\g, T3), with 77 +T5 = T and T represent
the fixed total observation period (e.g. 12 months). Here, \; and Tj represents the mean

captures and the number of time units within each time window j € {1, 2}, respectively.

The probability of not detecting a subject during capture occasion 1is 1 —m = e~ M1,

Similarly, the probability of not detecting a subject on capture occasion 2 is 1 — w9 =
e~ 2212 To optimize sampling effort allocation, the goal is to determine the value of T}

(and implicitly T = T — T7) that maximises the joint detection probability

mme = (1 — e_AlTl)(l - e_AQTQ).

By defining ¢1 = e, ¢o = e~ 2, and ¢t = T}, the objective function can be re-expressed

as:

Fltsd1,02) = (L—¢h)(1— g5 ),

which aligns with the general form given in Equation (3.4).

Using the observed repeated count data from the Bangkok heroin user case study
presented in Table 3.10, the estimates of the Poisson rates are A; = 0.817 and Ay = 0.675.
Applying these estimates within the optimisation procedure described in Section 3.6.3
yields an optimal ¢t*=6. This indicates that allocating 6 months each in source 1 and

source 2 results in the most efficient population size estimates.

3.9 Discussion and Conclusion

This chapter has examined the optimisation of sampling effort in the hierarchical Lincoln-
Petersen framework, emphasizing the importance of maximising the joint detection
probabilities across both capture occasions. Theoretical results and simulation studies
consistently show that optimal allocation of sub-occasions improves the precision of

population size estimates.

When detection probabilities are equal across capture occasions, the optimal design
is achieved by allocating the sampling effort equally, that is, setting ¢ = 1'/2. This
approach does not require prior knowledge of individual capture probabilities 6 and is
particularly relevant when capture events occur over a short period. As highlighted by
Robson and Regier (1964) and Greenwood and Robinson (2006), an equal allocation
of resources between both occasions is optimal for minimizing errors when funding is

limited, making it cost-effective to allocate the same sampling effort during each occasion.
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In contrast, when catchability differs across occasions, asymmetrical allocations that
reflect this heterogeneity yield lower estimator variance, as demonstrated by Efford et al.
(2013). In cases where detection probabilities are unknown, this study introduced a
pseudo-Bayesian approach. Simulation results confirmed that the method delivers robust
and unbiased estimates under uniform prior assumptions. While the method introduced
here simplifies the full Bayesian approach, its credibility is strengthened by the consistent
findings from fully Bayesian studies such as those by Basu and Ebrahimi (2001) and
Wang et al. (2015). These studies show that Bayesian methods are generally robust
to uncertainty in parameter estimates, which supports the value of adopting simplified
pseudo-Bayesian approaches. Such methods retain many of the core strengths of Bayesian
analysis, such as incorporating prior information and managing uncertainty, while offering

a more practical and computationally efficient option for researchers.

In conclusion, the hierarchical Lincoln—Petersen method offers a systematic and flexible
strategy for improving the efficiency of capture-recapture studies. By explicitly linking
sampling effort, detectability, and uncertainty, it provides researchers with a practical

foundation for optimising study design in resource-constrained setting.
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Chapter 4

Sampling Efforts in Schnabel

Census

4.1 Introduction

The Schnabel census method (Schnabel, 1938) is commonly used in capture-recapture
studies. This method takes multiple independent random samples from a closed pop-
ulation. Each unmarked individual is given a unique mark when captured and then
released. A key assumption is that every individual has the same capture probability
(Seber, 1982).

Determining the right sampling effort is important in Schnabel census studies. The
number of sampling occasions affects accuracy, especially when resources like time,
labour, and funding are limited. Sample size and effort directly influence the reliability

of estimates.

This chapter examines the required sampling effort in Schnabel census studies. It considers
different capture success rates and population heterogeneity. First, the relationship
between sampling effort, capture probability, and success rate is analysed using a simple
Binomial model. Then, more flexible models, including Beta-Binomial and Binomial

mixture, are introduced to account for detectability differences.

4.2 Capture Histories from Schnabel Census

In a Schnabel census, captured individuals are checked for tags, marked if new, and
released. This process repeats in each sampling event. The method relies on a series of
independent random samples from a closed population. All unmarked individuals are

tagged except in the final sampling (Schnabel, 1938; McCrea and Morgan, 2015).

The raw data consist of capture histories for observed individuals. The capture-recapture

scenario is shown in Table 4.1. Here, Y;; represents whether individual 7 was captured
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on occasion j: Y;; = 1 means captured, and Y;; = 0 means not captured. The indices

1=1,2,...,Nand j = 1,2,...,T refer to individuals and sampling occasions. The total
captures for individual 7 is Y; = ]Tzl Y;;. It Y; = 0, the individual was never captured.
The data include two parts: observed counts Y7.,Ys.,...,Y,. for sampled individuals,
and unobserved counts Ypi1., Yni2.,...,Yn. for missed individuals. This separation

helps distinguish between the full population counts and the zero-truncated sample.
Capture-recapture methods estimate the number of missed individuals, providing an

estimate of the total population size N.

TABLE 4.1: Structure of capture histories from a Schnabel census. Each entry Y;;
indicates whether individual i was detected (Y;; = 1) or not (Y;; = 0) during occasion
j. The observed data include capture counts for individuals i = 1,2,...,n. The
remaining individuals ¢ =n +1,..., N, who were never detected, contribute
unobserved zero histories and are not present in the recorded sample.

Individual Occasion j
7 1 2 . T
1 Yl,l YLQ c YLT Y;.
2 You Yoo e Yor Y.
3 Y31 Y30 . Ysr Ys.
n le Ymg N Yn,T Yn.
n+1 Yot1.1 Yot12 . Yot1,1 Yot1-
n+2 Yoo Yii2,2 . Yoior Yi+o.
n+3 Ynt31 Ynt32 - Yoi3,1 Yo+t3.
N -1 Yn_11 Yn_12 Yn_oar Yn_1.
N YN71 YN72 c YN,T Yn.

4.2.1 Counting Distribution

From the capture-recapture histories, a count distribution is formed by creating a
frequency table, such as Table 4.2, which summarizes how frequently each unit was
identified. In this context, f, indicates the number of individuals captured exactly x
times during the study period, while n = 25:1 fz denotes the number of individuals

captured at least once, ,where x = 1,2,...,T.

TABLE 4.2: Frequency table for capture counts with T' capture occasions/sources.

X 0 1 2 T

fx fo fi f2 fr

Individuals who were never captured contribute to the zero count, fy, which is absent
from the data and is known as zero-truncated count data. Statistically, this entails

working with a zero-truncated count distribution. Suppose P(x) is a suitable distribution
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model for the capture counts of each individual in the population. Here, py = P(X = 0)
denotes the probability that an individual is not detected across all T' capture occasions.
This parameter can be interpreted as the proportion of the population that remains

unobserved and is a key component in estimating the number of unseen individuals.

To estimate the number of missing observation fy, the Horvitz-Thompson estimator is

utilized:
N=_" (4.1)
1—po’ '
which further leads to
7 bo
fo=mn7 :
— Do
It is important to note that
E(X) = ——E(n)
= n
1 —po
V(1)
= —Po
1 —po
= N.

This holds under the assumption that pg is known. However, in most cases, p,. is unknown
and needs to be estimated. To achieve this, a distributional model is assumed, introducing

parameter 6, such that p, = p,(0).

4.2.2 Zero-Truncated Counting Distribution

In capture-recapture studies, the total population size N and the frequency of undetected
individuals fy are unknown, as individuals not captured in any occasion remain unob-

served. Consequently, the data consist of a zero-truncated count of X, with z =1,...,T.

Assume that X follows a discrete distribution with pmf p,(0) = P(X = x| ), where 6
is the model parameter. Because observations with X = 0 are unobserved, the observed

data likelihood is based on the zero-truncated distribution:

pj[(@)—mi(m x=1,...,T

~ 1—po(0)’

where po(#) is the probability of zero detection. The observed data likelihood is then:

T fa
pa(0)
o= i [205]
Z,l;[l 1—po(9)
which depends only on the observed frequencies f1, fa,..., fr. Closed-form solutions for
MLE of zero-truncated count distributions are generally unavailable. However, these
estimators can be derived using the EM algorithm, as outlined in the works of Bohning
et al. (2018) and Dempster et al. (1977).
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EM Algorithm for Zero-Truncated Counting Distribution
Step 0. Initialisation: Initialize the parameter 6 to some arbitrarily chosen value 0.

Step 1. E-step: Compute the expected frequency of undetected individuals (i.e., those

with X = 0), conditional on the observed data and current parameter estimate:

po(6)

fo=FE 0) = n——""2 .
fo (fol fi,.--, fr,0) ”1_p0(9)

Step 2. M-step: Construct the complete frequency table ( fo, fi, ..., fr), and compute
the MLE 6 by maximising the complete-data likelihood:

T
gcomplete(e) = Z fz Ing:B(e)'
=0

Step 3. Iterate E- and M-steps until convergence.

This algorithm aims to compute # that optimises the likelihood of truncated densities:

It is important to note that the specific computation of the parameter updates in the

M-step depends on the chosen model and will be described in the following sections.

4.3 Likelihood Based on Binomial Distribution

In scenarios where capture probability is constant across individuals and capture occasions,
the number of captures per individual, denoted X, can be modelled using a Binomial
distribution. Specifically,

X ~ Bin(T,90).

The Binomial pmf is given by:
T x T—x
p:=P(X =2x) = *(1—-6)""* x=0,1,2,...,T, (4.2)
x

where T is the total number of capture occasions and € is the homogeneous capture
probability. Given the nature of capture-recapture studies, only individuals that are
captured at least once (X > 0) are observed, resulting in a zero-truncated Binomial
distribution. As a closed-form solution for MLE of this distribution is unavailable, the

estimators can be obtained using the EM algorithm.
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The full-data likelihood is given by:

Taking the natural logarithm yields the complete-data log-likelihood function:

fa
2(0) = log { ﬁ l(i) 6% (1 — G)T—x] }
= XT: fzlog KZ) (1~ G)Tm]
=0
T
=th6
x;O
= Z fulog (
=0

>+ xfxlogQ—l—Z — ) frlog(1—6)
=0
T
)+foxlog9+NTlog(1—9)—fomlog(l—ﬁ). (4.3)
=0

Differentiating Equation (4.3) with respect to 6 and solving for zero gives the MLE:

§— La—o®fa
NT
1 T

= - 4.4
CESATP IR 44
The probability of non-detection under the Binomial pmf is:

P(X = 0) = po = <€>90<1 )7

Po = (1 - 9)T

Given 0, the estimated number of undetected individuals is:

This leads to the set-up of the following EM algorithm to iteratively estimate 6 based on

a zero-truncated Binomial distribution.

EM Algorithm for MLE with Zero-Truncated Binomial Distribution
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Step 0. Initialisation: Initialise the parameter 6 to some arbitrarily chosen values. A

practical choice is:
T
nT

which is based on the observed sample mean.

>

Step 1. E-step: Compute the expected number of unobserved individuals:

Step 2. M-step: Use the imputed full frequency table (fo, fi,--., fr) to update the

parameter estimate:

Step 3. Iterate E- and M-steps until convergence.

4.4 The Idea of Sampling Effort

To study the sampling effort required in a Schnabel census, let n denote the number
of observed units out of unknown N. Let 5 be the random variable representing the
number of observed units in the sample. Assuming each unit is independently observed

with probability 1 — pg, n follows a Binomial distribution:
n ~ Bin(N,1—py),

and the pmf and variance are given by:

and
Var(n) = Npo(1 — po),

respectively. Applying the Horvitz-Thompson estimator in Equation (4.1), Var(N) is

derived as:

Var(N) = (1_1m)2Var(n)
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From Equation (4.5), the variance of the estimated population size is equal to the product
of the actual N and the odds of missing observation. Hence, the uncertainty in N can
be controlled by adjusting the width of the (1 — )% confidence interval for N,

Do
1—po’

N:l:Za/2 N

where z,/9 is the upper a/2 quantile of the standard normal distribution.

For illustration, consider a case where N = 100, and py = 0.5. Based on the variance
formula, then Var(N) = N, implying that the standard deviation of N is v/N. This
suggests that, under this setting, a 95% confidence interval for N based on N would be
approximately N + 1.96v/N ~ (80, 120), which seems reasonable, according to the rough
rule of thumb suggested by Pollock et al. (1990).

Generalizing, assume the researcher is willing to accommodate variations in population
size within k x 100% above/below the true N at (1 — «) confidence level. The margin of

the confidence interval will be equal to:

bo
N = kN
204/2 1_p0 RV,
hence )
(K/zay2)" N
Po

14 (K/2as2)* N

Table 4.3 lists down the associated pg for various N and x while Figure 4.1 depicts the
relationship between pg and & for various N when 1 — a=0.95. The graph demonstrates
that keeping po below 0.5 limits the uncertainty of the estimate to within 20% above or
below the true N for N > 100. Thus, pg is an effective tool for controlling uncertainty.
Replacing pyp = (1 —0)T in Equation (4.5) gives

-0

Var(N) = Nm.

(4.6)

Reducing the population size N to lower the variance in Equation (4.6) is not possible
as we have no information on the value of N. However, adjusting 7" to a large value can

cause (1 —60)T — 0 for a positive 6 € (0,1), thereby reducing estimation variance. Since
po=(1-0)", (4.7)
solving for T" in Equation (4.7) yields

log(po)

~ loe(1 7] (4.8)
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TABLE 4.3: Proportion of undetected individuals (pg) for various population sizes (N)
and relative margins of error (k) at a 95% confidence level (1 —a = 0.95).

N K Po

0.50 0.76

0.40 0.68

0.30 0.54

50 0.25 0.45

0.20 0.34

0.10 0.12

0.05 0.03

0.50 0.87

0.40 0.81

0.30 0.70

100 0.25 0.62
0.20 0.51

0.10 0.21

0.05 0.06

0.50 0.93

0.40 0.89

0.30 0.83

200 0.25 0.76
0.20 0.68

0.10 0.34

0.05 0.12

0.50 0.96

0.40 0.94

0.30 0.90

400 0.25 0.87
0.20 0.81

0.10 0.51

0.05 0.21

0.50 0.98

0.40 0.98

0.30 0.96

1000 0.25 0.94
0.20 0.91

0.10 0.72

0.05 0.39

Hence, T depends on py and 0. Researchers can leverage this property to choose the
appropriate T' by specifying the desired capture success rate, i.e., 1 — pg*. For instance,
when 1 — pp* = 0.5, the required T to achieved this desired capture success rate for
various # is as shown in Table 4.4. The relationship between T, pg, and 6 are presented

in Equation (4.8) and illustrated in Figure 4.2.
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FIGURE 4.1: Relationship between population size N, relative margin of error , and
the proportion of undetected individuals pg at a 95% confidence level. The red dashed
line indicates the reference point where pg = 0.5.
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Fi1cURE 4.2: Contour plot of the required number of capture occasions T in relation to
the proportion of undetected individuals pg and the capture probability 6.
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TABLE 4.4: Required sampling occasions T for different capture probabilities 6 to
achieve a 50% of capture success rate.

0 0.1 0.2 0.3 0.4 0.5
T 7 3 2 1 1

4.5 Allowing Heterogeneity: Mixture Models

The previous section employed a simple Binomial model to analyse capture counts.
This model assumes that the observations are independent and the parameters are
homogeneous. This section extends the framework to more flexible models using the

Beta-Binomial distribution and the Binomial mixture distribution.
4.5.1 Beta-Binomial Distribution

4.5.1.1 Maximum Likelihood Estimator

In situations where the capture probability varies across individuals, the capture counts
X are suitably modelled using a Beta-Binomial distribution. In this model, the individual
capture probabilities # are assumed to vary randomly across the population according to
a Beta(a, #) distribution.

The pmf is for a Beta-Binomial distribution is given by:

p:=P(X =z) =

(T)B(a+x,T+ﬁ—x) o= 0.1 T

x B(a, B) ’

where B(-,-) is the Beta function, defined in term of Gamma function as:

The probability of non-detection is given by:

B(a, T+ B)
B(a,B) '

bo =

leading to the estimate

The complete data likelihood is given by:

)

B(a,T+ﬁ)}f0 y ﬁ

[(T) B(a—i—x,TnLﬁ—x)}fx
B(a, B) x

Lia.5) = | o

r=1
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and the log-likelihood

T
U, B) = folog [B(O"T—i_ﬁ)} +folog l(T> B(a—l—:r,T—l—ﬁ—x)]

B(a, B) x B(a, B)
= fo[log B(a, T + ) — log B(«, )]
T
+ > fx|log (Z) +logB(a+x, T+ —x)— logB(a,ﬁ)} (4.9)
=1

To maximise the log-likelihood in Equation (4.9), a quasi-Newton method with L-BFGS-B
algorithm is run using the optim function in R. This sets up the EM algorithm to find
the MLE for the zero-truncated Beta-Binomial distribution.

EM Algorithm for MLE with Zero-Truncated Beta-Binomial Distribution

Step 0. Initialisation: Initialise the parameters o and § to some arbitrarily chosen
values @ and . Reasonable initial estimates can be chosen based on the method
of moments from the sample mean and variance. If no prior knowledge is available,

PN

a default of & = 8 = 1 can be used.

Step 1. E-step: Compute the expected number of unobserved individuals fy given the

current parameters:

. B(a,T+ )

Step 2. M-step: Maximise the complete-data log-likelihood Equation (4.9) using to

obtain updated estimates:

(&,B) = arg max £(a, ).

a,

Step 3. Iterate E- and M-step until convergence is achieved.

4.5.1.2 Sampling Effort Determination

If the capture counts X follows a BetaBinomial(T', «, 3) distribution, the optimal sampling

effort T' can be determined using the relationship

B(a, T+ B)

Po = "Bl (4.10)

based on the desired capture success rate, 1 — pp*. No closed-form solution exists for

T in Equation (4.10). However, it can be solved using numerical methods such as
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Newton-Raphson. Starting with an initial guess 7). iteratively apply

(r+1) _ () _ (T
r =T w(T)’
where B(a,T—|— ﬂ) )
h(T) = W — Do,
and
B(a.T
w(1) = 2D (x4 5) v + T+ ).

Here, 9(-) denotes a digamma function. Figure 4.3 displays the required sampling efforts

for various combinations of o and [ values.
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5
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Po Po
(a) 6 ~ Beta(2,10) (B) 6 ~ Beta(10,5)
s 80
4 60
3
&~ &~ 40
2
20
I
0 0
0T 02 03 04 05 06 07 08 09 0T 02 03 04 05 06 07 08 09
Po Po
(c) 0 ~ Beta(2,2) (D) 6 ~ Beta(0.5,1)

FIGURE 4.3: Required sampling effort T under different assumptions for the
distribution of capture probability § ~ Beta(c, §).
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4.5.2 Binomial Mixture Distribution
4.5.2.1 Maximum Likelihood Estimator

In many practical situations, the capture probability varies among individuals in a more
complex manner. To account for this heterogeneity, the number of captures, X per
individual can be modelled as a mixture of Binomial distributions with & heterogeneous

Binomial components:

k
pe=P(X =2)=> w;Bino(z | T,0;),
j=1
where
: T z T—x .
Bino(z|T, 6;) = 07(1—0;)""" j=12,...,k
x
The mixing distribution, @ = {wy,wa,...,wg, 01,60a,...,0;}, assigns non-negative

weights w; to 0;, with Z;?ZI wj = 1. Similar to previous models, only individuals capture

at least once (X > 0) are observed, resulting in zero-truncated data.

The probability of non-detection is given by:
k
po =Y wi(l—6;)7,
j=1

leading to the estimate of the unobserved individuals:

Sh_jw; (1—0;)T

1- ?:1 wy (1- ej)T

fo=mn

To fit a zero-truncated Binomial mixture distribution to the capture data, a nested
EM algorithm adapted from Bohning et al. (2005) to estimate the parameters ©. The

following steps outline the algorithm:

EM Algorithm for MLE with Zero-Truncated Binomial Mixture Distribution

Step 0. Initialisation: Set initial values for the full parameter vector with

A

O = (01,02, ..., 0k, 01,02,...,0k).

The recommended choices is to initialise w; = 1/k and set éj evenly spaced over
(0.1,0.9).
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Step 1. E-step: Compute the expected number of unobserved individuals:

Sk (1—6;)T

fo=n . .
1= 30y (1—6;)7

Define the expected value of observation ¢ belongs to component j:

w; Bino(i\T, 9]‘)
>y wj Bino(i|T, 6;)

eij =

Step 2. M-step: Use the complete frequency table fo, fi, fa,. .., fr to maximise the
complete-data log-likelihood:

T k T ) )
1=07=1

which leads to the following estimates updates:

T ~
a >i=0 Ji€ij

TUJ = T y
>i=o fi
T . N
5o 2i—0t fiéij
= Ch
0T fiij

Step 3. Repeat E- and M- steps until convergence is achieved.
The EM framework is structured in two levels:

o The main EM loop alternate between the E-step (which estimates fo and updates
the full data) and the M-step (which maximises the complete-data log-likelihood),

e An inner EM step within the main M-step performs component-wise updates of
the latent class parameters (w;, 6;) using the non-parametric maximum likelihood
estimator (NPMLE) (McLachlan and Peel, 2000).

The inner EM updates for the mixture parameters w; and 6; are executed once per
iteration of the main EM algorithm. After this inner update, the algorithm returns to
the main E-step, and the overall EM procedure continues iterate between E- and M-steps

until convergence (Bohning et al., 2005).

4.5.2.2 Sampling Effort Determination

If the capture count follows a Binomial mixture distribution, the sampling effort, T', can

be determined using the relationship:
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k
po =y w;(1-6;)". (4.11)
7j=1

By setting the desired capture success rate, 1 — pg*, the required number of capture
occasions, T', can be determined by finding the root T of Equation (4.11), which provides
no closed-form solution. However, it can be solved using numerical methods such as

Newton-Raphson. Starting with an initial guess 7). iteratively apply the formula:

p+1) _ i) (T
W(T)’
where i
MT) =Y wi(1—6;)" —po”,
j=1
and

k
B(T) = log(1 = 0;)w;(1 - 6;)"

Repeat this iteration until the change between successive values of T" is minimal, indicating

that an approximate root has been found.

To illustrate the effect of population heterogeneity on required sampling effort, four
representative scenarios are presented in Figure 4.4, each based on a two-component
Binomial mixture model. These scenarios reflect different structures of heterogeneity,

defined by specific combinations of weights w and capture probabilities 6.

Figure 4.4(A) captures a population with a small elusive subgroup (10% of individuals
with low detectability # = 0.1) and a dominant group with moderate detectability
( = 0.2). This reflects situations where a minority, such as juveniles or trap-averse
individuals, is harder to detect, a phenomenon widely reported in both wildlife studies and
clinical applications. In Figure 4.4(B), 20% of the population is moderately detectable
(0 = 0.2) while 80% is harder to capture (8 = 0.1). This reversed structure creates a
skew toward low detectability in the population, possibly representing conditions like
widespread trap shyness, or where behavioural or environmental factors reduce capture

likelihood in the majority group.

Figure 4.4(C) illustrates a stronger degree of heterogeneity, where 30% of the population
has moderate detectability (f = 0.2) and 70% are highly elusive (§ = 0.05). The large gap
in detectability between the two groups models populations with strong trap avoidance,
such as those observed in rare species or in heavily disturbed settings. Figure 4.4(D)
shows a more balanced scenario, with equal proportions of individuals having slightly

different detectabilities (§ = 0.1 and 6 = 0.08). Such subtle variation is common in
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FIGURE 4.4: Required sampling efforts, T for different combination of w and 6.

structured populations (e.g., adults vs. subadults) where slight differences in behaviour

or exposure influence detection probabilities.

Together, these scenarios demonstrate how varying levels and forms of heterogeneity
influence the sampling effort required for reliable population estimation, as displayed in
Figure 4.4.

4.6 Cottontail Rabbit in Ohio

The study by Edwards and Eberhardt (1967), later republished by Chao (1987), involved
an investigation on a restricted population of known size using live-trapping techniques.
Within a 4-acre rabbit-proof enclosure, 135 wild cottontail rabbits were subject to live-
trapping over 18 consecutive nights. Among them, 76 were captured at least once. The

recorded capture frequencies (f1 to f7) were as follows:
43.16,8,6,0,2,1

Four zero-truncated models were fitted on the data, namely the Binomial (ZTB), Beta-
Binomial (ZTBB), two-component Binomial mixture (ZTMB2), and three-component
Binomial mixture (ZTMB3). Table 4.5 presents the estimated population sizes and the
results of the model fittings to the data.
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TABLE 4.5: Observed and expected frequencies of capture counts (f, and fm) for
cottontail rabbit data under different zero-truncated models: ZTB (Binomial), ZTBB
(Beta-Binomial), ZTMB2 (Two-component Binomial mixture), and ZTMB3
(Three-component Binomial mixture). Also shown are estimated population size N,
degrees of freedom (df), and p-values from goodness-of-fit tests.

x fx fa:{ZTB} fm{ZTBB} ﬁn{ZTMB2} fm{ZTMB3}
1 43 34 43 43 43
2 16 25 17 16 16
3 8 12 8 8 9
4 6 4 4 5 4
5 0 1 2 3 2
6 2 0 1 1 1
7 1 0 1 0 1
N 135 98 316 143 219
df 3 2 1 i
p 0.011 0.569 0.375 -

4.6.1 Zero-Truncated Binomial

Assuming the capture counts follow a Binomial distribution with homogeneous capture
probability across all individuals, a zero-truncated Binomial distribution was fitted to the
observed data. An EM algorithm was used to obtain the MLE for the capture probability

f and the unobserved frequency fy. The algorithm was initiated with an initial value of
0y = 0.5.

The resulting estimates were § = 0.081 and N = 98, which is notably lower than the
actual population size of N = 135. The Chi-square goodness-of-fit test yielded a p-value
of 0.011 (x? = 11.093, df = 3), indicating a poor fit between the model and the observed
capture frequencies. To ensure the validity of the test, several cells from f; to fig were

combined due to to small expected values ( < 5).

4.6.2 Zero-Truncated Beta-Binomial

Assuming that the capture probability @ follows a beta distribution, an EM algorithm
was employed to obtain the MLE of the parameters a and g for the zero-truncated Beta-
Binomial distribution. The resulting parameter estimates were & = 0.273 and 3 = 10.631.
The Chi-square goodness-of-fit test produced a p-value of 0.569 (x? = 1.126,df = 2),
indicating a good fit to the observed capture data. However, the estimated population
size N = 316 was substantially higher than the actual size of N = 135, suggesting
potential overestimation.
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4.6.3 Zero-Truncated Binomial mixture

Fitting a two-component Binomial mixture model on the cottontail rabbits data resulting
in parameter estimates of w1 = 0.840, Wy = 0.160, 0, = 0.033, and 05 = 0.175. The Chi-
square goodness-of-fit test resulted in a p-value of 0.375 (x? = 0.786,df = 1), indicating
a good fit to the data.

Meanwhile, fitting a three-component Binomial mixture model results in @w; = 0.766,
W9 = 0.203, 3 = 0.031, §; = 0.012, 6, = 0.096, f3 = 0.243. However, the Chi-square
goodness-of-fit test could not be performed, as several frequency cells (f5 to fig) were

merged due to small expected values, resulting in zero degrees of freedom.

4.6.4 Model Evaluation

Table 4.6 compares the fit of four zero-truncated models to cottontail rabbit capture-
recapture data using log-likelihood, AIC, BIC, and the resulting population estimates.
Among the four models, Binomial models has the highest AIC and severely underestimates
the population size (N = 98 compared to the true N = 135), indicating that the simple
Binomial model fails to capture heterogeneity. Beta-Binomial achieves the lowest AIC
and BIC values but greatly overestimates the population size (N = 316), suggesting
over-dispersion. Both the two-component and three-component Binomial mixture models
produce estimates closer to the true value (N = 143 and N = 219, respectively). However,
the two-component model is preferred because it attains lower AIC and BIC than three-
component, avoiding unnecessary model complexity. Overall, two-component Binomial
mixture model provides the best balance between goodness-of-fit, model parsimony, and

accurate estimation of the true population size.

TABLE 4.6: Comparison of zero-truncated models fitted to cottontail rabbit data: ZTB
(Binomial), ZTBB (Beta-Binomial), ZTMB2 (Two-component Binomial mixture), and
ZTMB3 (Three-component Binomial mixture).

distribution N log-likelihood AIC BIC
ZTB 98 -105.109 212.218 214.549
7Z'TBB 316 -97.763 199.525 204.187
ZTMB2 143 -97.748 201.496 208.489
ZTMB3 219 -97.524 205.049 216.702

4.6.5 Sampling Efforts Determination

To determine the required number of capture occasions T for the zero-truncated two-
component Binomial mixture model, the Newton-Raphson method was employed as

described in Section 4.5.2. The parameter estimates used in the calculation were w; =
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0.840, w9 = 0.160, 0, = 0.033, and 0y = 0.175. Table 4.7 presents the required values of

T for achieving various levels of capture success rates, 1 — pgo*.

The 25th and 75th percentiles for 1" were derived from bootstrap samples based on
cottontail rabbit capture-recapture data. Starting with the true value N = 135 , fj

was calculated to be 59. Capture count probabilities p, = % for =0,1,2,...,7
were then computed. Subsequently, 5000 bootstrap samples were generated by drawing
capture counts from a multinomial distribution with probabilities (o, p1, P2, - - ,P7). For
each sample, the zero count fy was excluded, and the EM algorithm was applied to the
observed frequencies (f1, f2,. .., fr) to estimate the parameters (wq,ws, 01, 62). These

parameter estimates were then used to calculate the required sampling efforts 7.

The resulting distribution of T values from the bootstrap replicates was summarised to
obtain the 25th and 75th percentiles, which provide an indication of the uncertainty in
estimating the required sampling effort. These percentiles are reported alongside the

point estimates in Table 4.7.

TABLE 4.7: Required number of capture occasions T for different levels of capture
success rate 1 — pg*, along with the 25th - 75th percentile range derived from bootstrap

estimates.
Desired capture Requires sampling 25% - 5%
success rate, 1 — pp* effort, T percentile
0.4 11 9-23
0.5 16 12 - 35
0.6 22 17 - 50
0.7 31 23 - 72
0.8 43 32 - 98
0.9 63 47 - 154

For a relatively high po* value of 0.6, indicating a lower desired success rate of 40%, 11
capture occasions are sufficient. As the success rate requirement increases, the number
of capture occasions also increases significantly. For a success rate of 50% (po* = 0.5), 16
capture occasions are required. This corresponds roughly to the value of T" actually used
in the cottontail rabbits study. Further increasing the success rate to 60% (po* = 0.4)
requires 22 capture occasions. For a 70% success rate (po* = 0.3), 31 capture occasions
are required. An 80% success rate (po* = 0.2) needs 43 capture occasions. Finally, a 90%

success rate (po* = 0.1) requires 63 capture occasions.
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4.7 Discussion and Conclusion

This chapter examines how to choose sampling effort in Schnabel studies for accurate
population size estimates. The analysis started with a simple Binomial model. It showed
a clear connection between capture occasions, capture probability, and success rate. More
flexible models, like the Beta-Binomial and Binomial mixture, were then used to account

for differences in detection among individuals.

A common guideline suggests that population size estimate should be within 20% of
the true size (Pollock et al., 1990). For populations of 100 or more, this accuracy is
achievable with a 50% success rate (1 —pp = 0.5). Researchers can set a target success

rate (1 —pg) and determine the required number of sampling occasions.

The results show a drastic increase in required capture occasions as the target success
rate goes up. For example, 11 occasions give a 40% success rate, but 43 are needed
for 80% in the cottontail rabbits study. This means that additional sampling provides
diminishing returns. It highlights the trade-off between better estimation and higher
costs. These findings agree with past research (Kordjazi et al., 2016), which also found

that more effort leads to smaller improvements in precision.

Model comparisons using AIC and BIC scores in Table 4.6 show that both Beta-Binomial
and Binomial mixture models fit the cottontail rabbit data well. However, the Beta-
Binomial model can perform poorly when zero counts are excluded (Bohning, 2015).
It may overestimate missed individuals because its assumptions do not always match

real-world variation. This can lead to unreliable results.

Besides model choice, capture probability also affects uncertainty and required sampling
effort (Burnham et al., 1987; Sanderlin et al., 2014). Lower catchability means more
capture occasions are needed for the same success rate. Improving detection methods

can reduce effort and increase precision (Papadatou et al., 2012).

Both this study and Xi et al. (2008) highlight the importance of capture success rate.
Xi et al. determine the minimum success rate by setting a limit on variance, but their
method requires knowing the population size in advance. This study instead treats py as
a design parameter and calculates the needed capture occasions T' directly. This allows

planning based on realistic detection assumptions, including heterogeneity

In summary, this chapter offers practical insights into the relationship between capture
success rate and sampling effort in Schnabel census designs. The proposed framework
provides a structured and adaptable method for determining the optimal number of
capture occasions, T', based on a target capture success rate. The relationship pg =
(1—0)T, along with its extensions for heterogeneous models, offers researchers a clear
and accessible way to align sampling effort with the level of uncertainty they are willing

to accept.
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Chapter 5

Multiple Captures Model with

Hierarchical Structure

5.1 Introduction

This chapter extends the hierarchical Lincoln—Petersen framework to the Schnabel census
by introducing a hierarchical sampling design tailored to studies involving multiple
capture occasions. In this approach, the total sampling effort is organized into a nested
structure: each primary capture occasion comprises several sub-occasions, such as
individual trapping days or trap deployments. These primary occasions are separated
by periods with no sampling, allowing for individual movement between capture events.
This nested arrangement forms a hierarchical structure, with sub-occasions embedded

within primary occasions, as illustrated in Figure 5.1.

Adopting this hierarchical design enables more efficient allocation of effort across occa-
sions, with the aim of improving the precision of population estimates in Schnabel-type
capture-recapture studies. The subsequent sections explore how different strategies for

sub-occasion allocation influence estimation outcomes within this framework.

Primary Occasion

Sub-occasion

FIGURE 5.1: Hierarchical structure of a Schnabel census. Each of the k primary
occasions represents a distinct capture period, typically separated by intervals without
sampling. Within each primary occasion j (j =1,2,...,k), s; sub-occasions
correspond to individual trapping days or the number of traps deployed.
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5.2 Likelihood Analysis

Consider a Schnabel census with k capture occasions, each with a distinct sampling
effort s; for j =1,2,...,k, and Z§:1 s; = T'. Assuming consistent capture probability,
0, across all sub-occasions, the detection probability for each primary capture occasion

pj depends on the number of sub-occasions allocated to it, as described by
pj=1—(1-0)%, (5.1)

where 6 is the per-sub-occasion capture probability (hereafter referred to as capture
probability), and p; is the primary occasion detection probability (hereafter referred to
as detection rate). Let ¢; = 1 —pj, n; represent the number of individuals detected
in the jth occasion, and n the total number of unique individuals detected throughout
the experiment. This model, termed as the time-varying model My, has its likelihood

expressed as

N! k n; N—n;
L<N’pj)0((]\f—n)!j]-:‘[l{pj 4a; }

Darroch (1958) demonstrated that the MLE N for the population size is the unique root,

exceeding n, of the polynomial of degree k — 1 given by:

(1-3) -1 (- %)

=1

The asymptotic variance of the population size estimate, according to Seber and Schofield

(2023), is
k —1
N 1 1
Var(N) & N | ——— +k—-1-> —| . (5.2)
=145 =1

5.3 Allocating Sampling Efforts Across Capture Occasions

To obtain an accurate estimate of IV, it is essential to minimise the variance outlined
in Equation (5.2). While N remains unknown and the first term in the brackets of

Equation (5.2) is constant for any allocation strategy due to the constraint Z§:1 sj =T,

minimizing the variance primarily depends on the last term, Z?:l q— This can be
achieved by optimizing the distribution of secondary sampling sub—occ]asions 5j across
primary occasions. The detection probability p;, given in Equation (5.1), directly
influences the calculation of ¢;. By rearranging the terms, ¢; can be expressed as a

function of s; and 6
1 1

g (=0
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By defining

1
f(S):m

- ()
= exp [5 log <1i0>} , (5.3)

the second derivative of the function in Equation (5.3) with respect to s confirms its

f"(s) = [log (1i9>rexp [s log <1_19ﬂ > 0.

This is because the first squared term, as well as the second exponential term are always

convexity, since

positive for 6 € (0,1). Thus, the function f(s) is convex.

The objective is to minimise the sum

subject to the constraint

where s; > 0 and 6 € (0,1). f(s) has been shown to be convex because its second
derivative is non-negative. According to Jensen’s inequality, for any convex function, the
function’s value at the mean is less than or equal to the mean of the function’s values.

Mathematically, this relationship can be expressed as

1& 1
/ (kzsj> =
j=1

11
a—0)77F =k

A
>

k
> 409
b 1
) Rk

R
(1—0)""

This inequality implies that an equal allocation of s; = T'/k minimises E?:l

leading to a reduction in the variance of the population size estimate.

5.4 Simulation Study

To validate the proposed method for allocating sampling effort, capture-recapture ex-

periments with varying allocation strategies were simulated. Three distinct allocation
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strategies for sampling effort are considered to explore their impact on the estimation
of population size and variance. The "even allocation" strategy distributes the total
sampling effort equally across all primary capture occasions. The "skewed allocation"
strategy concentrates more effort at the beginning of the study period. Lastly, the
"random allocation" strategy uses a multinomial distribution to assign the effort. The

simulation study includes the following steps.

1. Distribute the total sampling effort, T" across k primary occasions using three

different strategies: even allocation, skewed allocation, and random allocation.

2. For each individual in the population N, perform a Bernoulli trial to determine
capture histories based on the probability p;, which is calculated from 6 and the
allocated s; for each occasion. Record the number captured n; in each occasion

and identify the total number of unique individuals n captured across all occasions.

3. Calculate the MLE N by solving the equation

(=) -T10-%)

=1

4. Determine asymptotic variance of N using the formula

1 Eq]
Var(N)® N | ——— +k—-1-> —
H?:l qj =19

5. Conduct the simulation for B iterations to calculate the average N, empirical

variance, and asymptotic variance for each allocation strategy.

The results, as presented in Table 5.1, detail the effectiveness of each strategy when
0 = 0.1, demonstrating how different allocation strategies influence the variance of the
estimated population size under various scenarios. The simulation was conducted with
B = 10000 repetitions. It is shown that the MLE method accurately estimates the
population size N, closely approximating the actual N. Furthermore, both empirical and
asymptotic variances are minimised when using the even sampling allocation strategy,
compared to the outcomes with skewed and random allocations. It is also noted that
variances are larger when fewer sub-occasions are utilized (small 7"), and decrease as T is
increased, highlighting the direct impact of increased sampling effort on enhancing the
precision of variance estimates. This observation emphasizes the significance of sufficient

sampling effort in achieving more accurate population size estimations.
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5.5 Varying Detection Rates Across Primary Occasions

The hierarchical Schnabel census model adapts to accommodate varying detection rates
across primary occasions. Let 0; represent the per-sub-occasion capture probability for
the jth primary occasion. This model allows variability in 6 across different occasions.
Consequently, the detection probability for each primary capture occasion, denoted p;, is

defined by:
pj=1-(1-10;)%,

where s; denotes the number of sub-occasions allocated to the jth primary occasion.
Accordingly, the probability ¢; that an individual remains undetected during occasion j
is

q; = (1 _gj)Sjv

facilitating a modified likelihood function
LN,p) o 2 T ™)
) X Ty 1 1 )
PIIN Znyr L5
7j=1
where n; represents detections in the jth occasion, n totals unique detections, and
pP= (p17p27 o apk>

The asymptotic variance of the population estimate N, now influenced by variable 0;, is

-1

A 1 LN

Var(N)~ N | —/—— +k—-1-> —

j=19j j=1 4j

With ¢; = (1 —6;)%, the variance refines to:
. -1
Var(N) ~ N ! +k—1-) !

ar(N)~ N | —/——— —1-) ——
H?:l(l - ej)sj j=1 (1- ej)sj

Optimizing sub-occasion allocations s; minimises Var(N), subject to the total sub-
occasion constraint s; + sg + - -+ + s = T'. The objective focuses on minimizing
k

o
‘ (1—9j)5j.

7=1
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The specific values of 0; determine the optimal allocation, leading to the formulation:

i 1
min —_—
81782,---,%].2_:1 (1 — 9],)5]
subject to:
s1+so4+---+s,=T.
5.5.1 Uniform Distributed Catchability

If 6 is considered to follow a uniform distribution,

6; ~ Uniform(a,b), 0<a<b<1.

Since ¢; is an unobserved random variable, a pseudo-Bayesian approach is applied based
on the prior distribution of 6;. The optimization problem now involves minimizing the

expectation of the key term in the asymptotic variance:

k
. a\—s;
o in > El(1=05)7) (54)
subject to:
si+sa+-+sg =T, s;>1. (5.5)

The expectation E[(1 — ;)] is derived from the uniform distribution of 6; as:

—a 1-s; _ _ 1—s;
E[(1—0,)"%] = bia (1-a) 1_8(; DT et (5.6)

Designating the right hand side (RHS) of (5.6) as g(s;), the optimization target in (5.4)

simplifies to:
G(81,82,...,8) = Zg(sj),
with the normalisation constraint in Equation (5.5).

One approach to solving this optimization problem is the Newton-Raphson method, an
iterative algorithm that leverages both the gradient (first derivative) and the Hessian

(second derivative) to find the minimum of a function. The update rule is given by:

Snew = Sold - H_l : VG(S), (57)

where
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S represents the vector of s; values,

VG(S) is the gradient of the objective function G(s1, s, ..., Sx), and

2
H is the Hessian matrix, a diagonal matrix with elements —-.

2
853’

The objective function to be minimised is:

1—Sj

k 1—s; 1—s;
1 [(1- i—(1—b)ts
G(Sl,SQ,...,Sk): E b ( a) ( ) ‘|
=177

The gradient VG(S) consists of the first derivative elements

g'(s5) = 5

—a

1 [—(1 —a)l7%log(1—a) + (1 —b)! =% log(1 —b)
1—8]'

+

(1—a)'=% —(1 —b)l—Sal '

(1—s5)°
The Hessian matrix H is a diagonal matrix with second derivative elements given by:

—(1—a)'"* (log(1 —a))® + (1 —b)'~* (log(1 — b))*

g (5s) =0 [

1-— Sj
+2 [(1—a)t=%log(1 —a)— (1 —0b)1"% log(1—1b)]
(1—s;)°
2[(1—a)l=% — (1 —b)'%]
— 1=s) (5.8)

Using the update rule in Equation (5.7), the vector S is iteratively updated until
convergence is achieved. The final S; values are then projected onto the feasible region,

ensuring s; > 1, and normalized to satisfy the constraint Zle sj =T

S]' < Sj . k:i
2 i=15j

An equal allocation of s; = T'/k for all j = 1,2,...,k is recommended as the initial
setting. This choice satisfies the total sampling effort constraint, avoids boundary issues
(e.g., s; < 1), and often leads to faster convergence, particularly under symmetric or

uniform detectability assumptions.

Table 5.2 presents the optimal allocation results for various values of a, b, k, and T
These results are obtained by minimizing the expected key term 25:1 E[(1—6;)%]
using the Newton-Raphson method. The results indicate that the optimal allocation is

evenly distributed across all primary occasions.
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TABLE 5.2: Optimal allocation of sub-occasions s; across k primary capture occasions
for various values of the uniform distribution parameters a and b, where
6; ~ Uniform(a, b), subject to the constraint Z?Zl sj=T.

6 ~ Uniform (a,b)

k T Optimal {s;}
a b

0.1 0.9 3 9 3,3,3

0.3 0.7 5 20 44,4, 4, 4

0.05 0.5 8 40 55555555

0.01 0.4 10 100 10, 10, 10, 10, 10, 10, 10, 10, 10,
10

0.005 0.3 20 220 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11

The finding that equal allocation of sampling effort minimises variance when capture
probabilities follow a uniform distribution is a result of the combined effects of convexity
and symmetry in the optimization problem. The goal is to minimise the key term in
the asymptotic variance of the population size estimator in Equation (5.4), where 6,
follows a uniform distribution over the interval (a,b). Taking the expectation results
in the integral in Equation (5.6). A key property of this function is its convexity in
sj. The second derivative of this function in Equation (5.8) is positive for all s; > 1,
and 0 < a < b < 1, establishing the convexity of the function. This convexity property

enables the application of Jensen’s inequality, which state that for any convex function f,

E[f(s;)] = f (E[s;]) -

Additionally, the assumption that 6; are uniformly distributed introduces an important
form of symmetry. Since all 6; are drawn from the same distribution, no occasion has an
inherently higher or lower capture probability than another. As a result, the expected
contribution to variance is identical across occasions when effort is equally distributed.
If effort were instead distributed unevenly, the convexity of the variance function would
cause the total variance to increase. More formally, the sum of expected values satisfies
k

E[(1-6;)"%] = k-E[(1-6;)""/"],
=1

J
with equality holding only when each s; is equal to 7'/k, which confirms that equal
allocation minimises variance.

The assumption of a uniform distribution for 6; plays a crucial role in this result. If

capture probabilities varied systematically across occasions, such as being consistently
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higher or lower during specific periods, it might be beneficial to adjust the sampling
effort to reflect those patterns. However, under a symmetric distribution of capture
probabilities, no such directional trend exists, making equal allocation the best strategy.
The next sub-section examines sampling strategies under a declining pattern in capture

probability across occasions.

5.5.2 Monotonically Decreasing Catchabilities

If 0; decreases monotonically from j = 1 to j = k, it follows an ordered uniform
distribution such that

61 ~ Uniform(a,b); 02| 61 ~ Uniform(a,61);... Ok | 0x—1 ~ Uniform(a,0x_1), (5.9)

where 0 <a <b<1,and s; > 1for j =1,2,... k.

Under this assumption, the per-sub-occasion capture probabilities vary, with later pri-
mary occasions exhibiting lower baseline capture probability. This assumption is not
only mathematically convenient but also highly realistic in practice, as it reflects the
behavioural response of individuals becoming increasingly trap-shy over time. This
phenomenon is often referred to as a learning effect, where animals avoid recapture after

initial capture experience.

This structure implies that the expected capture probability decreases as j increases.
For instance, given E[f;] = 1/2 and, conditional on 61, [E[fs | 61] = 61/2, it follows
that [E[f2] = 1/4. Extending this pattern, the expected value of #; approximates
(1/ Q)j , indicating that later primary occasions are, on average, less effective at capturing

individuals per-sub-occasion.

In the previous analysis with constant 8, an equal allocation of sub-occasions minimised

9?:1 (1—0)7% via Jensen’s inequality. However, with ; varying and trending downward,
this allocation may no longer be optimal. Intuitively, to counterbalance the declining
capture efficiency, increasing s; where 6; is lower may be beneficial. The objective is to

determine the optimal allocation of sub-occasions s1, s9, ..., s§ by minimising

k
F(s1,...50) = Y fi(s)),
j=1

subject to the constraint

k
Zsj =T, s;>1 forallj.
j=1
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Each f;(s;) is given by:

fi(sj) = /“fej)sjdp(ej) =E[(1-6;)"%], (5.10)

where P(6;) is the conditional distribution defined by the ordered uniform priors in
Equation (5.9).
Using a Lagrange multiplier A for the constraint, the Lagrangian function is
k k
E(sl,...,sk,A) = ij(Sj) +A ZSJ' -T1.
j=1 J=1

Differentiating with respect to s; yields

oL

87% = fi(s;)) +A=0
O E[(1-0,) 5] +A =0
85]- J n

—E[(1—6;)"% log(1—6;)] + A =0.

Thus, the optimal set of allocations {s}} must satisfy
E[(1-0;)% log(1 - 6;)] = A, (5.11)

for each j, with the constraint Z;?:l si="T.

Since the expectation in each equation inherits the ordered structure of 6; (where 6
depends on 61, and so forth), solving these equations in closed form is unlikely. Instead,
the expectations in Equation (5.10) can be estimated numerically using Monte Carlo
simulation based on the ordered priors. A numerical solver can then be applied to

determine s} that satisfy Equation (5.11) under the given constrains.

Because the objective function is estimated via Monte Carlo sampling, function evaluations
can be noisy. This noise complicates the accurate computation of the gradient and Hessian,
making Newton—Raphson methods challenging to apply. In contrast, the optim function
with the "L-BFGS-B" method does not require explicit Hessian computations and tends

to be more robust when handling Monte Carlo noise.

The following algorithm outlines the procedure for determining the optimal allocation

when the detection rate decreases monotonically.

Monte Carlo Optimal Allocation for Monotonically Decreasing Detection
Rates
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Step 1. Generate Monte Carlo samples by drawing 6; ~ Uniform(a, b), and
6; ~ Uniform(a, ;-1)

for the subsequent j = 2,... k.

Step 2. Assign initial values to s;. To ensure s; > 1 and E;?:l sj = T, re-parametrise
using
, es‘j—M

where M = max(S).

Step 3. Using Monte Carlo samples from Step 1, and re-parametrised values from Step

2, evaluate the objective function

k 1
]z—;]E [(1—93‘)53] '

Step 4. Apply the "L-BFGS-B" method via optim function in R to minimise the objective
*

function and determine the optimum allocation s}.
Table 5.3 compares the performance of three allocation strategies across varying parameter
settings (a, b, k, and T'). The optimal strategy is identified by minimizing the objective
function, defined as the sum of the expected values of (1 —6;)~% across all primary

occasions. Three strategies are considered:
1. Optimal Allocation: Minimizes the objective value.
2. Equal Allocation: Distributes the total effort evenly across all primary occasions.
3. Random Allocation: Assigns effort randomly without specific structure.

Lower objective values reflect higher efficiency. The results indicate that equal allocation is
suboptimal when detection probabilities decrease over time. In such cases, concentrating
more effort on later occasions helps balance detection efficiency, thereby reducing variance

in the population estimate.

5.6 Discussion and Conclusion

This study examined the optimal allocation of sampling effort in a hierarchical Schnabel
census and demonstrated how different sub-occasion allocation strategies influence the

accuracy and precision of population estimates.

In the first scenario, the per-sub-occasion capture probability 6 is known to be constant

across all k primary occasions. Under this condition, equal allocation of sub-occasions is
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shown to be the optimal design. In the second scenario, where 6 varies following a uniform
distribution, equal allocation remains the most effective strategy. These outcomes align
with classical sampling theory, where evenly distributing resources is generally optimal
under constant or uniform capture probabilities, due to the convex nature of the key
term (Cochran, 1977). These results offer practical guidance: since optimality holds for
any value of 0, equal allocation remains valid even when 6 is unknown but assumed to
follow a constant or symmetric distribution. This conclusion also extends to scenarios
where 0 follows a beta distribution with identical parameters across primary occasions.
In such cases, the symmetry of the distribution and the convexity of the key variance

term support the optimality of equal allocation, as established by Jensen’s inequality.

The third scenario considers a setting in which 8 follows a monotonically decreasing trend
across primary occasions. In this context, applying a pseudo-Bayesian framework is not
feasible, as the # values are not independent but instead depend on values from preceding
occasions. This nested dependency complicates the direct computation of expectations
required for optimisation. Instead, Monte Carlo simulations are used to generate samples
of 0 values, from which the expected values of key term are computed. Optimal sampling
effort is then derived from these expectations. This simulation-based approach proves
robust in handling complex dependencies among capture probabilities across occasions
(Seber and Schofield, 2023). Under this decreasing trend, equal allocation is no longer
optimal, as it increases the variance of the population size estimate. Instead, adaptive
strategies that allocate more effort to later occasions provide improved precision. Such
strategies are particularly relevant in real-world studies where catchability may decline
over time due to behavioural responses or changing environmental conditions (Pollock
et al., 2006; Thompson et al., 1998).

The hierarchical framework presented shares structural similarities with Pollock (1982)’s
robust design, which organises sampling into primary periods (open population) and sec-
ondary occasions (closed within periods). However, a key difference lies in the population
closure assumption: the hierarchical design assumes that the population remains closed
throughout the study, whereas the robust design explicitly models demographic events
such as births, deaths, and migration between primary periods. This closure assumption
simplifies the model, enabling precise allocation of effort across sub-occasions without

the need to account for demographic changes.

In summary, this chapter provides valuable insights into the design of hierarchical
Schnabel censuses. It highlights how the structure and variability of capture probabilities
influence optimal sampling strategies and offers a principled framework for allocating

sampling effort to achieve improved estimation performance.
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Chapter 6

Conclusion and Future Work

6.1 General Discussion and Conclusion

This thesis has examined optimisation of sampling effort in capture-recapture studies in
three structured models, including Hierarchical Lincoln-Petersen model, Schnabel census,
and Hierarchical Schnabel census. A unifying conclusion across these models is that
planned sampling effort can greatly improve estimates’ accuracy and precision. This
is substantiated by theoretical work and simulation exercises, which produce practical

recommendations that can apply to most field situations.

This work contributes by offering a clear framework for planning capture-recapture
studies when resources are limited. The methods help researchers choose sampling effort
in a smart and efficient way. This reduces the need to rely on guesswork. By linking
capture probabilities, sampling effort, and estimate precision, the framework supports
better planning. It also helps make the best use of time, manpower, and other resources.
This is especially useful in fields like ecology and health, where it is often hard to collect

good data and resources are limited.

6.1.1 Equal Effort Allocation Under Homogeneous Conditions

When capture probabilities are constant across sampling occasions, distributing effort
equally leads to optimal precision. This was demonstrated across both the Hierarchical
Lincoln-Petersen and Hierarchical Schnabel census frameworks. In Chapter 3, equal
allocation of effort (¢t = 7'/2) minimises variance without requiring prior knowledge of
the capture probabilities 0, echoing recommendations by Robson and Regier (1964) and
Pollock et al. (1990). Similarly, in Chapter 5, the use of Jensen’s inequality demonstrates
that when 6 is constant, the optimal strategy is to distribute sub-occasions evenly across
k primary occasions, i.e. s; = T'/k. Simulation confirmed that this strategy consistently

reduces estimator variance by 2 - 25 % compared to unequal allocations.
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These findings are consistent with principles in classical sampling theory (Cochran, 1977),
which advocates for balances sampling when underlying probabilities are stable. From
a practical perspective, equal allocation provides a simple yet effective design strategy,
particularly in situations where capture probabilities are not well understood and ease of

implementation is a priority.

6.1.2 Adaptive Effort Allocation Under Heterogeneity

When capture probabilities vary across occasions, optimal sampling design becomes
more complex. If the heterogeneity in # is known or can be estimated, adaptive al-
locations strategies which assign more effort to periods of lower capturabilities offer
advantages. Chapter 3 through Chapter 5 demonstrated how numerical techniques, in-
cluding Newton-Raphson and Quasi-Newton optimisation, can be employed to determine

effort distributions that reduce estimator variance.

For scenarios where the exact detection probabilities are unknown, a pseudo-Bayesian
framework using uniform or structured priors is introduced. This approach, although not
fully Bayesian, leverages expected values of 6 to inform sampling design and has shown
robust performance in simulation studies. These findings align with previous studies on
Bayesian estimation (Basu and Ebrahimi, 2001; Wang et al., 2015), which emphasise
the adaptability of Bayesian and pseudo-Bayesian framework in handling uncertainty

effectively.

6.1.3 Modelling via Zero-Truncated and EM algorithm

This thesis has demonstrated the use of zero-truncated models to count for undetected
individuals in capture-recapture experiments. Zero-truncated models focus on observed
count distributions in order to make an inference on the complete population that consists
of both observed and unobserved individuals. This is especially important in research on
elusive or hard-to-sample populations, in which under-reporting is usual (Béhning and
Kuhnert, 2006).

The application of the EM algorithm adds to the suitability of zero-truncated models.
The EM algorithm solves parameter estimation challenges presented by incomplete data
or complicated likelihood functions. The EM algorithm iteratively estimates missing data
(E-step) and maximises the expectation of log-likelihood (M-step) to converge to stable
parameter estimates. This iterative computation is desirable for use in capture-recapture

data when the closed-form solution is not readily available (Dempster et al., 1977).

6.1.4 Pilot Study as a Design Tool

Pilot studies are an integral part in designing capture-recapture studies by suggesting
initial estimates for capture rates and informing sampling effort allocation choices. It is

impossible to define an optimal effort level, since it is based on the size of the population,
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which is an unobserved quantity that one is attempting to estimate. This is inherently a
circular problem in planning. Pilot data can break this impediment, according to Bréder
et al. (2020), by providing some early guidance that aids simulation-based design as well

as parameter calibration.

Even small-scale pilot studies have value in adding to model development and enhancing
estimates of precision for populations. Robson and Regier (1964) argued that planning
at an early stage does not necessarily have to depend on guesswork, but that reasoned
assumptions, on an expert basis or from available data, can define an initial working
point. In conjunction with contemporary simulation methods (Paterson et al., 2019),
such early observations allow researchers to trade off study aims with practical limitations

to produce more efficient and impactful sampling plans.

6.1.5 Detectability Enhancements

Improving detectability provides an efficient substitute for increasing sampling effort in
capture-recapture analyses. In situations where capture probabilities are low, variance
in estimates can increase, necessitating large samples to achieve precision. Rationing
resources to capture large numbers of individuals can be replaced by enhancing probability
of recapture by using sophisticated technologies, including camera traps, GPS collars,
and RFID tags. According to Burnham et al. (1987), even modest enhancements in
detectability can substantially cut sampling occasions. Such were also the conclusions by
Papadatou et al. (2012) as well as by Schorr et al. (2014), who emphasized advantages in
using technology combined with enhanced analytical techniques in terms of accessing

populations that elude, or remain under-reported.

In addition to tools based on technology, field-based enhancements like optimised observer
timing, observer training, and habitat-specific techniques can improve catchability at
constant effort. Such refinements have been demonstrated to improve data accuracy
and estimation credibility, even at limited budgets (Conner et al., 2015). Together,
enhancing detectability offers an inexpensive means to achieve precision and practicality,

particularly at resource-restricted surveys or in populations that prove tough to sample.

6.2 Limitations

Although this thesis presents an organized approach to optimising sampling effort in
capture-recapture experiments, some limitations should be noted. Firstly, the methods
assume closed populations, meaning there is neither birth, death, immigration, nor
emigration throughout the study. Though making analysis easy, this assumption might

not apply to long-term study or dynamic ecological communities.

Secondly, the methods are limited to single-species studies. Multi-species or community
capture-recapture studies have extra levels of heterogeneity that could influence efficiency

in sampling. In such contexts, variations in species-specific detectability, behaviour,
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as well as habitat use could make allocation of sampling effort more complicated and

necessitate more adaptable methods.

Third, there is no allowance for spatial considerations. Several studies in real-world
situations have geographically distributed populations, for which individuals movement
and trap location may have impact on detectability. Not allowing for spatial structure

could decrease precision when making estimates in such contexts.

6.3 Future Work

There are several ways this work can be extended. One possible way is to include open-
population models that permit demographic change over years, such as the Jolly-Seber or
Cormack-Jolly-Seber models. This could make the methods more relevant to monitoring

over longer periods or to investigations involving transient or migratory populations.

Second, the methods could be combined with spatial capture-recapture (SCR) models
to allow researchers to account for spatial variation in detection. By considering trap
location and animal movement, integrating with SCR models could improve the precision

and accuracy of estimates at spatially structured sites.

Finally, to make the methods more practically relevant, embedding financial and logistical
limitations directly in them would be beneficial. By making the trade-off between cost,
availability of manpower, and precision desired explicit, researchers as well as decision-

makers could design studies more effectively within practical operational constraints.
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Appendix A

Codes Availability

The R scripts used in this thesis including model fittings, sampling effort calculations and
simulations have been compiled and uploaded to GitHub. The repository is accessible at:

https://github.com/snchinl7/sampling-effort-in-cr


https://github.com/snchin17/sampling-effort-in-cr
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TABLE B.1: Simulation results for various combinations of population size N, total
sub-occasions T, and capture probabilities 81 and 2. Variance of the population size
estimates N is shown across different values of ¢, the number of sub-occasions allocated
to capture occasion 1. w1 X mo represents the joint detectability under each allocation.

A

N 6, 02 T t N Var(N) T X Ty
1 1000.002 1.61412 0.400
2 999.997 1.02507 0.639
3 1000.005 0.82488 0.782
4 1000.003 0.74839 0.866
5 999.988 0.71788 0.915
6 999.995 0.69075 0.940
7 999.997 0.69002 0.949
8 1000.002 0.69101 0.945
9 1000.005 0.69394 0.926
1000 0.40 0.20 20 10 1000.005 0.72879 0.887
11 1000.000 0.74907 0.862
12 1000.004 0.78166 0.829
13 999.992 0.83059 0.788
14 999.993 0.88458 0.736
15 1000.001 0.95868 0.671
16 999.997 1.10304 0.589
17 1000.001 1.34057 0.487
18 1000.004 1.79398 0.360
19 1000.003 3.25199 0.200
1 399.998 0.64826 0.400
2 400.005 0.40687 0.639
3 400.002 0.33011 0.782
4 399.998 0.30093 0.866
400 0.40 0.90 %0 5 399.994 0.29125 0.915
6 399.999 0.27955 0.940
7 400.002 0.27243 0.949
8 400.001 0.27426 0.945
9 400.000 0.27947 0.926
10 399.998 0.29618 0.887
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Table B.1 — continued from previous page
N 01 02 T t N Var(N) T X o
11 400.005 0.29838 0.862
12 400.001 0.31782 0.829
13 399.995 0.33210 0.788
14 400.002 0.35356 0.736
400 0.40 0.90 50 15 400.000 0.38646 0.671
16 400.001 0.44672 0.589
17 399.999 0.53587 0.487
18 400.000 0.72905 0.360
19 400.004 1.34237 0.200
1 200.003 0.33145 0.400
2 200.002 0.19914 0.639
3 200.001 0.16615 0.782
4 200.001 0.14818 0.866
5 200.002 0.13988 0.915
6 199.999 0.13952 0.940
7 200.000 0.13739 0.949
8 199.999 0.13922 0.945
9 199.998 0.14184 0.926
200 0.40 0.20 20 10 200.000 0.14599 0.887
11 200.000 0.15128 0.862
12 199.996 0.16183 0.829
13 200.001 0.16666 0.788
14 199.998 0.18059 0.736
15 200.002 0.19273 0.671
16 199.996 0.22166 0.589
17 200.000 0.27053 0.487
18 200.002 0.37606 0.360
19 200.004 0.68291 0.200
1 99.998 0.16127 0.400
2 99.998 0.10190 0.639
3 99.999 0.08374 0.782
4 100.001 0.07608 0.866
5 100.001 0.07268 0.915
100 0.40 0.20 20 6 100.000 0.07025 0.940
7 100.001 0.06847 0.949
8 100.000 0.07054 0.945
9 100.001 0.07009 0.926
10 100.000 0.07388 0.887
11 99.998 0.07762 0.862
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Table B.1 — continued from previous page

A

N 01 02 T t N Var(N) T X o
12 99.999 0.08063 0.829
13 100.004 0.08092 0.788
14 100.000 0.08723 0.736
15 99.999 0.09772 0.671
100 0.40 0.20 20 16 100.001 0.11061 0.589
17 99.998 0.13681 0.487
18 99.998 0.18570 0.360
19 99.996 0.32651 0.200
1 1000.019 39.84736 0.390
2 999.975 24.98227 0.613
3 1000.027 21.04894 0.729
4 999.997 20.03410 0.768
1000 0.40 0.90 1 ) 999.987 20.59317 0.741
6 999.962 23.81535 0.641
7 999.984 26.85745 0.568
8 1000.049 32.42120 0.473
9 999.987 43.68427 0.351
10 999.943 78.54668 0.196
1 399.973 15.87043 0.390
2 400.026 10.05821 0.613
3 399.989 8.42737 0.729
4 399.982 7.96212 0.768
400 0.40 0.90 11 ) 399.997 8.31759 0.741
6 400.010 9.63558 0.641
7 400.011 10.82248 0.568
8 399.987 13.17537 0.473
9 399.995 17.59126 0.351
10 400.023 31.95277 0.196
1 200.020 7.97465 0.390
2 199.987 5.10416 0.613
3 199.997 4.25128 0.729
4 199.989 4.00744 0.768
900 0.40 0.20 11 ) 200.000 4.20080 0.741
6 200.008 4.80543 0.641
7 200.012 5.36740 0.568
8 199.998 6.41656 0.473
9 199.989 8.83306 0.351
10 199.998 15.86001 0.196
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Table B.1 — continued from previous page

A

N 01 02 T t N Var(N) T X T2
1 100.004 4.05168 0.390
2 100.004 2.54486 0.613
3 99.994 2.11171 0.729
4 99.992 2.02134 0.768
100 0.40 0.90 1 5) 100.006 2.10949 0.741
6 100.003 2.41748 0.641
7 100.008 2.74798 0.568
8 99.992 3.29612 0.473
9 99.986 4.51417 0.351
10 99.980 8.11384 0.196
1 1000.033 85.09817 0.379
2 1000.002 54.58878 0.583
3 999.972 47.80553 0.668
1000 0.40 0.90 9 4 999.980 48.33574 0.656
5 1000.023 58.69180 0.544
6 1000.055 69.48011 0.458
7 1000.040 93.29367 0.342
8 1000.096 166.74571 0.192
1 399.967 33.94290 0.379
2 400.049 22.15873 0.583
3 399.980 18.93364 0.668
400 0.40 0.20 9 4 399.954 19.30434 0.656
) 399.980 23.58513 0.544
6 400.007 27.84115 0.458
7 399.989 37.26586 0.342
8 399.970 67.24473 0.192
1 200.019 16.96110 0.379
2 200.001 10.98783 0.583
3 200.006 9.59422 0.668
900 0.40 0.20 9 4 199.976 9.77997 0.656
5 200.003 11.90724 0.544
6 199.990 14.21688 0.458
7 199.994 18.89231 0.342
8 199.974 34.10754 0.192
1 100.008 8.71122 0.379
2 99.993 5.55723 0.583
100 0.40 0.20 9 3 99.999 4.80709 0.668
4 100.000 4.95729 0.656
5) 99.992 5.92919 0.544
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Table B.1 — continued from previous page

A

N 01 02 T t N Var(N) T X o
6 100.000 7.04506 0.458
7 99.996 9.63569 0.342
8 100.033 17.68656 0.192
1 1000.045 337.54914 0.326
2 999.964 250.80606 0.443
1000 0.40 0.20 6 3 1000.111 289.18672 0.383
4 999.908 373.07805 0.298
) 1000.129 641.18028 0.172
1 399.948 136.18842 0.326
2 400.055 101.30991 0.443
400 0.40 0.20 6 3 400.031 116.22270 0.383
4 400.028 149.19497 0.298
) 399.887 262.35257 0.172
1 200.018 68.47299 0.326
2 200.001 50.61695 0.443
200 0.40 0.20 6 3 200.015 58.33231 0.383
4 200.043 75.46981 0.298
) 200.047 133.35814 0.172
1 99.999 34.92987 0.326
2 100.006 25.61743 0.443
100 0.40 0.20 6 3 100.005 29.97232 0.383
4 100.011 39.10938 0.298
) 99.991 69.14689 0.172
1 1000.008 10.17658 0.397
2 999.977 6.44075 0.633
3 1000.016 5.27905 0.769
4 1000.004 4.78985 0.843
) 999.991 4.67459 0.875
6 999.992 4.65767 0.871
7 999.994 4.82338 0.832
1000 0.40 0.04 20 8 999.997 5.38991 0.748
9 1000.001 6.78132 0.595
10 999.994 12.05748 0.333
11 1000.009 12.97420 0.306
12 1000.000 14.58426 0.277
13 1000.005 16.29605 0.247
14 1000.003 18.79028 0.216
15 1000.002 22.02738 0.184
16 999.995 27.05554 0.150
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Table B.1 — continued from previous page

N 01 02 T t N Var(N) T X o
17 1000.020 35.83042 0.115

1000 0.4 0.04 20 18 1000.025 51.41786 0.078
19 1000.005 104.97994 0.040

1 399.994 4.05688 0.397

2 400.022 2.54910 0.633

3 400.005 2.07404 0.769

4 400.001 1.89545 0.843

5 400.003 1.84330 0.875

6 399.996 1.87552 0.871

7 400.008 1.95673 0.832

8 400.001 2.13282 0.748

9 400.002 2.71936 0.595

400 0.40 0.04 20 10 400.013 4.91493 0.333
11 399.996 5.30131 0.306

12 399.994 5.91001 0.277

13 400.000 6.45882 0.247

14 399.993 7.52883 0.216

15 400.008 8.79508 0.184

16 399.988 10.90968 0.150

17 399.994 14.23187 0.115

18 400.007 21.27610 0.078

19 399.957 42.13856 0.040

1 200.006 2.05477 0.397

2 200.002 1.28716 0.633

3 199.995 1.05665 0.769

4 200.000 0.95498 0.843

5 200.005 0.91472 0.875

6 200.003 0.92777 0.871

7 200.004 0.95989 0.832

8 199.994 1.07914 0.748

200 0.40 0.04 20 9 200.000 1.36110 0.595
10 200.004 2.44176 0.333

11 200.000 2.66244 0.306

12 200.009 2.95805 0.277

13 200.004 3.30263 0.247

14 200.020 3.85647 0.216

15 200.011 4.50684 0.184

16 199.991 5.53798 0.150

17 200.011 7.37784 0.115
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Table B.1 — continued from previous page

A

N 01 02 T t N Var(N) T X o
200 0.40 0.04 90 18 200.013 11.44155 0.078
19 200.057 25.47595 0.040
1 100.003 1.02324 0.397
2 99.997 0.64569 0.633
3 100.001 0.52660 0.769
4 100.000 0.48149 0.843
) 100.003 0.46347 0.875
6 100.003 0.46277 0.871
7 100.004 0.48616 0.832
8 99.997 0.54773 0.748
9 100.007 0.68075 0.595
100 0.40 0.04 20 10 99.994 1.23514 0.333
11 100.011 1.36794 0.306
12 100.006 1.50805 0.277
13 99.991 1.70111 0.247
14 99.998 1.88711 0.216
15 100.009 2.36482 0.184
16 99.997 2.83676 0.150
17 99.990 3.76911 0.115
18 100.005 6.09567 0.078
19 99.977 12.71870 0.040
1 1000.015 101.81531 0.375
2 999.992 66.28857 0.572
3 999.973 59.33562 0.646
4 999.971 61.87069 0.615
1000 0.40 0.04 11 ) 1000.013 80.76675 0.471
6 1000.135 218.95865 0.176
7 1000.080 266.13141 0.144
8 1000.114 347.13378 0.110
9 999.939 514.02562 0.075
10 1000.035 1015.40640 0.038
1 399.952 40.91505 0.375
2 400.060 27.01138 0.572
3 400.003 23.43184 0.646
4 399.959 24.65851 0.615
400 0.40 0.04 1 ) 399.981 32.30659 0.471
6 399.959 88.86733 0.176
7 399.944 107.20853 0.144
8 399.928 139.83693 0.110
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Table B.1 — continued from previous page

A

N 01 02 T t N Var(N) T X o
9 399.991 212.28328 0.075
10 400.040 424.00587 0.038
1 200.016 20.42160 0.375
2 200.003 13.45071 0.572
3 200.024 11.78262 0.646
4 199.978 12.48160 0.615
200 0.40 0.04 11 ) 200.007 16.38337 0.471
6 199.952 44.56189 0.176
7 199.979 54.75488 0.144
8 199.940 71.76161 0.110
9 200.062 113.16873 0.075
10 200.086 248.57429 0.038
1 100.010 10.50531 0.375
2 99.999 6.76747 0.572
3 100.003 5.91764 0.646
4 99.995 6.32527 0.615
100 0.40 0.04 1 ) 99.995 8.28599 0.471
6 99.985 22.84014 0.176
7 99.956 28.67953 0.144
8 100.078 38.74779 0.110
9 100.018 61.09105 0.075
10 99.895 131.00861 0.038
1 1000.013 186.03592 0.356
2 999.975 126.46995 0.523
3 999.981 122.47537 0.544
1000 0.40 0.04 9 4 999.990 155.12161 0.427
5 1000.119 475.62498 0.139
6 1000.031 621.51216 0.107
7 1000.216 938.09866 0.073
8 1000.212 1817.39475 0.037
1 399.935 75.24986 0.356
2 400.076 51.41765 0.523
3 400.005 48.34958 0.544
400 0.40 0.04 9 4 400.036 62.08107 0.427
) 400.041 195.96256 0.139
6 400.034 255.56284 0.107
7 400.020 376.59993 0.073
8 399.973 778.90276 0.037
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A

N 01 0 T t N Var(N) T X o
1 200.028 37.39335 0.356
2 199.979 25.60675 0.523
3 199.982 24.07146 0.544
900 0.40 0.04 9 4 199.990 31.55119 0.427
5 199.991 100.62498 0.139
6 199.986 128.03501 0.107
7 199.924 196.46916 0.073
8 199.841 423.03924 0.037
1 100.018 19.22178 0.356
2 100.002 12.83212 0.523
3 99.992 12.35083 0.544
100 0.40 0.04 9 4 99.998 16.10005 0.427
5 100.016 52.96268 0.139
6 99.992 70.13979 0.107
7 99.937 107.30220 0.073
8 99.993 240.08157 0.037
1 999.866 701.03610 0.273
2 1000.150 632.68915 0.300
1000 0.40 0.04 6 3 999.952 2145.40145 0.090
4 1000.081 3132.18517 0.062
5) 1000.006 6223.96122 0.032
1 400.021 281.38436 0.273
2 399.949 257.35220 0.300
400 0.40 0.04 6 3 400.024 864.12864 0.090
4 400.149 1288.27374 0.062
5) 399.956 2692.12528 0.032
1 200.035 144.17675 0.273
2 200.004 129.19782 0.300
200 0.40 0.04 6 3 199.937 458.36149 0.090
4 200.122 700.94095 0.062
5 199.701 1496.09011 0.032
1 99.990 73.01039 0.273
2 99.973 66.60945 0.300
100 0.40 0.04 6 3 100.049 250.31070 0.090
4 100.044 396.38946 0.062
5 99.452 741.17675 0.032
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Table B.1 — continued from previous page

A

N 01 0 T t N Var(N) T X o
1 1000.014 15.26957 0.199
2 1000.017 8.46379 0.358
3 1000.006 6.29728 0.485
4 1000.009 5.21344 0.586
5) 999.999 4.56433 0.666
6 1000.005 4.13049 0.729
7 999.992 3.90014 0.779
8 999.997 3.72282 0.817
9 1000.004 3.59890 0.846

1000 0.20 0.30 20 10 999.999 3.51447 0.867
11 1000.001 3.40374 0.888
12 1000.001 3.40471 0.893
13 1000.012 3.37075 0.884
14 999.995 3.52558 0.860
15 1000.007 3.71326 0.817
16 1000.019 4.01491 0.750
17 999.990 4.69302 0.651
18 999.986 6.04208 0.507
19 1000.022 10.29022 0.299
1 400.008 6.20283 0.199
2 399.983 3.38080 0.358
3 399.992 2.47532 0.485
4 399.999 2.07870 0.586
5) 399.992 1.81612 0.666
6 400.005 1.66145 0.729
7 400.004 1.56210 0.779
8 400.000 1.49455 0.817
9 400.005 1.44853 0.846

400 0.20 0.30 20 10 399.998 1.41164 0.867
11 399.999 1.37313 0.888
12 400.002 1.35091 0.893
13 400.006 1.37652 0.884
14 400.007 1.40325 0.860
15 399.997 1.49657 0.817
16 400.003 1.60754 0.750
17 399.995 1.88992 0.651
18 400.008 2.39611 0.507
19 399.989 4.11279 0.299
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A

N 01 02 T t N Var(N) T X o
1 200.000 3.14634 0.199
2 199.993 1.71248 0.358
3 199.997 1.26715 0.485
4 199.996 1.03997 0.586
5 199.998 0.92867 0.666
6 199.997 0.82871 0.729
7 199.996 0.77950 0.779
8 200.009 0.73719 0.817
9 200.002 0.72143 0.846

200 0.20 0.30 20 10 200.004 0.69874 0.867
11 199.993 0.69883 0.888
12 200.003 0.68003 0.893
13 199.998 0.68031 0.884
14 199.997 0.70732 0.860
15 199.997 0.74144 0.817
16 199.998 0.82277 0.750
17 200.002 0.94225 0.651
18 199.991 1.22679 0.507
19 200.001 2.10092 0.299
1 99.998 1.57657 0.199
2 99.999 0.86136 0.358
3 99.995 0.64962 0.485
4 99.997 0.53097 0.586
5) 100.002 0.46477 0.666

100 0.20 0.30 20 6 100.004 0.42165 0.729
7 100.003 0.38948 0.779
8 99.999 0.37849 0.817
9 99.999 0.36655 0.846
10 99.997 0.35703 0.867
11 100.002 0.34984 0.888
12 100.003 0.34263 0.893
13 100.002 0.34618 0.884
14 100.001 0.35381 0.860
15 99.998 0.37726 0.817
16 100.000 0.40875 0.750
17 100.003 0.47286 0.651
18 100.000 0.60835 0.507
19 99.997 1.04666 0.299
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Table B.1 — continued from previous page

A

N 01 02 T t N Var(N) T X T2
1 1000.035 234.74663 0.189
2 1000.041 131.72948 0.335
3 999.926 98.75575 0.446
4 1000.008 83.92004 0.527
1000 0.90 0.30 11 5) 999.976 76.33431 0.582
6 999.954 71.54065 0.614
7 999.934 71.26267 0.620
8 999.990 76.72793 0.573
9 1000.002 94.24763 0.464
10 999.935 157.59457 0.281
1 399.991 94.53089 0.189
2 399.941 53.44939 0.335
3 399.990 39.74985 0.446
4 400.011 33.73059 0.527
400 0.20 0.30 11 ) 400.028 30.13335 0.582
6 399.992 28.70424 0.614
7 400.008 28.43448 0.620
8 399.974 30.68011 0.573
9 400.014 38.35742 0.464
10 400.046 62.96347 0.281
1 199.975 48.01513 0.189
2 199.988 26.92612 0.335
3 199.995 19.89610 0.446
4 199.971 16.97683 0.527
900 0.90 0.30 1 ) 199.989 15.45606 0.582
6 200.007 14.43744 0.614
7 200.016 14.29707 0.620
8 200.014 15.58594 0.573
9 199.999 19.29449 0.464
10 199.991 32.16498 0.281
1 100.015 24.64565 0.189
2 100.002 13.51635 0.335
3 100.011 10.09100 0.446
4 99.975 8.50821 0.527
100 0.20 0.30 11 ) 100.001 7.76646 0.582
6 100.015 7.35786 0.614
7 100.019 7.24066 0.620
8 99.984 7.80146 0.573
9 100.006 9.83161 0.464
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A

N 01 02 T t N Var(N) T X T2
10 99.971 16.19698 0.281

1 1000.010 439.70144 0.180

2 1000.050 249.90893 0.316

3 999.994 190.99047 0.413

1000 0.90 0.30 9 4 1000.005 165.33367 0.477
) 999.987 155.15733 0.511

6 999.893 155.64554 0.506

7 999.932 184.92036 0.428

8 1000.094 296.91160 0.266

1 399.952 177.95142 0.180

2 399.885 102.26529 0.316

3 400.036 76.84311 0.413

400 0.90 0.30 9 4 400.037 66.31521 0.477
) 400.033 62.24731 0.511

6 400.022 62.74837 0.506

7 400.043 73.37413 0.428

8 400.047 118.38983 0.266

1 199.997 89.06173 0.180

2 199.993 50.69520 0.316

3 200.003 38.01509 0.413

900 0.90 0.30 9 4 199.964 33.46795 0.477
) 199.992 31.28852 0.511

6 200.014 31.24086 0.506

7 200.024 37.45130 0.428

8 199.977 60.37311 0.266

1 99.993 45.85341 0.180

2 99.997 25.67065 0.316

3 100.019 19.43870 0.413

100 0.90 0.30 9 4 100.002 17.07727 0.477
) 100.004 15.79147 0.511

6 100.018 15.76262 0.506

7 100.019 18.97691 0.428

8 100.040 31.36693 0.266

1 1000.074 1139.75533 0.156

2 1000.041 675.34651 0.261

1000 0.20 0.30 6 3 1000.051 551.12955 0.321
4 1000.015 544.74590 0.327

) 1000.084 792.04127 0.225
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N 01 0 T t N Var(N) T X o
1 399.958 459.97981 0.156

2 399.885 275.33325 0.261

400 0.20 0.30 6 3 399.978 221.46595 0.321
4 400.081 217.18555 0.327

5 399.879 317.49138 0.225

1 199.955 231.63097 0.156

2 200.025 138.21490 0.261

200 0.20 0.30 6 3 200.023 110.29669 0.321
4 199.978 108.60884 0.327

5 200.021 160.91161 0.225

1 99.950 121.81119 0.156

2 99.957 70.12269 0.261

100 0.20 0.30 6 3 100.034 57.21304 0.321
4 100.028 56.06053 0.327

5 100.011 83.34439 0.225

1 1000.030 58.52430 0.197

2 1000.039 32.82862 0.354

3 999.979 24.47909 0.477

4 1000.000 20.11527 0.574

5 1000.017 17.79618 0.649

6 999.995 16.33161 0.705

7 999.977 15.33543 0.747

8 999.997 14.83202 0.775

9 999.996 14.52483 0.791

1000 0.20 0.20 20 10 1000.008 14.54079 0.797
11 999.976 14.54795 0.791

12 1000.013 14.75667 0.775

13 1000.024 15.38108 0.747

14 1000.022 16.25866 0.705

15 1000.006 17.78856 0.649

16 1000.007 20.17270 0.574

17 1000.024 24.48242 0.477

18 1000.004 32.65594 0.354

19 1000.000 59.54632 0.197

1 399.988 23.75930 0.197

2 399.964 13.18055 0.354

400 0.20 0.20 20 3 399.992 9.59444 0.477
4 400.018 8.08307 0.574

5 399.998 7.09768 0.649
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A

N 01 02 T t N Var(N) T X o
6 400.001 6.45807 0.705

7 400.014 6.19439 0.747

8 400.014 5.98236 0.775

9 400.017 5.79329 0.791

10 400.001 5.80569 0.797

11 400.021 5.84169 0.791

400 0.90 0.20 20 12 399.993 5.97018 0.775
13 399.997 6.27686 0.747

14 400.011 6.49205 0.705

15 400.014 7.21365 0.649

16 399.991 8.10064 0.574

17 400.003 9.77112 0.477

18 399.973 13.08119 0.354

19 399.989 23.51883 0.197

1 200.005 11.99455 0.197

2 200.010 6.73770 0.354

3 200.007 4.90508 0.477

4 199.987 4.04614 0.574

) 200.005 3.62285 0.649

6 199.993 3.27424 0.705

7 200.003 3.08832 0.747

8 200.020 2.99533 0.775

9 199.992 2.92758 0.791

200 0.20 0.20 20 10 199.991 2.95325 0.797
11 199.994 2.96866 0.791

12 200.009 2.99711 0.775

13 200.004 3.09738 0.747

14 200.005 3.28713 0.705

15 199.987 3.58421 0.649

16 199.991 4.13288 0.574

17 200.001 4.87042 0.477

18 200.012 6.67900 0.354

19 200.023 12.21611 0.197

1 99.998 6.01710 0.197

2 100.004 3.36582 0.354

100 0.90 0.90 20 3 99.996 2.49414 0.477
4 99.985 2.05373 0.574

) 99.997 1.81509 0.649

6 100.009 1.63037 0.705
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N 01 02 T t N Var(N) T X T2
7 100.007 1.55642 0.747
8 99.991 1.51284 0.775
9 99.996 1.47323 0.791
10 100.000 1.45288 0.797
11 100.004 1.46591 0.791
12 100.001 1.50713 0.775
100 0.20 0.20 20 13 100.007 1.55027 0.747
14 100.009 1.63094 0.705
15 99.996 1.81978 0.649
16 99.992 2.04158 0.574
17 100.005 2.51453 0.477
18 99.996 3.34815 0.354
19 99.984 6.15262 0.197
1 1000.003 487.80940 0.179
2 1000.025 275.69795 0.312
3 1000.005 212.88121 0.406
4 1000.023 185.04754 0.467
1000 0.90 0.90 1 5 999.966 174.61199 0.496
6 999.895 173.93271 0.496
7 999.981 185.76239 0.467
8 999.959 211.58431 0.406
9 1000.054 276.34476 0.312
10 999.862 482.51660 0.179
1 399.950 195.95300 0.179
2 399.886 113.08298 0.312
3 400.023 85.41825 0.406
4 400.048 73.98121 0.467
5 400.041 70.13034 0.496
400 0.20 0.20 11
6 399.978 70.01883 0.496
7 400.032 73.21792 0.467
8 400.060 85.61335 0.406
9 399.955 111.05639 0.312
10 399.977 194.28128 0.179
1 199.997 98.14625 0.179
2 200.009 56.24801 0.312
200 0.90 0.90 1 3 199.993 42.17733 0.406
4 199.965 37.41929 0.467
5 200.002 35.18198 0.496
6 200.036 34.99074 0.496
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A

N 01 02 T t N Var(N) T X T2
7 200.027 36.85606 0.467
200 0.20 0.20 11 8 199.971 42.99717 0.406
9 200.024 56.75058 0.312
10 200.008 99.91992 0.179
1 99.993 50.83936 0.179
2 100.008 28.36625 0.312
3 100.013 21.53170 0.406
4 99.995 19.13093 0.467
100 0.20 0.20 1 ) 99.996 17.74922 0.496
6 100.032 17.77946 0.496
7 100.017 19.02649 0.467
8 100.029 21.81404 0.406
9 100.008 28.83897 0.312
10 99.968 50.58676 0.179
1 1000.048 814.86809 0.166
2 1000.042 472.15831 0.285
3 1000.029 376.13107 0.360
1000 0.20 0.20 9 4 999.993 340.82486 0.397
5) 999.916 342.79984 0.397
6 1000.142 374.31619 0.360
7 1000.063 476.03566 0.285
8 1000.003 808.44415 0.166
1 399.934 327.64490 0.166
2 399.879 191.95925 0.285
3 400.012 149.82985 0.360
400 0.90 0.20 9 4 400.012 136.10755 0.397
) 400.059 135.93427 0.397
6 400.042 151.44799 0.360
7 399.942 188.99205 0.285
8 399.971 326.39290 0.166
1 199.996 164.91882 0.166
2 200.034 96.01413 0.285
3 200.036 74.86640 0.360
200 0.20 0.20 9 4 199.979 68.16321 0.397
) 199.971 68.63594 0.397
6 199.959 75.98330 0.360
7 199.978 96.41995 0.285
8 199.926 166.67589 0.166
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N 01 02 T t N Var(N) T X o
1 99.932 86.77309 0.166
2 99.956 48.49649 0.285
3 100.030 38.52192 0.360
100 0.20 0.90 9 4 100.006 35.44022 0.397
5 100.000 34.79634 0.397
6 99.998 38.76851 0.360
7 99.983 49.46244 0.285
8 100.095 87.46232 0.166
1 999.825 1968.03248 0.134
2 1000.079 1239.45606 0.213
1000 0.20 0.20 6 3 999.932 1109.51589 0.238
4 1000.006 1246.42894 0.213
5 1000.199 1986.55606 0.134
1 399.967 804.39065 0.134
2 399.864 502.29215 0.213
400 0.20 0.20 6 3 399.928 443.48720 0.238
4 399.970 503.18223 0.213
5 399.945 803.98924 0.134
1 200.020 407.30970 0.134
2 200.037 255.11974 0.213
200 0.20 0.20 6 3 199.965 225.04819 0.238
4 200.016 254.28274 0.213
5 200.077 414.34798 0.134
1 99.941 217.76051 0.134
2 99.970 130.43723 0.213
100 0.20 0.20 6 3 99.991 117.19450 0.238
4 100.034 135.50141 0.213
5 99.995 218.07184 0.134
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