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ABSTRACT 

A model to calculate the sound radiation from an unbaffled perforated plate is proposed. This is 
achieved by modifying an existing model of an unbaffled plate to include the effect of perforation 
in terms of a continuously distributed surface impedance to represent the holes. Results are 
compared with those of an idealised situation, a perforated plate in an equally perforated baffle. 
At low perforation ratios, the radiation efficiency is lower for the unbaffled case but as the 
perforation ratio increases, the results for both conditions become similar. The effect of 
perforation increases as the perforation ratio increases and also as the hole diameter reduces. 
Comparison with existing measurement is also found to give a good agreement. 
 
 
INTRODUCTION  

In attempting to reduce the sound radiated by vibrating plates, several schemes have been 
developed including introducing perforation over the area of the plate. This technique can be 
seen in many practical applications, for example product collection hoppers and safety guard 
enclosures, such as the protective cover over flywheels and belt drives. 
 
Existing models of sound radiation from a perforated plate [1, 2] approximate the acoustic 
impedance of the holes by the analytical solution for wave propagation in a small tube of circular 
cross section, as proposed by Maa [3]. For convenience, the holes are then considered to be 
distributed across the plate surface allowing a continuous surface acoustic impedance to be 
assumed. Takahashi and Tanaka [1] proposed a model for the sound radiation in one-
dimensional case from an infinite, thin elastic plate under a single normal point force excitation. 
Fahy and Thompson [2] started with a model of radiation by plane bending waves propagating 
in an unbounded, uniformly perforated plate to calculate the radiation efficiency of a simply 
supported rectangular plate. The assumptions imply that the plate is effectively mounted in a 
similarly perforated rigid baffle so that the plate and the baffle have an identical acoustic 
impedance. The model was then extended to the situation where the plate and the baffle have 
different specific acoustic impedances. The relation between velocities and pressures was 
derived in the wavenumber domain as a matrix problem and then solved by matrix inversion. As 
a preliminary case, this was applied to the radiation by a perforated strip piston, in two 
dimensions, vibrating in an infinite baffle. Good results were obtained for the case of a 
perforated strip piston in a perforated baffle and in a rigid baffle. However, problems are found 
with this model at low frequencies for an unbaffled perforated strip. A very low acoustic 
impedance of the boundary (relative to the acoustic impedance of the holes) leads to a singular 
or nearly singular matrix which reduces the quality of the results from the inverted matrix. In 
addition, expanding this model into the three-dimensional case is found to require intensive 
computational effort.  

 
In this paper, the sound radiation from a perforated unbaffled plate is calculated by modifying 
Laulagnet's model [4] to introduce the perforation. At low perforation ratios, it is found that the 
result is lower than that from the case of a perforated baffle. However, as the perforation ratio 
increases, the radiation efficiency of the perforated plate in an equally perforated baffle and the 
perforated unbaffled plate are found to become similar.  
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THEORY  

A brief introduction to the model is given here. More details can be found in [4,5]. Consider a flat 

thin unbaffled plate in Figure 1 with a surface area pS  located in an infinite medium, excited by 

a harmonic force distribution ( )F x y,  at angular frequency ω . 

 

 
 

Figure 1.-A perforated unbaffled plate 
 

The equation of motion of the plate excited by the force F  and pressure difference p∆ is 

 

                              4 2( ) ( ) ( ) ( )B w x y m w x y F x y p x yω∇ , − , = , + ∆ ,                                          ( Eq. 1) 

 

where B  is the bending stiffness, m  is the mass per unit area, ( )w x y,  is the transverse 

displacement of the plate and 
4 4 4 4 2 2 4 4/ 2 / /x x y y∇ = ∂ ∂ + ∂ ∂ ∂ + ∂ ∂ . The motion of the fluid inside 

the holes depends on the pressure difference p∆  between the two sides of the plate surface. 

This can be found from the specific acoustic impedance of the distribution of holes 
h
z ,  
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                                                            (Eq. 2) 

 

where ( )fv x y,  is the equivalent velocity of the fluid through the holes, averaged over the plate 

area. For a circular hole with diameter 
o
d , the acoustic impedance is inertial provided that 

o
d  is 

greater than about 1 mm (for smaller holes viscous effects are important). Thus by neglecting 
the fluid viscosity, Maa’s approximation for the impedance of the hole [3], distributed across the 
plate surface, can then be written as 
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                                                      (Eq. 3) 

 

where ρ  is the air density, c  is the speed of sound, t  is the plate thickness, k  is the acoustic 

wavenumber and τ  is the perforation ratio. The distributed holes or continuous impedance is 

indicated by the presence of τ  in (Eq. 3). By using Euler’s equation on the plate surface at 

0z =  and substituting (Eq. 1) and (Eq. 2) to eliminate the pressure difference p∆ , gives  
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(Eq. 4)                                                                
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where fw  is the equivalent fluid displacement relative to the plane 0z =  and f fv j wω= .  

The pressure at point M  in the fluid can be defined by using Kirchhoff-Helmholtz (K-H) integral 

 

 ( )( ) ( ) ( ) / ( ) /
Q Q

S
p M p Q G Q M n G Q M p n dS= ∂ , ∂ − , ∂ ∂∫                            (Eq. 5) 

 

where Q  is a point on the plate surface and G  is the free-field Green’s function. Assuming a 

thin plate, the normal acceleration ( / (1/ ) /n Qu t p nρ∂ ∂ = − ∂ ∂ ) is continuous across the plate. 

Therefore the monopole source contributions in the K-H integral (second term) vanish leaving 

only the dipole source contributions (first term). For points M  on the plate surface, using this 
and substituting (Eq. 4) yields  
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where the second term on the left-hand side has been added by the perforation. The 
displacement can be considered as the summation of plate modes ( ,m n ). For the case of a 

simply supported plate, it can be written as 
 

 
1 1 1 1

( ) sin( / )sin( / )mn mn mn

m n m n

w x y d d m x a n y bϕ π π
∞ ∞ ∞ ∞

= = = =

, = =∑∑ ∑∑                        (Eq. 7) 

 

where 
mn
d  is the modal displacement amplitude, 

mn
ϕ  is the mode shape function and a b×  are 

the plate dimensions. The force can be written using a similar expression. The orthogonality 
relationship with mode ( ,p q ) gives 

4p

p

mn pq p mp nq
S

S
dSϕ ϕ δ δ=∫                                           (Eq. 8)  

 

where δ  is the Kronecker’s delta. Applying (Eq. 8) and substituting (Eq. 7) into (Eq. 6) yields 
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where pqF  is the modal excitation force and pqmnC = mnpqC  are the acoustical cross-modal 

coupling terms [4] obtained as 
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where 
x
k aµ = , yk bχ = , 2 2 2

z x yk k k k= − − ; 
x
k , yk  and 

z
k are component of the wavenumber. 

 

The effect of damping can be included by replacing the plate natural frequency 
2

mnω  by 

2 (1 )mn jω η+  where is η  the damping loss factor. (Eq. 9) can be simplified by taking only the self-

modal coupling terms of (Eq. 10). The inverse of the cross-modal coupling terms 
1[ ]pqmnC −
 can 
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then be replaced by 1/ pqpqC . Such an approximation works well for a baffled plate [6], 

particularly when the average result over different force positions is considered [7]. It has been 
shown that this approximation can also be used for the case of an unbaffled plate, perforated or 
unperforated [4,5]. After re-arranging (Eq. 9), its solution can be written as  
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    (Eq. 11) 

 

where ( 4)pq pm m S= /  and ˆ ( 4)pq ppq
F SF = /  are the generalized mass and the generalized force. 

 

The sound power W  and the mean-square spatially average plate velocity 
2

pqv  are given by 
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Finally the total radiation efficiency σ  can be found from  
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                                                      (Eq. 14) 

 

 

RESULTS AND ANALYSIS  

Results are presented for an example 0.65× 0.5× 0.003 m aluminium plate with η =0.1 excited 

by point forces averaged over the plate surface. Figure 2 shows the modal and total radiation 
efficiencies of an unbaffled perforated plate with 40 % perforation ratio and 10 mm diameter 
holes. The 40 dB/decade slope at very low frequency, i.e. at below the fundamental mode, 
shows the expected characteristic of dipole source radiation.  
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Figure 2.- Modal and average radiation efficiency of an unbaffled perforated plate 
 

o
d =10 mm, τ = 40 %: — modal radiation efficiency, ─average radiation efficiency. 

 

Figure 3(a) and (b) present the effect of perforation defined by 10log10(W perforated/W unperforated) for 

constant hole diameter and constant perforation ratio, respectively. These show that, for the 
case of the unbaffed perforated plate, the effect of perforation is almost independent of the 
frequency in the fundamental and corner mode regions (< 400 Hz) and then increases in the 
edge mode region as the frequency increases. The effect of perforation approaches 0 dB at 
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high frequency. Figure 3(a) shows that sound radiation is reduced by increasing the perforation 
ratio, while Figure 3(b) shows that the radiated sound can be further reduced by reducing the 
hole size.  
 
Figure 4(a) compares the results with those found using the model of [2] for a perforated plate in 
an equally perforated baffle. The unbaffled plate has a lower radiation efficiency than for an 
infinite perforated baffle for most of the frequency range. However, as the perforation ratio 
increases, the two results become very similar. At high perforation ratio, the contribution of the 
baffle to the radiated sound is no longer significant. This is obvious in Figure 4(b) which shows 
the differences of the radiation efficiencies for no baffle and with a perforated baffle on a dB 
scale. It shows that for a 10 mm hole diameter and 60 % perforation ratio, the difference is only 
around 1 dB. Therefore with very high perforation ratio, the system with a perforated baffle can 
then be considered to be equivalent to the unbaffled perforated plate. 
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Figure 3.-Effect of perforation on sound power radiation of a perforated unbaffled plate 

(a) 
o
d =10 mm: —τ = 10 %, − −τ = 20 %, ---τ = 40 %, − · −τ = 60 %  and 

(b) τ = 20 %: —
o
d =50 mm, − −

o
d =20 mm, ---

o
d =5 mm, − · −

o
d =2 mm. 
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                                     (a) (b) 

 
Figure 4.-(a) Comparison of radiation efficiency of a perforated plate in a perforated baffle (blue 
line) and with that of an unbaffled plate (red line), (b) radiation efficiency difference between 

both models (
o
d =10 mm: ---τ = 3 %, − −τ = 10 %, − · −τ = 40 %, —τ = 60 %)  

 
Figure 5 shows a comparison of the radiation index (10log10σ ) from the analytical calculation 

with that from measurements made by Pierri [8] for 0.3× 0.3× 0.0012 m steel plates. The results 
are plotted against 1/3 octave band centre frequencies. The damping loss factor in the 
calculations is chosen to be very low, i.e. η = 0.001. A very good agreement between the 
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theoretical and the measured results is achieved, although below 800 Hz the measured 
radiation efficiencies are greater than the predictions by about 3 - 4 dB. This may be due to the 
background noise from the shaker used to excite the plate.  
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(c) (d) 

 
Figure 5.-Comparison of the radiation index (—) with measured data (−□−):  

(a) 
o
d =5.6 mm, τ = 5.7 %; (b) 

o
d =7.1 mm, τ = 9.4 %; (c) 

o
d =8.8 mm, τ = 14.1 %;  

(d) 
o
d =15 mm, τ = 41.5 %. 

 
 
CONCLUSIONS 

A model for the sound radiation of a perforated unbaffled plate has been proposed. It has been 
shown that the model gives the same result as the model of a perforated plate in a perforated 
baffle at high perforation ratio. The effect of perforation is independent of frequency in the 
fundamental and corner mode regions. Increasing the perforation ratio increases the reduction 
of the radiated sound. From the model it is found that the reduction becomes greater by also 
reducing the hole size. Comparison with existing measured data also shows a very good 
agreement.         
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