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ABSTRACT

Background Subclinical psychotic symptoms (SPS) are
common among college students and can lead to future
mental health issues. However, it is still not clear which
specific childhood trauma, stressors and health factors
lead to SPSs, partly due to confounding factors and
multicollinearity.

Objective To use machine learning to find the main
predictors of SPS among university students, with special
attention to gender differences.

Methods A total of 21208 university students

were surveyed regarding SPS and a wide range of
stress-related factors, including academic pressure,
interpersonal difficulties and abuse. Nine machine
learning models were used to predict SPS. We examined
the relationship between SPS and individual stressors
using 5 tests, multicollinearity analysis and Pearson
heatmaps. Feature engineering, t-distributed stochastic
neighborhood embedding (t-SNE) and Shapley Additive
Explanation values helped identify the most important
predictors. We also assessed calibration with calibration
curves and Brier scores, and evaluated clinical usefulness
with decision curve analysis (DCA) to provide a thorough
assessment of the models. In addition, we validated this
model using independent external data.

Findings The Extreme Gradient Boosting (XGBoost)
model had the best prediction results, with an Area
Under the Curve (AUC) of 0.89, and validated with
external data. It also showed good calibration, and
DCA indicated clear clinical benefit. Interpersonal
difficulties, academic pressure and emotional abuse
emerged as the strongest predictors of SPS. Gender-
stratified analyses revealed that academic pressure and
emotional abuse affected males more, while health
issues like chest pain and menstrual pain were stronger
predictors for females.

Conclusions Machine learning models effectively
identified key stressors associated with SPS in university
students. These findings highlight the importance of
gender-sensitive approaches for the early detection and
prevention of psychotic symptoms.

Clinical implications SPSs in college students can be
predicted by interpersonal difficulties, academic stress
and childhood emotional abuse. This information can
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WHAT IS ALREADY KNOWN ON THIS TOPIC

= The close associations between childhood
trauma, stressful life events, health factors and
subclinical psychotic symptoms (SPS) have
already been established. However, it remains
unclear which specific types of trauma and
stressful events have the greatest impact.
Comprehensive predictive models based on
these factors have not yet been developed,
especially for undergraduate populations.

WHAT THIS STUDY ADDS

= By applying nine machine learning models,
this study identified the optimal predictive
model and found that interpersonal difficulties,
academic stress and childhood emotional
abuse are the three most influential factors
for SPS. Additionally, gender differences were
observed: males face higher risk mainly due to
greater academic stress, while pain symptoms
have a stronger impact on females. The model’s
performance was also validated using external
data.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= This study provides a foundation for further
optimisation and refinement of predictive
models for assessing SPS risk in college
students, as well as the development of
targeted intervention strategies. It also offers
clinical guidance for prevention and early
intervention.

help mental health professionals develop better ways to
prevent and address SPSs.

INTRODUCTION

Subclinical psychotic symptoms (SPS), such as
thought control, paranoia and strange experiences,
are prodromal symptoms of psychotic disorders.' It
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is reported that the prevalence of SPS among the general popu-
lation ranges from 7.2% to 26.69%.> Among individuals with
SPS, 20% reported persistent symptoms, and about 7% even-
tually developed a psychotic disorder,” which was associated
with adverse outcomes. Additionally, SPS was associated with an
increased risk of a variety of mental disorders beyond psychotic
disorders, including affective, externalising and substance use
disorders as well as poorer social function.”

Despite the existence of numerous aetiological models
predicting SPS, they are sometimes constrained by limited sample
sizes or an imbalance between clinical relevance and statistical
significance. A growing body of evidence has suggested some
potential risk factors such as childhood trauma, stressful life
events, somatic symptoms and socioeconomic status, including
pain symptoms and low family income.” However, previous
studies have neglected potential confounding effects and multi-
collinearity by considering risk factors in isolation, leading to
possible misleading statistical results.® To address this, a large-
scale, data-driven study is needed to evaluate the combined
impact of these factors, enabling more accurate predictions of
SPS by considering their confounding effects rather than exam-
ining them independently.

Childhood trauma, including emotional, physical and sexual
abuse, as well as neglect, is a well-established risk factor for SPS.
Research has shown that exposure to trauma increases the likeli-
hood of developing SPS.° 7 However, studies have shown mixed
results about how different types of maltreatment affect SPS. For
example, Rossler et al® found links between SPS and physical or
emotional abuse and neglect, but not sexual abuse.® In contrast,
Fekih-Romdhane et al’ found a link only with sexual abuse.’
Additionally, many existing studies have small sample sizes and
other research limitations. This means we need larger, better-
designed studies to better understand the link between child-
hood trauma and SPS.

According to the stress-vulnerability model, ' stress can trigger
psychiatric symptoms when it exceeds an individual’s coping
capacity. For instance, a college study found significant associa-
tions between stressful life events and SPS,'" while another study
reported that adolescents with higher daily stress exhibited more
prodromal psychotic symptoms.'*> However, some studies have
found no link between life events and psychotic symptoms in
young adults," highlighting the need for further investigation
into the relationship between stressful life events and SPS.

Left-behind children (LBC) are also a potential risk factor
affecting SPS. China once had tens of millions of LBC which
refers to those in poor rural areas whose young parents leave
home to work in cities, leaving their young children in the care
of grandparents or other relatives.'* Furthermore, since Chinese
culture often favours boys, stress may affect boys and girls in
different ways. Therefore, this study will examine LBC and
gender differences to better understand these issues. By iden-
tifying which childhood problems and stressful events have the
greatest impact on SPS, we can offer better support to students
in China.

Modern machine learning (ML) techniques have enabled
researchers to examine multiple lines of risk factors simultane-
ously with increasing analytic rigour. ML techniques are supe-
rior to traditional statistical methods such as logistic regression
in identifying risk factors in epidemiological studies in high
dimensional data when there is poor a priori knowledge of the
potential associations. Therefore, this study employed ML tech-
niques on a comprehensive dataset of Chinese undergraduate
students to identify potential risk factors for SPSs. The analysis
took into account variables such as childhood trauma, recent

stressful life events and relevant sociodemographic and pain-
related data.

METHODS

Participants and procedure

Participants were undergraduate students from three universities
in Southwest China. Because China’s enrolment policy assigns
quotas to each province and ethnic group, the student body is
nationally representative and diverse. Therefore, our sample
includes students from many regions and ethnic backgrounds
across the country.

Twenty research assistants and 150 assistant teachers were
trained for 2hours to help with the online survey. Participants
could ask questions through WeChat or email and got quick
answers. The survey link and informed consent form were shared
in class WeChat groups. Participation was voluntary and students
could withdraw at any time. After completing the survey, they
received a small reward (1-3 RMB). To check data quality, we
included simple attention questions, like “What is the capital of
China?’ Surveys finished in less than 10 min were excluded.

A total of 31602 students were invited to join the survey
through WeChat groups. The online survey, run on the
Wenjuanxing platform between March and April 2022, was
completed by 21534 students, giving a response rate of 68.1%.
After removing 326 students who failed validity checks, the final
sample included 21208 students, with an average age of 19.71
years (range 16-30). To check for selection bias, we compared
basic information (age, gender, grade and major) between partic-
ipants and non-participants and found no significant differences
(online supplemental table 1). This suggests selection bias was
minimal.

Measures

Subclinical psychotic symptoms

SPS were measured over the past month using the psychoticism
and paranoid ideation subscales of Symptom Checklist-90-R
(SCL-90-R) Chinese version."® Participants responded on a five-
point Likert scale (0 = ‘not at all’, 1 = ‘a little bit’, 2 = ‘moder-
ately’, 3 = ‘quite a bit’ and 4 = ‘extremely often’). Categories of
distress for both subscales were defined as follows: ‘no distress’
was indicated by a mean value of less than 1.00, while a mean
value greater than 1.00 was classified as ‘positive’. This classi-
fication follows the criteria used in previous studies." Example
items included: ‘Someone else can control your thoughts’, and
‘Hearing voices others do not hear’. In the present study, Cron-
bach’s oo was 0.905 for the full SCL-16 SPS scale, 0.804 for
the paranoid ideation subscale and 0.849 for the psychoticism
subscale.

Stressful life events

Stressful life events were assessed using the modified Chinese
Adolescent Self-Rating Life Events Checklist,'® a widely used
tool with demonstrated reliability and validity for measuring
stressful events in young adults. The 26-item scale covers five
areas: interpersonal difficulties, academic pressure, punish-
ment, personal loss and health/adaptability. In the current
sample, Cronbach’s o for the total scale was 0.892. Cronbach’s
o for the subscales also indicated moderate reliability: inter-
personal difficulties, 0.778; academic pressure, 0.746; being
punished, 0.679; personal loss, 0.693; and health and adapt-
ability, 0.637.
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Childhood trauma

Childhood trauma was assessed using the 28-item Childhood
Trauma Questionnaire (CTQ),"” which measures five types of
trauma experienced before age 16: emotional abuse, physical
abuse, sexual abuse and emotional and physical neglect. Partic-
ipants were asked to rate the childhood trauma on a 5-point
scale (from 1=neverto 5=always). In this study, the full scale
had excellent reliability (Cronbach’s a.=0.864), with satisfac-
tory values for emotional abuse (0.765), physical abuse (0.762),
sexual abuse (0.783), emotional neglect (0.942) and physical
neglect (0.659).

Depressive symptoms

The Patient Health Questionnaire-9 (PHQ-9) is a widely used
instrument designed to screen for the severity of depression. It
has been validated in a Chinese population.'® The PHQ-9 is a
nine-question tool used to check how often someone has expe-
rienced depressive symptoms in the past 2 weeks. Each question
is scored from 0 to 3, with 0 meaning ‘not at all’ and 3 meaning
‘nearly every day’. Total scores range from 0 to 27. Higher scores
show worse depressive symptoms. In this study, the PHQ-9
demonstrated excellent reliability (Cronbach’s 0i=0.854).

Sociodemographic and health-related information

We gathered a range of factors based on previous research,
including family history of mental illness, romantic relationships
and LBC status. In addition, we collected demographic informa-
tion such as age, gender, year of study and major. Health-related
data were also collected, including information on chronic head-
aches and pain in the back, neck, chest and joints. Participants
self-reported if they had frequently experienced any of these
types of pain in the past year to an extent that interfered with
their work or studies.

Statistical analyses

All statistical analyses were performed using SPSS V.22.0 (IBM,
Chicago, Illinois, USA) for descriptive statistics, and Python
V.3.9.17 with sklearn V.1.3.0 for ML methods. Descriptive
statistics were used to summarise sociodemographic and clin-
ical information. ¥ tests checked for differences in SPSs across
sociodemographic groups, childhood abuse types and stressful
life events. We calculated the Variance Inflation Factor (VIF) to
check for multicollinearity among the independent variables. A
Pearson correlation heatmap was also created to visually show
how the independent variables are related to each other.

The nine ML models were chosen based on experience from
previous model selection in the literature’: Gradient Boosting
Tree, Logistic Regression, Random Forest, Support Vector
Machine, Multilayer Perceptron, the Extreme Gradient Boosting
(XGBoost), Naive Bayes, k-nearest neighbours, CatBoost,
AdaBoost (see online supplemental section 1 for details). By eval-
uating these models, we aim to identify the optimal methodolog-
ical approach. Participants were randomly divided into training
(80%) and testing (20%) sets for each fold. Model performance
was evaluated across folds using metrics such as average AUC,
balanced accuracy and Area Under the Precision-Recall Curve.

The performance of the optimal ML model was evaluated using
Receiver Operating Characteristic (ROC) and P-R curves, along
with metrics such as sensitivity (Sen), specificity (Spe), positive
predictive value (PPV) and negative predictive value (NPV). We
also performed a decision curve analysis for the XGBoost model
to assess clinical utility, and calculated the calibration curve and
Brier score to evaluate the model’s calibration performance. To

further explore the impact of individual variables on SPS, we
applied Shapley Additive Explanation (SHAP) to quantify the
contribution of each feature to the model’s predictions. SHAP
waterfall plots were used to provide detailed insights into how
individual features influenced predictions for specific samples.
Additionally, feature engineering and t-SNE visualisation were
employed to effectively display how features distinguished posi-
tive and negative samples in 2D space.

A key aspect of our analysis was evaluating algorithmic fair-
ness and potential gender bias. To further investigate the rela-
tionship between sexual abuse and SPS, we used a mediation
model to examine how depression mediates this relationship.

To validate the performance of our prediction model, we will
employ an independent, non-public dataset comprising approx-
imately 8000 university students recruited from universities in
southern and southwestern China.

RESULTS

Clinical features, multicollinearity assessment and y” test
results

Approximately 15% of participants reported experiencing SPS,
with 7.4% endorsing paranoid ideation (mean (SD): 2.42 (3.68))
and 13.8% endorsing psychoticism (mean (SD): 1.65 (2.47)).

The heatmap confirmed generally low inter-variable correla-
tions (online supplemental figure 1), with only a few pairs
showing moderate to high correlation coefficients (|r|>0.8).
Furthermore, the multicollinearity assessment showed that most
variables had VIF values below 2 (online supplemental figure 2),
with the highest being physical abuse (VIF=4.25), which is still
well below the commonly accepted thresholds (VIF >5or 10).
Opverall, these results show that multicollinearity is not a major
concern in our study.

x” tests showed that students with a history of psychological
or sexual abuse were more likely to have SPS (see online supple-
mental table 2). SPS were also more common in students with
high academic pressure and interpersonal difficulties. We used
False Discovery Rate correction to adjust p values for multiple
comparisons.

ML results

XGBoost outperformed the other ML model (online supple-
mental table 3), achieving the highest AUC (0.89, 95% CI: 0.88
to 0.90), balanced accuracy (0.80) (figure 1) (Section 1 of the
online supplemental appendix lists the nine ML methods, their
settings and evaluation metrics. Section 2 provides the ratio-
nale for not adopting Lasso for feature selection in this study, as
shown in online supplemental figure 3), and shows the missing
data pattern in online supplemental figure 4). It also had strong
discriminatory power (online supplemental figure 5) for t-SNE
visualisation.

The XGBoost model performed well at two thresholds (see
figure 2). At a threshold of 0.17 (chosen for best balance of sensi-
tivity and specificity), the model had 85.76% sensitivity, 79.10%
specificity, 96.98% NPV and 41.45% PPV. At a threshold of
0.76, where NPV and PPV were balanced, the model showed
a specificity of 98.09%, sensitivity of 33.60%, NPV of 89.53%
and PPV of 75.00%. More threshold results are in online supple-
mental table 4.

The calibration curve was close to the ideal line, showing the
model’s predictions were mostly accurate, with only a slight
overestimation (see figure 2c). The model also gave a higher
net benefit than always treating everyone at most thresholds,
meaning it helped improve decisions and reduce unnecessary
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Results of XGBoost on test set. NPV, negative predictive value; PPV, positive predictive value.

Figure 1

treatments. The red dot marks the threshold with the highest
net benefit compared with treating all patients, which is useful
for doctors (see figure 2d). Overall, these results show the model
performed very well.

We tested the model on a separate external SPS dataset to see
how well it works on new data. The XGBoost model got an AUC
of 0.8865 and a balanced accuracy of 0.7752 (online supple-
mental figure 6), showing it is accurate and generalises well.

Online supplemental figure 7 shows the ROC curves for
different k values of Synthetic Minority Over-sampling Tech-
nique, and the model performed well in all cases, showing stable
and reliable results.

Feature importance analysis

Figure 3a shows the 20 most important features for the model,
ranked by SHAP values. Interpersonal difficulties were the stron-
gest predictor of SPS, followed by academic pressure. Emotional
abuse also contributed but was less important than the top two
factors. Section 3 of the online supplemental appendix explains
how we used SHAP to find important features and checked these
results with other methods to make sure they are reliable. Online
supplemental table 5 provides feature importance rankings from
traditional methods. SHAP waterfall plots (online supplemental
figure 8) show how each factor raises or lowers the predicted
risk of SPS.

Both Gain and SHAP found that interpersonal difficulties and
academic pressure are the main predictors of SPSs. However,
SHAP also showed how less important features, like pain-related
variables, can still strongly affect some individuals’ risk. This
means that while some factors are important overall, other
features may matter more for certain people.

Gender differences in ML models

Gender analysis showed that different factors affect SPS in males
and females (figure 3b). Academic pressure and emotional abuse
had a bigger impact on males. In females, health issues like chest
pain and dysmenorrhoea were more important. Interpersonal
difficulties and academic pressure were top predictors for both

Sensitivity: 33.60%
Specificity: 98.09%
PPV: 75.00%
NPV: 89.53%

Correct cases

Missed cases

415 210 70

Real SPS cases Predicted SPS cases

genders, but their influence varied. These results suggest that
gender should be considered when interpreting the model.

To better measure how gender influences SPS risk and
reduce potential confounding, we used a Causal Forest model.
The right-skewed distribution of Individual Treatment Effects
suggests that gender impacts SPS risk for some individuals. The
Average Treatment Effect was 0.04, indicating a slightly higher
SPS risk in males after adjusting for other factors. This analysis
offers a more detailed understanding of how gender moderates
the effects of different risk factors (online supplemental figure
9).

Mediation model

The analysis reveals a significant indirect effect (8=0.11,
p<0.001), indicating that depressive symptoms mediate the rela-
tionship between sexual abuse and SPS. This finding supports
the hypothesis that sexual abuse affects SPS both directly and
indirectly through its impact on depressive symptoms (see online
supplemental table 6 and figure 10).

DISCUSSION
Our ML models revealed strong associations between stressful
life events, childhood trauma and SPS in undergraduates. This
study, the first of its kind to use ML on a large sample to assess
multiple SPS risk factors, confirmed established links such as
abuse, social adversity and physical health issues. Notably, we
identified two primary risk factors: interpersonal difficulties and
academic stress, which significantly impacted SPS. Emotional
abuse, though less influential, still contributed to SPS, high-
lighting the importance of addressing this often-overlooked
form of maltreatment. Specifically, gender differences were
also observed in the model. Academic pressure and emotional
abuse had a stronger effect on males, while physical health issues
like chest pain and dysmenorrhoea were more significant for
females. These findings underscore the distinct ways in which
various factors affect males and females.

This study underscores the critical role of interpersonal diffi-
culties in the development of SPS, building on prior research

4

Tang W, et al. BMJ Ment Health 2025;28:1-8. doi:10.1136/bmjment-2025-301761

'salbojouyoal Jejiwis pue ‘Buluresy |y ‘Buiuiw elep pue 1xa) 01 parejal sasn 1o} Buipnjour ‘ybLAdod Ag pajoslold
‘1senb Aq Gz0z Jequisrdas ST uo wod fwq yyeayeluswy/:sdiy woij papeojumod ‘520z AInC T€ Uo T9/T0E-G20z-udwlwag/9eTT 0T Se paysiignd 1suy :yiesH [eusin CING


https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761
https://dx.doi.org/10.1136/bmjment-2025-301761

1o Receiver Operating Characteristic (ROC) Curve

0.8 A

0.6 1

0.4 4

True Positive Rate

L —— ROC curve (area = 0.90)
0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0
c' False Positive Rate

Calibration Curve

1g- —® ¥CHoost
— == Perleclly calibrated R

True probability in each bin

o0 0z 04 0.6 0s 1.0
rredicted probability

Precision

b.

Precision-Recall Curve

—— Precision-Recall curve (area = 0.63]

0.0 0.2 0.4 0.6 0.8 1.0

d Recall
.

0.2z

Decision Curve Analysis (XGBEoost}

—— ¥Chzoet Madel
—— Treat all

----- Treat Nons

020 &  Mex Dull; 24.156%

N2t Benefit
=
=

045

o.an

oz o 1 1 1 1

0.4 0.6
Thrasnold Probability

Figure 2 Depiction of the XGBoost performance predicting subclinical psychotic symptoms at two different thresholds. The probability threshold
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that found young people with SPS often report more interper-
sonal challenges during adolescence, emphasising the signifi-
cant impact of personal difficulties on SPS.** Longitudinal twin
cohort studies also highlight the protective role of interper-
sonal relationships in reducing the impact of poly-victimisation
on SPS.*' Our findings align with a semistructured interview
study, which showed that individuals at risk for psychosis often
face significant interpersonal challenges.”> However, our study
extends these findings by demonstrating that interpersonal diffi-
culties are the most significant factors among various adverse
life stressors and childhood traumas contributing to SPS. Studies
suggest that psychosocial interventions focusing on interper-
sonal skills can aid rehabilitation in individuals with psychotic
disorders,” supporting our conclusion that addressing interper-
sonal difficulties is crucial in preventing SPS. Therefore, targeted
psychological and social interventions addressing interpersonal
challenges may help protect young people from SPS and its long-
term consequences.

In line with previous research,** we also observed that academic
stress was another significant contributor to SPS among under-
graduates. In the current education system in Mainland China,
exam-performance-driven progression reaches from primary
school to postgraduate studies. Young people have been facing
increasingly fierce competition and peer pressure since childhood,
and most likely throughout their careers. Interestingly, a cross-
cultural study showed that the academic burden was highest in
students from China who were the most stressed compared with
students from the USA, Japan and South Korea.” Such academic
pressure on students in China may originate from their high-
standard requirements, parents’ expectations and social values of
praising the ‘tiger parenting’. These internal and external pressures
stemming from intense competition can increase college students’
stress levels, lead to burnout and heighten their vulnerability to
mental health problems. Our findings highlight academic stress as
an important, yet previously overlooked, target for practitioners
aiming to prevent or intervene in SPS among college students.
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Figure 3  Summary SHAP plot. (A) Feature importance for SPS classification calculated by SHAP. (B) Influence of various features across gender.

SHAP, Shapley Additive Explanation; SPS, subclinical psychotic symptom.

In our data, we found that emotional abuse, more than other
forms of childhood trauma, is independently associated with SPS
in this population. Emotional abuse, often under-recognised,
refers to harmful interactions in the carer—child relationship
that do not involve physical contact. Our results align with prior
studies that emotional abuse was the only form of childhood
trauma associated with SPS, possibly because emotional abuse
occurs more frequently than other types of abuse subtypes,*
increasing the risk of SPS. From a neurodevelopmental perspec-
tive, emotional abuse can disrupt an individual’s hypothalam-
ic—pituitary—adrenal axis,”” increasing the risk of developing SPS.

While our data show a significant association between sexual
abuse and SPS, this effect diminished when other risk factors,
such as academic stress and interpersonal difficulties, were
included in the ML models. Although academic stress, interper-
sonal difficulties and emotional abuse are the primary contribu-
tors, the role of sexual abuse in SPS should not be overlooked.*®
This may be because our analysis showed that depressive symp-
toms connect sexual abuse and SPS.

Our findings reveal gender-specific differences in the impact
of various factors on SPS among undergraduates, offering new
insights into the complexity of risk factors for males and females.
Both academic pressure and emotional abuse emerged as promi-
nent predictors for both genders, but these factors had a stronger
influence on males, particularly academic pressure. This suggests
that boys may experience greater stress and emotional abuse
due to the high expectations placed on them in Chinese culture.
Traditionally, men are expected to shoulder more responsibility,
and society tends to look down on men who are unsuccessful
in their careers as well as women who display excessive career
ambition. For example, a study shows that in Chinese academia,
men are often expected to achieve more and support their
families, while less is expected of women.” Therefore, cultural
beliefs and traditional gender roles put extra pressure on boys,
making these problems worse. These factors show that culture
affects stress differently for male and female. For females, health

issues like chest pain and period pain increase their risk of SPS.
This means it’s important to pay attention to gender-specific
health problems in future studies.

These gender differences show that we need different support
strategies for male and female students. Future studies should
pay attention to how gender affects SPS and why some issues,
like academic pressure, may affect males more. Understanding
the social, psychological and biological factors behind these
differences in the future will help us develop more effective
support programmes for all undergraduate students.

Despite using large samples and robust ML methods to explore
risk factors for SPS among undergraduate students in Southwest
China, several limitations must be considered when interpreting
the results. First, assessments of childhood trauma and stress
events rely on retrospective self-reports, which may be influenced
by recall bias or social desirability effects. Future studies should
incorporate both objective and subjective measures to strengthen
the findings and provide further validation. Second, we did not
assess substance use or mood/anxiety symptoms, which could be
important covariates or mediators; these were excluded based
on pilot study findings and expert input. Third, due to sensitivity
concerns, mental illness diagnoses were not collected. Fourth,
while we excluded participants who failed comprehension
checks, some may have misinterpreted questions. Fifth, accuracy
differences across the nine ML models were minimal, but the
use of only XGBoost results may reflect model bias. Sixth, pain
symptoms had low predictive value and were not retained in the
final prediction model; this may limit the clinical applicability of
our model in populations where such symptoms are common,
such as individuals with chronic health conditions. Finally, as
our study focused on university students from Southwest China
within a limited age range, and given the relatively high non-
response rate, there may be some bias in our results. Therefore,
our findings should be interpreted with caution when consid-
ering their generalisability to university students nationwide or
all Chinese youth. Furthermore, our model still requires further
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research and external validation to ensure its reliability and
wider application.

Previous studies in Western countries have found that most
people with SPS experienced childhood trauma or negative life
events,®” but they did not build predictive models for SPS based
on these factors, so our study offers new insights into what could
affect SPS in this population. This can help future research and
support programmes for students.

In conclusion, our study identified key risk factors for SPS in
university students, using ML and large sample sizes to assess
both childhood trauma and recent stressors. We confirmed
known risk factors like domestic abuse and social adversity,
but highlighted interpersonal difficulties and academic stress
and emotional abuse as the most significant contributors.
Gender differences were observed, with academic pressure and
emotional abuse having a stronger impact on males, while health
issues like chest pain and dysmenorrhoea were more significant
for females, offering a gender-differentiated perspective on SPS
risk and suggesting the need for gender-tailored interventions.
Future studies should explore the mechanisms behind gender
differences, track SPS risk factors longitudinally and include
additional variables like substance use and mood/anxiety symp-
toms. Expanding this research across different cultural contexts
will further refine these findings and improve intervention
strategies.

It is also important to consider how cultural and psychoso-
cial stressors may interact with neurodevelopmental pathways
to increase the risk for SPS. Ongoing interpersonal difficulties,
academic stress and emotional abuse within a high-pressure envi-
ronment may disrupt the HPA axis,”” which links early stress
to later mental health symptoms. This helps provide a biolog-
ical explanation for our findings and suggests that both cultural
and biological factors should be considered in future research.
However, the specific ways cultural stress affects neurobiology
and gender differences still need more study.
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