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Abstract—In human-robot interactions (HRI), it is crucial
for robots to be accepted by users and that they find robotic
assistance attempts helpful rather than frustrating. Working
towards this goal, we investigate the problem of frustration-
aware robot behaviour planning in human-robot interaction
contexts without continuous user contact or live feedback.
Specifically, we address the question of how social robots
can efficiently localise users and assist them with errands of
various importance in office environments, while minimizing
the frustration experienced by their human colleagues to
enhance the overall interaction experience. Doing so, we design
a frustration-aware decision-making and learning framework
building on multiarmed bandit approaches and knapsack algo-
rithms, in addition to developing a Psychology-based model of
frustration tailored for HRI settings with limited user contact.
Then we evaluate our approach on realistic user behaviour
datasets, simulating the interactions’ robotic components in
Gazebo with a TIAGo robot, and perform further scalability
analysis in graph-based simulations. The experimental results
demonstrate that the proposed framework achieves localisation
success rates and travel times that converge towards oracle
values (outperforming other structured learning benchmarks)
while yielding an estimated up to 75% less frustration -
indicating the proposed framework’s suitability for advancing
to user studies and deployment in real-world scenarios.

I. INTRODUCTION

Intelligent social robots [1], [2] are deployed in everyday
environments seeking ways to provide intelligent systems
that interact with or assist human users in their daily tasks,
ranging from engaging in conversations, delivering coffee
at the right time [3], preparing packages [4], or delivering
laboratory samples and helping elderly people [S]. However,
despite technological advances in recent years, the adaptation
of such systems to social settings remains limited, with recent
studies [6], [7], [8] highlighting the user’s acceptance of
robots as the key. The impressions a user formulates of
robotic behaviour during an interaction are crucial to this
[9], [10]: robot actions considered similar through objective
metrics (e.g. efficiency, speed of task completion) may be
perceived as helpful, successful; or constraining, frustrating,
depending on the way they are executed (e.g. interaction
timing or considering individual preferences). Thus, in order
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to develop human-robot interaction models that users actually
find helpful and accept rather than find frustrating and
hindering, our work focuses on modelling user impressions,
frustration and user-aware behaviour models.

In particular, in this study we address interaction scenar-
ios without continuous user feedback where human-robot
contact only occurs periodically. Such interactions are typ-
ical in non-industrial, everyday environments facilitated by
household or Office Assistant Robots (OARs). As platforms
serving as conversation partners [11], running simple but
time-consuming or repetitive errands [12], [13] they interact
with various members of an office for limited intervals and
often user feedback can only be provided retrospectively.

Our work investigates a setting where multiple of-
fice workers request an OAR’s assistance with different
navigation-based errands of various importance at predeter-
mined times during the day tailored to individuals’ needs.
For instance: deliver a sandwich to Alice at 12:30, transport
a small parcel from reception to Bob at 10:00, bring medicine
and a glass of water to Charlie at 12:00. Given the nature
of the assistive tasks, we refer to our interaction scenario as
RoboButler as our robot has to strive for good performance
with maintaining a tactful (non-frustrating) manner.

In most interactions, it is assumed that the user being
assisted is near the social robot [14], or their location is
known. This may not hold in real-world scenarios such
as with OAR interactions since the robot interacts with
multiple users throughout the day, who freely move around
the environment following their own schedule, which the
robot may not have access to. As such, in order for the
OAR to assist, the user has to be located first. To do so,
while navigating in the office, the OAR actively explores the
environment identifying nearby users, potentially engaging
in interactions, just like a human colleague would do.

However, if the robot spends too long exploring the
environment, interacting with other users, or fails to locate
the user requiring assistance in time, the user will experience
frustration and dissatisfaction with the robot’s performance.
Additionally, if the robot’s actions (either navigation or
manipulation related when within sight) are not in agreement
with the user’s expectations, the user’s frustration level might
further increase. As a result, the user’s disappointment and
frustration may cause them to give up on expecting the
robot’s assistance. Moreover, they might lose interest in
interacting with the robot in the future, as well [8], [15].

Unlike typical “Where is Waldo?” style user localisation
problems [16] where the models aim to minimise the lo-
calisation time of “Waldo”, in our setting, due factors such
as task importance, user tolerance or previously encountered
users, the shortest localisation time may not be ideal. E.g.



a longer localisation time for less important tasks might be
equally acceptable as a faster time for important tasks or
impatient users. Additionally, individuals’ way of handling
frustration (and tolerance limits) differ and affect how one
reacts to localisation strategies that might be considered
identical in “Where is Waldo?” localisation settings [16].

In this study, we address the questions of what would be
an efficient way of selecting a path to explore to localise
the user without causing them frustration? Or, what moves
may a robot make to maximise the probability of exploring
a sufficient area to localise the user before causing the user
inconvenience? When should the robot explore unknown
locations, and when should the robot visit locations fre-
quented by the user? To address these questions, we design
a user localisation framework tailored for social robots,
considering potential user frustration. The robot formulates
the user localisation process as a tensor estimation problem
using heuristics from multi-armed bandit theory for updating
values and knapsack optimisation to choose which path to
explore. A path consists of a set of locations connected by a
set of moves. The robot has to stop exploring once the user’s
frustration limit has been reached — after which the robot’s
assistance is no longer useful to the user.

To demonstrate and evaluate the proposed model, we
design a simulator based multi-room office environment
for a TIAGo Steel collaborative robot [17], and develop a
customisable graph-based abstract environment simulator to
efficiently run a large number of experiments in numerous
different environment configurations. We model user be-
haviour in the office following established user behaviour
datasets [18], [19]. The experimental results show that using
our heuristics, we can localise users without causing them
excessive frustration in multi-room environments of various
sizes and configurations with near-optimal success rates in
under 30% of the time required to traverse the whole office
environment.

II. RELATED WORK

Studies on User Location Discovery (ULD) [20] or In-
door Localisation Systems (ILS) [21], typically utilise pre-
installed fixed sensor networks [22], [23] in the operational
area (e.g. cameras [24], PIR [25]) resulting in coverage
limitations to a predetermined area, extensive installation
costs and no adaptation capabilities. This constraint makes
them unideal for interactions where the operational area may
change at short notice (such as a robot being deployed in
different office levels) or where the deployment’s budget is
limited. Approaches requiring the user to carry a tracking
device [26] might not be suitable for long-term deployment
either due to user inconvenience and privacy concerns.

Addressing the range limitations, mobile robot-based ULD
approaches have been introduced [27], [28], [26] relying
on cameras or distance sensors, still constrained by the
robot’s field of view. They localise users by mapping a room
following semi-random patterns (exploration-only approach)
[27], or incorporating the user’s past frequented locations
and “life rhythm” using Bayesian inference [29]. These
approaches, although promising, are still limited to single
room and single user localisation settings.

Formulating the localisation of non-stationary users in
partially-known or unknown indoor environments as a path
planning problem, the “Where is Waldo?” [16] style local-
isation models approach the question from the algorithmic
side, focusing on modelling the long-term dynamics of object
occurrences at given locations over time [19], aiming to
increase the localisation’s robustness. These works, however,
treat this problem as a form of the Travelling Deliveryman
Problem [30] focusing solely on the temporal aspect, without
accounting for various localisation strategies’ implication on
user impressions and frustration [8], that cannot be defined
by localisation time alone.

In attempt to account for the robot’s effect on the user
during interactions, user-aware interaction models often build
on explicit user reactions (verbal or physical) to the robot’s
actions or implicit feedback signals. Such methods utilise
social signal processing [31], analyse natural language re-
sponses [32] or other methods of modelling user affective
states from implicit user behaviour expressed through multi-
modal data-streams (e.g. facial expression, body pose, gaze,
gestures) [33], [34] or involuntary bodily functions (e.g.
pulse or respiration) [35], [36] displayed by users during
human-robot interaction scenarios. Prior works successfully
inferred frustration, engagement or overall affective state (i.e.
arousal-valence) of users [37], or used feedback signals to
directly train learning models interpreting user impressions
as a reward function [38] or evaluative feedback [39]. These
methods are however, are constrained by the requirement
for the robot to be in close proximity to the user to collect
continuous (explicit or implicit) feedback reflecting their
affective state during the interaction, and also complicated
sensory requirements in some cases.

III. FRUSTRATION-AWARE ASSISTIVE USER
LOCALISATION

Problem Definition: The frustration-aware user assistive
localisation problem consists of two components. Firstly, the
user location estimation component: a given target user’s
location has to be estimated for a given discrete time interval
(i.e. expected assistance interval). Secondly, the user localisa-
tion component: the agent has to navigate to the target user’s
true location, without inducing too much frustration in the
target user (e.g. by spending longer than expected time with
the localisation) while exploring the environment. To achieve
this, the agent takes the location information of various users
it encounters as an input, and produces a target user location
estimate and a path to traverse as outputs, while accounting
for the expected user frustration considering their individual
characteristics, the task’s importance and the proposed path.

Formally the frustration-aware user localisation problem
can be defined as shown below:

Definition 1: A user localisation problem is a tuple
(U,T,G,PI,% F()), where

o U={u,up,...,u,}: set of human users.

o T =[t),f2,...,1,]: set of discrete time slots.

e G=(L,C) is a graph describing the agent’s opera-

tional environment, consisting of location nodes L =
{lo,11,...,1,} and connecting edges C C {{l1,b}|l1,» €
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Fig. 1: Overview of the frustration aware user localisation framework’s components. Upper Confidence Bounds model for
updating learnt Movement Correlation Tensor values and estimating target locations, a psychological principles-inspired cost
model for estimating user frustration from various robot actions, and knapsack optimisation methods for selecting paths.

L1} # b} without “loops”. Each edge ¢ € C has a travel
cost (weight).

o P={{lo,li,1;,..}|Vi, j{li,l;} € C}: a set of all possible
paths or walks (any finite sequence of interconnected
locations that can be traversed), starting from /.

o 1 €1,2,3: task importance (low, medium, high).

o .# €[1,10]: frustration tolerance level (low to high).

o« F(:): p, 1,7 — R" is the frustration cost function
returning the estimated frustration cost of a movement.

Movement Correlation Tensor: The likelihood of a user
to be located at a location at a time slot is represented as
a 3-dimensional tensor .#, called the movement correlation
tensor. Each row of the tensor corresponds to a location / € L
and each column corresponds to a timeslot r € T, with the
third dimension representing the user u € U. The values of
M represent the true likelihood that user u is located at
location [ at timeslot 7, with values [0, 1], while M represents
the learning model’s estimation of .#. As they represent
probabilities, the elements of each column of the tensor have
a sum of 1. At each time slot #, the location of user u, denoted
I(u,t), is determined by random sampling with probabilities
M [*,t,u].

User Localisation: The mobile robot localises users by
traversing a chosen path p € P and exploring each location
I € p. Each movement between consecutive locations in p
(i.e. from /; to I; where I;,/; € p) has an associated

o frustration cost F({l;,/;}) > 0.

o setof values {1(/; ={(u,t)) |u € U} at time slot ¢, where

1 denotes 1 if the predicate is true and O otherwise.

Put differently, after moving from /; to [, the robot
explores location /; and observes whether any user u € U
is at /;. Then it updates the movement correlation tensor M
based on its observations (i.e. M[l;,t,u| = Z(L(l; =1(u,t)))
with . being an update function). We assume that once the
robot is at location /;, it can observe if any user is at [; at
the same time.

Frustration Cost Model: We designed our framework to
be generic and compatible with different frustration cost
models describing how the robot performing actions while
traversing a path p € & might affect users’ frustration
levels. For the purpose of running experiments, we utilised

a frustration model focusing on the movement aspect of the
task. It should be emphasised that from human psychological
perspectives [40], [41], frustration or annoyance refers to
the emotional state that arises when individuals encounter
barriers (also known as frustration block) that prevent them
from attaining a goal or satisfying their needs. Taking into
the context of human-robot interaction (HRI), we can define
an incident where the user is awaiting the robot’s assistance
(initialised with the localisation step) without the expected
timely result as a cause for frustration. In other words, the
frustration block refers to the delay in the robot’s actions
to respond to users in an expected time window. Previous
psychological study [42] indicated that if the frustration
block is not resolved, the frustration and resulting urge to
aggression will become more dominant as the thwarting
continues (Frustration-Aggression Hypothesis). In the early
Human-Computer Interaction (HCI) work [43], the authors
evidenced that the severity of frustration blocks, measured
as the time lost and time to fix the problem, is correlated
with the user’s frustration level.

Building on the established psychological findings of the
aforementioned works and interruption-based [44] frustration
models, we define user frustration as

)

where o = 1.21 — 0.02.% scaling ensures that the frustra-
tion function follows more linear or exponential pattern for
more or less tolerant (i.e. .%) users respectively. The first
exponential component models the robot’s delay relative to
the expected assistance interval’s end (f,,4), with ¢(p) being
the travel cost of p (i.e. duration of travel between the end
points of path p in the given trial, quantified in seconds). The
second exponential component quantifies the task importance
(I) based scaling parameter. If the user’s frustration level
reaches its limit — we use an arbitrary limit value of % = 100
representing 100% — the user ceases waiting, stops expecting
the robot’s help and the localisation task has failed.

F—1— amax(c(p)—tend,O)(O.2512—0‘251+0.5) /(1-a)

Objective Function: Our goal is to localise a selected target
user u € U at each time slot ¢t € T by traversing a chosen
path p, without exceeding the frustration limit % given
the characteristics of the task and the user. To do this, we
simultaneously need to estimate the true (oracle) movement
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Fig. 2: Left: Topological map of Aruba environment [16]. Center: Simulation of Aruba environment by [16]. Right: Realistic
office environment simulated in Gazebo including TIAGo and three users. Significant locations are marked, the blue shaded

area shows the robot’s rangefinder’s visibility.

correlation tensor, denoted .#, by exploring a chosen path
p. Then, we can update our estimate M with observations
made using update function .Z. Let the updated tensor be
denoted M~ (p). Thus, we need to select an optimal path p*:

L
p* = argmin Di(A | M~ (p)) st. F(p, I, 7)< % (2)
pep  |UIX|T[x]L|
Solution Concept: In our approach, we aim to approximate
the oracle movement correlation tensor .#. Since .# is
not known in advance, the optimisation problem cannot be
solved optimally. Our framework follows the same general
structure for all variants: first, we initialise the movement
correlation tensor M with random values. Then, at each
consecutive time slot, we select a path p to traverse using a
chosen heuristic, start moving along the path while observing
encountered users at each location, and update our model
based on the observation. Finally, once the target user is

found, the robot can perform additional assistive tasks.

A. Upper Confidence Bounds model

The Upper Confidence Bounds (UCB) algorithm [45]
performs continuous exploration and exploitation based on
a set of confidence indexes, rather than in a stochastic
manner. It is designed following the principle of “optimism
in face of uncertainty”, referring to the fact that based on
the previously observed rewards, we can assign an optimistic
upper confidence bound value to each potential action. This
value will be an overestimation of the unknown true mean
with a large probability, and with the number of actions
taken, its value converges towards the true mean. These upper
confidence bound values, or confidence indexes are defined
as the sum of an exploitation and an exploration component.
The former characterises how to best utilise the information
that the model has collected so far, and is based on the reward
history associated with the given action (i.e. mean reward so
far, xj). The latter characterises the potential in exploring
locations with little prior information, based on the current
index value’s uncertainty given by the model’s exploration
history and the variance of its past locations. This approach
also enables the robot to explore locations with little past
information. The model estimates the target user’s location
by choosing the location with the largest upper confidence

index in the movement correlation tensor.

| = argmax x'j+\/lnnmin{1/4,Vj(nj)} 3)
l;eL nj
where n; is the number of attempts of j and V; the variance.
Once a target user location estimate has been produced,
we use a knapsack model [46] to identify the sequence of
locations that maximise the probability of the target user is
there. Here, each location is represented by an item within the
knapsack. This item’s value is the target user’s probability
of being there, and its weight is the frustration generated
while travelling there from the previous location, with the
frustration limit % being the knapsack’s capacity. We used
the following three heuristics to implement the knapsack
based solutions:

e One shot: we solve the knapsack problem once to
identify the path at once (i.e. all locations in the path that
maximise the sum of expected probabilities of the target
being there, without exceeding the frustration limit).

o Multishot: the knapsack problem can be solved multiple
times generating the path sequentially. Each sub-path
provides the path to the next most likely target location.

o Shortest path: it selects the shortest path to the estimated
target position.

IV. EXPERIMENT SETUP

To evaluate the proposed models, we designed two testing
environments: (1) a realistic simulator used to mimic a
typical multi-room office environment; and (2) an abstract
simulator denoting the key navigation landmarks in an office
space as a graph of partially interconnected nodes. Using the
Gazebo office environment simulator, we simulate a TIAGo
Steel robot interacting with different human users follow-
ing behaviour patterns from established human behaviour
datasets [18], [19]. In addition, the graph-based simulator
allows us to test the proposed approach with a large number
of simplified environments without environmental variables.

A. Office Environment Simulator

The simulated environment aims to mimic a realistic office
workspace with private offices, open spaces, and communal
areas (as shown in Figure 2) consisting of seven rooms (or
locations). Each of these is populated with typical office



Task Characteristics
Expected Assistance Task Importance

Assistance Task

Transport parcel from reception 10:00-11:00 Low

Bring medicine and water 12:00-12:15 High
Deliver sandwich 12:30-13:00 Medium

User Characteristics Model Status
Target User Frustration Target Location Environment
Tolerance Confidence Exploration Rate

Alice 10 40% 30%

Bob 6 50% 70%
Charlie 8 80% 60%

TABLE I: Example assistive localisation task details.

equipment such as desks, chairs, cupboards, coffee tables,
and sofas in the communal area. This setup enables the
formulation of correlations in individual users’ movement
patterns (e.g. jointly frequenting the breakroom around
lunchtime) and potential accidental encounters. The various
pieces of furniture ensure that navigation remains realistic
since travel speeds and directions often have to be adjusted
to accommodate to the environment (e.g. tight doorways or
halls forcing the robot to slow down). As part of executing
the localisation and assistance tasks, using the LIDAR and
ultrasound sensors, TIAGo has to autonomously navigate the
office space using a map of the various rooms’ layout and
the position of static pieces of furniture while being aware
of dynamically moving users. Since our office environment
contains multiple users (2-10 in our experiments), TIAGo has
to identify them when localising. For this task, we assume
that TIAGo can detect their identity once the user and the
robot are in the same room. In our experiment, this setup
is achieved symbolically: if TIAGo navigates to a location
where its distance to a user is below a threshold, the simu-
lator notifies TIAGo. This setup can be realistically fulfilled
in real world deployments, since prior works show that users
can be detected and identified with high confidence from this
distance via facial recognition [47] or voice recognition [48].

B. Abstract Environment Simulator

Our abstract graph-based simulator aims to simulate the
topology of typical office spaces. As illustrated in Figure
2, nodes represent significant locations, rooms in the en-
vironment, and weighted edges represent connections with
distance information between neighbouring locations. The
robot and users are located at the nodes (locations) during
time slots and can move between nodes following the edges
when necessary. The time of traversing the same edge may
differ between experiments, as in real environments. This
setting enables us to simulate human users’ and the robot’s
movement patterns in a lightweight, customisable environ-
ment while still simulating TIAGo’s and users’ realistic
motion characteristics. This approach allows us to rapidly
generate a large number of environments with various sizes,
topologies and interconnectivity rules, with magnitudes faster
execution times enabling large scale experiments such as
scalability analysis tests possible!.

The large scale experiments were performed using the IRIDIS High
Performance Computing Facility, and associated support services at the
University of Southampton.

1) Looking for target user. 2) Non-target user located. 3) Search continues.

4) Target user located. 5) Interacting with target user.

Fig. 3: Typical sequence of events when localising users in
the Gazebo realistic office environment.

C. Experimental Setup

Localisation Process: To localise the target user, TIAGo
provides an estimated location of the target user using
our UCB model and then generates a corresponding path
to take using a chosen heuristic (oneshot, multishot, or
shortest path). This path is then traversed by the robot while
encountered users’ locations are updated in the model’s
movement correlation tensor M. This information is used
when performing localisation in the consecutive days as well.

User Behaviour and Characteristics: In their movements
throughout the day, users follow behaviour patterns extracted
from two established datasets: 1) “Aruba” dataset [18] origi-
nally collected by the Centre of Advanced Studies in Adap-
tive Systems (CASAS) as part of the WSU CASAS smart
home project, further processed extracting user behaviour
patterns as part of the STRANDS project [19]. 2) “Brayford”
dataset [19] created by the Lincoln Centre for Autonomous
System (LCAS) as part of the STRANDS project [19]. The
two datasets contain user activities observed in household
and office environments respectively over multiple weeks,
making them ideal for modelling typical user behaviour
patterns [16] suitable for simulations. The resulting room
occupancy and user movement distribution data is used to
populate each user’s movement likelihood matrix formulating
M, describing their likelihood of being at locations at certain
times. At the beginning of each day, users’ movements for
the day were sampled from these matrices. All users are
randomly assigned a frustration tolerance level .7 € [1,10]
with 1 being the least tolerant and 10 being the most tolerant.
This level remains constant throughout the experiments and
is known to TIAGo in advance.

User Localisation Experiments: We observed scenarios
where the robot assisted over 20 consecutive days, executing
8 assistive tasks at various times every day. User assistance
tasks are assigned to the robot following the typical occur-
rence time of such tasks in Aruba or Brayford (e.g. deliver
lunch request around noon), along with a task importance
level (low, medium or high) and an expected assistance time
interval ranging form 15 to 60 minutes (e.g. 12:00 to 12:30).
TIAGo begins the localisation process from a fixed location
(lp) for each assistance request, where it has returned to at the
end of the previous task to charge on standby. If the robot’s
behaviour results in the user’s frustration level exceeding
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their tolerance limit (e.g. 100%) considering factors such as
their individual tolerance level or the task’s importance, the
user gives up on the robot’s help and ceases to wait for the
robot’s assistance — resulting in a failed assistance attempt.

Benchmarks: The UCB models’ one shot (UCB_oneshot),
multishot (UCB_multishot) and shortest path heuristics
(UCB_shortest) were evaluated along two benchmarks: A
random baseline (Random), which randomly explores loca-
tions in the environment until the user’s frustration allows;
and two Follow-the-Perturbed-Leader (FTPL) [49] loca-
tion estimation models (FTPL_oneshot and FTPL_multishot)
based on multiarmed bandit theory’s Follow-the-Leader algo-
rithm [50], combined with one shot and multishot heuristics.
The latter model is commonly used for structured online
learning problems, as its implementation is comparable to
solving the offline optimisation problem [51]. In addition,
the results are compared against an oracle value, defined by a
hypothetical scenario when the localisation agent’s decisions
are based on the oracle movement correlation tensor .. All
reported values are the result of 20 independent replicates.

Evaluation metrics: The error values for each estimation
model’s accuracy are calculated using the objective function
as illustrated in Eq. 2. The success of the localisation process
is characterised by the ratio of successful localisations over
all attempts (%), the estimated user frustration level and the
robot’s travel time (s) till localisation or failure.

V. RESULTS AND DISCUSSION

We evaluated the proposed models using both environ-
ments described in IV-C, using the “Aruba” [18], [19] and
“Brayford” [19] datasets to model realistic user behaviours.
Evaluations on both datasets yielded similar results, for the
sake of presentation and readability, we present our results
from the “Aruba” dataset experiments. First, we considered
the models’ user location estimation accuracy. Next, we eval-
uated the performance of the localisation process, following
both experiment types, with additional focus on analysing
TIAGoO’s navigation capabilities. Finally, we performed scal-
ability analysis on the models’ performance.

Location Estimation Error: The results presented in Figure
4.4 show the location estimation error of various models
against the current day throughout the experiments. The
solutions continuously improve before reaching a plateu, as

Number of users: 2 Number of users: 6

~=100 - 100 + ———
S e |
L1
80 80
; T
=}
O 601 60
—
[0
) 40 —— Random 40 A
= UCB_oneshot
°© | —— UCB_multishot
E) 20 —— FTPL_oneshot 201
© —+— FTPL_multishot
) ! A 0 | |
Intolerant Tolerant Intolerant Tolerant
Low tolerance (2/10) Medium tolerance (4/10)
o100 100
X u
-
ho] i _
c 80 80
>3
e 60 1 60 1 e =
—
3
5 401 40 1
©
g 20 1 20 1
|_

o

: 4 6 5 L 3 4 & & D
Number of users Number of users

Fig. 5: Experiments conducting scalability analysis on the
frustration tolerance (plots 1 and 2) and number of users
(plots 3 and 4). The plots show the mean of 20 experiment
replicates, the error bars represent the variance in target users
found. The experiments were conducted in graph-based test
suites, containing 3, 5 or 7 rooms environments each time.

illustrated by the decreasing error values as the days go on,
while UCB models continuously outperform FTPL models.

Localisation Performance: Considering the overall locali-
sation performance, Figure 4.1 shows that the UCB shortest
localisation success rates are converging towards the oracle
values with time, from around 40% success rate to the Oracle
rate at around 90%, while the FTPL models’ success rates
only increase mildly under the given problem conditions.
The UCB shortest path models perform the best, followed
by UCB one shot and UCB multishot since the first model
prioritises localising the target user more, while UCB one
shot focuses on environment exploration and UCB multishot
strives for a balance. The same tendencies show regarding
estimated user frustration (Figure 4.2) with UCB models
yielding up to 75% less frustration than FTPL models
considering the mean difference over the experiment days,



with UCB oneshot yielding approximately 20% less frus-
tration. UCB multishot and UCB oneshot perform similarly.
Regarding travel time till localisation or failure (see Figure
4.3), the UCB oneshot is on par with or even underperforms
FTPL models in the first days, despite the former yielding
less frustration, highlighting the importance of non-temporal
factors in user-aware behaviour models. UCB oneshot is able
to achieve frustration levels similar to UCB multishot, while
allowing time for additional exploration with travel times
around FTPL models. UCB multishot and shortest converge
towards the Oracle travel times. The users were localised
most days between an average of 160-200 seconds using the
UCB shortest and multishot models (in comparison to the
1020 seconds necessary for a typical full traversal, or the
mean 310 seconds necessary for the random baseline).

TIAGo’s Performance: Regarding TIAGo’s performance,
it executed the navigation tasks accurately in most cases
and adjusted its movement patterns to the environment (e.g.
speed and direction adjustments near doorways or crowded
environments). This also resulted in the different traversal
paths chosen by various models yielding different travel time
between the same start and end locations. However, in 10-
15% of all cases, it did not navigate in the most optimal
manner. Particularly in private offices or near doorways,
the robot had a tendency of getting stuck or lost and
took significant extra time (up to 30 seconds) to recover.
Consequently, additional self-localisation steps were added
reducing the duration of such events to under 5 seconds..

Scalability Analysis: Our scalability analysis (see Figure
5) in the abstract simulator has shown good scalability
properties: with the increase of the user tolerance, the model
performance (successful localisation rate) also increased until
a plateau is reached near the oracle values, regardless of the
environment’s topology. The results also remain consistent as
the number of participating users increases, with less than 5%
difference in the mean target user found metric, illustrating
that the models scale well. In both cases, the UCB models
outperform both FTPL models and the random baseline.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a mobile robot based framework
for localising and assisting users with tasks of various im-
portance in an office environment behaving in a frustration-
aware manner. The user frustration factor was taken into
consideration by applying multiarmed bandit approaches and
knapsack algorithms in addition to providing a psychology-
based model of frustration suited to HRI settings without
continuous user contact. We evaluated our approach follow-
ing realistic user behaviour datasets in an office simulation
using the TIAGo robot and a custom abstract simulation
framework, with a particular focus on the framework’s
performance and scalability. Our results indicate that our
proposed framework provides a suitable foundation for plan-
ning user localisation and assistance tasks in a frustration-
aware manner in HRI environments without continuous user
contact: we demonstrated localisation success rates and travel
times converging towards oracle value (outperforming FTPL
and random benchmarks) while continuously maintaining

below tolerance limit user frustration; with our results in-
dicating good scalability characteristics.

In future works, we aim to conduct in person HRI user
studies evaluating both objective and subjective user impres-
sions in response to interacting with frustration-aware robotic
behaviour models, including settings without continuous
user contact, serving as further verification of our current
findings. Further on, attempting to enable a more realistic
portrayal of user reactions, additional factors influencing user
impressions or frustration in OAR contexts, different ways
of modelling user frustration and deployment possibilities in
other interaction scenarios are to be explored as well.
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