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This thesis offers new insights on the exogenous and endogenous drivers of volatility 

and price deviation of fiat-collateralized stablecoins across centralized exchanges. It 

further  investigate the high-frequency lead-lag effects across centralized exchanges 

and non-stable cryptocurrencies. Different empirical strategies are employed to 

explore and understand the complex mechanism regarding stablecoin volatility and 

mispricings, and the information transmission reflected in the high-frequency lead–lag 

relationships among cryptocurrencies. 

Chapter 2 identifies external drivers of stablecoin volatility, and characterizes the 

volatility spillover effects from external markets to stablecoins. Using a popular 

volatility spillover measure combined with a Time-Varying Parameter Vector Auto-

Regression (TVP-VAR) model, we estimate directional spillover effects from 

traditional cryptocurrencies market (i.e., Bitcoin and Ethereum), traditional currency 

market (i.e. the USD index), and mainstream equity market (S&P 500) to four leading 

stablecoin markets. Our results indicate that the volatility spillovers from these 

markets to stablecoins are significant, and largely depend on market conditions. These 

significant volatility spillovers challenge the previous view of stablecoins as safe 

haven against non-stable cryptocurrencies and traditional assets. Robustness exercise 
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using an alternative model generally supports our claim. Our findings provide 

insightful implications for maintaining stablecoin price stability during periods of high 

uncertainty and trading strategies relying on the stability of stablecoins. 

Chapter 3 examines the cross-exchange mispricing of stablecoins that creates arbitrage 

opportunities. Drawing on snapshots of limit order-book and trade data for USDT and 

USDC from three leading centralized exchanges, we demonstrate that such mispricing 

is both prevalent and persistent. Its persistence and profitability suggest that it remains 

exploitable across exchanges. Further analysis using market characteristics and 

impulse-response functions (IRFs) indicates that microstructure factors – such as order 

imbalance, bid–ask spreads, and market depth – together with asynchronous price 
across exchanges, may drive these deviations. This chapter presents the first empirical 

study of cross-exchanges mispricings and arbitrage in stablecoins, offering novel 

insights into market microstructure and highlighting a potential arbitrage pathway for 

market participants, with implications for reducing price deviations and enhancing 

market efficiency. 

Chapter 4 investigates high-frequency lead-lag relationships across trading venues and 

assets in the cryptocurrency market. Using tick-by-tick limit order-book data, we 

confirm the presence of rapid lead–lag dynamics both between cryptocurrencies within 

the same exchange and across exchanges for the same cryptocurrency. Notably, in 

contrast to existing literature with lower-frequency data, our results reveal that Bitcoin 

often assumes a lagging position in high-frequency relationships. Further analysis of 

order-book behaviour suggests this lag may be linked to Bitcoin’s relatively high 

resilience of limit order-book. An intraday examination uncovers strong seasonal 

patterns, showing that lead–lag effects weaken during the opening hours of the US 

stock market. This implies that disequilibrium in information transmission between 

cryptocurrency exchanges decreases when investor activity – particularly in the US – 

intensifies.  
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Collectively, the findings from this thesis deepen our understanding of market 

dynamics and microstructure inefficiencies surrounding stablecoins and the broader 

cryptocurrency ecosystem. They offer important implications for the design of 

stablecoins, the formulation of trading strategies, and the development of policy 

frameworks aimed at ensuring stability and efficiency in digital-asset markets. 
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1.1. Research context  

Over the past few decades, financial research has primarily focused on traditional assets 

such as stocks, bonds, and commodities. These assets have long been studied in academia, 

with researchers analyzing their pricing, volatility, risk management, and correlation with 

macroeconomic factors (Black, 1972). The Efficient Market Hypothesis (EMH), which 

proposes that asset prices reflect all available information, dominated much of the early 

literature and informed theories of market behavior and investment strategies (Fama, 1970). 

However, the EMH was challenged when Grossman and Stiglitz (1980) demonstrated that 

markets cannot be fully efficient. They argued that acquiring information is costly and time-

consuming, and if prices fully incorporated all information, traders would have no incentive 

to gather it.  The adaptive market hypothesis (AMH) built on this critique by considering the 

role of market participants, emphasising that efficiency is an evolving and dynamic process 

shaped by conditions over time (Lo, 2004). Since then, numerous studies have provided 

strong empirical evidence in support of the AMH (Kim et al., 2011; Hull and McGroarty., 

2014, Urquhart and Hudson, 2013, Urquhart and McGroarty, 2014; Urquhart and 

McGroarty, 2016). 

However, the rise of cryptocurrencies in the late 2000s, initiated by Bitcoin’s launch in 2009 

(Nakamoto, 2008), marked a major shift in financial research, and attracted significant 

attention from researchers. The distinctive features of cryptocurrencies – decentralized 

governance and blockchain technology – have prompted researchers to reassess many 

foundational assumptions, as traditional asset-pricing models based on discounted cash 

flows are ill-suited to this new asset class. 

Although the idea of virtual currencies dates back to the 1980s (Bordo et al., 1989), it was 

the introduction of Bitcoin in 2008 that catalysed the modern cryptocurrency movement 

(Nakamoto, 2008). Nakamoto introduced a decentralised digital currency intended to 

overcome key limitations of fiat money, including dependence on central intermediaries and 

inflationary risks. Bitcoin sought to facilitate global capital transfers at low cost within a 

secure, decentralised system (Grinberg, 2012). Since then, the cryptocurrency market has 
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expanded dramatically, with Bitcoin gaining prominence through substantial growth in 

transaction volume and market capitalization. Yet its high price volatility undermines its use 

as a stable medium of exchange or store of value, restricting its practicality for everyday 

transactions (Yermack, 2015). Consequently, cryptocurrencies are generally viewed as 

speculative assets rather than viable payment instruments, and thus Bitcoin and other 

volatile cryptocurrencies have not fulfilled their original promise as decentralised currencies 

(Selgin, 2015).  

This limitation led to the development of stablecoins, designed specifically to reduce 

excessive volatility. By maintaining a collateralised peg, stablecoins exhibit far lower price 

fluctuations and are widely adopted as both a store of value and a medium of exchange in 

the digital-asset economy (Baur and Dimpfl, 2021). 

Stablecoins are digital currencies pegged to stable assets such as gold or major fiat 

currencies – most commonly the US dollar, but also the euro or pound (Mita et al., 2019). 

They are broadly divided into collateralized and non-collateralized forms, depending on the 

mechanism underpinning their stability. Collateralized stablecoins are further categorized as 

fiat-collateralized, commodity-collateralized, or crypto-collateralized (Mita et al., 2019; 

Moin et al., 2020). 

Fiat-collateralized stablecoin uses fiat money (e.g. the US dollar) as collateral. The issuers 

commit to issuing or redeeming tokens at a fixed rate at any time, such that one unit of 

stablecoin equals one unit of fiat currency. For example, USDT, the most widely used 

stablecoin, is pegged to US dollar . The issuer, Tether, promises a one-to-one exchange with 1

the US dollar when issuing and redeeming USDT, which means one can buy or sell USDT 

with Tether at 1 USD price.  

 

Commodity-collateralized stablecoins use commodities, such as gold and oil, as collateral. 

Despite using different types of collateral, these stablecoins operate similarly to fiat-

 https://tether.to/en/1
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collateralized stablecoins by holding reserves that back their tokens. A representative 

example is Tether Gold (XAUT), a stablecoin pegged 1:1 to one fine troy ounce of gold. It 

provides a digital token representing ownership of physical gold securely stored in 

designated vaults .2

The last type of collateralized stablecoin is crypto-collateralized stablecoin. This type of 

stablecoins use other, typically volatile, cryptocurrencies as collateral. The mechanism of 

crypto-collateralized stablecoins works as follows: to issue crypto-collateralized stablecoins, 

a specified amount of cryptocurrency is locked in a smart contract, which then generates the 

requested stablecoins in return (Roberts, 2022). To mitigate declines in collateral value, they 

are usually over-collateralized (often by around 150%). DAI, the most prominent example, 

is collateralized by a mix of cryptocurrencies through MakerDAO. For instance, depositing 

1 ETH valued at USD 1,500 allows a maximum draw of USD 1,000 in DAI; if ETH falls in 

value, additional collateral is required.  

Non-collateralized (algorithmic) stablecoins are not backed by assets. Instead, their stability 

is maintained through algorithms and smart contracts that adjust supply. Simply put, if the 

price of the stablecoin falls below the target, then tokens are burned to reduce supply; if the 

price exceeds the target, then new tokens are issued. However, due to the lack of collateral, 

this type of stablecoin are highly vulnerable during severe market stress, as seen with the 

collapse of Terra (Lyons and Viswanath-Natraj, 2023). 

Due to the design mechanism and stability of price, stablecoins have thus become widely 

used as a medium of exchange and store of value within cryptocurrency markets 

(Koutsoupakis, 2020; Griffin and Shams, 2020). They are also regarded as safe-haven assets 

or portfolio diversifiers against volatility in traditional cryptocurrencies (Baur and Hoang, 

2021; Wang et al., 2020; Xie et al., 2021). More recently, however, attention has shifted 

towards their excess volatility. Despite their collateral mechanisms, stablecoins have been 

found to be less stable than fiat currencies, raising questions about their effectiveness 

 https://coinmarketcap.com/currencies/tether-gold/#About2
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(Hoang and Baur, 2021). Studies attribute this instability to correlations with volatile 

cryptocurrencies (Jarno and Kołodziejczyk, 2021; Grobys et al., 2021, Kristoufek, 2021). 
 

However, despite the prominence stablecoins gained in existing research,the mechanisms 

through which volatility is transmitted from both cryptocurrencies and traditional financial 

markets to stablecoins remain underexplored. Prior research often overlooks the role of 

volatility spillovers, even though these may pose risks to trading strategies that treat 

stablecoins as safe havens or diversifiers. Understanding this is important as significant 

spillover effects may bring potential risks to trading strategies relying on their stability. 

Chapter 2 addresses this gap by investigating volatility spillovers from related markets to 

fiat-collateralised stablecoins. We further suggest that the results for fiat-collateralised 

stablecoins may extend to other categories, since external shocks that affect fully backed 

stablecoins are also likely to influence those backed by alternative mechanisms (Jarno and 

Kołodziejczyk, 2021; Lyons and Viswanath-Natraj, 2023). 

Moreover, besides correlation with volatile assets, the excess volatility of stablecoins  also 

faced criticism due to their design mechanism. Prior research generally argues that fully 

collateralised stablecoins are more stable than algorithmic ones due to more arbitrage 

activities (Jarno and Kołodziejczyk, 2021; Kozhan and Viswanath-Natraj, 2021; d’Avernas 

et al. 2022; Gadzinski et al., 2023). Specifically, algorithmic stablecoins, such as TerraUSD, 

are particularly prone to devaluation when under-collateralised as the absence of clear 

arbitrage pathways undermines confidence in governance tokens (Lyons and Viswanath-

Natraj, 2023). Arbitrage therefore plays a critical role in maintaining stablecoin stability, 

especially for fully backed stablecoins (Pernice, 2021; Lyons and Viswanath-Natraj, 2023). 

Arbitrage is essential because, regardless of type, stablecoins ultimately depend on market-

based arbitrage to correct price deviations between primary and secondary markets. Prior 

literature highlights this role: Pernice (2021) shows that arbitrage enhances the stability of 

theoretical stablecoin models, while Lyons and Viswanath-Natraj (2023) demonstrate that 

arbitrage reduces deviations from pegs in practice.
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However, these research are limited to the arbitrage activities between primary and 

secondary market, overlooking the potential arbitrage opportunities within secondary 

markets. The primary market is where tokens are issued or redeemed directly with the issuer 

at the target peg (e.g. Tether). The secondary market involves transactions between users on 

exchanges at market prices. Arbitrage in secondary markets is particularly important 

because it typically requires lower capital and incurs lower transaction costs, making it more 

accessible and effective for correcting subtle de-pegging. As stablecoins often serve as the 

entry point for investors, maintaining price stability in these markets is crucial for managing 

transaction costs (Mita et al., 2019; Moin et al., 2020). 

Accordingly, Chapter 3 investigates mispricing and arbitrage opportunities across 

centralized exchanges, examining both their persistence and potential profitability. We show 

that stablecoin mispricing largely occurs in secondary markets, driven by market 

microstructure factors and differences in price efficiency across exchanges. 

Finally, we turn to price discovery and information diffusion in cryptocurrency markets. 

Unlike traditional assets, cryptocurrencies are traded across multiple centralized exchanges, 

creating fragmentation.   This fragmentation hinders the uniform transmission of 

information, potentially leading to delays in price discovery and the emergence of lead–lag 

effects. 

Research on price discovery in cryptocurrency market is still at an early stage. Existing 

studies generally find that Bitcoin and Ethereum broadly lead other cryptocurrencies. For 

instance, Yarovaya and Zieba (2022) analyze the lead–lag relationships among the top 30 

cryptocurrencies and confirm Bitcoin’s leading role, while Sifat et al. (2019) document a 

bidirectional relationship between Bitcoin and Ethereum. These studies, however, use 

equally spaced daily or hourly data. We argue that these lead-lag relationship with low 

frequency dataset filters much useful short-term information to practical tradings, as the lag 

length in high frequency trading period are usually seconds or even sub-seconds (O’Hara, 

2015; Alsayed and McGroarty, 2014). For this reason, chapter 4 focus on the high-frequency 

lead-lag relationships in cryptocurrency market. We focus on the fast lead-lag relationships 
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between cryptocurrencies in same exchanges, and the fast lead-lag relationships of same 

cryptocurrencies in different exchanges. Understanding fast lead-lag relationships is 

important as these fast relationships might provide useful extra information to practical 

trading.  

Overall, this thesis covers different types of cryptocurrencies, including stablecoins and 

traditional volatile cryptocurrencies. It addresses highly debated issues such as stablecoin 

volatility and mispricing, as well as lead–lag relationships among major cryptocurrencies. In 

Chapter 2, we focus on the mechanism of volatility transmission from related markets to 

stablecoin markets, investigating the volatility spillover effects from these markets to 

stablecoins. Chapter 2 also identifies potential risks in previous trading strategies that treat 

stablecoins as safe havens or diversifiers. In Chapter 3, we examine the mispricing and 

arbitrage opportunities of stablecoins across exchanges. Chapter 3 sheds new light on 

arbitrage strategies for stablecoins, identifying factors that contribute to the emergence of 

mispricing. In Chapter 4, we analyse high-frequency lead–lag relationships across 

exchanges and leading volatile cryptocurrencies, providing evidence of the lagging position 

of Bitcoin and Ethereum, and offering new insights into the factors that shape these lead–lag 

dynamics.  

1. 2. Theoretical background and methodology

This thesis is based on several key theories that underpin financial economics, including 

spillover theory, market integration theory, arbitrage theory, the EMH, the AMH, and 

theoretical work on price discovery. In this section, we introduce how these theories are 

related to this study, and outline the methodologies applied to examine them. 

1. 2. 1. Theory of spillover and market integration
   
Ito & Roley (1987) was the first attempt to explore the idea of volatility spillover effect 

across financial markets, they found a significant linkage between the fluctuations of the 

Japanese and U.S. exchange markets. Engle et al. (1988) proposed “Meteor Showers” 
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hypothesis, highlighting the impact from related markets. The Meteor Showers hypothesis 

suggests if a shock increases the volatility of one market, the same shock might also 

intensify the volatility of related markets.

Ito and Roley (1987) first attempted to explore volatility spillover effects across financial 

markets, finding a significant linkage between fluctuations in the Japanese and US exchange 

markets. Engle et al. (1988) later proposed the 'meteor showers’ hypothesis, which 

highlights the impact of related markets. The hypothesis suggests that if a shock increases 

the volatility of one market, then the same shock may also intensify volatility in related 

markets. 

Before the concept of spillovers, the term ‘financial contagion’ firstly appeared in the 

literature, borrowed from medicine to describe the spread of diseases. Following the Thai 

currency crisis in 1997, which spread rapidly across global markets, the term was also used 

to capture the transmission of financial distress (Liu and Pan, 1997; Bekaert and Harvey, 

2003). Building on these concepts, subsequent studies (Diebold and Yilmaz, 2009, 2012, 

2015; Forbes, 2012) define spillover effects as the impact of shocks generated in one 

financial market on other markets, fully accounting for linkages between financial assets and 

markets across the system. In other words, spillovers describe the transmission of shocks 

from one market to another.  

The volatility spillover theory emphasises how market shocks can spread across assets and 

markets. According to prior literature, two main factors affect spillovers: market integration 

and financial contagion (Jiang et al., 2012; Bekaert and Harvey, 2003; Adams et al., 2014; 

Jalal et al., 2020). During normal periods, spillovers largely depend on market integration, 

meaning the degree to which financial markets are connected (Liu and Pan, 1997; Bekaert 

and Harvey, 2003). During crises, however, spillovers are mostly driven by financial 

contagion, which refers to the propagation of shocks from one market to others, often 

leading to temporary and sharp increases in spillover effects (Bekaert and Harvey, 2003). 

Together, these factors imply that volatility spillovers intensify during crises or periods of 

extreme volatility(Forbes and Rigobon, 2002). Consequently, spillovers during such periods 

tend to be asymmetric, as large negative returns are more strongly associated with 
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intensified spillover effects than large positive returns, given that crises and crashes are 

typically linked to downturns. 

1. 2. 2. Methodology of spillover effects
   
To quantify and measure volatility spillovers, GARCH model and VAR model are the most 

commonly used methodologies in previous empirical analysis (Soriano and Climent, 2005). 

The GARCH model is derived from the Autoregressive Conditional Heteroskedasticity 

(ARCH) model (Engle, 1982), which provides a useful tool in forecasting financial time 

series. GARCH has been largely used to measure the volatility transmission across financial 

markets, including cryptocurrency market (Inagaki, 2007; Bouri et al., 2021; Zhang et al., 

2022). And different extensions (i.e. T-GARCH, E-GARCH and GJR- GARCH) are aiming 

to address different issues of financial datasets. However, employing all extensions to 

address all problems simultaneously is complex. Also, using GARCH requires a certain 

level of correlation among financial variables, otherwise the results might be invalid 

(Maaitah, 2020). 

Another widely used method for measuring spillover effects is the VAR model, proposed by 

Sims (1980) to capture correlations and interdependencies among variables within a system. 

The most influential extensions were introduced by Diebold and Yilmaz (2009, 2012, 2015), 

who combined the VAR framework with variance decomposition and impulse response 

functions to examine volatility spillovers across markets. Their approach improves 

robustness by mitigating ordering problems. Furthermore, Antonakakis and Gabauer (2017) 

extended the Diebold–Yilmaz (DY) methodology by incorporating the TVP–VAR model, 

which avoids arbitrary window-size selection and is more resilient to outlier observations. 

In this thesis, we apply the DY method combined with the TVP–VAR model to investigate 

volatility spillover effects from related markets to stablecoin markets. 
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1. 2. 3. Theory of arbitrage
   

Arbitrage is defined as the trading activity of exploiting of price differences between 

markets or instruments to generate a risk-free profit. The concept of arbitrage is much 

shaped by the Law of One Price (LOOP) and Efficient Market Hypothesis (EMH), which 

hold that identical assets should not trade at different prices in efficient markets. Fama 

(1970) incorporates the concept of arbitrage into the Efficient Market Hypothesis (EMH), 

highlighting the role of arbitrageurs in eliminating inefficiencies in markets, ensuring that 

prices reflect all available information. Later, Lo (2004) introduced the AMH, suggesting 

that arbitrage is not a guaranteed risk-free activity in practice. Instead, it should be viewed 

as a dynamic process shaped by the adaptive behaviour of market participants and evolving 

market conditions.  

The limits and risks of arbitrage have been widely discussed in prior literature (Shleifer and 

Vishny, 1997; Mitchell et al., 2002). Two major risks are particularly important: 

fundamental risk and inventory risk. Fundamental risk refers to the possibility that 

mispricings may persist for some time, exposing the arbitrageur to the chance that prices 

move further away from their fundamental values before correcting. Such risks may arise 

due to irrational noise traders or imperfect information (De Long et al., 1990; Mitchell et al., 

2002). Inventory risk refers to the potential loss when arbitrageurs must hold positions in 

mispriced assets while awaiting convergence, during which time prices may move 

unfavourably. 

Shleifer and Vishny (1997) highlighted that both fundamental and inventory risks can force 

arbitrageurs into liquidation if prices diverge further, particularly under margin calls. 

Inventory risk often accompanies fundamental risk, as arbitrageurs may face high capital 

costs if they rely on borrowed funds. Consequently, even when mispricings eventually 

converge, arbitrageurs may be unable to sustain positions long enough to realise gains. 
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Beyond these risks, arbitrageurs also face practical costs and constraints when executing 

trades. These include short-selling costs, leverage and margin restrictions, and limits on 

equity capital (Gromb and Vayanos; 2010). Information acquisition is another key 

constraint, as it can be costly (Grossman and Stiglitz, 1976, 1980), and in high-frequency 

trading environments valuable information may expire within seconds (Alsayed and 

McGroarty, 2014; Marshall et al., 2013). Arbitrageurs therefore target only those 

opportunities that can cover the high cost of rapid information acquisition (Marshall et al., 

2013). In cryptocurrency markets, additional limits such as trading speed, short-selling 

constraints, technical infrastructure, and capital controls have also been documented 

(Fischer et al., 2019; Makarov and Schoar, 2020). 

1. 2. 4. Methodology of detecting arbitrage opportunities
   
 

In Chapter 3, we investigate the mispricing of stablecoins that enables arbitrage across 

exchanges. We collect historical limit order book data for stablecoins from several 

exchanges to examine whether arbitrage opportunities exist. The arbitrage strategy is 

straightforward: we track identical stablecoins across exchanges, and if the bid price on one 

exchange is higher than the ask price on another – and the difference exceeds trading costs – 

then an arbitrage opportunity exists. In such cases, investors can buy at the lower ask price 

and sell at the higher bid price. In addition, given the importance of time duration, we only 

consider arbitrage opportunities that last longer than one second. We regard this as sufficient 

for arbitrageurs to identify and exploit, as trading in cryptocurrency markets is extremely 

fast (Aleti & Mizrach, 2021).  

We also analyse the determinants of arbitrage occurrence and profitability using both daily 

and intraday market characteristics. At the daily level, we apply linear regression to test how 

bid–ask spreads, order imbalance, and trading volume affect the frequency and profitability 

of mispricing. At the intraday level, we examine changes in market microstructure factors in 

the minutes before, during, and after each arbitrage opportunity arises, to assess their 

contribution to mispricing. Finally, following Chordia et al. (2005), we employ impulse 
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response function tests to investigate whether differences in price discovery speed across 

exchanges contribute to the arbitrage opportunities we observe. 

1. 2. 5. Theory of lead-lag effect
   

The essence of the lead–lag effect lies in the fact that market participants react to the arrival 

of new information at different speeds. In finance, the lead–lag effect refers to the 

phenomenon where the price movements of one financial asset precede and potentially 

influence the price movements of another. If one market reacts more quickly to new 

information while another responds more slowly, a lead–lag relationship emerges (Chan, 

1992). 

The theoretical foundation of the lead–lag effect is largely based on the EMH (Fama, 1970), 

the AMH (Lo, 2004), information diffusion theory, and theoretical work on price discovery. 

The EMH suggests that prices should fully reflect all available information in efficient 

markets. This implication relies on the assumption that new information is transmitted 

instantaneously and simultaneously across the market. In practice, however, information is 

neither distributed nor processed uniformly, which leads to the presence of lead–lag effects.

Within the AMH, traditional theories of market efficiency are reinterpreted within an 

evolutionary framework, including implications for information and price discovery. 

According to the AMH, lead–lag effects can arise as market participants adjust to changing 

conditions at different speeds, owing to limits on attention or unequal access to information 

(Hong & Stein, 1999). These frictions may generate temporary disequilibria, where leading 

markets incorporate and react to new information faster than lagging markets (Grossman & 

Stiglitz, 1980). 

The theory of the lead–lag effect is also closely linked to market microstructure, as both 

concern the mechanisms of market characteristics, information dissemination, and price 
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formation. Liquidity and trading volume often play central roles in price discovery, since 

information is transmitted primarily through trading activity (Hasbrouck, 1995; Chordia & 

Swaminathan, 2000). Ultimately, lead–lag effects are strongly correlated with information 

transmission in markets, and any factors that influence this transmission – such as 

information asymmetry or market segmentation – will also affect lead–lag relationships and 

price discovery (Easley and O’hara,1992; Eun and Shim, 1989). 

1. 2. 6. Methodology of lead-lag effect

In Chapter 4, we analyse high-frequency lead–lag relationships both between the same 

cryptocurrencies traded on different exchanges and between different cryptocurrencies 

traded on the same exchange, using snapshots of limit order book data. To address the 

challenges of irregular and asynchronous tick data, we apply the Hayashi–Yoshida (HY) 

method proposed by Hayashi and Yoshida (2005). This method overcomes the substantial 

data loss problem, a major disadvantage of sparse sampling approaches. It enables the 

analysis of two irregularly spaced time series of different lengths and allows examination of 

high-frequency lead–lag relationships. By calculating the contemporaneous and non-

contemporaneous correlations between two irregular tick datasets with misaligned lag 

lengths, we are able to identify the optimal lag length corresponding to the highest 

correlation. 

1. 3. Research gaps, objectives and contributions
 

The research gaps, objectives, and contributions of each chapter are  presented next.   

The research gaps and objectives in Chapter 2 are as follows: 

As Bitcoin and other volatile cryptocurrencies fail to serve as a medium of exchange due to 

high fluctuations (Baur and Dimpfl, 2021), stablecoins were created to fulfil 
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cryptocurrency’s original promise of functioning as a medium of exchange with much lower 

volatility (Yermack, 2015). Owing to their pegging mechanism and relative stability, 

stablecoins are not only used to trade volatile cryptocurrencies (Kristoufek, 2021) but also 

play important roles as potential safe havens and effective diversifiers in portfolios against 

non-stable cryptocurrencies and stock markets (Baur and Hoang, 2021; Wang et al., 2020; 

Xie et al., 2021). More recently, however, growing empirical evidence suggests that 

stablecoins are not absolutely stable, exhibiting higher volatility than fiat currencies (Duan 

and Urquhart, 2023; Hoang and Baur, 2021). This excess volatility is attributed both to 

design mechanisms (Gadzinski et al., 2023; Jarno and Kołodziejczyk, 2021) and to their 

correlation with volatile cryptocurrencies (Hoang and Baur, 2021; Groby et al., 2021; 

Griffin and Shams, 2020). 

Overall, prior literature has evolved from viewing stablecoins as potential safe haven assets 

to increasingly questioning their stability. However, little is known is the volatility 

transmission from external related markets to stablecoins markets. We identify a research 

gap in that few studies systematically examine volatility spillovers from traditional assets 

and non-stable cryptocurrencies into stablecoin markets when considering them as safe 

havens or diversifiers. Understanding this is important, as significant spillover effects may 

create risks for trading strategies relying on the stability of stablecoins.  

Therefore, in chapter 2, we aim to fill this research gap by addressing two research 

questions: (i) what drives the stablecoins volatility? (ii) How does the impact of these 

drivers on stablecoins volatility evolve over time? To address these two research questions, 

we investigate spillover effects between stablecoins and related markets, including Bitcoin, 

Ethereum, the S&P 500, US Dollar Index (DXY) and gas price of Ethereum blockchain. 

Consequently, Chapter 2 contributes to the literature in the following way. 

• To the best of our knowledge, this is the first empirical study to analyse risk transmission 

and volatility spillovers from external markets, particularly non-crypto assets, to 

stablecoins. Chapter 2 highlights the external drivers of stablecoin volatility. Our findings 

undermine trading strategies that treat stablecoins as safe havens or diversifiers against 

cryptocurrencies and traditional assets (Baur and Hoang, 2021; Xie et al., 2021; Feng et 
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al., 2024). This study highlights the importance of accounting for spillover effects when 

developing trading strategies 

 

The research gaps and objectives in Chapter Three are: 

The introduction of stablecoins aims to solve the problem of the high volatility of traditional 

cryptocurrencies. By maintaining collateralised pegs, stablecoins are able to sustain much 

lower volatility than traditional cryptocurrencies, and they thus play a key role as a store of 

value and medium of exchange in the crypto economy (Yermack, 2015; Kristoufek, 2021). 

For fiat-collateralised stablecoins, issuers commit to issuing or redeeming the stablecoin for 

collateral at a fixed rate. However, despite the existence of this pegging mechanism, the 

prices of stablecoins are not as stable as fiat currencies (Hoang and Baur, 2021). Stablecoins 

frequently experience mispricing and price deviations from their peg in secondary markets, 

such as cryptocurrency exchanges (Lyons and Viswanath-Natraj, 2023). 

These mispricings and price deviations attract arbitrage activities, and previous research 

provides evidence that arbitrage can reduce deviations and enhance the price stability of 

stablecoins (Kozhan and Viswanath-Natraj, 2021; Lyons and Viswanath-Natraj, 2023; 

Pernice, 2021). However, existing literature largely focuses on mispricings and arbitrage 

opportunities between primary and secondary markets, while potentially overlooking 

opportunities within secondary markets. Moreover, the high transaction costs and entry 

barriers in primary markets limit arbitrageurs’ ability to exploit small price deviations.  

Therefore, to fill this research gap, the main objective of chapter 3 is to answer two research 

questions (i) Do mispricings of stablecoins exist across cryptocurrency exchanges that 

enable arbitrage? (ii) What factors contribute to the occurrence and potential profitability of 

these arbitrage opportunities? Answering these questions is important, as identifying 

additional arbitrage routes could help eliminate smaller price deviations and improve the 

financial stability of stablecoins and the broader crypto ecosystem. To do so, we collect the 

tick level snapshot of limit order book data for two leading stablecoins, USDT and USDC, 

from three major exchanges, Kraken, Bitstamp and BinanceUS. We investigate the 

mispricings allowing arbitrage across exchanges. 
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Accordingly, Chapter 3 contributes to the literature on the mispricings and arbitrage in 

stablecoin markets in the following two significant ways: 

• This chapter identifies a new arbitrage route in stablecoin markets by exploiting cross-

exchanges mispricings, shifting attention from arbitrage between primary and secondary 

markets to opportunities within secondary markets. It also provides empirical evidence 

that such arbitrage opportunities are profitable and exploitable, which may further reduce 

stablecoin price deviations (Lyons and Viswanath-Natraj, 2023). The rapid correction of 

these mispricings aligns with the dynamic process described in the Adaptive Market 

Hypothesis.

• Chapter 3 also shed new lights on the drivers of mispricings in stablecoins. Through the 

analysis of market microstructure when mispricing-based arbitrage occurs, we find that 

microstructure factors, such as order imbalance, bid-ask spreads and market depth, might 

be one driver of mispricings. Using impulse response function (IRF) analysis, we 

investigate the price discovery speed of each centralized exchanges. Our results indicate 

that asynchronous price adjustments to information across exchanges may be another 

driver of stablecoin mispricings. 

 

The research gaps and objectives in Chapter Four are:

Unlike traditional assets, cryptocurrencies such as Bitcoin and Ethereum are traded on 

numerous exchanges, which introduces challenges related to price discovery and gives rise 

to lead–lag problems. Existing literature provides empirical evidence that lead–lag effects 

are widespread in the crypto space, with Bitcoin and Ethereum broadly holding leading 

positions relative to other cryptocurrencies (Qureshi et al., 2020; Yarovaya and Zięba, 2022; 

Sifat et al., 2019). These studies are mostly conducted with equally spaced datasets at daily 

or hourly frequency (Qureshi et al., 2020; Makarov and Scholar, 2020; Yarovaya and Zięba, 

2022; Sifat et al., 2019). However, research based on relatively low-frequency datasets has 

two major limitations. First, equally spaced datasets lead to substantial data loss. Second, 

low-frequency lead–lag relationships do not provide useful information for practical trading, 

since fast lead–lag information typically becomes outdated within seconds or even sub-
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seconds (O’Hara, 2015; Alsayed and McGroarty, 2014). We therefore argue that there is a 

research gap in that high-frequency lead–lag relationships have been largely ignored in the 

existing literature. Understanding these dynamics is important, as high-frequency lead–lag 

effects are essential to capturing rapid price movements and may provide valuable 

information for trading strategies. 

Chapter 4 addresses this gap by answering two research questions: (i) Do high-frequency 

lead–lag effects exist for the same cryptocurrency across different exchanges? (ii) Do high-

frequency lead–lag effects exist between cryptocurrencies on the same exchange? To answer 

these questions, we collect tick-level limit order book data for leading cryptocurrencies and 

investigate fast lead–lag relationships of mid-prices. 

Consequently, Chapter 4 contributes to the literature in the following two significant ways. 

• Using high-frequency data, Chapter 4 identifies sub-second lead–lag relationships both 

within the same exchange and across exchanges for the same cryptocurrency. We extend 

existing research on lead–lag effects in cryptocurrency from daily and hourly datasets to 

tick-level analysis. These relationships reveal the existence of potential disequilibria 

within and across centralized exchanges. This study also identifies the lagging position of 

Bitcoin at the high-frequency level, highlighting the distinct lead–lag dynamics of 

cryptocurrencies when examined at finer timescales. 

• As a further contribution, Chapter 4 sheds light on the factors that may affect high-

frequency lead–lag effects in cryptocurrency markets. The results indicate that lead–lag 

positions may be associated with market depth and order book resilience, while lag 

length appears to be correlated with periods of intensive market activity.
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1. 4. Schematic representation of the thesis  

Chapter 1 gives a general introduction and background on cryptocurrencies and 

stablecoins, followed by a brief overview of the theoretical background, methodology, and 

the research gaps, objectives, and contributions of each chapter. Chapter 1 systematically 

outlines the purpose of this thesis. 

Chapter 2 examines the volatility transmission mechanism from external markets to 

stablecoin markets. In this chapter, spillover measures combined with a TVP–VAR model 

are used to analyse and identify the magnitude of volatility spillovers from external markets 

to stablecoin markets. A robustness check using an alternative Vector Auto-Regression 

model is applied to validate the results. 

Chapter 3 focuses on the mispricing of stablecoins that enables arbitrage within secondary 

markets. This chapter introduces a new arbitrage route for stablecoins and provides 

empirical evidence that such opportunities are both profitable and exploitable. Analysis of 

market characteristics and IRFs reveals that microstructure factors and asynchronous price 

adjustments across exchanges may be two drivers of cross-exchange mispricing in 

stablecoin markets. 

Chapter 4 investigates high-frequency lead–lag relationships among cryptocurrencies and 

across centralized exchanges. A recent advancement in the statistical measurement of lead–

lag relationships is applied, allowing us to analyse non-contemporaneous correlations 

between different assets using tick-by-tick data. Further analysis suggests that market depth 

and order book resilience are associated with lead–lag positions, while intraday seasonality 

analysis indicates that lead–lag effects diminish during the opening hours of the US market. 

Chapter 5 provides a comprehensive conclusion, summarizing the main findings and 

implications of each chapter in this thesis. It also discusses the limitations of the study and 

offers suggestions for future research.
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Chapter 2

Drivers of Stablecoin Volatility: Evidence from Spillover 

Analysis on volatile cryptocurrencies and traditional assets

Abstract

This paper investigates potential drivers of stablecoins volatility by utilizing daily data from 
November 1, 2018, to December 31, 2023. We apply linear regression and a spillover effects 
measure based on the time-varying parameter vector autoregression (TVP–VAR) model. 
The analysis examines the impact of the cryptocurrency market (i.e. Bitcoin and Ethereum), 
the currency market (i.e. the US Dollar Index), the equity market (i.e. the S&P 500), and 
blockchain infrastructure factors (i.e. Ethereum gas prices) on the volatility of four leading 
fully collateralized USD-pegged stablecoins: USDT, USDC, TUSD, and USDP. The results 
reveal that non-stable cryptocurrencies and traditional assets contribute significantly to 
stablecoin volatility, with the strength of these effects being time-varying and largely 
dependent on market conditions. Moreover, the findings demonstrate asymmetric spillover 
effects, where external markets transmit stronger volatility to positive price deviations than 
to negative deviations. 

Key words: Cryptocurrency, Stablecoin, Volatility, Connectedness.
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2.1. Introduction

The cryptocurrency market has increasingly been recognized as a new asset class (Corbet et 
al., 2018) and has rapidly become an important component of the global financial system 
(Gajardo et al., 2018). The first stablecoin, BitUSD, was introduced in 2014 (Piech). As a 
new type of cryptocurrency, its introduction considerable attention from both academic 
researchers and industry professionals as stablecoins hold the potential to fulfill 
cryptocurrency’s original promise of serving as a medium of exchange (Yermack, 2015). In 
contrast, due to its high volatility, Bitcoin struggles to function effectively as a medium of 
exchange and has limited utility as a risk diversifier (Baur and Dimpfl, 2021). 
 
Stablecoins are cryptocurrencies pegged to fiat currencies or other assets. They can be 
mainly classified into four types  according to their pegged assets (Mita et al, 2019; Moin et 3

al, 2020). Fiat-pegging is the most common, typically pegging to the US dollar or the euro. 
The two largest stablecoins, USDT and USDC, are both pegged to the US dollar. By 
maintaining a collateralised peg and full reserves, stablecoins are much less volatile than 
other cryptocurrencies, equities, and commodities (Hoang and Baur, 2021). Consequently, 
they are regarded as the primary payment method and medium of exchange in 
cryptocurrency markets, as well as serving as safe havens against the volatility of traditional 
cryptocurrencies during market turmoil (Baur and Hoang, 2021). Stablecoins are also used 
to support the prices of traditional cryptocurrencies during downturns (Griffin and Shams, 
2020). 

In recent years, stablecoin has gained rapid development. A BIS report shows that the 
circulation of major stablecoins reached USD 120 billion by late 2021 (Doerr et al., 2021). 
Mizrach (2022) reports the 24-hour exchange turnover of USDT exceeded 70 billion USD 
in the Q1 2022, a figure comparable to the daily trading volume of the New York Stock 
Exchange. 

As stablecoin gain prominence, increasing attention has been paid to the question of how 
stable they actually are. On the one hand, it is widely acknowledged that their fiat-pegged 
design grants them greater price stability, making them resemble major currencies more than 

 Fiat-collateralized, crypto-collateralized, commodity-backed, and algorithmic3
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speculative assets (e.g., BIS, 2019; IMF, 2019). Other research also supports the view that 
stablecoins exhibit stable price behaviour, highlighting their role as a potential safe haven 
and effective diversifier in investment portfolios. Stablecoins have been shown to help 
hedge against the volatility of traditional cryptocurrencies (Baur and Hoang, 2021; Wang et 
al., 2020; Xie et al., 2021) as well as fluctuations in global stock markets (Feng et al., 2024; 
Paeng et al., 2024).

However, more recent evidence suggests that stablecoins often fail to match the stability of 
fiat currencies and exhibit excess volatility (see Duan and Urquhart, 2023; Hoang and Baur, 
2021; Grobys et al., 2021). Stablecoins are found to be linked with non-stable 
cryptocurrencies through trading volume (Hoang and Baur, 2021; Let et al., 2023) and price 
volatility (Grobys et al., 2021, Kristoufek, 2021;). Additionally, as a medium of exchange in 
cryptocurrency market, stablecoins are correlated with trading activity in non-stable 
cryptocurrencies (Kristoufek, 2021; Griffin and Shams, 2020; Wei, 2018). While most 
studies focus on the correlation between stablecoins and non-stable cryptocurrencies, only 
limited evidence examines their link with traditional assets, particularly stock markets  
(Feng et al., 2024; Paeng et al., 2024).

Taken together, prior literature has evolved from viewing stablecoins as potential safe haven 
assets to increasingly questioning their stability. More recent studies focus on their 
correlations with other financial markets, yet relatively little attention has been given to the 
transmission of volatility from external markets into stablecoins. In particular, few studies 

systematically examine the extent to which volatility from traditional assets and non-stable 
cryptocurrencies spillovers into stablecoin markets. Understanding this is important, as 
significant spillover effects may pose risks to trading strategies that rely on stablecoin 
stability. To fill this literature gap, we set out to answer two research questions in this study 
(i) what drives the stablecoins volatility? (ii) How does the impact of these drivers on 
stablecoins volatility evolve over time? 

To address these research questions, we examine the spillover effects between stablecoins 
and related markets. Spillovers can be broadly understood as shocks or uncertainty that 
transmit across markets depending on their degree of interdependence and financial linkage 
(Liu and Pan, 1997; Bekaert and Harvey, 2003). The basic mechanism of spillover effects 
involves the spread of distress through capital flow or information transmission between 
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markets (Ross, 1989; Bekaert and Harvey, 2003). Diebold and Yilmaz (2009, 2012, 2015) 
define spillovers as a measure of dependence between markets and propose an econometric 
framework to quantify them. By investigating spillovers, we are able to analyze the 
mechanism of transmission of volatility between stablecoin markets and related markets, 
thereby identifying how shocks in external markets influence stablecoin dynamics. In this 
study, we focus on related markets including Bitcoin, Ethereum, the S&P 500, the DXY, and 
Ethereum gas prices, as these factors are likely to affect stablecoin volatility for the 
following reasons.

As representatives of traditional cryptocurrencies, Bitcoin and Ethereum are found to be 
correlated with stablecoins (Griffin and Shams, 2020; Kristoufek, 2021; Łęt et al., 2023). 
However, few studies examine the spillover effects between the volatility of non-stable 
cryptocurrencies and stablecoins. Analyzing these volatility spillover effects would provide 
new insights to the trading strategy in prior literature which rely on stablecoin as safe haven 
against huge fluctuation of traditional cryptocurrencies. 

The DXY represents the performance of the US dollar against six major currencies. Much 
prior research attempts to explain the excess volatility of stablecoins through correlations 
with non-stable cryptocurrencies, potentially overlooking the influence of traditional 
markets, especially the currency market. According to the theory of spillover effects 
(Bekaert and Harvey, 2003), one important feature of market linkage is unrestricted capital 
flow between markets. This holds for stablecoin markets and the US dollar market, as 
capital moves freely between the two. Consequently, traders may buy or sell USD-pegged 
stablecoins in response to fluctuations in the DXY. For this reason, we consider the DXY to 
be a potential driver of stablecoin volatility. 

The S&P 500 index, as a benchmark of the mainstream equity market, plays a pivotal role in 
the global financial landscape, and exerts significant spillover effects on a range of markets, 
including equities, commodities, and the foreign exchange (Forbes and Rigobon, 2002; 
Mensi et al., 2013; Mishra et al., 2007). Previous research highlights risk transmission 
between the S&P 500 and traditional cryptocurrencies, showing strong spillover effects 
from equities to cryptocurrency markets (Lento and Gradojevic, 2021; Hung, 2022).  
However, despite stablecoins being a major form of digital currency within the 
cryptocurrency ecosystem, spillovers between the S&P 500 and the stablecoin market have 
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been largely overlooked. Only limited work has considered correlations between stablecoins 
and global equity markets  (Feng et al., 2024; Paeng et al., 2024). Investigating this 
relationship can therefore provide important insights into the effectiveness of trading 
strategies that use stablecoins as hedges or safe havens for equity assets.  

Finally, Ethereum gas prices – representing blockchain transaction costs – constitute another 
potential driver. We focus on Ethereum because all of the sampled stablecoins are traded on 
this blockchain. Transaction costs and trading infrastructure factors are recognised as 
important drivers of price volatility in traditional markets (Wade, 1991; Jones and Seguin, 
1997; Pagnotta and Philippon, 2018). Empirical studies also show correlations between 
transaction costs and price volatility in cryptocurrency markets (Eska et al., 2024; Svogun 
and Bazán-Palomino, 2022), and yet their role in explaining stablecoin volatility has been 
overlooked. Accordingly, we examine whether Ethereum gas prices influence stablecoin 
volatility. 

To analyze the volatility spillovers between stablecoins and these related markets, we apply 
the Time-Varying Parameter Vector Auto-Regression (TVP-VAR) model combined with the 
dynamic connectedness framework proposed by Diebold and Yilmaz (2009, 2012, 2015) 
(DY-method). This approach quantifies how shocks in one market transmit to others over 
time (Elsayed and Sousa, 2024; Youssef et al., 2021). Furthermore, we also examine 
directional pairwise spillovers, allowing us to assess the contribution of each market to 
stablecoin volatility and to evaluate how these effects evolve over time. 

This combined framework with TVP-VAR model is particularly well suited to overcoming 
the limitations of fixed-coefficient VAR models. The TVP–VAR avoids the arbitrary choice 
of window size, which can produce erratic or flattened parameters. It is also robust to 
outliers and preserves the full information set when estimating time-varying parameters 
(Antonakakis and Gabauer, 2017; Antonakakis et al., 2018, 2019; Gabauer and Gupta, 2018; 
Korobilis and Yilmaz, 2018). These features are especially relevant for volatile assets such 
as cryptocurrencies, which frequently experience large fluctuations that create outliers in 
datasets. Finally, we extend the framework to a non-linear specification by decomposing 
positive and negative price deviations in order to investigate potential asymmetric spillover 
effects from these markets to stablecoin price deviations. 
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Our study yields several important findings. First, consistent with earlier work (Hoang and 
Baur, 2021; Koutsoupakis, 2020; Griffin and Shams, 2020), we find that stablecoin volatility 
is correlated with, and largely driven by, Bitcoin and Ethereum. Notably, our results extend 
the literature by showing that volatility is also influenced by the DXY and the S&P 500 
index, but not by Ethereum gas prices.  

Secondly, we find that volatility spillovers are highly time-varying and dependent on market 
conditions. Specifically, when external markets experience heightened volatility—for 
example, during the Covid-19 crisis and the 2022 cryptocurrency crash—the spillover 
effects intensify. This indicates that a larger share of shocks in these markets is transmitted 
to stablecoin markets. Such findings also reflect a marked increase in market correlation 
under extreme conditions, consistent with the notion that financial markets move together 
more strongly during common events (Bekaert and Harvey, 1995). 

Lastly, our analysis reveals asymmetry in the spillover effects on positive and negative price 
deviations.  In particular, volatility in external markets exerts a stronger spillover effects on 

positive deviations of stablecoin prices than negative ones. This suggest that volatility 
spillovers and market integration theory (Bekaert and Harvey, 2003; Engle et al.,1990) fit 
into emerging market such as stablecoin market.

Our contribution is multifold. To the best of our knowledge, this is the first empirical study 
to analyze the risk transmission and volatility spillovers from external markets, especially 
non-crypto assets, to stablecoins. We provide new evidence on external drivers of stablecoin 
volatility and challenge the assumption that stablecoins consistently function as safe havens 
against cryptocurrencies and traditional assets (Baur and Hoang, 2021; Xie et al., 2021; 
Feng et al., 2024). Our findings highlight the importance of accounting for spillover effects 

when designing trading strategies.  

Moreover, we extent the spillover framework of Diebold and Yilmaz (2009, 2012, 2015) to 
decompose pairwise spillover effects and quantify the strength of volatility transmission in 
each direction (i.e., from external market to stablecoins and vice versa). This allows us to 
measure the directional spillovers from external markets to stablecoins, revealing the drivers 
of stablecoins volatility. We address a gap in the literature by emphasizing directional 
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volatility transmission, broadly ignored in studies relying on overall correlations 
(Antonakakis et al., 2019; Ji et al., 2019).  
 
The remainder of this chapter is structured as follows. Section 2.2 reviews related literature. 
Section 2.3 summarizes the data used in the analysis. Section 2.4 presents the methodology 
and models. Section 2.5 reports empirical evidence and robustness tests. Section 2.6 
provides discussion, and Section 2.7 concludes. 

 
2. 2. Literature review

Extensive prior research has focused on volatility spillover theory and empirical analysis 
due to the importance of global financial linkages and the market integration across assets 
and markets, particularly during periods of uncertainty, such as financial crises and the 
COVID-19 pandemic. This section will first introduce the development of volatility 
spillover theory and then review the empirical research on traditional financial markets and 
cryptocurrency markets. Based on prior literature, we discuss the volatility spillover effects 
and the phenomenon of spillover asymmetry from both theoretical and empirical 
perspectives. Additionally, this section outlines the common methodologies used to 
investigate volatility spillover effects. Finally, this section briefly reviews the literature on 
stablecoins and the factors influencing them, as well as previous relevant papers on their 
spillover effects.

 
2. 2. 1. Spillover Theory  

2. 2. 1. 1. Spillover definition
 
Before the concept of volatility spillover was proposed, the term 'market contagion' was the 
first terminology to appear in the literature. The word 'contagion' is derived from medicine, 
referring to the spread of a disease from one person to another, and was later adopted to 
describe the spread of financial instability across markets (Maaitah, 2020). After 1997, when 
a currency crisis in Thailand quickly spread throughout Asia and then across the world, the 
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term 'contagion' was used to refer to the spread of financial market turmoil across different 
markets (Liu and Pan, 1997; Bekaert and Harvey, 2003). 

In a boarder definition, financial contagion can be defined as a series of shocks that affect a 
range of economies at varying degrees, depending on their level of interconnectedness . 4

Since Diebold and Yilmaz (2009, 2012, 2015) defines the spillover index as a measure of 
market interdependence, the definition of spillover effects becomes clearer. Economists turn 
to use the more specific terms “shift-contagion” or “pure contagion” to describe the scenario 
when there is a significant increase in cross-market linkages after a severe market shock 
(Forbes, 2012). Then combining these concepts, volatility spillover effects refer to the 
transmission of volatility from one market to another,  it can be defined as a measure of the 
impact of shocks generated in a financial market on other financial markets with full regard 
to the linkages between these financial assets or markets across the system.

 
2. 2. 1. 2. Volatility spillover theory

The concept of financial contagion emerged in the context of the ongoing debate 
surrounding the Efficient Market Hypothesis (EMH). The essence of this theory lies in how 
financial markets react to the arrival of new information, affecting different markets, assets, 
or participants in varying ways. According to the EMH, risk can be transmitted from one 
market to another through the dissemination of new information (Fama, 1970, 1976, 1991). 
During periods of market turbulence or financial crises, prices adjust rapidly to reflect new 
information from other markets or assets. This process brings increased volatility, which can 
be considered a form of volatility spillover.

Ito and Roley (1987) were the first to explore the idea of volatility spillover effect across 
financial markets, they found a significant linkage between the fluctuations of the Japanese 
and U.S. exchange markets. Moreover, Engle et al. (1988) proposed two opposite 
hypotheses: “Heat Waves & Meteor Showers”. The Heat Wave hypothesis , is also called 5

own spillover hypothesis, this hypothesis indicates an increasing volatility in a certain 
market does not necessarily increase the volatility in related markets. Heat Wave hypothesis 

 see Claessens & Forbes (2013)4

 Heat Wave hypothesis means a hot day in London might keep the weather hot there in the following few days, but this does not 5

necessarily make it hot in Dublin. 
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actually stresses and describes the auto-correlation phenomenon and has been found to exist 
in almost all financial markets (Maaitah, 2020). On the contrary, Meteor Shower , or cross 6

spillover hypothesis, emphasize the impact on related markets, meaning if a particular shock 
increases the volatility of one market, the same shock might also intensify the volatility of 
related markets to some extent. 

The volatility spillover theory implies the key aspects of volatility dissemination, which 
volatility can spread across markets and financial instruments. According to prior literature, 
there are three main factors that could affect the volatility spillovers between markets. First 
one is information transmission, which refers to information, such as earnings 
announcements, geopolitical events, or macroeconomic data, can trigger volatility in one 
market, and this volatility might spreads to other markets (Jiang et al., 2012; Wang et al., 
2021).

Another factor that affects volatility spillovers is market linkage and integration (Bekaert 
and Harvey, 2003), which could affect the direct spillover effects (Diebold and Yilmaz, 
2009, 2012, 2014). Direct spillover effects occur when volatility in one asset or market 
directly influences another asset or market due to financial linkages. Bekaert and Harvey 
(2003) points out that markets are highly connected if there is unrestricted capital flow 
between with equalization of risk-adjusted return. This suggests that any markets with free 
capital flow would have volatility spillover to each other, and the higher the degree of 
market integration is, the higher of the cross-market spillover is. Particularly, during periods 
of uncertainty, the market integration and spillover effects across markets are broadly 
observed intensified (Liu and Pan, 1997; Beirne et al., 2013; Hung and Vo, 2021), as 
financial distress transmits from one region or market to another, a phenomenon known as 
contagion, increasing the market integration (Bekaert and Harvey, 2003). This financial 
contagion is more frequent and intensified during global economic crises, such as the global 
financial crisis in 2008 and the outbreak of COVID-19 in 2020, leading to higher financial 
linkage and spillover effects across markets.

The last factor that might affect volatility spillovers is the behaviors of market participants, 
which mainly includes institutional tradings and market making tradings. These massive 
tradings play important roles in volatility transmission, especially during periods of market 

 Meteor Showers hypothesis means that if meteors fall down to London, Dublin will certainly experience some effects. In other 6

words,
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stress. Specifically, institutional traders, such as hedge funds, mutual funds, and pension 
funds, broadly engage in large buy or sell orders. Their large-scale trading activities and 
access to sophisticated information and strategies could amplify volatility spillovers as the 
massive trading activities of institutional investors in cryptocurrency market might lead to 
herding behavior among other institutional and retail traders (smart money following), 
especially in high volatility periods (Jalal et al., 2020). When traders in other related 
markets follow these tradings, volatility then is transmitted from one asset or market to 
another through the these tradings, this phenomenon is found particularly strong during 
periods of market stress or uncertainty (Adams et al., 2014). Additionally, market making 
activities, as an essential part of the market, influence volatility spillovers through their 
impact on liquidity. During mild  periods, market makers significantly contribute to market 
liquidity and trading volume (Eldor et al., 2006). However, during financial crises or periods 
of market stress, market makers tend to reduce their activity due to the risk of adverse 
selection, which will leads to a liquidity crunch (O'Hara, 2003; Anand and Venkataraman, 
2016). This reduction in liquidity, on one hand, amplifies price volatility during crises as 
smaller volume of trades can lead to a larger price impact when market depth is low 
(O'Hara, 2003), and on the other hand, lead to stronger spillovers in liquidity shortages 
across markets, thereby strengthening linkage across markets (Sousa and Zaghini, 2008). 
Moreover, the increased spillover effects during extreme market condition are also caused 
by traders’ behavior of  ‘Flight to safety’ and ‘panic selling’ (Pericoli and Sbracia, 2003; 
Bogdan, 2022), the former denotes investors transfer their portfolio into safe-haven assets, 
the latter means as one market declines, investors in other markets may sell off assets for 
fear of missing out on early losses.

 
2. 2. 1. 3. Spillover asymmetry

The presence of asymmetric volatility in financial markets has long been recognized in the 
literature (Pindyck, 1984; French et al., 1987). Since volatility is transferred across markets 
via spillovers, it is worth assuming that volatility spillovers exhibit asymmetries as well 
(Barunik et al., 2016), and therefore the asymmetric volatility spillover in financial markets 
attracts the interests of researchers. One of the stylized facts associated with financial 
markets reveals that the financial linkage across markets returns exhibits asymmetries as 
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large negative returns are more correlated than large positive returns (Longin and Solnik, 
2001; Ang and Chen, 2002; Youssef et al., 2021; Shahzad et al., 2021). 

This phenomenon of asymmetric volatility spillover is mainly due to the financial 
contagion. According to the above theoretical and empirical studies about volatility spillover 
and contagion (Bekaert and Harvey, 2003; Forbes, 2012; Shahzad et al., 2021;), financial 
contagion describes the propagation of financial shocks from one market to others, which 
broadly occurs during episode of volatility, reflecting a temporary and sharp increase in 
market linkage and spillover effects. Therefore, due to the financial contagion, volatility 
spillovers across markets are larger when market is during crisis or huge volatility, and 
episodes such as crises and market crashes are largely associated with market 
downturns(Wu, 2001). As a result, volatility spillovers are stronger during market 
downturns than during upturns. 

In addition, during periods of heightened volatility, investors are more sensitive and react 
more strongly to losses than gains. In other words, large negative return leads to stronger co-
movement during during market downturns (Forbes and Rigobon, 2002). Investors also 
exhibit behaviors such as 'panic selling' and a 'flight to safety' (Pericoli and Sbracia, 2003; 
Bogdan, 2022), further contributing to the asymmetry between positive and negative return 
spillovers. Our study contributes to this strand of literature by examining the volatility  
spillover asymmetry between several external factors and stablecoin deviations. 

2. 2. 2. Research strategies  and empirical review 

To quantify and measure volatility spillovers, two major methodologies have been 
developed in previous studies: GARCH model and VAR model. These two models are the 
most commonly used methodologies in volatility spillover analysis (Soriano and Climent, 
2005). 

GARCH model is derived from the Autoregressive Conditional Heteroskedasticity (ARCH) 
model, introduced by Engle (1982). It provides a useful tool in forecasting financial time 
series. This model assume that volatility varies over time and is based on past volatility. 
GARCH (Generalized ARCH) model is proposed by Bollerslev (1986) and Taylor (1986), 
they extend ARCH model by including lagged values of volatility, allowing for more 
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flexible and realistic modeling of volatility spillovers across different markets. GARCH has 
been widely used to investigate the volatility transmission across financial markets, 
including cryptocurrency market (Inagaki, 2007; Bouri et al., 2021; Zhang et al., 2022). 
GARCH model provides some strong inference in analyzing co-volatilities cases, and it has  
been developed a series of different extensions such as T-GARCH, E-GARCH and GJR-
GARCH addressing different problems in financial data. However, employing all extensions 
within a single case study becomes increasingly complex. Moreover, using GARCH 
requires a certain level of correlation among financial variables; otherwise the results might 
be invalid (Maaitah, 2020). In this regard, researchers have sought to develop a more 
effective and flexible model to describe the behavior of financial variables in the form of a 
vector autoregressive (VAR) model.

VAR model was proposed by Sims (1980) to capture the correlation and interdependence 
amongst different variables within a system. Diebold and Yilmaz (2009) combined this 
model with variance decomposition and impulse response functions to investigate volatility 
spillover across markets (DY method). Subsequently, Diebold and Yilmaz (2012, 2015) 
further improved this method to overcome the ordering problem. Based on a rolling-window 
VAR model and generalized variance decomposition, the DY method is offering a 
quantitative assessment of the size and direction of dynamic spillover effects. In DY 
method, spillover effect is measured with an impulse-response function predicting the 
impact of an unanticipated shock of one market on others, which is also consistent with the 
above definition of spillover effects. 

Antonakakis and Gabauer (2017) extend the Diebold and Yilmaz (DY) framework by 
integrating it with a time-varying parameter VAR (TVP-VAR) model, which addresses 
several limitations of the traditional rolling-window VAR approach. The TVP-VAR method 
avoids the arbitrary choice of window size, prevents loss of observations when estimating 
time-varying parameters, and is more robust to outliers (Antonakakis & Gabauer, 2017; 
Gabauer & Gupta, 2018; Korobilis & Yilmaz, 2018; Antonakakis et al., 2020; Youssef et al., 
2021). In this study, we employ the DY–TVP-VAR framework to analyze volatility 
spillovers between stablecoins and related markets. By further decomposing the pairwise 
spillover index, we contribute to the literature by providing a more granular perspective on 
directional spillovers between two assets.
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The DY methodology (Diebold & Yilmaz, 2009, 2012, 2015) has been widely applied in 
empirical research to trace the evolution of market connectedness. Prior studies document 
significant and time-varying spillovers across a range of asset classes, including equities 
(Fowowe & Shuaibu, 2016; Shahzad et al., 2018; Zhang et al., 2018), bonds (Louzis, 2015; 
Ahmad et al., 2018), currencies (Baruník et al., 2016; Singh et al., 2018), commodities (Ji et 
al., 2019; Zhang & Broadstock, 2018), and interest rates (Louzis, 2015). These findings 
consistently show that spillovers intensify during financial turmoil, reducing diversification 
benefits and amplifying systemic risk (Shahzad et al., 2018; Zhang & Broadstock, 2018; Ji 
et al., 2019). Understanding these dynamics provides insights into how crises propagate and 
helps identify periods of heightened financial fragility (Billio et al., 2012; Louzis, 2015).

Another well-established result in this literature is that larger markets tend to be net 
transmitters of volatility to smaller ones. For instance, Candelon et al. (2018) show that 
shocks from the U.S. equity market strongly influence both developed and emerging stock 
markets, while Ahmad et al. (2018) report similar patterns in bond markets. Such insights 
are valuable for regulators concerned with financial stability and for investors seeking to 
refine portfolio allocation and hedging strategies based on cross-market linkages.

A growing body of research has also examined whether volatility spillovers exhibit 
asymmetry, with negative shocks transmitting more strongly than positive ones. Evidence of 
this phenomenon has been found in equities (Shahzad et al., 2021; Youssef et al., 2021), 
bonds (BenSaïda, 2019), and commodities (Kang et al., 2017). For cryptocurrencies, 
however, the literature remains limited. Ji et al. (2019) document stronger spillovers through 
negative returns among major cryptocurrencies, while Cao and Xie (2022) identify 
asymmetric spillovers between cryptocurrencies and Chinese financial markets. These 
findings suggest that adverse shocks disproportionately drive cross-market linkages, 
highlighting the importance of accounting for asymmetry when analyzing volatility 
transmission in both traditional and digital assets. 
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2. 2. 3.  Cryptocurrency

Based on prior literature on the relationship between cryptocurrencies and traditional assets 
(see. Corbet et al., 2018; Zeng et al.,2020;), our paper contributes to the literature by 
investigating the dynamic market integration through volatility spillover between 
stablecoins and traditional financial markets.

Cryptocurrency is designed as a decentralized peer-to-peer payment system allowing online 
payments to flow directly from one party to another without a financial institution (Wang et 
al., 2020). Owing to these attractive characteristics, cryptocurrency, especially Bitcoin, has 
received much attention after being proposed by Nakamoto (2008). Since 2013, when 
cryptocurrency was actively traded, Bitcoin – the biggest and most active cryptocurrency 
has quickly become an important element of global financial market and a new asset class 
(Corbet et al., 2018; Gajardo et al., 2018). 

In the early, the majority of papers in this literature focuses on Bitcoin and its pricing model. 
Ciaian et al.(2016), Böhme et al. (2015) and Raskin & Yermack (2018) provide a broad 
perspective on the economics of cryptocurrencies and the blockchain technology they are 
built upon. Athey et al. (2016), and Pagnotta & Buraschi (2018) propose models of the 
valuation of digital currencies. Cong et al. (2019) and Easley et al. (2017) study Bitcoin 
mining fees and the incentives of miners in equilibrium. From 2016, newly introduced 
cryptocurrencies such as Ethereum, Ripple, Litecoin are gradually cutting into Bitcoin’s 
historically dominant market-value share, and these alt-coins also attracted researchers 
interests. However, due to the huge volatility (Yermack, 2015), researchers realize that 
Bitcoin and other cryptocurrencies actually fails to keep their promise as a payment method, 
and they are more regarded as speculative assets than digital ‘fiat money’ (Selgin 2015). 
Since then, a majority of research focus on the volatility of cryptocurrencies, particularly the 
volatility correlations among different cryptocurrencies, and between cryptocurrencies and 
traditional assets. 

Using VAR method in Diebold and Yilmaz (2009, 2012, 2015), previous research find the 
connectedness among leading cryptocurrency markets are strong and Bitcoin is at the centre 
of the connectedness network. Net volatility spillover are transmitted from Bitcoin to 
altcoins, rather than the opposite direction. Specifically, Moratis (2021) finds that Bitcoin 
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contributes heavily to the spillover risk of the cryptocurrency market. Antonakakis et al. 
(2019) analyze the connectedness among leading cryptocurrencies, highlighting the role of 
Bitcoin and Ethereum in the transmission of shocks. Ji et al. (2019) analyze the return 
volatility connectedness of six leading cryptocurrencies and confirm Bitcoin and Litecoin 
are at the centre of the network. However, although the spillover effects among leading 
cryptocurrencies are strong and significant, they are time-varying and largely depending on 
market conditions. When market experiences heightened volatility, the connectedness tends 
to intensify (see. Antonakakis et al., 2019; Ji et al., 2019; Katsiampa, 2019; Beneki et al., 
2019; Wajdi et al., 2020; Hsu et al., 2021; Kumar et al., 2022). Additionally, the asymmetry 
connectedness among cryptocurrencies returns has been documented as well. Ji et al. (2019) 
find the asymmetry connectedness in cryptocurrency returns where spillovers via negative 
returns are largely stronger than via positive ones.  
 
These high spillover effects among cryptocurrencies indicates that cryptocurrency markets 
have high degree of integration, and leading cryptocurrencies are highly connected with 
each other. However, things are different between cryptocurrency market and traditional 
assets market. The financial linkage between between cryptocurrency market and traditional 
assets market evolves over time. Before the Covid-19, cryptocurrencies are regarded as a 
effective hedge against volatility in traditional financial market, while they lost their 
positions as safe haven of transitional assets. 

Since the inception of Bitcoin in 2009, cryptocurrency has long been believed that the 
cryptocurrency market, has dynamics that is separate from traditional financial markets. 
Corbet et al. (2018) examine dynamic relationships between three cryptocurrencies and 
several financial assets, finding cryptocurrency is relative isolated from traditional assets. 
Zeng et al. (2020) use the VAR model finding the dynamic interconnectedness of returns 
between Bitcoin and conventional financial assets are weak. Hsu et al. (2021) find 
cryptocurrencies can be incorporated into financial portfolios for investors who seek optimal 
dynamic hedging against market turmoil and downwards. These weak connectedness 
suggests that the financial linkage and market integration between cryptocurrencies and 
conventional assets are limited, suggesting that cryptocurrencies can serve as a potential 
diversification option for investors. And research find cryptocurrency could serve as a hedge 
or safe haven with respect to the traditional financial market such as stock, forex or the 
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commodity market, before and during COVID-19 period (Ji et al., 2018; Urquhart and 
Zhang, 2019; Wang et al., 2019; Zeng et al., 2020; Hsu et al., 2021). 

Nevertheless, after Covid-19, cryptocurrency is more becoming a part of the global financial 
market and lost its hedge position against transitional assets as the connectedness between 
cryptocurrency and other assets is observed intensified (Smales, 2021; Al-Shboul et al., 
2022; Wątorek et al., 2023). The increasing connectedness between cryptocurrency and 
traditional financial markets are believed due to the structural change of connectedness in 
cryptocurrency market evolving in 2020 with monetary injections into cryptocurrency 
market seeking for safe-haven, bringing higher market synchronization with traditional 
market (Vidal-Tomás, 2021; Kumar et al., 2022). 

 
2. 2. 4. Stablecoin

Our study also contributes to the literature that focus on stablecoin. Stablecoin is a type of 
digital currency designed to mitigate high volatility by being pegged to stable assets, such as 
gold or major fiat currencies like the Euro, Pound, and most commonly, the U.S. dollar 
(Mita et al., 2019). Stablecoin is a distinct category of cryptocurrency, differing from 
traditional non-stable cryptocurrencies in their mechanisms, volatility, and using cases. 
Specifically, in terms of mechanism, Bitcoin and Ethereum are decentralized and not backed 
by any underlying asset or collateral. The absence of a physical backing or any algorithmic 
mechanism makes non-stable cryptocurrencies prone to significant fluctuations (Narayanan 
et al., 2016). However, the design of stablecoins, especially fiat-collateral mechanism, ties 
them to fiat currencies, makes them more similar to major fiat currencies than speculative 
assets, thereby granting them higher stability (BIS, 2019; IMF, 2019). 

Furthermore, this differences in mechanism bring differences in volatility. Bitcoin and other 
non-stable cryptocurrencies are much more volatile than equity assets and major fiat 
currencies (Baur and Dimpfl, 2021), while large stablecoins, especially fully-backed 
stablecoins, have much less volatility, and are stabler than gold and stock due to the pegging 
mechanism (Hoang and Baur, 2021). In using cases, the primary purpose of traditional 
cryptocurrencies are for investment (speculative trading). Catalini & Gans (2020) note that 
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the speculative nature of non-stable cryptocurrencies makes them more suitable for long-
term investment rather than day-to-day transactions. On the contrary, stablecoins are 
regarded as a store of value and medium of exchange in the digital-asset economy due to 
their high stability (Yermack, 2015), rather than as an alternative investment of traditional 
assets. Additionally, stablecoins are primarily used to trade non-stable cryptocurrencies 
(Koutsoupakis, 2020; Hoang and Baur, 2021), and can be used to support and play as a safe 
haven of non-stable cryptocurrencies (Wang et al., 2020).

Due to the difference in their mechanism, volatility and purpose of usage, stablecoins differ 
greatly from traditional cryptocurrencies. We therefore argue previous findings on volatility 
spillovers between non-stable cryptocurrencies and traditional assets cannot be applied to 
stablecoins. Thus the above brief literature review points out one major research gap, 
research on financial linkage between stablecoins and traditional assets are ignored in 
previous literature, which does not match the popularity of stablecoins in trading. Limited 
papers are mainly focus on connectedness between stablecoins and non-stable 
cryptocurrencies, potentially overlooking the connectedness between stablecoin and 
traditional assets. We contribute to this strand of literature by filling this research gap. We 
firstly investigate the volatility spillover effects between stablecoins and traditional assets, 
including U.S. Dollar index and S&P 500 index. Furthermore, we expand this stream of 
literature by identifying the asymmetry of volatility spillovers of stablecoin deviations.

Additionally, due to the higher stability than other non-stable cryptocurrencies, researchers 
attempt to explore whether stablecoins can serve as a hedge or safe haven against traditional 
cryptocurrencies. Baur and Hoang (2021) find that stablecoins could be a safe haven against 
the fluctuation of Bitcoin during specific period. Wang et al (2020) show that stablecoins 
can serve as safe havens of traditional cryptocurrency, and USD-pegged stablecoins perform 
better than other type of stablecoins. Xie et al. (2021) claims the safe haven properties of 
Tether against Bitcoin during the pandemic. Also, very limited studies try to explore the safe 
haven properties of stablecoins against traditional assets. Feng et al. (2024) find that USD-
pegged stablecoins can be considered safe havens against global stock markets, especially 
during the COVID-19 pandemic period. Our study contributes to this strand of literature by 
examining the volatility spillover effects between stablecoins and these speculative assets. 
Our results undermines previous finding that stablecoins could be a safe haven against non-
stable cryptocurrency and traditional assets. 
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2. 2. 5. Potential Drivers of Stablecoin Volatility

2. 2. 5. 1. Non-stable Cryptocurrency

As a vehicle currency in crypto market, stablecoins have been found to be correlated with 
Bitcoin and other non-stable cryptocurrencies in various ways, including trading volume 
(Hoang and Baur, 2021), price volatility (Grobys et al., 2021, Kristoufek, 2021;) and market 
liquidity (Griffin and Shams, 2020). Additionally, as a medium of exchange in 
cryptocurrency market, stablecoins are also linked to the trading activity of non-stable 
cryptocurrencies, and thus the fluctuation on price and volume of non-stable 
cryptocurrencies could affect the demand of stablecoins. Hoang and Baur (2021) and 
Kristoufek (2021) find stablecoins are largely used to trade leading non-stable 
cryptocurrencies, with their issuance broadly occurring after non-stable cryptocurrencies 
gains. Griffin and Shams (2020) find Tether could support Bitcoin's price during market 
downturns, while Wei (2018) finds that Tether's trading volume increases after Bitcoin's 
price declines. Baur and Hoang (2021) suggest stablecoins serve as a safe haven with 
respect to Bitcoin owing to its stability. 

The limited research on the spillover effects between non-stable cryptocurrencies and 
stablecoin focus on the demand of stablecoin caused by non-stable cryptocurrencies. Łęt et 
al. (2023) find the volatile cryptocurrency market have significant spillover effects to the 
issuance and circulation of stablecoin shortly, their findings indicate stablecoins are as safe 
haven assets after bad news in the volatile cryptocurrency market. Kristoufek (2021) 
analyze the spillover effects between stablecoins issuance and major cryptocurrencies, he 
finds the increased stablecoins issuances come as reaction to the other cryptoassets price 
hikes. These significant spillover effects in these research, according to Bekaert and Harvey 
(2003), indicate the high linkage and integration of cryptocurrencies market and stablecoin 
market. However, despite the strong linkage between stablecoins and non-stable 
cryptocurrencies, few studies focuses on the volatility spillover effects between non-stable 
cryptocurrencies volatility and stablecoins volatility. This paper fills this research gap and 
contributes to this strand of literature by investigating the volatility spillover effects from 
leading cryptocurrencies to stablecoins, and the connectedness asymmetry between positive 
and negative deviations of stablecoins. 
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2. 2. 5. 2.  U. S. Dollar Index (DXY)

The U.S. Dollar Index (DXY) is a measure of the value of the US dollar relative to a basket 
of six major foreign currencies. It provides a general indication of the strength or weakness 
of the U.S. dollar in the global market, which is widely used by traders and investors to 
gauge the performance of the U.S. dollar. The index increases when the U.S. dollar gains 
value relative to other currencies. The sampled stablecoins in this study are all pegged to 
U.S. Dollar, and thus DXY could reflect the value or price of the underlying asset of these 
stablecoins. 

Also, according to Bekaert and Harvey (2003), one important feature of markets linkage is 
unrestricted cash flow between markets. This is the case between stablecoins markets and 
U.S. dollar market, capital is free to move from one to another, which suggests strong 
financial linkage between stablecoins market and U.S. Dollar market. One similar case is 
HongKong dollar and U.S. dollar. HongKong dollar is pegged to U.S. dollar with a fixed 
rate of 7.8 HKD to 1 USD , whose pegging system is similar to that of USD-collateral 7

stablecoins. Previous research found USD and HKD have high financial linkage and market 
integration due to the pegging design. Volatility of USD could transmit to HKD through 
swap curve (Huang et al., 2008) and interest rate (Fung and Lam, 2023). Given the similar 
pegging mechanism between fiat-collateral stablecoins and HKD, we then assume volatility 
of stablecoin can be impacted by USD, and spillover effects could be observed between 
these two markets. 

Previous studies identify the strong connectedness between DXY and cryptocurrency 
markets, while most of them focus on non-stable cryptocurrencies (Wang et al., 2022; Lee 
and Choi, 2024). Overall, according to the market integration theory (Bekaert and Harvey, 
2003), we assume the degree of integration between stablecoin markets and DXY market 
are high as the unrestricted capital flow between, and thus there might be volatility spillover  
effects from DXY to stablecoin market. We contribute to this literature by identifying the 
volatility spillover effects between DXY and stablecoin markets.

 https://www.bloomberg.com/news/articles/2022-07-31/what-the-hong-kong-dollar-peg-is-and-why-it-matters-quicktake?embedded-7

checkout=true
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2. 2. 5. 3.  S&P 500 Index

The S&P 500 index plays a pivotal role in the global financial landscape, exerting 
significant spillover effects on various markets, including equities, commodities, and foreign 
exchange (Forbes and Rigobon, 2002; Mensi et al., 2013). In prior research, the 
interconnectedness of financial markets has been well-documented, with the S&P 500 
broadly serving as a leading indicator for market movements across regions (see. Heinlein 
and Mahadeo; 2023; Qarni and Gulzar, 2018; ), and asset classes (Coronado et al., 2018; 
Hung, 2022; Balcilar et al., 2021). 

More recently, as cryptocurrency are more becoming a part of the global financial market 
(Wątorek et al., 2023), S&P 500 also exhibit strong spillover effects with cryptocurrency 
markets, particularly leading non-stable cryptocurrencies. Hung (2022) displays strong 
connectedness between S&P 500 and Bitcoin market, and the connectedness between S&P 
500 and cryptocurrency market was observed intensified during Covid-19 period (Lento and 
Gradojevic, 2021). These significant spillover effects demonstrate strong financial linkage 
between S&P 500 index and cryptocurrency market. However, despite stablecoins being a 
key digital currency in the cryptocurrency market, the connectedness between the 
stablecoins market and the S&P 500 is overlooked. According to the theory of market 
integration (Bekaert and Harvey, 2003), we believe S&P 500, as a significant driver of 
global financial volatility, could also transmit volatility spillovers to stablecoin market and 
drive the stablecoin volatility. We contribute to this body of literature by identifying the 
volatility spillover effects between S&P 500 and stablecoins markets.

2. 3. Data

We focus on four leading fully collateralized stablecoins – USDT, USDC, TUSD, and USDP 
– which, as of September 2024, account for over 90% of the total market capitalization and 
trading volume of the stablecoin market. USDT (Tether) is currently the largest stablecoin 
by market capitalization and trading volume, maintaining a 1:1 peg to the US dollar. USDC, 
managed by Circle, is the second largest stablecoin and is backed by cash and short-term US 
treasuries. TUSD and USDP are also backed by reserves to support their 1:1 USD peg. We 
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collect daily open, high, low, and close (OHLC) price data for these four stablecoins from 
CoinMarketCap. As a widely used price-tracking platform, CoinMarketCap aggregates 
stablecoin prices across multiple exchanges using a volume-weighted average, reducing 
potential price bias arising from exchange selection.

We examine five potential external factors: two leading non-stable cryptocurrencies (Bitcoin 
and Ethereum), two iconic indices representing traditional assets (the S&P 500 and the 
DXY), and the gas price of the Ethereum blockchain. Bitcoin and Ethereum are the two 
largest cryptocurrencies by market capitalization, together accounting for over 70% of the 
total market and more than half of global trading volume. Their OHLC datasets are also 
collected from CoinMarketCap. DXY and the S&P 500 are included to capture the influence 
of the US dollar and the equity market on stablecoin volatility. These datasets are obtained 
from Investing.com, a leading global financial data provider. Since cryptocurrency trades 
continuously while the DXY and S&P 500 only trade on weekdays, we exclude weekends 
and holidays when traditional markets are closed. Gas represents the computational effort 
required to perform operations on the Ethereum network, with gas prices reflecting 
transaction costs and network activity levels. Average gas prices are collected from 
Etherscan.io, a widely used Ethereum blockchain explorer providing data on blocks, smart 
contracts, wallet addresses, and transactions. To reflect actual transaction costs on Ethereum, 
we convert gas prices into USD by multiplying the price in Gwei by the corresponding 
ETH/USD exchange rate. To verify accuracy, we cross-check data against alternative 
sources: cryptocurrency data from CoinMarketCap is compared with CoinGecko, and DXY 
and S&P 500 data with Bloomberg. After careful comparison, we confirm consistency 
across sources, strengthening the reliability of the dataset.  
 
The sample period spans from 1 November 2018 to 31 December 2023, including 1,298 
trading days. For relatively young markets such as stablecoins, this five-year period is 
sufficient long to examine the dynamics of volatility spillovers, encompassing both rapid 
market development and the evolution of stability (Let et al., 2023). Also, we suggest that a 
daily dataset is appropriate for this research, as daily data has been widely used in prior 
studies exploring the correlation between non-stable cryptocurrencies and stablecoins 
(Griffin and Shams, 2020; Hoang and Baur, 2021; Grobys and Huynh, 2021). Similarly, 
daily data has been used to study the connectedness between cryptocurrencies and 
traditional assets as well as stablecoins (Kristoufek, 2021; Elsayed and Sousa, 2024; Let et 
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al., 2023). Our study follows a similar context to these previous works, and daily data are 
well suited to addressing our research questions. 

Following the measure of extreme volatility in Parkinson (1980),  Garman & Klass (1980), 
we calculate the daily volatility as follows,  

                                                      (2.1)        

where  denotes volatility on day t,  and  denotes high and low price on day t 

respectively. 

Given that stablecoin volatility is generally low, we use a measure of extreme volatility to 
capture daily fluctuations more precisely. In contrast to using GARCH models or realised 
volatility measures (Hoang and Baur, 2021; Andersen et al., 2003), the Parkinson (1980) 
extreme volatility measure does not rely on daily returns, most of which may be 0. 
Specifically, daily returns of stablecoins are highly likely to be zero when calculated from 
closing or opening prices, since stablecoins are typically priced at USD 1. The extreme 
volatility measure used here is well suited to stable assets like stablecoins, as it employs 
daily high and low prices to assess volatility. This allows the measure to capture extreme 
daily fluctuations and maximum deviations, which is more informative than alternative 
volatility measures (Parkinson, 1980). In comparison with the daily maximum deviation 
used in Lyons and Viswanath-Natraj (2023), our approach captures the full range of 
fluctuations by incorporating both upward and downward volatility. The Parkinson measure 
has also been applied in Maaitah (2020) to assess volatility spillovers across Bitcoin 
markets, where it was found to be more efficient than standard close-to-close volatility 
estimates. 

We begin with a descriptive statistical analysis of the dataset. Table 2.1 presents summary 
statistics for all variables. Due to the unavailability of daily high and low prices for 
Ethereum gas fees, we use log changes of the average daily price in USD. For all other 
variables, volatility is calculated using the Parkinson measure (Eq. 2.1). ‘ADF’ denotes the 
augmented Dickey–Fuller test, used to examine whether a series is stationary, and ‘JB’ 
denotes the Jarque–Bera test for normality. As shown in Table 2.1, the average volatility of 
the stablecoins is low and relatively similar across assets, with USDT showing the lowest 

Vt =
(ln(Ph,t) − ln(Pl,t))2

4ln2

Vt Ph,t Pl,t
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volatility and USDP the highest. Bitcoin and Ethereum display much higher volatility than 
stablecoins and other variables, while DXY shows lower volatility than stablecoins. The 
S&P 500 has higher average volatility than stablecoins but is less volatile than Bitcoin and 
Ethereum. Gas prices exhibit the lowest average volatility, though with a relatively large 
standard deviation.

These statistics are consistent with previous findings: while stablecoins are more stable and 
less volatile than non-stable cryptocurrencies, they are not absolutely stable, as they remain 
more volatile than fiat currencies (Hoang and Baur, 2021). The ADF tests confirm that all 
variables are stationary, while the Jarque–Bera tests reject normality. Ljung–Box results 
further indicate that all variables exhibit autocorrelation. 

Table 2.1. Descriptive statistics of variables. 

This table shows descriptive statistics of stablecoin variables. Gas price volatility is measured as log changes of average 
daily price while volatility of other variables is estimated by the extreme volatility following Parkinson (1980) as shown 
in Eq 2.1. Sample period is from 2018-11-01 to 2023-12-31. ADF denotes result of Augmented Dickey–Fuller test. SD 
denotes deviation and ADF denotes the results of Augmented Dickey Fuller Test. JB is the Jarque-Bera test for 
normality. Q(10) is the Ljung–Box statistic for autocorrelation in 10 lags. Note: Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 
‘*’.

We plot daily volatility of each stablecoin during sample period in Figure 2.1. As can be 
seen in Figure 2.1, the volatility of each stablecoin is generally low and shows a declining 
trend, particularly after 2020. Nonetheless, several sharp spikes appear during episodes of 
market stress. The first occurs in March 2020 during the Covid-19 crisis, likely driven by 
market panic and large monetary injections into the cryptocurrency market, as investors 
sought alternative safe-haven assets (Kumar et al., 2022). In May 2021, another spike is 

Obs Mean SD ADF JB Q(10)

USDT Volatility 1298 0.0042 0.0067 -3.12** 21022*** 6611***

USDC Volatility 1298 0.0045 0.0157 -9.16*** 95447*** 350***

TUSD Volatility 1298 0.0046 0.0061 -2.96** 18265*** 5717***

USDP Volatility 1298 0.0069 0.0174 -22.42*** 36932*** 58***

BTC Volatility 1298 0.0289 0.0221 -6.18*** 44559*** 1856***

ETH Volatility 1298 0.0363 0.0272 -8.71*** 52417*** 2103***

DXY Volatility 1298 0.0037 0.0019 -6.49*** 3802*** 3880***

S&P 500 Volatility 1298 0.0077 0.0056 -6.67*** 13337*** 7493***

Gas price Volatility 1298 0.0025 0.3178 -10.28*** 53456*** 211***
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observed – especially for TUSD – during a period of heightened cryptocurrency volatility 
triggered partly by a statement from the People’s Bank of China reiterating that digital 
currencies could not be used for payments in China. Further spikes appear in September and 
November 2021, both linked to sharp swings in Bitcoin and Ethereum, which later reached 
record highs. In 2022, two smaller spikes occur, in May and November, associated with the 
collapse of Terra and FTX, respectively. In March 2023, volatility spikes again, particularly 
for USDC, after Circle disclosed that nearly 8% of its USD 40 billion reserves were held in 
the failed Silicon Valley Bank. Thereafter, volatility remains relatively low for all 
stablecoins through the end of the sample period.  

Figure 2.1. Volatility of stablecoin

This figure displays the volatility of four stablecoins. Volatility of stablecoin is estimated by the extreme volatility  with 
daily high price and low price following Parkinson (1980) as shown in Eq 2.1. Sample period is from 2018-11-01 to 
2023-12-31.   
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2. 4. Methodology
 
Our empirical analysis consists of three steps. We first calculate the Pearson correlations 
between stablecoin volatility and potential factors. Next, we run a linear   regression model 
of stablecoin volatility on these factors. Finally, we examine the static and dynamic spillover 
effects between stablecoins and these factors using spillover methods.  

2. 4. 1. Correlation and Regression
 
Firstly, following Solnik et al. (1996), we use Pearson correlation to examine the correlation  
between volatilities, which is a measure of linear correlation between two random variables 
(Lee and Nicewander, 1988). It is a ratio between the covariance of two variables and the 
product of their standard deviations. The calculation is as follows,  

                                                       (2.2)

where  is the covariance of X and Y,  and  are the standard deviation of X 
and Y, respectively. 

Then following Payes (2012) and Hoang & Baur (2021), we use a linear regression model to 
examine the impact of these factors on stablecoins volatility to identify the potential  drivers 
of stablecoin volatility. The aim of this regression is to investigate the relationship between 
stablecoin volatility and the volatility of these factors, we use contemporary values of these 
variables and one lag of stablecoins volatility as control variable to control the 
autocorrelation of each stablecoin volatility. The linear model is as follows: 

  
        (2.3)                                        

where V denotes volatility, and  denotes dummy variables to control year fixed 

effect, including five dummy variables corresponding to 2019, 2020, 2021, 2022, and 2023, 
respectively. 

ρX,Y = cov(X, Y )
σXσY

cov(X, Y ) σX σY

VSC,t = a0 + a1VBTC,t + a2VETH,t + a3VDXY,t + a4VS&P500,t + a5VGp,t + a6VSC,t−1 + a7dyearFE + ϵt

dyearFE
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Each variable has two subscripts: the first indicates the factor – ‘BTC’ for Bitcoin, ‘ETH’ for 
Ethereum, ‘DXY’ for the US Dollar Index, ‘SP500’ for the S&P 500 index, ‘Gp’ for 
Ethereum gas prices, and ‘SC’ for the stablecoin itself. The second subscript denotes time �푡. 
For each stablecoin in our sample, we include its volatility and all external factors in the 
regression to assess how these factors impact each stablecoin individually. Unlike Hoang 
and Baur (2021), who use stablecoin trading volume as an independent variable to test 
whether stablecoins influence Bitcoin volatility, our approach models stablecoin volatility 
directly as the dependent variable. This allows us to evaluate the combined effects of 
multiple drivers on stablecoin volatility. 

2. 4. 2.  Dynamic spillover effects 
 
Then, we turn our attention to volatility spillover effects. In this part we calculate the 
financial linkage and impacts of these relevant markets on stablecoin volatility through 
spillover effects, and see how these impacts evolve over time. Diebold and Yilmaz (2009, 
2012, 2015) propose a straightforward method of quantifying overall and directional 
spillovers in the vector autoregressive (VAR) framework (DY method). This method 
provides a quantitative tool to examine how shocks from one market transmit to others. The 
DY method is suitable for our studies for several reasons. First, it relies on a Vector Auto-
Regression (VAR) approach, which is applied to overcome dimensionality issues. Second, 
through DY method, dynamic spillover index can be estimated by combined with rolling 
window method (Gong et al., 2021). The key of the rolling window model is that DY 
method allows conducting the VAR model estimation under the fixed window length, and 
get the continuous dynamic spillover index by moving the window period by period. Third, 
this method allows us to distinguish the effect between the dynamics of own shocks and 
spillovers (i) between each stablecoin; (ii) across each stablecoin and each factor; and (iii) 
between each external factor (Elsayed and Sousa, 2024). 

Furthermore, given the nature of high volatility of Bitcoin and other factors, especially 
during extreme period (see. Yermack, 2015; Baur and Dimpfl, 2021), we assess the dynamic 
volatility spillovers of potential factors on stablecoins by estimating a Time-Varying 
Parameter Vector Auto-Regression (TVP-VAR) model, as this framework substantially 
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improves the dynamic performance of the standard VAR model and is not sensitive to 
outliers (Elsayed and Sousa, 2024). 

Specifically, the TVP-VAR is proposed by Koop and Korobilis (2014), which allows the 
VAR coefficients to vary over time, as such, potential parameter changes are accurately 
determined. Antonakakis and Gabauer (2017) combined this TVP-VAR model with Diebold 
and Yilmaz’s (2009, 2012, 2015) model, allowing flexible parameters. Therefore, the 
changeable parameters in the model make it immune to the presence of outliers compared to 
the spillover approach based on the fixed-coefficient VAR framework. And it overcomes the 
the drawbacks of fixed-coefficient VAR framework which might have very erratic or 
flattened parameters. (Antonakakis et al., 2020; Youssef et al., 2021). This framework is 
suitable in our case to catch the fluctuating effect of factors, especially volatile Bitcoin, on 
stablecoin. This is also a key assumption that adheres to the empirical observation of time-
variation in the joint dynamics of models incorporating data similar to ours (Koop and 
Korobilis, 2014; Youssef et al., 2021; Elsayed and Sousa, 2024). As a result, TVP-VAR can 
be used in association with the framework put forward by Diebold and Yilmaz (2009, 2012, 
2015) to construct spillover indices and examine the dynamic volatility spillovers between 
related markets and stablecoins. 

Following Elsayed and Sousa (2024), the TVP-VAR(p) model with p lags can be written as 
follows:

                                    (2.4)

                                       (2.5)

where  is an N × 1 vector of variables,  is an Np × 1 lagged conditional vector,  is 

an N × Np time-varying coefficient coefficient matrix,  is the information set until t and  

is is an N × 1 vector of error disturbance terms with an N × N time-varying variance-
covariance matrix . The parameters matrix  depend on their own past values  and 
an N × Np error disturbance matrix  with an Np × Np variance-covariance matrix. 

In our case, , where  is a vector of 
stablecoins volatility, is a vector of factors might 
impact stablecoin volatility, including Bitcoin volatility, Ethereum volatility, U.S. Dollar 
index volatility and S&P 500 index volatility. 

Xt = ΦtXt−1 + ξt, ξt |Ωt ∼ N(0,Λt)

Φt = Φt−1 + ηt, ηt |Ωt ∼ N(0,Γt)

Xt Xt−1 Φt

Ωt ξt

Λt Φt Φt−1
ηt

Xt = [SCt,FSt]′ SCt = [USDTt,USDCt, TUSDt, PAXt]′ 
FSt = [BTCt, ETHt,DXYt, S& P500t]′ 
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There are two input parameters in this TVP-VAR model, the H-step ahead forecast 
horizon and the lag length, p. The H-step forecast horizon is set to 10 days, as it could 
effectively capture the short-term impact of external markets on stablecoins volatility 
(Elsayed and Sousa, 2024; Antonakakis et al., 2020; Youssef et al., 2021). The lag length 
of the VAR model is decided by the Bayesian information criterion (BIC), which is set to 
one. 

The time-varying coefficients and error covariances are used to estimate the spillover 
indices of Diebold and Yilmaz (2009, 2012, 2015) through generalized impulse response 
functions (GIRF) and generalized forecast error variance decompositions (GFEVD) 
(Koop et al., 1996; Pesaran and Shin., 1998). To calculate the GIRF and GFEVD, we 
transfer the TVP-VAR model, from formula 2.4 and 2.5,  to the vector moving average 
(VMA) representation as follows: 

                                                  (2.6)

Where  are N × N parameter matrix where it follows the recursion 

 with  being an identity matrix, and  = 

0 for i < 0.  

The VMA representation is crucial for constructing the impulse-response functions as well 

as the generalized forecast error variance decompositions (GFEVD). In this framework, the 

volatility spillovers correspond to fractions of the H-step-ahead error variances in 

forecasting a specific variable i of the vector  that are due to shocks in variable j = 1, 

2,. . ., N, such that , while the own variance shares are fractions of the H-step-ahead 

error variances in forecasting a specific variable i of the vector  that are due to own 

shocks, for i = 1, 2,. . ., N. And thus it provide precise and specific spillovers from each 

variable to another, without being interfered by other variables in the system (Elsayed and 

Sousa, 2024).  

The H-step ahead forecast error is the difference between the value , and the 
expectation of value . Similarly, the generalized impulse-response function (GIRF) 
represents the response of all variables following a shock in variable i. Thus, it is the 
difference between the H-step-ahead forecast where variable i is shocked by variable j 

Xt = ΦtXt−1 + ξt =
∞

∑
i=0

Ai,tξt−i

Ai,t

Ai,t = Φ1,t Ai−1,t + Φ2,t Ai−2,t + . . . + Φp,t Ai−p,t A0,t Ai,t

Xt

j ≠ i
Xt

Xt+H
EtXt+H
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and the H-step-ahead forecast where variable i is not shocked by variable j, which can be 
expressed as: 

                    (2.7)

where H represents the forecast horizon and  is the information set until t,   is the 

selection vector to indicate the shocks is from variable j, with one on the  element and 
zero for others.

Next, we calculate the generalized H-step-ahead forecast error-variance decomposition 
(GFEVD), λj,t(H), for H = 1,2,…, as: 

                                  (2.8)

where  is the N × N time-varying variance-covariance matrix of the vector of error 

disturbance terms ,  is the standard deviation of the error term for the  equation. 

The GFEVD can be interpreted as the fraction of the variation of other variables that can be 

explained by a shock to a specific variable (Pesaran and Shin, 1998).  

To make the spillover index straightforward, each entry of the variance decomposition 

matrix is normalized, so that each row sums up to one, that is, all variables jointly explain 

all of variable’s i generalized forecast-error variance. This is calculated as follows  

                                                       (2.9) 

Where   and .   

Therefore, the total spillover index can be expressed as:  

.                                                  (2.10)

GIRFt(H, aj,t,Ωt) = Et(Xt+H ∣ ξj,t = aj,t,Ωt) − Et(Xt+H ∣ Ωt)

Ωt aj,t
jth

λg
j,t(H ) = Λ− 1

2
jj,t AH,tΛtξj,t =

AH,tΛtξj,t

Λjj,t

Λt

ξt Λjj,t jth

λ̃g
ij,t(H ) =

∑H−1
t=1 λ2,g

ij,t

∑N
j=1 ∑H−1

t=1 λ2,g
ij,t

N

∑
j=1

λ̃ N
ij,t(H ) = 1

N

∑
i, j=1

λ̃ N
ij,t(H ) = N

Sg(H ) = 100 ×
ΣN
i, j=1,i≠j λ̃g

ij,t(H )
N
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Furthermore, according to Gabauer (2021), the total spillover index can be decomposed to 
the pairwise connectedness index measuring the spillover effects between two variables i 
and j: 

                                (2.11)

However, this metric can only illustrate the degree of bilateral connectedness between 
variables i and j, which cannot distinguish between the directional pairwise spillover effects 
from variable i to variable j and the opposite direction. We then further decompose the 
pairwise connectedness into pairwise directional connectedness to measure pairwise 
directional spillovers from variable i to variable j:

                                            (2.12)

The coefficient 2 makes  range between [0,1], the closer the values get to 1 the 

stronger market shock could transmit from i to j. The directional pairwise spillovers 
represent the ratio of the spillover index from variable i to variable j relative to the sum of 
the spillover index from variable i to itself and from variable i to j.

This framework provides straightforward measures of both total connectedness across the 
entire system and directional pairwise connectedness between variables, thus enabling us 
to investigate dynamic connectedness between each stablecoin and each external markets 
under different market conditions. 

2. 5. Empirical result

2. 5. 1.  Results of correlation and regression
In this section, we display the results of our data analysis. We start by showing the Pearson 
correlation between stablecoins and these factors. The results of Pearson correlation are 
displayed in Table 2.2. As can be seen in Table 2.2, it turns out that stablecoins are highly 
correlated with each other, and they are significantly correlated with most factors except gas 

Sgji(H ) = 100 × 2 ×
λ̃g
ji(H ) + λ̃g

ij(H )
λ̃g
ji(H ) + λ̃g

ii(H ) + λ̃g
ij(H ) + λ̃g

jj(H )

Sgj.i(H ) = 100 × 2 ×
λ̃g
ji(H )

λ̃g
ji(H ) + λ̃g

ii(H )

Sgj.i(H )

64



Chapter 2       Drivers of Stablecoin Volatility: Evidence from Spillover Analysis on volatile 
cryptocurrencies and traditional assets                                                                                                  

price. The external markets we investigate also display high correlation with each other.   

Table 2.2. Correlation between stablecoin volatility and factors. 

Table 2.2 shows Pearson correlation coefficients among all variables. Gas price volatility is measured as log changes of 
average daily price while volatility of other variables is estimated by the extreme volatility following Parkinson (1980) 
as shown in Eq 2.1. Sample period is from 2018-11-01 to 2023-12-31. Note: Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’. 

Specifically, as can be seen in Table 2.2, it shows strong and positive and strong correlation 
among volatility of stablecoins, which ranges between 0.323 (between USDT and USDP) 
and 0.821 (between USDT & TUSD). These high correlation coefficients confirm the strong 
and positive relationships among the volatilities of fully backed stablecoins, indicating that 
the volatility of one stablecoin could affect another. Strong correlations between stablecoins 
might also be one reason for excess volatility in stablecoin markets. 

Furthermore, between stablecoins and these factors, most coefficients are significant except 
gas prices. Bitcoin and Ethereum both exhibit significant and positive correlations with 
stablecoins, suggesting that the volatility of leading cryptocurrencies is positively associated 
with stablecoin deviations. These high correlations in volatility are consistent with the fact 
that stablecoins are primarily used to trade non-stable cryptocurrencies (Hoang and Baur, 
2021; Kristoufek, 2022) and to support the prices of non-stable cryptocurrencies (Griffin 
and Shams, 2020; Wei, 2018). Stablecoins are also positively correlated with the S&P 500. 
These significant correlations between the S&P 500 and stablecoins indicate that the two 
asset classes share common demand and volatility dynamics, offering limited diversification 
when held together. These results are inconsistent with previous trading strategies that 
assumed stablecoins were not correlated with the global stock market and could therefore be 
regarded as safe havens (Feng et al., 2024; Paeng et al., 2024). 

USDT USDC TUSD USDP BTC ETH DXY S&P 500 Gas

USDT 1 0.425*** 0.821*** 0.323*** 0.336*** 0.2294*** 0.013 0.264*** 0.021

USDC 1 0.518*** 0.718*** 0.151*** 0.164*** 0.004 0.073*** 0.021

TUSD 1 0.414*** 0.381*** 0.344*** 0.02* 0.227*** 0.008

USDP 1 0.162*** 0.169*** 0.042** 0.081*** 0.006

BTC 1 0.849*** 0.039* 0.135*** 0.176***

ETH 1 0.033 0.143*** 0.177***

DXY 1 0.502*** -0.038

S&P 500 1 -0.050*

Gas 1
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DXY shows weak correlations with stablecoins. The correlations between TUSD and USDP 
with DXY are relatively small but significant, while the correlations between USDT and 
USDC with DXY are insignificant. Gas price volatility does not show any significant 
correlation with stablecoins. These results indicate that DXY might have a slight correlation 
with stablecoins, while gas prices have no impact on stablecoin volatility.

Table 2.3 presents the results of Equation 2.3, which examines the relationships between 
stablecoins and external factors using the linear regression model. The results further 
suggest that the volatilities of Bitcoin, Ethereum, and the S&P 500 are positively connected 
with stablecoin volatility, while DXY shows only a weak connection with TUSD volatility. 
The coefficients for gas prices are not statistically significant.

Table 2.3. Results of Regression.

Table 2.3 presents the result of equation 3, where volatility of Bitcoin, Ethereum, DXY, S&P 500 and Gas price are 
regressed on each stablecoin volatility. Each column represents the result of the regression one stablecoin. Sample 
period is from 2018-11-01 to 2023-12-31. All regressions include year fixed effects. Standard errors clustered by year in 
parentheses. No multicollinearity between these variables is detected through VIF test. Significant at 0.01 ‘***’, 0.05 
‘**’, 0.1 ‘*’.  

As can be seen in Table 2.3, after controlling for year fixed effects, USDT and TUSD 
volatilities respond strongly to Bitcoin market volatility, while USDC volatility reacts more 
to Ethereum market volatility. DXY has a relatively weak impact on stablecoins, with a 

USDT USDC TUSD USDP

0.200**
(0.096)

-0.002
(0.055)

0.217**
(0.098)

0.007
(0.083)

0.043
(0.047)

0.061**
(0.039)

0.103***
(0.019)

0.083
(0.057)

-0.007
(0.016)

0.006
(0.009)

0.011**
(0.020)

0.004
(0.006)

0.042**
(0.021)

0.011
(0.010)

0.062**
(0.029)

0.025*
(0.013)

0.047
(0.051)

-0.008
(0.013)

0.077
(0.055)

-0.028
(0.036)

0.469***
(0.062)

0.208***
(0.028)

0.424***
(0.070)

0.110***
(0.028)

Year Fixed Effect Yes Yes Yes Yes
Observations 1297 1297 1297 1297
Adjusted R-squared 0.685 0.130 0.652 0.062
Clustered SE Year Year Year Year

VS&P 500,t

VDXY,t

VSC,t−1

VBTC,t

VETH,t

VGp,t
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significant coefficient only for TUSD. However, the S&P 500 shows significant coefficients 
for USDT, TUSD, and USDP. This indicates that stablecoins can be impacted by some of 
the market-wide risk when equities fluctuate, but the strength of that linkage varies by coin. 
USDT and TUSD traders appear to react more to broad traditional market stress than USDC 
or USDP users. Moreover, the significant coefficients of volatility on the previous day show 
the high persistence of stablecoin volatility, indicating that yesterday’s volatility is the 
strongest predictor of today’s – a common feature in high-frequency financial series. 

Based on the results presented in Table 2.2 and Table 2.3, it is suggested that BTC volatility, 
ETH volatility, DXY volatility, and S&P 500 volatility could significantly impact stablecoin 
volatility, while gas price has no significant influence on stablecoin volatility. Our analysis is 
robust. We examined the potential multicollinearity between these factors using the Variance 
Inflation Factor (VIF) test and detected no multicollinearity. We also included lagged 
stablecoin volatility in the regression to control for autocorrelation.  

Overall, the correlation and regression analysis indicate that stablecoin volatility is 
correlated with related external markets, including non-stable cryptocurrencies and 
traditional equity and currency markets. Our findings indicate that stablecoin volatility is 
driven by non-stable cryptocurrency markets and major traditional financial markets, which 
contradicts previous claims that stablecoins could be viewed as safe havens due to their 
independence from traditional cryptocurrency markets and global stock markets (Wang et 
al., 2020; Xie et al., 2021; Feng et al., 2024; Paeng et al., 2024). 

 
2. 5. 2. Static Volatility Connectedness 

We now turn to the volatility connectedness among stablecoins and external factors to 
measure the impact and investigate how the impact of these factors on stablecoins volatility 
evolves over time. Since gas prices showed no significant relationship with stablecoin 
volatility in the previous analysis, they are excluded in this section. We start by calculating 
the average volatility spillovers between the four factors and stablecoins over the full 
sample period. Specifically, following the connectedness approach of Diebold and Yilmaz 
(2009, 2012, 2015) and Antonakakis and Gabauer (2017), we employ the TVP–VAR model 
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developed by Koop and Korobilis (2014) to calculate the average spillover indices. The 
results are presented in Table 2.4. 

Table 2.4 presents the matrix of static volatility spillovers among four related markets and 
stablecoins during the whole sample period, showing the spillovers among variables. 
Additionally, it reports the directional volatility spillovers from each variable to all others 
('To others') and from all others to each variable ('From others'). Table 2.4 also reports the 
net directional spillover ('Net'), which is the difference between the spillovers received from 
other variables and those transmitted to others. A positive (negative) net spillover value 
indicates that the corresponding variable is a net transmitter (receiver) of volatility 
spillovers in the system. 

Each row represents the spillovers received by a variable from itself and others. These 
values are expressed as percentages, where the total spillovers received by each variable, 
including both self-induced and external spillovers, sum to 100%. In other words, each row 
in the spillover matrix sums to 100%. For example, the second row of Table 2.4 shows the 
spillovers that USDT receives from each variable. USDT receives 28.69% of its spillovers 
from itself, with the remaining 69.67% from other variables, including 13.38% from 
USDC and 21.86% from TUSD. Each column, in turn, shows the spillovers transmitted 
by a variable to others. For instance, the second column shows the spillovers that USDT 
transmits: 19.44% to USDC and 23.43% to TUSD. The diagonal values represent self-
induced spillovers. 
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Table 2.4. The static volatility spillovers. 

Table 2.4 demonstrates the results of static volatility spillovers among stablecoins and external factors including 
volatility of Bitcoin, Ethereum, DXY and S&P 500 throughout the full sample period. It is based on the generalized 
forecast-error variance decomposition (GFEVD) obtained from the estimation of a TVP-VAR model of 10-step ahead 
forecasts. The sample period is November 1, 2018 – December 31, 2023. The lag length is selected in accordance with 
the (minimum value of the) Bayesian information criterion (BIC), which is set to 1. The values are percentages. Each 
column denotes the spillovers that factor in the first row in this column transmits to each variable, each row denotes the 
spillovers that factor in the first column receives from each variable. The values are the percentage of volatility spillover 
and the sum of each row is 100. The total spillover index, which appears in the lower right corner of the table, is 
approximately the grand off-diagonal column sum (or row sum) relative to the grand column sum including the 
diagonals (or row sum including diagonals), expressed as a percentage. 

Table 2.4 shows strong connectedness among stablecoins and external factors. The total 
spillover index (TSI) is 65.27%, meaning that, on average, 65.27% of the forecast error 
variance for all variables originates from other variables. This suggests strong 
connectedness and substantial volatility spillover effects among these variables. The TSI of 
65.27% is the average of three parts of spillovers: (i) volatility spillovers between external 
markets and stablecoins, (ii) volatility spillovers among stablecoins and (iii) spillovers 
among external markets. 

First, table 2.4 presents volatility spillovers from external markets to stablecoins, where it 
ranges from 3.62% to 6.36%, indicating the shocks from related markets could transmit to 
stablecoins market and increasing its volatility. Our results show that when volatility 
increases in these related markets, stablecoins markets would react to it and thus being more 
fluctuated. The spillover effects contradicts previous literature that stablecoins market is 
independent from non-stable cryptocurrencies and traditional global markets (Wang et al., 
2020; Xie et al., 2021; Feng et al., 2024; Paeng et al., 2024). 

USDT USDC TUSD USDP BTC ETH DXY S&P 500 FROM others

USDT 28.69 13.38 21.86 15.65 5.58 4.01 6.12 4.72 71.31

USDC 19.44 29.39 16.95 17.43 5.03 4.02 4.07 3.67 70.61

TUSD 23.43 12.25 26.39 17.34 5.54 3.86 6.36 4.83 73.61

USDP 17.98 15.60 19.42 28.61 5.69 3.62 4.78 4.30 71.39

BTC 9.86 6.45 9.96 8.57 34.37 23.73 3.19 3.87 65.63

ETH 10.30 6.51 10.13 7.60 24.24 33.04 3.27 4.90 66.96

DXY 9.03 4.50 10.16 6.43 2.84 2.13 50.19 14.73 49.81

S&P 500 9.54 5.07 9.82 7.68 4.03 4.20 12.47 47.18 52.82

TO others 99.58 63.76 98.30 80.70 52.95 45.57 40.27 41.02 522.14

NET spillovers 28.27 -6.85 24.69 9.31 -12.68 -21.40 -9.55 -11.80 TSI = 65.27%
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Moreover, row two to five show the spillovers that stablecoins receive from each other, 
highlighting a strong connectedness among the four stablecoins. For example, USDT 
receives between 13.38% and 21.86% of spillovers from other three stablecoins. This 
demonstrates that stablecoins could also significantly influence each other’s volatility. Also, 
combined with the results of correlations, it turns out stablecoins could strongly impact each 
other and share common demand and fluctuation dynamics.

Also, we note that stablecoins exhibit a strong spillover effects to related external 
markets, in some cases greater than those received from them. For example, Bitcoin 
receives spillovers from stablecoins ranging from 6.45% to 9.96%. This may be because 
stablecoins are widely used to trade and support the prices of non-stable cryptocurrencies 
(Griffin and Shams, 2020; Kristoufek, 2021). Moreover, increased demand for stablecoins 
following gains in traditional assets can lead to new issuance, further boosting Bitcoin’s 
price by reflecting heightened demand for cryptoassets (Kristoufek, 2022; Let et al., 
2023). Thus, though the spillover results show that stablecoins could transmit strong 
spillovers to Bitcoin and Ethereum, as speculative drivers, we believe the volatility of 
Bitcoin and Ethereum are necessary impacted by stablecoins. This phenomenon could due 
to the delayed transmission of volatility spillovers, where volatility takes longer to 
transmit across markets, which could create a feedback loop and heightened volatility in 
stablecoins market would lead to increased volatility in Bitcoin and Ethereum markets in 
return.  

Table 2.4 also demonstrates high connectedness among these external markets, indicating 
a high financial linkage between them. Specifically, Bitcoin and Ehereum received high 
spillovers from each other, DXY and S&P 500 also shows high connectedness with each 
other. 

Overall, results in this part show that: (i) stablecoins have strong connectedness among each 
other; (ii) stablecoins could be impacted by each other and related markets; (iii) the 
spillovers among  related markets are significant. The result in this part suggests that 
stablecoins receive significant volatility spillovers and thus impacted by Bitcoin, Ethereum, 
DXY and S&P 500, indicate strong financial linkage and market integration between 
stablecoins and these markets. 
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Although stablecoins appear as net transmitters of volatility spillovers in the system, while 
external factors act as net receivers, this does not necessarily imply that stablecoins drive 
external markets. Two reasons support this view. First, the majority of volatility spillovers 
from stablecoins go to other stablecoins due to their high correlations. Second, as anchored 
assets, stablecoins are less likely to significantly impact speculative assets such as non-
stable cryptocurrencies or traditional financial markets (Grobys et al., 2021).

To further verify the direction volatility transmission between stablecoin and these 
speculative drivers, we conduct a Granger causality test to verify if stablecoins could 
actually impact the volatility of these related markets. Granger causality test has been wildly 
used to analyze relationships in cryptocurrency markets (see Balcilar et al., 2017; Bouri et 
al., 2019;  Yarovaya and Zieba, 2022).

Following Diks and Panchenko (2006), for a stationary bivariate time series process {(Xt, 

Yt)}, t ∈ Z, {Xt} is a Granger cause of {Yt} if, for some k ≥ 1, 

 

where and  denote the information contained in past observations of X and Y, 

respectively, and “~” denotes fitting into equivalent distribution (Granger, 1969). 
In other words, if past and present values of X could provide extra explanation power about 
future values of Y, which are not contained in the past and present values of Y, we say {Xt} 

is a Granger cause of {Yt}. And the null hypothesis is that X is not a granger cause of Y, if 

the p-value of statistics is small enough, we could say X is a granger cause of Y. The results 
of Granger causality test of are shown in table 2.5. 

(Yt+1, . . . , Yt+k) | (FX,t, FY,t) ≁ (Yt+1, . . . , Yt+k) |FY,t

FX,t FY,t
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Table 2.5. Granger causality test between stablecoin markets and related markets. 

This table display the results of Granger causality between stablecoin markets and related markets. Values in right and 
upper part are Granger causality results from volatility of related markets to stablecoins volatility. Values in left and 
lower part are Granger causality results from stablecoins volatility to volatility of related markets. Note: Significant at 
0.001 ‘***’, 0.01 ‘**’, 0.05 ‘*’. 

 
Table 2.5 shows the results of  Granger causality test, which show strong unidirectional 
causality running from Bitcoin, Ethereum, the U.S. dollar index (DXY), and the S&P 500 to 
stablecoin markets, suggest that stablecoins are primarily responsive rather than driving 
assets in this financial ecosystem. In other words, stablecoin dynamics do not appear to 
drive price movements in major crypto or traditional financial markets; instead, they adjust 
in response to shocks originating in those markets. These results indicate that stablecoins are 
more driven by speculative drivers, representing by the related markets, instead of the 
opposite way, even though the spillovers from stablecoin to these related markets are 
significant. 

2. 5. 3. Dynamic Volatility Connectedness 

This section employs the DY method and its rolling window to examine the dynamic total 
connectedness among stablecoin volatility and external factors, investigating how market 
connectedness and spillover effects evolve over time. The time-varying connectedness index 
is derived from the generalized forecast-error variance decomposition (GFEVD) based on 
the TVP–VAR model. Figure 2.2 presents the dynamic total spillover index, showing that 
total spillover effects are strong and highly time-varying across the sample period. 
Connectedness between stablecoins and external markets tends to intensify during episodes 
of extreme market conditions.

USDT USDC TUSD USDP BTC ETH DXY S&P 500

USDT 0.031*** 0.098*** 0.081*** 2.107**

USDC 0.081 0.584 0.082 2.261**

TUSD 5.350*** 6.882*** 0.353** 4.062***

USDP 2.547** 1.612* 1.501* 3.371***

BTC 1.751* 0.302 1.832 0.647

ETH 3.928** 1.469 3.49** 2.611*

DXY 0.714 0.369 0.150 0.013

S&P 500 3.147* 0.228 0.251 0.151
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The total spillover index (TSI) in Figure 2.2 exhibits substantial time variation, with three 

notable spikes aligning with periods of heightened volatility in stablecoin markets. The first 

spike (Nov-Dec 2018) coincides with the cryptocurrency crash, when Bitcoin lost nearly 

one-third of its value in a week and Ethereum fell to around $84. After this, the total 

connectedness drops to under 70% and then keeps relatively stable until the outbreak of 

Covid-19. 

Figure 2.2. Dynamic Total spillover effects. 

This Figure displays the time-varying dynamics of total spillover index among stablecoin and four external factors, 
including Bitcoin, Ethereum, DXY and S&P 500. It is based on the generalized forecast-error variance decomposition 
(GFEVD) obtained from the estimation of a TVP-VAR model of 10-step ahead forecasts. The sample period is 
November 1, 2018 – December 31, 2023. The lag length is selected in accordance with the (minimum value of the) 
Bayesian information criterion (BIC), which is set to 1. The values on vertical axis are percentages.

The second spike occurred in March 2020 during the COVID-19 outbreak, when global 
financial panic and unprecedented monetary interventions triggered sharp declines in both 
cryptocurrency and stock markets, consistent with structural changes in market integration 
documented by prior studies (see. Smales, 2021; Kumar et al., 2022; Al-Shboul et al., 2022). 
The increase of market integration is possibly because the financial panic spread among all 
the markets as a consequence of the impact of COVID-19 (Vidal-Tomás, 2021). After this 
volatile period, the total spillovers gradually decrease to about 60% and then goes back to 
70% in October 2021. 
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The third spike emerged in late 2021, when spillovers exceeded 90% amid extreme price 
swings that pushed Bitcoin and Ethereum to historical highs. A smaller surge is also 
observed in mid-2023, corresponding to volatility in the U.S. stock market as the S&P 500 
peaked before sharply declining.

The dynamic total spillover index indicates that the market integration between stablecoins 
and related markets are strong, implying high transmission of shocks among these markets. 
Specially, it shows that connectedness among stablecoins and related markets is largely 
time-varying and intensified during episode of volatility. The results indicate that markets 
integration and financial linkage between stablecoins and these markets are dominated by 
market conditions, with spillover effects tending to intensify during periods of heightened 
market volatility. Our findings suggest the financial contagion and market integration theory 
could be applied in stablecoin markets (Liu and Pan, 1997; Bekaert and Harvey, 2003; 
Beirne et al., 2013; Hung and Vo, 2021). 

So far, we have identified the total dynamic volatility spillover effects between stablecoins 
and these factors are at high level and time-varying. We now turn to the directional pairwise 
connectedness to investigate how the spillover effects from each factor to each stablecoin 
evolves over time. As noted earlier, pairwise spillovers lie within the range [0, 1], with 
higher values reflecting stronger connections. 

Figure 2.3 shows the dynamic directional pairwise volatility spillovers from Bitcoin and 
Ethereum to stablecoins, which are strong, time-varying, and exhibit three major spikes 
corresponding to the cryptocurrency crash in December 2018, the COVID-19 outbreak in 
March 2020, and the surge in volatility as Bitcoin and Ethereum reached new highs between 
September and November 2021. These patterns align with periods of elevated stablecoin 
volatility in Figure 2.1. A smaller spike appears in May 2021—particularly for TUSD—
following Tesla’s suspension of Bitcoin payments and renewed restrictions on digital 

currency use in China . 8

 https://en.wikipedia.org/wiki/Cryptocurrency_bubble8
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Fig 2.3. Dynamic directional pairwise volatility spillovers from Bitcoin, Ethereum to stablecoins.

Figure 2.3 presents the dynamic pairwise directional spillovers from Bitcoin and Ethereum to each stablecoin. It is 
based on the generalized forecast-error variance decomposition (GFEVD) obtained from the estimation of a TVP-VAR 
model of 10-step ahead forecasts. The sample period is November 1, 2018 – December 31, 2023. The lag length is 
selected in accordance with the (minimum value of the) Bayesian information criterion (BIC), which is set to 1.The 
values on the vertical axis are percentages.

Overall, the results show that major traditional cryptocurrencies largely drive stablecoin 
volatility, with their effects evolving over time and tending to intensify during episodes of 
market stress. The spillover effects from Bitcoin and Ethereum to each stablecoin are 
strongly time-varying and increase during extreme conditions in the cryptocurrency market. 
Furthermore, the financial linkages between stablecoins and traditional cryptocurrencies are 
amplified when the latter are in turmoil. These results partly answer our research questions, 
confirming that Bitcoin and Ethereum are two key drivers of stablecoins, and that their 
impact is time-varying and heightened during periods of uncertainty. This finding challenges 
prior claims that stablecoins are relatively independent of other cryptocurrencies (Wang et 
al., 2020; Baur and Hoang, 2021; Xie et al., 2021).

The dynamic directional pairwise spillovers from DXY and S&P 500 to each stablecoin is 
presented in Figure 2.4. The results indicate that the directional pairwise volatility spillovers 
from DXY and S&P 500 to stablecoins exhibit a largely time-varying picture.
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In Figure 2.4, the directional pairwise spillovers transmitted from DXY to each stablecoin 
are weaker than those from non-stable cryptocurrencies to stablecoins. While they remain 
below 10% for most of the sample period, two major spikes are evident in the plots. 
Initially, the spillovers from DXY to stablecoins are relative low and stable until March 
2020. The first spike then occurs in March 2020, with spillovers reaching around 20%. This 
elevated level persists until October 2020, a period characterised by significant uncertainty 
in DXY due to the panic surrounding COVID-19. Another spike arises in October 2022, 
when the spillovers from DXY to stablecoins again approach 20%. At that time, the DXY 
rose sharply, reaching its highest level in 20 years. After March 2023, the spillovers from 
DXY to stablecoins decrease and remain low and stable until the end of the sample. 

 
Fig 2.4. Dynamic directional pairwise volatility spillovers from DXY and S&P 500 to stablecoins

Figure 2.4 presents the dynamic pairwise directional spillovers from DXY and S&P 500 to each stablecoin. It is based 
on the generalized forecast-error variance decomposition (GFEVD) obtained from the estimation of a TVP-VAR model 
of 10-step ahead forecasts. The sample period is November 1, 2018 – December 31, 2023. The lag length is selected in 
accordance with the (minimum value of the) Bayesian information criterion (BIC), which is set to 1.The values on the 
vertical axis are percentages.

Furthermore, as can be seen in Figure 2.4, the directional pairwise spillovers from the S&P 
500 to stablecoins are also strongly time-varying. Although generally low, two notable 
spikes appear during the sample period. The first occurs in March 2020, coinciding with the 
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onset of the Covid-19 pandemic, which caused extreme fluctuations and a sharp decline in 
the S&P 500. Another spike is observed in mid-2023, corresponding to heightened volatility 
in the index between June and August, when it reached its annual peak before declining. 
Overall, the spillovers from DXY and the S&P 500 to stablecoins vary with market 
conditions, and the intensified transmission during turbulent periods indicates that 
stablecoins are unlikely to serve as safe havens against traditional assets when volatility is 
high. 

The results of total connectedness and directional pairwise volatility spillovers suggest that 
the relationships between stablecoins and their volatility drivers fluctuate considerably and 
are highly dependent on market conditions. During extreme events, such as the 
cryptocurrency crash or the outbreak of Covid-19, spillovers from Bitcoin and Ethereum to 
stablecoins increased substantially, indicating stronger integration between them. Similarly, 
when DXY experienced heightened volatility—such as between March and October 2020, 
or in September 2022 when it reached a 20-year high—the spillovers from DXY to 
stablecoins intensified, suggesting closer financial linkages. The S&P 500 also transmitted 
higher spillovers to stablecoins during periods of market stress, notably in March 2020 and 
mid-2023.

The intensification of spillover effects and market connectedness during periods of 
heightened volatility can be attributed to several reasons. First, heightened volatility often 
leads to financial contagion effect, which can amplify the connectedness and integration 
across various financial markets (Liu and Pan, 1997; Bekaert and Harvey, 2003; Trabelsi, 
2019). During uncertainty, the panic will spread during heightened volatility (Vidal-Tomás, 
2021), therefore investors are seeking for safe haven or other alternative investment, which 
brings more frequent capital flow and thus increases the market synchronization and 
connection of different market (Vidal-Tomás, 2021; Kumar et al., 2022; Al-Shboul et al., 
2022). Second, the nature of volatility itself plays a crucial role in this the time-varying 
connectedness. Zhang and Hamori (2021) noted that volatility spillovers are more 
pronounced at lower frequencies, indicating that volatility takes longer to transmit across 
markets. This delayed transmission can create a feedback loop where heightened volatility 
in one market leads to increased volatility in connected markets, thereby intensifying overall 
market connectedness. Finally, macroeconomic factors and policy responses during periods 
of volatility can also exacerbate spillover effects. K and Mishra (2023) highlighted that 
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macroeconomic policies broadly serve as triggers for volatility transmissions, indicating that 
the interconnectedness of markets can be influenced by external economic conditions. 
Elsayed and Sousa (2021) also find the connectedness between interest rates and 
cryptocurrency market is intensified when central banks put forward large-scale non-
standard monetary policies. This is particularly relevant during crises when coordinated 
policy responses, such as The Federal Reserve adjusted interest rates, may lead to 
synchronized movements across markets. 

Figure 2.4 shows the dynamic directional pairwise spillovers from DXY and S&P 500 to 
each stablecoin are largely time varying and tend to increase during extreme conditions of 
cryptocurrency market. The results indicate that the financial linkage between stablecoins 
and traditional equity and currency market are intensified when markets are in turmoil 
period. These results answer the rest of our research question, demonstrating that DXY and 
S&P 500 are two drivers of stablecoins, and their effect on stablecoins volatility tend to 
increase during episode of uncertainty. The finding undermines the findings in literature that 
the volatility of stablecoins are independent from global stock market (Feng et al., 2024).

Overall, the evidence shows that spillovers from major cryptocurrencies, as well as from 
equity and currency markets, intensify during turbulent periods. This suggests that shocks in 
these drivers can easily transmit to stablecoin markets during crises. Our results therefore 
challenge the view that stablecoins can serve as safe havens for either cryptocurrencies or 
traditional assets (Wang et al., 2020; Baur and Hoang, 2021; Xie et al., 2021; Feng et al., 
2024). Furthermore, consistent with prior spillover research, we expect asymmetric effects
—where negative returns are more strongly linked than positive ones, given their 
association with periods of stress. The next section examines asymmetric connectedness in 
stablecoin markets. 
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2. 5. 4. Asymmetric connectedness results 

To provide more detailed insights into dynamic connectedness, we extend our analysis to a 
framework that tests whether spillover effects differ across positive and negative stablecoin 
peg deviations. Maximum deviation is defined as the largest deviation of a stablecoin’s price 

from its peg (Lyons and Viswanath-Natraj, 2023). If the price at which the maximum 
deviation occurs is higher than the peg, the deviation is positive; otherwise, it is negative. 
We separate daily maximum deviations of stablecoins into positive and negative series and 
re-estimate the dynamic spillovers between the stablecoins and external factors. Following 
Youssef et al. (2021), the positive and negative maximum deviations are defined as follows: 

                                                   (2.15)

                                                   (2.16)

and thus, 

                                                       (2.17)

where  denotes the max deviation of  stablecoins at time t,  and  denote the positive 
and negative maximum deviation at time t, respectively. This approach allows us to 
distinguish the dynamic connectedness of the positive deviations from the negative 
deviations (Youssef et al., 2021).

Table 2.6 summarizes the averaged volatility spillover indices between the positive 
maximum deviation of stablecoins with factors including Bitcoin, Ethereum, DXY and 
the S&P 500, while Table 2.7 presents the results of the averaged spillover indices 
between negative maximum deviation of stablecoin and external markets. As can be seen 
in Table 2.6 and Table 2.7, the total spillovers index (TSI) for the positive maximum 
deviations (65.14%) was higher than that for the negative maximum deviations (54.72%), 
indicating that spillover effects of positive deviations have more substantial magnitudes 
than negative ones. 

Looking at the ‘From others’ column in Tables 2.6 and 2.7, we observe that positive 
deviations of stablecoins receive greater spillovers from external markets than negative 
deviations. For example, USDT positive deviations receive more spillovers from DXY 
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(5.50%) and the S&P 500 (6.54%) compared with their negative counterparts (3.66% and 
4.00%, respectively). For both USDC and TUSD, positive deviations receive higher 
spillovers from all four factors than negative deviations. In the case of USDP, positive 
deviations receive greater spillovers from Ethereum (5.02%) and the S&P 500 (4.39%). 
The results further indicate that positive deviations of stablecoins also receive and 
transmit more spillovers among themselves, suggesting intensified connectedness within 
the group. Additionally, the ‘To others’ row shows that positive deviations transmit higher 
spillovers to others compared with negative deviations.

Table 2.6. The Connectedness between stablecoin positive max deviation and external factors 

Table 2.6 demonstrates the results of average spillovers among positive stablecoin maximum deviation and factors 
including volatility of Bitcoin, Ethereum, DXY and S&P 500. It is based on the generalized forecast-error variance 
decomposition (GFEVD) obtained from the estimation of a TVP-VAR model of 10-step ahead forecasts. The sample 
period is November 1, 2018 – December 31, 2023. The lag length is selected in accordance with the (minimum value of 
the) Bayesian information criterion (BIC), which is set to 1. The values are percentages. Each column denotes the 
spillovers that factor in the first row in this column transmits to each variable, each row denotes the spillovers that factor 
in the first column receives from each variable. The values are the percentage of volatility spillover and the sum of each 
row is 100. The total spillover index, which appears in the lower right corner of the table, is approximately the grand 
off-diagonal column sum (or row sum) relative to the grand column sum including the diagonals (or row sum including 
diagonals), expressed as a percentage.

USDT USDC TUSD USDP BTC ETH DXY S&P 500 FROM others

USDT 30.28 15.23 17.89 14.72 4.45 4.84 5.50 6.54 69.18
USDC 15.20 31.05 18.27 16.89 4.80 4.86 4.64 4.30 68.95
TUSD 18.27 17.19 26.57 16.47 5.52 6.01 4.76 5.19 73.43
USDP 17.23 16.92 18.22 28.30 4.72 5.02 4.16 4.39 73.46
BTC 8.75 7.07 10.18 6.54 34.33 24.46 4.10 4.57 65.67
ETH 9.73 7.69 11.26 7.30 22.56 32.07 4.37 5.02 67.93
DXY 7.99 5.79 7.95 5.01 5.01 5.33 49.97 12.96 50.03
S&P 500 8.78 6.78 8.84 6.18 5.13 5.40 11.42 47.48 52.52
TO others 85.58 78.51 93.93 73.10 52.18 55.93 38.95 42.97 521.17
NET spillovers 16.40 9.59 20.50 -0.35 -13.49 -12.00 -11.08 -9.55 TSI = 65.14%
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Table 2.7.The Connectedness between stablecoin negative max deviation and external factors 

Table 2.7 demonstrates the results of average spillovers among negative stablecoins maximum deviation and factors 
including volatility of Bitcoin, Ethereum, DXY and S&P 500. It is based on the generalized forecast-error variance 
decomposition (GFEVD) obtained from the estimation of a TVP-VAR model of 10-step ahead forecasts. The sample 
period is November 1, 2018 – December 31, 2023. The lag length is selected in accordance with the (minimum value of 
the) Bayesian information criterion (BIC), which is set to 1. The values are percentages. Each column denotes the 
spillovers that factor in the first row in this column transmits to each variable, each row denotes the spillovers that factor 
in the first column receives from each variable. The values are the percentage of volatility spillover and the sum of each 
row is 100. The total spillover index, which appears in the lower right corner of the table, is approximately the grand 
off-diagonal column sum (or row sum) relative to the grand column sum including the diagonals (or row sum including 
diagonals), expressed as a percentage. 

 

The stronger connectedness associated with positive deviations suggest an asymmetric 
connectedness between stablecoin maximum peg deviations and four external factors we 
investigate, where positive deviations are more strongly influenced by and connected with 
these markets. The results contrast with previous empirical research that suggests that 
negative volatility spillovers tend to exhibit greater connectedness among markets, as 
negative volatility dominates during periods of crisis and adverse market conditions 
(Youssef et al., 2021; Ji et al., 2019; Baruník et al., 2017). 

We argue that the asymmetric connectedness of stablecoins differs from previous literature  
because the influence of external markets is more likely to create buying pressure. 
Specifically, when the price of Bitcoin or other altcoins rises, stablecoins are frequently 
issued in response to these cryptoasset gains (Kristoufek, 2022). The issuance of stablecoins 
after gains reflects investors' growing demand for stablecoins to trade and invest in 
cryptoassets, creating short-term buying pressure, leading to positive price deviations. 
Conversely, during downturns in cryptocurrency markets, stablecoins are often used to 
support the prices of non-stable cryptocurrencies (Griffin and Shams, 2020), which is 

USDT USDC TUSD USDP BTC ETH DXY S&P 500 FROM others

USDT 47.33 13.24 9.82 9.85 6.17 5.94 3.66 4.00 52.67

USDC 19.07 42.20 14.54 12.68 3.24 2.69 2.72 2.87 57.80

TUSD 15.10 14.87 38.51 15.73 4.44 3.92 3.74 3.69 61.49

USDP 15.68 11.78 15.13 39.94 4.87 3.91 5.24 3.45 60.06

BTC 5.78 3.92 3.75 4.56 43.93 31.09 3.73 3.25 56.07

ETH 5.64 2.78 3.04 2.99 31.87 45.95 3.80 3.94 54.05

DXY 9.13 5.83 6.21 8.01 4.18 4.07 50.36 12.21 49.64

S&P 500 9.62 5.87 6.37 5.87 4.01 4.34 9.91 54.00 46.00

TO others 80.02 58.29 58.86 59.69 58.77 55.95 32.80 33.41 437.78

NET spillovers 27.35 0.49 -2.63 -0.37 2.70 1.90 -16.86 -12.59 TSI = 54.72%
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broadly accompanied by a rise in trading volume (Wei, 2018). This also leads to an 
increasing demand for stablecoins. Furthermore, stablecoins are also considered as a safe 
haven during periods of heightened market volatility (Baur and Hoang, 2021; Wang et al., 
2020), which further increases demand for stablecoins. These growing demands for 
stablecoins led by external factors, creating additional buying pressure, lead to the stronger 
connectedness with positive price deviations compared to negative ones. 

Overall, we find the heightened volatility in non-stable cryptocurrencies market and 
traditional financial markets is more likely to linked with positive deviations of stablecoins, 
causing different asymmetric connectedness in stablecoins markets. 

2. 5. 5. Robustness

Our findings show that the spillover index based on the TVP-VAR model in conjunction 
with the dynamic connectedness approach by Diebold and Yilmaz (2009, 2012, 2014). The 
time-varying coefficients and error covariances are used to estimate the spillover indices of 
Diebold and Yilmaz (2009, 2012, 2015). As mentioned above, there are only two input 
parameters in this TVP-VAR model, the H-step ahead forecast horizon and the lag length p. 
The H-step forecast horizon is set to 10 days, and the lag length of the TVP-VAR model 
corresponds to the optimal lag length based on the Bayesian information criterion (BIC), 
and it is set to one. As a robustness check of the model, we have considered different 
forecast horizons (namely, H = 15, H = 20 and H = 30 days) with TVP-VAR model. The 
empirical findings are very similar to those reported in the paper. 
 
Additionally, following Elsayed and Sousa (2024), we also compute volatility spillovers by 
using Quantile-VAR model (QVAR) to check the robustness of our research. In this 
framework, the estimated spillover index could overcome the outlier sensitivity problem of 
VAR model and captures potential asymmetry, as it is calculated based on the conditional 
median rather than the conditional mean (Elsayed and Sousa, 2024). Our findings show that 
the total spillover index based on the QVAR model closely matches that estimated from 
TVP-VAR model. However, there is slightly difference between them, which TVP-VAR is 
more sensitive to market shocks and adjusts faster than QVAR. The dynamic total 
connectedness of volatilities is presented in Figure 2.5. 
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As can be seen in Figure 2.5, similarly, the connectedness among stablecoins and these 
factors estimated by QVAR model is also strong and largely time-varying. However, 
compared with Figure 2.2, the QVAR fails to capture certain surges in December 2018, 
September 2021, and June 2023. This highlights the advantage of the TVP–VAR framework 
in capturing connectedness fluctuations more effectively, especially during episodes of 
heightened volatility. 

The advantage of TVP-VAR comparing to QVAR has been confirmed in previous empirical 
research (Korobilis and Yilmaz, 2018; Antonakakis et al., 2020). They show that the 
connectedness index from the TVP-VAR model captures abrupt turning points better than 
the one obtained from other rolling-windows VAR estimates. As the TVP-VAR shows more 
pronounced jumps during important crisis moments, it captures the intensification of 
tensions in financial markets more accurately and timely than other fixed-coefficients 
rolling-windows VAR models. We also the compute directional pairwise spillovers between 
stablecoins and these markets through a QVAR model, which show similar values with 
TVP-VAR but fails to capture some spikes as well. For brevity, these results are not reported 
in the paper. 

 
Figure 2.5. Dynamic Total spillover effects generated by QVAR.

Figure 2.5 displays the dynamic total connectedness index between stablecoin and four external factors, including 
Bitcoin, Ethereum, DXY and S&P 500. It is based on the generalized forecast-error variance decomposition (GFEVD) 
obtained from the estimation of a Quantile -VAR model of 10-step ahead forecasts, the quantile is set the 20th percentile 
of both the upper and lower tails to capture extreme values. The sample period is November 1, 2018 – December 31, 
2023. The lag length is selected in accordance with the (minimum value of the) Bayesian information criterion (BIC), 
which is set to 1. The values on vertical axis are percentages. 
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2. 6. Discussions

Drawing on theories of volatility spillovers and market integration (Liu and Pan, 1997; 
Bekaert and Harvey, 2003; Beirne et al., 2013), this study investigates the potential drivers 
of stablecoin volatility. We examine these dynamics primarily through the VAR-based 
spillover framework proposed by Diebold and Yilmaz (2009, 2012, 2015). The strong total 
spillover effects indicate that shocks from non-stable cryptocurrencies and traditional assets 
can be transmitted to stablecoins, suggesting strong financial linkages between stablecoins 
and their volatility drivers. Our findings show that these external factors representing non-
stable cryptocurrencies and traditional assets markets are important drivers of stablecoin 
volatility, and that their influence is time-varying and heavily dependent on market 
conditions.  
 
The time-varying spillover effects demonstrate that the market connectedness and 
integration intensify during volatile episodes. This intensification may be driven by 
investors seeking safe havens during turbulent periods, often amplified by large-scale 
monetary interventions (Kumar et al., 2022). These results are consistent with Meteor 
Showers hypothesis and financial contagion theory (Engle et al., 1988), which suggest that 
financial distress spreads across regions or markets during crises, thereby increasing 
integration and spillovers (Engle et al., 1988; Liu and Pan, 1997; Bekaert and Harvey, 2003; 
Beirne et al., 2013; Hung and Vo, 2021). Our research proves that financial contagion theory 
is applicable to emerging markets, particularly in cryptocurrencies markets.

Furthermore, our analysis shows that as speculative assets, Bitcoin and Ethereum transmit 
strong volatility spillovers to stablecoins, which intensify during periods of market stress. 
We find that stablecoins consistently receive volatility shocks from these leading 
cryptocurrencies, particularly in times of uncertainty. In contrast, the spillovers from DXY 
and the S&P 500 are relatively weak under normal conditions, indicating limited market 
linkage between traditional financial markets and stablecoins. However, during episodes of 
global uncertainty—such as the Covid-19 crisis—the spillovers from DXY and the S&P 500 
to stablecoins become significantly stronger. This demonstrates that shocks from traditional 
markets can also be transmitted to stablecoins during crises, contradicting earlier claims that 
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stablecoins could act as safe-haven assets against volatility in cryptocurrencies or traditional 
markets.

In addition, we find evidence of asymmetric connectedness between stablecoin deviations 
and external factors. Unlike previous studies of traditional financial markets, which 
typically find stronger linkages for negative returns (Longin and Solnik, 2001; Ang and 
Chen, 2002; Youssef et al., 2021; Shahzad et al., 2021), our results suggest that positive 
deviations of stablecoins exhibit higher connectedness with external volatility. This does not 
necessarily conflict with contagion theory, since market integration is still intensified during 
volatile periods. However, in the case of stablecoins, extreme conditions in non-stable 
cryptocurrency markets are more closely associated with positive deviations. This is 
because external volatility is more likely to drive short-term demand for stablecoins, 
creating a price premium (Kristoufek, 2021; Griffin and Shams, 2020; Łęt et al., 2023). 

Overall, our results fit into the spillover theory( Bekaert and Harvey, 2003; Engle et al., 
1990), showing that market integration and volatility transmission between stablecoins and 
external factors intensify during periods of turbulence. However, the intensified financial 

linkage and spillover effects between stablecoins and these factors undermines the potential 
of stablecoins as a safe haven against non-stable cryptocurrencies or traditional assets. 

 
2. 7. Conclusions 

This paper provides a comprehensive analysis of the drivers of stablecoin volatility, 
employing linear regression alongside the spillover approach proposed by Diebold and 
Yilmaz (2009, 2012, 2015), combined with the TVP–VAR model (Koop and Korobilis, 
2014; Antonakakis and Gabauer, 2017). We examines the relationships between volatility of 

stablecoin and that of five external markets that could potentially impact stablecoins 
volatility, including Bitcoin, Ethereum, DXY, S&P 500 and gas price of Ethereum 
blockchain. 

Our results indicate that Bitcoin and Ethereum exert a strong influence on stablecoin 
volatility across the entire sample period, while DXY and the S&P 500 significantly affect 
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stablecoins during periods of heightened volatility. We further find that volatility spillovers 

from these markets to stablecoins intensify notably under turbulent market conditions. 
These results remain robust across different model specifications and parameter choices. 
Moreover, by distinguishing between positive and negative price deviations, our study 
uncovers asymmetric spillovers: positive deviations display stronger spillover effects than 
negative deviations. This suggests that volatility spillover and market integration theories 
are applicable to stablecoin markets (Liu and Pan, 1997; Bekaert and Harvey, 2003; Beirne 
et al., 2013).  

To the best of our knowledge, this is the first empirical study to investigate the relationship 
between stablecoin volatility and both U.S Dollar index and the S&P 500 index. we extend 
prior research (Hoang and Baur, 2021; Lyons and Viswanath-Natraj, 2023; Bullmann et al., 
2019) by identifying additional drivers of volatility in fully-backed stablecoins. We push 
beyond past work that primarily focuses on the relationship between stablecoins and major 
cryptocurrencies, to the relationship with currency market and equity market. 
Methodologically, we also extend the spillover effects framework of Diebold and Yilmaz 
(2009, 2012, 2015) to capture directional pairwise spillovers, thereby offering more granular 
insights into the volatility transmission from external drivers to stablecoins.  

Our results are based on daily data for four leading fully-backed stablecoins over 2018 — 
2023. The data employed offers many benefits for the exploration of drivers of stablecoin 
volatility. First, this five-year horizon is substantial for such a relatively young market (Łęt 
et al., 2023), capturing key events in the evolution of stablecoins. In addition, the data of 
stablecoins price is drawn from the CoinMarketCap, which is calculated by averaging the 
prices from a bunch of centralized exchanges and weighted by volume. This strengthens our 
confidence in the robustness of our conclusions, as it avoids potential price bias from 
selecting individual exchanges. Nevertheless, the reliance on daily data may overlook faster-
moving dynamics, since certain deviations are resolved within a single day (Lyons and 
Viswanath-Natraj, 2023). Future research could therefore employ intraday data to capture 
short-lived price dynamics more precisely. A further limitation is that our study considers 
only a restricted set of external factors, potentially omitting other influences on stablecoin 
volatility. 
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The cryptocurrency market, particularly stablecoin market, remains an emerging and rapidly 
evolving space, characterized by frequent changes and limited regulatory oversight.  As the 9

cryptocurrency market is developing quickly, the transmission mechanism of volatility and 
market connectedness might change, but more generally, our result may apply to other new 
asset that may come into emerging in the future. Studying cryptocurrencies and stablecoins 
therefore offers valuable insights into how assets interact in new and evolving financial 
markets.

 https://home.treasury.gov/news/press-releases/jy04549
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Chapter 3
 

Stablecoin Mispricing: Cross-Exchanges Arbitrage

Abstract

This paper analyzes cross-exchanges mispricings of stablecoins where arbitrage is allowed.  
By utilizing high-frequency quotes and trades data of two leading fully-backed stablecoins 
on three large centralized cryptocurrency exchanges, we find that cross-exchanges 
mispricings that allow arbitrage are prevalent. Analysis on duration and profitability of these 
mispricings indicate they are exploitable and profitable after considering transaction cost. 
Sensitivity analysis confirms that mispricings are profitable at different levels of transaction 
cost. Additionally, we find market is more active and facing more one-sided order imbalance 
on days with arbitrage opportunities. Further intraday market characteristics analysis unveils 
that market microstructure factors and asynchronous price adjustments between exchanges  
both contribute to the mispricings.

Key words : Arbitrage, Mispricing, Stablecoin, Market Microstructure
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3.1. Introduction

Since its inception in 2009 as an open-source digital currency, cryptocurrency has attracted 
growing attention of researchers, policy-makers, and traders. Among all cryptocurrencies, 
Bitcoin has has received particularly widespread coverage the financial media, largely due 
to its phenomenal surge in transaction volume and market cap. However, due to the high 
volatility (Yermack, 2015), many argue that Bitcoin could not be characterized as a ‘fiat 
money’ (Selgin 2015). This has motivated the development of stablecoins, which potentially 
aim to offer a less volatile alternative.

Stablecoin represents a novel form of cryptocurrency that holds the potential to establish a 
decentralized financial system that is free from traditional financial intermediates. Their 
primary objective is to enable universally accessible monetary transactions and payments 
without relying on trusted third parties. Stablecoins are generally less volatile than 
traditional cryptocurrencies as they are backed by collateralized pegs and designed to 
maintain a fixed value. The role of stablecoins has risen dramatically since 2019, with 
estimates of total trading volume of Tether (USDT), the largest stablecoin in supply, 
reaching twice the trading volume of Bitcoin by the first quarter of 2024.

Stablecoins broadly serve as the initial gateway for cryptocurrency investors venturing into 
the market (Mita et al, 2019; Moin et al, 2020). Moreover, they play a central role in the 
digital-asset economy, as a medium of exchange (Yermack, 2015), a stabilizing force for the 
prices of other cryptocurrencies (Griffin and Shams, 2020), and a safe haven for investors 
during high volatile period (Baur and Hoang, 2021; Feng et al., 2024). Their relatively 
stable value also makes them a more reliable means of preserve value over time (Kristoufek, 
2021). 

However, as stablecoin gain prominence, recent years have seen an increasing amount of 
evidence suggesting stablecoins exhibit unexpected excess volatility and mispricings 
(Hoang and Baur, 2021; Grobys et al., 2021). Also, the causes of stablecoin depeggings and 
mispricings have gained attention in prior literature, which are attributed to external and 
internal reasons. Some researchers attribute mispricings to the strong correlation between 
stablecoins with volatile cryptocurrencies like Bitcoin (see. Duan and Urquhart, 2023; 
Hoang and Baur, 2021; Grobys et al., 2021). Others focus on internal factors, where they 
find mispricings are influenced by design mechanism and range of issuance. Jarno and 
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Kołodziejczyk (2021) find that fully-backed stablecoins experience fewer mispricings 
compared to those with more complex structures. Similarly, Kozhan and Viswanath-Natraj 
(2021) show that more stable collateral contributes to greater price stability. Lyons and 
Viswanath-Natraj (2023) further demonstrate that decentralized issuance of stablecoins 
leads to narrowed price deviations.

These mispricings and depeggings of stablecoins attracts intensive arbitrage activities 
between primary and secondary markets, which could in turn help to remove these 
mispricings and stabilize stablecoins’ price. Pernice (2021) shows that arbitrage activities 
between primary and secondary markets can enhance the stability of theoretical models of 
stablecoins. Lyons and Viswanath-Natraj (2023) offer a day-to-day arbitrage analysis and 
demonstrate that increased arbitrage activity of stablecoins between primary and secondary 
markets reduces the price deviations from their pegs. 

These arbitrage activities are widespread in stablecoin markets as investors have faith in 
stablecoins when their prices are in discount due to the pegging and fully reserve 
mechanism (Lyons and Viswanath-Natraj, 2023). The issuers of stablecoins claimed that 
they will always issue or redeem stablecoins at pegged price. This promise encourages 
traders to purchase discounted stablecoins, with the expectation that such price deviations 
are typically short-lived and offer near risk-free profits once prices converge back to the 
peg. Moreover, because stablecoins are explicitly designed to maintain price stability, the 
usual risks associated with arbitrage in other crypto-assets such as inventory risk are 
substantially reduced.

Taken together, prior literature has evolved from viewing stablecoins as a medium of 
exchanges and potential safe haven assets to increasingly research their mispricings. More 
recent studies have focused on the arbitrage between primary and secondary markets 
induced by mispricings. However, existing literature largely overlooks mispricings and 
arbitrage opportunities within secondary market. In particular, cross-exchanges mispricings 
of stablecoins have received limited attention. This area is especially relevant as secondary 
market typically involves lower capital thresholds and transaction costs, making it more 
accessible for arbitrage activity than can help correct subtle de-pegging deviations and 
improve the price stability of stablecoins.
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To address this research gap, our study aims to answer two research questions (i) Do 
mispricings of stablecoins exist across cryptocurrency exchanges that enable arbitrage? (ii) 
What factors contribute to the occurrence and potential profitability of these arbitrage 
opportunities? Answering these questions is important for assessing and improving the 
stability of stablecoins, which function as the medium of exchange and storage of value in 
the broader cryptocurrency markets (Baur and Hoang, 2021; Kristoufek, 2021).

To address these research questions, we analyse the mispricing and arbitrage activity for 
USDT and USDC—the two largest USD-pegged stablecoins by market capitalization—
across three leading centralized cryptocurrency exchanges: Kraken, Bitstamp, and 
BinanceUS. We collect millisecond-level, tick-by-tick trade and order book data of USDT/
USD and USDC/USD trading pairs from these three exchanges, spanning from January 1st 
2022 to June 30th 2023.

We investigate the mispricings of these two stablecoins across exchanges which could 
create arbitrage opportunities, and calculate the associated profits and durations and to see 
how much meaningful profits they could yield? Subsequently, following the approach 
proposed by Marshall et al. (2013), we examine how minute-level changes in market 
microstructure factors, including order imbalance, bid-ask spreads, market depth and return 
standard deviation, during periods of mispricing are associated with the occurrence of 
arbitrage opportunities. We choose bid-ask spread, market depth, order imbalance and return 
standard deviation to represent market microstructure, as market liquidity and order flow are 
the key factors that could reflect the information asymmetry and prevailing trading 
conditions (Kyle, 1985; Hasbrouck, 1991; Chordia and Swaminathan, 2000). 

Finally, we assess the speed of price discovery across exchanges by applying impulse 
response functions, to examine whether difference in the speed of price adjustments of 
exchanges contribute to stablecoin mispricings.

Our study yields several important findings. First, we find that mispricings of stablecoin 
largely exist between exchanges and remain profitably exploitable even when transaction 
costs are considered. The average duration of these mispricings is under five minutes, with 
over 75% lasting less than three minutes. Compared to earlier studies reporting longer-
duration mispricings in the cryptocurrency market (Makarov and Schoar, 2020; Crépellière 
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et al., 2023), these quickly corrected mispricings implies active participation by arbitrageurs 
in stablecoin market, indicating that even small price deviations are seen as worthwhile 
trading opportunities. More importantly, these quickly removed arbitrage opportunities 
suggest the market efficiency of stablecoins is dynamic over time, which supports the 
Adaptive Market Hypothesis, where inefficiencies are not permanent and they are corrected 
as investors learn and adapt (Lo, 2004).

Second, our analysis reveals market microstructure factors drive stablecoins mispricings. In 
particular, we observe that arbitrage opportunities are more likely to arise on days when 
market is active and facing one-sided order flow, and the profitability of mispricings tends to 
be higher as well when market is in such scenario. Additionally, our intraday market 
microstructure analysis suggests liquidity, trading volume and return standard deviation 
contribute to the arise of arbitrage opportunities. Specifically, we show bid-ask spreads 
increase and market depths decrease minutes before, during and after mispricings, which is 
indicative of a decline in liquidity. Also, trading volume and the standard deviation of trade-
to-trade returns increase sharply prior to the occurrence of arbitrage opportunities. The 
changes of order imbalance indicates overpriced (underpriced) stablecoins tend to face 
selling (buying) pressure during arbitrage opportunity, suggesting investors who seek to 
exploit cross-exchanges arbitrage are actively doing so.

Lastly, our results suggest that differences in price discovery contribute to the mispricings in 
stablecoin markets. The results of impulse response function analysis shows that these 
exchanges have different response speed to market shocks, indicating the asynchronous 
price adjustments to information between exchanges also drives mispricings. 

Arbitrage is not always risk-free or costless in practical market (Shleifer and Vishny, 1997; 
Mitchell et al., 2002), limits and risks which may hinder arbitrageurs from fully exploiting 
stablecoin mispricings across exchanges include trading fees, mispricing durations, 
information acquisition costs, convergence risk, and inventory risk (Marshall et al., 2013). 
Nevertheless, in our case, we argue that these risks and costs are not substantial enough to 
prevent the exploitation of the identified arbitrage opportunities. First, our empirical 
analysis demonstrates that the potential profits from arbitrage can exceed the trading fees 
imposed by the exchanges, and the durations of these mispricings are long enough to allow 
arbitrageurs to identify and act upon them. Second, many crypto exchanges and database 
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provide free and real-time API access to order book data, making information acquisition 
relatively low-cost and easily accessible. Lastly, due to the full reserve backing and 
redemption mechanisms of the stablecoins in question, significant and persistent price 
deviations from their pegs are rare. This reduces inventory risk as the likelihood of 
unfavorable price movements during inventory holding is minimal. Also, we track identical 
assets in different exchanges, which avoid the convergence risk. 
 
Our contribution is multifold. To the best of our knowledge, this is the first empirical study 
that analyzes the cross-exchanges mispricing and arbitrage of stablecoins. Our research 
uncovers a previously under explored arbitrage mechanism in the stablecoins market that 
might help to further reducing the size of peg deviations. As a further contribution, we shed 
new light on the drivers of stablecoins mispricings. Our research suggests market 
microstructure factors as well as different price discovery speed between exchanges 
contribute to the arise of mispricings. Moreover, we provide empirical evidence supporting 
the Adaptive Market Hypothesis, as the frequent occurrence and rapid correction of 
mispricings suggest that stablecoin market efficiency evolves over time in response to 
changing market conditions and arbitrageur behavior. 
 
The remainder of the paper is structured as follows. Section 3.2 reviews related literature 
and Section 3.3 describes sampled datasets used in the analysis. In section 3.4, we illustrate 
our methodology and models. In Section 3.5 we present empirical results and sensitivity 
analysis. Section 3.6 is discussions and Section 3.7 is conclusions.

3. 2. Related literature

3. 2. 1. Volatility of stablecoin

The creation of stablecoin attract researchers’ attention as it potentially solves the problem 
of huge volatility for cryptocurrency to be a medium of exchange (Yermack, 2015). 
Stablecoins are pegged to different assets such as fiat and gold (Mita et al, 2019 ; Moin et al, 
2020), and the pegging mechanism of stablecoins makes them more similar to major fiat 
currencies than to speculative assets (BIS, 2019;  IMF, 2019). The stability of stablecoin 
arouses interest of many researchers as it claims to be completely stable. However, in 
reality, stablecoins are proved not absolute stable, at least are less stable than fiat, despite 
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they are more stable than equity assets and traditional non-stable cryptocurrencies (Hoang 
and Baur, 2021; Grobys et al., 2021). 

This excess volatility of stablecoin, which is unexpected, attracts the interests of 
researchers, they are trying to explain this excess volatility of stablecoin from two 
perspectives. The first one is design mechanism, previous research found that algorithm 
stablecoins are more volatile than fully-backed ones due to the lack of investors’ confidence 
and arbitrage channels when algorithm stablecoin is priced at a discount (Jarno and 
Kołodziejczyk, 2021; d’Avernas et al. 2022; Gadzinski et al., 2023; Kozhan and Viswanath-
Natraj, 2021; Lyons and Viswanath-Natraj, 2023). The second reason of stablecoin excess 
volatility is the correlation between stablecoins and non-stable cryptocurrencies such as 
Bitcoin. In previous literature, stablecoin is found to be linked with volatile non-stable 
cryptocurrencies in trading volume (Hoang and Baur, 2021) and price volatility (Grobys et 
al., 2021, Kristoufek, 2021;). Also, stablecoins are primarily used to trade Bitcoin and could 
support Bitcoin price during market downturns (Hoang and Baur, 2021; Kristoufek, 2021; 
Griffin and Shams, 2020), making stablecoins strongly correlated with tradings of non-
stable cryptocurrencies. The imperfect algorithm design and strong correlations between 
stablecoin and volatile traditional cryptocurrency bring unexpected volatility to stablecoin. 
Very limited research investigate the impacts of traditional markets on stablecoins volatility, 
focusing on interbank rate (Nguyen et al., 2022). 

After determining this excess volatility of stablecoin and its potential drivers, researchers 
turn to seek ways to reduce the volatility of stablecoin. The arbitrage activity between 
primary and secondary market has been shown to play a key role in maintaining stablecoin 
stability and removing the price de-pegging. Pernice (2021) find theoretic stablecoin models 
might benefit from arbitrage between primary and secondary market. Lyons and Viswanath-
Natraj (2023) show that decentralized issuance of stablecoin reduce the size of peg 
deviations due to more arbitrage activities between primary and secondary market. 

We view our paper as complementary to this literature. To the best of our knowledge, the 
research on stablecoin mispricing and arbitrage focus mainly on between primary and 
secondary market, potentially overlooking the arbitrage within secondary market, which 
raises an interesting research gap that more arbitrage route is needed to remove the subtler 
mispricings of stablecoin. We contribute to this literature by providing a new possible route 
of arbitrage in stablecoin market. In particular, we push beyond past work focusing on 
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stablecoin arbitrage only between primary and secondary market, to cross-exchanges 
arbitrage. 

 
3. 2. 2. Arbitrage

3. 2. 2. 1. Definition of arbitrage

Arbitrage is defined as the trading activity of exploiting of price differences between 
markets or instruments to generate a risk-free profit. The concept rests on the fundamental 
financial principle that identical or similar assets should not trade at different prices in 
efficient markets. The definition of arbitrage is much shaped by the Law of One Price 
(LOOP) and Efficient Market Hypothesis (EMH). Law of One Price (Samuelson, 1965) 
asserts that in the absence of transaction costs, identical goods should have the same price 
across different markets. Fama (1970) integrates the concept of arbitrage into his Efficient 
Market Hypothesis (EMH), arguing that arbitrageurs are key players who exploit and 
thereby eliminate inefficiencies in markets, ensuring that prices reflect all available 
information. Additionally, under the Adaptive Market Hypothesis proposed by Lo (2004), 
arbitrage is not a guaranteed risk-free activity as assumed in classical theory, and it is not a 
static, risk-free mechanism but a dynamic process shaped by the adaptive behavior of 
market participants and evolving market conditions.

 
3. 2. 2. 2. Arbitrage theoretical foundation 

The term arbitrage first appeared in the early 19th century (Haupt, 1870), and the theoretical 
foundation of arbitrage was expanded significantly in 20th century. Ross (1976) proposed 
the Arbitrage Pricing Theory (APT), which claims that asset prices are driven by multiple 
systematic factors rather than a single market portfolio, as suggested by the Capital Asset 
Pricing Model (CAPM). APT theory is grounded in the principle of arbitrage, which 
suggests that asset is arbitrage-free priced and portfolios with identical risks cannot have 
different expected returns. APT claims that asset prices could adjust and no arbitrage 
opportunities exist, aligning with the Law of One Price.
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Under Efficient Market Hypothesis (EMH) proposed by Fama (1970), arbitrage 
opportunities are rare and not persistent in efficient markets, because competition among 
arbitrageurs ensures that prices reflect all available information almost instantaneously 
(Fama, 1970). One of the most important implications of EMH is no free lunch, which 
means arbitrageurs in efficient markets can only earn normal profits commensurate with 
their level of risk, not risk-free profits. This implication is pretty much based on the 
prerequisite that investors act rationally or that irrational actions are quickly offset by 
arbitrageurs. However, this prerequisite has been criticized that irrational behaviors and 
cognitive biases may persist, these irrational trading can create and sustain mispricings 
(Shleifer and Vishny, 1997). 

Then Lo (2004) proposed Adaptive Market Hypothesis (AMH), reinterprets traditional 
market efficiency theories within the framework of evolutionary principles, including 
implications about arbitrage. According to AMH, markets are not always efficient and 
market condition is dynamic. Arbitrage opportunities could exist and persist because market 
participants adjust to the changing conditions at different speed, and mispricings can occur 
due to the differences in price discovery times (Marshall et al., 2013). Additionally, the 
effectiveness of arbitrage strategies depends on the state of market efficiency, which evolves 
over time. During crises, inefficiencies are more prevalent, and thus arbitrage opportunities 
become more frequent and persist longer, reflecting the adaptive nature of markets as 
described by AMH (Cont, 2001; Kim and Shamsuddin, 2008). Our paper contribute to this 
strand of literature by examining these implications of AMH on arbitrage in stablecoin 
markets.

 
3. 2. 2. 3. Theory of limits of arbitrage

AMH theory (Lo, 2004) implies that the evolutionary processes of market could lead to 
arbitrage opportunities, which requires no capital and entails no risk in theory. However,  in 
reality, almost all arbitrage requires capital, and is typically risky (Shleifer and Vishny, 
1997; Mitchell et al., 2002). In practical trading, there are limits and risks that prevent 
arbitrageurs from executing arbitrage trading to eliminate mispricings. 

Fundamental risk is one of the major risk that limits arbitrageur to trade (Shleifer and 
Vishny, 1997; Mitchell et al., 2002), which refers that mispricings may take time to correct, 
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and the arbitrageur bears the risk that prices may move further away from there fundamental 
values during that time. This risk usually exists when arbitrageur doing arbitrage between 
two different assets, such as between S&P 500 and associated ETF. The potential anomalies 
in financial markets prevents arbitrageurs from eliminating mispricings. De Long et al. 
(1990) owe this further divergent from fundamental values to irrational noise traders. 
Mitchell et al., (2002) investigate the arbitrage opportunities in equity market, they find 
imperfect information also limits the arbitrage trading to remove the price deviations from 
fundamental values. Moreover, inventory risk usually comes with fundamental risk as 
arbitrageurs might facing high cost of capital. Inventory risk refers to the potential loss that 
arises when they must hold positions in mispriced asset while waiting for prices to 
converge, and during this period, the asset's price may move unfavorably. Shleifer and 
Vishny (1997) point out the fundamental risks and inventory risk, highlighting the 
possibility that prices might diverge even further, where arbitrageurs have to be liquidated 
due to margin calls before the final convergence occurs.

Additionally, arbitrageurs are broadly facing a series of costs and limits to execute arbitrage 
tradings. Gromb and Vayanos (2010) conduct a comprehensive survey of the theoretical 
models, they find arbitrageurs are facing a series of limits to arbitrage besides fundamental 
risks, including short-selling costs, leverage and margin constraints, and constraints on 
equity capital. Also, information costs are also another limits to arbitrage. Grossman and 
Stiglitz (1976, 1980) suggest that obtaining information is a costly process. In high 
frequency trading (HFT) period, useful information for arbitrage might expire in seconds 
(Alsayed and McGroarty, 2014; Marshall et al., 2013; Lyons and Viswanath-Natraj, 2023). 
Then the profitability of arbitrageurs needs to cover the high cost of acquiring fast 
information (Marshall et al., 2013), which is a significant limit to arbitrage. 

In cryptocurrency markets, several limits to arbitrage have been identified, including trading 
speed, short-selling constraints, technical infrastructure and capital control (Fischer et al., 
2019; Makarov and Schoar, 2020). Our paper contribute to this strand of literature by 
investigating potential profitability of arbitrage opportunities in stablecoin markets after 
considering limits to arbitrage, including transaction costs, responding speed of arbitrageurs 
and short-selling constraints. 
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3. 2. 2. 4. Empirical review of mispricing and arbitrage

Our paper also contribute to the literature that focus on the empirical side of mispricings and 
arbitrage. In real-world markets, empirical evidence confirms that prices can deviate from 
the Law of One Price, even in the presence of arbitrageurs. (e.g., De Long et al., 1990; 
Gromb and Vayanos, 2002; Gromb and Vayanos, 2018),  arbitrage profits could be made due 
to those mispricing (e.g. Froot and Dabora, 1999; Mitchell et al., 2002; Gagnon et al., 2010; 
Alsayed and McGroarty, 2012). Price deviation and arbitrage opportunities are observed in 
different markets, including ETF market (Engle and Sarkar, 2006; Ackert and Tian, 2000; 
Richie et al., 2008; Marshall et al., 2013;), stock market (Rosenthal and Young, 1990;  Froot 
and Dabora, 1999; Mitchell et al., 2002; Schultz and Shive, 2010) and cryptocurrency 
market (Kroeger and Sarkar, 2017; Pieters and Vivanco, 2017; Makarov and Schoar, 2020; 
Borri and Shakhnov, 2022;). 

In these markets, mispricings are found to exist and persist for a long time. Froot and 
Dabora (1999) show mispricing in stocks listed in different locations can prevail for over 4 
years. Mitchell et al. (2002) show divergence in the price of a parent company and listed 
subsidiary can last for over 5 months, Schultz and Shive (2010) show mispricing in a class 
of stock with different voting rights can persist for 2 years. The price deviation of non-stable 
cryptocurrencies such as Bitcoin, could persist for years as well (Makarov and Schoar, 
2020; Crépellière et al., 2023). The price deviation of stablecoin between primary market 
and secondary market could lasts for over 10 days (Lyons and Viswanath-Natraj, 2023). 

On the contrary, our results are closer to the cases that mispricings are very quickly 
removed. Alsayed and McGroarty (2012) find stock-ADR mispricing reduces by half in 
around 7 min, Busse and Green (2002) who show prices converge to efficient levels 
following CNBC reports in 1–15 min depending on whether the report is good or bad news. 
Moreover, Chordia et al. (2005) find investors take between 5 and 60 min to restore prices to 
efficient levels following order imbalances. Marshall et al. (2013) shows mispricings 
between ETFs are removed in a few minutes. The cross-exchanges mispricings and their 
average duration are overlooked in previous literature, we extend this literature stream by 
filling this research gap.  
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3. 2. 3. Market microstructure and arbitrage of stablecoin

Market microstructure theory has evolved as a distinct field in financial economics, focusing 
on the mechanisms of trading under market structures. Its development reflects the interplay 
between theoretical innovation and empirical testing, driven by the need to understand how 
market design, information, and trading strategies influence price formation, liquidity, and 
market efficiency.

3. 2. 3. 1. Market microstructure theoretical foundation

The early theoretical foundation of market microstructure highlight the role of adverse 
selection and asymmetric information in trading. Akerlof (1970) proposed "Market for 
Lemons"  theory, claiming asymmetric information could lead to adverse selection. Then 10

Garman (1976) and Ho and Stoll (1981) introduced and expanded the inventory theory of 
market making, pointing out market maker adjust bid-ask spread by considering not only the 
inventory cost, but also the adverse selection risks. Then, Kyle (1985) proposed a market 
model with three kinds of traders, which described how informed traders exploit private 
information, and influence prices through order flow. Glosten and Milgrom (1985) showed 
traders with superior information leads to a positive bid-ask spread, and market makers 
adjust bid-ask spreads to protect against informed traders, highlighting the role of adverse 
selection in price formation. Amihud and Mendelson (1986) regarded liquidity as a factor in 
asset returns, showing that assets with higher bid-ask spreads should yield higher expected 
returns. Stoll (1989) decomposed bid-ask spreads into several components, which attribute 
to inventory holding costs, adverse selection, and order processing, respectively. 
Hendershott et al. (2011) shows that algorithmic trading reduces bid-ask spreads by 
decreasing information asymmetry, suggesting that high-frequency trading improves market 
efficiency.

Based on the strong relationship between bid-ask spreads and information asymmetry, 
market liquidity starts to come into the sight of researchers. Amihud (2002) have expanded 
liquidity measures to include market depth and price impact. Hasbrouck (1995) synthesized 
earlier models and provided a framework to understand market design, emphasizing the role 

 https://en.wikipedia.org/wiki/The_Market_for_Lemons10
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of trading systems and rules in shaping liquidity and efficiency. Furthermore, not just 
liquidity, more factors such as trading volume and order imbalance are included in the range 
of market microstructure. Karpoff (1987) and Lee & Swaminathan (2000) investigate the 
impact of trading volume on price change and momentum. Madhavan et al. (1997) revealed 
that order imbalance have significant price impact, highlighting the role of order flow in 
price discovery. 

Market microstructure is also closely correlated with market efficiency and mispricing. In 
previous literature, market microstructure is broadly considered as a driver of market 
efficiency, it could affect market efficiency in different ways, including price discovery 
(Kyle, 1985; Hasbrouck, 1991;), market liquidity (Amihud and Mendelson, 1986;) and 
information efficiency (Madhavan et al., 1997; Admati and Pfleiderer, 1988). In addition, 
noise trading can reduce market efficiency by introducing temporary price distortions 
(Black, 1986; De Long et al., 1990). These market inefficiency caused by market 
microstructure factors could further lead to temporary mispricings allowing arbitrage (e.g. 
Grossman and Stiglitz, 1980; Black, 1986; De Long et al., 1990; Amihud and Mendelson, 
1986). We contribute to this strand of literature by investigating how stablecoin market 
microstructure affect its market efficiency, represented by occurrence of mispricings.  

3. 2. 3. 2. Empirical review on market microstructure and arbitrage

These above theoretical works have shaped the field of market microstructure, providing  
tools to analyze diverse markets, including equities, derivatives, and cryptocurrencies in 
empirical studies. This evolution also reflects an ongoing of empirical application. Overall, 
the theory of market microstructure has evolved from foundational models of information 
asymmetry and bid-ask spreads to include complex dynamics in modern markets, such as 
the mechanism design of trading venue (Madhavan, 2000; Hasbrouck, 1995), market depth 
(Amihud and Mendelson, 1986; Kyle,1985; Amihud, 2002), order flow and trade 
informativeness (Hasbrouck, 1991; Easley and O'hara, 1987). 

In empirical side, a large body of literature focuses on the relationship between arbitrage 
and microstructure factors. Coughenour and Shastri (1999) provide a detailed summary that 
empirical studies of microstructure are mainly in four areas: the bid-ask spread, order flow 
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properties, the Nasdaq controversy, and linkages between option and stock markets. Our 
research is linked to research on the relationship between arbitrage and bid-ask spread 
(liquidity) as well as order flow. Arbitrage might impair the market liquidity. Foucault et al. 
(2017) provide theoretical and empirical evidence that liquidity would decrease when 
arbitrage opportunities due to lagged adjusts to new information occur. However, arbitrage 
could also prompt the market liquidity. Kettler et al. (2014) explain arbitrage helps to 
narrow the bid-ask spread. Gromb and Vayanos (2010) also state that arbitrageurs could 
provide liquidity when opportunities are due to transient demand or supply shocks. Also, 
liquidity shocks could facilitates arbitrage opportunities (Ben-David et al., 2018; Roll et al., 
2007). 

Additionally, the order flow could impact the mispricings and arbitrage opportunities as 
well. Bossaerts et al. (2018) found the order flow from noise traders could lead to prolonged 
mispricings. Makarov and Schoar (2020) study the Bitcoin order book snapshots from 34 
exchanges, they find the idiosyncratic part of order flow helps explain price deviation 
between exchanges. Our research contributes to this strand of literature by showing the 
correlation between market microstructures and stablecoin mispricings. Also, we show that 
cross-exchanges arbitrage activities of stablecoins are likely to impair the market liquidity. 

In cryptocurrency markets, there is also an emerging body of research on the mispricing and 
microstructure. Mispricing and arbitrage opportunity are frequently observed in 
cryptocurrency and even stablecoin markets. Mispricings are widespread across exchanges 
and countries (Kroeger and Sarkar, 2017; Pieters and Vivanco, 2017; Makarov and Schoar, 
2020; Borri and Shakhnov, 2022; Jin, 2021; Pernice, 2021; Lyons and Viswanath-Natraj, 
2023). In terms of market microstructure, order book dataset enables researchers to analyze 
various intraday market microstructure factors. Limited studies have focused on the impact 
of order informativeness (Ghysels and Nguyen, 2019; Makarov and Schoar, 2020), liquidity 
(Brauneis et al., 2019; Dimpfl, 2017; Dyhrberg et al., 2018; Koutmos, 2018), and 
transaction fees (Easley et al., 2019) on cryptocurrency trading and price deviation. The 
design mechanism of cryptocurrency and capital control could also lead to the price 
deviation. (Lyons and Viswanath-Natraj, 2023; Pernice, 2021; Makarov and Schoar, 2020). 
We extend this existing body of work by identifying different speed of price discovery 
between exchanges lead to stablecoin mispricings, creating arbitrage opportunities.
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3. 3. Data
 
We focus on USDT/USD and USDC/USD pairs in three leading cryptocurrency exchanges 
that provide both USDT/USD and USDC/USD trading pairs, Kraken, Bitstamp and 
BinanceUS. USDT and USDC are the two largest stablecoins, which account for over 90% 
market cap and over 80% trading volume among all stablecoins (June 2024). We collect 
high frequency tick-by-tick snapshot of limit order data and trade data from 
CryptoTick.com. CryptoTick is a database that offers high frequency historical trade and 
limit order data from a bunch of centralized crypto exchanges, and it is the only database we 
find that provide pay as you go model to buy dataset we need without subscribe. 

Snapshot of limit order data describes the status of the top of the limit order book and is 
updated whenever there is a change. This data includes the best bid and ask prices along 
with the cumulative size of orders resting on the best prices, and it records the order ID, 
timestamp, best ask price, amount resting on the best ask price, best bid price, and amount 
resting on the best bid price. Trade data, on the other hand, represents matches between 
passive and active market participants. Each trade record includes an ID, timestamp, price, 
size, and the aggressor of the trade (if available). Our dataset spans from January 1, 2022, to 
June 30, 2023, which includes three major events, crash of Terra, failure of FTX and 
bankruptcy of Silicon Valley Bank (SVB). We believe the sample period is sufficient for our 
study, given that the dataset includes over 100 million snapshot of best bid and ask records 
and more than 40 million trade records. This sample period, which covers the entirety of 
2022 and first half of 2023, allows us to observe how major market shocks, such as the Terra 
crash and the FTX collapse, affected cross-exchange mispricings in the stablecoin market

To begin with, we conduct descriptive statistical analysis on dataset. Descriptive statistics of 
USDT/USD and USDC/USD quotes data are presented in Table 3.1. From table 3.1, it is 
clear that the number of updates on best limit order are tremendous, and all of them are over 
1 million times in total during sample period. Bitstamp has lowest liquidity for both USDT 
and USDC as it has widest bid-ask spread and lowest market depth (amount resting on best 
bid and ask price) while Kraken has the most market depth for both USDT and USDC. 
Table 3.2 presents descriptive statistics of trades dataset. As can be seen in table 3.2, in each 
exchange, transactions of USDT are more than that of USDC, and the number of 
transactions in Bitstamp is less than Kraken and BinanceUS. Additionally, the average trade 
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prices of two stablecoins are pretty close to 1 USD. The average trading size of USDT and 
USDC are over 1000 USD in three exchanges, and average trading size of BinanceUS is 
slightly less than that of other two exchanges. 

 
Table 3.1. Summary statistics of snapshot of limit order book data. 

Table 3.1 presents the summary statistics of USDT/USD and USDC/USD snapshot of limit order book data of Kraken, 
Bitstamp and BinanceUS, collected from Cryptotick. Snapshot of limit order book data describe status of top of the 
order book, and it will be updated when the status changes. Unit of price and average amount on best ask and best bid is 
in US dollar. Observation is the number of times that top of the order book has been updated. Sample period is from 
January 1st 2022 to June 30th 2023. 

Table 3.2. Summary statistics of trade data. 

Table 3.2 presents the summary statistics of USDT/USD, USDC/USD trades data in Kraken, Bitstamp and BinanceUS, 
collected from Cryptotick. Trade price and trade amount are both in US dollar. Sample period is from January 1st 2022 
to June 30th 2023.

From January 1, 2022, to June 30, 2023, the stablecoin markets experienced several 
significant disruptions triggered by major events in the broader crypto and financial 
ecosystem. Three prominent incidents during this period—the failure of Terra in May 2022, 
the collapse of FTX in November 2022, and the bankruptcy of Silicon Valley Bank (SVB) 

Obs Average best ask 
price

Average best bid 
price

Average amount on 
best ask

Average amount on 
best bid

Kraken USDT 25,897,803 1.00026 1.00016 3,354,263 3,618,659

Kraken USDC 6,671,019 1.00004 0.99992 2,693,622 2,179,046

Bitstamp USDT 20,437,476 1.00047 1.00006 14,786 16,827

Bitstamp USDC 32,436,920 1.00010 0.99974 40,634 10,647

BinanceUS USDT 18,747,582 0.99833 0.99821 637,706 1,111,454

BinanceUS USDC 1,961,604 0.99998 0.99987 376,708 373,385

Number of trades Average trade price Average trade amount

Kraken USDT 18,600,842 0.99997 4658

Kraken USDC 2,933,822 0.99998 3906

Bitstamp USDT 474,660 0.99889 1786

Bitstamp USDC 233,025 0.99999 3140

BinanceUS USDT 20,190,874 0.99801 1081

BinanceUS USDC 4,907,902 0.99990 1364
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in March 2023—corresponded with heightened volatility in the prices of major stablecoins, 
particularly USDT and USDC. 

The first crisis, in May 2022, followed the collapse of Terra’s algorithmic stablecoin, UST, 
which shook the market confidence in the broader stablecoins ecosystem. In the aftermath, 
USDT experienced noticeable price declines across multiple exchanges, with prices briefly 
falling as low as $0.93 before gradually recovering. This period was characterized by 
sustained deviations from the $1 peg, particularly for USDT, while USDC demonstrated 
greater resilience, experiencing only a minor and short-lived drop. 

The market shock occurred in November 2022, following the unexpected collapse of FTX, 
one of the largest cryptocurrency exchanges at the time. Both USDT and USDC again 
exhibited increased price volatility, although the magnitude of the depegging was smaller 
compared to the Terra event. USDT remained above $0.97, and most price dislocations were 
short-lived, with stability returning within two weeks.

The third event took place in March 2023, when Silicon Valley Bank, one of the key 
custodians of USDC reserves, announced bankrupt. At the time, approximately 8% of 
USDC’s reserves were held at SVB. This event led to a sharp and immediate reaction in the 
market, with USDC briefly depegging and dropping significantly to 0.7 USD. However, 
once the U.S regulators confirmed that all deposits at SVB would be protected, the price of 
USDC quickly rebounded and re-established its peg. Notably, USDC showed stronger 
resilience in the first two crises but was more directly impacted by the traditional financial 
sector shock in early 2023 due to its reserve exposure.

Taken together, these episodes illustrate that although stablecoins are designed to maintain 
price stability through pegging system, they remain vulnerable to systemic events and 
confidence shocks.

 
3. 4. Methodology 

3. 4. 1. Arbitrage identification

In cryptocurrency market, one cryptocurrency is usually traded on several different 
exchanges, and thus arbitrage by taking advantage of price deviation cross-exchanges is 
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plausible (Makarov and Schoar, 2020). Cross-exchange arbitrage is naturally suitable for 
cryptocurrency market, which is based on Law of One Price (Alsayed and McGroarty, 2012; 
Borri and Shakhnov, 2022). As a lucrative arbitrage trading strategy, cross-exchange 
arbitrage has been widely used. (Gatev et al., 2006; Chiu and Wong, 2018; Sarmento and 
Horta, 2020). The basic logic behind cross-exchange arbitrage is quite intuitive. First, 
identify the investment assets with similar historical price trends to match. Usually, these 
assets broadly share common components or exhibit a substitute relationship in economic 
terms, such as ETFs tracing same stocks. When a temporary divergence in their prices 
occurs, an arbitrage portfolio can be constructed by buying the undervalued asset and selling 
the overvalued one. When the price divergence cycle ends and the market returns to 
rationality, the paired assets will typically show a convergence trend, to make the arbitrage 
portfolio become profitable (Jacobs and Weber, 2015). In our case, cross-exchange  
arbitrage is quite simple, we track identical stablecoins in several different crypto 
exchanges, if the bid price of one exchange is higher than the ask price of another, then 
there exists an arbitrage opportunity that investors could buy at a lower ask price and sell at 
a higher bid price.

However, several arbitrage constraints exist. First is the transaction cost of arbitrage trading. 
Cryptocurrency traders on centralized exchanges need to pay trading fees for each 
transaction. The fee structures of crypto exchanges are typically volume-based, depending 
on the past 30 days' trading volume: the higher the past volume, the lower the trading fee. 
Our taker fees are based on a 20 million USD volume as the results show our arbitrage 
strategy could reach this trading amount. The taker-side trading fees at this volume level are 
0.01% for Kraken, 0.02% for Bitstamp, and 0.0375% for BinanceUS . Therefore, the total 11

trading fees are the sum of two exchanges as we are taking orders in both exchanges, which 
is 0.03% for trading between Kraken and Bitstamp, 0.0475% for trading between Kraken 
and BinanceUS, and 0.0575% for trading between Bitstamp and BinanceUS. To cover these 
fees and make a profit, we preset our thresholds to match the trading fee for each exchange 
pair, and we only detect mispricing with price difference exceeding these trading fees.

Another arbitrage constraint is the time duration of mispricing. If it lasts too short, 
arbitrageurs are not able to identify and exploit it. Marshall et al. (2013) preset a pretty 
conservative threshold for duration when exploit mispricing in ETF market, which is 15 

 Check on their websites: https://www.bitstamp.net/fee-schedule/, https://www.kraken.com/features/fee-schedule, https://11

www.forbes.com/advisor/investing/cryptocurrency/binance-us-review
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seconds. However, we argue that threshold from over ten years ago is too conservative in 
today’s high speed cryptocurrency market. Kraken claims that over 25% of all trading have 
latency less than 2.3ms, and 99% tradings have latency under 30ms in 2023 . Aleti & 12

Mizrach (2021) found that 8% Bitcoin orders on Bitstamp are done in 50ms. Based on the 
fast speed of these exchanges, we think 1 second is a safe duration even after considering 
the different location of servers of different exchanges. Alsayed & McGroarty (2013) find 
the lead lag of information between S&P 500 and DAX future markets is about 300 
milliseconds cross, proving 1 second is sufficient for information to go round. Therefore, we 
think arbitrage opportunities can be exploited if mispricing persists for more than one 
second, we set our threshold at 1 second and any mispricing that lasts less than this duration 
is not considered in our case. 

Therefore, the identification of mispricing that could be identified as an exploitable arbitrage 
opportunity should satisfy following standards:

1. Bid price in one exchange is greater than ask price in another exchange, and the 
difference must exceed our preset threshold to make profit. 

2. The mispricing lasts for over 1 second to allow arbitrageurs to identify and exploit it. 

3. The actual arbitrage trade occurs at the first set of quotes for each tokens that appear 1 
second after the potential mispricing is identified. We take all the available volume when 
executing arbitrage trading. 

Therefore, our algorithm is:

                                                            or                                                    (3.1)

                                                                                                                    (3.2)

 and  are the best ask and bid price of exchange i at time t,  and  are the best ask 

and bid price of exchange j at time t,  is our preset threshold between exchange i and j.

Then the profit rate of two scenario arbitrage opportunity is:

Bj,t

Ai,t
− 1 ≥ Ti, j

Bi,t
Aj,t

− 1 ≥ Ti, j

Ai,t Bi,t Aj,t Bj,t

Ti, j

 https://blog.kraken.com/crypto-education/performance-at-kraken12
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                                                                or                                        (3.3)

                                                                                                        (3.4)

where  is the profit rate of eq (3.1), and  is the profit rate of eq (3.2),  is the trading 

fee between exchanges i and j. To ensure that the identified arbitrage opportunities are 
genuinely profitable, we only consider those that yield a minimum profit rate of 0.01% after 
accounting for transaction costs. 

 
3. 4. 2.  Determinants of mispricing

After detecting the existence of mispricing of stablecoin, we are going to analyze the daily 
market characteristics and figure out the determinants of arbitrage appearance and 
profitability. According to Marshall et al. (2013), short-lived mispricing is not likely to be 
driven by asymmetric information. O’Hara (2015) points out during present era of high-
frequency trading, being informed means seeing and acting faster on price, order flows, 
liquidity and other factors that build so-called market microstructure. In this part, we focus 
on how factors of market microstructure impact the occurrence and profitability of 
mispricing. First, we analyze determinants of arbitrage appearance and profit through 
regression with daily data. Following the methodology in Marshall et al. (2013), we 
examine how market microstructure factors, including bid-ask spread and order flow factors 
affect the occurrence and profit rate of mispricing in daily-frequency, as these factors are the 
most representative factors of market microstructure (Amihud and Mendelson., 1986; 
Karpoff, 1987; Madhavan et al., 1997; Lee & Swaminathan, 2000;). 

The analysis is as following regression 3.5 and 3.6. Regression 3.5 tests the determinants of 
instances of arbitrage while regression 3.6 tests the determinants of profitability. In equation 
5, we use logit regression regressing on daily stablecoins bid-ask spreads, trading volume 
and order imbalance in each exchange. In equation 6, daily arbitrage profit are regressed on 
same variables. Eq 3.5 and Eq 3.6 are as follows, 

P1 =
Bj,t

Ai,t
− 1 − Fi, j

P2 =
Bi,t
Aj,t

− 1 − Fi, j

P1 P2 Fi, j
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                        (3.5)

                                      (3.6)

 
Where a binary variable  that equals to 1 when an arbitrage opportunity is detected  

on day t and 0 otherwise.  denotes sum of profit rate of arbitrage opportunities on day 
t. , ,  represent daily average bid-ask spread, trading volume and 
order imbalance, respectively. Spread is the average quoted spreads over time throughout 
the trading day of each stablecoin in each exchange, trading volume is daily trading volume, 
order imbalance is calculated as the daily difference between buyer-initiated trades and 
seller-initiated trades divided by the sum of the two.

3. 4. 3. Intraday market microstructure analysis

Then, to investigate the intraday market characteristics, we consider market microstructure 
factors immediately before, during, and after each arbitrage opportunity arises. We calculate 
each variable at the time of event,  and denote the starting time and ending time of each 
arbitrage opportunity. Time  denotes the start of the one minute prior to the arbitrage 
opportunity starting minute ,  denotes the previous minute before , and so on. 
We calculate market characteristics variables on event days and at the same time of day on 
previous 20 trading days, and calculate the difference between value of variables on the 
event day and the average value of variables on previous 20 days. We are going to calculate 
variables during a pre-event period of [ , ], an on-event period of [ , ], 
and a post-event period of [ , ]. On this more granular scale, we measure market 
microstructure variables including bid-ask spread, market depth, order imbalance, trading 
volume and return standard deviation. According Marshall et al. (2013), this approach 
allows us to observe how market microstructure factors change when arbitrage opportunities 
arise, providing insight into the differences in prevailing trading conditions between 
mispricings and normal periods.

IArbitrage,t = α0 + α1Spreadt + α2Volumet + α3Oibt + ϵt

prof itt = β0 + β1Spreadt + β2Volumet + β3Oibt + ϵt

IArbitrage,t
prof itt

Spreadt Volumet Oibt

t0 t1
t0 − 1
t0 t0 − 2 t0 − 1

t0 − 5 t0 − 2 t0 − 1 t1 + 1
t1 + 2 t1 + 5
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According to Goyenko et al (2009), in this part, spread is calculated for the first trade in 
each interval as two times the absolute value of the difference between the transaction price 
and the prevailing mid-price (effective spread). Market depth is the value of shares at the 
first level (both the bid and ask) of limit order book at the start of each period. Order 
Imbalance is calculated as the difference between buyer-initiated trades and seller-initiated 
trades divided by the sum of the two in each interval (Lee and Ready, 1991). The Return 
Standard Deviation is calculated based on the standard deviation of trade returns in each 
interval. Trading Volume is the total volume of trades in each period.

3. 5. Empirical result 

3. 5. 1. Mispricing duration and profit 

The results for the duration and profit of mispricings are presented in Table 3.3. Table 3.3 
clearly shows that a massive number of mispricings of USDT and USDC among three 
cryptocurrency exchanges are detected, where there are over 20,000 mispricings of USDT 
and 50,000 mispricings of USDC are found during sample period. Also, it shows more 
mispricings are detected between Kraken and Bitstamp, while the fewer mispricings 
occurred between Kraken and BinanceUS.  

Additionally, to examine if the validness of our strategy is impacted by the market shock 
and if these arbitrage opportunities only occurs during extreme market, we then present the 
distribution of mispricings by month in Appendix B.1. It shows that the during market 
shocks period and aftermath, frequency of mispricing did increase, but mispricings can be 
detected in every month of sample period, which suggests the effectiveness of our arbitrage 
strategy is not impacted by the crisis events. Specifically, November 2022 has most 
mispricings among all months during sample period, corresponding to the period of the FTX 
collapse. From May to August, when Terra crashed and afterwards, the number of 
mispricings in each combination of exchanges are much higher than from January to April. 
This indicates that these two events in the cryptocurrency market had a significant impact on 
stablecoins. Especially, Appendix B.1 shows that most mispricings between Kraken and 
BinanceUS were detected in May and November 2022 and March 2023, while in other 
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months, the prices of stablecoins on Kraken and BinanceUS were relatively stable, with 
fewer mispricings detected. However, between Kraken and Bistamp as well as between 
BinanceUS and Bitstamp, mispricings allowing arbitrage are largely existed before May, 
which suggests that our results are not biased because of these two events.

This increased market inefficiency and mispricings during episode of volatility might be due 
to two reasons. First one is delayed price adjustments. During episode of volatility, price 
adjusts are more frequent than usual, and different crypto exchanges and market participants 
react to new information at varying speeds. This asynchronous adjustment to new 
information leads to mispricing, particularly during periods of rapid information flow 
(Chakrabarty et al., 2012; Menkveld, 2013). Another reason might be the decreased 
liquidity. During volatile period, market depth is high likely to decrease as some 
participants, especially market makers, will withdraw from trading to avoid risk (O'Hara, 
2003; Anand and Venkataraman, 2016). And with lower liquidity, even relatively small 
trades can lead to significant price movements, causing mispricings (Amihud and 
Mendelson, 1980). 

Also, we investigated the opening and closing of each mispricing and we find these 
mispricings are more correlated with Bitstamp. It shows that over 90% of arbitrage 
opportunities are opened and closed by orders from Bitstamp, which indicates that the price 
deviation and available orders of stablecoins in Bitstamp are more significant than that in 
other sampled exchanges. 

Also, table 3.3 shows the profit rate of arbitrage opportunities after covering trading fees, 
we only investigate arbitrage opportunities with profit rate over 0.01% after covering 
trading fees. In each scenario, the minimum profit rate is 0.01% after covering transaction 
cost while the maximum profit rate is up to 1.9% for one single arbitrage opportunity. The 
positive profit rate of mispricing in each scenario is significant, indicating the cross-
exchanges mispricing of stablecoin are profitable and exploitable. 

As can be seen in Table 3.3, the net profit rates are positive after covering trading fees, 
indicating these mispricings are economically exploitable and genuine. In efficient markets, 
transaction costs typically eliminate small price differentials, ensuring that arbitrage 
opportunities cannot be exploitable or could only earn normal profits to compensate the 
risks (Fama 1970). However, the results contradicts the implication of EMH (Fama, 1970), 
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while suggesting that arbitrage opportunities could exist and profitable in stablecoin markets 
as AMH implies (Lo, 2004). The results highlight temporary violations of the law of one 
price, and the inefficiencies in stablecoin markets. The fact that our results show positive 
arbitrage profit indicates that these market frictions, mainly trading fees, are not sufficient to 
erase all pricing discrepancies.

It is worth noting that the profit rate we document is highly dependent on trading fees 
between exchanges. We then conduct a sensitivity analysis to see how trading fees of 
exchanges could impact profit and frequency of mispricings. Following Lin and Tan (2023), 
we evaluate the net profit of mispricings under different level of transaction cost, and these 
results are reported in Appendix B.2. Appendix B.2 shows the frequency and net profit of 
mispricing between Kraken and Bitstamp as well as Bitstamp and BinanceUS. In general, 
Appendix B.2 shows that the reduction of transaction cost significantly improves the return 
and frequency of arbitrage opportunities. More importantly, the results indicate that even 
with highest level of transaction cost, there are still mispricings that are exploitable with 
positive profit. Notably, due to the volume-based fee structure of crypto exchanges, it is 
reasonable that institutional traders, with higher trading volume and lower transaction cost, 
are able to make higher profit than retail investors.

Also, the summary statistics for the length of time of arbitrage opportunities are presented in 
Table 3.3. Each duration is measured as the period of time that divergent pricing exceeds 
trading cost. As mentioned before, only mispricings that last for over 1 second will be 
detected, to ensure it is a conservative indication of the length that an arbitrageur needs to 
actually exploit the opportunity. As can be seen in Table 3.3, these mispricings are removed 
relatively quickly, where the mean durations of arbitrages in each scenarios are ranging 
from 24s to 157s. Moreover, the median duration of mispricings across different scenarios 
ranges from 5 to 33 seconds, the 75th percentile for each type of mispricing remains below 
127 seconds, and the longest mispricing lasts less than one hour. 

The rapid removal of arbitrage opportunity in stablecoin market is quite different to the 
results of the majority of prior studies on arbitrage in equity and other cryptocurrency 
markets that mispricings can last for a long time. For example, mispricings allowing 
arbitrage can exist in dual-listed stocks market (Froot and Dabora, 1999; Mitchell et al., 
2002; Schultz and Shive, 2010) and cryptocurrency market for months and even over a year 
(Makarov and Schoar, 2020; Crépellière et al., 2023). Even between stablecoin primary and 
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secondary market, the duration of mispricings can exist for over ten days (Lyons and 
Viswanath-Natraj, 2023). 

Table 3.3. Arbitrage profit and durations 

Table 3.3 presents the distribution of profit and duration of mispricing in each scenario. The data is collected from the 
Thompson Cryptotick and the results relate to the January 1st 2022 – June 30th 2023 period. The profit rate is after 
considering transaction cost, we investigate all arbitrage opportunities that could generate at least 0.01% profit rate. All 
profits are in percent and durations are in seconds. 

 
On the contrary, we suggest the relatively rapid removal of mispricings within stablecoin 
secondary market is consistent with the case in Alsayed and McGroarty (2012) that stock-
ADR mispricing reduces by half in around 7 min, Busse and Green (2002) that price 

N Min 25 Per Median Mean 75 Per Max Std Dev

Panel A : Kraken overpriced/Bitstamp underpriced 
US
DT

Profit 1843 0.010% 0.023% 0.037% 0.062% 0.057% 1.79% 0.043%
Duration 1843 1 8 33 106 127 1576 136

US
DC

Profit 2602 0.010% 0.019% 0.032% 0.053% 0.072% 1.98% 0.023%
Duration 2602 1 3 19 132 81 2626 281

Panel B :Bitstamp overpriced/Kraken underpriced 
US
DT

Profit 1991 0.010% 0.023% 0.031% 0.042% 0.049% 0.637% 0.051%
Duration 1991 1 4 12 56 54 782 164

US
DC

Profit 2973 0.010% 0.015% 0.022% 0.040% 0.082% 0.770% 0.031%
Duration 2973 1 3 7 39 14 3223 414

Panel C :Kraken overpriced/BinanceUS underpriced 
US
DT

Profit 102 0.010% 0.020% 0.021% 0.032% 0.031% 0.189% 0.034%
Duration 102 1 6 21 75 77 605 122

US
DC

Profit 25 0.019% 0.020% 0.029% 0.061% 0.055% 0.280% 0.075%
Duration 25 1 3 6 81 123 565 156

Panel D:BinanceUS overpriced/Kraken underpriced 
US
DT

Profit 227 0.010% 0.020% 0.029% 0.051% 0.061% 0.430% 0.066%
Duration 227 1 2 5 24 23 319 50

US
DC

Profit 32 0.010% 0.019% 0.020% 0.041% 0.050% 0.17% 0.042%
Duration 32 1 5 20 74 121 371 101

Panel E :Bitstamp overpriced/BinanceUS underpriced 
US
DT

Profit 2214 0.010% 0.017& 0.029% 0.042% 0.046% 0.580% 0.047%
Duration 2214 1 4 26 117 89 2646 295

US
DC

Profit 976 0.011% 0.014% 0.019% 0.029% 0.031% 0.750% 0.045%
Duration 976 1 3 13 83 65 1561 184

Panel F :BinanceUS overpriced/Bitstamp underpriced 
US
DT

Profit 2090 0.01% 0.018% 0.029% 0.044% 0.075% 1.83% 0.235%
Duration 2090 1 7 29 115 103 1834 221

US
DC

Profit 1606 0.01% 0.014% 0.021% 0.037% 0.039% 1.95% 0.037%
Duration 1606 1 3 12 157 89 3243 408
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deviations in the stock market converge to an efficient level within 1 to 15 minutes 
following CNBC reports. Moreover, Chordia et al. (2005) find that it takes up to 60 minutes 
for mispricing to be corrected following order imbalances, Marshall et al. (2013) find 
mispricings allowing for arbitrage in the ETF market last only around 2 minutes on average. 
We suggest our results in stablecoin market is align with these empirical evidences that the 
mispricings are quickly removed, which implies investors who want to pursue the arbitrage 
opportunities are able to do so in stablecoin market, which is consistent with the presence of 
arbitrageur in stablecoin market (Lyons and Viswanath-Natraj, 2023).

These short-lived arbitrage opportunities in stablecoin markets lend support to the Adaptive 
Market Hypothesis (AMH) of Lo (2004), where the implication of evolutionary processes 
can help to explain the frequent mispricings and their quick removal. In our study, the 
divergents in pricing are quickly corrected and return to equilibrium. This rapid adjustment 
process is the hallmark of the AMH (Sulima, 2021; Shi and Zhou, 2017), as it illustrates 
how market participants respond to inefficiencies and contribute to the overall market 
efficiency. Also, the increased arbitrage potential during crisis events in May 2022, 
November 2022 and March 2023 also fits with AMH, as crisis events disrupt the normal 
functioning of markets, leading to more frequent deviations from expected pricing behavior 
and thus temporary inefficiencies. And these inefficiencies in price peg are removed quickly 
by arbitrageurs. Under the AMH, the documented arbitrage returns may represent 
occasional but economically meaningful profits. These profits not only help sustain the 
operation of market participants who actively monitor and exploit inefficiencies, but also 
serve as a form of compensation for their contribution to improving market efficiency.

However, the existence of arbitrage opportunities does not imply that arbitrage is always 
frictionless or fully exploitable in practice. There are some limits to arbitrage that might 
prevent arbitrageurs from correcting the mispricings as almost all arbitrage is not costless 
and riskless (Shleifer and Vishny, 1997; Mitchell et al., 2002). In implementing this 
arbitrage strategy, market participants may encounter substantial trading and information 
acquisition costs. According to the fee structures of major centralized exchanges such as 
Kraken, Bitstamp, and BinanceUS, trading fees are primarily determined by the participant's 
trading volume over the previous three days. As a result, retail arbitrageurs with relatively 
low trading volumes broadly face higher fees, which may reduce or eliminate the 
profitability of exploiting small mispricings. In addition, information acquisition costs 
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represent another significant limitation. The arbitrage opportunities identified in this study 
are typically short-lived and require rapid detection and execution. As noted by Grossman 
and Stiglitz (1976, 1980), acquiring and processing market information is inherently costly, 
and arbitrageurs must be compensated for the role they play in restoring price efficiency. 
Similarly, Chen et al. (2020) emphasize that market efficiency is closely linked to the cost of 
acquiring timely and accurate information. Therefore, according to the literature, these high 
trading and information costs might be limits that prevents arbitrageurs from acting on small 
mispricings, particularly when the expected returns are insufficient to cover these frictions. 
However, in our case, information acquiring cost is minimal as many database and crypto 
exchanges offer free API to get real-time market data.

In addition, convergence risk is an important limit to arbitrage (Marshall et al., 2013). It 
refers to the uncertainty regarding when, or even whether, a mispricing will be corrected. In 
other words, simply identifying and trading on mispricings does not guarantee that profits 
will be realized promptly or at all, as as “the market can stay irrational longer than you can 
stay solvent” . Moreover, inventory risk poses another constraint in the context of 13

stablecoin arbitrage. This risk arises when arbitrageurs need to hold an asset while waiting 
to complete the arbitrage process, during which period the price may move adversely. In the 
case of centralized crypto exchanges, the limits and high cost of shorting selling in 
centralized crypto exchanges require arbitrageurs to pre-fund accounts with both USD and 
stablecoins. This need to maintain positions over time increases exposure to inventory risk.

However, we argue that both convergence risk and inventory risk are negligible in the 
context of our study. We are tracking identical assets across exchanges, which absolutely 
avoids the convergence risk. Also, as the sampled stablecoins in our case are all fully backed 
by reserves and are designed to maintain a one-to-one peg to the US dollar, which indicates 
that stablecoins prices are not likely to significantly move unfavorably. Therefore, the risk of 
adverse price movement while holding inventory is minimal because stablecoin prices 
rarely deviate substantially from their peg.

Finally, it is important to acknowledge that there may be additional costs or risk factors that 
remain unidentified or unexplored in the existing literature (Marshall et al., 2013). As such, 

 http://www.maynardkeynes.org/keynes-the-speculator.html. 13
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the observed profits might not only need to compensation for these observable frictions, but 
also for these unquantified risks that arbitrageurs might come across.

3. 5. 2. Determinants of mispricing

We then further analyze the determinants of mispricing occurrence and profit rate on daily 
basis by running regressions (3.5) and (3.6). The results relating to the determinants of 
arbitrage instances and the magnitude of arbitrage profits are presented in Table 3.4. Panel A 
presents the determinants of mispricing allowing arbitrage occurrence, showing the results 
of regression (3.5) and Panel B presents the determinants of arbitrage profit, showing the 
results of regression (3.6). 

As can be seen in Table 3.4, it is clear that trading volume is positively correlated with both 
the occurrences and the profitability of arbitrage opportunities, while order imbalance is 
negatively correlated with them. However, the bid-ask spreads do not show a clear or 
significant relationship with either the occurrence or the profitability of arbitrage 
opportunities. The results in Panel A demonstrate that arbitrage opportunities are more likely 
to occur on days with higher trading volume. Furthermore, the significant and negative 
coefficients of order imbalance in Panel A indicates that there is a significant negative 
relationship between the instance of arbitrage opportunities and order imbalance, suggesting 
that arbitrage opportunities are more likely to occur when market is facing one-sided selling 
pressure. The daily bid-ask spreads on Kraken or Bitstamp do not appear to influence the 
occurrence of arbitrage opportunities. Panel B shows that arbitrage profits tend to be higher 
during periods of increased market activity, and that selling pressure may contribute to 
higher daily arbitrage profits. Similarly, there is no significant relationship between the bid-
ask spread and either the occurrence or profitability of arbitrage opportunities on a daily 
basis. 

The additional results from regressions 3.5 and 3.6 for USDT and USDC of other exchange 
combinations are presented in Appendix from B.3 to B.7. These results largely show similar 
patterns to those in Table 3.4, where trading volume is positively correlated with both the 
frequency of arbitrage opportunities and profitability, and order imbalance is negatively 
correlated with both. However, in some cases, there is a positive relationship between the 
bid-ask spreads and both the frequency and profitability of arbitrage opportunities, 
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particularly in the mispricing between Kraken and BinanceUS. This indicates that arbitrage 
opportunity is more likely to occur and profits tend to be higher when bid-ask spreads in the 
limit order book are wider. The vague relationship between bid-ask spreads and the 
arbitrage instance or profitability in daily basis requires a more granular analysis, and the 
further  relationship will be explored in the subsequent intraday analysis.

To ensure the robustness of our results, we re-estimate regressions (3.5) and (3.6) using 
subsample datasets from three crisis periods—May 2022 (Terra crash), November 2022 
(FTX collapse), and March 2023 (SVB bankruptcy). The results remain consistent with 
those from the full sample. 

 
Table 3.4. Determinants of Instances of Arbitrage and Arbitrage Profits of USDT. 

Table 3.4 shows the results of regressions of determinants of arbitrages of USDT between Kraken and Bitstamp on daily 
basis, the results relate to the January 1st 2022 – June 30th 2023 period. Panel A presents the determinants of arbitrage 
occurrence, Panel B presents determinants of arbitrage profit. Spread is the average of quoted spreads over time 
throughout each day, trading volume is the daily total trading volume, order imbalance is calculated as the difference in 
the absolute value between buyer-initiated trades and seller-initiated trades divided by the sum of the two. Panel B 
results are based on a logit regression of a dependent variable that equals one on days an arbitrage opportunity is created 
and zero otherwise. K-overpriced (Bit-overpriced) denotes USDT in Kraken (Bitstamp) is overpriced. These variables 
passed the ADF test and VIF test for stationary and multicollinearity. Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

K-overpriced, Bit-underpriced K-underpriced, Bit-overpriced

Panel A: Determinants of Instances of Arbitrage
Spread -2.85 2.36

Kraken
Trading volume      7.31***       4.01***
Order imbalance     -2.83***      -2.79***

Adjusted R-square 0.04 0.06

Spread 23.42 11.32

Bitstamp
Trading volume      10.84***      6.63***
Order imbalance       -1.44***     -1.94***

Adjusted R-square 0.10 0.13

Panel B: Determinants of Arbitrage profits
Spread 0.098 0.005

Kraken
Trading volume       0.531***       0.239***
Order imbalance      -0.066**      -0.027***

Adjusted R-square 0.304 0.148

Spread -0.043 -0.041

Bitstamp
Trading volume        0.248***       0.145***
Order imbalance     -0.026**    -0.015**

Adjusted R-square 0.265 0.153
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3. 5. 3. Intraday market characteristics analysis  

Then following the approach in Marshall et al. (2013), we turn our attention to considering 
intraday market characteristics changes at each mispricing. We calculate each variable at the 
time of the mispricing allowing arbitrage,  and  denote the starting time and ending time 
of each arbitrage opportunity. Time  is the start of the minute prior to the arbitrage 
opportunity starting,  is the previous minute of , and so on. We measure each 
variable around each arbitrage opportunity and that at the same time of the day on the 
previous 20 trading days without mispricing. Then we calculate the percentage changes 
between the mean of variables during arbitrage opportunities and the mean of variables on 
the previous 20 days. We are going to calculate three periods around each arbitrage 
opportunity, a pre-event period of [  to ], an on-event period of [  to ], 
and a post-event period of [  to ]. In this more microscopic scale, we consider 
market microstructure variables including bid-ask spreads, market depth, order imbalance, 
trading volume and return standard deviation. Since we need to calculate variables from 5 
mins before mispricing starting to 5 mins after it ending, any mispricing that occurred 
within ten minutes will be considered into one to avoid overlap of period. The results of 
USDT market characteristics changes during mispricing between Kraken and Bitstamp are 
presented in Table 3.5. Additional results are demonstrated from Appendix B.8 to B.12. 

Table 3.5 results show the market characteristics changes of mispricing and non-mispricing 
period of USDT between Kraken and Bitstamp. Panel A shows the changes of market 
characteristics when USDT in Kraken (Bitstamp) is overpriced (underpriced); Panel B 
shows the changes of market characteristics in opposite scenario. Table 3.5 indicates the 
factors of microstructure changes drastically around arbitrage opportunities than the 
equivalent time of day in the prior 20 trading days. Specifically, it shows that bid-ask 
spreads increase in both Kraken and Bitstamp throughout from pre-event period to post-
event period. 

t0 t1
t0 − 1

t0 − 2 t0 − 1

t0 − 5 t0 − 2 t0 − 1 t1 + 1
t1 + 2 t1 + 5
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Table 3.5. Market characteristics of USDT between Kraken and Bitstamp. 

This table presents percentage increases (positive) and decreases (negative) based on the numbers from the same time of the day on 
the previous 20 trading days without mispricing, if there is a mispricing at the same time of the day in previous 20 trading days we 
take earlier trading days. The results relate to the January 1st 2022 – June 30th 2023 period. Two arbitrage opportunities occur within 
10 minutes will be combined to avoid period overlap. Spread is calculated for the first trade in each interval as two times the absolute 
value of the difference between the transaction price and the prevailing mid-price (effective spread). Depth is the value of shares at 
the first level (both the bid and ask) of order book at the start of each interval. Order Imbalance is calculated as the difference in the 
absolute value between buyer-initiated trades and seller-initiated trades divided by the sum of the two in each interval. Statistical 
significant changes at the 10% level or higher are in bold. Statistical Significant of bootstrap test at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

In Kraken, spreads are significantly higher during the while window (minute -5 to 5) than 
the equivalent time of day in the prior 20 trading days. Particularly, when USDT in Kraken 
(Bitstamp) is overpriced (underpriced), spreads in Kraken are 31.1% to 38.5% higher. When 
USDT in Kraken (Bitstamp) is underpriced (overpriced), bid-ask spreads in Kraken during 
the whole window (minute -5 to 5) increase 5.2% to 18.8%. In Bitstamp, bid-ask spreads 
also significantly increase at mispricings, and the increments are even larger than that in 
Kraken. When USDT in Kraken (Bitstamp) is overpriced (underpriced), bid-ask spreads are 
162.1% to 194.8% larger; when USDT in Kraken (Bitstamp) is underpriced (overpriced), 
they are 78.9% to 83.6% larger. The changes in bid-ask spreads during the whole mispricing 
periods suggest that increasing in bid-ask spreads might contribute to the arise of 
mispricing, providing evidence of a positive correlation between mispricing instances and 
bid-ask spreads in more granular analysis. 

Additionally, Table 3.5 presents that mispricings usually come with decreasing in market 
depth. Market depth of USDT in both Kraken and Bitstamp are significantly lower not only 
during on-event window (minute -1 to 1), but also during the whole windows (minute -5 to 

Kraken  Bitstamp

Panel A : Kraken-overpriced, Bitstamp-underpriced 

Spread 37.4%*** 38.5%*** 31.1%*** 173.6%*** 194.8%*** 162.1%***

Depth -43.7%*** -44.6%*** -44%*** -37.6%*** -37.3%*** -55.9%***

OIB -8.4%* -7.2%*** -9.7%** -5.1% 7.0%*** 14.6%***

Trade volume 105.4%*** 214.2%*** 87.8%*** 198.2%*** 251.0%*** 201.5%***

Return std 16.8%*** 18.7%*** 19.2%*** 461.8%*** 807.7%*** 591.2%***

Panel B : Kraken-underpriced Bitstamp-overpriced 

Spread 5.2%** 7.5%*** 18.8%*** 78.9%*** 83.6%*** 80.2%***

Depth -22.1%*** -24.1%*** -23.4%*** -28.6%*** -8.2%*** -44.0%***

OIB -0.7% 1.9% 4.9%** -5.2%* -14.0%*** -16.8%***

Trade volume 45.8%*** 115.6%*** 61.3%*** 277.7%*** 1532.7%*** 209.8%***

Reture std 8.3% 13.3%** 18.3%** 520.8%*** 417.1%*** 362.3%***

t0 − 5 t o t0 − 2t0 − 5 t o t0 − 2 t1 + 2 t o t1 + 5 t0 − 1 t o t1 + 1t0 − 1 t o t1 + 1 t1 + 2 t o t1 + 5
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+5). During on-event period (minute -1 to 1), the percentage of market depth reduction in 
Kraken are 24.1% and 44.6%, and the percentage of market depth reductions in Bitstamp 
during on-event period are 8.2% and 55.9%. The significant increase in bid-ask spreads and 
decreasing in market depth during pre-event period (minute -5 to -2) indicates that market 
liquidity might drive the cross-exchanges mispricings. Also, the decrease of market depth 
and increase in bid-ask spreads during post-event period (minute 2 to 5) suggest that the 
arbitrage tradings might impair the market liquidity, we will discuss these in more detail 
below. 

Changes in order imbalance are relatively smaller than that of bid-ask spreads or market 
depth, but most of them are significant and demonstrate contributions to removing 
mispricing, especially in Bitstamp. Order imbalance in Kraken is 7.2 % lower during the on-
event window (minute -1 to +1) when USDT in Kraken (Bitstamp) is overpriced 
(underpriced), suggesting a stronger selling pressure to overpriced USDT. Similarly, in this 
scenario of mispricing, order imbalance in Bitstamp is 7.0% higher during on-event (minute 
-1 to +1) window, showing an increasing buying pressure to underpriced USDT. The results 
indicate order imbalance is contributing to converge the price deviation between two 
exchanges. On the other hand, when USDT in Kraken (Bitstamp) is underpriced 
(overpriced), the changes of order imbalance in Kraken is not significant, but the order 
imbalance in Bitstamp shows a significantly intensified selling pressure to overpriced USDT 
during on-event window (minute -1 to 1), which is 14% lower. The order imbalance changes 
presented in Table 3.5 are largely showing an increasing buying pressure to underpriced 
USDT and an intensified selling pressure to overpriced USDT, indicating order imbalance 
contributes to the removal of mispricings. The results are also consistent with existence of 
arbitrageurs within stablecoin secondary market, indicating arbitrageurs who want to exploit 
cross-exchanges mispricings are able to do so. Also, our results provide empirical evidence 
that arbitrage in stablecoin market is beneficial to the price stability (Pernice, 2021; Lyons 
and Viswanath-Natraj, 2023). Contrary to Jin (2021) who argue cross-exchanges arbitrage 
cannot help to restore price deviation, the order imbalance and rapid-removal mispricings in 
our empirical studies show that stablecoin cross-exchanges arbitrages do contribute to the 
eliminating of  price deviation between exchanges. 

Trading volume in both the Kraken and Bitstamp increases during the whole period (minute 
-5 to 5) around mispricings. In both scenarios, trading volume in Kraken and Bitstamp at 

122



Chapter  3   Stablecoin Mispricing: Cross-Exchanges Arbitrage                                                                                               

mispricings increase largely, especially during on-event period (minute -1 to 1). The 
increasing trading volume indicates market becomes more active during mispricing than 
non-event period. However, even though the trading volume increases, the liquidity still 
decreases as the bid-ask spreads go up and market depth goes down. Johnson (2008) points 
out that previous empirical studies find volume and liquidity (e.g. bid-ask spread) to be 
unrelated. Our results indicate the significant price distortion between the two exchanges 
occurs when both spreads and trading volume escalates with decrease of market depth, 
which may suggests massive arbitrage tradings that dry out liquidity of market (Foucault et 
al., 2017; Jin, 2021), we will discuss this in detail below. 

We also find that return standard deviation increases both in Bitstamp and Kraken during 
whole period of mispricing. Arbitrage opportunities are more likely to be created when the 
market is volatile. Our findings are consistent with Deuskar & Johnson (2011) who show 
that unpredictable flow driven risk could explain most market variance, and Marshall et al. 
(2013) that return is becoming more volatile when market liquidity decrease. This could 
also help to explain the increasing mispricings allowing arbitrage when stablecoin is when 
market is at extreme volatility due to the crisis during May and November 2022. The results 
show arbitrage opportunity usually occur when price is at large volatility.  The rest results of 
intraday market characteristics analysis during mispricings are demonstrated in Appendix 
from B.8 to B.12, which present a similar pattern as in Table 3.5.
 

The results of microstructure characters analysis indicates that order imbalance contributes 
to the removal of mispricings, however, the increasing bid-ask spreads and decreasing 
market depth during on-event (minute -1 to 1) and post-event (minute 2 to 5) suggest this 
removal of mispricings comes at the cost of temporarily drying up market liquidity. These 
dramatical changes of microstructure characters demonstrate a picture that when mispricing 
occurs, arbitrageurs take the top orders from limit order book which bring the mispricing, 
causing the increasing of bid-ask spreads and decreasing of market depth. Due to the 
massive arbitrage trades, the trading volume surges largely. Our results provide empirical 
evidence supporting the short-lived nature of mispricings and the contribution of order 
imbalance, suggesting that cross-exchange arbitrage can also eliminate mispricings, which 
contradicts Jin's (2021) conclusion.
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The drastic changes in bid-ask spread, market depth, order imbalance, and return volatility 
around mispricings demonstrate that market microstructure conditions are central to the 
occurrence and removal of pricing deviations. A widening bid-ask spread reflects higher 
trading costs and compensation for adverse-selection or inventory risk (Glosten & Milgrom, 
1985; Ho & Stoll, 1981), while declines in market depth signal thinner order books that 
heighten price sensitivity to trades. Order imbalances indicate one-sided trading pressure, 
consistent with their predictive role for short-term returns (Chordia, Roll & Subrahmanyam, 
2000), and elevated volatility captures the heightened uncertainty and information 
asymmetry during dislocations (Kyle, 1985). These findings imply that mispricings are 
closely tied to liquidity provision, trading flows, and risk perceptions rather than being 
isolated anomalies. Their reversal following arbitrage further underscores that restoring 
normal microstructure conditions is essential for prices to converge back to equilibrium, 
aligning with theories of arbitrage as a stabilizing mechanism (Shleifer & Vishny, 1997). 

So far, these bid-ask spread, depth, order imbalance, and return standard deviation results 
suggest that what might be called “microstructure factors’’ might be one source of 
mispricing that leads to arbitrage opportunity. According to Foucault et al. (2017), this 
arbitrage activity that depletes market liquidity in our case might be “toxic”, and it is created 
because arbitrageurs’ profits in these trades are obtained with stale quotes. Easley et al. 
(2012) claims that order is regarded as toxic when it adversely selects traders who may be 
unaware that they are providing liquidity at a loss. They suggest in this scenario, short-lived 
arbitrage opportunities might be caused by the asynchronous adjustments in asset prices 
following information arrival instead of price pressure. 

Specifically, Foucault et al. (2017) claims that arbitrageurs can be harmful for other 
investors, depending on the cause of arbitrage opportunities. When arbitrage opportunities 
are due to temporary demand or supply shocks (“price pressures”), arbitrageurs implicitly 
act as liquidity providers by exploiting them (see. Gromb and Vayanos, 2002, 2010). 
However, short-lived arbitrage opportunities are also due to asynchronous adjustments in 
asset prices following information arrival. Arbitrageurs’ profits in these trades are obtained 
at the expense of traders with stale quotes and thus high-speed arbitrageurs can harm market 
liquidity in this case by take the top orders of limit order book and wider the bid-ask spreads 
and lower the market depth (Copeland and Galai, 1983). In this scenario, slow traders are 
providing extra liquidity to the market at a loss, such as selling at a discount or buying at a 
premium. Arbitrageurs then match these orders, removing the mispricing and taking the 
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extra liquidity at the same time, their profit are acquired at the expense of other traders. 
Therefore, following the approach of Chordia et al. (2005), we then conduct a impulse 
response function test to investigate if price discovery speed difference contributes to the 
arbitrage opportunities we document. The results are presented in Figure 3.1.

Fig 3. 1. Impulse Response Function: Response of exchanges to one unit of USDT market shock. 

Figure 3.1 shows the results Impulse Response Function of each exchanges. It shows the response of USDT mid-quote 
price in each exchanges to one unit shock (one unit standard deviation) of daily market volatility of USDT. The results 
relate to the sample period from January 1st 2022 – June 30th 2023. The solid line is the mean result and the dashed lines 
represent the two-standard error bounds. These plot are generated from days there is mispricing generating arbitrage 
opportunities. 

In Figure 3.1, we illustrate the response of USDT mid-quote price in each exchange to a 
standard deviation shock of one unit (one standard deviation) in stablecoin market volatility, 
over a 10-days period. These results are generated from days with mispricings. The daily 
USDT market price are collected from CoinMarketCap, which is calculated by taking the 
volume weighted average of all USDT/USD reported by each exchange , representing the 14

the market price of USDT. 

The results show different response speeds of USDT price in each exchanges to a market 
shock. Bitstamp reacts slower to market shock than other two exchanges while Kraken has 
fastest response. Specifically, once receiving shocks from market, it only takes 2 days for 
Kraken to its initial position, which is 0 in the y-axis, and BinanceUS takes 3 days to initial 
level while it takes 4 days for Bitstamp to get back to 0. These three exchanges have 

 https://support.coinmarketcap.com/hc/en-us/articles/360015968632-How-are-prices-calculated-on-CoinMarketCap14
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different response  speed to market shock, suggesting different price discovery. Additionally, 
the result that Bitstamp has slowest response to market shock with the fact that most 
arbitrage opportunities are opened and closed by orders from Bitstamp suggest differences 
in price discovery time between exchanges also contribute to mispricings we document, and 
this might be another source of cross-exchanges mispricing of stablecoin. 

3. 5. 4. Robustness tests

To ensure the robustness of our results and to examine whether the identified arbitrage 
opportunities extend beyond sample period, we conduct an out-of-sample robustness check. 
Specifically, we collect USDT quotes data from Kraken and Bitstamp on the first day of 
each month in 2024 and assess the existence of cross-exchange mispricings allowing for 
arbitrage. Even after incorporating the highest trading fees, we identify 337 exploitable 
arbitrage opportunities over this 12 days, yielding potential cumulative profits exceeding 
$460. These results corroborate our main findings and provide additional evidence that 
stablecoin mispricings between exchanges are not confined to specific sample periods. The 
recurrence of arbitrage opportunities across time further suggests that such mispricings are 
persistent and potentially systematic.

 
3. 6. Discussions

Based on the arbitrage and microstructure theory (Ross, 1976; Kyle, 1985; Amihud and 
Mendelson, 1986;), we investigate the cross-exchanges mispricings of stablecoins and the 
prevailing market microstructure when mispricing is created. We detected mispricings that 
allow arbitrage, and their frequency, profitability and duration. The frequent and quickly 
removed arbitrage opportunities indicates the efficiency of stablecoin market evolves over 
time, suggesting AMH (Lo, 2004) in stablecoin market. 

Also, our results show that the mispricings have enough profitability to cover the transaction 
cost across exchanges, bring profits to arbitrageurs. The profits generated from mispricings 
we document are not risk-free, however, we believe these risks of arbitrage, such as 
convergence risks and inventory risks are small enough to neglect in our case. Specifically, 
as short-selling is not allowed in these exchanges, arbitrageurs have to prepare a certain 
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amount of stablecoins in advance, bringing them convergence risks and inventory risks. But 
due to the stability of stablecoins, we argue that the convergence risk and inventory risk are 
reduced to minimal. Additionally, although these arbitrage opportunities are quickly 
disappeared, indicating arbitrageurs face strong competitions and need to identify and 
execute these mispricings quickly, the results suggests the durations of arbitrage 
opportunities are long enough for arbitrageurs to exploit. Our results show that in real life 
market, arbitrage exists but is limited by factors including capital constraints, market 
conditions, and the behavior of other market participants, which is consistent with modern 
arbitrage theory and AMH  (Lo, 2004;  Shleifer and Vishny, 1997). 

Furthermore, we also examine the prevailing market microstructures when mispricings are 
created. According to Marshall et al. (2013), we investigate the bid-ask spreads, market 
depth, order imbalance, trading volume and trade-to-trade returns, our analysis shows these 
microstructure factors change significant prior to the occurrence of mispricings. We find 
these microstructure factors such as liquidity, order imbalance could lead to temporary 
market inefficiency and might be one source of mispricings. These findings are consistent 
with previous theoretical work that market microstructure contributes to mispricing fits into 
emerging market like stablecoin market (Kyle, 1985; Hasbrouck, 1991). Our study also 
support the claims in previous theoretical works that market microstructure is a driver of 
market inefficiency, as reflected in the the occurrence of mispricings and arbitrage 
opportunities (e.g. Kyle, 1985; Hasbrouck, 1991; Grossman and Stiglitz, 1980; Black, 1986; 
De Long et al., 1990; Amihud and Mendelson, 1986). 

Additionally, we generate an impulse response function test for stablecoin price in each 
exchange to a unit shock of stablecoin market. The results show that these exchanges 
respond to a market shock with different speed, suggesting that differences in price 
discovery times might be another drivers of the mispricings we document. Our finding 
proves that the asynchronous price discovery exists across different trading venues of 
stablecoins, and delays in information processing may lead to temporary misalignments in 
prices. Our studies provide empirical evidence to support the information dissemination 
theory in Hasbrouck (1995) that delays in information dissemination lead to price deviation 
in short term. According to Barclay and Hendershott (2003), increasing the price discovery 
speed of each exchange might mitigate the cross-exchanges mispricings of stablecoin. 
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Overall, our results show that stablecoin market fits into the theory of market microstructure 
and implications of AMH (Ross, 1976; Kyle, 1985; Amihud and Mendelson, 1986; Lo, 
2004), which the market efficiency evolves over time and pretty much depend on market 
conditions, microstructure factors and price discovery.  

3. 7. Conclusions

This chapter focus on cross-exchanges mispricings that allow arbitrage opportunities of 
stablecoins, we analyze the prevailing trading conditions when mispricings are created. We 
suggest these short-lived arbitrage opportunities are consistent with Adaptive Market 
Hypothesis (Lo, 2004), where the evolutionary processes of market conditions and 
efficiency are supportive to the implications of Adaptive Market Hypothesis. Our papers 
also show that the theory of arbitrage and the limits of arbitrage fits into stablecoin markets 
(Ross, 1976; Kyle, 1985; Amihud and Mendelson, 1986; Shleifer and Vishny, 1997; 
Mitchell et al., 2002). 

Our research is based on the high-frequency tick-by-tick snapshot of limit order book data 
and trade datasets of USDT/USD and USDC/USD in three leading centralized exchanges. 
High frequency datasets allow us to capture quickly removed mispricings and evolving 
market microstructures. Also, USDT and USDC are suitable for this study as they are highly 
liquid, which are more liquid than an U.S stock and ETF. Having highly liquid assets in this 
study is important as it allows us to calculate meaningful statistics at high frequencies.

In addition, stablecoins are natural suitable for arbitrage studies for some reasons. First, 
fully-backed stablecoins are traded in multiple exchanges and totally identical in all of them, 
this character brings low fundamental risk; second, stablecoin are pegged to fiat currency, 
making the price deviation easy to observe; last, stablecoin providers have incentive to 
minimize tracking error so as to attract more users and holders which mitigates the risk that 
stablecoins will not go back to their peggings or not converge from mispricings, which 
reduces the convergence risk and inventory risk in the arbitrage setting.  

We detected massive mispricings across centralized exchanges, which creates arbitrage 
opportunities within stablecoin secondary markets. We demonstrate that these mispricings 
could generate positive profits after considering transaction costs. Our sensitivity analysis 
shows that even under various level of transaction costs, these mispricings exist and are 
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profitable for investors. The durations of arbitrage opportunities indicate that these 
mispricings are quickly corrected, but are persistent enough for arbitrageurs to exploit. 

The prevailing market characteristics analysis suggests that market microstructure factors 
significantly contribute to the mispricing that enables arbitrage. We show that bid-ask 
spreads widen and market depth decreases during the windows when arbitrage opportunities 
occur, while trading volume and return volatility surge. Further Impulse response function 
analysis show that asynchronous price adjustments across exchanges might contribute to the 
observed mispricings.

To the best of our knowledge, chapter three is the first empirical study that focus on cross-
exchanges mispricings of stablecoins. Our research provides a new arbitrage route and 
proves it is practical, which might help to remove smaller price de-pegging as Lyons and 
Viswanath- Natraj (2023) find more intensive arbitrage activity could reduce price deviation 
of stablecoins. Also, our research sheds light on the new factors that result in mispricings of 
fully-backed stablecoins. Understanding the mispricings of stablecoins is important for 
academic literature and also for the cryptocurrency industry sector and the financial 
regulators. Furthermore, as stablecoin is now becoming the most important medium of 
exchange in cryptocurrency market, its financial stability and market efficiency is vital to 
the whole market. 

This study provides valuable implications for stablecoin issuers and cryptocurrency 
exchanges. For stablecoin issuers, the findings highlight the vulnerability of stablecoins 
price stability to large one-sided orders and liquidity shortages. This suggests a need to 
strengthen stability mechanisms. For crypto exchanges, our results suggest that improving 
the speed of price adjustment to new information could help reduce stablecoins mispricings 
and enhance market efficiency. Identifying more factors that lead to mispricing of stablecoin 
can equip stablecoin providers with more toolkits to prevent huge financial instability and 
provide more stability in the market. This is essential for protecting vulnerable stablecoin 
users who engage with crypto asset without sufficient background, knowledge and financial 
cushion to absorb the inherent volatility, and this is also crucial to keep promise of 
cryptocurrency that offering a stable financial system free from banks, a store of value and 
medium of exchange in daily payment.
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Chapter 4

High-frequency Lead-Lag Relationships of Cryptocurrencies 

and Crypto Exchanges

Abstract

We investigate high-frequency cross-venue and cross-asset lead-lag relationships in the 
cryptocurrency market. Using tick-level snapshot of limit order book data, we demonstrate 
that lead-lag relationships of a few hundred milliseconds exist both across major centralized 
cryptocurrency exchanges and among different cryptocurrencies. Notably, in contrast to 
prior research, we find that Bitcoin occupies a lagging position at the high-frequency level, 
while Solana and XRP being leading assets among the sampled tokens. In terms of  
cryptocurrency exchanges, Bitstamp holds a relatively leading position, whereas Bitfinex 
tends to lag. Our analysis further reveals that market depth and order book resilience are 
correlated with lead-lag positions of cryptocurrencies. Furthermore, these rapid lead–lag 
relationships within the same exchange exhibit pronounced intraday patterns, diminishing 
during the opening hours of the U.S. stock market.

Key words: Lead-Lag Relationships, cryptocurrency, crypto exchanges, 

Hayashi-Yoshida Estimator. 
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4. 1. Introduction 
 
Cryptocurrencies are digital currencies that are built on blockchain technology that allows 
verification of payments and other transactions in the absence of a centralized custodian. 
Originally introduced in a paper by Nakamoto (2008), Bitcoin becomes the most famous 
and earliest cryptocurrency. Since then, the market for cryptocurrencies has evolved 
dramatically. Cryptocurrencies have experienced rapid growth followed by substantial 
downturns in recent years. However, despite the original vision of decentralization that 
underpins cryptocurrency, cryptocurrencies have not fully achieved decentralization in 
practice as a major proportion of trading activity remains concentrated on centralized 
exchanges .15

Today, over 250 centralized exchanges trade Bitcoin and other cryptocurrencies . The 16

majority of these centralized exchanges function like traditional equity markets where 
traders submit orders, and exchanges match these orders based on centralized limit order 
books. However, unlike equity assets, cryptocurrencies such as Bitcoin and Ethereum are 
broadly traded in a number of exchanges, these would bring lead-lag effect problem. 

Lead-lag effects in financial markets describe situations where some financial assets are 
leading and provide information about the future price or other development of other assets 
lagging behind. The lead-lag effects emerge mainly due to different speed of price discovery 
in different market, which leading to short disequilibria (Lo, 2004; Theissen, 2016). These 
effects arise primarily from differences in the speed of price discovery across markets, 
resulting in short-lived disequilibria (Lo, 2004; Theissen, 2016). Such phenomena are 
particularly common in cryptocurrency markets, as tradings of one cryptocurrency usually 
occur across multiple venues and traders react to new information at varying speeds.

The lead-lag relationships in cryptocurrency market has been widely studied, where Bitcoin 
and Ethereum broadly proved at the leading positions in cryptocurrency market. Yarovaya 
and Zięba (2022) analyze the lead-lag relationship of top 30 cryptocurrencies, provide 
empirical evidence supporting that Bitcoin is at a leading position to nearly all 
cryptocurrency. Sifat and Shariff (2019) found bi-directional lead-lag effect between Bitcoin 
and Ethereum. Hyun et al. (2019)’s research confirms the leading positions of Bitcoin and 

 https://coinmarketcap.com/charts/spot-market/15

 https://coinmarketcap.com/rankings/exchanges/16
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Ethereum. However, these lead-lag relationships are not permanent, as Qureshi et al. (2020) 
find the switch in the lead and lag relationships of cryptocurrency returns, suggesting 
alternating time and frequency interdependencies.

The existing research on lead-lag relationships in cryptocurrency market are mainly 
conducted with relatively equally-spaced datasets, such as daily or hourly frequency 
(Qureshi et al., 2020; Makarov and Scholar, 2020;; Sifat et al., 2019), a few of them with 20 
minutes or higher frequency (Yarovaya and Zięba, 2022). Specifically, Sifat et al. (2019) 
observe bi-directional relationships between hourly and daily transaction prices of Bitcoin 
and Ethereum. Schei and Rix-Nielsen (2019) investigate the high-frequency lead-lag 
relationship of Bitcoin in different exchanges. 

We argue that previous existing research have limits in several aspects. First, these research 
are largely limited to Bitcoin, potentially overlooking other cryptocurrencies, especially for 
research focus on lead-lag relationship of same token across exchanges (Brandvold et al., 
2015; Schei and Rix-Nielsen, 2019;). Second, the frequencies of datasets are relative low, 
mainly concentrated on daily data, which potentially miss fast lead-lag relationships. We 
argue that these research with low and equally-spaced frequency lead-lag relationship are 
not able to provide much information for practical tradings, as useful information for 
practical trading usually only lasts seconds or even sub-second and then becomes outdated 
in high frequency trading venue (O’Hara, 2015; Alsayed and McGroarty, 2014). O’Hara 
(2015) raises that with the emergence of algorithmic and high-frequency trading (HFT), the 
dissemination of information in financial markets has substantially changed and been 
speeded up. Alsayed and McGroarty (2014) show that algorithmic arbitrage brought by 
lead-lag price information rarely exist for longer than 300 milliseconds. In this context, 
lead-lag relationships with datasets that are sampled with equal frequency are hard to play 
an role in predicting price or building arbitrage strategy. Therefore, tick-by-tick data level 
lead-lag analysis is demanding for cryptocurrency market during this HFT period. 

The tick data level lead-lag analysis in cryptocurrency market does not receive much 
attention yet. The rare and existed studies with tick-by-tick data only focus on Bitcoin, and 
overlook other leading cryptocurrencies(Anderson, 2023; Schei and Rix-Nielsen, 2019). 
Therefore, in existing literature, little attention has been given to the high-frequency, 
especially tick-level lead-lag effect in cryptocurrency markets. Understanding this is 
important, as only fast lead-lag relationship could provide valuable insights into actual 
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trading and price discovery mechanism to cryptocurrency markets (O’Hara, 2015; Alsayed 
and McGroarty, 2014). If sub-second lead-lag relationships in cryptocurrency market are 
detected, trading strategies might be built relying on this fast relationships as tradings in 
centralized crypto exchanges could be executed within several milliseconds (Aleti & 
Mizrach, 2021).

To fill this research gap, our study aims to solve two research questions in this study (i) Do 
high-frequency lead-lag effects exist among same cryptocurrency across different 
exchanges? (ii) Do high-frequency lead-lag effects exist between cryptocurrencies in same 
exchange? To address these two research questions, we collect limit order book datasets and 
investigate the rapid lead-lag relationships among cryptocurrencies in same centralized 
exchanges, and rapid lead-lag relationships among centralized exchanges in terms of same 
cryptocurrencies. 

Specifically, in this study, we consider four top cryptocurrencies — Bitcoin, Ethereum, 
Solana and XRP in three leading centralized exchanges — Kraken, Bitstamp and Bitfinex. 
To deal with the irregular tick data of limit order books snapshot from these centralized 
exchanges, we apply a recent advance in the statistical measurement of lead-lag 
relationships proposed and extended by Hayashi & Yoshida (2005) and Hoffman et al., 
(2013). This measurement enables us to analyze non-contemporaneous correlations of 
irregular tick datasets. Furthermore, we calculate the market depth and mid-price update 
frequency, trying to explain the factors that might affect the lead or lag positions of 
cryptocurrencies. In addition, we also split each trading days into 24 hourly interval to 
analyze the intraday pattern of the lead-lag effects. 

Our study yields several important findings. First, our results suggest strong and fast lead-
lag effects among different tokens and exchanges at high-frequency level, where the lag 
lengths are sub-second and up to 200 ms. Notably, contrary to previous studies that suggest 
Bitcoin holds the leading position in the cryptocurrency market (Anderson, 2023; Yarovaya 
& Zięba, 2022; Hyun et al., 2019), we observe that Bitcoin holds a lagging position at high-
frequency level, where it shows that Bitcoin lags behind other sampled tokens on each 
centralized exchange. Additionally, we find that Bitstamp and Kraken hold relatively leading 
positions, while Bitfinex lags among the sampled exchanges. However, the lead-lag 
relationship between exchanges varies across different tokens. 
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Second, we find that market depth and order book resilience are correlated with the lead–lag 
positioning of cryptocurrencies traded on the same exchange. Specifically, our results show 
that cryptocurrencies with deeper market depth tend to exhibit greater order book resilience, 
characterized by less frequent mid-price updates and smaller responses to market shocks. 
These cryptocurrencies are more likely to occupy lagging positions in high-frequency lead–
lag dynamics.

Lastly, our intraday pattern analysis suggests that the strength of lead-lag effects might be 
linked to the activity level of U.S. traditional financial markets. During the opening hours of 
U.S. stock markets, both the maximum correlations and the lead-lag length among 
cryptocurrencies reach their lowest levels of the day.

Our contribution is multifold. To the best of our knowledge, this is the first paper to 
investigate the high-frequency lead-lag relationships among centralized exchanges with 
multiple cryptocurrencies. We push beyond past work using high-frequency data focusing 
on lead-lag relationship of Bitcoin (Anderson, 2023; Schei and Rix-Nielsen, 2019), to more 
leading alt-coins. Our findings challenges previous views that Bitcoin is at the leading 
position in crypto market. (Anderson, 2023; Yarovaya & Zięba, 2022; Hyun et al., 2019), 
highlighting the different lead-lag dynamics of cryptocurrencies in high frequency scale. 

As a further contribution, our research shed new light on the factors that might affect high 
frequency lead-lag effect in cryptocurrency market. Our results suggest that lead-lag 
positions might be correlated with market depth and order book resilience, and the active 
market and investors might reduce the lag length and lead-lag effect. Our study provides 
empirical evidences supporting that previous theoretical work on market microstructure 
could be applied into cryptocurrency market. 

Our results have implications to cryptocurrency investors and centralized exchanges. The 
high-frequency lead-lag effects between cryptocurrencies and between exchanges in our 
research could provide investors information on forecasting possibility and accuracy of 
cryptocurrency price change, which could help investor build arbitrage strategy further as in 
traditional market (Alsayed and McGroarty, 2014; Huth and Abergel, 2014). For exchanges, 
this correlation between lag length and US equity market activity could give them insight 
that to attract more investors globally to avoid long lag-length seasonality and speed up the 
information transmission when US market is closed. 
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The remainder of the paper is structured as follows. Section 4.2 reviews related literature. In 
Section 4.3, we summarize sampled datasets used in the analysis. Section 4.4 illustrates 
methodology and models. In Section 4.5 we present empirical results. Section 4.6 is the 
discussions and section 4.7 is the conclusions.

4. 2. Related literature

Extensive research has focused lead-lag theory and empirical analysis due to the importance 
of the transmission of information and price discovery across assets and markets. This 
section will first introduce the definition and theory foundation of lead-lag effect, and then 
review the empirical research about lead-lag phenomenon on traditional financial markets as 
well as cryptocurrency markets. Based on previous research, we also discuss several factors 
that might affect the lead-lag effect. Additionally, this section outlines the common 
methodologies used to investigate lead-lag effects with different frequent dataset. Finally, 
this section briefly reviews the limited literature on lead-lag effect on cryptocurrency 
market, as well as the research gaps and our contributions to the literature. 

 

4. 2. 1. Definition of lead-lag effect

The concept of lead-lag effect emerged in the context of the ongoing debate surrounding the 
efficient market hypothesis (EMH). The definition of lead-lag effect in finance refers to the 
phenomenon where the price movements of one financial asset precede and potentially 
influence the price movements of another asset. The essence of this definition lies in how 
fast markets participants react to the arrival of new information. If one market reacts faster 
to new information and the other one is slow to react, a lead-lag relationship will be 
observed (Chan, 1992). 

However, at the beginning, the lead-lag effect was not taken and studied series, where it was 
thought a symptom of the so-called “non-synchronous trading” problem. The non-
synchronous trading problem refers to the issue that prices are assumed to be recorded at 
fixed intervals when they are in fact recorded at intervals of varying lengths (Lo and 
MacKinlay, 1990). Fisher (1966) is the first to show that non-synchronous sampling of 
prices could result in misleading autocorrelation which may not exist. Cohen et al. (1986) 
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and Lo & MacKinlay (1989, 1990) show that lead-lag effect might be a consequence of 
non-synchronous trading. 

The concept of the lead-lag effect has been explored by various researchers over the years, 
with significant contributions made in the context of price discovery and market dynamics. 
The earliest works in this area might be on the relationship between futures price and spot 
price (Zeckhauser and Niederhoffer, 1983; Kawaller et al., 1987). Cohen et al (1986) and Lo 
& MacKinlay (1989) proposed models trying to explain the lead-lag effect from the 
perspective of non-synchronous trading (thin trading). 

One of the most influential works in this area is by Hasbrouck (1995), who established a 
framework for understanding the lead-lag relationships from the perspective of price 
discovery. He examined the contributors to price discovery across multiple markets, 
highlighting the impact of market microstructure factors on price discovery speed. Similarly, 
Theissen (2016) points out that price discovery is pretty much based on the adjustment of 
prices to market-wide information, and the assets or markets with low speed of price 
adjustment will be at lag positions. These asynchronous price adjustments lead to lead-lag 
effect and might thus bring arbitrage opportunities (Marshall et al., 2013; Alsayed & 
McGroarty, 2014).

Then, another important contribution came from Chan (1992), who examines several factors 
that might affect the lead-lag effect. He points out that the type of news (good or bad), 
intensity of trading activity and the market-wide movement are the determinants of lead-lag 
effects. Also, the short-sale constraints and the wide of information are also found affect the 
speed of adjustment of prices to new information, and thus to affect the lead-lag effect 
(Diamond & Verrecchia, 1987; Chan 1990). 

4. 2. 2. Theory foundation of lead-lag effect

The theory foundation of lead-lag effect is pretty much based on Efficient Market 
Hypothesis (Fama, 1970) and adaptive market hypothesis (Lo, 2004), information diffusion 
theory and market microstructure theory. 
 
Under Efficient Market Hypothesis (EMH) proposed by Fama (1970), prices should fully 
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reflect all available information in efficient market. One important implication of EMH is 
that all relevant information is freely and instantly available to all market participants, 
ensuring no informational advantage (Fama, 1970). This implication is pretty much based 
on the prerequisite that new information could transmit into the whole market instantly. 
However, in practical market, information is not always distributed or processed 
instantaneously and simultaneously across markets, introducing the lead-lag effect. This 
prerequisite has been criticized because it takes time and cost to get information in market 
(Hong and Stein, 1999), as if all information were freely and instantly available and 
reflected in prices, there would be no incentive for investors to acquire information 
(Grossman & Stiglitz, 1976, 1980).

Then Lo (2004) proposed Adaptive Market Hypothesis (AMH), reinterprets traditional 
market efficiency theories within the framework of evolutionary principles, including 
implications about information and price discovery. AMH considers the role of market 
participants, suggesting that markets are not always efficient and that market conditions are 
dynamic. It highlights that these conditions largely depend on the behaviors of various 
market participants. Therefore, in this context, the lead-lag effect might exist because 
market participants adjust to the new information or changing conditions at different speeds 
(Theissen, 2016), leading to temporary disequilibria (Grossman & Stiglitz, 1976, 1980). The 
leading market is typically faster at incorporating new information. Additionally, these 
asynchronous price adjustments which lead to lead-lag effect usually cause market 
inefficiency, bringing arbitrage opportunities (Marshall et al., 2013; Alsayed & McGroarty, 
2014).

The theory foundation of lead-lag effect is also correlated with Information Diffusion 
Theory. The theory's origins can be traced back to Everett Rogers' seminal work, "Diffusion 
of Innovations” , which provided a framework for understanding the spread of innovations 17

(Rogers et al., 2014). The Diffusion of Innovations describe that market participants have 
different adjust speed to innovations such as new information or new technology. Hong & 
Stein (1999) improve the Information diffusion models, suggesting that investors do not 
immediately and simultaneously act on new information due to limits on attention or 
differing access to information. Barberis et al. (1998) proposed a model of of investor 

 The book "Diffusion of Innovations" by Everett M. Rogers was first published in 196217
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sentiment, and they discusses how sentiment-driven trading contributes to the slow diffusion 
of information, supporting the idea that lead-lag effects can emerge due to heterogeneous 
beliefs and trading speeds. 

Additionally, the theory of lead-lag effect is also inherently tied to the field of market 
microstructure, as both involve the mechanisms of market characteristics, information 
dissemination, and price formation. In terms of various factors of market microstructure, 
liquidity is the key factors of market characteristics that impact the information flow, which 
is essential to lead-lag effect. Previous papers find that assets or markets with greater 
liquidity and lower costs broadly lead their less liquid counterparts. Hasbrouck (1995) 
explores price discovery across multiple markets and highlights how liquidity and trading 
activity determine the contributions of each market to price discovery. Chordia & 
Swaminathan (2000) find trading volume is a significant determinant of the lead-lag patterns 
observed in stock returns, which is caused by the fact that the return of low volume 
portfolios respond more slowly to information in market returns. Chordia et al. (2008) 
provide evidence that when liquidity decreases in certain markets, the lead-lag effect 
increases.

Existing literature have a commonsense that assets with higher liquidity tend to have react 
to new information faster, and thus are more likely to lead the assets with lower liquidity 
(i.e. Huth and Abergel, 2014;). On the contrary, other literature found that assets with higher 
liquidity, especially deeper market depth, have the ability to absorb market shocks, which 
might makes them seem to react to new information slowly. Bhattacharya and Spiegel 
(1998) find that exchanges with higher liquidity have higher ability to absorb very large 
shocks. Menkveld and Zoican (2017) suggest that mid-price responsiveness is a function of 
liquidity and depth, highlight the interplay between latency (exchange speed) and liquidity 
provision is crucial in determining how quickly and efficiently prices adjust to new 
information. Bouchaud et al. (2009) also points out that the mid-price adjusts gradually to 
order flow, and the structure of the order book, such as market depth, plays a key role in 
determining the speed of price adjustment to new information. Degryse et al. (2005) also 
suggest that when assets with high liquidity are impacted by aggressive order flow, they 
have the ability to absorb market shocks, keeping mid-price stable. Our study contributes to 
this strand of literature by identify that market depth might be correlated with fast lead-lag 
relationships in crypto market. 
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Moreover, information asymmetry and market segment are also found correlated with lead-
lag effect. Markets or assets with lower information asymmetry tend to incorporate new 
information faster, broadly lead those with higher information asymmetry (Glosten and 
Milgrom, 1985). Easley and O’hara (1992) discusses how information asymmetry affects 
price discovery, linking this to lead-lag effects in information incorporation. They found 
market segment could affect the information transmission and thus impact lead-lag effect. 
Eun and Shim (1989) examines global lead-lag effects in international stock markets, 
focusing on information transmission and market segmentation, they found the market 
segment could slow the information transmission and bring lead-lag effect.

4. 2. 3. Market activeness and lead-lag effect

The lead-lag effect tends to diminish when markets are more active while it is intensified 
when market is relative inactive (Chordia et al., 2011). Increased market activity broadly 
translates into higher trading volumes, greater liquidity, and faster information flow, which 
collectively reduce the delay in price adjustments between leading and lagging assets. And 
the lead-lag effect weakened due to faster information transmission, intensified arbitrage 
activity and more high-frequency-trading. 

First, when markets are active, market liquidity tends to increase. Higher liquidity reduces 
the time it takes for information to be incorporated into prices. Trades with better 
information can be executed more quickly in a liquid market, leading to faster price 
adjustments (Kyle, 1985). This is due to lower transaction cost brought by narrow bid-ask 
spread allows prices to adjust more quickly (Amihud and Mendelson, 1986), and higher 
liquidity also allow traders to execute large orders, which are more likely to be informed, 
without significant delays (Grossman and Miller, 1988). Also, when market is active, it is 
broadly correlated with continuous trading, where prices adjust continuously as new 
information is disseminated, resulting in quicker price discovery (Biais et al.,1995).

Second, in active market, the lead-lag effects are diminished as arbitrage tradings are more 
intensive. By exploiting temporary price discrepancies between leading and lagging assets, 
arbitrageurs force prices to converge, integrating information and reducing inefficiencies 
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(Hasbrouck, 1995). More intensive arbitrage tradings in active markets could remove stale 
orders more quickly and diminish the lag length.

Third, during active periods, for example, during trading time of US market, more 
institutional and high frequency traders are active. These active high frequency traders 
amplify trading intensity in both leading and lagging markets. By exploiting millisecond-
level price differences, they reduce the duration and magnitude of lead-lag relationships 
(Hasbrouck and Saar, 2013). Our study contributes to this strand of literature by examining 
the intraday lead-lag effect between cryptocurrency, and we find strong seasonality that the 
lead-lag effect diminished during the opening time of US stock market. 

 

4. 2. 4. Empirical review 

4. 2. 4. 1. Cryptocurrency 

Our paper contributes to the growing body of literature that focus on cryptocurrency. 
Research on cryptocurrencies and especially in finance and economics is still in its 
beginning. Earlier, the majority of papers in this stream of literature focuses on the potential 
effects of cryptocurrencies as a payment and transaction mechanism. Prior studies provide a 
broad perspective on the economics of cryptocurrencies and the blockchain technology they 
are built upon (Ciaian et al., 2016; Harvey, 2016; Böhme et al., 2015; Raskin and Yermack, 
2017). Athey et al. (2016) and Pagnotta & Buraschi (2018) propose models of the valuation 
of digital currencies. Nevertheless, due to the high volatility, investors and researchers 
realized that Bitcoin fails to keep its promise that serves as a medium of exchange. Bitcoin 
is more regarded as a speculative asset rather than a method of payment for goods and 
services(Baur et al., 2018). This speculation drives volatility in the price of tokens, and it is 
becoming more a asset instead of a currency, which investors buy the token with fiat 
currency with an intention to resell it for profit, (Yermack, 2015; Glaser et al., 2014; Cheah, 
2015).

Then, researchers turn their attention to the price relationships between different tokens. The 
relationship and interconnectedness of price between cryptocurrencies has been studied in 
multiple aspects, including connectedness and lead-lag relationships of different 
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cryptocurrencies (e.g. Balcilar et al, 2017; Yarovaya and Zięba, 2022; Kristoufek, 2021; 
Moratis, 2021; Ji et al., 2019). The research on connectedness and lead-lag relationships 
across cryptocurrencies noted that Bitcoin is the centre of the crypto network (Stosic et al., 
2018; Ji et al., 2019; Yi et al., 2018; Qiao et al., 2020; Hoang and Baur, 2021; Yarovaya and 
Zięba, 2022).

4. 2. 4. 2. Empirical review of Lead-lag effect 

Our paper also makes contributions on literature stream of empirical studies on lead-lag 
relationships between different assets. Lead-lag relationships among different assets in 
traditional market have been widely documented in various trading frequencies. Studies 
focus on lead-lag relationship between stocks and corresponding index futures find that 
future prices lead the stock prices by up to 45 minutes (Zeckhauser and Niederhoffer, 1983; 
Kawaller et al., 1987). On the contrary, later research has revealed that lead-lag relationship 
between futures and stocks are bi-directional, but futures’ leading is still stronger than the 
opposite way (Stoll and Whaley, 1990; Chiang and Fong, 2001). Hoffmann et al. (2013) 
observed lead-lag effects between equity and bond futures, with the DAX future leading the 
bond future by around one second. Further studies find that stock prices lead the prices of 
high yield bonds, indicating that the stock markets react to new information faster than bond 
markets (Tolikas, 2018).

On the other hand, the lead-lag relationships of different regions have attracted the attention 
of researchers, where the leading position of US market has been confirmed many times. 
Monteiro and Sebastião (2023) identify the leading role of US market by showing analyzing  
the lead-lag relationships of weekly returns of industries of six major markets. Alsayed and 
McGroarty (2014) find the S&P 500 leads FTSE 100 and DAX futures, which brings 
potential arbitrage opportunities. 

Furthermore, the drivers of lead-lag effect has been studied widely, and previous research 
found it is strongly correlated with market microstructure. Zeckhauser and Niederhoffer 
(1983) examine the lead-lag relationships between stocks and futures, they provide evidence 
that lead-lag relationship is time-varying, and highly depends on market liquidity. Moreover, 
a majority of studies show that market characteristics, including volatility, size, and market 

144



    Chapter 4        High-frequency Lead-Lag Relationships of Cryptocurrencies 
                             and Crypto Exchanges                                                                                              

frictions are the key drivers of lead-lag relationships.(Chordia et al., 2005; Kallberg and 
Pasquariello, 2008; Huth and Abergel, 2014).

Moreover, the lead-lag relationship in cryptocurrency market also received attention in 
recent times, where the leading position of Bitcoin in cryptocurrency market has been 
widely identified (Yarovaya and Zięba., 2022). Limited of these studies report bi-directional 
causality between Bitcoin and alt-coins (Sifat et al., 2019). These research on lead-lag 
relationship between different assets, including cryptocurrency, are conducted in various 
frequency level. Sifat et al. (2019) analyzed the lead-lag relationships between Bitcoin and 
Ethereum with hourly transaction prices, finding price of Bitcoin could significantly impact 
price of Ethereum. Yarovaya and Zięba (2022) investigate the lead-lag relationship of major 
cryptocurrencies with daily data and confirm the leading position of Bitcoin. Qureshi et al. 
(2020) demonstrate the origins of cryptocurrency market contagion is trivial in daily 
frequency scale. Li et al. (2022) capture the lead-lag relationship between Bitcoin and 
Altcoins due to the asynchronous impact factors between Bitcoin and related Altcoins can 
be used to predict Bitcoin price. 

However, despite the lead-lag relationship in cryptocurrency market have been investigated 
multiple times in above literature (Sifat et al., 2019; Yarovaya and Zięba, 2022; Qureshi et 
al., 2020; Li et al., 2022), the dataset they used are limit to relative low and equally-spaced  
frequency, which are mainly daily-frequency and a few hourly dataset. We argue that in this  
era of high-frequency trading (O’Hara, 2015), analysis with these low frequency datasets 
might miss potential fast lead-lag relationship as the lead-lag effect could be sub-second, 
and these lead-lag relationship at low frequency could not provide useful information for 
actual trading. (Alsayed and McGroarty, 2014). We contribute to this strand of literature by 
utilizing high-frequency and tick-by-tick order book data to investigate the fast lead-lag 
relationship between cryptocurrencies. Contrary to existing literature, we identify the lag 
position of Bitcoin in high-frequency lead-lag relationship. 

 
4. 2. 4. 3. High-frequency lead-lag effect

More recently, high-frequency lead-lag relationship raised researchers’ interest in traditional 
equity asset. As the rapid increase of trades and trading speed in high-frequency trading era 
(O’Hara, 2015), the lead-lag effect is more likely to be short-living, even short than one 
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second (Alsayed and McGroarty, 2014). Therefore, lead-lag relationships, during the era of 
high frequency trading,  are more related to market microstructure information, such as limit 
order book activities. Nevertheless, using high-frequency and tick datasets from order books 
to analyze lead-lag effects is challenging since their changes occur at irregular time 
intervals. To address this problem, Hayashi and Yoshida (2005) propose the an estimator 
(HY-estimator) to calculate the correlation between two irregularly spaced time series with 
different lengths. This method makes it possible to examine high-frequency lead-lag 
relationship with tick-by-tick data. Furthermore, extended by Hoffmann et al. (2013), a 
more thorough comprehension has been offered, which could examine the strength of 
correlation as well as the timing of interaction. 

The Hayashi-Yoshida (HY) method is designed specifically for tick-by-tick data, which is 
inherently irregular and asynchronous. Unlike methods relying on interpolation or 
discretization such as Granger Causality and Cross-Correlation Function (Granger, 1969; Lo 
& MacKinlay, 1990), HY estimation overcomes the major disadvantage of sparse sampling, 
the enormous data loss and the resulting inefficiency of the estimator. It avoids the loss of 
information caused by aggregating data into fixed intervals.

In empirical region, this HY-estimator has been widely applied in research to investigate 
lead-lag effect in a fast scale. Alsayed and McGroarty (2014) explore high-frequency lead-
lag relationships in future market and find that S&P 500 future lead the FTSE 100 and DAX 
future about 300 ms. Huth and Abergel (2014) find that the price of CAC40 future lead its 
constituent shares. Moreover, they also find that liquid assets tend to be at a leading 
position. Dao et al. (2018) investigate lead-lag relationships between ETF and the 
corresponding index with HY method, they find that the index leads its replicating ETF 
from 10 to 30 milliseconds. Poutré et al. (2024) find lead-lag relationships of stocks in DAX 
market between three European exchanges, Chi-X, Xetra and BATS, they find Chi-X leads 
other two, but the lag lengths are less than 10 ms. Very limited research examines the fast 
cross-exchanges lead-lag relationship of in crypto market with HY-estimator. Schei and Rix-
Nielsen (2019) investigate the lead-lag relationships of Bitcoin prices in different 
exchanges, finding that lag-length between exchanges ranges from 1 to 12 seconds. Another 
empirical study examine the fast lead-lag relationships between Bitcoin and Cardano, but 
without HY-estimators (Anderson, 2023), where they find Bitcoin is leading Cardano from 
16 seconds to 128 seconds. We argue that these research on high frequency lead-lag 
relationships in cryptocurrency market is still at a preliminary stage, which did not get 
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deserved attention. Furthermore, these rare but existing research mainly focus on Bitcoin, 
potentially overlooking leading altcoins such as Ethereum and Solana. We contribute to this 
strand of literature by extending past work with high-frequency data focusing on lead-lag 
relationship of Bitcoin, to more leading alt-coins, and identify factor that might affect the 
lag-length time between exchanges.  

4. 3. Data

Our data set consists of the order book data of 4 most liquid cryptocurrencies, namely BTC, 
ETH, SOL and XRP from three leading centralized crypto exchanges, Kraken, Bitstamp and 
Bitfinex. Our data spans the period January 1, 2024 - January 31, 2024. Each token is 
monitored 24 hours per day as cryptocurrency is traded 24/7. In all, our dataset consists of 
updates of limit order book in excess of 100 million. According to Alsayed and McGroarty 
(2014), this high-frequency and tick-by-tick dataset with over 100 million data points is 
adequate, which allows us to capture the fast lead-lag relationship accurately. 

The tick-by-tick snapshot of limit order book data includes timestamp, best ask price, best 
bid price, and the amount of tokens resting on the best ask and bid level. The time accuracy 
is at millisecond level. Our data is sourced from cryptotick.com, which is the only database 
provide pay-as-you-go data purchase, which means we can only buy the dataset we want 
without subscribing it.  Table 4.1 provides an overview of the statistics of  the data set. 

As can be seen in Table 4.1, the order book datasets of cryptocurrencies in each exchange 
are fast updated with large amount of observations. The order book of most tokens in each 
exchange have over 10 million observations in sample period. The number of observations 
in Bitfinex are a bit less but still over 6 million. The average mid-quote price of same 
cryptocurrency in each exchange are close to each other and the maximum difference is 
about 1%, and the maximum price difference between exchanges is Solana. Specifically, the 
average mid-quote price of Solana in Kraken is 96.134 while it is 95.095 in Bitfinex, which 
is slightly over 1 %. In addition, Kraken has the lowest bid-ask spreads for all sampled 
tokens, which brings Kraken high liquidity and low transaction cost (Hagströmer, 2021). 
Similarly, Kraken has the deepest market depth for all cryptocurrency which is the number 
of tokens at the first level of the book (both the bid and ask), alongside with lowest bid-ask 
spread, Kraken has the highest liquidity among three sampled exchanges. 
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Table 4.1. Descriptive statistics of dataset. 

Table 4.1 presents the summary statistics of BTC/USD, ETH/USD, SOL/USD and XRP/USD quotes data in Kraken, 
Bitstamp and Bitfinex, collected from Cryptotick.com. Snapshot of limit order book data describe status of top of the 
order book, and it will be updated when the status changes. Average mid quote price and average bid-ask spread is in 
US dollar, market depth is the number of tokens at the first level of the book (both the bid and ask), which is in amount 
of token. Observation is the number of times that top of the order book has been updated. Sample period is from 
January 1, 2024 - January 31, 2024. 

 
 

4. 4. Methodology

In practical financial markets, trading activities such as trades, order submissions, and 
deletions occur at irregular time intervals. Consequently, microstructure measures capturing 
aspects like price and liquidity are also recorded at non-synchronous timestamps. To 
accurately analyze lead-lag relationships between two such processes without introducing 
bias, we employ the correlation estimator proposed by Hayashi and Yoshida (2005). 
Through this method, we are able to deal with irregularly spaced time series with different 
lengths. In Hayashi and Yoshida (2005), they proposed a novel estimator of the covariance 
between two non-synchronous and irregular  processes. 

Specifically, let  and  be two correlated processes such that:

                                                (4.1)

                                                  (4.2)

Asset Observations Average mid quote 
price

Average bid-ask spread Market depth

BTC in Kraken 13,180,874 43,182 1.510 9.052
BTC in Bitstamp 15,257,337 43,246 9.386 0.899

BTC in Bitfinex 7,549,786 43,103 5.448 1.297

ETH in Kraken 14,767,706 2,370.17 0.1574 95.22

ETH in Bitstamp 22,063,763 2,379.89 0.6691 9.076

ETH in Bitfinex 6,679,810 2,390.54 0.6855 8.2219

SOL in Kraken 17,471,787 96.134 0.0275 497.005

SOL in Bitstamp 18,388,840 95.839 0.0807 69.383

SOL in Bitfinex 22,268,958 95.095 0.0632 35.299

XRP in Kraken 10,684,583 0.5621 0.00013 18874.02

XRP in Bitstamp 13,693,620 0.5568 0.00016 13279.92

XRP in Bitfinex 6,554,990 0.5562 0.00026 7663.13

Xt Yt

dXt = μXXtdt + σXXtdWX
t

dYt = μYYtdt + σYYtdWY
t
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where  and  are two variables that fit into Brownian motions. Assume that  and 

are sampled at discrete observation times  and 

, respectively, and  and  are independent.  

Then following Hayashi and Yoshida (2005), an unbiased estimate of the integrated 
correlation between  and  is: 

,                                        (4.3)

with and  being all intervals between two observations in the 

process  and , respectively. The indicator function  becomes 1 for all 

overlapping time intervals and  and 0 otherwise. 

Equation 4.3 is the contemporaneous correlation. To estimate non-contemporaneous 
correlation at a given lag , the estimator was extended by Hoffmann et al. (2013). The 
principle of this extension is to shift the observation times of  by a certain lag length , 
then the integrated correlation between shifted process  and  is : 

,                                         (4.4)

with . The  that maximizes the HY-curve in absolute terms is 

denoted as lead - lag value (or lead-lag time) (Hoffmann et al., 2013) and indicates whether 
 leads ( ) or lags ( ) . 

Finally, Huth and Abergel (2013) define the notion of a lead-lag ratio (henceforth LLR) 
which we also employ to determine the direction of lead-lag effects. It s defined as follows: 

,                                                           (4.5)

WX
t WY

t Xt Yt
0 = t X0 ≤ t X1 ≤ . . . ≤ t Xn = TX

0 = tY0 ≤ tY1 ≤ . . . ≤ tYn = TY Xt Yt

Xt Yt

̂ρ =
∑i, j ΔX(IXi )ΔY(IYj )�핀{IXi ∩(IYj )l≠∅}

∑i [ΔX(IXi )]2∑j [ΔY(IYj )]2

IXi = (t Xi−1, t Xi ] IYj = (tYj−1, tYj ]
Xt Yt �핀{IXi ∩IYj ≠∅}

IXi IYj

l
Yt l

Yt+l Xt

̂ρ(l ) =
∑i, j ΔX(IXi )ΔY(IYj )�핀{IXi ∩(IYj )l≠∅}

∑i [ΔX(IXi )]2∑j [ΔY(IYj )]2

(IYj )l = (tYj−1 + l, tYj + l ] l*

Yt l* > 0 l* < 0 Xt

LLR =
∑L

l=l ̂ρ2(+l )
∑L

l=l ̂ρ2(−l )
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The quantity  provides the correlation coefficient between  and  at lag length , where 
a positive  indicates that  leads . Similarly,  represents the correlation coefficient 
when  lags  by  units of time. The numerator of LLR is the sum of squared correlation 
coefficients for all instances where Y leads X, while the denominator is the sum of squared 
correlation coefficients when Y lags X. With this in mind, the purpose of LLR is to quantify 
the relative strength of the lead-lag relationship in both directions. An LLR greater than 1 
suggests that Y more strongly leads X than vice versa, whereas an LLR less than 1 implies 
that X predominantly leads Y. Prior literature establishes the LLR because lead-lag 
relationships are broadly bi-directional (Wang and Wang, 2001), and the LLR provides a 
means to quantify their relative strength in each direction. The LLR helps decouple bi-
directional lead-lag relationships by quantifying their relative strengths and direction. In one 
word, LLR effectively captures both the strength and direction of the lead-lag relationship 
between two asynchronously recorded time series. 

4. 5. Empirical results

4. 5. 1. The Lead-Lag Relationship Between Cryptocurrencies

There are 31 trading days in our sample period. For each day, to investigate the lead-lag 
relationship of different cryptocurrencies in same exchange, we estimate the entire HY 
cross-correlation curves between 4 leading cryptocurrencies in each exchange on each 
trading day, then we average the curves over all days. To investigate the lead-lag 
relationship of different exchanges in terms of same cryptocurrency, we estimate the entire 
HY cross-correlation curve of difference exchanges in terms of same cryptocurrency over 
all days. We therefore ultimately obtain a single HY curve for each pair. This step helps 
quantify the relative strength and direction of the lead-lag relationships for different 
cryptocurrencies in same exchange. If the curve is asymmetric or the maximum correlation 
does not show at 0 lag length, it suggests lead-lag relationships between these two time 
series. For each pair, we measure leads and lags of mid-quote returns on a horizon of −5 to 5 
seconds, with 50 millisecond increments. We justify this horizon by the fact that cross-
correlations across all pairs might diminish substantially within a second (Alsayed and 
McGroarty, 2014). 

̂ρ(l ) X Y l
l Y X ̂ρ(−l )

Y X l
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The results of the lead-lag relationship of different cryptocurrencies in same exchange are 
presented in Figure 4.1 and Figure 4.2. Figure 4.1 and Figure 4.2 presents the evidence of 
lead-lag relationships of different tokens in Kraken and Bitfinex, respectively while no 
significant lead-lag relationship between cryptocurrencies is detected in Bitstamp. The 
results show that the lead-lag relationships of 4 cryptocurrencies vary in different 
exchanges. But largely, Solana and XRP are at leading positions while Bitcoin is at a 
lagging position. Due to space limit, only significant lead-lag relationships are displayed.

Figure 4.1. Lead-Lag Relationships in Kraken.

Figure 4.1 displays the significant lead-lag relationships among 4 tokens in Kraken. The HY curves plotted for BTC/
SOL, ETH/SOL and SOL/XRP in Kraken, other pairs have no significant lead/lag relationship. To be more clear, these 
diagrams zoom in on lag lengths  ∈ [−0.5, 0.5] seconds with 50 ms increments.  > 0 indicates the cryptocurrency 
whose name appears first in the title lags, and vice versa. For example, in BTC/SOL,  associated with maximum 
correlation is great than 0, indicating BTC lags and SOL leads.

Specifically, Figure 4.1 presents the significant lead-lag relationships of 4 tokens in Kraken. 
It shows SOL is at a leading position in Kraken, which leads another three tokens, and there 
is no significant lead-lag relationship existing among other 3 tokens. Solana leads Bitcoin 
about 150 ms, and leads both Ethereum and XRP about 100 ms. Furthermore, Figure 4.2 
presents the significant lead-lag relationships between 4 tokens in Bitfinex. It indicates that 

l l
l
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Bitcoin is at a lagging position in Bitfinex since other three tokens are all leading Bitcoin, 
and XRP leads Ethereum as well. Specifically, Bitcoin lags Ethereum, Solana and XRP 
about 50ms, 50ms and 100 ms, respectively, while Ethereum lags XRP about 50ms. No 
significant lead-lag relationship is detected between ETH and SOL or between SOL and 
XRP in Bitfinex. There is no significant lead-lag relationship among these four 
cryptocurrencies in Bitstamp.

Figure 4.2. Significant Lead-Lag Relationships in Bitfinex.

Figure 4.2 displays the significant lead-lag relationships among 4 tokens in Bitfinex. The HY curves plotted for BTC/
ETH, BTC/SOL, BTC/XRP and ETH/XRP in Bitfinex, other pairs have no significant lead/lag relationship. To be more 
clear, these diagrams zoom in on lag lengths  ∈ [−0.5, 0.5] seconds with 50 ms increments.  > 0 indicates the 
cryptocurrency whose name appears first in the title lags, and vice versa. For example, in BTC/ETH,  associated with 
maximum correlation is great than 0, indicating BTC lags and ETH leads.

The results indicate that price discovery is not simultaneous across assets, even in highly 
liquid digital markets. Instead, information and order flow are first incorporated into certain 
assets before propagating to others. The result that Bitcoin is at the lagging position suggests 
that previous findings about Bitcoin’s dominance position in the crypto ecosystem may not 
hold at high-frequency domain (Sifat et al.,2019; Yarovaya and Zięba, 2022). In market 

l l
l
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microstructure terms, this pattern reflects differences in trading speed, liquidity provision, 
and information diffusion across assets (Stein, 1999; Chord et al., 2008; Theissen, 2016; ). 
Given the benchmark position of market cap and sentiment of Bitcoin, one possible 
explanation is that its deeper limit order book and larger retail participation may cause 
slightly slower adjustment to new information, and tend to absorb price impact (Benos et 
al., 2017; Menkveld & Zoican, 2017). We will further analyze this in detail in part 4.5.3. 

This results are consistent with theoretical work in price discovery (Hasbrouck, 1995), 
which emphasizes that leadership in information incorporation depends on combination of  
liquidity and trading activity, not only on size or market dominance. The shift of positions of 
Bitcoin in lead-lag relationships underscores the importance of considering various time 
scale of analysis, especially high-frequency when assessing leadership in price discovery.

4. 5. 2. The Lead-Lag Relationship Between Exchanges

Then we turn our attention to the lead-lag relationships of exchanges in terms of same 
tokens. More specifically, we investigate the lead-lag relationships between same 
cryptocurrency in different exchanges. The results of lead-lag relationship between  crypto 
exchanges in terms of each token are presented in Table 4.2. Overall, Bitstamp and Kraken 
are at the leading positions while Bitfinex is at the lagging position. However, these lead-lag 
relationships vary for different tokens.

As can be seen in Table 4.2, it shows Bitstamp is at the leading position for most tokens 
while Bitfinex is at a lagging position for all tokens, where Bitstamp leads Kraken both in 
Bitcoin and Ethereum for 50ms, and leads Bitfinex in all four tokens for 50ms to 150 ms. 
Bitfinex is largely at a lagging position as it lags Kraken in Bitcoin, SOL and XRP for 50 ms 
to 150ms, and lags Bitstamp in all four tokens. Additionally, we note that the lead-lag 
relationships of exchanges vary in terms of different tokens, which indicates exchange at a 
leading position for one token might be at a lagging position for another. For example, 
Kraken lags Bitstamp in Bitcoin and Ethereum, but it leads Bitstamp in Solana. Specifically, 
for Bitcoin, Bitstamp is at the leading position where the price in Bitstamp leads that in 
Kraken about 50 ms, and Kraken as well as Bitstamp both lead Bitfinex about 150 ms. For 
mid price of Ethereum, Bistamp is also at a leading position where Kraken lags Bitstamp for 
about 50 ms, while Bitfinex leads Kraken for about 50 ms, and Bitstamp leads Bitfinex 
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about 50 ms. For mid price of Solana, Kraken is at the leading position, where Kraken leads 
Bitstamp and Bitfinex for about 50 ms and 100 ms, respectively, and Bitstamp leads Bitfinex 
for about 150 ms. For XRP, Bitfinex is at the lagging position, where there is no significant 
lead-lag relationship between Kraken and Bitstamp, but Kraken and Bitfinex both lead 
Bitfinex about 50 ms.

 
 
Table 4.2. Lead-Lag relationship between exchanges in terms of different tokens. 

Table 4.2 presents the lead-lag relationships between centralized exchanges in terms of 4 tokens. Each column 
represents lead-lag relationship among three exchanges in terms of one token. For example, the second column displays 
the result of lead-lag relationship of BTC in different exchanges. If length time is positive, then it is the direction shown 
in the first column of the row, otherwise it is the opposite way. 

The presence of sub-second lead-lag relationships across the same cryptocurrency on 
different exchanges suggests that price discovery is at different speed and fragmented across 
trading venues. The results of lead-lag relationships between exchanges show that Bitfinex 
is always at lagging positions for all sampled cryptocurrencies, which has the lowest 
liquidity and highest trading fee among three exchanges . Our results present that crypto 18

exchange with low liquidity and high transaction cost is more likely to be at the lag position 
on price discovery. Bitfinex’s relatively low liquidity means that its order book are thinner 
and less capable of absorbing shocks quickly, and its higher trading fees discourage the 
participation of arbitrageurs and professional liquidity providers who typically adjust prices 
across venues. Consequently, the reduced arbitrage activity and slow order flow response 
positions Bitfinex as a follower in the price discovery process. These findings are consistent 
with previous theoretical work on how market microstructure impact the speed of 
information diffusion and price discovery, which highlight that markets with lower liquidity 
and higher transaction costs tend to attract fewer informed or high-frequency traders, 

BTC ETH SOL XRP

Kraken lead Bitstamp -50ms -50ms 50ms 0

Kraken lead Bitfinex 150ms -50ms 150ms 50ms

Bitstamp lead Bitfinex 150ms 50ms 100ms 50ms

 https://www.kraken.com/features/fee-schedule; https://www.bitstamp.net/fee-schedule/; https://www.bitfinex.com/18

fees/
154



    Chapter 4        High-frequency Lead-Lag Relationships of Cryptocurrencies 
                             and Crypto Exchanges                                                                                              

leading to slower adjustment to incoming information (Amihud and Mendelson, 1986; 
Grossman and Miller, 1988; Hasbrouck, 1995). 

4. 5. 3. Mid-price stickiness and order book resilience

So far, we have identified that BTC is at the lagging position in high-frequency mid-price 
lead-lag relationship with order book data. In order to find possible explanations of BTC’s 
lagging position, we investigate the mid-price stickiness and market depth of each tokens. 

In high-frequency financial markets, mid-price dynamics are broadly influenced by the 
structure order book, particularly the market depth at the best bid and ask prices. According 
to previous theoretical works in market microstructure (O’Hara, 1995; Bouchaud et al., 
2009), the market with deep order book is more tending to effectively absorb market shocks 
such as incoming market orders, instead of reacting to them, reducing the frequency of mid-
price updates, which is known as market stickiness. In this context, assets with greater depth 
at the top of the book tend to exhibit less responsive mid-price dynamics, which potentially 
makes them lag in high frequency mid-price lead-lag relationship. To investigate if mid-
price stickiness and market depth is one factor that could the lead-lag position of each 
cryptocurrencies, we measure the mid-price updated frequency and market-depth of each 
token. This measure could reflect the changes of mid-price, contributing to a deeper 
understanding of lead-lag relationships and the drivers of price discovery across crypto-
assets (Hasbrouck, 1995).

Using a value-based market depth that facilitates cross-asset comparison, we measure dollar 
market depth as the sum of quoted quantities at the best bid and ask and weighted by the 
prevailing mid-price at a one-minute frequency and averaging across all minutes of a 
trading day over sample period. According to Benos et al. (2017) and Menkveld & Zoican 
(2017), the use of dollar-depth not only enables us to compare market depth across assets, 
but also captures the absolute volume available at the top of the order book and reflects the 
market’s ability to absorb incoming orders without large price adjustments. Simultaneously, 
following a growing body of high-frequency market microstructure research (i.e. Bouchaud 
et al., 2009), we quantify the frequency of mid-price updates as the number of distinct 
changes in the mid-price per minute, and averaging across all minutes of a trading day over 
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sample period. The results of market depth and frequency of mid-price updates of sampled 
cryptocurrencies in Kraken are shown in Fig 4.3 and Fig 4.4. 

Fig 4.3. The intraday dollar-depth of cryptocurrencies in Kraken. 

Figure 4.3 shows the dollar market depth of sample cryptocurrencies in exchange Kraken. We calculate this intraday 
market depth by calculating the one-minute dollar depth with five-minutes rolling window and averaging across all 
minutes of a trading day over sample period.

Fig 4.4. The intraday mid-price updates frequency of cryptocurrencies in Kraken. 

Figure 4.4 shows Mid-price updates frequency per minute of a day in sample period of each cryptocurrencies in 
exchange Kraken. We calculate this intraday mid-price updates frequency by calculating the numbers of mid-price 
updates in each minute and averaging across all minutes of a trading day over sample period.

Figure 4.3 shows the dollar market depth of sample cryptocurrencies in Kraken. As can be 
seen in Figure 4.3, these four sampled cryptocurrencies have very different dollar-depth in 
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Kraken, where Bitcoin has the deepest market depth, ETH has the second deepest market 
depth, and SOL and XRP has the third and last deepest market depth among four sample 
cryptocurrencies. The results seem to indicate that deep market depth is correlated with 
lagging position in mid-price high frequency lead-lag relationship. Particularly, in part 4.5.1, 
results in figure 4.1 show that Bitcoin and Ethereum is lagging behind SOL and XRP while 
XRP leads SOL. The results suggest that cryptocurrencies with deeper market depth are 
likely to be laggers in the lead-lag relationships of mid-price.  

Then we turn our attention to the frequency of mid-price updates. The results of mid-price 
updates frequency of each cryptocurrency in Kraken are shown in Figure 4.4. As can be 
seen, XRP has the highest updates frequency and SOL, Ethereum and Bitcoin have the 
second, third and least mid-price updates frequency respectively. It shows that the mid-price 
updates frequencies of cryptocurrencies match their positions in mid-price lead-lag 
relationships, where cryptocurrencies with higher mid-price updates frequencies tend to be 
at the leading positions. 

Finally, we investigated the mid-price response to market shock. Specifically, we calculate 
the percentage change in the mid-price of each cryptocurrency at intervals from 0.1 seconds 
to 1 second, with a 0.1-second gap. The mid-price changes percentage of cryptocurrencies 
in Kraken are shown in figure 4.5. As can be seen, cryptocurrencies with deep market depth 
and lower mid-price update frequency have smaller mis-price response to shocks. 
Specifically, Bitcoin has the smallest mid-price changes to shocks while XRP has the largest 
mid-price changes. These price response to shocks suggest that cryptocurrencies have 
different order book resilience to market shock, where cryptocurrencies have deep market 
depth and lower mid-price update have higher ability to absorb market shocks, and thus 
have relative stable mid-price. Comparing these results to the lead-lag relationships of 
cryptocurrencies in Kraken which are shown in figure 4.1, we note that cryptocurrencies 
with deep market depth and high mid-price update frequency tend to have small price 
response to market shock, such as Bitcoin and Ethereum,  which are at the lagging positions. 
Cryptocurrencies with shallow market depth and high mid-price update frequency have 
large price response to market shock, such as SOL and XRP, which are at the lagging 
positions. 
 
The dollar market depth and frequency of mid-price updates of sample cryptocurrencies in 
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Bitfinex are shown in Appendix C.1, C.2 and C.3, which show similar results as Figure 4.3, 
Figure 4.4 and Figure 4.5. 

Fig 4.5. The mid-price change percentage of cryptocurrencies in Kraken.

Figure 4.5 shows the average mid-price change after Δ seconds of sample cryptocurrencies in exchange Kraken. We 
calculate the percentage of changes of mid-price from 0.1 second to 1second interval, and then average the results to 
plot the curves of figure 4.5. 

Taken together, the results presented in Figures 4.3, 4.4 and 4.5 provide a coherent 
explanation for the high-frequency lead-lag relationships observed among the sampled 
cryptocurrencies in same exchanges. Cryptocurrencies with deeper dollar market depth 
exhibit higher order book resilience, which is demonstrated as lower mid-price updates 
frequency and smaller response to market shock (Kempf et al., 2009). These 
cryptocurrencies, such as Bitcoin and Ethereum, are more likely to occupy lagging positions 
in high-frequency price discovery process. In contrast, those with shallower depth, such as 
XRP and SOL, demonstrate more frequent mid-price updates and tend to be at the leading 
positions in the lead-lag relationships. These findings suggest that liquidity characteristics at 
the top of the order book, particularly depth and price update behavior, might be important 
microstructure drivers of high-frequency lead-lag relationships in crypto markets.
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The observed results of mid-price update frequency and response as well as market depth 
and lead-lag relationship indicates that market microstructure theory are suitable in 
cryptocurrency markets, especially in high frequency lead-lag relationships. Specifically, 
assets that exhibit more frequent mid-price changes are generally more responsive to new 
order flow and information arrivals, suggesting that they play a more active role in the price 
discovery process (Menkveld and Zoican, 2017). On the contrary, assets with deeper market 
depth tend to absorb market shocks such as order flow, instead of react to them (Degryse et 
al., 2005). Particularly, prices in limit order book responses to order flow shocks gradually 
instead of instantaneously, which depends on market depth. Mid-price is more likely to 
change frequently when market depth is thin (Bouchaud et al., 2009). In contrast, assets 
with deeper market depth tend to absorb more order flow without immediate price revisions, 
resulting in fewer mid-price updates—a phenomenon broadly referred to as mid-price 
stickiness. This mid-price stickiness reflects the market’s capacity to mitigate transient 
shocks and delay price adjustments, thereby contributing to a lagging position in high-
frequency lead-lag relationships (Hasbrouck, 1995; Menkveld and Zoican, 2017).

4. 5. 4. The Intraday Profile of Lead-Lag Relationships 

It is a commonsense that financial markets demonstrate intraday patterns, such as U-shaped 
volatility (Alsayed and McGroarty, 2014). So far, we have established an overall high-
frequency lead-lag picture across three crypto exchanges and four cryptocurrencies. Now 
we turn our attention to the intraday pattern of these relationships. Following Alsayed and 
McGroarty (2014), we split each day into 24 hourly intervals, spanning 00:00 - 23:59 UTC 
as cryptocurrency is 24/7 traded on these centralized exchanges. In this part, we investigate  
the lead-lag relationships between Kraken and Bitstamp in terms of each sample 
cryptocurrency to analyze the intraday patterns. For each interval, we measure the 
maximum correlation and lag length which maximizes the correlation for each pair and on 
each day. Then we average these results over the number of days. Ultimately, we obtain four 
24-point curves: one for each pair. The results of Bitcoin and Ethereum are shown in Figure 
4.6 and results of SOL and XRP are shown in appendix C.4. 

Figure 4.6 provides clear evidence of intraday seasonality of lead-lag relationships between  
Kraken and Bitstamp in terms of Bitcoin and Ethereum. It turns out when US stock market 
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is opening, the lag length of two exchanges is shorter and the max correlation is smaller. 
The the announcement of macroeconomic news at 13:30 UTC, the US stock market open at 
14:30 UTC, and the close of US stock markets at 21:00 UTC.  

In Figure 4.6, the largely positive lag length of Kraken suggest that Bitstamp is leading 
Kraken in both Bitcoin and Ethereum at most time, the max correlation fluctuates between 
0.3 and 0.45. Moreover, the maximum correlation generally decreases throughout the day,  
and bounces back at 21:30 UTC to 22:30 UTC. This implies that the pairwise causal link 
between the leading and lagging exchanges varies throughout the day. The maximum 
correlation of Bitcoin and Ethereum are at the lowest level throughout the day from 14:30 
UTC to 21:00 UTC, which exactly matched the opening period of US stock market, and 
then it increases sharply since US stock market closed. In addition, the lag length shows a 
intraday seasonality as well. Kraken lags Bitstamp in both Bitcoin and Ethereum. The lag 
length remains largely range-bound, which volatiles between 0 and 150 ms. For Bitcoin, the 
lag length is lower at the interval of 6:00 UTC to 8:00 UTC and  interval of 16:00 to 18:00 
UTC. For Ethereum, the lag length are relative low from 14:30 UTC to 21:00 UTC, which 
almost cover the open time of US stock market. The intraday lead-lag relationships between 
Kraken and Bitstamp in terms of SOL and XRP are shown in Appendix C.4, which displays  
similar results as Figure 4.6.
 
The results largely show that the opening of the US stock market reduces the lag length and 
maximum correlation between Kraken and Bitstamp, while the closing of the US stock 
market intensifies them. This indicates that the information transmission between crypto 
exchanges is more dependent on the intensity of activity of US market. During the trading 
hours of the US financial market, when both markets and investors, especially institutional 
investors, are active, information transmission is faster, resulting in smaller price lags. Our 
findings are consistent with previous studies on lead-lag relationship in traditional market 
that lead-lag effect is correlated with intensity of market activity (Chordia et al., 2011; 
Rakotomalala and Cao, 2019). This might be due to higher market liquidity and lower 
transaction cost (Kyle, 1985; Amihud and Mendelson, 1986), more arbitrage tradings 
(Hasbrouck, 1995) and more high frequency tradings (Hasbrouck and Saar, 2013). Our 
results prove that previous findings on drivers of lead-lag effect could be applied in 
cryptocurrency market.  
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Figure 4.6. Intraday Lead-Lag relationship of Kraken and Bitstamp in Bitcoin and Ethereum.   

                                                                                                                                         

Figure 4.6. Lead-Lag intraday pattern. Intraday patterns in the Maximum correlation and Lag length of Kraken and 
Bitstamp in Bitcoin and Ethereum. The blue and red curves denote Bitcoin and Ethereum, respectively. The Lag Length 
denotes the lag time of Kraken, it indicates Kraken lagging Bitstamp if it is positive and Kraken leading Bitstamp if it is 
negative. Times on the horizontal axes refer to the previous one-hour interval (e.g. 9:30 refers to the 09:00-10:00 
interval). 

4. 6. Discussions

This study investigates the fast lead-lag effect in cryptocurrency markets in this study. 
Specifically, we examine the lead-lag relationships between crypto exchanges in terms of 
same tokens, and that between different tokens in same exchanges. In this high frequency 
trading period (O’hara, 2015), lead-lag relationship is super fast and might be more likely to 
occur in the sub-second region and to be more short-living (Alsayed and McGroarty, 2014; 
Huth and Abergel, 2014). Therefore, prior research on lead-lag effect in crypto market using 
fixed sampling frequencies of weekly, daily or intraday basis could not provide practical 
information for actual trading or arbitrage (Alsayed and McGroarty, 2014). We apply the 
method proposed and extended by Hayashi & Yoshida (2005) and Hoffmann et al. (2013). 
This method allows us to process the irregular tick-by-tick dataset from limit order book to 
examine the high-frequency lead-lag relationship in cryptocurrency market.
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These strong lead-lag effects we documented indicate that the information diffusion is not 
instantaneous or synchronous in cryptocurrency market. Even though the trading in 
cryptocurrency market is high frequent and super fast  (Aleti & Mizrach, 2021;), the 19

information is still not instantly spread to all exchanges and tokens.These results challenge 
the implication of the Efficient Market Hypothesis (EMH) that prices adjust so quickly to 
new information that opportunities for excess returns do not exist, due to the assumption 
that information transmission is instantaneous, complete, and frictionless. Our findings are 
supportive to Adaptive Market Hypothesis (AMH) and the theory proposed by Grossman 
and Stiglitz (1976, 1980), which suggest that information transmission in financial markets 
is dynamic, costly, and influenced by market conditions and participant behavior. As a 
result, prices may not always immediately reflect all available information.

Contrary to previous studies on lead-lag relationships in crypto markets (Yarovaya and 
Zięba, 2022), we confirm the lagging positions of Bitcoin and Ethreum in high-frequency 
lead-lag relationships. Our further analysis on limit order book shows that these lag 
positions of Bitcoin and Ethereum might correlated with market depth. Our study shows that 
Bitcoin and Ethereum have higher dollar-depth than other tokens, bringing higher order 
book resilience to market shock, which is reflected by lower mid-price update frequencies 
and smaller response to market shock. These low mid-price update frequencies and smaller 
response to market shock might make Bitcoin and Ethereum look react slower to new 
information. Our findings are consistent with previous works focus on limit order book 
where they find assets with deeper market depth have the ability to absorb market shocks 
and keep mid-prices stable. (Menkveld and Zoican, 2017; Degryse et al., 2005). 

Moreover, our results prove that the lead-lag effect is correlated with market condition and  
market microstructure factors including bid-ask spread and transaction cost. In detail, in 
terms of same tokens, we found Bitfinex is always at lagging positions for all four sample 
cryptocurrencies. One possible reason is that among these three centralized crypto 
exchanges, Bitfinex has widest bid-ask spread and highest trading fee. Our results indicate 
that crypto exchange with low liquidity and high transaction cost is usually at the lag 
position on price discovery. These findings provide empirical evidence to support previous 
theoretical work which claim that high trading cost would slow the information diffusion 

 https://blog.kraken.com/crypto-education/performance-at-kraken 19
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and thus have slower price discovery (Amihud and Mendelson, 1986; Hasbrouck, 1995; 
Grossman and Miller, 1988). 

In addition, we detected a strong intraday seasonality of lead-lag relationship between 
exchanges in terms of same cryptocurrencies. Specifically, during the opening time of US 
stock market, the lead-lag relationship between exchanges diminished. Consistent with 
previous papers on price discovery (e.g. Chordia et al., 2011; Alsayed and McGroarty, 
2014), our results prove that information spreads faster when markets are more active. This 
is possible due to the higher liquidity and trading volume (Kyle, 1985; Biais et al.,1995), 
more intensive arbitrage (Hasbrouck, 1995) and more algorithm trading from institutional 
traders (Hasbrouck and Saar, 2013) during the day time and opening time of US financial 
market. 

Overall, our results fit into the implications of AMH (Lo. 2004) and information model 
(Grossman and Stiglitz, 1976, 1980) that information is not transmitted instantaneously, but 
rather exhibit brief delays. Therefore, the speed to act on new information varies for 
different market participants and thus they have different price discovery speed, which 
introduce lead-lag effect to the market. And the lead-lag effect is diminished when market 
activity is intensified during the opening time of US stock market. Our findings are 
consistent with AMH and price discovery theory in previous work (e.g. Hong & Stein, 
1999; Hasbrouck, 1995; Lo & MacKinlay, 1990; Chordia & Swaminathan, 2000; Lo, 2004), 
showing that these theories fit into emerging markets such as cryptocurrency market. 

 
 

4. 7. Conclusions

This paper complements previous work by examining fast lead-lag relationships of mid-
quote price in the important but overlooked market setting of cryptocurrency. We document 
clear evidence of sub-second lead-lag patterns across 4 top cryptocurrencies, Bitcoin, 
Ethereum, Solana and XRP, in three top centralized exchanges, Kraken, Bitstamp and 
Bitfinex. Using milliseconds tick-by-tick order book data, we analyze high frequency lead-
lag relationships of different tokens in same exchange, and same token in different 
exchanges. Our results suggest that the diffusion of information across these exchanges and 
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tokens is not instantaneous. And our further analysis indicates that the lead-lag positions of 
cryptocurrencies are correlated with order book depth and resilience. 

Moreover, the lead-lag relationship shows a strong seasonality in intraday patterns. During 
the opening time of US equity market (13:30 UTC to 21:00 UTC), the maximum correlation 
and lag length are at the lowest level throughout a day. This indicates that the diffusion of 
information tends to be faster when market is active. 
 
The data we employ consists of the four most highly liquid cryptocurrencies in three top 
centralized exchanges, with no capital controls and no restrictions to cross-border arbitrage 
in cryptocurrency market setting. Based on this, we suggest that the results obtained in this 
paper are generalizable to other global markets. Our dataset contains over 100 million data 
points throughout the sample period, providing us enough sample to investigate the lead-lag 
relationship in cryptocurrency market with a more granule and faster scale. Furthermore, we 
highlight the importance of utilizing high-frequency data, based on compelling evidence 
that most of the mechanisms of price adjustment and order match in cryptocurrency market 
operate deep into the sub-second domain. 

Our results have important implications to cryptocurrency investors and centralized 
exchanges. The high-frequency lead-lag effects might provide extra information on 
forecasting possibility of cryptocurrency price changes, which could help investor improve  
arbitrage strategy. For exchanges, our results also bring new sights to them on how to reduce 
lag-length  seasonality and speed up the information transmission.

Overall, we provide new insights on non-contemporaneous cross-asset correlations in 
emerging and fast cryptocurrency market. We find evidence of high-frequency lead-lag 
effects of cryptocurrency price. Bitcoin and Ethereum, the leading cryptocurrencies in 
previous analysis with lower frequent dataset, lost their leading positions in this high-
frequency scale. The lead-lag relationships between different cryptocurrencies vary over 
time, which display a strong seasonality in intraday patterns. Future work could focus on 
exploring the arbitrage limits and opportunities by exploiting the high-frequency lead-lag 
relationships. This would facilitate relieve the disequilibria of information diffusion in 
cryptocurrency market cross centralized exchanges and tokens. 
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5.1. Main findings and implications 

In conclusion, this thesis provides a comprehensive analysis of the volatility transmission 

mechanisms from external markets to stablecoin markets, as well as the mispricings of 

stablecoins that give rise to arbitrage opportunities. It investigates the factors associated 

with stablecoins volatility and price deviations. Additionally, this study examines rapid lead-

lag relationships across cryptocurrencies and crypto exchanges using high-frequency data. 

The primary objective of this thesis is to understand the dynamic linkage between fiat-

collateralized stablecoins and various related markets and influential factors, and to 

determine how these different factors can majorly contribute to the volatility and price 

deviations of stablecoins over time. A major outcome of this thesis is that the volatility 

spillovers from related external markets to stablecoins markets have been identify, which are 

the drivers of stablecoins excess volatility, while microstructure factors and asynchronous 

price adjustments of crypto exchanges contributes to cross-exchanges mispricings of 

stablecoins. Furthermore, we also document strong, sub-second lead-lag effects among 

cryptocurrencies across and within exchanges, expanding the literature on high-frequency 

lead-lag relationships in cryptocurrency market. 

Chapter Two examines potential drivers of stablecoin volatility using linear regression and 

volatility spillovers approach proposed by Diebold and Yilmaz (2009, 2012, 2015) 

combined with Time-varying Parameter VAR model. Our results indicate shocks from  

related markets, including traditional cryptocurrencies markets, major equity and currency 

markets, could transmit to stablecoins markets. This chapter provides important implications 

to crypto traders that the spillover effects from external markets to stablecoins should be 

considered when they build their trading strategy relying on the stability of stablecoins as 

strong spillover effects might bring potential risks to these strategies. Also, by leveraging 

evidence of strong spillover effects from external markets to stablecoins, investors can time 

their trades of stablecoins more effectively to avoid uncertainties in transaction costs.

166



    Chapter 5     Conclusions                                                                                                                      

Chapter Three identifies massive frequent and quick-removed mispricings within stablecoin 

secondary markets across centralized exchanges, demonstrating profitable arbitrage 

opportunities even after accounting for transaction costs. In addition, by analyzing the 

market characteristics that prevail during mispricings, we find the microstructure factors — 

such as bid-ask spreads, market depth,  order imbalance, and return standard deviation, play 

important roles in creating mispricings that lead to arbitrage opportunities. Further impulse 

response function analysis suggests that asynchronous price adjustments across exchanges 

contribute to the observed mispricings. This chapter provides valuable implications for 

arbitrageurs, stablecoin managers and cryptocurrency exchanges. For arbitrageurs, they can 

exploit this new arbitrage route to avoid high trading cost and threshold of primary market, 

and further remove smaller price deviations of stablecoins. For stablecoin managers, the 

findings highlight the vulnerability of stablecoin price stability to large one-sided orders and 

liquidity shortages, suggesting a need to strengthen stability mechanisms. For crypto 

exchanges, our results indicate that improving the speed of price discovery might be a 

useful way to reduce stablecoins mispricings and enhance market efficiency.

Chapter Four complements previous work by examining high-frequency lead-lag 

relationships in the important but overlooked market of cryptocurrency. Using milliseconds 

tick datasets of order book, this chapter analyzes lead-lag patterns between different tokens 

within the same exchange, and same token across different exchanges. The results 

demonstrate clear evidence of sub-second lead-lag patterns across cryptocurrencies and 

exchanges, where Bitcoin and Ethereum are at the lag position in these fast lead-lag 

dynamics. Our results suggest that the diffusion of information across these exchanges and 

tokens is not instantaneous, and the uneven information spread brings lead-lag effects. 

Further analysis find these lead-lag positions might be correlated with order book resilience. 

Moreover, we find the lead-lag relationship shows a strong seasonality in intraday patterns 

where lead-lag effect tend to diminish during opening hours of US stock markets. 

The results in chapter four also have implications to cryptocurrency investors and crypto 

exchanges. The high-frequency lead-lag relationships in crypto market could possibly 
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provide useful and fast information on forecasting possibility and accuracy of 

cryptocurrency price, improving trading strategy as in traditional market (Alsayed and 

McGroarty, 2014; Huth and Abergel, 2014). For crypto exchanges, the intraday seasonality 

of lead-lag effects could give them new insight that attracting more investors globally might 

help to avoid long lag-length in mid night and speed up the information transmission when 

US market is closed.  

5. 2. Limitations and suggestions for future research 

The thesis has studied and investigated the volatility spillovers from related external 

markets to stablecoins markets, the mispricings of stablecoins allowing arbitrage across-

exchanges and the high-frequency lead-lag relationships in crypto markets. However, there 

are still some limitations in the analysis of this thesis and future research and investigations 

could be extended further to provide more in-depth understanding in cryptocurrency market 

to fix these limitations.

In Chapter two, we only measure the volatility spillovers from limited number of markets to 

four leading stablecoin markets. Future research could investigate the spillover effects 

between stablecoin markets and more related markets, for example, stock markets in areas 

other than US, commodity markets including futures markets, gold markets, or other major 

currencies markets, providing a more comprehensive understanding on volatility 

transmission mechanism from external markets to stablecoin markets. Also, future research 

could consider other types of stablecoins such as commodity-collateral and algorithm 

stablecoins, investigating how shocks from related markets transmit impact different kinds 

of stablecoins. Further, chapter two assesses volatility spillovers through VAR model. In 

further studies, different methods could be applied to increase the robustness of analysis. 

For example, GARCH model, especially dynamic conditional correlation (DCC) GARCH 

model could be used to measure the volatility spillovers (Antonakakis, 2008).
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In chapter three, we investigate mispricings of two leading stablecoins across three top 

centralized exchanges. Future studies could includes more stablecoins and more exchanges. 

Also, decentralized exchanges could be considered to see if these cross-exchanges arbitrage 

opportunities existed on-chain. Moreover, in this chapter we set a relative safe threshold of 

durations, which is 1 second. Future studies could investigate the trading speed and latency 

further and try to detect arbitrage opportunities with short durations, which might bring 

higher profitability. Furthermore, the profit of this arbitrage strategy largely depends on the 

trading fee levels that arbitrageurs face, future studies might calculate the profitability of 

arbitrage opportunities under multiple levels of trading fee.

In chapter four, we analyze the high-frequency lead-lag relationships in crypto markets., and 

these findings might provide useful informations to investors to build a trading strategy. In 

this regard, future studies could try to develop practical trading strategies which rely on the 

fast lead-lag relationships in crypto markets. By trying to predict the price of lagged assets 

and explore arbitrage trading with high-frequency cryptocurrency data, future studies could 

provide more refined insights into the practical trading strategy and mechanics of 

information diffusion across markets. Also, further analysis could cover a longer sample 

period to investigate if and how the high-frequency lead-lag relationships evolve over time, 

and their potential drivers. 

Overall, we acknowledge these above limitations in this thesis and propose several possible 

directions for future research. We hope these suggestions could advance our future studies 

and further understandings in cryptocurrency markets. 
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Appendice

Appendix B.1. Mispricing Frequency by Month in sample period.

 

Appendix B.1  displays the numbers are mispricings happened in each combination of exchanges during sample 
period, included USDT mispricings and USDC mispricings. Panel A displays the results relate to the January 1st, 
2022–December 31st, 2022 period. Panel B displays the results related to the January 1st, 2023–June 30th, 2023 
period.

 
 

Appendix. B.2. Arbitrage Instances and Net Profits under Different Trading Fees.

This plot presents the frequency and net profit of arbitrage opportunities between Kraken and Bitstamp, and 
between Bitstamp and BinanceUS.  The results relate to the January 1st 2022 – June 30th 2023 period,  under all 
possible levels of trading fees.

Panel A Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Kraken 
and Bitstamp

131 97 17 33 384 798 999 265 31 16 2326 1175 6272

Kraken 
and BinanceUS

6 1 1 4 104 3 4 3 0 1 127 8 262

Bitstamp and 
BinanceUS 

10 6 3 26 85 237 321 767 15 0 2402 610 4482

Panel B 2023 Jan 2023 Feb 2023 Mar 2023 Apr 2023 May 2023 Jun Total

Kraken 
and Bitstamp

332 122 2243 376 43 21 3137

Kraken 
and BinanceUS

6 3 100 11 2 2 124

Bitstamp and 
BinanceUS 

146 12 2187 47 8 4 2404
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Appendix B.3. Determinants of Instances and Profits of Arbitrage of USDC between Kraken and Bitstamp. 

This table shows the results of regressions of determinants of arbitrages of USDC between Kraken and Bitstamp 
on daily basis, the results relate to the January 1st 2022 – June 30th 2023 period. Panel A presents the 
determinants of arbitrage occurrence, Panel B presents determinants of arbitrage profit. Spread is the average of 
quoted spreads over time throughout each day, trading volume is the daily total trading volume, order imbalance 
is calculated as the difference in the absolute value between buyer-initiated trades and seller-initiated trades 
divided by the sum of the two. Panel B results are based on a logit regression of a dependant variable that equals 
one on days an arbitrage opportunity is created and zero otherwise. K-overpriced (Bit-overpriced) denotes USDC 
in Kraken (Bitstamp) is overpriced. These variables passed the ADF test and VIF test for stationary and 
multicollinearity. Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

 

K-overpriced, Bit-underpriced K-underpriced, Bit-overpriced

Panel A: Determinants of Instances of Arbitrage
Spread 0.482 1.018

Kraken
Trading volume 11.570*** 2.960**
Order imbalance -3.129*** -1.752***

Adjusted R-square 0.115 0.012

Spread 0.405 -0.809

Bitstamp
Trading volume 12.979*** 9.706**
Order imbalance -1.999*** -1.179***

Adjusted R-square 0.04 0.013

Panel B: Determinants of Arbitrage 
profits Spread -0.009 -0.022

Kraken
Trading volume 0.508*** 0.124**
Order imbalance -0.034*** 0.038**

Adjusted R-square 0.317 0.075

Spread 0.118*** 0.124***

Bitstamp
Trading volume 0.278*** 0.174**
Order imbalance -0.032** -0.020

Adjusted R-square 0.188 0.143
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Appendix B.4. Determinants of Instances and Profits of Arbitrage of USDT between Kraken and BinanceUS. 

This table shows the results of regressions of determinants of arbitrages of USDT between Kraken and 
BinanceUS on daily basis, the results relate to the January 1st 2022 – June 30th 2023 period. Panel A presents the 
determinants of arbitrage occurrence, Panel B presents determinants of arbitrage profit. Spread is the average of 
quoted spreads over time throughout each day, trading volume is the daily total trading volume, order imbalance 
is calculated as the difference in the absolute value between buyer-initiated trades and seller-initiated trades 
divided by the sum of the two. Panel B results are based on a logit regression of a dependant variable that equals 
one on days an arbitrage opportunity is created and zero otherwise. K-overpriced (Bin-overpriced) denotes 
USDT in Kraken (BinanceUS) is overpriced. These variables passed the ADF test and VIF test for stationary and 
multicollinearity. Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

K-overpriced, Bin-
underpriced

K-underpriced, Bin-overpriced

Panel A: Determinants of Instances of Arbitrage

Spread -1.675 -5.773

Kraken
Trading volume 7.094*** 11.849***
Order imbalance -6.374*** -9.271***

Adjusted R-square 0.039 0.244

Spread 1.008 0.531

BinanceUS Trading volume 3.206 6.975*

Order imbalance -4.476*** -6.298***

Adjusted R-square 0.197 0.101

Panel B: Determinants of Arbitrage 
profits Spread 0.852*** 0.977***

Kraken
Trading volume 0.148*** -0.018**

Order imbalance -0.020** -0.004**

Adjusted R-square 0.516 0.950

Spread 0.030 0.045***

BinanceUS Trading volume 0.847*** 0.819***

Order imbalance -0.012** -0.0264***

Adjusted R-square 0.424 0.859
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Appendix B.5. Determinants of Instances and Profits of Arbitrage of USDC between Kraken and BinanceUS. 

This table shows the results of regressions of determinants of arbitrages of USDC between Kraken and 
BinanceUS on daily basis, the results relate to the January 1st 2022 – June 30th 2023 period. Panel A presents the 
determinants of arbitrage occurrence, Panel B presents determinants of arbitrage profit. Spread is the average of 
quoted spreads over time throughout each day, trading volume is the daily total trading volume, order imbalance 
is calculated as the difference in the absolute value between buyer-initiated trades and seller-initiated trades 
divided by the sum of the two. Panel B results are based on a logit regression of a dependant variable that equals 
one on days an arbitrage opportunity is created and zero otherwise. K-overpriced (Bin-overpriced) denotes 
USDC in Kraken (BinanceUS) is overpriced. These variables passed the ADF test and VIF test for stationary and 
multicollinearity. Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

 

 

K-overpriced, Bin-
underpriced

K-underpriced, Bin-overpriced

Panel A: Determinants of Instances of Arbitrage

Spread 3.838** 3.189*

Kraken
Trading volume 2.526 1.801
Order imbalance -7.379*** -7.034***

Adjusted R-square 0.361 0.122

Spread -1.515 4.399**

BinanceUS Trading volume 11.544*** 6.283*

Order imbalance -9.832*** -8.549***

Adjusted R-square 0.086 0.023

Panel B: Determinants of Arbitrage 
profits Spread 0.252*** -0.024

Kraken
Trading volume 0.112*** 0.085***

Order imbalance -0.043*** 0.002

Adjusted R-square 0.291 0.02

Spread -0.044 0.987***

BinanceUS Trading volume 0.243*** 0.072***

Order imbalance -0.015** -0.003

Adjusted R-square 0.101 0.892
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Appendix B.6. Determinants of Instances and Profits of Arbitrage of USDT between Bitstamp and BinanceUS. 

This table shows the results of regressions of determinants of arbitrages of USDT between Bitstamp and 
BinanceUS on daily basis, the results relate to the January 1st 2022 – June 30th 2023 period. Panel A presents 
the determinants of arbitrage occurrence, Panel B presents determinants of arbitrage profit. Spread is the average 
of quoted spreads over time throughout each day, trading volume is the daily total trading volume, order 
imbalance is calculated as the difference in the absolute value between buyer-initiated trades and seller-initiated 
trades divided by the sum of the two. Panel B results are based on a logit regression of a dependant variable that 
equals one on days an arbitrage opportunity is created and zero otherwise. Bit-overpriced (Bin-overpriced) 
denotes USDT in Bitstamp (BinanceUS) is overpriced. These variables passed the ADF test and VIF test for 
stationary and multicollinearity. Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’. 

Bit-overpriced, Bin-
underpriced

Bit-underpriced, Bin-overpriced

Panel A: Determinants of Instances of Arbitrage

Spread 27.903 22.466

Bitstamp
Trading volume 3.328*** 3.956***

Order imbalance -3.643*** -6.067***

Adjusted R-square 0.026 0.012

Spread 0.987 -1.022

BinanceUS
Trading volume 3.178 4.925*

Order imbalance -2.586*** -4.238***

Adjusted R-square 0.053 0.098

Panel B: Determinants of Arbitrage 
profits Spread -0.017 -0.047

Bitstamp
Trading volume 0.211*** 0.112***

Order imbalance -0.027*** -0.017**

Adjusted R-square 0.226 0.087

Spread -0.019 0.011

BinanceUS
Trading volume 0.441*** 0.418***

Order imbalance 0.004 -0.011**

Adjusted R-square 0.137 0.175
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Appendix B.7. Determinants of Instances and Profits of Arbitrage of USDC between Bitstamp and BinanceUS. 

This table shows the results of regressions of determinants of arbitrages of USDC between Bitstamp and 
BinanceUS on daily basis, the results relate to the January 1st 2022 – June 30th 2023 period. Panel A presents the 
determinants of arbitrage occurrence, Panel B presents determinants of arbitrage profit. Spread is the average of 
quoted spreads over time throughout each day, trading volume is the daily total trading volume, order imbalance 
is calculated as the difference in the absolute value between buyer-initiated trades and seller-initiated trades 
divided by the sum of the two. Panel B results are based on a logit regression of a dependant variable that equals 
one on days an arbitrage opportunity is created and zero otherwise. Bit-overpriced (Bin-overpriced) denotes 
USDC in Bitstamp (BinanceUS) is overpriced. These variables passed the ADF test and VIF test for stationary 
and multicollinearity. Significant at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’. 

 

Bit-overpriced, Bin-
underpriced

Bit-underpriced, Bin-overpriced

Panel A: Determinants of Instances of Arbitrage

Spread -1.182* 0.078

Bitstamp Trading volume 8.988** 13.998***
Order imbalance -2.644*** -4.112***

Adjusted R-square 0.053 0.020

Spread -3.166 82.934

BinanceUS
Trading volume 2.312 6.721***

Order imbalance -3.088*** -4.355***

Adjusted R-square 0.092 0.022

Panel B: Determinants of Arbitrage 
profits Spread 0.091*** 0.052

Bitstamp
Trading volume 0.271*** 0.318***

Order imbalance -0.035*** -0.014

Adjusted R-square 0.140 0.105

Spread -0.042 0.081***

BinanceUS
Trading volume 0.113** 0.126**

Order imbalance 0.021** -0.023**

Adjusted R-square 0.041 0.102
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Appendix B.8. Market characteristics of USDC in Kraken and Bitstamp. 

This table presents percentage increases (positive) or decreases (negative) of market microstructure factors when 
mispricing of USDC occurs between Kraken and Bitstamp. The changes are based on the numbers from the 
same time of the day on the previous 20 trading days without mispricing, if there is a mispricing at the same time 
of the day in previous 20 trading days we take earlier trading days. The results relate to the January 1st 2022 – 
June 30th 2023 period. Two arbitrage opportunities occur within 10 minutes will be combined to avoid period 
overlap. Spread is calculated for the first trade in each interval as two times the absolute value of the difference 
between the transaction price and the prevailing mid-price (effective spread). Depth is the value of shares at the 
first level (both the bid and ask) of order book at the start of each interval. Order Imbalance is calculated as the 
difference in the absolute value between buyer-initiated trades and seller-initiated trades divided by the sum of 
the two in each interval. Statistical significant changes at the 10% level or higher are in bold. Statistical 
Significant of bootstrap test at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

 

Kraken  Bitstamp

Panel A : Kraken-overpriced, Bitstamp-underpriced (328)

Spread 1.61% 3.5%* 2.9%* 85.7%*** 93.72%*** 63.1%***

Depth -19.3%*** -22.5%*** -19.9%*** -34.3%*** -37.9%*** -34.9%***

OIB -1.8% 0.5% -5.73%** -2.92% 14.5%*** 19.9%***

Trading volume 127.3% 304.5% 44.2% 450.4%*** 1897.7%*** 154.4%***

Return std 9.4%*** 19.3%*** 11.7%*** 205.2%*** 436.9%*** 236.9%***

Panel B : Kraken-underpriced Bitstamp-overpriced (344)

Spread 2.9% 2.4% 1.97%* 67.0%*** 73.9%*** 58.2%***

Depth -11.8%*** -11.7%*** -10.8%*** -18.8%*** -22.7%*** -32.8%***

OIB -1.5% 5.9%*** 1.9% -6.3%*** -4.5%*** -25.5%***

Trading volume -7.6%** 96.7%*** 62.3%*** 452%*** 1707.6%*** 151.8%***

Return std 4.28% 19.8%*** 15.1%** 132.6%*** 304.8%*** 198.6%***

t0 − 5 t o t0 − 2 t0 − 1 t o t1 + 1 t1 + 2 t o t1 + 5t0 − 5 t o t0 − 2 t1 + 2 t o t1 + 5t0 − 1 t o t1 + 1
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Appendix B.9. Market characteristics of USDT in Kraken and BinanceUS. 

This table presents percentage increases (positive) or decreases (negative) of market microstructure factors when 
mispricing of USDT occurs between Kraken and BinanceUS. The changes are based on the numbers from the 
same time of the day on the previous 20 trading days without mispricing, if there is a mispricing at the same time 
of the day in previous 20 trading days we take earlier trading days. The results relate to the January 1st 2022 – 
June 30th 2023 period. Two arbitrage opportunities occur within 10 minutes will be combined to avoid period 
overlap. Spread is calculated for the first trade in each interval as two times the absolute value of the difference 
between the transaction price and the prevailing mid-price (effective spread). Depth is the value of shares at the 
first level (both the bid and ask) of order book at the start of each interval. Order Imbalance is calculated as the 
difference in the absolute value between buyer-initiated trades and seller-initiated trades divided by the sum of 
the two in each interval. Statistical significant changes at the 10% level or higher are in bold. Statistical 
Significant of bootstrap test at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

Kraken  BinanceUS

Panel A : Kraken-overpriced, BinanceUS-underpriced

Spread 69.9%*** 68.1%*** 54.5%*** 102.3%*** 95.9%*** 92.9%***

Depth -58.2%*** -61.7%*** -71.1%*** 3.1%** -0.94% 5.2%**

OIB -2.8% -3.0% -15.4% 14.9%*** 16.4%*** 2.9%

Trading volume 192.7%*** 221.9%*** 112.9%*** 345.8%*** 942.9%*** 684.4%***

Return std 77.1%*** 63.7%*** 69.7%*** 27.9%*** 25.8%*** 28.9%***

Panel B : Kraken-underpriced BinanceUS-overpriced

Spread 33.9%*** 51.2%*** 85.0%*** 50.8%*** 48.2%*** 65.0%***

Depth -65.1%*** -75.4%*** -78.9%*** 48.5%** 41.0%** 26.6%*

OIB -14.8%** 18.0%*** 25.6%*** -15.2%*** -24.7%*** -12.4%***

Trading volume 165.6%*** 344.5%*** 222.3%*** 1037.7%*** 1396.9%*** 1086.7%***

Return std 55.8%*** 175.9%*** 61.0%*** 57.8%*** 58.7%*** 66.4%***

t1 + 2 t o t1 + 5t1 + 2 t o t1 + 5t0 − 5 t o t0 − 2 t0 − 1 t o t1 + 1 t0 − 1 t o t1 + 1t0 − 5 t o t0 − 2
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Appendix B.10. Market characteristics of USDC in Kraken and BinanceUS. 

This table presents percentage increases (positive) or decreases (negative) of market microstructure factors when 
mispricing of USDC occurs between Kraken and BinanceUS. The changes are based on the numbers from the 
same time of the day on the previous 20 trading days without mispricing, if there is a mispricing at the same time 
of the day in previous 20 trading days we take earlier trading days. The results relate to the January 1st 2022 – 
June 30th 2023 period. Two arbitrage opportunities occur within 10 minutes will be combined to avoid period 
overlap. Spread is calculated for the first trade in each interval as two times the absolute value of the difference 
between the transaction price and the prevailing mid-price (effective spread). Depth is the value of shares at the 
first level (both the bid and ask) of order book at the start of each interval. Order Imbalance is calculated as the 
difference in the absolute value between buyer-initiated trades and seller-initiated trades divided by the sum of 
the two in each interval. Statistical significant changes at the 10% level or higher are in bold. Statistical 
Significant of bootstrap test at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

 

Kraken  BinanceUS

Panel A : Kraken-overpriced, BinanceUS-underpriced

Spread 9.2%*** 16.8%*** 52.6%*** 39.1%*** 85.6%*** 34.3%***

Depth -58.7%*** -44.1%*** -35.6%*** 18.4%* -11.5%*** -0.11%

OIB 18.1%*** -32.9%*** -8.3%*** 24.0%*** 5.6%** 29.4%***

Trading volume 462.1%*** 866.1%*** 631.2%*** 1296.7%*** 1746.7%*** 227.7%***

Return std 41.0%*** 25.5%** 124.1%*** 219.4%*** 233.4%*** 148.5%***

Panel B : Kraken-underpriced BinanceUS-overpriced

Spread 5.1%*** 44.6%*** 42.1%*** 53.9%*** 64.8%*** 84.5%***

Depth -44.2%*** -47.3%*** -47.1%*** 32.9%* -39.4%*** -36.1%***

OIB 32.7%*** 2.2% -1.1% 17.6%** -7.4%** -10.5%***

Trading volume 45.3%*** 467.4%*** 136.5%*** 373.2%*** 126.5%*** 342.9%***

Return std 30.3% 20.6%*** 32.1%*** 209.2%*** 719.0%*** 812.9%***

t0 − 1 to t1 + 1 t1 + 2 to t1 + 5 t0 − 5 t o t0 − 2 t0 − 1 t o t1 + 1t0 − 5 to t0 − 2 t1 + 2 t o t1 + 5
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Appendix B.11. Market characteristics of USDT in Bitstamp and BinanceUS. 

This table presents percentage increases (positive) or decreases (negative) of market microstructure factors when 
mispricing of USDT occurs between Bitstamp and BinanceUS. The changes are based on the numbers from the 
same time of the day on the previous 20 trading days without mispricing, if there is a mispricing at the same time 
of the day in previous 20 trading days we take earlier trading days. The results relate to the January 1st 2022 – 
June 30th 2023 period. Two arbitrage opportunities occur within 10 minutes will be combined to avoid period 
overlap. Spread is calculated for the first trade in each interval as two times the absolute value of the difference 
between the transaction price and the prevailing mid-price (effective spread). Depth is the value of shares at the 
first level (both the bid and ask) of order book at the start of each interval. Order Imbalance is calculated as the 
difference in the absolute value between buyer-initiated trades and seller-initiated trades divided by the sum of 
the two in each interval. Statistical significant changes at the 10% level or higher are in bold. Statistical 
Significant of bootstrap test at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

Bitstamp BinanceUS

Panel A : Bitstamp-overpriced, BinanceUS-underpriced

Spread 161.9%*** 193.0%*** 204.2%*** 7.2%*** 4.4%** 19.3%***

Depth -81.9%*** -79.1%*** -88.9%*** -2.5% -3.0%* -3.3%

OIB -3.0%*** -7.9%*** -16.0%*** 9.5%*** 11.5%*** -2.6%

Trading volume 96.9%*** 345.3%*** 154.3%*** 71.3%*** 162.9%*** 171.7%***

Return std 278.3%*** 759.3%*** 278.4%*** 16.1%*** 13.0%*** 21.3%***

Panel B : Bitstamp-underpriced BinanceUS-overpriced

Spread 277.3%*** 286.1%*** 270.2%*** 0.8% 1.6% 3.6%**

Depth -89.5%*** -90.1%*** -90.3%*** -5.4%*** -2.6%** -3.6%***

OIB -11.3%** 5.1%*** 7.9%*** -21.6%*** -10.2%*** -20.3%***

Trading volume 43.3%*** 302.2%*** 157.9%*** 191.7%*** 373.1%*** 86.1%***

Return std 271.2%*** 454.7%*** 267.3%*** 20.8%*** 15.4%* 18.2%

t0 − 5 t o t0 − 2 t1 + 2 t o t1 + 5t0 − 1 t o t1 + 1 t1 + 2 t o t1 + 5t0 − 5 t o t0 − 2 t0 − 1 t o t1 + 1
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Appendix B.12. Market characteristics of USDC in Bitstamp and BinanceUS. 

This table presents percentage increases (positive) or decreases (negative) of market microstructure factors when 
mispricing of USDC occurs between Bitstamp and BinanceUS. The changes are based on the numbers from the 
same time of the day on the previous 20 trading days without mispricing, if there is a mispricing at the same time 
of the day in previous 20 trading days we take earlier trading days. The results relate to the January 1st 2022 – 
June 30th 2023 period. Two arbitrage opportunities occur within 10 minutes will be combined to avoid period 
overlap. Spread is calculated for the first trade in each interval as two times the absolute value of the difference 
between the transaction price and the prevailing mid-price (effective spread). Depth is the value of shares at the 
first level (both the bid and ask) of order book at the start of each interval. Order Imbalance is calculated as the 
difference in the absolute value between buyer-initiated trades and seller-initiated trades divided by the sum of 
the two in each interval. Statistical significant changes at the 10% level or higher are in bold. Statistical 
Significant of bootstrap test at 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

 

 

Bitstamp BinanceUS

Panel A : Bitstamp-overpriced, BinanceUS-underpriced

Spread 64.7%*** 76.3%*** 85.5%*** -4.1% -4.2%** -3.2%**

Depth -36.1%*** -60.7%*** -49.6%*** -13.6%*** -12.6%*** -10.4%***

OIB -7.8%*** 12.1% -45.7%*** 11.4%*** 17.5%*** 22.7%***

Trading volume 422.8%*** 670.0%*** 137.4%*** 65.9%*** 94.0%*** -21.1%***

Return std 339.0%*** 379.2%*** 174.4%*** 30.3%*** 16%* 25.6%***

Panel B : Bitstamp-underpriced BinanceUS-overpriced

Spread 71.8%*** 81.8%*** 81.1%*** 32.3%*** 28.0%*** 32.0%***

Depth -79,4%*** -82.6%*** -83.5%*** -11.1%*** -10.7%*** -10.1%***
OIB 2.2% 11.1%*** 22.3%*** 2.9% -3.7% -9.5%***

Trading volume 485.9%*** 1161.3%*** 121.6%*** 112.7%** 100.6%*** 96.0%***

Return std 115.5%*** 547.1%*** 370.3%*** 42.9%*** 39.6%*** 10.2%*

t1 + 2 t o t1 + 5t0 − 5 t o t0 − 2 t0 − 1 t o t1 + 1 t0 − 5 t o t0 − 2 t0 − 1 t o t1 + 1 t1 + 2 t o t1 + 5
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Appendix C.1. The intraday dollar-depth of cryptocurrencies in Bitfinex. 

This figure shows the dollar market depth of sample cryptocurrencies in Bitfinex. We calculate this intraday market 
depth by calculating the one-minute dollar depth with five-minutes rolling window and averaging across all minutes of a 
trading day over sample period.

Appendix C.2. The intraday mid-price updates frequency of cryptocurrencies in Bitfinex. 

This figure shows Mid-price updates frequency per minute of a day in sample period of each cryptocurrencies in 
exchange Bitfinex. We calculate this intraday mid-price updates frequency by calculating the numbers of mid-price 
updates in each minute and averaging across all minutes of a trading day over sample period.
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Appendix C.3. The mid-price change percentage of cryptocurrencies in Bitfinex.

Appendix C.3 shows the average mid-price change after Δ seconds of sample cryptocurrencies in exchange Kraken. We 
calculate the percentage of changes of mid-price from 0.1 second to 1second interval, and then average the results to 
plot the curves.
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Appendix C.4. Intraday Lead-Lag relationship of Kraken and Bitstamp in SOL and XRP.   

Appendix C.4 displays the Lead-Lag intraday pattern. Intraday patterns in the Maximum correlation and Lag length of 
Kraken and Bitstamp in SOL and XRP. The blue and red curves denote SOL and XRP, respectively. The Lag Length 
denotes the lag time of Kraken, it indicates Kraken lagging Bitstamp if it is positive and Kraken leading Bitstamp if it is 
negative. Times on the horizontal axes refer to the previous one-hour interval (e.g. 9:30 refers to the 09:00-10:00 
interval). 

183



References                                                                                                                                                                                                                  

References 

Ackert, Lucy F., Tian, Yisong S., 2000. Arbitrage and valuation in the market for Standard and 
Poor’s Depositary Receipts. Financial Management 29 (3), 71–87. 

Adams, Z., Füss, R. and Gropp, R., 2014. Spillover effects among financial institutions: A state-
dependent sensitivity value-at-risk approach. Journal of Financial and Quantitative Analysis, 49(3), 
pp.575-598.

Admati, A.R. and Pfleiderer, P., 1988. Selling and trading on information in financial markets. The 
American Economic Review, 78(2), pp.96-103.

Ahmad, W., Mishra, A.V. and Daly, K.J., 2018. Financial connectedness of BRICS and global 
sovereign bond markets. Emerging Markets Review, 37, pp.1-16.

Aït-Sahalia, Y. and Jacod, J., 2014. High-frequency financial econometrics. Princeton University 
Press.

Ajayi, R.A., Friedman, J. and Mehdian, S.M., 1998. On the relationship between stock returns and 
exchange rates: tests of Granger causality. Global finance journal, 9(2), pp.241-251.

Akerlof, G.A., 1970. 4. The market for ‘lemons’: quality uncertainty and the market mechanism. 
Market Failure or Success, 66.

Aleti, S., & Mizrach, B., 2021. Bitcoin spot and futures market microstructure. Journal of Futures 
Markets, 41(2), 194-225.

Alizadeh, S., Brandt, M. W., & Diebold, F. X., 2002. Range-based estimation of stochastic volatility 
models. The Journal of Finance, 57(3), 1047-1091.

Alsayed, H. and McGroarty, F., 2012. Arbitrage and the Law of One Price in the market for 
American depository receipts. Journal of International Financial Markets, Institutions and Money, 
22(5), pp.1258-1276.

Alsayed, H. and McGroarty, F., 2014. Ultra-high-frequency algorithmic arbitrage across 
international index futures. Journal of Forecasting, 33(6), pp.391-408.

Al-Shboul, M., Assaf, A. and Mokni, K., 2022. When bitcoin lost its position: Cryptocurrency 
uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 
pandemic. International review of financial analysis, 83, p.102309.

Al-Yahyaee, K.H., Mensi, W. and Yoon, S.M., 2018. Efficiency, multifractality, and the long-
memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold 
markets. Finance Research Letters, 27, pp.228-234. 

Amihud, Y. and Mendelson, H., 1980. Dealership market: Market-making with inventory. Journal of 
financial economics, 8(1), pp.31-53.

184



References                                                                                                                                                                                                                  

Amihud, Y. and Mendelson, H., 1986. Liquidity and stock returns. Financial Analysts Journal, 
42(3), pp.43-48.

Amihud, Y., 2002. Illiquidity and stock returns: cross-section and time-series effects. Journal of 
financial markets, 5(1), pp.31-56.

Anand, A. and Venkataraman, K., 2016. Market conditions, fragility, and the economics of market 
making. Journal of Financial Economics, 121(2), pp.327-349.

Anderson, B., 2023. A tick-by-tick level measurement of the lead-lag duration between 
cryptocurrencies: The case of Bitcoin versus Cardano. Invest. Manag. Final. Innov, 20(1), 
pp.174-183.

Ang, A. and J. Chen (2002). Asymmetric correlations of equity portfolios. Journal of Financial Eco- 
nomics 63, 443—494.

Antonakakis, N., and D. Gabauer. 2017. Refined measures of dynamic connectedness based on 
TVP-VAR. University Library of Munich, MPRA Paper no. 78282. 

Antonakakis, N., D. Gabauer, and R. Gupta. 2019. “International Monetary Policy Spillovers: 
Evidence from a Time-Varying Parameter Vector Autoregression.” International Review of 
Financial Analysis 65: 101382. 

Antonakakis, N., I. Chatziantoniou, and D. Gabauer. 2020. “Refined Measures of Dynamic 
Connectedness Based on Time-Varying Parameter Vector Autoregressions.” Journal of Risk and 
Financial Management 13 (4): 84–106. 

Arbel, A., & Strebel, P. (1983). Pay attention to neglected firms. Journal of Portfolio Management, 
9, 37–42.

Athey, S., Parashkevov, I., Sarukkai, V. and Xia, J., 2016. Bitcoin pricing, adoption, and usage: 
Theory and evidence.

Balcilar, M., Bouri, E., Gupta, R. and Roubaud, D., 2017. Can volume predict Bitcoin returns and 
volatility? A quantiles-based approach. Economic Modelling, 64, pp.74-81. 

Balcilar, M., Ozdemir, Z.A. and Ozdemir, H., 2021. Dynamic return and volatility spillovers among 
S&P 500, crude oil, and gold. International Journal of Finance & Economics, 26(1), pp.153-170.

Barberis, N., Shleifer, A. and Vishny, R., 1998. A model of investor sentiment. Journal of financial 
economics, 49(3), pp.307-343.

Barclay, M.J. and Hendershott, T., 2003. Price discovery and trading after hours. The Review of 
Financial Studies, 16(4), pp.1041-1073.

Bariviera, A.F., 2017. The inefficiency of Bitcoin revisited: A dynamic approach. Economics 
Letters, 161, pp.1-4. 

185



References                                                                                                                                                                                                                  

Baruník, J., Kočenda, E., & Vácha, L., 2016. Asymmetric connectedness on the US stock market: 
Bad and good volatility spillovers. Journal of Financial Markets, 27, 55-78. 

Baur D G, Hoang L T., 2021. A crypto safe haven against Bitcoin[J]. Finance Research Letters, 38: 
101431.

Baur, D.G. and Dimpfl, T., 2021. The volatility of Bitcoin and its role as a medium of exchange and 
a store of value. Empirical Economics, 61(5), pp.2663-2683.

Baur, D.G., Hong, K. and Lee, A.D., 2018. Bitcoin: Medium of exchange or speculative assets?. 
Journal of International Financial Markets, Institutions and Money, 54, pp.177-189.

Beirne, J., Caporale, G.M., Schulze-Ghattas, M. and Spagnolo, N., 2013. Volatility spillovers and 
contagion from mature to emerging stock markets. Review of International Economics, 21(5), 
pp.1060-1075.

Bekaert, G. and Harvey, C.R., 2003. Market integration and contagion.

Benartzi, S. and Thaler, R.H., 1995. Myopic loss aversion and the equity premium puzzle. The 
quarterly journal of Economics, 110(1), pp.73-92.

Ben-David, I., Franzoni, F. and Moussawi, R., 2018. Do ETFs increase volatility?. The Journal of 
Finance, 73(6), pp.2471-2535.

Beneki, C., Koulis, A., Kyriazis, N.A., Papadamou, S., 2019. Investigating volatility transmission 
and hedging properties between Bitcoin and Ethereum. Res. Int. Bus. Finan. 48, 219–227.

Benos, E., Brugler, J., Hjalmarsson, E. and Zikes, F., 2017. Interactions among high-frequency 
traders. Journal of Financial and Quantitative Analysis, 52(4), pp.1375-1402.

BenSaïda, A., 2019. Good and bad volatility spillovers: An asymmetric connectedness. Journal of 
Financial Markets, 43, pp.78-95.

Bhattacharya, U. and Spiegel, M., 1998. Anatomy of a market failure: NYSE trading suspensions 
(1974–1988). Journal of Business & Economic Statistics, 16(2), pp.216-226.

Biais, B., Hillion, P. and Spatt, C., 1995. An empirical analysis of the limit order book and the order 
flow in the Paris Bourse. the Journal of Finance, 50(5), pp.1655-1689.

Billio, M., Getmansky, M., Lo, A.W. and Pelizzon, L., 2012. Econometric measures of 
connectedness and systemic risk in the finance and insurance sectors. Journal of financial 
economics, 104(3), pp.535-559.

BIS., 2019. G7 Working Group on Stablecoins - Investigating the impact of global stablecoins, 
Discussion Paper Series.

Black, F., 1972. Capital market equilibrium with restricted borrowing. The Journal of business, 
45(3), pp.444-455.

186



References                                                                                                                                                                                                                  

Black, F., 1986. Noise. The journal of finance, 41(3), pp.528-543.

Bogdan, S., Suštar, N. and Draženović, B.O., 2022. Herding behavior in developed, emerging, and 
frontier European stock markets during COVID-19 pandemic. Journal of Risk and Financial 
Management, 15(9), p.400.

Böhme, R., Christin, N., Edelman, B. and Moore, T., 2015. Bitcoin: Economics, technology, and 
governance. Journal of economic Perspectives, 29(2), pp.213-238.

Bordo, M.D., Schwartz, A.J. and De Grauwe, P., 1989. The ECU—An imaginary or embryonic 
form of money: what can we learn from history?. In The ECU and European monetary integration 
(pp. 1-24). London: Palgrave Macmillan UK.

Borri, N. and Shakhnov, K., 2022. The cross-section of cryptocurrency returns. The Review of 
Asset Pricing Studies, 12(3), pp.667-705. 

Bouchaud, J.P., Farmer, J.D. and Lillo, F., 2009. How markets slowly digest changes in supply and 
demand. In Handbook of financial markets: dynamics and evolution (pp. 57-160). North-Holland.

Bouri, E., Saeed, T., Vo, X.V. and Roubaud, D., 2021. Quantile connectedness in the cryptocurrency 
market. Journal of International Financial Markets, Institutions and Money, 71, p.101302.

Brauneis, A., Mestel, R., Riordan, R. and Theissen, E., 2019, June. A high-frequency analysis of 
bitcoin markets. In Proceedings of Paris December 2019 Finance Meeting EUROFIDAI-ESSEC.

Brandvold, M., Molnár, P., Vagstad, K. and Valstad, O.C.A., 2015. Price discovery on Bitcoin 
exchanges. Journal of International Financial Markets, Institutions and Money, 36, pp.18-35.

Briola, A., Vidal-Tomás, D., Wang, Y. and Aste, T., 2023. Anatomy of a Stablecoin’s failure: The 
Terra-Luna case. Finance Research Letters, 51, p.103358.

Bullmann, D., Klemm, J. and Pinna, A., 2019. In search for stability in crypto-assets: are 
stablecoins the solution?. Available at SSRN 3444847.

Busse, Jeffrey, Green, Clifford T., 2002. Market efficiency in real time. Journal of Financial 
Economics 65, 415–437. 

Candelon, B., Ferrara, L., Joets, M., 2018. Global Financial Interconnectedness: A Non-Linear 
Assessment of the Uncertainty Channel. Banque de France Working Paper No. 661. http://
dx.doi.org/10.2139/ssrn.3123077. 

Cao, G. and Xie, W., 2022. Asymmetric dynamic spillover effect between cryptocurrency and 
China's financial market: Evidence from TVP-VAR based connectedness approach. Finance 
Research Letters, 49, p.103070.

Catalini, C. and Gans, J.S., 2020. Some simple economics of the blockchain. Communications of 
the ACM, 63(7), pp.80-90.

187



References                                                                                                                                                                                                                  

Chakrabarty, B., Moulton, P.C. and Shkilko, A., 2012. Short sales, long sales, and the Lee–Ready 
trade classification algorithm revisited. Journal of Financial Markets, 15(4), pp.467-491.

Chan, K., 1992. A further analysis of the lead–lag relationship between the cash market and stock 
index futures market. The Review of Financial Studies, 5(1), pp.123-152.

Charfeddine, L., Benlagha, N., & Maouchi, Y. (2020). Investigating the dynamic relationship 
between cryptocurrencies and conventional assets: Implications for financial investors. Economic 
Modelling, 85, 198–217.

Cheah, E.T. and Fry, J., 2015. Speculative bubbles in Bitcoin markets? An empirical investigation 
into the fundamental value of Bitcoin. Economics letters, 130, pp.32-36.

Chen G, Firth M, Rui O M., 2001. The dynamic relationship between stock returns, trading volume, 
and volatility[J]. Financial Review, 36(3): 153-174.

Chen, D., Ma, Y., Martin, X. and Michaely, R., 2022. On the fast track: Information acquisition 
costs and information production. Journal of Financial Economics, 143(2), pp.794-823.

Chiang, T.C., Qiao, Z. and Wong, W.K., 2010. New evidence on the relation between return 
volatility and trading volume. Journal of Forecasting, 29(5), pp.502-515.

Chiu, M.C., Wong, H.Y., 2018. Robust dynamic pairs trading with cointegration. Oper. Res. Lett. 46 
(2), 225–232. 

Chordia, T. and Swaminathan, B., 2000. Trading volume and cross-autocorrelations in stock returns. 
The Journal of Finance, 55(2), pp.913-935.

Chordia, T., Roll, R. and Subrahmanyam, A., 2008. Liquidity and market efficiency. Journal of 
financial Economics, 87(2), pp.249-268.

Chordia, T., Sarkar, A. and Subrahmanyam, A., 2011. Liquidity dynamics and cross-
autocorrelations. Journal of Financial and Quantitative Analysis, 46(3), pp.709-736. 

Chordia, T., Sarkar, A., and Subrahmanyam, A., 2005. An empirical analysis of stock and bond 
market liquidity. The Review of Financial Studies, 18(1):85–129.

Chu, J., Zhang, Y. and Chan, S., 2019. The adaptive market hypothesis in the high frequency 
cryptocurrency market. International Review of Financial Analysis, 64, pp.221-231. 

Ciaian, P., Rajcaniova, M. and Kancs, D.A., 2016. The economics of BitCoin price formation. 
Applied economics, 48(19), pp.1799-1815.

Cohen, K.J., 1986. The microstructure of securities markets.

Cong, L.W., He, Z. and Li, J., 2021. Decentralized mining in centralized pools. The Review of 
Financial Studies, 34(3), pp.1191-1235.

188



References                                                                                                                                                                                                                  

Cont, R., 2001. Empirical properties of asset returns: stylized facts and statistical issues. 
Quantitative finance, 1(2), p.223.

Copeland, D., and T. Galai. 1983. Information effects on the bid-ask spread. Journal of Finance 
38:1457–69. 

Corbet, S., Meegan, A., Larkin, C., Lucey, B., Yarovaya, L., 2018. Exploring the dynamic 
relationships between cryptocurrencies and other financial assets. Economics Letters. 

Coronado, S., Jiménez-Rodrguez, R. and Rojas, O., 2018. An empirical analysis of the relationships 
between crude oil, gold and stock markets. The Energy Journal, 39(Special Issue 1).

Coughenour, J., Shastri, K., 1999. Symposium on market microstructure: a review of the empirical 
evidence. Financial Review, forthcoming. 

Crépellière, T., Pelster, M. and Zeisberger, S., 2023. Arbitrage in the market for cryptocurrencies. 
Journal of Financial Markets, 64, p.100817.

Dao, T.M., McGroarty, F. and Urquhart, A., 2018. high-frequency lead–lag relationship and 
information arrival. Quantitative Finance, 18(5), pp.725-735.

d'Avernas, A., Maurin, V. and Vandeweyer, Q., 2022. Can stablecoins be stable?. University of 
Chicago, Becker Friedman Institute for Economics Working Paper, (2022-131).

de Azevedo Sousa, J. E., Oliveira, V., Valadares, J., Dias Goncalves, G., Moraes Villela, S., Soares 
Bernardino, H., & Borges Vieira, A., 2021. An analysis of the fees and pending time correlation in 
Ethereum. International Journal of Network Management, 31(3), e2113.

Degryse, H., Jong, F.D., Ravenswaaij, M.V. and Wuyts, G., 2005. Aggressive orders and the 
resiliency of a limit order market. Review of Finance, 9(2), pp.201-242.

De Long, J., Andrei-Shleifer, Bradford, Summers, Lawrence H., Waldmann, Robert J., 1990. Noise 
trader risk in financial markets. Journal of Political Economy 98, 703– 738. 

Diamond, D.W. and Verrecchia, R.E., 1987. Constraints on short-selling and asset price adjustment 
to private information. Journal of financial economics, 18(2), pp.277-311.

Diebold, F.X. and Yilmaz, K., 2009. Measuring financial asset return and volatility spillovers, with 
application to global equity markets. The Economic Journal, 119(534), pp.158-171.

Diebold, F.X. and Yilmaz, K., 2012. Better to give than to receive: Predictive directional 
measurement of volatility spillovers. International Journal of forecasting, 28(1), pp.57-66.

Diebold, F.X. and Yılmaz, K., 2015. Financial and macroeconomic connectedness: A network 
approach to measurement and monitoring. Oxford University Press, USA.

Dimitrova, V., Fernández-Martínez, M., Sánchez-Granero, M.A. and Trinidad Segovia, J.E., 2019. 
Some comments on Bitcoin market (in) efficiency. PloS one, 14(7), p.e0219243. 

189



References                                                                                                                                                                                                                  

Dimpfl, T., 2017. Bitcoin market microstructure. Available at SSRN 2949807.

Doerr, J.F., Kosse, A., Khan, A., Lewrick, U., Mojon, B., Nolens, B. and Rice, T., 2021. DeFi risks 
and the decentralisation illusion. BIS Quarterly Review, 21.

Duan, K. and Urquhart, A., 2023. The instability of stablecoins. Finance Research Letters, 52, 
p.103573.

Dyhrberg, A.H., Foley, S. and Svec, J., 2018. How investible is Bitcoin? Analyzing the liquidity and 
transaction costs of Bitcoin markets. Economics Letters, 171, pp.140-143. 

Easley, D. and O'hara, M., 1987. Price, trade size, and information in securities markets. Journal of 
Financial economics, 19(1), pp.69-90.

Easley, D. and O'hara, M., 1992. Time and the process of security price adjustment. The Journal of 
finance, 47(2), pp.577-605.

Easley, D., O'Hara, M. and Basu, S., 2019. From mining to markets: The evolution of bitcoin 
transaction fees. Journal of Financial Economics, 134(1), pp.91-109.

Easley, D., López de Prado, M., O’Hara, M. and Zhang, Z., 2021. Microstructure in the machine 
age. The Review of Financial Studies, 34(7), pp.3316-3363.

Eldor, R., Hauser, S., Pilo, B. and Shurki, I., 2006. The contribution of market makers to liquidity 
and efficiency of options trading in electronic markets. Journal of Banking & Finance, 30(7), 
pp.2025-2040.

Elsayed, A.H. and Sousa, R.M., 2024. International monetary policy and cryptocurrency markets: 
dynamic and spillover effects. The European Journal of Finance, 30(16), pp.1855-1875.

Engle, R. and Sarkar, D., 2006. Premiums-discounts and exchange traded funds. Journal of 
Derivatives, 13(4), p.27. 

Engle. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of 
united kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007.

Engle III, R.F., Ito, T. and Lin, W.L., 1988. Meteor showers or heat waves? Heteroskedastic intra-
daily volatility in the foreign exchange market.

Fama, E. F. (1976). Efficient capital markets: reply. The Journal of Finance, 31(1), 143–145. 

Fama, E. F. (1991). Efficient capital markets: Ii. The journal of finance, 46(5), 1575–1617.

Fama, E. F. and K. R. French (1992): “The cross-section of expected stock returns,” The Journal of 
Finance, 47, 427–465. 

Fama, E.F., 1970. Efficient capital markets. Journal of finance, 25(2), pp.383-417. 

190



References                                                                                                                                                                                                                  

Faqir-Rhazoui, Y., Ariza-Garzón, M.J., Arroyo, J. and Hassan, S., 2021, May. Effect of the gas price 
surges on user activity in the daos of the ethereum blockchain. In Extended Abstracts of the 2021 
CHI Conference on Human Factors in Computing Systems (pp. 1-7).

Feng, J., Yuan, Y. and Jiang, M., 2024. Are stablecoins better safe havens or hedges against global 
stock markets than other assets? Comparative analysis during the COVID-19 pandemic. 
International Review of Economics & Finance, 92, pp.275-301.

Fisher, L., 1966. Some new stock-market indexes. The Journal of Business, 39(1), pp.191-225.

Fischer, T.G., Krauss, C. and Deinert, A., 2019. Statistical arbitrage in cryptocurrency markets. 
Journal of Risk and Financial Management, 12(1), p.31.

Fleming, J., Kirby, C. and Ostdiek, B., 1998. Information and volatility linkages in the stock, bond, 
and money markets. Journal of financial economics, 49(1), pp.111-137.

Fleming, J., Ostdiek, B. and Whaley, R.E., 1996. Trading costs and the relative rates of price 
discovery in stock, futures, and option markets. The Journal of Futures Markets (1986-1998), 16(4), 
p.353.

Forbes, K.J. and Rigobon, R., 2002. No contagion, only interdependence: measuring stock market 
comovements. The journal of Finance, 57(5), pp.2223-2261.

Forbes, K.J., 2012. The'Big C': identifying and mitigating contagion.

Foucault, T., Kozhan, R., Tham, W.W., 2017. Toxic arbitrage. Rev. Financ. Stud. 30, 1053–1094.

Fowowe, B., Shuaibu, M., 2016. Dynamic spillovers between Nigerian, South African and 
international equity markets. International economics, 148, 59-80. 

French, K. R., G. W. Schwert, and R. F. Stambaugh (1987). Expected stock returns and volatility. 
Journal of financial Economics 19(1), 3–29.

Friend, I., Blume, M., & Crockett, J. (1970). Mutual funds and other institutional investors. New 
York: Mc- Graw-Hill.

Froot, K.A., Dabora, E.M., 1999. How are stock prices affected by the location of trade? J. Financ. 
Econ. 53, 189–216. 

Fung, J.K. and Lam, F.Y., 2023. Interest Rate Differentials Under an Exchange Rate Convertibility 
Zone. Available at SSRN 4548132.

Gabauer, D., 2021. Dynamic measures of asymmetric & pairwise connectedness within an optimal 
currency area: Evidence from the ERM I system. Journal of Multinational Financial Management, 
60, p.100680.

191



References                                                                                                                                                                                                                  

Gabauer, D., and R. Gupta. 2018. “On the Transmission Mechanism of Country-Specific and 
International Economic Uncertainty Spillovers: Evidence from a TVP-VAR Connectedness 
Decomposition Approach.” Economics Letters 171: 63–71.

Gadzinski, G., Castello, A. and Mazzorana, F., 2023. Stablecoins: Does design affect stability?. 
Finance Research Letters, 53, p.103611. 
 
Gajardo, G., Kristjanpoller, W. D., Minutolo, M., 2018. Does Bitcoin exhibit the same asymmetric 
multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and 
Yen? Chaos, Solitons & Fractals, 109, 195-205. 

Gagnon, Louis, Andrew Karolyi, G., 2010. Multi-market trading and arbitrage. Journal of Financial 
Economics 97, 53–80. 

Gallant A R, Rossi P E, Tauchen G., 1992. Stock prices and volume[J]. The Review of Financial 
Studies, 5(2): 199-242. 

Garman, M.B. and Klass, M.J., 1980. On the estimation of security price volatilities from historical 
data. Journal of business, pp.67-78.

Garman, M.B., 1976. Market microstructure. Journal of financial Economics, 3(3), pp.257-275.

Gatev, E., Goetzmann, W.N., Rouwenhorst, K.G., 2006. Pairs trading: performance of a relative-
value arbitrage rule. Rev. Financ. Stud. 19 (3), 797–827. 

Ghysels, E. and Nguyen, G., 2019. Price discovery of a speculative asset: Evidence from a bitcoin 
exchange. Journal of Risk and Financial Management, 12(4), p.164.

Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M.C. and Siering, M., 2014. Bitcoin-asset or 
currency? revealing users' hidden intentions. Revealing Users' Hidden Intentions (April 15, 2014). 
ECIS.

Glosten, L.R. and Milgrom, P.R., 1985. Bid, ask and transaction prices in a specialist market with 
heterogeneously informed traders. Journal of financial economics, 14(1), pp.71-100.

Gong, X., Liu, Y. and Wang, X., 2021. Dynamic volatility spillovers across oil and natural gas 
futures markets based on a time-varying spillover method. International Review of Financial 
Analysis, 76, p.101790.

Griffin J M, Shams A., 2020. Is Bitcoin really untethered?[J]. The Journal of Finance, 75(4): 
1913-1964.

Grinberg, R., 2012. Bitcoin: An innovative alternative digital currency. Hastings Sci. & Tech. LJ, 4, 
p.159.

Grobys, K., Junttila, J., Kolari, J.W. and Sapkota, N., 2021. On the stability of stablecoins. Journal 
of Empirical Finance, 64, pp.207-223.

192



References                                                                                                                                                                                                                  

Gromb, D., Vayanos, D., 2002. Equilibrium and welfare in markets with financially constrained 
arbitrageurs. J. Financ. Econ. 66, 361– 407. 

Gromb, D., Vayanos, D., 2010. Limits to arbitrage: The state of the theory. Annual Review of 
Financial Economics 98:251–75 

Gromb, D., Vayanos, D., 2018. The dynamics of financially constrained arbitrage. J. Finance 73, 
1713–1750. 

Grossman, S. and J. Stiglitz., 1976. Information and competitive price systems. American Economic 
Review 66, pp. 246-252. 

Grossman, S.J. and Miller, M.H., 1988. Liquidity and market structure. the Journal of Finance, 
43(3), pp.617-633.

Grossman, S.J. and Stiglitz, J.E., 1980. On the impossibility of informationally efficient markets. 
The American economic review, 70(3), pp.393-408.

Grossman, Sanford E., Stiglitz, Joseph E., 1976. Information and competitive price systems. 
American Economic Review 66, 246–252. 

Grossman, Sanford E., Stiglitz, Joseph E., 1980. On the impossibility of informationally efficient 
markets. American Economic Review 70, 393–408. 

Hagströmer, B., 2021. Bias in the effective bid-ask spread. Journal of Financial Economics, 142(1), 
pp.314-337.

Hairudin, A. and Mohamad, A., 2024. The isotropy of cryptocurrency volatility. International 
Journal of Finance & Economics, 29(3), pp.3779-3810.

Harris, L., 1999. Trading and exchanges. Mimeo, University of Southern California.

Harvey, C.R., 2016. Cryptofinance. Duke University, Unpublished working paper.  
 
Hasbrouck, J., 1995. One security, many markets: Determining the contributions to price discovery. 
The journal of Finance, 50(4), pp.1175-1199.

Hasbrouck, J. and Saar, G., 2013. Low-latency trading. Journal of Financial Markets, 16(4), 
pp.646-679.

Hasbrouck, J., 1991. Measuring the information content of stock trades. The Journal of Finance, 
46(1), pp.179-207.

Haupt, O., 1870. The London Arbitrageur; Or, The English Money Market, in Connection with 
Foreign Bourses. A Collection of Notes and Formulae for the Arbitration of Bills, Stocks, Shares, 
Bullion and Coins, with All the Important Foreign Countries. Trübner and Company.

193



References                                                                                                                                                                                                                  

Hayashi, T. and N. Yoshida., 2005. On covariance estimation of non synchronously observed 
diffusion processes. Bernoulli 11(2), pp. 359-379.

Heinlein, R. and Mahadeo, S.M., 2023. Oil and US stock market shocks: Implications for Canadian 
equities. Canadian Journal of Economics/Revue canadienne d'économique, 56(1), pp.247-287.

Hendershott, T., and A. Menkveld. 2014. Price pressures. Journal of Financial Economics 114:405–
23. 

Hendershott, T., Jones, C.M. and Menkveld, A.J., 2011. Does algorithmic trading improve 
liquidity?. The Journal of finance, 66(1), pp.1-33.

Ho, T. and Stoll, H.R., 1981. Optimal dealer pricing under transactions and return uncertainty. 
Journal of Financial economics, 9(1), pp.47-73.

Hoang L T, Baur D G., 2021. How stable are stablecoins?[J]. The European Journal of Finance: 
1-17.

Hoffmann, M., M. Rosenbaum, and N. Yoshida., 2013. Estimation of the lead-lag parameter from 
non-synchronous data. Working Paper. 

Hong, H. and Stein, J.C., 1999. A unified theory of underreaction, momentum trading, and 
overreaction in asset markets. The Journal of finance, 54(6), pp.2143-2184.

Hou, K., Xue, C., and Zhang, L., 2016. Replicating anomalies. Technical report, National Bureau of 
Economic Research.

Hsu, S.H., Sheu, C. and Yoon, J., 2021. Risk spillovers between cryptocurrencies and traditional 
currencies and gold under different global economic conditions. The North American Journal of 
Economics and Finance, 57, p.101443.

Huang, Y., Neftci, S.N. and Guo, F., 2008. Swap curve dynamics across markets: Case of US dollar 
versus HK dollar. Journal of International Financial Markets, Institutions and Money, 18(1), 
pp.79-93.

Hull, M., & McGroarty, F. (2014). Do emerging markets become more efficient as they develop? 
Long memory persistence in equity indices. Emerging Markets Review, 18, 45–61.

Hung, N.T. and Vo, X.V., 2021. Directional spillover effects and time-frequency nexus between oil, 
gold and stock markets: evidence from pre and during COVID-19 outbreak. International Review of 
Financial Analysis, 76, p.101730.

Hung, N.T., 2022. Asymmetric connectedness among S&P 500, crude oil, gold and Bitcoin. 
Managerial Finance, 48(4), pp.587-610.

Huth, N. and Abergel, F., 2014. High frequency lead-lag relationships - Empirical facts. Journal of 
Empirical Finance, 26:41–58. 

194



References                                                                                                                                                                                                                  

Hyun, S., Lee, J., Kim, J.M. and Jun, C., 2019. What coins lead in the cryptocurrency market: using 
Copula and neural networks models. Journal of Risk and Financial Management, 12(3), p.132.

IMF (2019): “Stablecoins, Central Bank Digital Currencies, and Cross-Border Payments: A New 
Look at the International Monetary System,” Speech at IMF-Swiss National Bank Conference, 
Zurich, May 2019 (Tobias Adrian).

Inagaki, K., 2007. Testing for volatility spillover between the British pound and the euro. Research 
in International Business and Finance, 21(2), pp.161-174.

Ito, T. and Roley, V.V., 1987. News from the US and Japan: which moves the yen/dollar exchange 
rate?. Journal of Monetary Economics, 19(2), pp.255-277.

Jacomy, M., T. Venturini, S. Heymann, and M. Bastian. 2014. “ForceAtlas2, a Continuous Graph 
Layout Algorithm for Handy Network Visualization Designed for the Gephi Software.” PloS one 9: 
e98679. 

Jalal, R.N.U.D., Sargiacomo, M., Sahar, N.U. and Fayyaz, U.E., 2020. Herding behavior and 
cryptocurrency: Market asymmetries, inter-dependency and intra-dependency. The Journal of Asian 
Finance, Economics and Business, 7(7), pp.27-34.

Jarno, K. and Kołodziejczyk, H., 2021. Does the design of stablecoins impact their volatility?. 
Journal of Risk and Financial Management, 14(2), p.42.

Jeger, C., Rodrigues, B., Scheid, E. and Stiller, B., 2020, November. Analysis of stablecoins during 
the global covid-19 pandemic. In 2020 Second International Conference on Blockchain Computing 
and Applications (BCCA) (pp. 30-37). IEEE.

Jensen, M.C., 1978. Some anomalous evidence regarding market efficiency. Journal of financial 
economics, 6(2/3), pp.95-101.

Ji, Q., Bouri, E., Gupta, R. and Roubaud, D., 2018. Network causality structures among Bitcoin and 
other financial assets: A directed acyclic graph approach. The Quarterly Review of Economics and 
Finance, 70, pp.203-213.

Ji, Q., Bouri, E., Lau, C.K.M. and Roubaud, D., 2019. Dynamic connectedness and integration in 
cryptocurrency markets. International Review of Financial Analysis, 63, pp.257-272.

Jiang, G.J., Konstantinidi, E. and Skiadopoulos, G., 2012. Volatility spillovers and the effect of 
news announcements. Journal of Banking & Finance, 36(8), pp.2260-2273.

Jiang, Y., Nie, H. and Ruan, W., 2018. Time-varying long-term memory in Bitcoin market. Finance 
Research Letters, 25, pp.280-284. 

Jin, P., 2021. Arbitrage among stablecoins.

K, K. A. and Mishra, A. K. (2023). Market connectedness and volatility spillovers: a meta-literature 
review. Commodities, 2(3), 201-219.

195



References                                                                                                                                                                                                                  

Kallberg, J. and Pasquariello, P., 2008. Time-series and cross-sectional excess co-movement in 
stock indexes. Journal of Empirical Finance, 15(3):481–502. 

Kang, S.H., McIver, R. and Yoon, S.M., 2017. Dynamic spillover effects among crude oil, precious 
metal, and agricultural commodity futures markets. Energy Economics, 62, pp.19-32.

Karpoff, J.M., 1987. The relation between price changes and trading volume: A survey. Journal of 
Financial and quantitative Analysis, 22(1), pp.109-126.

Katsiampa, P., Corbet, S., & Lucey, B., 2019a. High frequency volatility co-movements in 
cryptocurrency markets. Journal of International Financial Markets, Institutions and Money, 62, 35–
52.

Katsiampa, P., Corbet, S., & Lucey, B., 2019b. Volatility spillover effects in leading 
cryptocurrencies: A BEKK-MGARCH analysis. Finance Research Letters, 29, 68–74.

Kawaller, I. G., Koch, P. D., and Koch, T. W., 1987. The temporal price relationship between S&P 
500 Futures and the S&P 500 index. Journal of Finance, 42(5):1309– 1329. 

Kelejian, H.H. and Prucha, I.R., 1998. A generalized spatial two-stage least squares procedure for 
estimating a spatial autoregressive model with autoregressive disturbances. The journal of real 
estate finance and economics, 17, pp.99-121.

Kempf, A., Mayston, D. and Yadav, P.K., 2009. Resiliency in limit order book markets: A dynamic 
view of liquidity. In AFA 2009 San Francisco Meetings Paper (pp. 1-39).

Kettler, P. C., Pamen, O. M., & Proske, F., 2014. On local times: application to pricing using bid-
ask. Journal of Mathematical Finance, 04(02), 84-94.

Khuntia, S. and Pattanayak, J.K., 2018. Adaptive market hypothesis and evolving predictability of 
bitcoin. Economics Letters, 167, pp.26-28. 

Kim, J.H. and Shamsuddin, A., 2008. Are Asian stock markets efficient? Evidence from new 
multiple variance ratio tests. Journal of Empirical Finance, 15(3), pp.518-532.

Kim, J. H., Shamsuddin, A., & Lim, K. (2011). Stock return predictability and the adaptive markets 
hypothesis: Evidence from century-long U.S. data. Journal of Empirical Finance, 18, 868–879.

Koop, G., and D. Korobilis. 2014. “A new Index of Financial Conditions.” European Economic 
Review 71: 101–116. 
 
Koop, G., M. H. Pesaran, and S. M. Potter. 1996. “Impulse Response Analysis in Nonlinear 
Multivariate Models.” Journal of Econometrics 74: 119–147.

Korobilis, D., and K. Yilmaz. 2018. Measuring dynamic connectedness with large Bayesian VAR 
models. Koç University-TUSIAD Economic Research Forum, Working Paper no. 1802.

196



References                                                                                                                                                                                                                  

Koutmos, D., 2018. Liquidity uncertainty and Bitcoin’s market microstructure. Economics Letters, 
172, pp.97-101. 

Kozhan, R. and Viswanath-Natraj, G., 2021. Decentralized stablecoins and collateral risk. WBS 
Finance Group Research Paper Forthcoming, pp.1-28.

Kristoufek L., 2021. Tethered, or Untethered? On the interplay between stablecoins and major 
cryptoassets[J]. Finance Research Letters, 43: 101991.

Kristoufek, L., 2018. On Bitcoin markets (in) efficiency and its evolution. Physica A: statistical 
mechanics and its applications, 503, pp.257-262. 

Kristoufek, L., 2022. On the role of stablecoins in cryptoasset pricing dynamics. Financial 
Innovation, 8(1), p.37.

Kroeger, A. and Sarkar, A., 2017. The law of one bitcoin price. Federal Reserve Bank of 
Philadelphia. 

Kumar, A., Iqbal, N., Mitra, S.K., Kristoufek, L. and Bouri, E., 2022. Connectedness among major 
cryptocurrencies in standard times and during the COVID-19 outbreak. Journal of International 
Financial Markets, Institutions and Money, 77, p.101523.

Kyle, A.S., 1985. Continuous auctions and insider trading. Econometrica: Journal of the 
Econometric Society, pp.1315-1335.

Lee Rodgers, J. and Nicewander, W.A., 1988. Thirteen ways to look at the correlation coefficient. 
The American Statistician, 42(1), pp.59-66.

Lee, C.M. and Swaminathan, B., 2000. Price momentum and trading volume. the Journal of 
Finance, 55(5), pp.2017-2069.

Lee, M.J. and Choi, S.Y., 2024. Insights into the dynamics of market efficiency spillover of 
financial assets in different equity markets. Physica A: Statistical Mechanics and its Applications, 
641, p.129719.

Lento, C. and Gradojevic, N., 2021. S&P 500 index price spillovers around the COVID-19 market 
meltdown. Journal of Risk and Financial Management, 14(7), p.330.

Łęt, B., Sobański, K., Świder, W. and Włosik, K., 2023. What drives the popularity of stablecoins? 
Measuring the frequency dynamics of connectedness between volatile and stable cryptocurrencies. 
Technological Forecasting and Social Change, 189, p.122318.

Li, P., Gong, S., Xu, S., Zhou, J., Yu, S. and Xuan, Q., 2022, August. Cross cryptocurrency 
relationship mining for bitcoin price prediction. In International Conference on Blockchain and 
Trustworthy Systems (pp. 237-250). Singapore: Springer Nature Singapore.

197



References                                                                                                                                                                                                                  

Lin, B. and Tan, Z., 2023. Exploring arbitrage opportunities between China's carbon markets based 
on statistical arbitrage pairs trading strategy. Environmental Impact Assessment Review, 99, 
p.107041.

Liu, Y.A. and Pan, M.S., 1997. Mean and volatility spillover effects in the US and Pacific-Basin 
stock markets. Multinational Finance Journal, 1(1), pp.47-62.

Lo, A.W. and MacKinlay, A.C., 1989. The size and power of the variance ratio test in finite samples: 
A Monte Carlo investigation. Journal of econometrics, 40(2), pp.203-238.

Lo, A.W. and MacKinlay, A.C., 1990. An econometric analysis of nonsynchronous trading. Journal 
of Econometrics, 45(1-2), pp.181-211.

Lo, A.W., 2004. The adaptive markets hypothesis: Market efficiency from an evolutionary 
perspective. Journal of Portfolio Management, Forthcoming. 

Longin, F. and B. Solnik (2001). Extreme correlations in international equity markets. Journal of Fi- 
nance 56, 649—676. 

Louzis, D. P., 2015. Measuring spillover effects in Euro area financial markets: a disaggregate 
approach. Empirical Economics, 49(4), 1367-1400. 

Lyons, R.K. and Viswanath-Natraj, G., 2023. What keeps stablecoins stable?. Journal of 
International Money and Finance, 131, p.102777.

Lyons, R.K., 2001. The microstructure approach to exchange rates (Vol. 333). Cambridge, MA: 
MIT press.

Maaitah, A., 2020. Essays on memory and dynamics of connectedness in bitcoin markets (Doctoral 
dissertation, University of Southampton).

Madhavan, A., 2000. Market microstructure: A survey. Journal of financial markets, 3(3), 
pp.205-258.

Madhavan, A., Richardson, M. and Roomans, M., 1997. Why do security prices change? A 
transaction-level analysis of NYSE stocks. The Review of Financial Studies, 10(4), pp.1035-1064.

Makarov, I. and Schoar, A., 2020. Trading and arbitrage in cryptocurrency markets. Journal of 
Financial Economics, 135(2), pp.293-319.

Marshall, B.R., Nguyen, N.H. and Visaltanachoti, N., 2013. ETF arbitrage: Intraday evidence. 
Journal of Banking & Finance, 37(9), pp.3486-3498.

Menkveld, A.J., 2013. High frequency trading and the new market makers. Journal of financial 
Markets, 16(4), pp.712-740.

Menkveld, A.J. and Zoican, M.A., 2017. Need for speed? Exchange latency and liquidity. The 
Review of Financial Studies, 30(4), pp.1188-1228.

198



References                                                                                                                                                                                                                  

Mensi, W., Beljid, M., Boubaker, A. and Managi, S., 2013. Correlations and volatility spillovers 
across commodity and stock markets: Linking energies, food, and gold. Economic modelling, 32, 
pp.15-22.

Mita, M., Ito, K., Ohsawa, S. and Tanaka, H., 2019. What is Stablecoin?: A Survey on Its 
Mechanism and Potential as Decentralized Payment Systems. arXiv preprint arXiv:1906.06037. 

Mitchell, M., Pulvino, T. and Stafford, E., 2002. Limited arbitrage in equity markets. The Journal of 
Finance, 57(2), pp.551-584.

Mizrach, B., 2022. Stablecoins: Survivorship, transactions costs and exchange microstructure. arXiv 
preprint arXiv:2201.01392.

Moin A, Sekniqi K, Sirer E G., 2020. SoK: A classification framework for stablecoin designs[C]// 
International Conference on Financial Cryptography and Data Security. Springer, Cham: 174-197. 

Monteiro, A., Silva, N. and Sebastião, H., 2023. Industry return lead-lag relationships between the 
US and other major countries. Financial Innovation, 9(1), p.40.

Moratis, G., 2021. Quantifying the spillover effect in the cryptocurrency market. Finance Research 
Letters, 38, p.101534.

Nadarajah, S. and Chu, J., 2017. On the inefficiency of Bitcoin. Economics Letters, 150, pp.6-9. 

Nakamoto, S., 2008. Bitcoin: a peer-to-peer electronic cash system. working paper.

Nguyen, T.V., Nguyen, T.V.H., Nguyen, T.C., Pham, T.T.A. and Nguyen, Q.M., 2022. Stablecoins 
versus traditional cryptocurrencies in response to interbank rates. Finance Research Letters, 47, 
p.102744.

Nodari, G., 2014. Financial regulation policy uncertainty and credit spreads in the US. Journal of 
Macroeconomics, 41, pp.122-132.

O’hara, M., 2015. High frequency market microstructure. Journal of financial economics, 116(2), 
pp.257-270.

O'Hara, M., 1995. Market microstructure theory. Basil Blackwell, Cambridge, MA. 

O'Hara, M., 2003. Presidential address: Liquidity and price discovery. The journal of Finance, 
58(4), pp.1335-1354.

Pagnotta, E. and Buraschi, A., 2018. An equilibrium valuation of bitcoin and decentralized network 
assets. Available at SSRN 3142022.

Pan, K. and Zeng, Y., 2017. ETF arbitrage under liquidity mismatch. Available at SSRN 3723406.

Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of return. 
Journal of business, pp.61-65.

199



References                                                                                                                                                                                                                  

Pericoli, M. and Sbracia, M., 2003. A primer on financial contagion. Journal of economic surveys, 
17(4), pp.571-608.

Pernice, I.G.A., 2021. On stablecoin price processes and arbitrage. In Financial Cryptography and 
Data Security. FC 2021 International Workshops: CoDecFin, DeFi, VOTING, and WTSC, Virtual 
Event, March 5, 2021, Revised Selected Papers 25 (pp. 124-135). Springer Berlin Heidelberg.

Pesaran, H. H., and Y. Shin. 1998. “Generalized Impulse Response Analysis in Linear Multivariate 
Models.” Economics Letters 58: 17–29.

Piech, S., Algorithmic Stablecoins.

Pieters, G. and Vivanco, S., 2017. Financial regulations and price inconsistencies across Bitcoin 
markets. Information Economics and Policy, 39, pp.1-14.

Pindyck, R. S. (1984). Risk, inflation, and the stock market. American Economic Review, 334–351.

Poutré, C., Dionne, G. and Yergeau, G., 2024. The profitability of lead–lag arbitrage at high 
frequency. International Journal of Forecasting, 40(3), pp.1002-1021.

President’s Working Group on Financial Markets, the Federal Deposit Insurance Corporation, and 
the Office of the Comptroller of the Currency. 2021. Report on Stablecoins.

Qarni, M.O. and Gulzar, S., 2018. Return and volatility spillover across stock markets of China and 
its Major Trading Partners: evidence from Shanghai stock exchange crash. Business & Economic 
Review, 10(3), pp.1-20.

Qiao, X., Zhu, H. and Hau, L., 2020. Time-frequency co-movement of cryptocurrency return and 
volatility: evidence from wavelet coherence analysis. International Review of Financial Analysis, 
71, p.101541.

Qureshi, S., Aftab, M., Bouri, E. and Saeed, T., 2020. Dynamic interdependence of cryptocurrency 
markets: An analysis across time and frequency. Physica A: Statistical Mechanics and Its 
Applications, 559, p.125077.

Rakotomalala, P. and Cao, J. (2019). Improvement for better impacts of the market information 
system or mis in developing countries. Open Journal of Social Sciences, 07(05), 180-187.

Raskin, M. and Yermack, D., 2018. Digital currencies, decentralized ledgers and the future of 
central banking. In Research handbook on central banking (pp. 474-486. Edward Elgar Publishing.

Raskin, M., Yermack, D., 2017. Digital currencies, decentralized ledgers, and the future of central 
banking. NBER, Unpublished working paper. 

Richie, Nivine, Daigler, Robert T., Gleason, Kimberly C., 2008. The limits to stock index arbitrage: 
examining S&P 500 Futures and SPDRs. Journal of Futures Markets 28 (12), 1182–1205.

200



References                                                                                                                                                                                                                  

Rogers, E.M., Singhal, A. and Quinlan, M.M., 2014. Diffusion of innovations. In An integrated 
approach to communication theory and research (pp. 432-448). Routledge.

Roll, R.W., Schwartz, E.S., Subrahmanyam, A., 2007. Liquidity and the law of one price: the case 
of the cash/futures basis. J. Financ. 62, 2201– 2234.

Rosenthal, L., Young, C., 1990. The seemingly anomalous price behavior of royal dutch/shell and 
unilever n.v./PLC. J. Financ. Econ. 26, 123–141. 

Ross, S.A., 1989. Information and volatility: The no-arbitrage martingale approach to timing and 
resolution irrelevancy. the Journal of Finance, 44(1), pp.1-17.

Samuelson, P.A., 1965. Proof that properly anticipated prices fluctuate randomly. Industrial 
Management Review, 6(2), pp.41-49.

Sarmento, S.M., Horta, N., 2020. Enhancing a pairs trading strategy with the application of machine 
learning. Expert Syst. Appl. 158. 

Schei, B.N. and Rix-Nielsen, C., 2019. High frequency lead-lag relationships in the bitcoin market 
(Doctoral dissertation, Master’s Thesis, Copenhagen Business School, Copenhagen, Denmark).

Schultz, P. and Shive, S., 2010. Mispricing of dual-class shares: Profit opportunities, arbitrage, and 
trading. Journal of Financial Economics, 98(3), pp.524-549.

Selgin, G. (2015). Is Bitcoin Doomed?.

Shahzad, S. J. H., Hernandez, J. A., Rehman, M. U., Al-Yahyaee, K. H., Zakaria, M., 2018. A global 
network topology of stock markets: Transmitters and receivers of spillover effects. Physica A: 
Statistical Mechanics and its Applications, 492, 2136-2153. 

Shahzad, S.J.H., Naeem, M.A., Peng, Z. and Bouri, E., 2021. Asymmetric volatility spillover 
among Chinese sectors during COVID-19. International Review of Financial Analysis, 75, 
p.101754.

Shi, F., Broussard, J.P. and Booth, G.G., 2022. The complex nature of financial market 
microstructure: the case of a stock market crash. Journal of Economic Interaction and Coordination, 
pp.1-40.

Shi, H. and Zhou, W., 2017. Wax and wane of the cross-sectional momentum and contrarian effects: 
evidence from the chinese stock markets. Physica A: Statistical Mechanics and Its Applications, 
486, 397-407. https://doi.org/10.1016/j.physa.2017.05.078

Shleifer, Andrei, Vishny, Robert W., 1997. The limits of arbitrage. Journal of Finance 52, 35–55.

Sifat, I.M., Mohamad, A. and Shariff, M.S.B.M., 2019. Lead-lag relationship between bitcoin and 
ethereum: Evidence from hourly and daily data. Research in International Business and Finance, 50, 
pp.306-321.

201



References                                                                                                                                                                                                                  

Singh, V. K., Nishant, S., Kumar, P., 2018. Dynamic and Directional Network Connectedness of 
Crude Oil and Currencies: Evidence from Implied Volatility. Energy Economics. https://doi.org/
10.1016/j.eneco.2018.09.018.

Smales, L.A., 2021. Volatility spillovers among cryptocurrencies. Journal of Risk and Financial 
Management, 14(10), p.493.

Solnik, B., Boucrelle, C. and Le Fur, Y., 1996. International market correlation and volatility. 
Financial analysts journal, 52(5), pp.17-34.

Soriano, P. and Climent, F.J., 2005. Volatility transmission models: a survey. Available at SSRN 
676469.

Sousa, J. and Zaghini, A., 2008. Monetary policy shocks in the euro area and global liquidity 
spillovers. International journal of finance & Economics, 13(3), pp.205-218.

Stoll, H.R., 1989. Inferring the components of the bid-ask spread: Theory and empirical tests. the 
Journal of Finance, 44(1), pp.115-134.

Stoll, H.R. and Whaley, R.E., 1990. The dynamics of stock index and stock index futures returns. 
Journal of Financial and Quantitative analysis, 25(4), pp.441-468.

Stosic, D., Stosic, D., Ludermir, T. B., & Stosic, T., 2018. Collective behavior of cryptocurrency 
price changes. Physica A: Statistical Mechanics and its Applications, 507, 499–509.

Sulima, A., 2021. The absence of arbitrage on the complete black-scholes-merton regime-switching 
lévy market. Econometrics, 25(3), 72-84. 

Theissen, E., 2016. Price discovery in spot and futures markets: A reconsideration. In High 
Frequency Trading and Limit Order Book Dynamics (pp. 249-268). Routledge.

Tiwari, A.K., Jana, R.K., Das, D. and Roubaud, D., 2018. Informational efficiency of Bitcoin—An 
extension. Economics Letters, 163, pp.106-109. 

Tolikas, K., 2018. The lead-lag relation between the stock and the bond markets. European Journal 
of Finance, 24(10):849–866. 

Trabelsi, N. (2019). Dynamic and frequency connectedness across islamic stock indexes, bonds, 
crude oil and gold. International Journal of Islamic and Middle Eastern Finance and Management, 
12(3), 306-321.

Urquhart, A., 2016. The inefficiency of Bitcoin. Economics Letters, 148, pp.80-82. 

Urquhart, A., & McGroarty, F. (2014). Calendar effects, market conditions and the adaptive market 
hypothesis: Evidence from long-run U.S. data. International Review of Financial Analysis, 35, 154–
166. 

202



References                                                                                                                                                                                                                  

Urquhart, A. and McGroarty, F., 2016. Are stock markets really efficient? Evidence of the adaptive 
market hypothesis. International Review of Financial Analysis, 47, pp.39-49.

Urquhart, A. and Zhang, H., 2019. Is Bitcoin a hedge or safe haven for currencies? An intraday 
analysis. International Review of Financial Analysis, 63, pp.49-57.

van Iersel, D., 2022. Tethering the Crypto-Asset Market: The Regulation Of Stablecoins In the 
European Union And United States. Cambridge L. Rev., 7, p.57.

Vidal-Tomás, D., 2021. Transitions in the cryptocurrency market during the COVID-19 pandemic: 
A network analysis. Finance Research Letters, 43, p.101981.

Wajdi, M., Nadia, B., Ines, G., 2020. Asymmetric effect and dynamic relationships over the 
cryptocurrencies market. Comput. Secu. 96, 101860.

Wang, G.J., Chen, Y.Y., Si, H.B., Xie, C. and Chevallier, J., 2021. Multilayer information spillover 
networks analysis of China’s financial institutions based on variance decompositions. International 
Review of Economics & Finance, 73, pp.325-347.

Wang, G.J., Ma, X.Y. and Wu, H.Y., 2020. Are stablecoins truly diversifiers, hedges, or safe havens 
against traditional cryptocurrencies as their name suggests?. Research in International Business and 
Finance, 54, p.101225.

Wang, P., and P. Wang., 2001. Equilibrium Adjustment, Basis Risk and Risk Transmission in Spot 
and Forward Foreign Exchange Markets. Applied Financial Economics 11, pp. 127-136.

Wang, P., Liu, X. and Wu, S., 2022. Dynamic linkage between Bitcoin and traditional financial 
assets: A comparative analysis of different time frequencies. Entropy, 24(11), p.1565.

Wątorek, M., Kwapień, J. and Drożdż, S., 2023. Cryptocurrencies are becoming part of the world 
global financial market. Entropy, 25(2), p.377.

Wei, W.C., 2018. The impact of Tether grants on Bitcoin. Economics Letters, 171, pp.19-22.

Xie, Y., Kang, S.B. and Zhao, J., 2021. Are stablecoins safe havens for traditional cryptocurrencies? 
An empirical study during the COVID-19 pandemic. Applied Finance Letters, 10, pp.2-9.

Yarovaya, L. and Zięba, D., 2022. Intraday volume-return nexus in cryptocurrency markets: Novel 
evidence from cryptocurrency classification. Research in International Business and Finance, 60, 
p.101592.

Yen, K.C. and Cheng, H.P., 2021. Economic policy uncertainty and cryptocurrency volatility. 
Finance Research Letters, 38, p.101428.

Yermack, D., 2015. Is Bitcoin a real currency? An economic appraisal. In Handbook of digital 
currency (pp. 31-43). Academic Press. 

203



References                                                                                                                                                                                                                  

Yi, S., Xu, Z., & Wang, G. J., 2018. Volatility connectedness in the cryptocurrency market: Is 
Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98–114.

Youssef, M., Mokni, K. and Ajmi, A.N., 2021. Dynamic connectedness between stock markets in 
the presence of the COVID-19 pandemic: does economic policy uncertainty matter?. Financial 
Innovation, 7(1), p.13.

Zeckhauser, R. and Niederhoffer, V., 1983. The performance of market index futures contracts. 
Financial Analysts Journal, 39(1):59–65. 

Zeng, T., Yang, M., & Shen, Y. (2020). Fancy Bitcoin and conventional financial assets: Measuring 
market integration based on connectedness networks. Economic Modelling, 90, 209–220.

Zhang, D., Broadstock, D. C., 2018. Global financial crisis and rising connectedness in the 
international commodity markets. International Review of Financial Analysis. https://doi.org/
10.1016/j.irfa.2018.08.003 

Zhang, D., Lei, L., Ji, Q., Kutan, A., 2018. Economic policy uncertainty in the US and China and 
their impact on the global markets. Economic Modelling. 

Zhang, W. and Hamori, S. (2021). Crude oil market and stock markets during the covid-19 
pandemic: evidence from the us, japan, and germany. International Review of Financial Analysis, 
74, 101702.

Zhang, W., He, X. and Hamori, S., 2022. Volatility spillover and investment strategies among 
sustainability-related financial indexes: Evidence from the DCC-GARCH-based dynamic 
connectedness and DCC-GARCH t-copula approach. International Review of Financial Analysis, 
83, p.102223.

204


