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Semiclassical descriptions of the dynamics of a few-level system coupled to a mode of the electro-
magnetic field which effectively reduce the contribution of the field to a time-dependent term in the
Hamiltonian of the few-level system are widely used. For example, such an approach is typically
taken in quantum control applications. However, the underlying quantum character of the field will
lead to corrections to the semiclassical dynamics which, given sufficient time, can lead to significant
changes. Here we develop an approach for calculating these quantum corrections systematically,
building on the time-dependent Floquet dynamics that emerges in the semiclassical limit. Using
the Rabi model of a spin—field system as an illustrative example, we obtain approximate analytic
expressions for the first-order quantum corrections to the semiclassical dynamics of the spin for a
range of initial field states. These expressions describe the initial stages of the full quantum dynam-
ics accurately, though they eventually fail for sufficiently long times. Our work has relevance both
for understanding the fundamental properties of emergent semiclassical behavior and as a potential

tool for assessing corrections to semiclassical control techniques.

The interaction of electromagnetic fields with two- or
few-level quantum systems — spins, atoms, supercon-
ducting qubits, quantum dots — underpins many emerg-
ing quantum technologies [TH3]. Increasingly sophisti-
cated control techniques have been developed under the
assumption that the fields may be treated classically [4-
0]. Nevertheless, such fields are quantized and the dy-
namics they give rise to will never be exactly that of the
corresponding semiclassical system. Indeed, even when
the field is prepared in the most classical of quantum
states, corrections to the semiclassical dynamics can lead
over time to dramatically different behavior [7]. Under-
standing the nature and magnitude of the quantum cor-
rections to the semiclassical dynamics is of fundamen-
tal interest, but also has practical significance as they
represent a source of error that will increase with time
in quantum control algorithms [§]. Furthermore, unlike
other forms of noise and decoherence that can be miti-
gated through improved engineering, quantization of the
field is an irreducible source of error in classical control
protocols.

Intensive efforts stretching over several decades have
sought effective means of calculating the fully quantum
dynamics of few-level systems coupled to quantum fields.
Many studies have relied on numerical computation, as
analytical approximation techniques for calculating dy-
namical variables are complicated and provide limited
physical insight [OHI3]. Although this work has uncov-
ered the rich phenomenology present in even the simplest
models, it has not managed to construct a complete, co-
herent picture of how quantum field dynamics can give
rise to semiclassical behavior. The series of studies on

quasiclassical trajectories in the Jaynes-Cummings and
Rabi models by Gea-Banacloche [14HI6], together with
Finney [I7], comes the closest. While their work bears
some similarities to that presented here, it is rooted in
phenomenological observations rather than the more gen-
eral first-principles approach that we take.

Recent work has established that the quantum-to-
semiclassical transition can be expressed at the Hamilto-
nian level as a well-defined mathematical limit, resolving
the long-standing correspondence problem by taking the
quantum coupling to zero alongside the field amplitude
going to infinity [I§]. This provides both the physical in-
sight and the analytical framework necessary for under-
standing how corrections to the semiclassical dynamics
will emerge. With a rigorous mathematical formulation
of the semiclassical limit in hand, it becomes possible to
systematically study exactly how the limit is approached
and to characterize the quantum corrections.

In this Letter we outline a method for calculating the
time evolution of the joint state of a few-level quan-
tum system interacting with a quantized field in terms
of the Floquet solutions to the corresponding semiclassi-
cal Hamiltonian, an approach we call ‘quantum-corrected
Floquet dynamics’ (QCFD). We further introduce an
exactly solvable first-order approximation, the Floquet-
basis rotating-wave approximation (FBRWA). Focusing
on the case of a spin coupled to a field mode, the cele-
brated Rabi model, we obtain closed-form analytical ex-
pressions for the dynamics of the system with arbitrary
initial states of the quantum field. As illustrations, we
derive expressions for the dynamics of the spin popu-
lation in both the Rabi model and the simpler Jaynes-
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Cummings model for a variety of different field states.
We demonstrate that our approximate analytic expres-
sions for the lowest-order quantum corrections to the
semiclassical dynamics accurately describe the collapse
of the Rabi oscillations, but not their later revival.

The conceptual basis of QCFD is that the dynamics
induced by the field can be separated into semiclassi-
cal and quantum components. This goes beyond simply
providing a powerful technique for calculating dynami-
cal quantities. It enables us to cleanly delineate which
features in the evolution are semiclassical in nature and
which arise from the underlying quantum character of
the field, a question of both foundational and practical
importance. Moreover, the same approach is likely to
apply to a wider class of settings involving interactions
between fields and few-level systems.

To introduce the principles of QCFD, we employ the
paradigmatic Rabi model: a two-level quantum system
coupled to a single mode of the electromagnetic field [I8-
20]. For simplicity, we use the term ‘spin’ for the two-
level system. We write the Hamiltonian in the form

H=woala+ 196, + Nf(a,a)oy + fl(a,ahs-], (1)

where 61 = |£z)(Fz| are the raising and lowering oper-
ators for the spin states |£z), which represent the energy
eigenstates of the bare spin Hamiltonian. The energy
eigenstates of the field are the Fock states |n). With the
choice f(a,al) = (a + af), Eq. corresponds to the
quantum Rabi model (QRM). If the standard rotating-
wave approximation (RWA) is applied to the Rabi model,
f(a,a") = a and the resulting Hamiltonian is commonly
known as the Jaynes-Cummings model (JCM).

Central to the development of QCFD is the separa-
tion of the Hamiltonian into semiclassical and quantum
terms. Applying the first two steps of the semiclassical
limiting procedure outlined in [I8] — transforming to the
interaction picture with respect to the field, followed by a
displacement transformation D(a) on the field operators
— allows the Hamiltonian to be written in the form

H(t) = Hye(t) @ Iy + Hy (1), (2)

where H,.(t) is the corresponding semiclassical Hamilto-
nian, I ¢ is the identity for the field, and H, é (t) describes
the interaction with the quantized field. (See Appendix
for details.) In the semiclassical limit A\/wy — 0 and
la| — oo, Hl(t) is eliminated. Here, however, we are
concerned with calculating corrections to the semiclassi-
cal dynamics induced by the quantum interaction term.

From Floquet theory, the time-dependent semiclassical
Hamiltonian admits solutions

[T (t)) = e+ |y (t)) 3)
that satisfy

[Hoo(t) — i 2] [ (1)) = qr|vx(t)), (4)

where the Floquet quasienergies g+ are defined up to an
integer multiple of wy [I7, 2I]. These Floquet states form
a complete orthonormal basis at any time ¢, so an arbi-
trary state of the joint quantum system may be written
as

() = [P (1)) @ [6L.(1)) + V- (1) @ [L(2)).  (5)

The field states are given in the transformed basis as
L) = ::6 cl(t)bf(a)eiw"mf‘ﬂn), with probability
amplitudes ¢ (t) [22]. Inserting this form of the wave-
function into the Schrédinger equation and projecting
onto the Floquet states yields a pair of coupled differen-
tial equations for the field associated with each Floquet

state of the spin:

i%'qgi(t» = (W (8) [ HJ (8) | W£(1))| G4 (£))
+ (UL () HE ()[04 (1)) 6L (1))

This is the key conceptual result of the QCFD approach.
Working in the Floquet basis effectively diagonalizes the
semiclassical term in the Hamiltonian, allowing us to iso-
late the corrections due to the quantum nature of the
field.

This separation, however, comes at the expense of ex-
plicit time dependence in both the spin basis states and
the quantum Hamiltonian. With the choice ¢ = —qy,
the Floquet states have a Fourier series representation
7, 23] 24]

(6)

[Py (t)) = e (£ AL ()| £2) + B (t)|F2)), (7)

where Ay(t) = Yoo Agper2kiwot and B, =
Z?i—oo Bgl+1(t)€i(2l+l)iw0t with Aoy, By real. When
H[(t) is expressed in this basis (see Appendix for de-
tailed expressions), terms that are diagonal in the Flo-
quet states |U(t)) evolve at integer multiples of wy. By
contrast, the off-diagonal terms contain the additional
factor e**@+—9-)t We see, then, that the two terms
on the lhs of Eq. @ are distinct in physical character
and act on different timescales. The first leaves the Flo-
quet states of the spin unchanged but generates quan-
tum evolution of the associated field components; the
second creates transitions between the Floquet states on
a timescale that depends on the difference between the
Floquet quasienergies.

Up to this point, the treatment has been exact. The
quantum interaction terms in the Floquet basis are cum-
bersome [see Egs. (20)-(21)]. However, their form —
especially the separation of timescales between the diag-
onal and off-diagonal terms — invites an approximation
strategy in the spirit of the standard RWA. To lowest or-
der, we retain only the time-independent terms in HY (t),
an approximation that we term the FBRWA.

The resulting Hamiltonian for both the JCM and the



full Rabi model takes the remarkably simple form

Hipgwa (1) = ACH(&T+d)(‘IJ+(t)><\I’+(t)—I‘If—(t)><‘lf—(§))l),

where [25]

et — Z Aoy (Bak+1 + Bag—1). 9)

k=—o0

The effective equations of motion governing the field evo-
lution decouple and are readily solved. Transforming
back to the original frame, the solutions for the field
states are given by

|6 (£)) = e~Potal a2 ol i (1))]64.(0)),  (10)

where the time-dependent displacement of the field in
phase space is n+(t) = Fie **A°t. This evolution of
the coupled system may be interpreted in terms of a dy-
namical polaron transformation. As in the usual polaron
transformation, the field is displaced in a direction that
depends on the state of the spin [26H28]; here, the dis-
placement amplitude is a function of time as well as cou-
pling strength.

Together with the Floquet solutions for the spin,
Eq. constitutes a closed-form analytical approxima-
tion for the time evolution of the joint spin—field state
vector. Any dynamical quantity may then be calculated
from the state vector. In the following discussion we focus
on the excited-state probability P(+z) = |(+z|®(t))|?
of the spin, a quantity with a clear connection to well-
known results in quantum optics and significant relevance
to quantum control. Selected examples illustrate the sim-
plicity and power of this new approach together with
the intuitive physical interpretation of complex dynamics
that it offers.

Consider the initial state |®(0)) = |+2) @ |¢o), with
a = {Pola|do) taken to be real. The FBRWA provides
a general expression for the excited-state probability of
the spin at later times:

P(+2) = [A+(0)P|A+ () + [B-(0)]*| B- (1)
+ [AL(0)B_(0)A4 (t) BX (t)e~ e+ —9-)t (1)
x (G- (B)|64 (1) + c.c].

The dynamics is determined by the Floquet coeflicients
and quasienergies, together with the inner product be-
tween the field states associated with different Floquet
states.

Let us first look at the Jaynes-Cummings model. The
corresponding semiclassical model is exactly solvable. On
resonance (£ = wy), the quasienergies are ¢ = +(Fwo +
Ala|) and the only non-zero coefficients of the Floquet
modes are Ag = By = 1/v/2. Hence X\*f = \/2. Taking
the initial state of the field to be a coherent state |a), the
excited-state probability is readily worked out to be

P(+2) = 5+ 37 /2 cos (22| alt). (12)

This, of course, is the famous expression for sinusoidal
Rabi oscillations with a Gaussian collapse envelope first
obtained by Cummings [29]. In Cummings’ approach,
the time evolution of the joint state is given as a sum
over the sinusoidal Rabi oscillations induced by each Fock
state |n) contained in the initial coherent state. For large
values of |a| = v/#i, the weighting factor becomes sharply
peaked around /7 and the sum may be approximately
evaluated, leading to the above expression. The collapse
results from destructive interference of oscillations at in-
commensurate frequencies.

Here we see a different physical interpretation of the
collapse. The initial spin state is a superposition of the
two semiclassical Floquet states. Within the FBRWA,
the quantum interaction term does not cause transitions
between the Floquet states, but the evolution of the field
depends on which Floquet state it is associated with.
As the two field components become displaced in op-
posite directions, their inner product decreases, caus-
ing the collapse of the semiclassical Rabi oscillations.
Gea-Banacloche showed similarly that the collapse oc-
curs when the field states associated with two spin states
become macroscopically distinguishable [14} [15].

Next, consider an initial displaced Fock state |a,n) =
D(a)|n). Numerical studies of the dynamics have been
carried out [30] [31], but no analytical results appear to
have been previously reported. Here the generalization
from the coherent-state case is practically trivial. The
only change is in the field overlap, giving

P(+2) = 3+ 3V E2L, (0%2) cos(20a]t).  (13)

The Gaussian collapse envelope characteristic of a co-
herent field is modulated by the Laguerre polynomial
L, (N*t?). Figure [1| illustrates this behavior. Rabi os-
cillations persist over longer times because the displaced
Fock states |a,n) are not minimum-uncertainty states,
but have a width in phase space that increases with n.
A larger relative displacement is required for the over-
lap between the two field states to become negligible;
or, in other words, for the states to become macroscopi-
cally distinguishable. Nodes in the envelope result from
destructive interference between the two displaced Fock
states.

Another interesting example is a superposition of two
displaced Fock states:

[do) = (18,0) +e~*15,1))/V2. (14)
For 3 = |Ble™™ and & = ¢, the excited-state probability
of the spin becomes
P(+2) = 3+ 32 [(1 = 1a%2) cos(22|B]¢) a1s)
—Atsin(2M|6]t)] -

In this case the result cannot be simply expressed as a si-
nusoidal oscillation modified by a collapse envelope. Nev-
ertheless, the analytical expression captures the dynam-
ical behavior quite well (see Fig.[3|in the Appendix).



1.0
— PEWA(+2)
—— analytical
N envelope
Tost I H YN A\ A A
o
(a) n=0
0.0
1.0
~N
Tost A PAAN N A\ /At
a
(b) n=1
0.0
1.0
~N
Tost WA AN AA A
[N
(c) n=2
0.0
1.0
~N
+ )
fos /\/ V\/\/\/\’\/\"/WNW’\M
(d) n=10
0.0 0 50 100 150 200 250 300

Time

FIG. 1. Collapse of Rabi oscillations for different initial field
states. The excited-state probability of the spin is plotted
against time. Parameter values are « = 10, A = 0.05, and
) = wp = 1. Numerical solution of the full JCM Hamiltonian
(magenta) is compared with Eq. (black), dashed grey
lines indicate the collapse envelope from Eq. A The initial
state of the system is |®(0)) = |+2) ® |o,n) with n = (a) 0,
(b) 1 (c) 2, (d) 10.

It is worth noting that all the above results can be
trivially extended to the off-resonance case. The only
change required is to replace the Floquet quasienergies
and states by the equivalent solutions for  # wy.

We now turn to the full Rabi model. The FBRWA
solutions still have the same form in the Floquet basis,
differing only in the value of A°f. Finding the Floquet
states of the Rabi model, however, is a challenging prob-
lem in itself. To illustrate the properties of the FBRWA
solution with the Rabi interaction, we employ the ap-
proximate Floquet solutions for Q@ = wy given in [I7],
which are valid up to third order in € = Ma|/(292).

Figure 2] compares the population dynamics of the spin
given by the analytical FBRWA expression in the Rabi
model with a numerical solution of the full Hamiltonian.
The field is initialized in the displaced Fock state |a, 1).
As the field components |¢+(t)) become displaced, the
growing entanglement between the spin and field sup-

presses the coherence between the Floquet states that
generates oscillations at the Rabi frequency. As in the
JCM, the collapse is governed by the product of a Gaus-
sian and a Laguerre polynomial.

However, the collapse here is not complete; oscilla-
tions persist in the ‘quiescent’ region, at a frequency near
2wo [32, B3]. The origin of this phenomenon is read-
ily understood from Eq. . In the quiescent region,
(p—(t)|d+(t)) = 0. The spin dynamics is effectively de-
termined by |A, (t)|? and |B_(¢)|?, which represent the
probability of |4+z) in the Floquet states |¥4(t)) and
| _(t)), respectively. Within the RWA, the Floquet co-
efficients each have a single frequency component and the
probabilities are constant. When counter-rotating terms
are included, the Floquet coefficients develop components
at higher frequencies. Since A4 (t) (B_(t)) contains only
even (odd) multiples of wg, the dominant correction in-
volves terms with a frequency difference of 2wy. Con-
sequently, the residual oscillations are unrelated to the
quantum nature of the field. They arise because the Flo-
quet states are time-dependent coherent superpositions
of the bare spin eigenstates, a purely semiclassical effect.
Interestingly, a similar effect can be seen around the node
of the n = 1 Laguerre polynomial in the collapse enve-
lope, for the same reason.

The analytical curves plotted in Fig. [2] involve two ap-
proximations: the FBRWA itself, and the approximate
Floquet solutions. The validity of each approximation
depends on the parameters in different ways. In (a),
the Floquet approximation is indistinguishable from the
numerical solution of the semiclassical model, so differ-
ences between the two curves indicate limitations of the
FBRWA. In the lower two panels, the larger value of ¢
creates discrepancies in the Floquet approximation that
are visible at earlier times, especially in the central region
of the bottom plot. By contrast, as « increases from top
to bottom, the FBRWA improves, particularly for the
residual oscillations in the collapse region.

As with any rotating-wave-type approximation, the va-
lidity of the FBRWA is predicated on a separation of
timescales: the frequency of the rotating phase should
be large compared to the associated transition matrix
element. Put differently, transitions between Floquet
states will be less likely if they are well separated in
(quasi)energy. For the on-resonance JCM, this gives the
criterion ¢4 —g_ —wo > A/2, which reduces to |a| > 1/4.
Hence the approximation improves as the phase-space
displacement (¢g|a|po) of the initial field state is in-
creased. The details differ for the off-resonant case and
for the Rabi interaction (and in the latter case, time-
dependent terms that are diagonal in the Floquet basis
have also been neglected), but the essential scaling with
|a| holds, as seen from Fig. In general, the error in
rotating-wave approximations also increases as time goes
on [34H37], which is true here as well.

It is clear that the FBRWA can only predict the col-
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FIG. 2. Collapse of Rabi oscillations with the Rabi interac-
tion Hamiltonian in the on-resonance case, {2 = wo = 1. The
initial state is |[+2) ® |, 1). Numerical solutions of the full
Rabi Hamiltonian (magenta) are compared with . the analyt-
ical solution (black) from the FBRWA together with an an-
alytical approximation for the Floquet states from [I7]. The
parameters are (a) A = 0.02, « = 10, (b) A = 0.02, a = 20
and (c) A =0.01, o = 40.

lapse of the Rabi oscillations, not the revivals. The
interaction-induced displacement of the field components
increases linearly with time, so their overlap will asymp-
totically vanish for long times. Revivals, then, must be
created by the terms in H](t) that are off-diagonal in
the Floquet states. This leads to the intriguing conclu-
sion that the collapse and the revivals may be attributed
to distinct physical processes in the Floquet basis. The
collapse results from interaction terms that leave the
semiclassical Floquet states unchanged but cause a state-
dependent displacement of the field, generating entangle-
ment between spin and field and thereby destroying the
coherent oscillations between Floquet states. Revivals,
on the other hand, are linked to interaction terms that
drive transitions between the Floquet states.

While we have considered only the JCM and the stan-
dard Rabi model here, the QCFD approach and the
FBRWA are likely to prove useful for a range of re-
lated models. Extension to an asymmetric [38H40] or
anisotropic [41] Rabi model is simple: adding a bias term
to the spin will change the Floquet solutions, while allow-
ing different coupling constants for the co-rotating and
counter-rotating terms will change A\*ff. Multiphoton in-
teractions will be more complicated to treat but intrigu-

ing to explore from this perspective. Of particular inter-
est is the polaron-transformed form of the Rabi Hamil-
tonian, which is widely employed to study the regimes of
very strong coupling to a high-frequency field and whose
semiclassical limit can also be obtained through the lim-
iting procedure described above [18|, 27, 28].

Quantum-corrected Floquet dynamics is a generaliz-
able technique that opens up broad prospects for future
work, both within and beyond the FBRWA. Closed-form
analytic expressions are readily derived from the FBRWA
yet accurately capture even quite complicated short-time
dynamics. Such computational and conceptual simplic-
ity lends itself to assessing quantum field effects on con-
trol sequences deployed in quantum technologies. More
fundamentally, this approach provides the physical in-
tuition that draws various aspects of dynamics in the
Jaynes-Cummings and Rabi models into a cohesive pic-
ture. Both practical applications and foundational im-
plications for how classical and semiclassical behavior
emerge from quantized fields offer tantalizing avenues for
exploration.
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Appendix
QCFD for the Rabi model

Following the ‘recipe’ of [18] for obtaining the semi-
classical limit requires a series of transformations. First,
the Hamiltonian is written in the interaction picture with

respect to the field, using the operator U(t) — e—iwotala,
H(t) = 3Q6. + X | f(e7™°a, e™aT) 5
+ fiemeta, etahye | (16)

Next, a displacement transformation ﬁ(a) = exp(osz —
a*a) with o = |ae’® is applied, giving

H'(t) = Hyo(t) @ Ip + HJ (1), (17)
|

0o
)\6 zwot

kl=—o0

=20 Y [AsBara TN (0 ()0

where

i(wot+¢) |a|ei(wgt+¢))5_

Hgy(t) = 3Q6. + X | f(lale” +

+ f(|afe" @0t |afei@otto)ys }

is the semiclassical Hamiltonian corresponding to Eq. (| .
I ¢ is the identity for the field, and

HE(t) = A[f(e7™0ta, etal ), + fT (e ™0ta, e™tat)o_]
(19)
is the quantum interaction term. Equivalently, this may
be thought of as writing the Hamiltonian H(t) in the
basis of the displaced Fock states |, n) = D(a)|n).

H!(t) in the Floquet basis

Using the |W.) basis, the interaction term Ae~“otas
takes the form

@) = [T (@) (Y- ()]

Similarly, the counter-rotating term appearing in the quantum Rabi interaction becomes

o0
Aeotate = Naf
k,l=—o0

| | (20)
+ e M0 By Bopy g @GR 0!G (1)) (W (1))
— /(T 70 Aoy Agpe CREEHFDON G (1)) (W (2)]].
> [AgBarpa e TEEDRON (W () (W ()] — [T (6) (T (1))
(21)

+ e M) By By RPN (4)) (W (1))

— M0 790t Aoy Agye™ (BRIt g (1)) (B ®)]].

Expressed in this basis, H (f (t) appears as a complicated
function of time with both diagonal and off-diagonal
terms in the Floquet states, making the coupled differ-
ential equations @ for the field difficult to solve.

A very attractive simplification is obtained if the
terms which are off-diagonal in the Floquet basis can
be dropped. This is the Floquet-basis rotating-wave ap-
proximation. However, care is needed to identify the dif-
ferent frequency-components involved and hence to un-
derstand when the approximation is justified. The first
line of Eq. 7 which is diagonal in the Floquet states,
has zero-frequency components for all [ = k. The off-
diagonal terms, however, have an additional time depen-
dence arising from the quasienergy difference gy — q_.

(

This means they only possess zero-frequency components
at isolated resonances satisfying the condition ¢, —q_ =
(2k+2041)wp. Away from any such resonances, the inter-
action terms that drive transitions between the Floquet
states are suppressed relative to the time-independent
diagonal terms and may be neglected to lowest order.

Rabi oscillation collapse for superposition states

Figure shows that the FBRWA expression for the
excited-state spin population, Eq. ], arising from an
initial superposition state [Eq. } agrees extremely well
with a full numerical integration of the JCM, capturing
all of the Rabi oscillation collapse.
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FIG. 3. Collapse of Rabi oscillations for an initial superposi-
tion field state Eq. (14). The excited-state probability of the
spin is plotted as a function of time. Parameter values are
B =10, A = 0.05, and 2 = wp = 1. Numerical solution of the

full RWA Hamiltonian (magenta) is compared with Eq.
(black).
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