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Enhanced metastasis risk prediction in
cutaneous squamous cell carcinoma
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Cutaneous squamous cell carcinoma (cSCC) is the most common skin cancer with metastatic potential and
development of metastases carries a poor prognosis. To address the need for reliable risk stratification, we
developed cSCCNEet, a deep learning model using digital pathology of primary cSCC to predict metastatic
risk. A retrospective cohort of 227 primary cSCC from four centres is used for model development. cSCCNet
automatically selects the tumour area in standard histopathological slides and then stratifies primary cSCC
into high- vs. low-risk categories, with heatmaps indicating most predictive tiles contributing to explainability.
On a 20% hold-out testing cohort, cSCCNet achieves an area under the curve (AUC) of 0.95 and 95%
accuracy in predicting risk of metastasis, outperforming gene expression-based tools and clinicopathologic
classifications. Multivariate analysis including common clinicopathologic classifications confirms cSCCNet
as an independent predictor for metastasis, implying it identifies predictive features beyond known
clinicopathologic risk factors. Histopathological analysis including multiplex immunohistochemistry
suggests that tumour differentiation, acantholysis, desmoplasia, and the spatial localisation of lymphocytes
relative to tumour tissue may be important in predicting risk of developing metastasis. Although further
validation including prospective evaluation is required, cSCCNet has potential as a reliable and accurate tool
for metastatic risk prediction that could be easily integrated into existing histopathology workflows.

Cutaneous squamous cell carcinoma (cSCC) is the second most common  absolute numbers are high and outcomes for metastatic cSCC (a risk rate of
skin cancer, after basal cell carcinoma (BCC), and presents a significant ~ 2-5%) are poor™’. In the UK, the three-year survival for metastatic cSCC was
global public health challenge, with >300,000 new cases annually in Aus-  29-46% in 2015". ¢SCC incidence is increasing by approximately 5% per
tralia, 1 million in the United States and >50,000 in the United Kingdom year, partly due to an aging population. If current trends continue, deaths
(UK)". Although most cSCC are curable by surgery and radiotherapy, ~from keratinocyte cancers (BCC and cSCC) are estimated to overtake deaths
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from melanoma in the UK, USA, northern Europe and Australia in the next
10-15 years™”. Ideally, risk-based patient stratification would identify all
patients with ¢cSCC at high risk of developing metastasis who could benefit
from more intensive management regimes, as well as all low-risk patients
who may not need prolonged clinical surveillance after surgery. Current risk
stratification strategies rely on clinicopathologic risk factors, but the
commonly-used staging and/or classification criteria, including the closely
aligned 8th edition American Joint Committee on Cancer staging manual
(AJCC8) and 8th edition Union for International Cancer Control criteria
(UICCB), as well as the Brigham and Women’s Hospital classification
(BWH) are relatively poor at predicting metastasis, with positive predictive
values (PPV) of 4.5-30%"’. There are additional limitations to staging,
including poor inter-rater reliability"’. Two clinicopathological prognostic
models have recently been developed by Rentroia-Pacheco et al. (2023)"
and Jambusaria-Pahlajani et al. (2025)"* that showed improved predictive
performance for metastatic risk compared to staging systems. However,
these models require further validation, and more benefits may be obtained
by incorporating additional data types, for instance, molecular and more
detailed histopathology data.

There is an increasing body of evidence focusing on the molecular
landscape of primary c¢SCC, with the aim of identifying prognostic bio-
markers and novel therapeutic targets. Examples include a 40-gene
expression profile (GEP) signature developed by Castle Biosciences Inc.
(Texas, USA)" and our recently developed 20-GEP signature from a whole-
transcriptome discovery effort to predict metastatic risk of primary cSCC".
In addition, proteomic analysis has identified proteins associated with the
development of metastases from cSCC”. Although promising, these
molecular prognostic signatures require evaluation and refinement in larger
and diverse nationwide case-control cohorts before prospective clinical
evaluation. There are additional limitations to a gene signature approach, as
this method requires good RNA quality and quantity, which can be difficult
to obtain from archival formalin-fixed paraffin-embedded (FFPE) samples.
Likewise, challenges exist in relation to obtaining relevant proteins from
FFPE samples. These approaches may also be time-consuming and
expensive to incorporate into routine clinical practice. Therefore, robust,
affordable, unbiased and easy-to-use prognostic tools for metastasis risk
prediction would be a major step forward in guiding management strategies,
to improve patient outcomes and to optimise use of healthcare resources.

Digital pathology, which involves scanning histopathological slides to
produce whole slide images (WSI), is becoming increasingly accessible
worldwide. Deep learning (DL) models trained on WSI can identify the
presence of specific morphological features and gene mutations, and can
even predict prognostic outcomes in a variety of cancer types'*". Kulkarni
et al.(2020)* recently published a DL model trained on haematoxylin and
eosin-stained (H&E) WSI of melanoma to predict the risk of visceral
recurrence and death. In ¢SCC, the application of artificial intelligence (AI)
on WSI to predict clinical outcomes is still relatively limited compared to
melanoma, partly due to lack of large patient cohorts with well-defined
outcomes and annotated images for model training. Few DL studies have
addressed prediction of cSCC metastasis from WSI. Knuutila et al. (2022)'
developed a ResNet18-based model using a single-centre cohort; however,
its performance was inferior to that of standard clinicopathologic classifi-
cation systems. Moreover, this approach relied on manual region of interest
(ROI) annotation by pathologists, a limitation addressed by our current
study. More recently, Coudray et al. (2025)* developed a model that predicts
poor outcomes in cSCC based on the abundance of different ‘histomor-
phological phenotype clusters’ (HPCs), and Pisula et al.(2025)* used a
transformer-based architecture to predict ¢SCC progression. Notably,
Pisula et al. demonstrate that models trained on multi-centre data outper-
form those trained on single-centre datasets, supporting the rationale for the
multi-centre approach in the present study”’.

In this study, leveraging our recently assembled multicentre UK cohort
of 227 patients with primary cSCC with known metastasis outcomes and
associated clinical archival tissue, we present the development and evalua-
tion of cSCCNet, a two-step DL model for predicting metastatic risk from

WSI of primary ¢SCC. In order to eliminate the need for time-consuming
pathologist annotations, cSCCNet first selects the prognostically relevant
area within a WSI and then predicts metastatic risk. We show that our
histology AI model outperforms conventional clinicopathologic classifica-
tions and our recently developed 20-GEP molecular model, and is an
independent predictor from histopathological classifications.

Results

Overview of cSCCNet

cSCCNet consists of two models: Model 1 for ‘automated area selection’
and Model 2 for ‘prediction of metastatic risk’ (Fig. 1a). As WSI often
contain artefacts and normal tissue that can potentially confound the
prediction of tumour characteristics and behaviour, our Model 1 auto-
matically selects ROIL ROI are defined as tumour, intratumoral inflam-
matory cells, and peri-tumoral stroma, as these have been shown to
contribute to tumour progression”. Tiles within ROI are then extracted
and used as input for Model 2 to predict metastatic risk for the sample of
interest. Tile-level prediction is performed first to determine the predictive
risk of each tile within a WSI. Informative tiles (i.e., confidently labelled
high-risk or low-risk for metastasis by the model) are identified, and data
is then amalgamated to generate a tumour-level prediction of metastasis
(Fig. 1a).

Development of Model 1 — automated area selection

To develop Model 1, WSI from all 227 ¢SCC from four centres (Sup-
plementary Fig. 1a) were first annotated by an expert dermatopatholo-
gist (HR) to select the ROI, defined as all tumour regions, intratumoral
inflammatory cells, and thin rim of peri-tumoral stroma (Fig. 1b). Non-
overlapping image tiles of 512 x 512 pixels at 20x magnification were
extracted, resulting in 167,814 ROI and 295,665 non-ROI tiles. Fol-
lowing colour normalisation (Fig. 1c) and the separation of the hold-out
testing cohort, Model 1 was trained on the remaining 145,425 ROI and
237,069 non-ROT tiles from the training cohort (n = 187 cSCC). The split
into training and testing cohorts is explained in Supplementary Fig. la.
KerasTuner” was used for systematic comparison of different DL
architectures and training parameters (Supplementary Fig. 1b,c). The
best performing model was based on ResNet50, with dropout 0.2 and
initial learning rate of le-4. Using 5-fold cross-validation, the mean
k-fold achieved tile-level accuracies of >90% in training and validation,
with consistent performances across folds, and no evidence of over-
fitting. The final model was re-trained on the entire training cohort
(187 ¢SCC) for 40 epochs. The optimal threshold for area selection was
determined based on accuracy compared to the histopathologist-
annotated ROI in the training cohort. A tile prediction score of 0.65
was selected as cutoff for selection.

To evaluate the performance of Model 1, predictions were generated on
80,985 tiles from the WSI in the testing cohort (n = 40 ¢SCC), which were
not previously seen by the model. The 22,389 tiles within the
histopathologist-annotated ROI had a median (IQR) prediction score of
0.97 (0.84-0.99), whereas the 58,596 outside the ROI tiles had a median
prediction score of 0.01 (6e-4-0.07) (Fig. 2a).

As determined in the training phase, tiles with a Model 1 prediction
score >0.65 were classified as ‘ROI’, and tiles with lower scores were
classified as ‘non-ROT’. Using this predefined threshold, Model 1 achieved
an AUC of 0.97 (95% CI 0.97-0.98) in identifying ROI compared to
pathologist annotations. Visual inspection of heatmaps by an expert der-
matopathologist (HR) confirmed that all the relevant areas were ade-
quately included across all WSI, with negligible inclusion of non-tumour
regions (Fig. 2b).

Development of Model 2 - metastasis risk prediction

For training Model 2, a total of 129,187 ROI tiles were obtained from
pathologist-annotated WSI of 172 ¢SCC meeting inclusion criteria: 80,380
tiles from metastasising (n = 64) and 48,807 tiles from non-metastasising
(n=108) c¢SCC. Tumour size varied, with a median (IQR) of 1064

npj Precision Oncology | (2025)9:308


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01065-7

Article

a
WSI i
(scanned H&E p.—e;—:—lg::ge:‘sing
slide)

Model 1
(Area Selection)

Selected Tiles

Model 2
(Metastasis Risk
Prediction)

Threshold 1

v

Tile Level Tile Level
Predictions Predictions
| Threshold 2
—
Tumour Level

Fig. 1 | The development and overview of the cSCCNet model. a cSCCNet data
pathway is shown, including input in orange, automated preprocessing steps in
white, trained models in green, initial model outputs in yellow, thresholds as blue
diamonds and user-facing predictions in blue. Threshold 1: scores >0.65. Threshold
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2: median score >0.2 after excluding tiles with Model 2 scores of 0.3-0.7. b Whole
slide image, with pathologist-annotated region of interest (ROI) delineated in blue.
¢ Representative image tiles (1 = 3) before and after colour normalisation.

(555-1634) and 317 (148-591) tiles per metastasising and non-
metastasising cSCC, respectively. To avoid overfitting to larger tumours,
500 tiles were randomly selected per tumour, resulting in 27,920 and 32,711
tiles from metastasising and non-metastasising tumours, respectively. Tile
labels were inherited from tumour-level labels, as either ‘Metastasising’ or
‘Non metastasising’.

Using KerasTuner, the best performing model was based on ResNet50,
pretrained on Imagenet, with initial learning rate le-4, batch size 64,
dropout 0.2, sigmoid activation function in the last dense layer, binary cross-
entropy as a loss function, and ADAM algorithm for optimisation. Com-
parisons to additional architectures (Inception, Resnet 101, ResnetV2),
learning rates, tile sizes (256 x 256 pixels), omission of colour normalisation,
or no pre-training on Imagenet did not improve model performance
(Supplementary Fig. 1c). Additionally, the dual model cSCCNet out-
performed a single model, based on all tiles of the entire WSI (Supple-
mentary Fig. 1d-f).

To assess generalisability, five-fold cross-validation was performed
using the best performing model. The mean k-fold achieved tile-level
accuracies of 0.92 for training and 0.76 for validation after 20 epochs (Fig. 3a
and Supplementary Fig. 2a, b). Following five-fold cross-validation, the final
model was re-trained on the entire training cohort (172 ¢SCC) for 20 epochs
(Supplementary Fig. 2c).

Next, we used the training cohort to select a threshold for Model 2.
Median (IQR) tile scores were 0.99 (0.88-1.00) and 0.01 (1e-3-0.07) for tiles
from metastasising and non-metastasising cSCC, respectively. To select a
tumour-level threshold, various aggregate scores were compared. Excluding
tiles with borderline scores (0.3-0.7) achieved greater separation between

the two groups™. A median tile score >0.2 achieved 99% accuracy (correct
for all training cases, except one non-metastasising cSCC). Applying both
models in series in the training cohort, with ROI tiles selected by Model 1
analysed by Model 2, achieved 98% tumour-level accuracy in predicting
which tumours metastasised (correct for 63/64 metastasising and 106/108
non-metastasising tumours, Supplementary Fig. 3a-d).

cSCCNet performance was next evaluated on the testing cohort (1 = 40
¢SCC) using both models applied in series and the predefined thresholds
(Threshold 1: scores 20.65; Threshold 2: median >0.2 after excluding tiles
with Model 2 scores of 0.3-0.7). Model 1 selected 12,295 tiles from metas-
tasising primaries and 9,856 tiles from non-metastasising primaries. Model
2 predictions had median (IQR) values of 0.87 (0.45-0.99) for tiles from
metastasising primaries and 0.02 (le-3-0.17) for tiles from non-
metastasising primaries (Fig. 3b). ¢SCCNet correctly classified 38/40
cases: 13/14 metastasising cSCC were classified as high-risk and 25/26 non-
metastasising cSCC were classified as low-risk by the model (Fig. 3¢). Data
from most cases (n=38/40) was available for comparison with clin-
icopathologic classifications, including UICC8/AJCC8, BWH and British
Association of Dermatologists’ ¢SCC guidelines (BAD), and with our
published 20-GEP test'*. cSCCNet achieved an AUC of 0.95 (95% CI 0.87-
1), exceeding that of the 20-GEP test (AUC 0.80, 95% CI 0.67-0.94),
although this difference was not significant. cSCCNet significantly out-
performed all clinicopathologic classifications (AUC range: 0.69-0.71,
DeLong test, p < 0.006) (Fig. 3d, Table 1). On comparison, using data from
the whole cohort (172 training and 40 testing samples), cSCCNet main-
tained superior performance in predicting metastasising and non-
metastasising cases (AUC=0.98), followed by the 20-GEP signature
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(0.86), whilst the clinicopathologic classifications had inferior performances
(0.74-0.78) (Supplementary Fig. 4a).

Performance in predicting risk of cSCC metastasis, based on
cSCCNet prediction, the 20-GEP model outcome derived from k-nearest
neighbours analysis, the 8th edition Union for International Cancer
Control/AJCC staging manual (UICC8/AJCC8) stages T3 or higher,
BWH stages T2b or higher, and the British Association of Dermatolo-
gists’ cSCC guidelines (BAD) based on ‘High/Very high’ risk or ‘Very
High’ risk only. The GEP signature and clinicopathologic classifications
were not available for all tumours; the column on the right shows AUC
results for the 35 tumours with complete data. AUC: area under the
receiver operating characteristic curve; FN: false negatives; FP: false
positives; NPV: negative predictive value; PPV: positive predictive value;
TN: true negatives; TP: true positives. The 95% confidence intervals are
in brackets.

Upon investigating other benchmarking measures, cSSCCNet achieved
the highest accuracy (95%) and specificity (96%) in predicting which
tumours metastasised in the testing cohort, outperforming the other risk
stratification tools (Table 1). cSCCNet reached 93% sensitivity, superior to all
other criteria except BAD ‘High/Very high’ risk category. The Pearson
correlation between the 20-GEP test and cSCCNet score was 0.66 (p = 6e-6)
for 37 cases, indicating a potential association between histopathological and
molecular features (Supplementary Fig. 4b, c¢). On univariate analysis,

features predictive of metastasis (p < 0.05) in the testing cohort included the
cSCCNet classification, 20-GEP, UICC8/AJCC8, BWH, BAD Very High
risk grade, tumour diameter, differentiation, thickness, and presence of
lymphovascular invasion. Age, sex, site of primary ¢SCC, and presence of
perineural invasion were not statistically significant in the testing cohort;
however, all were significant (p < 0.05) when assessed in the entire cohort
(n =212), suggesting an impact of sample size (Supplementary Fig. 4d-i).
On multivariate analysis, cSCCNet was an independent predictor of
metastasis from UICC8/AJCC8 (multivariate Wald test, p = 002) and BWH
(p = 6.9¢-4) (Supplementary Fig. 4j,k).

Evaluation of model training strategy using centre-split cross-
validation

To evaluate whether inter-centre variability affects model performance, we
trained a risk prediction model (Model 2) on cases from only three study
centres, and tested this model on the fourth centre (ie., not seen during
training).

Two centre-split experiments were performed: Model BCD (trained on
centres B, C, and D, and tested on centre A) and Model ABD (trained on
centres A, B, and D, and tested on centre C). Results are presented in
Supplementary Fig. 5. Although performance declined using the centre-split
models, both models retained reasonable predictive ability when testing on
entirely unseen centres, especially Model ABD, with accuracy of 73% and
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Fig. 3 | Model 2 (metastasis risk prediction) training and evaluation. a Mean five-
fold cross validation curve for Model 2 on the training cohort (n = 172) after 20
epochs, with training accuracy in red and validation accuracy in blue. b Histograms
showing Model 2 tile-level predictions for tiles from metastasising and non-
metastasising tumours in the testing cohort (n = 40). A prediction score close to 1
indicates high confidence that the tile belongs to a high-risk (metastasising) tumour,
while a prediction score close to 0 indicates high confidence of belonging to a low-
risk (non-metastasising) tumour. ¢ Tumour-level aggregate scores for metastasising
(red triangles) and non-metastasising primary cSCC (blue circles) in the testing
cohort. Aggregate scores >0.20 represent ‘high-risk’ tumours. d Receiver operating
characteristic (ROC) curves for the different risk stratification tools on the testing
cohort, including: cSCCNet (black), the 20-gene expression profile model derived

from k-nearest neighbours analysis (20GEP, pink) and linear predictor (GEP_linear,
blue), Brigham and Women’s Hospital classification (BWH, not visible due to
overlap with UICC8/AJCCS8), the 8" edition Union for International Cancer Con-
trol/American Joint Committee on Cancer staging manual classifications
(UICC8/AJCCS, orange), and the British Association of Dermatologists’ cSCC
guidelines (BAD, red). e Representative heatmaps, with Model 2 tile scores con-
verted to colour using a blue to red scale for scores 0-1 (low to high-risk). The
tumour-level aggregate scores (of RO tiles selected by Model 1 and after removal of
tiles with borderline scores) are displayed on the top right corner of each case, with
median scores >0.20 representing ‘high-risk’ tumours. Model 1 results for these
cSCC were shown in Fig. 2b.

Table 1 | Predictive performance of cSCCNet, 20-GEP test and clinicopathologic classifications on the testing cohort (n = 40)

AUC Accuracy Speci- Sen- NPV PPV T- TP F- FP AUC (n=35)
ficity sitivi- N N
ty
cSCCNet 0.95 (0.87-1) 95% 96% 93% 96% 93% 25 13 1 1 0.94 (0.85-1)
20-GEP 0.80 (0.67-0.94) 81% 83% 7% 87% 71% 20 10 3 4 0.80 (0.65-0.94)
UICC8/AJCCS8 0.71 (0.55-0.86) 74% 84% 57% 78% 67% 21 8 6 4 0.68 (0.52-0.84)
BWH 0.71 (0.55-0.86) 74% 84% 57% 78% 67% 21 8 6 4 0.68 (0.52-0.84)
BAD High/Very High NA 64% 44% 100% 100% 50% 11 14 0 14 NA
Very High only 0.69 (0.53-0.84) 72% 80% 57% 80% 62% 20 8 6 5] 0.66 (0.50-0.83)

sensitivity of 85%, with poorer specificity of 58%. Of note, the training
cohorts in the centre-split models were very unbalanced, with a lower
proportion of metastasising cases likely contributing to poorer performance.
These findings support our training strategy for cSCCNet, which incorpo-
rates cases from all four centres to optimise data diversity and model
generalisability.

Histopathology and immunohistochemistry (IHC) analysis to
improve model explainability

Heatmaps of Model 2 outputs were interrogated for both metastasising and
non-metastasising cases. Significant intratumoral heterogeneity was
observed in some cSCC, with both low- and high-risk areas present within
the same WSI (Fig. 3e). An expert dermatopathologist (HR) reviewed the
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poorly differentiated carcinoma with deeply basophilic staining, secondary to large
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differentiated carcinoma composed of small islands and infiltrative strands (C H&E
and D immunohistochemistry, IHC), and acantholytic carcinoma with discohesive
invasion pattern and desmoplasia (E H&E and F IHC). Representative low-risk’
areas show well differentiated cSCC and prominent keratinisation (G H&E and
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H IHC), and a dense peritumoral infiltrate (I and J] H&E). Microvascular pro-
liferation often obtained high scores (K H&E and L THC, with arrows indicating
blood vessels). In the ITHC images, AE1/AE3-positive cells (keratinocytes) are stained
brown with DAB, CD3-positive cells (T lymphocytes) are stained green, and aSMA-
positive cells (cancer-associated fibroblasts, tumour stroma and cells surrounding
blood vessels) are stained red. aSMA: alpha-smooth muscle actin; cSCC: cutaneous
squamous cell carcinoma; WD: well differentiated.

most predictive tiles in correctly classified cases, with review of all H&E in
the testing cohort and the available IHC slides. This preliminary observa-
tional analysis was not aimed to fully explain model scores, but rather to
explore whether histopathological features may explain low or high scores
across the cohort.

The model consistently assigned high scores (indicating higher risk)
to areas of poorly differentiated carcinoma, which were often char-
acterised by deeply basophilic staining secondary to large nuclei and scant
cytoplasm (Fig. 4A, B). Additionally, areas with necrosis, single cell
infiltration (Fig. 4C, D), acantholysis, or prominent desmoplasia sur-
rounding carcinoma (Fig. 4E, F) often received borderline or high scores.
Conversely, low scores (indicating lower metastatic risk) were assigned to
regions containing predominantly near-normal epidermis, well-
differentiated carcinoma (Fig. 4G, H), lymphocyte aggregation at the
tumour edge (peritumoral infiltrate) (Fig. 41, ]), or cystic regions. Regions
with dense, deeply eosinophilic stroma and keratin (Fig. 4G, H) were also
consistently assigned low scores. Of note, tumour areas containing
abundant blood vessels (Fig. 4K, L) often received high scores; however, it
was unclear whether vascularisation itself was being recognised as a poor
prognostic feature or whether the vessels were mimicking poorly

differentiated carcinoma. Certain model predictions could not be fully
explained, suggesting that cSCCNet may be detecting features beyond
known histopathological risk factors.

Multiplex IHC was performed on further 5 metastasising and 5
non-metastasising cases, allowing improved separation of different cell
types and more detailed assessment of cell type composition in indivi-
dual tiles (Fig. 5). Keratinocytes were identified by anti-AE1/AE3
(stained with DAB). T lymphocytes were highlighted with anti-CD3
(stained in green). The third cell marker, aSMA (alpha-smooth muscle
actin, in red), is expressed by several cell types, including cancer-
associated fibroblasts, tumour stroma, and by cells surrounding blood
vessels, including capillaries. Qualitative analysis revealed greater T cell
infiltration within metastasising tumours (i.e., intratumoral infiltrate)
(Fig. 5C, D) compared to non-metastasising tumours (Fig. 5G, H).
Quantitative analysis using HALO-AI estimated the median (IQR)
proportion of CD3-positive cells within tumour regions (tumour-infil-
trating T cells) as 6% (3-9%) within metastasising cSCC and 2% (2-3%)
in non-metastasising ¢SCC (Fig. 5K) although this difference did not
reach statistical significance (Mann-Whitney U test, p = 0.09), likely due
to the small sample size.
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Metastasising

Non-metastasising

Fig. 5 | Multiplex immunohistochemistry (IHC) of additional five metastasising
vs five non-metastasising cSCC. Multiplex IHC was performed on 10 cSCC, with
two representative cases shown: a metastasising cSCC (A-D and I) and a non-
metastasising cSCC (E-H and J). The H&E-stained slides are shown in A and E.
Multiplex IHC was performed on adjacent sections (B and F; the black squares
correspond to the high power images in D and H) with AE1/AE3-positive cells
(keratinocytes) stained brown with DAB, CD3-positive cells (T lymphocytes) with
green, and aSMA-positive cells (cancer-associated fibroblasts, tumour stroma and
cells surrounding blood vessels) with red. T-cell density heatmaps are shown, with
CD3-positive cells highlighted green (C and G). High-power IHC images show
representative areas of T-cell infiltration within a metastasising cSCC (intratumoral
infiltration, D) and peritumoral infiltration at the deep tumour edge of a non-
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Proportion of tumour-infiltrating T cells
o
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p=0.09
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Q
S

Ye: No

S
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metastasising cSCC (H). aSMA density heatmaps are shown with aSMA positive
cells highlighted green (I and J). K Analysis of multiplex IHC showed greater pro-
portions of tumour-infiltrating T cells within tumour regions (intratumoral infil-
tration) in metastasising cSCC compared to non-metastasising cSCC. Box-plot
elements: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, individual data points; x-axis: metastasising (Yes) vs non-
metastasising (No) cSCC; y-axis: proportion of tumour-infiltrating T cells, defined
as the number of CD3-positive cells divided by the total number of cells (of any type)
within tumour regions, as calculated using the HALO-AI classifiers. The Mann-
Whitney U test was used to compare the two groups (p = 0.09). aSMA: alpha-
smooth muscle actin; ¢SCC: cutaneous squamous cell carcinoma; H&E: haema-
toxylin and eosin; IHC: immunohistochemistry.

Review of incorrect cases

Two cases in the testing cohort were misclassified by the model. One non-
metastasising scalp cSCC received a high model score (0.75, Supplementary
Fig. 6a). On histopathological review, it was poorly differentiated, invaded
beyond the subcutis, and was classified as high-grade by UICC8/AJCC8
(T3) and BWH (T2b). Examination of cSCCNet heatmaps revealed that
Model 1 had failed to select >60% of the ROI, and that the small number of
tiles passed to Model 2 were deeply basophilic. In this case, we attributed the
misclassification to sampling bias and difficulty of the case. One metasta-
sising pinna ¢SCC with incomplete excision margins received a low model
score (0.10, Supplementary Fig. 6b). The majority of the tumour was
moderately-differentiated with good keratinisation; however, there was
extension beyond cartilage. A small area of poorly differentiated carcinoma
was present and was correctly classified as ‘high-risk’ by the model. It was
staged UICC8/AJCC8 T3 and BWH T2b. Of note, this tumour had initial
incomplete margins and underwent re-excision.

Discussion
cSCCNet is an automated DL tool, able to predict metastatic risk from
digitised H&E slides of primary ¢SCC. In this study, cSSCCNet outperformed
commonly used clinicopathologic classifications, achieving the highest AUC
and accuracy for predicting cSCC metastasis. As expected, the dual-model
cSCCNet, which uses automatically-selected ROI, outperformed models
based on the entire WSI by excluding ‘noisy’ data prior to risk prediction.
To avoid introducing bias and aware of the limitations of currently-used
histopathological features, we deliberately did not predefine which mor-
phological features the model should focus on when predicting metastatic
risk. Instead, the model was presented with all tumour tiles (ROI) and allowed
to independently learn and extrapolate the morphological patterns most
predictive of metastasis. Review of model output, aided by multiplex IHC,
showed that the degree of tumour differentiation, acantholysis, desmoplasia,
and the spatial localisation of lymphocytes relative to tumour regions were
important prognostic factors, aligning with existing literature on ¢SCC
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progression”’. Well-differentiated ¢SCC and prominent keratinisation are
associated with low metastatic potential, whilst poor differentiation favours
tumour progression and metastasis*’. Desmoplasia is also widely recognised
as a high-risk feature in cSCC, although its identification and scoring can be
challenging”. The value of acantholysis in predicting biological outcomes is
still equivocal, and the significance is yet to be firmly established™.

Peritumoral infiltration was consistently assigned low-risk scores by
the model, consistent with previous studies indicating that high peritumoral
inflammation is a good prognostic factor’*’. We also observed a trend of
greater intratumoral infiltration in metastasising cases compared to non-
metastasising cases on THC. This requires validation in larger cohorts, and
further investigation into which T cell subtypes play a key role, but may be
due to the presence of regulatory T cells (Tregs), including OX40 + T regs,
in the infiltrate, which has been reported previously by our group to sup-
press tumoral effector T cells and associate with cSCC metastases™. Fur-
thermore, tumour-infiltrating exhausted CD8 + T cells have also been
shown to associate with adverse outcomes in many cancers™”. Tumour
vascularisation, which has not been extensively studied in cSCC, may also be
a feature recognised by cSCCNet and warrants further investigation.

A robust and generalisable prognostic model relies on having a diverse
training cohort™. This is relevant in cSCC, where there is great diversity in
tumour and patient factors™. Inter-centre differences in slide processing and
image acquisition result in additional data variability’”’. Evaluating our
model training strategy using centre-split cross-validation supported our
model training strategy for cSCCNet. This study utilises a large primary
cSCC WSI dataset, comprising 172 cases from four different institutions for
model training; one of the largest reported to date for this task. In com-
parison, Knuutila et al.’s final model used a single-centre cohort of 81 ¢SCC,
split into training and testing via 4-fold cross-validation’’. Coudray et al.
trained their model on 163 patients from three institutions™. Pisula et al”.
report a dataset comprising 243 patients from three centres, and the 65%
training split suggests approximately 158 patients were used for model
training. An additional methodological strength of our current study lies in
efforts to ensure the accuracy of outcome labels, by ensuring adequate
follow-up duration for non-metastasising cSCC.

Additional steps taken to increase generalisability included training on
cSCCs from four centres, using transfer learning and data augmentation
techniques, and evaluation of model performance on cases it had not seen
before. Whilst class balance in this study does not reflect the real-world
proportion of metastatic cSCC, enrichment with primaries that metasta-
sised was deliberate, to help the model better learn the patterns associated
with high-risk ¢SCC.

An advantage of cSCCNet over standard clinicopathologic classifica-
tions is the elimination of inter-rater variability, which can occur due to
differences in reporting of differentiation, depth or perineural invasion®. A
further strength is that, as it is based on standard histopathology slides, this
analytical tool could be incorporated into existing histopathology work-
flows. Unlike many models, cSCCNet does not require time-intensive
manual annotation by histopathologists, as it automatically selects the area
for analysis, reducing noise by excluding non-tumour regions. Heatmap
visualisations contribute to quality control, ensuring that all relevant tissue is
being selected, as well as to model interpretability and may provide insights
into potential drivers for metastasis.

Whilst this study focused on UV-related cSCCs, which are the most
common aetiology, we aim to evaluate this model in ¢SCCs with distinct
aetiologies, such as arsenic- or HPV-induced ¢SCCs, or in tumours arising
within chronic wounds or areas of inflammation. A further limitation for
generalisability is that we have not trained the model on tumours that have
recurred locally without evidence of regional or distant metastases, and
future iterations of the model will aim to include these.

Review of incorrectly classified cases revealed that cSCCNet requires
full excision specimens or there is risk of misclassification. Although
cSCCNet does not measure the depth of invasion, we observed that the deep
tumour margins often contain important prognostic information, and this
highlights the need to include complete tumours for more accurate

stratification. ROI annotations for model training were performed by a
single expert dermatopathologist, and we acknowledge that inter-observer
variation in tile selection is possible; however, minor variations in ROI
selection are unlikely to affect final cSCCNet predictions, which are based on
tumour-level aggregate scores. In addition, heatmaps provide a transparent
and interpretable way to verify automated area selection.

cSCCNet is a result of an ongoing multidisciplinary collaboration.
Further fine-tuning and validation in external cohorts and important sub-
groups are planned, such as in patients with ¢SCC of non-UV aetiologies,
immunosuppressed individuals, international populations, and centres
using diverse staining protocols and scanners. This will also make the model
more generalisable and robust to inter-patient and inter-centre differences.
Evaluation in a large, prospective multi-centre test cohort using federated
learning to facilitate multi-centre collaboration is now planned™”".

Future work is focused on developing improved explainability
methods”, comparing to foundation models and newer approaches,
incorporating measures of prediction certainty and robustness, and inte-
grating the model into existing histopathology workflows. There is also
potential for combining digital pathology analysis with clinical and genetic
data into a multimodal DL tool*’. Future studies would be needed to confirm
that ¢cSCCNet is of benefit in informing use of interventions aimed at
reducing risk of metastasis, such as a randomised controlled trial evaluating
cSCCNet in risk stratification for adjuvant cSCC treatment.

Use of digital pathology is becoming widespread, making Al-based
technologies more accessible’’. Multidisciplinary collaborations between
clinicians, Al experts and patients will be critical in developing these models
into useful and effective clinical tools. We envision using cSCCNet to
support skin cancer teams in clinical decision making, as combining digital
pathology analysis with known risk factors may improve patient stratifi-
cation. In addition to improving outcomes for cSCC patients, this could lead
to more efficient use of healthcare resources for this very common cancer.

Methods
Patient selection and data collection
This study was conducted in accordance with the Declaration of Helsinki
and was approved by the NHS Human Research Authority (IRAS 266559,
‘Diagnostic marker panel development for progression in skin cancer’;
ethics reference20:/WM/0018; West Midlands, Solihull Research Ethics
Committee). Participant consent was not required as the study used rou-
tinely collected information only. The CLAIM and TripodAl checklists were
followed"**. The patient selection criteria have been published and were
aimed at acquiring a diverse and representative sample for model
development'. Briefly, four UK pathology centres (Glasgow’s Queen Eli-
zabeth Hospital, Cheltenham General Hospital, Southampton General
Hospital and Barts Health NHS Trust) identified patients with primary
¢SCC with pathological evidence of metastasis or with primary ¢SCC that
had not metastasised within three years of excision. The minimum of three
years of follow-up ensures that over 90% of metastases are captured”.
Immunosuppressed patients were excluded. Hospital electronic patient
records for all patients were reviewed, and demographic and outcome data
were recorded, including sex, age at cSCC diagnosis, ethnicity, whether the
patient had ¢SCC locoregional or distant metastasis, and time to last follow-
up. H&E sections were digitally scanned by a Leica scanner and Aperio
software to obtain WSI at 20x magnification and saved in SVS format. Images
were reviewed centrally by expert dermatopathologists (PC, WR) and pri-
mary tumours histologically staged using UICC8/AJCC8, BWH and BAD
classifications; these are referred to as ‘clinicopathologic classifications’ in this
paper®*. We used the UICCS criteria as this is used routinely in the UK, but
we modified it to use the AJCC8 definition of perineural invasion (nerve
>0.1 mm diameter or deeper than the dermis), as recommended by the Royal
College of Pathologists*; this modification effectively makes the two criteria
equivalent. We excluded cases if the WSI did not contain invasive cSCC (i.e.,
¢SCC-in situ with no evidence of invasion), >50% of the tumour region had
artefact/blurring, or if an H&E-stained section was not available. The final
cohort is therefore slightly different from our published study', which relied
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on RNA quality rather than WSI availability. All ¢cSCC were treated with
standard excision rather than Mohs surgery, allowing for more complete
tumour visualisation in WSIL.

A total of 227 primary cSCC were included. All patients had one ¢SCC,
except one patient who had two primary cSCC. Four tumours had two WSI
per tumour and all other tumours had one WSI per tumour. Fifteen primary
¢SCC did not meet the full inclusion criteria (nine were immunosuppressed,
four had incomplete follow-up data, and two had local recurrence only);
these were used in training Model 1 (area selection) only. The remaining 212
tumours were randomly split using an 80:20 ratio, with 172 ¢SCC (64
metastasising and 108 non-metastasising) for training and 40 c¢SCC (14
metastasising and 26 non-metastasising) for testing. The training:testing
split was random and stratified by tumour outcome and contributing centre
(Supplementary Fig. la). Baseline demographic and histopathological
characteristics are summarised in Supplementary Table 1. Median age was
80 years, and 68% were male. Ethnicity was available from only one centre,
where 80/84 (95%) of patients were white. There were no statistically sig-
nificant differences in baseline characteristics between the two groups.

Image tile generation and pre-processing

Our image pre-processing pipeline was developed based on the Aachen
protocol ™. All WSI were manually annotated to select the ROI, and reviewed
by an expert dermatopathologist (HR) blinded to metastatic outcome.
Regions with significant artefacts such as air bubbles were excluded. The
WSI were tessellated into non-overlapping 512x512 pixel tiles, and all tiles
from one tumour were assigned into the same (training or testing) group.
Tissue annotation was implemented using QuPath version 0.5.0".

Tile filtration was performed to exclude tiles with >20% empty space
(defined as pixel values >240) and blurred tiles (variation of the Laplacian
<70). As slides were obtained from different laboratories, colour normal-
isation using the Macenko method was performed on all tiles to reduce
variability from slide preparation techniques®. A sample of included, exclu-
ded and colour normalised tiles was reviewed for quality control (EP, BF).

Data augmentation techniques were implemented using Keras Image-
DataGenerator, with each training epoch using different versions of the input
images. Image transformations included rotations (up to +360 degrees),
vertical and horizontal flips, shifts in width and height (up to £20%), zoom
adjustments (up to +30%), and alterations in brightness (0.2 to 1.5 times the
original). A random sample of augmented tiles were reviewed by author EP.
Augmentation was used solely for training and was not used during testing.

Model training
The training cohort consisted in 172 primary ¢cSCC as previously described,
with an additional 15 ¢SCC used for training Model 1 only. The same model
training pipeline was followed for Models 1 and 2 (Supplementary Fig. 1b).
We first used the KerasTuner for hypertuning to select the ideal model
architecture and combination of hyperparameters. We performed a sys-
tematic comparison of widely-used convolutional neural network backbones
(ResNet50, MobileNetV2, VGG16, InceptionV3) and parameters, including
dropout (0.1, 0.2, 0.3) and initial learning rates (1e-4,1e-5,1e-6), to select the
optimal settings for the models®. L2 weight decay was used as an additional
regularisation technique, set at 0.01 throughout training. The optimisation
process using KerasTuner was facilitated by a random split of the training
dataset (n = 187 for Model 1 and n = 172 for Model 2), with 80% of the cases
allocated for training and 20% for validation. The training; validation split was
random and stratified by tumour outcome and contributing centre. Addi-
tional important parameters were tested individually (Supplementary Fig. 1c).
After the top-performing model was selected, it was evaluated using
5-fold cross-validation to assess model robustness when presented with
different datasets. The StratifiedGroupKFold function from sklearn was
used to divide the training cohort into five non-overlapping groups of
similar sizes (cases were randomly distributed and stratified by tumour
outcome and centre). Each fold used a different group as validation. A final
model was then trained on the entire training cohort (1 = 187 for Model 1
and n = 172 for Model 2), optimising the use of all available training data.

To select a threshold for binary classification, the final model was used
to generate predictions on the training cohort. The model assigned a score
from 0 to 1 for each individual tile, corresponding to the confidence score of
the tile belonging to the ROI (Model 1) or to a high-risk tumour (Model 2).
The ground truth labels were the pathologist-annotated ROI (for Model 1)
or metastatic outcome (for Model 2). Based on the distributions of scores
between groups defined by ground truth labels, the optimal threshold was
selected.

Model evaluation

The final models and pre-selected thresholds were evaluated on the testing
cohort (n =40), which was not previously seen by the models. Model per-
formance was evaluated both individually and in series. Tile-level and
tumour-level performance was evaluated using predefined analyses and
compared to clinicopathologic classifications, as described in Statistical
analysis.

A centre-split approach was also employed to evaluate our cSCCNet
training strategy, with one centre left out as an unseen test cohort. For
cSCCNet, maximising the size and diversity of the training cohort was an
important objective. Given that only centres A and C contributed both non-
metastasising and metastasising cases, two centre-split models were trained
and evaluated: Model BCD (trained on centres B, C and D, and tested on
centre A) and Model ABD (trained on centres A, B and D, and tested on
centre C). The models were then benchmarked against cSCCNet for pre-
dicting metastasis in unseen cases.

Heatmaps were generated based on model predictions: the tile scores
assigned by the model, ranging from 0-1, were converted to colours using a
matplotlib colour scale and overlain onto the original WSI. Tiles with the
highest prediction scores in correct cases were retrieved, and histological
features were described”. Heatmaps were also interrogated in incorrect
cases to gain insight into model limitations.

Python code was employed for tile filtration, model development and
evaluation. Analyses were performed using Queen Mary University of
London’s (QMUL) High-Performance Computing cluster.

Immunohistochemistry (IHC)

To gain further insight into cSCCNet predictions, brightfield multiplex IHC
was performed on a further five metastasising and five non-metastasising
¢SCC using the using the Ventana Discovery ULTRA platform (Pathology
Department, Barts Cancer Institute, London UK). Tissue sections adjacent
to the WSI were incubated with the following antibodies: anti-cytokeratin
AE1/AE3 for keratinocytes (M3515, Dako), anti-CD3 for T lymphocytes
(ab11089, Abcam), and anti-aSMA (A2547, Sigma). aSMA is expressed by
several cell types, including cancer-associated fibroblasts, tumour stroma,
and by cells surrounding blood vessels including capillaries. Anti-CD31
staining for endothelial cells was evaluated, confirming that anti-aSMA was
accurately identifying all blood vessels; anti-CD31 was excluded from the
final THC protocol. The chromogens used included: DAB for AE1/AE3,
green HRP for CD3, and red HRP for aSMA. Sections were finally counter
stained with haematoxylin.

IHC slides were scanned using a Nanozoomer S210 scanner at 40x
magnification, and images were analysed using the HALO-AI image ana-
lysis software platform (Indica Labs Inc, London UK). A HALO-AI Mini-
Net convolutional neural network was trained on annotated sections of all
WSL, to classify tissue into ‘tumour’, ‘epidermis’, ‘dermis’ and ‘background’.
The HALO-AI object phenotyper, with embedded pre-trained nuclear
segmentation, was trained to classify cells into four phenotypes: keratino-
cytes (DAB), T lymphocytes (green stain), blood vessels and tumour stroma
(red stain), and other. All classifications were reviewed by a histopathologist
(HR) to confirm their accuracy.

Statistical analysis

Descriptive statistics were used to summarise clinical and histopathological
characteristics, including median and interquartile range. Differences
between the groups were assessed using the nonparametric Mann-Whitney
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U test for continuous variables and Fisher’s exact test for categorical vari-
ables. The primary outcome was prediction accuracy for metastasis, eval-
uated by the AUC and its 95% confidence interval using the DeLong
method™. Performance was also evaluated by calculating accuracy, sensi-
tivity, specificity, PPV and NPV*'. For comparison, these metrics were also
calculated for the 20-GEP test and for clinicopathologic classifications
(UICC8/AJCCS, BWH and BAD).

The association between c¢SCCNet model output and 20-GEP sig-
nature was further evaluated with scatterplots and Pearson correlation.
Univariate cox regression analysis and multivariate cox proportional
hazards models identified factors predictive of cSCC metastasis. Statistical
significance was set at 0.05 (two-sided) and statistical analysis was per-
formed using R studio, Version 2024*.

Data availability

The datasets generated and/or analysed during the current study are par-
tially available as cohort summaries in this published article. Digital
pathology images are available from the corresponding authors on rea-
sonable request and with permission of the study sponsor, the four parti-
cipating centres, Queen Mary University of London and Cancer Research
UK Scotland Institute, Glasgow.

Code availability
The code for this study and the trained models are publicly available on
Github (https://github.com/BioIlnforCore-BCI/SCCNet/).
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