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Abstract

Inferring protein function is a fundamental and long-standing problem in biology.
Laboratory experiments in this field are often expensive, and therefore large-scale com-
putational protein inference from readily available amino acid sequences is needed to
understand in more detail the mechanisms underlying biological processes in living
organisms. Recently, studies have utilised mathematical ideas from natural language
processing and self-supervised learning, to derive features based on protein sequence
information. In the area of language modelling, it has been shown that learnt representa-
tions from self-supervised pre-training can capture the semantic information of words well
for downstream applications. In this study, we tested the ability of sequence-based pro-
tein representations learnt using self-supervised pre-training on a large protein database,
on multiple protein inference tasks. We show that simple baseline representations in the
form of bag-of-words histograms perform better than those based on self-supervised
learning, on sequence similarity and protein inference tasks. By feature selection we
show that the top discriminant features help bag-of-words capture important information
for data-driven function prediction. These findings could have important implications for
self-supervised learning models on protein sequences, and might encourage the consid-
eration of alternative pre-training schemes for learning representations that capture more
meaningful biological information from the sequence alone.

Introduction

Protein sequences capture significant information about how proteins work and subsequently
about the functions of cells and living organisms [1]. Within the last decade, the number of
known protein sequences in databases has increased 10-fold from three million [2] to roughly
52 million [3]. However, the number of sequences with annotated functions is much lower,

as characterising protein properties experimentally is a challenging and resource-intensive
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task [4]. Considering that the raw sequence determines many protein properties [1], the abil-
ity to perform computational annotation of proteins from the readily available sequence data
is important and can lead to an improved understanding of complex biological processes and
disease-causing mechanisms.

Earlier computational sequence-based methods for protein inference were based on sta-
tistical sequence-alignment approaches [5]. Such methods utilise knowledge of evolutionary
and biochemical characteristics of proteins, which has the potential advantage of making the
prediction process more interpretable. However, alignment-based methods tend to be highly
computationally resource-intensive even with the use of heuristics, especially with the cur-
rent exponential growth of protein sequence databases. Additionally, they often fail to accu-
rately predict function for sequences that have less than 30% identity with any protein in the
database used for querying (“twilight” zone of alignment-based methods) [5]. Furthermore,
functional annotation transfer from high-quality databases such as the Gene Ontology (GO)
hierarchy [6] does not necessarily become more effective when the annotations of GO terms
increase. Because of high sparsity in the distribution of annotations roughly half of the anno-
tation terms are only associated with one gene and, also are not sufficiently informative as
they are found in shallow hierarchy nodes [4]. These limitations of alignment-based meth-
ods suggest that a benefit could be realised by implementing machine learning approaches to
perform protein inference. Importantly, the way in which the protein sequence is represented
mathematically is key for the success of downstream machine learning prediction models.
Even the best machine learning algorithms display lower performance compared to simpler
ones when the representations consist of irrelevant features, whereas generally less capable
algorithms produce good results when quality representations are provided as input data
[7-9].

Natural Language Processing (NLP) has seen several new Self-Supervised Learning (SSL)
algorithms [5]. In SSL with NLP, it has been noted that sentences in a language are arranged
in a meaningful way, and the context in which words of a sentence appear in can carry use-
ful information for learning data representations. This is called the “distributional hypothe-
sis” [5,10] and is the underlying idea behind the word2vec algorithm [11], which maps words
as symbolic tokens to continuous-valued distributed representations. Based on this hypoth-
esis, word2vec encodes commonly co-occurring words together in the resultant embedding
space, reflecting the varying degrees of similarity that words can have [11,12]. Word2vec is
thought to lessen some of the issues of earlier word representations, by reducing the dimen-
sions of a vocabulary-size embedding space to dense representations of 100-300 dimensions
[13]. Word2vec embeddings can capture syntactic and semantic information of words fairly
well to enable the development of downstream models in NLP [12,14].

More recently, a more powerful approach has been built on top of advances in neural lan-
guage translation for modelling long-range sequences, namely transformer models [5,14]. The
key ingredient of the success of transformers has been considered to be the attention mecha-
nism, which enables modelling of long-range dependencies across the whole input sequence,
enhancing the ability to capture meaningful relationships within the input features. By learn-
ing positional embeddings for each word, the resulting output word embeddings are able to
keep ordering and context information around the word. On top of that, the computations
involved with attention can be parallelised leading to faster training, but on the expense of
higher memory requirements. The pre-training task of the model is in most cases a version
of the masked-language-modelling (MLM) cloze task [15], which involves predicting missing
word(s) in the input given the context around it similarly to word2vec Continuous Bag-Of-
Words (CBOW) architecture [11]. Transformers have been the main idea behind lots of recent
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algorithms reaching state-of-the-art performance in question-answering, text summarisation,
language translation etc. [14,16].

The word2vec model has been re-purposed to build sequence-based representations of
proteins in the ProtVec study [17]. To model the language of life, amino acid trigrams are the
“words” for which embeddings are built and their sum can be used to represent the whole
protein sequence (the “sentence”). These protein representations yielded effective results in
protein family (93%) and disordered protein classification (99%) problems [17]. Encouraged
by this, several communities have developed distributed vector representations in their appli-
cation domains, such as dna2vec [18], mol2vec [19] and node2vec [20,21]. ProtVec has been
widely adopted in the space of protein inference [8,22], with studies on: predicting protein
Glycation sites [23]; modelling protein-protein interaction binding sites [24,25]; improving
compound-protein interaction inference [26]; discovering nuclear targeting signal sequences
[27]; inferring MHC binding [28]; predicting protein solubility [29]; predicting SARS-COV-2
evolution/mutations [30]; predicting antifungal peptides [31]; classifying anticancer peptides
[32]; inferring anti-inflammatory peptides [33]; and finally antiviral peptides [34].

As a natural successor to ProtVec, the ProtTrans study has applied a variety of transformer
architectures to test their usefulness under a transfer-learning setting for protein inference
[35]. These approaches are able to model the entire input protein sequence at once using
the attention function, and learn the mapping of evolutionary patterns present across the
sequence sub-units much better. Thereinto, various transformer models inspired from lan-
guage processing were re-purposed for building protein representations and evaluated on
problems such as 2-class sub-cellular localisation and 3-class secondary structure predic-
tion with particular success (reaching accuracies >80% in both) [35]. By innovations such
as the attention mechanism for modelling longer-range sequence dependencies and posi-
tional embeddings to model temporal amino acid order, versions of the ProtTrans trans-
former models have shown quite impressive abilities in encoding the important biological
information to help improve performance in several inference problems [31,33,36-40].

Inspired by the aforementioned work, in this study we focus on the hypothesis: to what
extent can pre-trained language-based representations capture properties of proteins? To
quantify this, we first compare ProtVec representations to a baseline method based on the
Bag-of-Words (BoW) approach often used in NLP [13]. BoW is considered a naive approach
that builds histograms of word counts for each sentence in the data. It is thought to suffer
from high-dimensionality and implicitly considers words as unrelated tokens, both shortcom-
ings which word2vec (that is the backbone of ProtVec) is expected to overcome. We test these
two representation methods on twelve protein inference problems including function and
structure-adjacent tasks. Following this, we also compare BoW to the ProtT5 representation
[35] across seven of the function inference problems. Summarizing, our main contributions
are:

« This is the first study that systematically tests the performance of self-supervised learned
representations against simpler baseline approaches such as Bag-of-Words histograms on
a variety of protein inference tasks, including large amounts of microbial data.

o By feature selection we show that the top discriminant AA trigrams help bag-of-words
capture important region-specific information for efficient data-driven function prediction.

o We speculate that the intriguing results of our comparisons would motivate the commu-
nity to critically re-consider several language model design choices to create more suitable
representations for protein inference problems. Future directions could focus on injecting
biological sequence priors during the pre-training representation learning step.
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The rest of this article is organised as follows: Following the Introduction we present the
‘Materials and methods’ with more details on the experimental setup, representations and
datasets used for the protein inference problems in this study; Then the results section is
structured with five sub-sections, each focusing on a specific contribution; Finally, we discuss
the significance of our contributions.

Materials and methods
Protein representation methods

The Sum-of-learnt-Trigrams (SoT) representation (or ProtVec [17]) utilises the 100-d tri-
gram embeddings derived from self-supervised learning (word2vec Skip-gram [12]) on a
large dataset of experimentally-verified sequences (Swiss-Prot database [41]). Word2vec aims
to learn continuous distributed trigram representations based on the context they are found
within the protein sequences, and as a consequence, trigrams with similar biochemical char-
acteristics are grouped together in the resultant embedding space [17]. By splitting each pro-
tein in shifted overlapping trigrams, the pre-trained trigram embeddings are summed up to
obtain a 100-d protein representation. See Fig 1 and the cited papers above here for more
details on this representation.

Further to the word2vec-based SoT representation, we looked at the powerful zero-shot
ProtT5 embeddings model from the more recent ProtTrans work [35]. At downstream infer-
ence time, ProtT5 protein embeddings are obtained after a forward pass of the input pro-
tein sequence through the encoder of a pre-trained T5 network [42] and then averaging the
final hidden layer output embeddings for each amino acid. More specifically, we use here
the best-performing fine-tuned transformer model from the ProtTrans work which was “T5-
XL, and was pre-trained on the UniProt50 dataset of 45 million unlabelled protein sequences
[41] in a self-supervised learning fashion. That is, the pre-training objective is to predict the
missing word in between of the context around it in an auto-encoding fashion (masked lan-
guage modelling task), which was shown to be necessary over auto-regressive approaches
(next-word prediction task) to improve downstream performance of the embeddings [35].

Additionally, we re-purpose the Bag-of-Words (BoW) method from Natural Language
Processing and Computer Vision [13] that is often used to construct image vectors from low-
level image features and applied it to protein sequences (Fig 1). We term this approach as
Histogram-8000 (Hist-8000). It involves splitting each protein sequence into shifted overlap-
ping trigrams, counting the occurrences of each trigram, and then constructing an 8000-d
histogram as our protein representation.

Protein inference problems

The protein representation methods described in this study were tested on twelve protein
inference tasks:

o 1. Antigen [43,44]: Antigens are defined as bacterial proteins that can “lead to significant
protection (p < 0.05) in an animal model following immunisation and subsequent challenge
with the bacterial pathogen” [43]. We use the carefully-curated BPAD200 dataset of 200
antigen and 200 non-antigen proteins [43].

o 2. Enzyme identification [45]: Enzymes are abundant proteins that act as catalysts to ean-
able and speed up many chemical reactions within the cell. They are usually specific to cer-
tain types of reactions, and are especially involved in metabolic processes. The binary data
we use consists of: enzyme proteins from the EC-numbers EXPASY-ENZYME database
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_ 10foldCV
Protein Sequence Function
Seéquence / ___. | representations | — LR — | inference
data

1

Example protein sequence split into trigrams

...IRGWIFGT.. -> ..IRG RGW GWI WIF IFG FGT...

=>.+[-2.19 14.3 ... -45.87]+[-3.55 0.04 ... 20.93]+..=[4.24 3.43 .. -8.88]
.+ [ IRG-vector] + [RGW-vector] +..=[100-d protein vector]

Vector-ID | Trigram Feature-1 | Feature-2 | Etc. Feat.-100
SoT 1 AAA 34.789 |9.876 = -2.843

2 AAB -0.232 20.433 --- 10.109

8000 WWW 12.121 5.566 - -3.002

=> [../10 \9 .. 20 .. 5..] => 8000-d protein vector

Hist-8000 y - =
—————— |[GWI-count IRG-count RGW-count WIF-count]

Fig 1. Main classification setup and protein representation methods. LR is evaluated under 10foldCV using the AUC
metric for binary classification. The SoT method assigns each trigram in the split sequence to the corresponding embedding
obtained from SSL pre-training [17], and then sums up the embeddings to get a 100-d representation. Hist-8000 simply
counts the occurrences of each trigram in the split sequence to build an 8000-d BoW-like representation. 10foldCV: 10-fold
Cross-Validation, LR: Logistic Regression, SoT: Sum-of-learnt-Trigrams, Hist-8000: Histogram-8000, AUC: Area Under the
Curve, SSL: Self-Supervised learning, BoW: Bag-of-Words, 8000-d: 8000-dimensional.

https://doi.org/10.1371/journal.pone.0325531.g001

of hierarchical categorisation of enzymes which is linked to Swiss-Prot entries [46], and
non-enzyme proteins sampled from Swiss-Prot as described before [45].

o 3. Adhesin identification [47]: An adhesin is a protein, usually from a pathogen, that can
attach to the surface of host cells (e.g. human). This step is often part of pathogenicity i.e.
the process under which pathogens cause disease to host organisms.

« 4. Virulence Factor [48] (VF): Proteins that enable pathogens to infect hosts and contribute
to the pathogen’s ability to cause disease. They are hierarchically categorised and could
include antigen or adhesin proteins amongst other functional subsets.

o 5. Allergen [49]: Often foreign to the host, these proteins trigger a strong immune response
to a perceived threat that would otherwise be harmless. This results in triggering various
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undesirable reactions and symptoms. Identifying allergen proteins can be important for
designing vaccines that are not harmful to the host organism.

o Sub-cellular localisation (6. gram- bacteria; 7. gram+ bacteria; 8. archaeal) prediction [50]:
Predicting which cellular region of the cell a protein would most likely end up in. Here we
aim to discriminate between non-cytoplasmic (incl. membrane) and cytoplasmic proteins
in the bacterial and archaeal domains of life. Gram+ bacteria lack an additional outer cell
membrane in contrast with gram- bacteria.

o TAPE tasks [15]: We sought to further validate our results by evaluating the protein repre-
sentations on the Tasks Assessing Protein Embeddings benchmark (TAPE) [15]. This con-
sisted of: 9. remote homology (large multi-class classification of protein folds); 10. fluores-
cence; 11. stability (the latter are both protein engineering regression tasks).

o 12. Family classification [17]: Inspired from the original ProtVec paper, here we set binary
classification tasks for the top-25 most frequently occurring protein families in the Swiss-
Prot dataset [51], where the proteins of each family have some evolutionary relation and
generally similar functions. The top-5 of those are: 50S ribosome-binding GTPase; Heli-
case conserved C-terminal domain; ATP synthase alpha-beta family (nucleotide-binding
domain); 7-transmembrane receptor (G protein-coupled receptor)-rhodopsin family;
Amino acid kinase family. In the main text, for brevity we are showing the results for the
top-5 families by number of proteins, see S1 File (supporting information) section ‘Simple
Bag-of-Words outperforms Sum-of-learnt-Trigrams representations for protein inference’
where we provide the full experiment on the top-25 families in Swiss-Prot. Comparing
against these tasks from the original ProtVec study helps establish further the significance
and consistency of our results trends.

See the related papers for more details on each task’s dataset, negative samples selection,
pre-processing etc. We believe that this wide range of biological challenges will evaluate thor-
oughly how well the protein representations capture & understand distinct properties of pro-
teins, which is desirable for general-purpose representations [17]. Such representations have
previously been successful in language modelling [52]. Moreover, the size of our datasets
spanned over four degrees of magnitude and diverse types of species including many micro-
bial proteins not frequently studied with language models, all of which aid in deriving more
broad conclusions about our representations.

Experimental setup

The classification setup is kept as consistent as possible across the protein representations

on all inference tasks (Fig 1). In all cases, only proteins containing the 20 standard amino
acids [53] are utilised, which yield 8000 possible amino acid trigrams for the Sum-of-learnt-
Trigrams (SoT) and Histogram-8000 (Hist-8000) representations. The classifier implemented
for each task is a simple Logistic Regressor without any hyper-parameter tuning. For seven
tasks (1, 3-8), we also experiment with more classifiers combined with hyper-parameter tun-
ing, to help ensure that the results reflect the effectiveness of the representations, not of any
other variable in the process (results section ‘Simple Bag-of-Words still matches Sum-of-

learnt-Trigrams representations for protein inference, when evaluated under varying 1 experi-

mental setup settings’). The classifiers implemented in this case are: Logistic Regression, Ran-

dom Forest, Support Vector Machine (linear & non-linear). In all problems & experiments
though, we use the Area Under the Curve (AUC) metric for evaluating the generalisation per-
formance of each classifier model, unless stated otherwise. Where possible, AUC scores were
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obtained by 10-fold Cross-Validation, with stratified 90-10% train-test splits and shuffling of
the data-points prior to splitting to aid successful model training.

Feature selection was conducted on the Hist-8000 representations to identify the most
important features (trigram bins) in discriminating between the two classes in each of eight
tasks (1-8). Per dataset, this includes: (a) Keeping only the first 2000 trigrams by most occur-
rences across the proteins; (b) ranking the features remaining in terms of their Fisher ratio
[54]; (c) Select the top-200 features as the most informative (200 features were sufficient to
build classifiers giving high AUC scores ~=100% in all tasks); (d) Repeat (a)-(c) through boot-
strapping with replacement [54] to arrive at 50 sets of top features. In the end, we can rank
individual features based on how often they are found in these 50 sets, arriving at N final
top features selected for each task dataset. Thus, we can incrementally build and evaluate
reduced Histogram representations using the final top selected N features (i.e Histogram-N,
N < 8000). Furthermore, we can carefully analyse the final top selected trigram features of the
histogram representations for enrichment in domain compared to non-domain regions of
protein sequences, across each inference function problem.

Reducing the amino acid alphabet of the proteins provided another way to build more effi-
cient histogram representations, and in the past has led to improved protein modelling results
[55]. In this work we have used the SDM12 (Structural Derived Matrix-12) alphabet of 12
groups of amino acids from [56], which is based on building phylogenetic trees, clustering
amino acids and designing substitution matrices derived from structural alignments of pro-
teins with low sequence identity. This was the top-performing method in a large-scale com-
parison of different amino acid alphabet schemes by [57] and results in a 1728-d Histogram
representation which we term Hist-SDM12 (Histogram-Structural Derived Matrix-12).

In addition to the above, we compute pairwise similarity scores on 10 sets of 1000 ran-
domly sampled proteins from the Swiss-Prot database [41]. Cosine similarity scores are com-
puted from the representations, and Needleman-Wunch alignment scores (NW) from the
sequences, akin to previous work [18,58]. NW served as the ground truth as it is based on
the evolutionary understanding of proteins [59]. Hence, we aim to see which representations
are closer to the ground truth, by computing the Spearman rank correlation (o) between the
cosine similarity scores and those from NW. p enables us to compare scores that are based on
different scales.

Results

Simple Bag-of-Words outperforms Sum-of-learnt-Trigrams
representations for protein inference

From the twelve protein inference tasks in this work, the Histogram-8000 (Hist-8000) method
for representing proteins matches the Sum-of-learnt-Trigrams (SoT) method in all tasks,
except only for the Virulence Factors (VFs) task. In certain cases Hist-8000 outperforms the
State-Of-The-Art model for the task, however this was not the primary purpose of the exper-
iment. In tasks 1-8, by using a subset of the top features derived via feature selection to build
Hist-N (Histogram-N) representations, we are able to find optimal N features that improve
upon or match the logistic regression classification performance of SoT in all tasks (apart
from VFs). The same outcome compared to SoT is observed for the case of the more bio-
logically meaningful Hist-SDM12 reduced representations (Histogram-Structural Derived
Matrix-12), which are also more efficient than the full Hist-8000. See Fig 2 for the logistic
regression 10-fold cross-validation classification Receiver-Operator-Characteristic Area-
Under-the-Curve results for the adhesins task which illustrates an example of the overall
prevalence of Hist-8000, Tables 1 and 2, and the S1 File (supporting information) for the rest

PLOS One | https://doi.org/10.1371/journal.pone.0325531  August 6, 2025 7/19



https://doi.org/10.1371/journal.pone.0325531

PLOS One

Bag-of-words is competitive with sum-of-embeddings language-inspired representations on protein inference

1.00
0.90
0.80 ‘
0.70 i/ .
|
0.60 I
0.20 T
0.50 :
0.40 0.15 :
I
0.30 0.10 :
0.20 |
0.10 0.05 i
0.00 0.00 i
SO LSS RS S 0.88 090 092 0.94
Q" QO Q© © O O O O O O N AUC
(a) Adhesins ROC-AUC curve (b) Hist-N vs random Hist.

Fig 2. Histogram representations outperform Sum-of-learnt-Trigrams representations in protein inference. Both

(a) and (b) are for the adhesins data and LR classifier, see S1 File (supporting information) section ‘Simple Bag-of-Words
outperforms Sum-of-learnt-Trigrams representations for protein inference’ for rest of tasks where the trend is largely the
same. See (a) for the mean ROC-AUC curves after 10foldCV. In (b), the Hist-N representation (vertical dotted line) is
highly accurate (scores found after the 90th percentile) when compared to the distribution of AUCs from 1000 random
feature sets. In (a), x-axis is FPR and y-axis is TPR. In (b), y-axis is frequency of score. See section ‘Protein inference
problems’ for data sources. Green curve: Hist-8000, red: SoT, black: Hist-N, purple: Hist-SDM12, blue: random classifier.
Hist-8000: Histogram-8000, SoT: Sum-of-learnt-Trigrams, ROC: Receiver Operator Characteristic curve, AUC: Area Under
the Curve, 10foldCV: 10-fold Cross-Validation, FPR: False Positive Rate, TPR: True Positive Rate, Hist-N: Histogram-N
(selected features), Hist-SDM12: Histogram-Structural Derived Matrix-12, LR: Logistic Regression, S1: S1 File (supporting
information).

https://doi.org/10.1371/journal.pone.0325531.q002

Table 1. 10-Fold Cross-Validation Area-Under-the-Curve scores (mean =+ st.dev.) of protein representation
methods in the inference tasks. Hist-8000 outperforms SoT in seven out of tasks 1-8. Hist-8000 consists of the
conceptually simpler BoW approach [13], in contrast to SoT which requires SSL pre-training (word2vec) on

a large protein sequence dataset [17]. Best-performing methods in bold. See section ‘Protein inference prob-
lems’ for task data sources. Gram-negative, Gram-positive and Archaea datasets are each used for subcellular
localisation prediction from protein sequence. Gram-neg.: Gram-negative bacteria, Gram-pos.: Gram-positive
bacteria, #Proteins (pos.+neg.): number of proteins (positive+negative), Hist-8000: Histogram-8000, BoW:
Bag-of-Words, SoT: Sum-of-learnt-Trigrams, Hist-N: Histogram-N (N=number of top selected features), Hist-
SDM12: Histogram-Structural Derived Matrix-12, SSL: Self-Supervised Learning, VFs: Virulence Factors, st.dev:

standard deviation.

Task #Proteins (pos. + neg.) SoT Hist-8000 Hist-N Hist-SDM12
Antigens [43] 395=196 + 199 0.581 +0.080 {0.731 +0.050 |0.811 +0.040 (0.623 + 0.049
Enzymes [45] 212313 =74007 + 138306 0.776 +£0.003  (0.837 +0.003 |0.756 +0.004 |0.802 + 0.003
Adhesins [47] 1172 =469 + 703 0.910 +£0.023 ]0.957 +0.023 (0.953 +0.016 0.936 + 0.025
VFs [48] 8482 =3572+4910 0.703 + 0.016 (0.633 +0.021 |0.651 +£0.016 |0.661 + 0.014
Allergenicity [49] |20139 =10064 + 10075 0.890 +£0.007 {0.988 +0.002 |0.911 +0.006 {0.966 + 0.004
Gram-neg. [50] 8205=5014+3191 0.965 + 0.007 (0.987 +0.003 0.957 +0.008 |0.973 + 0.004
Gram-pos. [50] 2639=1816+ 823 0.954 +£0.013 (0.972+0.015 [0.970+0.014 |0.954 +0.016
Archaea [50] 802=670+132 0.966 + 0.023 [0.978 +0.016 |0.974 +0.010 (0.972 + 0.024

https://doi.org/10.1371/journal.pone.0325531.t1001

of the inference tasks when using logistic regression (S1 File section ‘Simple Bag-of-Words
outperforms Sum-of-learnt-Trigrams representations for protein inference’).
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Table 2. 10-Fold Cross-Validation Area-Under-the-Curve scores (mean + st.dev.) of protein representation
methods in five protein family inference tasks. Hist-8000 (results in bold) outperforms SoT in identifying
proteins from all the 25 families tested here from the ProtVec study [17]. We note that for each set of protein
sequences belonging to a family to be predicted, we randomly sampled the same number of sequences from
other families from Swiss-Prot [41] to form the negative data for a balanced task dataset. For brevity we are
showing the results for the top-5 families by number of proteins, see S1 File (supporting information) section
‘Simple Bag-of-Words outperforms Sum-of-learnt-Trigrams representations for protein inference’ for the full
results on all 25 families. Hist-8000: Histogram-8000, SoT: Sum-of-learnt-Trigrams, st.dev: standard deviation,
#Proteins: number of proteins, nt: nucleotide.

Task #Proteins SoT Hist-8000
50S ribosome-binding GTPase 6162 0.982 + 0.003 0.993 + 0.004
Helicase conserved C-terminal domain 5030 0.963 + 0.005 0.992 +0.003
ATP synthase alpha/beta family 4738 0.993 £ 0.004 0.997 + 0.003
(nt-binding domain)

7-transmembrane receptor 3600 0.975 £ 0.008 0.994 + 0.004
Amino acid kinase family 3500 0.960 + 0.009 0.992 + 0.004

https://doi.org/10.1371/journal.pone.0325531.t002

The scores obtained from Hist-N are compared to those from 1000 Histogram represen-
tations with randomly chosen N features, akin to previous work [44]. The same classifica-
tion setup is used as above, with a 10-fold cross-validation over a logistic regression classifier.
Across all tasks 1-8, the features selected for Hist-N are statistically the best-performing set of
features, with Area Under the Curve scores found after the 90th percentile of the distribution
of random scores. See Fig 2 for these results for the adhesins task, and the S1 File for the rest
(S1 File section ‘Simple Bag-of-Words outperforms Sum-of-learnt-Trigrams representations
for protein inference’).

Moreover, the Spearman rank correlation (o) of Needleman-Wunch sequence alignment
(N'W) with the Histogram representations cosine similarity scores is higher than that of NW
with SoT scores. Hence, the conceptually simpler Hist-8000 and Hist-SDM12 capture the
true rank of the sequence similarity scores better than SoT. In Table 3 we provide the mean
correlation scores with std.dev. from the 10 iterations of each representation.

Comparison of Histogram-8000 representation to ProtT5 embeddings

We aim to further evaluate the Histogram-8000 (Hist-8000) representations by compar-

ing them to a more recent embedding approach, namely ProtT5 [35]. In this case, the
Hist-8000 representations match the performance of the ProtT5 method in 4 out of the 7
function inference problems 1, 3-8 considered (except antigens, adhesins, virulence factors).
Note that each task dataset here is reduced to roughly 90% per their original size, due to com-
putational complexity issues with representing sequences longer than 1000 amino acids when

Table 3. Hist-8000 sequence similarity scores are closer to the ground truth than the corresponding Sum-of-
learnt-Trigrams scores. o(NW, Hist-8000) and o(NW, Hist-SDM12) are both higher than o(NW,SoT) for 10 sets
of 1000 proteins sampled from Swiss-Prot [41]. p close to 1 indicates a strong positive relationship between the
alignment and cos. similarity scores, while values closer to zero indicate no relationship. We report mean and
standard deviation of the correlations. NW: Needleman-Wunch global sequence alignment algorithm, Hist-
8000: Histogram-8000, SoT: Sum-of-learnt-Trigrams, o: Spearman rank correlation, Hist-SDM12: Hist-SDM12:
Histogram-Structural Derived Matrix-12.

Method p with NW scores
Hist-8000 0.744 + 0.009
SoT 0.473 +0.030
Hist-SDM12 0.724 +0.012

https://doi.org/10.1371/journal.pone.0325531.t003
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using the ProtT5 method. Also, note that we do not test the ProtT5 method on the enzymes
task because of the large size of the dataset that again made it computationally challenging

to build the representations. The same classification setup is followed as for the comparison
between Hist-8000 vs Sum-of-learnt-Trigrams (section: ‘Simple Bag-of-Words outperforms
Sum-of-learnt-Trigrams representations for protein inference’), with a Logistic Regression
classifier used here for the ProtT5 method, whereas for Hist-8000 we use for comparison the
top-performing classifier model after the experimental evaluation tuning process described in
section ‘Simple Bag-of-Words still matches Sum-of-learnt-Trigrams representations for pro-

tein inference, when evaluated under varying experimental setup settings’ See Table 4 for an

overview of the results.

Simple Bag-of-Words still matches Sum-of-learnt-Trigrams
representations for protein inference, when evaluated under varying
experimental setup settings

We also sought to evaluate the Histogram-8000 (Hist-8000) and SoT (Sum-of-learnt-
Trigrams) representation methods under different classifier models and hyper-parameter
combinations. For tasks 1, 3-8, we thoroughly test the representations using the following
three classification models: Logistic Regression (LR), Random Forest (RF), Support Vector
Machine (SVM). This choice of models ensures that we are testing the effect of linear clas-
sifiers compared to non-linear ones (including kernel SVMs). We also experiment with a
range of hyper-parameter combinations to cover the space of model configurations that could

affect the performance in identifying proteins. Those consist of 10 hyper-parameter config-
urations for LR, 30 for SVM and 27 for RF classifiers. The main outcome is for most prob-
lems similar to the initial experiment in section ‘Simple Bag-of-Words outperforms Sum-

of-learnt-Trigrams representations for protein inference) i.e. that Hist-8000 still matches the
SoT method in six out of seven problems as shown in Table 5. An exception was the viru-
lence factors problem where SoT was better than Hist-8000 by about 2% C.V. AUC. This out-
come confirms that the choice of protein sequence representation is the most important step

in predicting protein functions. Here we can observe that the top-performing models for

Table 4. 10-fold Cross-Validation Area-Under-the-Curve scores (mean =+ st.dev.) of ProtT5 vs Histogram-8000
protein representation methods in the inference tasks. Hist-8000 matches ProtT5 in four out of seven tasks com-
pared (tasks 1, 3-8). Hist-8000 consists of the conceptually simpler BoW approach [13], in contrast to ProtT5
which requires SSL pre-training of a transformer T5 model with three billion parameters on a dataset of 45
million sequences [35]. Best-performing methods in bold. See section ‘Protein inference problems’ for task data
sources. Hist-8000: Histogram-8000, BoW: Bag-of-Words, SoT: Sum-of-learnt-Trigrams, SSL: Self-Supervised
Learning, VFs: Virulence Factors, Gram-pos: Gram-positive, Gram-neg: Gram-negative, st.dev: standard

deviation.

Inference Task Dataset: number of proteins ProtT5 Hist-8000
(positive + negative)

Antigens [43] 395=196 +199 0.790 + 0.073 0.747 + 0.068

Adbhesins [47] 1172 =469 +703 0.991 + 0.005 0.958 + 0.021

VFs [48] 8482 =3572+4910 0.916 + 0.009 0.724 + 0.008

Allergenicity [49] 20139 = 10064 + 10075 0.993 + 0.001 0.991 + 0.001

Cellular localisation [50]

Gram-negative bacteria 8205=5014+3191 0.997 + 0.001 0.988 + 0.003

Gram-positive bacteria 2639=1816+823 0.991 + 0.006 0.981 + 0.008

Archaea 802=670+132 0.994 + 0.006 0.980 + 0.012

https://doi.org/10.1371/journal.pone.0325531.t1004
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Table 5. 10-fold Cross-Validation Area-Under-the-Curve scores (mean + st.dev.) of protein representation meth-
ods in the inference tasks, under varying experimental setup settings. Hist-8000 matches SoT in six out of seven
tasks (tasks 1, 3-8 considered here), after thorough comparisons of the representation methods under different
classifier models and their hyper-parameters. Hist-8000 consists of the conceptually simpler BoW approach
[13], in contrast to SoT which requires SSL pre-training (word2vec) on a large protein sequence dataset of more
than 500k proteins [17]. Best-performing representations in bold, with the classifier used for the top repre-
sentation method provided in separate column. See section ‘Protein inference problems’ for task data sources.
Hist-8000: Histogram-8000, BoW: Bag-of-Words, SoT: Sum-of-learnt-Trigrams, AUC: Area Under the Curve,
SSL: Self-Supervised Learning, LR: Logistic Regression, RF: Random Forest, VFs: Virulence Factors, Gram-pos:
Gram-positive, Gram-neg: Gram-negative, st.dev: standard deviation, #Proteins: number of proteins.

Inference Task #Proteins (pos. + neg.) | Classifier SoLT Hist-8000
Antigens [43] 395=196+199 LR 0.705 +0.062 0.747 +0.068
Adbhesins [47] 1172=469 + 703 LR 0.934+0.024 0.958 +0.021
VFs [48] 8482 =3572+4910 RF 0.747 +£0.017 0.724 +0.008
Allergenicity [49] 20139 = 10064 + 10075 |RF 0.992 +0.001 0.991 +0.001
Cellular localisation [50]

Gram-negative 8205=5014+3191 LR 0.984 +0.002 0.988 +0.003
bacteria

Gram-positive bacteria |2639 = 1816 + 823 RF 0.979 £+ 0.006 0.981 +0.008
Archaea 802=670+132 RF 0.985 +0.010 0.980+0.012

https://doi.org/10.1371/journal.pone.0325531.t1005

each of SoT and Hist-8000 were closer in terms of mean scores in each problem. SoT rep-
resentations particularly show a slightly improved performance when coupled with a non-
linear RF classifier (virulence factors, archaeal localisation, allergen identification problems).
As we can observe in other sections with protein inference results, for smaller datasets we
obtain higher standard-deviation of prediction scores during cross-validation which indi-
cates that models tend to be more confident when trained on more protein sequences, as
expected.

Analysis of Histogram-8000 representation per protein region
(domain vs non-domain)

When analysing the top N features selected (N < 8000) for the reduced Histogram-N (Hist-N)
representations per task (tasks 1-8), we can find the protein regions (domain vs non-domain)
in which these features are over-represented, in total across the datasets. For each protein, the
region occurrences of the trigram feature in question are divided by the length of each region
to enable a consistent comparison between domain and non-domain region coverage by the
feature. Then, we sum up the coverage percentages of the feature across the dataset sequences.
This leaves us with 2 total coverage numbers (domain vs non-domain) per feature, from
which we can see where the feature is enriched across the task dataset. Repeating this process
for all features would reveal whether most top features from Hist-N are enriched in domain or
non-domain regions (Table 6). Also, to quantify further the importance of domain and non-
domain regions in capturing the properties of proteins, we conduct the same classification
experiment (10-fold Cross-Validation — Logistic Regression), but with the Histogram-8000
(Hist-8000) representations built with amino acids from only the two respective regions each
time (domain vs non-domain). Overall, there is consistency between which region is found to
be enriched with the top Hist-8000 features per task and which Hist-8000 region-specific rep-
resentations infer properties better, between domain and non-domain regions (Table 6). This
suggested that Hist-8000 captures most of the required information to classify the proteins
correctly in a data-driven way, without specifying a-priori which regions are most impor-
tant. We have six of tasks 1-8 pointing to this, except for allergens and virulence factors (the
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Table 6. 10-fold Cross-Validation Area-Under-the-Curve scores (mean + st.dev.) of domain vs non-domain
representations in the protein inference tasks. Overall, there is consistency between region enrichment of the
top Hist-8000 features selected and best-performing Hist-8000 region-specific representations, between domain
and non-domain regions per task (tasks 1-8). Best-performing methods in bold. See section ‘Protein inference
problems’ for tasks sources. Hist-8000: Histogram-8000, SoT: Sum-of-learnt-Trigrams, AUC: Area Under the
Curve, 10foldCV: 10-fold Cross-Validation, VFs: Virulence Factors, Gram-pos: Gram-positive, Gram-neg:
Gram-negative, st.dev: standard deviation, doms: domains, non-doms: non-domains, #Top feats: number of top

features.
Task Hist-8000 (doms) Hist-8000 (non-doms) #Top feats (doms —
non-doms)
Antigens [43] 0.564 + 0.081 0.627 + 0.102 1720 (851 — 869)
Enzymes [45] 0.849 + 0.003 0.685 + 0.004 533 (282 — 251)
Adbhesins [47] 0.968 + 0.012 0.889 +0.016 1056 (543 — 513)
VFs [48] 0.612 + 0.025 0.543 + 0.016 68 (10 — 58)
Allergenicity [49] 0.990 -+ 0.002 0.972 + 0.003 550 (234 — 316)
Cellular localisation [50]
Gram-negative bacteria 0.978 + 0.004 0.927 + 0.009 582 (372 — 210)
Gram-positive bacteria 0.974 + 0.009 0.932 +0.029 977 (631 — 346)
Archaea 0.966 + 0.027 0.925 + 0.051 1454 (856 — 598)

https://doi.org/10.1371/journal.pone.0325531.t006

latter being the only case where Sum-of-learnt-Trigrams was better than Hist-8000 in the
experiments). In the case of the antigenicity problem, there is some recent literature support-
ing the unconventional result that the functional signal is enriched in non-domain features,
specifically intrinsically disordered regions [60,61].

Despite that all task datasets have >30% of 1-domain proteins (see S1 File section ‘Explor-
ing domain-based models for function inference’), it’s still reasonable to see Hist-8000 fea-
tures enriched in domain regions in five problems, as we have at least ~40% of proteins in each
of the 8 datasets covered by domains for over 70% of their sequence. Finally, we note that for
this part we work only with proteins having both at least one domain and non-domain region
to enable the region-specific analysis, which means that a small part (~10% ) of each dataset
is left out. We think this has not affected the conclusions made further on, as the main trend
of Hist-8000 (over the whole sequence) being the best method has remained for tasks 1-8,
despite a small difference in some scores (See S1 File section ‘Analysis of representations per
protein region (domain vs non-domain)’).

TAPE benchmark results

We sought to further validate our results by evaluating the protein representations on the
TAPE benchmark (Tasks Assessing Protein Embeddings) [15]. This consists of the remote
homology (large multi-class classification of protein folds), fluorescence and stability tasks
(the latter are both protein engineering regression tasks). We again use Logistic Regression

to carry out classification for the remote homology problem, and a standard Linear Regres-
sor for the protein engineering problems. For each dataset, only a single train-test set split is
curated in the TAPE paper [15] given certain biological constraints, which limits our ability
to quantify the generalisation of the models to the extent done for the other inference tasks in
this work.

Similarly to all other results, the Histogram-8000 (Hist-8000) method for representing pro-
teins outperforms Sum-of-learnt-Trigrams (SoT) in all three protein inference datasets from
the TAPE benchmark. In addition, Hist-8000 was more effective than all baseline represen-
tations and some powerful neural network model representations that were not pre-trained,
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however the primary purpose of the experiment is not to compete with the State-Of-The-

Art. It is worth noting that the low performance results on the remote homology problem
observed across all representation methods are due to the challenging nature of predicting a
protein fold from just the sequence, which means overcoming a gap of two evolutionary dis-
tance levels on the SCOP hierarchy of structural information [62]. On top of that, there are
1195 fold classes to learn to predict which necessarily makes this problem quite challenging to
model. See Table 7 for more details on SoT vs Hist-8000 on the TAPE tasks.

We note that for this set of tasks we were unable to carry out region-enrichment analysis
of any informative histogram features selected, because of the kind of protein functions stud-
ied. More specifically, the remote homology problem consists of domain sequences, except
for 66 multi-domain sequences which is a small fraction of the whole dataset. Regarding the
two regression problems (stability, fluorescence), in each there is a main protein from which
the rest of the sequences are generated by mutating that main sequence to study changes in
its function, thus we would only have meaningful domain region information for those two
initial proteins. Also, uncertainty estimates are not calculated because of the difficulty of con-
structing multiple data splittings brought by the biological characteristics of the protein engi-
neering tasks (for example the mutation distance-based train-test sets design, where we would
possibly need more informative ground-truth labels to construct meaningful evaluations).

Discussion

In this study, we show that baseline Bag-of-Words (BoW) inspired representations systemat-
ically match ProtT5 and Sum-of-learnt-Trigrams (SoT) representations in a range of protein
inference tasks and in encoding sequence similarity. It was hypothesised that Self-Supervised-
Learning (SSL) models would emulate the success seen in Natural Language Processing (NLP)
[16], as the pre-training process attempted to extract biologically meaningful features by
learning continuous distributed representations for sequence sub-units based on the con-
text in which they appear in many experimentally-annotated protein sequences. In contrast,
Histogram-8000 (Hist-8000) is a conceptually simple statistical method based on building
a bag of trigram counts in the protein sequence and hence ignoring any evolutionary pat-
terns present. The result of a simpler method eliminating the need for more complicated ones
has been observed before in other inference problems within the broader field of machine
learning [63].

The trend of Hist-8000 and its related reduced representations (Histogram-N, Histogram-
Structural Derived Matrix-12) performing better than the dense 100-d SoT on protein clas-
sification tasks opposes what is stated by the Curse of Dimensionality [64]. Because of the

Table 7. Prediction scores of protein representations in the TAPE inference tasks. Hist-8000 outperforms SoT
in all three tasks. The One-hot representation approach is based the occurrences of the 20 amino-acids in
sequence, and was used as baseline in the TAPE study [15]. The neural network architectures (Transformer,
ResNet, LSTM) did not go through a pre-training phase. Spearman rank correlation p is used as a metric to
assess method performance in the stability and fluorescence tasks, and the standard accuracy metric for the
remote homology problem. Best-performing methods in bold. Hist-8000: Histogram-8000, SoT: Sum-of-learnt-
Trigrams, p: Spearman rank correlation, NNs: Neural Networks, ResNet: Residual neural Network, LSTM:
Long-Short-Term-Memory recurrent neural network, TAPE: Tasks Assessing Protein Embeddings benchmark

[15].

Task Hist-8000 (SoT One-hot Transformer | ResNet LSTM
Remote Homology (Accuracy) 0.10 0.07 0.09 0.09 0.10 0.12
Stability (Spearman o) 047 0.30 0.19 -0.06 0.61 0.28
Fluorescence (Spearman ©) 0.48 0.40 0.14 -0.22 -0.28 0.21

https://doi.org/10.1371/journal.pone.0325531.t1007
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high sparsity in the input data distribution induced by this representation, one might expect
that training downstream classifiers that generalise well on unseen data becomes more chal-
lenging. However, sparse data representations have shown promising performance in several
problems such as image processing [65], which might mean that the representations manage
to express the intrinsic structure of the data suitably for some of the problems studied here.
Given the classification results, it is not surprising to see Hist-8000 encoding more informa-
tion about protein sequence similarity than the SoT method, as sequence similarity is a minor
but useful factor for determining several protein properties [4]. Importantly, the fact that SoT
is worse than the sequence alignment baseline for remote homology detection defeats the pur-
pose of considering SoT as an efficient alternative method for overcoming the limitations of
alignment, more specifically in identifying the structural fold of a protein when sequence sim-
ilarity is low. Favourable results for representations based on BoW were obtained recently

in related fields [13,66-69]. Thus, it can be said that Hist-8000 removes the need for self-
supervised learning pre-training for obtaining meaningful sub-unit (i.e. biological word)
embeddings and subsequently protein representations. Even by considering the superior per-
formance of ProtT5 in some of the function inference tasks, using Hist-8000 would save com-
putational resources from the most expensive part of building large language model represen-
tations: that is, pre-training on approx. 45 million sequences, learning 3 billion parameters,
and requiring expensive processing hardware. This pre-training process required over 10 hrs
per epoch and at least 26 GBs of memory in the ProtTrans study [35]. However, we note the
high time complexity observed when using the Hist-8000 representations during downstream
inference, which we can estimate to be 80-times slower than SoT and 8-times slower than
ProtT5 embeddings given their respective dimensions. Given the potential for more efficient
sequence-based representations for challenging problems such as identifying virulence factors
[48], it would be beneficial to re-examine the SoT and other language-based machine learn-
ing approaches for building dense representations that are more biologically accurate across
problems, without high computational requirements.

We could partially attribute the lower performance of the protein representation methods
in certain problems to the choice of biological words (trigrams, amino acids). It has been doc-
umented that there is no universal criterion for how the protein sequence should be split for
turther representation modelling [13]. We note in particular a couple of studies where sum-
ming the elements in the 100-d SoT representations to just 1 number (namely ProtVeclD vec-
tors) produced almost identical results to using the whole 100-d sequence vectors, which are
already a summation of the 100-d trigram vectors obtained from pre-training [24,25]. Future
work could include approaches such as protein domain embeddings [70] as a more biologi-
cally inspired choice of “words” and way of splitting the protein sequences, which would also
lessen the effect of the method used to combine words to form the protein embedding, since
we would have much fewer words per protein than when using trigrams. On the other hand,
the success of those models depends on the distribution of domains in the data as mentioned
before [70-72], and which is evident from our prototype experiment where the high num-
ber of 1-domain proteins seem to negatively affect the classification scores (S1 File section
‘Exploring domain-based models for function inference’).

Throughout most of the literature on representation learning applied to protein sequences,
it has been assumed that the standard 20 amino acids alphabet is the most suitable choice for
the biological alphabet [13]. However, for certain protein inference tasks, it was demonstrated
that it is beneficial to consider reduced-sized amino acid alphabets by grouping the standard
amino acids based on biologically inspired criteria [55]. This future research direction also
opens up the possibility of data-driven and task-specific tuning of representations. By reduc-
ing the amino acid alphabet used for building embeddings, one can model longer n-grams
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which would result in capturing longer discriminative amino acid motifs and also in reduced
features sparsity with models running on less memory in turn [13].

Finally, another shortcoming of the SoT method is the use of model configurations for
word2vec that were selected with NLP tasks in mind, for learning the biological word rep-
resentations. This has been observed across several studies that used SoT representations
[17,23,28-30] and in work applying newer language models for representing biological
sequences for inference problems [73,74]. These model configurations include mathemat-
ical approximations, for example linear hidden layer activation functions or negative sam-
pling, the latter which is a main component of word2vec [12] to deal with the large number of
weight updates dictated by the input vocabulary size. In contrast, the available datasets with
experimentally-derived protein sequences yield smaller vocabularies and corpora. That is
still true when using domains as sequence sub-units, where we approximately have 15k dif-
ferent domains [70,72] compared to the over ~500k words found in english. Thus, as future
work it could be important to quantify protein inference performance when using represen-
tations derived from predecessor NLP models that can be trained without the aforementioned
approximations [75].
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