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 A B S T R A C T

Capture-recapture methods are widely used for estimating population sizes in ecological and 
epidemiological studies, yet the optimal allocation of sampling effort often remains underex-
plored. This study explores sampling efforts in a hierarchical framework that subdivides each 
capture occasion in a Lincoln–Petersen experiment into multiple sub-occasions, allowing for 
flexible resource allocation. When detection probabilities are equal across occasions, an even 
split minimizes variance; when probabilities differ, maximizing the joint detection probability 
is essential. A pseudo-Bayesian approach is also proposed to address scenarios with unknown 
catchabilities. Detailed simulation studies validate the theoretical findings and demonstrate the 
framework’s robustness. The resulting guidelines offer practical insights for designing more 
efficient capture-recapture experiments and improving population size estimates.

. Introduction

Capture-recapture is a widely used method for estimating population size in ecology and epidemiology. Originally developed 
or fisheries and wildlife studies (Petersen, 1896; Dahl, 1918; Lincoln, 1930), it has been extensively applied to assess animal 
bundance (Hickey and Sollmann, 2018), survival odds (Reinke et al., 2020), mortality (Jiménez-Ruiz et al., 2023), and migratory 
atterns (Matechou and Argiento, 2023). Since 1949, capture-recapture has also been used in human health research to estimate 
rue population sizes from incomplete case listings (Sekar and Deming, 1949). It serves as an alternative to traditional prevalence 
tudies by identifying undetected cases across multiple data sources. Early applications included birth defect incidence (Wittes and 
idel, 1968) and hospital infection rates (Lewis and Hassanein, 1969), and its use has since expanded to areas such as drug use, 
nfectious diseases, cancer, and dementia (Plettinckx et al., 2021; Rocchetti et al., 2020; Plouvier et al., 2019; Bailly et al., 2019). 
he method’s efficiency, cost-effectiveness, and ability to integrate multiple data sources make it valuable for public health decision-
aking (Ramos et al., 2020; Böhning et al., 2020). Its importance is underscored by the growing body of literature dedicated to its 
heoretical and applied advancements (Böhning et al., 2018; Borchers et al., 2002; McCrea and Morgan, 2015).
The optimization of sampling effort in capture-recapture studies has been a long-standing challenge, especially when sample 

ize is dependent on numerous factors, such as the animals’ detectability, desired precision, and study scope (Schorr et al., 
014). Selecting the appropriate sampling intensity and duration is challenging because insufficient data can lead to biased 
stimates. Kordjazi et al. (2016). In conservation biology, inefficient designs risk underestimating populations of elusive or rare 
pecies which exhibit patchy distributions and low detectability, resulting in datasets dominated by non-detections (Thompson, 
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Fig. 1. A hierarchical structure for a Lincoln–Petersen experimental design.

2004). Similarly, in epidemiology, zero-inflated data from incomplete registries obscure true disease prevalence; for instance, 
undetected COVID-19 cases during the pandemic skewed infection fatality rates and hindered public health responses (Böhning 
et al., 2020).

It is often practical to employ multi-stage sampling strategies in a capture-recapture study. Each stage involves sampling within 
a specific time window, which can be continuous or discrete. For instance, a researcher may conduct repeated trapping sessions 
over several nights during the first capture occasion, followed by a pause before conducting additional nights of trapping during the 
subsequent capture occasion. For instance, two capture occasions in a Lincoln–Petersen experiment can be hierarchically levelled 
into a number of sub-occasions which totals a number 𝑇 , as illustrated in Fig.  1. Traditional capture-recapture method treat 
capture occasions as single stages, ignoring the hierarchical potential to subdivide effort into sub-occasions that adaptively boost 
detectability. By framing sampling effort as a divisible resource, this hierarchical approach addresses the ‘too few recaptures’ issues 
in studies of rare or elusive populations.

Early work by Robson and Regier (1964) established basic sample size thresholds, such as requiring 𝑛1𝑛2 > 4𝑁 , to reduce bias 
in Lincoln–Petersen estimates. Seber (1982) and Krebs (2014) suggest that the product of the sample size of both capture occasions 
in a Lincoln–Petersen experiment must exceed the population size and there must be at least seven recaptures of tagged individuals, 
while Greenwood and Robinson (2006) mentioned that when the number of tagged individuals in the second sample is greater 
than 50, the confidence level calculated with Lincoln–Petersen estimates was found to be reasonably accurate. Otis et al. (1978) 
explains that a live-capture study requires both a sufficiently large number of distinct animals captured and a sufficient number of 
recaptures. Gaskell and George (1972) emphasize that a number of recaptures less than 10 results in a poor estimator of 𝑁 . A larger 
sample size is usually preferred to ensure a more accurate estimate, but this is not always possible due to logistical or financial 
constraints. Ultimately, it is a matter of finding a balance between the desired precision and the feasibility of the study (Conner 
et al., 2015). Kordjazi et al. (2016) demonstrates that precision exhibits only marginal improvements with higher level of sampling 
effort. This implies that there exists an optimal point where sampling effort and precision can be balanced, allowing for the collection 
of high-quality data without excessive resource costs and efforts.

A key limitation in the previous studies is the assumption that sampling effort is evenly distributed across capture occasions, 
regardless of changes in detectability. They did not explore how effort could be strategically shifted between sub-occasions to 
maximize detection efficiency. This issue is particularly relevant for rare or spatially scattered populations, where zero-inflated 
data and logistical fieldwork constraints make efficient sampling strategies essential. Current methods fail to provide a systematic 
way to optimize effort allocation in hierarchical designs, leaving a gap in the field.

This study addresses these gaps in three key ways: (1) introducing a hierarchical framework for sub-occasion allocation that 
generalizes the Lincoln–Petersen model; (2) deriving optimal effort allocation rules under both known and unknown catchabilities; 
and (3) providing field-ready guidelines validated through simulations.

2. Sampling effort in Lincoln–Petersen estimator

The Lincoln–Petersen method, developed by F.C. Lincoln and C.J.G. Petersen, is the fundamental capture-recapture technique 
that consists of a single catch-and-mark occasion, followed by one recapture occasion. Their method has been widely utilized to 
2 
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Table 1
Observed frequency from a Lincoln–Petersen experiment.
 Occasion 2  
 1 0  
 Occasion 1 1 𝑚 𝑛1 − 𝑚 𝑛1 
 0 𝑛2 − 𝑚 𝑥  
 𝑛2 𝑁 

Table 2
Joint distribution of identifying a subject in a Lincoln–Petersen experiment.
 Occasion 2
 1 0

 Occasion 1 1 𝑝1𝑝2 (1 − 𝑝1)𝑝2
 0 𝑝1(1 − 𝑝2) (1 − 𝑝1)(1 − 𝑝2) 

estimate population sizes in animal and human populations, with the latter case often referred to as the dual-list method. While 
the Lincoln–Petersen method is straightforward, it is crucial to note that its results heavily rely on several underlying assumptions 
associated with the data (Gerritse et al., 2015). The assumptions of the Lincoln–Petersen method include:

1. The population is closed, assuming no immigration, births, or deaths occurring within the population during the sampling 
period.

2. All individuals are equally catchable on any sub-occasions, but we assume that capture probability can change between 
capture occasions: it is 𝜃1 on occasion 1, and 𝜃2 on occasion 2.

3. Detection of individuals are independent events.

Violation of assumptions may affect the accuracy of the estimate. To address this issue, researchers have developed various 
variants of the Lincoln–Petersen model that accommodate the violation of these assumptions (Gaskell and George, 1972; Skalski 
and Robson, 1982; Wolter, 1990; Seber et al., 2000). However, in this study, we consider a model in which all assumptions are met.

Let 𝑁 denote the total population size, 𝑛1 the number of individuals captured and tagged during the first occasion, 𝑛2 the 
number captured during the second occasion, and 𝑚 the number recaptured on both occasions. Table  1 summarizes the observed 
frequencies in a typical Lincoln–Petersen experiment, while Table  2 outlines the joint detection probabilities, assuming the occasions 
are independent. 𝑝𝑖 denotes the probability of detecting a subject at occasion 𝑖(𝑖 = 1,2)

The frequency of the missing subjects, 𝑥, is unknown. Hence, the population size 𝑁 = 𝑛1 + 𝑛2 − 𝑚 + 𝑥 remains unknown and 
becomes the target of the inference. The well-known Lincoln–Petersen estimator (Chao and Hugginns, 2005) in (1) can be used to 
estimate the population size. 

𝑁̂ =
𝑛1𝑛2
𝑚

(1)

An estimator of var(𝑁̂) is given in (2). The development of this formula is shown in Appendix  A. 

v̂ar(𝑁̂) = 𝑁̂
𝑛1 − 𝑚

𝑚
𝑛2 − 𝑚

𝑚
(2)

It is clear that the Lincoln–Petersen estimator becomes more reliable as 𝑚 increases relative to 𝑛1 or 𝑛2 or both. As 𝐸(𝑚) = 𝑁𝑝1𝑝2, 
it is apparent that on average, 𝑚 will not increase if 𝑝1 and 𝑝2 remain unaltered. Moreover, increasing the target population size, 𝑁 , 
by itself is not practicable. However, certain studies are designed in such a way that sampling is repeated within a single occasion. 
For example, live trapping is conducted over multiple nights.

Consider a scenario in which 𝑇1 replications of repeated identification are done on the capture occasion 1, and 𝑇2 replications are 
done on the capture occasion 2. As a result, the probability of not detecting a subject on the capture occasion 1 is 1−𝑝1 = (1−𝜃1)𝑇1 , 
where 𝜃1 is the individual detection probability for the 𝑇1 sub-occasions in capture occasion 1. Similarly, the probability of not 
detecting a subject on the capture occasion 2 is 1 − 𝑝2 = (1 − 𝜃2)𝑇2 . In order to maximize the frequency of joint identification, 𝑚, 
the interest of study is to maximize 𝑝1𝑝2, by keeping the total sampling effort 𝑇 = 𝑇1 + 𝑇2 fixed. Note that

𝑝1𝑝2 = [1 − (1 − 𝜃1)𝑇1 ][1 − (1 − 𝜃2)𝑇2 ] = (1 − 𝑞𝑇11 )(1 − 𝑞𝑇22 ),

where 𝑞𝑖 = (1 − 𝜃𝑖) for 𝑖 = 1,2. To address this problem, we introduce 

𝑓 (𝑡; 𝑞1, 𝑞2) = (1 − 𝑞𝑡1)(1 − 𝑞𝑇−𝑡2 ), (3)

for 𝑡 = 0,1,2,… , 𝑇 . In order to maximize the sampling effort, we need to find 𝑡 that maximize 𝑓 (𝑡; 𝑞1, 𝑞2) in 𝑡 = 0,1,2,… , 𝑇 . In the 
following sections, we explore different scenarios to determine the optimal allocation of sampling efforts between the two capture 
occasions.
3 
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Table 3
Summary statistics for snowshoe hare data, with 𝑇 = 6 partitioned into two capture occasions.
 𝑇1 𝑇2 𝑛1 𝑛2 𝑚 𝑁̂ var(𝑁̂) 
 1 5 16 65 13 80 73.85  
 2 4 40 59 31 76.1 19.96  
 3 3 49 57 38 73.5 10.64  
 4 2 58 44 34 75.1 15.6  
 5 1 64 32 28 73.1 13.43  

3. Optimizing sampling effort with fixed catchabilities

3.1. Scenario 1: Equal catchabilities 𝑞1 = 𝑞2

When the detection probabilities on both occasions are equal (i.e., 𝑞1 = 𝑞2 = 𝑞) the optimization problem in (3) simplifies, 

𝑓 (𝑡; 𝑞) = 1 − 𝑞𝑡 − 𝑞𝑇−𝑡 + 𝑞𝑇 , (4)

leading to Theorem  1. The proof of Theorem  1 is provided in Appendix  B. 

Theorem 1.  The function 𝑓 (𝑡; 𝑞) = (1 − 𝑞𝑡)(1 − 𝑞𝑇−𝑡) is maximized at 𝑡 = (𝑇 − 1)∕2 or 𝑡 = (𝑇 − 1)∕2 + 1 if 𝑇  is odd. If 𝑇  is even, the 
function is maximized at 𝑡 = 𝑇 ∕2.

Outcome from Theorem  1 can be utilized to identify the optimal 𝑡 that maximizes (4). If 𝑇  is even, an equal number of 𝑇 ∕2
sub-occasions are allocated to each capture occasion. On the other hand, if 𝑇  is odd, (𝑇 − 1)∕2 + 1 sub-occasions are assigned to 
one occasion, while the remaining sub-occasions are allocated to the other occasion. Notably, it is interesting to observe that the 
optimal value is independent of both 𝑞 and 𝜃.

3.1.1. Example
The snowshoe hare data discussed in this section were initially collected by Burnham and Cushwa which was first presented 

by Otis et al. (1978). Six trapping occasions resulted in 145 captures of 68 distinct hares. For the six occasions, there were 16, 28, 
20, 26, 23, and 32 captures. Given that the capturing period lasted only a few days, it was reasonable to assume that the population 
was closed.

For illustration, the total number of sub-occasions, 𝑇 = 6, is partitioned into various combinations of 𝑇1 and 𝑇2. 𝑁 and Var(𝑁̂)
are estimated using Eqs.  (1) and (2). The results in Table  3 demonstrate that an equal split (𝑇1 = 𝑇2 = 3) minimizes the variance of 
the population size estimate. This findings is consistent with our result in Section 3.1

3.2. Scenario 2: Proportional catchabilities 𝑞1 = 𝑘𝑞2

In the scenario where 𝑞1 ≠ 𝑞2, Theorem  1 is no longer applicable. Instead, the goal of optimizing the sampling effort is to 
determine the value of 𝑡∗ that maximizes the function 𝑓 (𝑡; 𝑞1, 𝑞2) in (3) for 𝑡 = 0,1,2,3,… , 𝑇 . Let us consider a scenario where the 
catchabilities are proportional, with 𝑞1 = 𝑘𝑞2, where 𝑘 is a constant. In this case, the goal is to find the value of 𝑡∗ that maximizes 
the function 

𝑓 (𝑡; 𝑞, 𝑘) = (1 − (𝑘𝑞)𝑡)(1 − 𝑞𝑇−𝑡)

= 1 − (𝑘𝑞)𝑡 − 𝑞𝑇−𝑡 + 𝑘𝑡𝑞𝑇 .
(5)

To maximize 𝑓 (𝑡; 𝑞, 𝑘) in (5), we need to minimize the term 

ℎ(𝑡; 𝑞, 𝑘) = (𝑘𝑞)𝑡 + 𝑞𝑇−𝑡 − 𝑘𝑡𝑞𝑇 . (6)

Optimizing the function in (6) does not admit a closed-form solution for 𝑡. Nonetheless, we can obtain solutions using numerical 
method. In this paper, the Newton–Raphson method was employed, and it exhibited no convergence issues. We recommend 
initializing the value as 𝑇 ∕2, since this choice can potentially reduce the number of iterations required for convergence. Fig.  2 
provides a visualization of how the optimal 𝑡 value changes with different values of 𝑘 and 𝑞 when 𝑇 = 20. In the case when 𝑘 = 1, 
which corresponds to 𝑞1 = 𝑞2 as discussed earlier, the optimal allocation of 𝑇  is to distribute it equally between the two capture 
occasions. However, the graph demonstrates that as 𝑘 increases beyond 1, indicating a higher 𝑞1 compared to 𝑞2 (thus indicating 
lower detectability in capture occasion 1), it is more beneficial to allocate a greater sampling effort to the first capture occasion 
rather than the second one. This allocation strategy aims to enhance the precision of the parameter estimates.
4 
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Fig. 2. Optimal 𝑡 based on 𝑘 and 𝑞 values for 𝑇  = 20, with constrain 𝑘𝑞 ∈ (0,1). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

Table 4
Description of trials components.
 𝑁 𝑇 (𝜃1 , 𝜃2)  
 1000 20 (0.40 , 0.20) 
 400 11 (0.40 , 0.04) 
 200 9 (0.20 , 0.30) 
 100 6 (0.20 , 0.20) 

3.2.1. Simulation
To validate the theoretical findings and evaluate the performance of the proposed hierarchical allocation framework, a simulation 

study was conducted under controlled conditions. The design was structured to reflect realistic ecological and epidemiological 
contexts, with parameter choices guided by three key objectives: population size variation, sampling effort constraints, and 
detectability scenarios. Population sizes (𝑁 = 1000,400,200,100) were selected to represent a spectrum from large populations to 
small populations, assessing robustness across scales. Sampling effort constraints were incorporated by selecting total sub-occasions 
(𝑇 = 20,11,9,6), reflecting varying field study durations. Four capture probability scenarios were explored: (𝜃1, 𝜃2) = (0.4, 0.2), 
(0.4, 0.04), (0.2, 0.3), (0.2, 0.2). These scenarios represent different ecological conditions. The first case (𝜃1 = 0.4, 𝜃2 = 0.2) mimics 
species with high detectability in one occasion and moderate detectability in another. The second case (𝜃1 = 0.4, 𝜃2 = 0.04) represents 
extreme difference in detectability, while the last case (𝜃1 = 𝜃2 = 0.2) represents balanced moderate detectability case. Table  4 
provides an overview of the various parameter values utilized in the simulation study.

For each parameter combination, 10,000 replicate datasets (𝐵 = 10,000) were generated using Bernoulli trials. Detection at each 
sub-occasion (𝑗) within a capture occasion (𝑖) followed 𝑋𝑖𝑗𝑘 ∼ Bernoulli(𝜃𝑖) for 𝑘 = 1,… , 𝑁 . The Lincoln–Petersen estimator (𝑁̂) and 
its variance were computed for all possible allocations (𝑡 ∈ {1,… , 𝑇 }), with the optimal allocation (𝑡∗) identified as the value that 
minimized var(𝑁̂). Table  5 presents a subset of the simulation results for when 𝑁 = 100, 𝑇 = 20, 𝜃1 = 0.4, 𝜃2 = 0.2. It illustrates 
that the variance of the estimates changes with 𝑡, with 𝑡∗ being 7. This allocation (7 sub-occasions to capture occasion 1, and 13 to 
capture occasion 2), yields the most precise estimate.

Table  6 summarizes the results from all 64 combinations, comparing the optimal 𝑡 values from the simulation with those from 
Newton–Raphson optimization. The findings confirm that 𝑡∗ remains stable across various population sizes 𝑁 , although it shifts with 
changes in 𝑇  or capture probabilities 𝜃. Both methods are in close agreement, with discrepancies less than 1, indicating a robust 
validation of the simulation results. Our findings recommend a 𝑇  value greater than 10 to prevent large variances, optimizing design 
efficiency.
5 
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Table 5
Simulation results of Lincoln–Petersen estimation procedure applied on data generated with 𝐵 = 10000 replicates 
for 𝑁 = 1000, 𝑇 = 20, 𝜃1 = 0.4, 𝜃2 = 0.2.
 𝑡 mean(𝑁̂) var(𝑁̂) 𝑝1 × 𝑝2  
 1 999.9959 1.6376 0.3996  
 2 999.9926 1.0238 0.6388  
 3 1000.0090 0.8053 0.7816  
 4 999.9832 0.7403 0.8660  
 5 1000.0000 0.7077 0.9145  
 6 999.9998 0.6898 0.9400  
 7 1000.0080 0.6834 0.9495 
 8 999.9903 0.7220 0.9452  
 9 999.9960 0.7031 0.9261  
 10 1000.0020 0.7274 0.8872  
 11 1000.0060 0.7197 0.8616  
 12 999.9956 0.7965 0.8290  
 13 1000.0020 0.8211 0.7878  
 14 1000.0040 0.8967 0.7360  
 15 999.9932 0.9525 0.6710  
 16 999.9953 1.0809 0.5895  
 17 1000.0150 1.3725 0.4874  
 18 999.9927 1.7833 0.3596  
 19 1000.0060 3.2584 0.1998  

Table 6
Newton–Raphson optimization and simulated results concerning the optimal 𝑡.
 𝑇 𝜃1 𝜃2 Optimal 𝑡
 Newton–Raphson 𝑁 = 1000 𝑁 = 400 𝑁 = 200 𝑁 = 100 
 
20

0.4 0.2 7.16 7 7 7 7  
 0.4 0.04 4.82 5 5 5 5  
 0.2 0.3 11.54 12 12 12 12  
 0.2 0.2 10.00 10 10 10 10  
 
11

0.4 0.2 4.29 4 4 4 4  
 0.4 0.04 3.36 4 4 4 4  
 0.2 0.3 6.13 7 6 6 6  
 0.2 0.2 5.50 6 6 6 6  
 
9

0.4 0.2 3.61 3 2 5 5  
 0.4 0.04 2.95 3 2 5 5  
 0.2 0.3 4.96 3 2 5 5  
 0.2 0.2 4.50 3 2 5 5  
 
6

0.4 0.2 2.54 2 2 2 2  
 0.4 0.04 2.21 2 2 2 2  
 0.2 0.3 3.23 3 4 4 4  
 0.2 0.2 3.00 3 3 3 3  

4. Optimizing sampling effort in the presence of unknown catchabilities

The methods described in Section 3 assume that the detection probabilities are known. In practice, when these probabilities are 
unknown, a pseudo-Bayesian approach can be used by introducing prior distributions for 𝑞1 and 𝑞2. The first step is to find the 
expectation of 𝑓 (𝑡; 𝑞1, 𝑞2) with respect to 𝑞1 and 𝑞2, denoted as 𝑔(𝑡): 

𝑔(𝑡) = 𝐸𝑞1𝑞2

[

𝑓 (𝑡; 𝑞1, 𝑞2)
]

. (7)

4.1. Scenario 1: Uniform priors for catchabilities

In the first scenario, where no prior information is available regarding the distribution of 𝑞1 and 𝑞2, we make the assumption 
that both 𝑞1 and 𝑞2 follow a uniform distribution: 𝑞1 ∼ U(0,1) and 𝑞2 ∼ U(0,1). As a result, this leads to Eq.  (8), and the optimal 
value of 𝑡 is determined as 𝑇 ∕2. 

𝑔(𝑡) = 𝑇 𝑡 − 𝑡2

𝑇 𝑡 − 𝑡2 + 𝑇 + 1
(8)
6 
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Fig. 3. Optimal 𝑡 when 𝑞1 ∼ U(0,1), while 𝑞2 < 𝑞1. (a) 𝑔(𝑡) function when 𝑇 = 20, with the dashed line indicating the optimal 𝑡. (b) Relationship between 
optimal 𝑡 and T.

4.2. Scenario 2: Higher Re-catchability 𝑞2 < 𝑞1

In the second scenario, we consider 𝑞2 to be smaller than 𝑞1, where 𝑞1 ∼ U(0,1) and 𝑞2 ∼ U(0, 𝑞1). The joint probability density 
function(pdf) and marginal function can be described by (9)–(11):

𝑓 (𝑞1, 𝑞2) =
1
𝑞1

, (9)

𝑓 (𝑞1) = 1, (10)

𝑓 (𝑞2) = − ln(𝑞2), (11)

where 0 ≤ 𝑞2 ≤ 𝑞1 ≤ 1. To calculate the expectation of 𝑓 (𝑡; 𝑞1, 𝑞2) in Eq.  (3) with respect to 𝑞1 and 𝑞2, we apply the Law of Total 
Expectation and obtain 

𝑔(𝑡) = 1 − 1
𝑡 + 1 − 1

(𝑇 − 𝑡 + 1)2
+ 1

(𝑇 − 𝑡 + 1)(𝑇 + 1) . (12)

The optimization of function 𝑔(𝑡) in (12) has no closed form solution for 𝑡. However, we can find the solutions using the Newton–
Raphson method. Fig.  3(a) illustrates an example of the graph of 𝑔(𝑡) when 𝑞1 ∼ U(0,1), 𝑞2 < 𝑞1, and 𝑇 = 20. Using the 
Newton–Raphson algorithm, the optimal 𝑡 is determined to be 𝑡∗ = 13.848. The relationship between 𝑇  and 𝑡∗ is depicted in Fig. 
3(b) for the scenario where 𝑞2 < 𝑞1, demonstrating the optimal 𝑡∗ values for various values of 𝑇  ranging from 2 to 100.

4.3. Scenario 3: Lower re-catchability 𝑞1 < 𝑞2

Moving on to the third scenario, where 𝑞1 is smaller than 𝑞2, we consider 𝑞2 ∼ U(0,1) and 𝑞1 ∼ U(0, 𝑞2). The joint probability 
density function(pdf) and marginal function are given by (13)–(15):

𝑓 (𝑞1, 𝑞2) =
1
𝑞2

, (13)

𝑓 (𝑞1) = − ln(𝑞1), (14)

𝑓 (𝑞2) = 1, (15)

where 0 ≤ 𝑞1 ≤ 𝑞2 ≤ 1. We reapply the Law of Total Expectation to calculate the expectation of 𝑓 (𝑡; 𝑞1, 𝑞2) in (3) with respect to 𝑞1
and 𝑞2, resulting in: 

𝑔(𝑡) = 1 − 1
(𝑡 + 1)2

− 1
(𝑇 − 𝑡 + 1) +

1
(𝑇 + 1)(𝑡 + 1) . (16)

Similar to the previous scenario, the optimization of 𝑔(𝑡) in Eq.  (16) does not have a closed form solution for 𝑡. We can utilize the 
Newton–Raphson method to find the optimal 𝑡 numerically. Fig.  4(a) presents an example of the graph of 𝑔(𝑡) when 𝑞2 ∼ U(0,1), 
𝑞1 < 𝑞2, and 𝑇 = 20. Using the Newton–Raphson algorithm, the optimal 𝑡 is determined to be 𝑡∗ = 6.152. Fig.  4(b) illustrates the 
relationship between 𝑇  and 𝑡 for the scenario where 𝑞1 < 𝑞2, displaying the 𝑡∗ values for various values of 𝑇  ranging from 2 to 100.

4.4. Addressing potential biases in estimation

In this section, we address the concern regarding the use of a uniform prior distribution on catchabilities and its potential impact 
on introducing heterogeneity on the events, which could lead to biases in the estimation process. To investigate this problem and 
7 
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Fig. 4. Optimal 𝑡 when 𝑞2 ∼ U(0,1), while 𝑞1 < 𝑞2. (a) 𝑔(𝑡) function when 𝑇 = 20, with the dashed line indicating the optimal 𝑡. (b) Relationship between 
optimal 𝑡 and T.

Table 7
Estimation results for (a) Scenario 1 with uniform catchabilities (𝑞1 ∼ U(0,1) and 𝑞2 ∼ U(0,1)), (b) Scenario 2 with higher re-catchabilities (𝑞1 ∼ U(0,1) and 
𝑞2 ∼ U(0, 𝑞1), and (c) Scenario 3 with lower re-catchabilities (𝑞1 ∼ U(0, 𝑞2) and 𝑞2 ∼ U(0,1)) - 𝑁=1000, 𝑇=20. The percentages (%) represent the proportion 
of overestimation (𝑁̂ > 𝑁), underestimation (𝑁̂ < 𝑁), and accurate estimation (𝑁̂ = 𝑁) based on 𝐵 = 10000 draws.
 𝑡 (a) Scenario 1: 𝑞1 ∼ U(0,1) and 𝑞2 ∼ U(0,1) (b) Scenario 2: 𝑞1 ∼ U(0,1) and 𝑞2 < 𝑞1 (c) Scenario 3: 𝑞2 ∼ U(0,1) and 𝑞2 > 𝑞1
 mean(𝑁̂) Over- Under- Accurate mean(𝑁̂) Over- Under- Accurate mean(𝑁̂) Over- Under- Accurate  
 estimate estimate (%) estimate estimate (%) (%) estimate estimate (%)  
 (%) (%) (%) (%) (%) (%)  
 1 999.818 8.1 10.6 81.3 999.734 3.6 6.7 89.7 999.956 5.0 5.2 89.8  
 2 1000.278 10.1 10.4 79.6 1000.108 4.6 6.3 89.1 1000.095 6.2 5.4 88.4  
 3 999.839 12.1 10.4 77.5 999.983 5.2 6.0 88.9 999.982 8.4 5.2 86.4  
 4 999.828 13.9 10.7 75.5 999.858 5.9 6.0 88.1 1000.078 11.0 5.4 83.6  
 5 999.954 17.2 10.0 72.8 999.821 6.6 6.0 87.4 1000.099 13.3 5.5 81.2  
 6 1000.079 19.5 10.0 70.6 1000.051 7.7 5.8 86.6 999.836 15.3 5.4 79.3  
 7 1000.087 19.4 10.1 70.5 999.947 8.3 5.8 85.8 1000.088 15.0 5.4 79.6  
 8 999.858 18.4 10.8 70.9 1000.083 9.7 5.7 84.6 999.997 14.2 5.7 80.1  
 9 1000.275 18.1 10.2 71.7 1000.128 10.2 5.8 84.0 1000.082 12.6 5.5 82.0  
 10 999.887 17.0 10.1 72.9 999.937 11.3 6.0 82.8 1000.145 10.3 5.8 83.9  
 11 999.997 17.9 10.4 71.7 999.925 13.3 6.0 80.7 1000.142 10.1 5.6 84.3  
 12 999.976 18.7 10.7 70.6 999.956 15.2 5.7 79.0 1000.052 8.9 5.1 85.9  
 13 999.941 19.5 10.3 70.2 1000.020 16.1 5.9 78.0 999.948 8.0 5.4 86.7  
 14 999.938 19.0 10.0 71.0 999.964 15.4 5.8 78.8 1000.049 7.1 5.3 87.6  
 15 1000.071 16.8 10.8 72.4 999.866 14.1 5.7 80.2 999.919 6.6 5.3 88.2  
 16 999.953 14.8 10.1 75.1 1000.028 11.5 5.6 83.0 999.927 5.6 5.5 88.9  
 17 999.877 12.0 10.5 77.5 999.903 8.7 5.8 85.5 1000.079 5.0 5.5 89.5  
 18 999.646 9.9 10.7 79.5 999.889 6.6 6.1 87.3 999.995 4.4 5.6 90.0  
 19 999.977 7.7 10.9 81.5 1000.153 5.5 5.5 89.0 999.517 3.5 5.9 90.6  

evaluate the performance of the method, we conducted simulations for all three scenarios with a sample size of 𝑁 = 1000 and a 
total number of sampling sub-occasions 𝑇 = 20.

Table  7 present the results of the simulation, including the percentage of overestimation (𝑁̂ > 𝑁), underestimation (𝑁̂ < 𝑁), 
and accurate estimation (𝑁̂ = 𝑁) based on 𝐵 = 10000 draws. These results provide insights into the accuracy of the method 
in estimating the true population size, thereby addressing concerns related to potential underestimation or overestimation biases. 
The simulation results demonstrate that the proposed method achieves accurate estimations with a low rate of overestimation and 
underestimation. This finding indicates that the method performs well and provides reliable population size estimates, mitigating 
any doubts regarding potential biases in the estimation process.

5. Generalization in multiple-capture studies

This study examines the optimal allocation of sampling effort within the Lincoln–Petersen experiment, by minimizing the 
asymptotic variance of the population size estimator. This principle naturally extends to the Schnabel census, which can be viewed 
as the 𝑘-sample extension of the Lincoln–Petersen model. In this approach, sampling is organized into primary capture occasions, 
each subdivided into several sub-occasions, forming a hierarchical structure that facilitates the optimized allocation of sampling 
effort. The detection probability on each primary occasion is modelled as

𝑝 = 1 − (1 − 𝜃)𝑆𝑗 ,
𝑗
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where 𝜃 represents the per-sub-occasion capture probability and 𝑆𝑗 is the number of sub-occasions allocated to the 𝑗th primary 
occasion. The probability of not detecting an individual at occasion 𝑗 is given by

𝑞𝑗 = (1 − 𝜃)𝑆𝑗 .

The likelihood for this model is constructed as

𝐿(𝑁, 𝑝𝑗 ) ∝
𝑁!

(𝑁 − 𝑛)!

𝑘
∏

𝑗=1

{

𝑝
𝑛𝑗
𝑗 𝑞

𝑁−𝑛𝑗
𝑗

}

,

where 𝑛𝑗 represents the number of individuals detected in the 𝑗th occasion, and 𝑛 the total number of unique individuals detected 
throughout the experiment. Darroch (1958) demonstrated that the maximum likelihood estimate 𝑁̂ for the population is the unique 
root, exceeding 𝑛, of the polynomial of degree 𝑘 − 1 given by

(

1 − 𝑛
𝑁

)

=
𝑘
∏

𝑗=1

(

1 −
𝑛𝑗
𝑁

)

.

The asymptotic variance of the population estimate, according to Seber and Schofield (2023), is 

Var(𝑁̂) ≈ 𝑁

[

1
∏𝑘

𝑗=1 𝑞𝑗
+ 𝑘 − 1 −

𝑘
∑

𝑗=1

1
𝑞𝑗

]−1

. (17)

To optimize the allocation strategy, it is crucial to note that the first term inside the rectangular brackets in (17) remains constant, 
regardless of how the sampling effort is allocated, as long as the total number of sub-occasions satisfies 𝑆1 +⋯+𝑆𝑘 = 𝑇 . Therefore, 
the variance minimization depends solely on the term ∑𝑘

𝑗=1 𝑞
−1
𝑗 =

∑𝑘
𝑗=1(1−𝜃)−𝑆𝑗 . By recognizing that (1−𝜃)−𝑆𝑗  is a convex function 

of 𝑆𝑗 , Jensen’s inequality states that for any convex function, the function’s value at the mean is less than or equal to the mean of 
the function’s values. More formally, this relationship can be expressed as

1
(1 − 𝜃)𝑇 ∕𝑘

≤ 1
𝑘

𝑘
∑

𝑗=1

1
(1 − 𝜃)𝑆𝑗

.

This inequality implies that an equal allocation of 𝑆𝑗 = 𝑇 ∕𝑘 minimizes ∑𝑘
𝑗=1

1
(1 − 𝜃)𝑆𝑗

, leading to a reduction in the variance of the 
population size estimate.

6. Discussion

This work has provided a guide to effective planning on allocating the sub-occasions hierarchically into two capture occasions in 
a Lincoln–Petersen experiment. The proposed method uses a hierarchical structure that enhances the capture probabilities within a 
single capture occasion, thereby improving estimation accuracy and reducing the likelihood of zero-captures. Detectability affects the 
precision of population size estimates and the required sample size. Instead of capturing and marking a large number of individuals, 
increasing the detectability of marked individuals through advanced technology and improved techniques can lead to more efficient 
population size estimation (Burnham, 1987; Papadatou et al., 2012; Schorr et al., 2014; Conner et al., 2015).

When individuals are equally catchable on both occasions, an optimal design is achieved by evenly splitting the sampling effort 
between the two occasions. This facilitates the optimal design of the sampling effort as 𝑡 = 𝑇 ∕2, without requiring knowledge of 
individual detection probability values, 𝜃. This assumption holds particular relevance in situations where the sampling process is 
conducted within a short time span, such as in the example of snowshoe hares. Also, as suggested by Robson and Regier (1964) as 
well as Goetze and Rodriguez (2018), an equitable allocation of resources between both occasions is optimal for minimizing errors 
when funding is limited, making it cost-effective to exert the same sampling effort during each occasion.

In scenarios where capture probabilities differ between capture occasions, having prior knowledge of these probabilities aids in 
the design of the sampling scheme. Therefore, conducting a pilot study is recommended before embarking on a large-scale capture-
recapture investigation. A thoughtful and suitable design of the Lincoln–Petersen experiment in a capture-recapture study is crucial 
for obtaining reliable and valid results. It is essential to emphasize that all the relationships presented in this paper rely on the 
assumption that all practical conditions necessary for a valid use of the estimate are met. Robson and Regier (1964) highlight that 
using the Lincoln–Petersen estimate effectively involves more than just determining the sample size. It also requires a thorough 
comprehension of subjects’ behaviours, instrument bias, and other relevant factors, as well as proficiency in obtaining appropriate 
samples.

The hierarchical framework presented shares structural similarities with Pollock (1982)’s robust design, which organizes sampling 
into primary periods (open population) and secondary occasions (closed within periods). However, a key difference lies in the 
population closure assumption: the hierarchical design assumes that the population remains closed throughout the study, whereas 
the robust design explicitly models demographic events such as births, deaths, and migration between primary periods. This 
closure assumption simplifies the model, enabling precise allocation of effort across sub-occasions without the need to account 
for demographic changes.

Future studies could expand this approach to open populations by incorporating aspects of the robust design framework. 
Specifically, the method could optimize sampling effort within each closed primary period of the robust design to enhance 
detectability. This hybrid approach would maintain adaptability to population changes while improving precision within each 
period. Such advancements would be especially beneficial for research on migratory species or in long-term monitoring programs.
9 
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7. Conclusion

In conclusion, this paper presents a hierarchical framework for sampling effort allocation within the Lincoln–Petersen experiment, 
emphasizing the importance of maximizing the joint detection probabilities across capture occasions. This framework offers 
clear guidelines for designing capture-recapture studies that achieve precise population estimates without unnecessary resource 
expenditure. The contributions of this work include extending traditional methodologies to account for variable capture probabilities 
and proposing a pseudo-Bayesian approach for scenarios where these probabilities are unknown.

Appendix A. Variance of Lincoln–Petersen estimator

Asymptotic variance of 𝑁̂ can be derived using delta method (Sekar and Deming, 1949) given by: 

var[𝑓 (𝑥)] ≃
(

𝜕𝑓
𝜕𝑥

)2
var(𝑥). (A.1)

If 𝑛1, 𝑛2 are fixed, and 𝑁 be the parameter, 𝑚 follows a hypergeometric distribution with p.d.f. in the form of:

𝑝(𝑚) =

(

𝑛1
𝑚

)(

𝑁 − 𝑛1
𝑛2 − 𝑚

)

(

𝑁
𝑛2

) ,

then the expected value and the variance of 𝑚 are given respectively by:
𝐸(𝑚) = 𝑛1𝑛2∕𝑁 = 𝑁𝑝1𝑝2,

and 

var(𝑚) = 𝑛2
( 𝑛1
𝑁

)

(

𝑁 − 𝑛1
𝑁

)(

𝑁 − 𝑛2
𝑁 − 1

)

≃ 𝑁𝑝1(1 − 𝑝1)𝑝2(1 − 𝑝2).
(A.2)

Based on (1), the variance of 𝑁̂ is:

var(𝑁̂) = 𝑛21𝑛
2
2var(

1
𝑚
),

which by the application of the delta method in (A.1), can be estimated as:

v̂ar(𝑁̂) ≃ 𝑛21𝑛
2
2

(

−1
𝑚2

)2
var(𝑚).

By substitute var(𝑚) from Eq.  (A.2), we obtain 

v̂ar(𝑁̂) ≃ 𝑛21𝑛
2
2
1
𝑚4

𝑁𝑝1𝑝2(1 − 𝑝1)(1 − 𝑝2)

≃ 𝑛21𝑛
2
2
𝑚
𝑚4

(
𝑛2 − 𝑚
𝑛2

)(
𝑛1 − 𝑚
𝑛1

)

≃
𝑛1𝑛2(𝑛1 − 𝑚)(𝑛2 − 𝑚)

𝑚3

≃ 𝑁̂
𝑛1 − 𝑚

𝑚
𝑛2 − 𝑚

𝑚
.

(A.3)

Appendix B. Proof of Theorem  1

To solve the optimization problem, our focus narrows down to minimizing the function 𝑠(𝑡) = 𝑞𝑡+𝑞𝑇−𝑡 with respect to the variable 
𝑡, where 𝑞 ∈ (0,1). Take note that 𝑠(𝑡) is symmetric in 𝑡 as 𝑠(𝑡) = 𝑠(𝑇 − 𝑡). Let 𝑡 = 𝑇 > 1, it can be shown that:

𝑠(𝑇 ) = 1 + 𝑞𝑇 ≥ 𝑠(𝑇 − 1) = 𝑞 + 𝑞𝑇−1.

This is correct as:
(1 − 𝑞) ≥ 𝑞𝑇−1(1 − 𝑞).

Let 𝑡 = 𝑇 − 1, it can be shown that:
𝑠(𝑇 − 1) = 𝑞 + 𝑞𝑇−1 ≥ 𝑠(𝑇 − 1) = 𝑞2 + 𝑞𝑇−2.

This is correct as:
𝑞(1 − 𝑞) ≥ 𝑞𝑇−2(1 − 𝑞),
10 
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or

𝑞 ≥ 𝑞𝑇−2.

In general, the argument can be continued as:
𝑞𝑡 ≥ 𝑞𝑇−(𝑡+1),

so that 
𝑠(𝑡) ≥ 𝑠(𝑡 + 1). (B.1)

as long as 𝑡 ≤ 𝑇 − 𝑡. If 𝑡 = 𝑇 − 𝑡 which can only be the case if 𝑇  is even, 𝑠(𝑡) becomes minimum for 𝑡 = 𝑇 ∕2. If 𝑇  is odd 𝑠(𝑡) becomes 
minimum for 𝑡 = (𝑇 − 1)∕2 or 𝑡 = (𝑇 − 1)∕2 + 1.
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