
-

Flow-acoustic resonance in deep and inclined cavities1

You Wei Ho1∗ and Jae Wook Kim2
2

1 Institute of Sound & Vibration Research, University of Southampton, Southampton, SO17 1BJ, United Kingdom3

2 Aeronautics & Astronautics, University of Southampton, Southampton, SO17 1BJ, United Kingdom4

(Dated: June 27, 2025)5

This paper presents numerical investigations of flow-acoustic resonances in deep and inclined6

cavities using wall-resolved large-eddy simulations. The study is based on a fixed aspect ratio of7

D/L = 2.632, subjected to two Mach numbers of 0.2 and 0.3 (with the focus on the latter) at three8

different angles of inclination (α = 30◦, 60◦, and 90◦). Fully turbulent boundary layers generated9

from independent precursor simulations are employed upstream of the cavities. The simulation10

results show significant differences in aeroacoustic response between inclined and orthogonal cavities,11

particularly at M∞ = 0.3, where the inclined cavities exhibit stronger resonances (by more than a12

20 dB) at a lower peak frequency (St = 0.276) compared to that of the orthogonal cavity, which13

occurred at St = 0.849. Acoustic modal analysis identifies these frequencies as the 1st and 2nd14

eigenmodes, respectively. Further analysis shows that the disparity in mode selection between the15

orthogonal and inclined cavities is linked with the hydrodynamic modes (vortex dynamics) that pair16

with the acoustic modes. In the orthogonal cavity, a 2nd hydrodynamic mode prevailed where two17

relatively small vortices were travelling across the cavity opening simultaneously. In the inclined18

cavities, however, a single large-scale roll-up vortex, a 1st hydrodynamics mode, is generated in19

relation with strong Kelvin-Helmholtz instability in the shear layer. More importantly, the vortex20

spends a substantial amount of its lifetime growing in size without travelling downstream rapidly.21

This results in a longer crossing time per cycle which correlates with the 1st acoustic eigenmode22

frequency (St = 0.276). In addition, an aeroacoustic resolvent analysis indicates that inclined23

cavities amplify acoustic responses more effectively and exhibit weaker source-sink cancellations24

than the orthogonal cavity. These mechanisms are identified as the primary contributors to the25

enhanced aeroacoustic responses in the inclined cavities. Finally, it is proposed that the ratio26

between acoustic particle displacement and momentum thicknesses may be used as a criterion to27

predict the onset of deep cavity resonance with the distinctive vortex dynamics identified in this28

paper.29

I. INTRODUCTION30

Flow-acoustic resonances driven by aeroacoustic instabilities in deep cavity flows produce high-intensity pressure31

waves at discrete frequencies, leading to detrimental effects such as noise pollution and structural fatigue in various32

engineering applications. These include safety valves [1, 2], closed side-branches in gas transport systems [3, 4],33

turbomachinery [5, 6], and riverine environments [7]. The origin of these resonances lies in the complex interaction34

between hydrodynamic instabilities and resonant acoustic fields [3, 8]. When airflow passes over a deep cavity under35

specific conditions, it can trigger self-sustained oscillations that couple with a depthwise acoustic mode, generating36

intense aerodynamic noise. In this process, acoustic resonance acts as the primary feedback mechanism, amplifying37

oscillations and inducing flow tone lock-ins [9]. This phenomenon is fundamentally different from oscillations in shallow38

cavities, which are predominantly governed by the Rossiter feedback mechanism driven by upstream acoustic feedback39

[10, 11]. Therefore, a better understanding of the distinct physical mechanisms underlying deep cavity oscillations is40

essential for mitigating their adverse effects in engineering applications.41

The aeroacoustics of deep cavity flows have been extensively studied in the scientific literature. Seminal works42

by [10, 12–14] established that deep cavity flows generate intense acoustic responses near depthwise acoustic modes.43

Rockwell and Naudascher [15] characterized this phenomenon as fluid resonant oscillation, driven by the interaction44

between shear-layer instabilities and depthwise acoustic resonances. Their research revealed that these oscillations45

originate from initial shear-layer instabilities near the upstream separation corner. As these instabilities propagate46

downstream, they interact with the cavity’s trailing edge and generate acoustic standing waves. This resonant acoustic47

field, in turn, induces velocity perturbations that reinforce shear-layer instabilities, thereby sustaining a closed feedback48

loop. In deep cavity systems, this loop is particularly pronounced due to their inherent susceptibility to minimally49

radiating depthwise acoustic modes [16]. As a result, these acoustic resonances can further amplify shear-layer50

instabilities, giving rise to highly coherent vortex structures frequently observed in deep cavity flows [17–20].51
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The presence of coherent vortices implies that the phenomenon of flow-acoustic resonances in deep cavities typically52

occurs within specific Strouhal number ranges, each corresponding to a distinct hydrodynamic mode of the flow53

field. These modes are characterized by the number of convecting vortex structures across the cavity opening that54

satisfy the requisite streamwise phase criterion [21–23]. Among these, flow-acoustic resonances driven by the 1st55

hydrodynamic mode are well-documented for generating the most intense acoustic responses, predominantly occurring56

at a Strouhal number of approximately St ≈ 0.4 [18]. In contrast, higher hydrodynamic modes produce weaker57

resonances at Strouhal numbers exceeding St ≈ 0.8 [9, 18]. Recent experimental investigations on closed side-58

branches have revealed an additional category of flow-acoustic resonance at a lower Strouhal number, St ≈ 0.27. This59

resonance is distinguished by exceptionally strong acoustic responses, surpassing the dynamic pressure of the flow60

[8, 9, 24–26]. Moreover, within this regime, the resonant acoustic field exerts a significant influence on the coherence61

and trajectory of vortex structures. Peters [8] observed that under these conditions, the amplification of instabilities62

and the intensification of shear-layer oscillations lead to highly nonlinear states, making precise characterization63

of the fluid resonant mechanism increasingly complex. However, despite substantial empirical evidence, a detailed64

quantitative analysis of the physical mechanisms governing these pronounced flow-acoustic resonances at St ≈ 0.2765

remains an unresolved challenge.66

Recent advances in modal analysis techniques including global linear stability analysis and receptivity analysis67

have become essential for investigating long-term flow instabilities and revealing the mechanisms behind instability in68

various fluid-flow systems [27–37]. Direct global and adjoint modes obtained from these methods offer critical insights69

into structural sensitivity within flow fields [28, 32, 35, 38]. Additionally, non-modal approaches, such as resolvent70

analysis, initially introduced by Trefethen et al. [39] and later extended to turbulent mean flows by McKeon et al.71

[40] provide a foundational framework for studying energy amplification and the structural response to perturbations72

across various frequencies. These methods have been applied to both shallow and deep cavity flows, yielding valuable73

insights into their underlying dynamics [41–44]. However, the application of resolvent analysis to examine flow-acoustic74

resonances in deep and inclined cavity flows remains unexplored. In addition, to our knowledge, this approach has75

not yet been used to identify the optimal forcing, response, and amplification mechanisms of acoustic perturbations76

that trigger flow-acoustic resonance in deep cavity configurations.77

To date, most numerical studies have focused primarily on orthogonal geometries [45–49]. Consequently, the78

mechanisms governing noise generation in turbulent flows over deep and inclined cavities in resonance remain poorly79

understood. In this paper, we will addresses these gaps by employing wall-resolved large-eddy simulations (LES) to80

examine the distinct vortex dynamics and noise generation process in both orthogonal and inclined configurations.81

In particular, the primary objective of this study is to explore the markedly different aeroacoustic responses of82

inclined cavities compared to their orthogonal counterparts. For the subsequent discussions, three angles of inclination83

(α = 30◦, 60◦, and 90◦) and two flow speeds (M∞ = 0.2 and 0.3) have been selected to highlight the unique aeroacoustic84

behaviours of inclined cavity flows. However, it is important to note that the mechanisms driving the transition of85

the aeroacoustic response across critical Mach numbers or optimal inclination angles are not the central focus of this86

paper.87

This paper is structured and written in the following order. Section II outlines the computational setup and methods88

employed in this study. Sections III and IV present a detailed investigation of the acoustic and hydrodynamic fields89

around the cavity configurations. In Section V, the focus shifts to acoustic amplifications and source-sink cancellations90

through aeroacoustic resolvent analysis, with particular attention given to the critical role of the ratio of acoustic91

particle displacement to momentum thickness in defining distinct resonance behaviours. Finally, concluding remarks92

are provided in Section VI.93

II. DESCRIPTION OF PROBLEM AND THE COMPUTATIONAL SET-UP94

The present study investigates the cavity section with a length of L/h = 0.608 and depth of D/h = 1.6, enclosed95

in a channel with a height of 2h, as shown in figure 1. The Reynolds number based on the cavity opening length,96

L = 0.038 m, is set to Re∞ = 261, 891 and a freestream Mach number of M∞ = 0.3 based on the ambient speed of97

sound (for air) of a∞ = 340.2 m/s and the reference temperature of T∞ = 288 K are also considered in this work.98

The current numerical investigation employs a high-resolution implicit large-eddy simulation (ILES) method based99

on a wavenumber-optimized discrete filter [50]. The filter is applied directly to the solution (conservative variables) at100

every time step and acts as an implicit sub-grid scale (SGS) model that enforces the dissipation of scales smaller than101

the filter cutoff wavelength. Garmann et al. [51] performed an extensive analysis of the ILES technique compared to102

the traditional implementation of an explicit SGS model and concluded that ILES simulations can correctly capture103

the flow physics when the grid is subjected to an appropriate resolution.104
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(a) (b)

FIG. 1. Visualizations of the current computational domain of the deep and inclined cavity configuration enclosed in a channel.
(a) Instantaneous non-dimensional Q-criterion iso-surfaces (Q = 5) coloured by non-dimensional vorticity magnitude (|ωi|),
unveiling three-dimensional vortices within the turbulent boundary layer. (b) A spanwise view of the computational domain
used in the current numerical investigation. The cavity length and depth are denoted by L and D, respectively.

A. Governing equations and numerical methods105

In this work, the full 3-D compressible Navier-Stokes equations (with a source term for sponge layers included) are106

used, which can be expressed in a conservative form, transformed onto a generalised coordinate system as107

∂

∂t

(
Q

J

)
+

∂

∂ξi

(
Ej −Re−1

∞ M∞Fj

J

∂ξi
∂xj

)
= −a∞

L

S

J
, (1)108

where the indices i = 1, 2, 3 and j = 1, 2, 3 denote the three dimensions. The vectors of the conservative variables,109

inviscid and viscous fluxes (that account for losses due to viscous dissipation and thermal conduction), are given by110

Q = [ρ, ρu, ρv, ρw, ρet]
T ,

Ej = [ρuj , (ρuuj + δ1jp), (ρvuj + δ2jp), (ρwuj + δ3jp), (ρet + p)uj ]
T ,

Fj = [0, τ1j , τ2j , τ3j , uiτji + qj ]
T ,

 (2)111

with the stress tensor and heat flux vector written as112

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂ui
∂xi

)
, qj =

µ

(γ − 1)Pr

∂T

∂xj
, (3)113

where ξi = {ξ, η, ζ} are the generalised coordinates, xj = {x, y, z} are the Cartesian coordinates, δij is the Kronecker114

delta, uj = {u, v, w}, et = p/[(γ−1)ρ]+ujuj/2 and γ = 1.4 for air. The local dynamic viscosity µ is calculated by using115

Sutherland’s law [52]. In the current set-up, ξ, η and ζ are aligned in the streamwise, vertical and spanwise directions,116

respectively. The Jacobian determinant of the coordinate transformation (from Cartesian to the generalised) is given117

by J−1 = |∂(x, y, z)/∂(ξ, η, ζ)| [53]. The extra source term S on the right-hand side of (1) is non-zero within the118

sponge layer only, which is described in Kim et al. [54, 55]. In this paper, the freestream Mach and Reynolds numbers119

are defined as M∞ = u∞/a∞ and Re∞ = ρ∞u∞L/µ∞ where a∞ =
√
γp∞/ρ∞ is the ambient speed of sound and u∞120

is the speed of the freestream mean flow. The governing equations are non-dimensionalised based on the streamwise121

cavity opening length L = 38 mm for length scales, the ambient speed of sound a∞ for velocities, L/a∞ for time122

scales and ρ∞a
2
∞ for pressure, unless otherwise notified. Temperature, density and dynamic viscosity are normalised123

by their respective ambient values: T∞, ρ∞ and µ∞.124

The governing equations given above are solved using high-order accurate numerical methods specifically developed125

for aeroacoustic simulation on structured grids. The flux derivatives in space are calculated based on fourth-order126
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pentadiagonal compact finite difference schemes with seven-point stencils [56]. Explicit time advancing of the numeri-127

cal solution is carried out using the classical fourth-order Runge-Kutta scheme with a CFL number of 0.95. Numerical128

stability is maintained by implementing sixth-order pentadiagonal compact filters for which the cutoff wavenumber129

(normalized by the grid spacing) is set to 0.85π. In addition to the sponge layers used, characteristics-based non-130

reflecting boundary conditions (NRBC) based on [57] are applied at the inflow and outflow boundaries to prevent131

any outgoing waves from returning to the computational domain. Periodic conditions are used across the spanwise132

boundary planes unless otherwise stated. Slip (no penetration) and no-slip wall boundary conditions based on [58]133

are applied at the top and bottom channel walls, respectively. The top wall boundary is intended to replicate an134

existing experimental set-up at the University of Southampton. Those who use a different boundary setting on the135

top boundary, either experimental or computational, will need to take the difference into consideration when they136

attempt to compare the data.137

The computation is parallelized via domain decomposition and message passing interface (MPI) approaches. The138

compact finite difference schemes and filters used are implicit in space due to the inversion of pentadiagonal matrices139

involved, which requires a precise and efficient technique for parallelization to avoid numerical artifacts that may140

appear at the subdomain boundaries. A recent parallelization approach based on quasi-disjoint matrix systems [59]141

offering super-linear scalability is used in the present paper.142

B. Simulation set-up and discretisation of the problem143

The cavity geometry and the computational domain used in this work comprises x/L ∈ [−1.64, 4.93] in the stream-144

wise direction, y ∈ [−2.63, 3.29] in the vertical direction and z/L ∈ [0, 0.822] in the spanwise direction. The entire145

computational domain; the inner region (physical domain) where meaningful simulation data are obtained; and, the146

sponge layer zone is defined as147

D∞ = {x |x/L ∈ [−1.644, 4.934], y ∈ [−2.632, 3.289], z/L ∈ [0, 0.822]},
Dphysical = {x |x/L ∈ [−1.644, 3.289], y ∈ [−2.632, 3.289], z/L ∈ [0, 0.822]},

Dsponge = D∞ −Dphysical.

 (4)148

The physical domain, D∞ consists of a deep cavity with an aspect ratio of D/L = 2.632 enclosed in a straight149

rectangular channel with a channel half-height of h/L = 1.644. The channel region is discretised by 960× 290× 480150

grid points in streamwise, vertical, and spanwise directions. A total of 240 × 240 × 480 grid points are used in the151

streamwise, vertical and spanwise directions, respectively, in the cavity region. The mesh in the wall-normal direction152

is refined close to the viscous wall y+ ≈ 1 to maintain a sufficiently high level of near-wall grid resolution throughout153

the viscous wall surfaces.154

Re∞ M∞ α δ∗/L θ/L H

174,594 0.2 90◦ 0.0434 0.0350 1.24

174,594 0.2 60◦ 0.0458 0.0368 1.25

174,594 0.2 30◦ 0.0442 0.0355 1.24

261,891 0.3 90◦ 0.0379 0.0312 1.22

261,891 0.3 60◦ 0.0447 0.0360 1.24

261,891 0.3 30◦ 0.0408 0.0332 1.23

TABLE I. The boundary layer information for the current cavity simulations measured at x = −0.1.

The inlet is located at x/L = −1.664 upstream of the cavity, where the turbulent inflow data is injected. The outflow155

boundary is placed at a relatively remote location downstream from the cavity, allowing a sufficient distance for the156

vortices to dissipate. A precursor simulation is employed to generate the prerequisite turbulent inflow data for the157

cavity simulation. The precursor simulation domain size (Lx×Ly×Lz) was set to 4δ99×1δ99×2δ99 with 480×240×480158

grid points in the streamwise, vertical and spanwise directions, respectively. The initial boundary layer thickness,159

δ99 is determined analytically based on Na and Lu [60], and the channel flow is initialised with the turbulent mean160

flow profile according to Spalding [61]. In this precursor channel flow simulation, periodic boundary conditions are161

applied in streamwise and spanwise directions, and a streamwise pressure gradient is applied to maintain the desired162

mass flow rate. The precursor simulation is completed when the mean flow profile is converged, and the obtained163

instantaneous flow solutions are injected into the cavity simulation through the inlet plane. Figure 2 shows a close164

agreement of the time-averaged turbulent velocity profile and the Reynolds stresses between the current half-channel165
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FIG. 2. (a) Time-averaged velocity profile of the turbulent boundary layer; and (b–d) Reynolds stresses obtained from the
current precursor half-channel LES (Reτ ≈ 3900), compared with the full-channel DNS (Reτ ≈ 4200) by Lozano-Durán and
Jiménez [62].

LES and a full-channel DNS by Lozano-Durán and Jiménez [62], conducted at Reτ ≈ 3900 and 4200, respectively.166

The boundary layer data for the current simulations measured at x = −0.1 (10% away from the upstream cavity167

corner), are listed in Table I.168169

C. Definition of variables for statistical analysis170

Data processing and analysis are performed upon the completion of the simulation. The main property required in171

this study is the power spectral density (PSD) function of the pressure fluctuations around the cavity. To facilitate172

the following discussions, we defined the pressure fluctuations here as173

p′(x, t) = p(x, t)− p(x), (5)174

where p(x) is the time-averaged pressure field. Following the definitions used in Goldstein [63], the PSD functions of175

the pressure fluctuations (based on frequency and one-sided) are then calculated by176

Spp(x, f) = lim
T→∞

p̂(x, f, T )p̂∗(x, f, T )

T
, (6)177

where p̂ is an approximate Fourier transform of p, respectively, based on the following definition:178

p̂(x, f, T ) =

∫ T

−T

p′(x, t)e−2πift dt, (7)179

and, ‘∗’ denotes a complex conjugate. Similarly, the magnitude and the respective phase of the single-sided Fourier180
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transform pressure field are calculated by181

|p(x, f, T )| = 2
√
p̂(x, f, T )p̂∗(x, f, T ), (8)182

183

Φp(x, f, T ) = arctan

{
Im[p̂(x, f, T )]

Re[p̂(x, f, T )]

}
. (9)184

In the above equations, T represents the half-length of the time signals used for the approximate Fourier transform.185

The same procedures and notation are used for other field quantities later in this paper.186

D. Aeroacoustic analysis tools based on APEs187

The Acoustic Perturbation Equations (APEs) proposed by Ewert and Schröder [64] have been successfully demon-188

strated as a useful hybrid approach for accurately predicting acoustic propagation within cavity flows by using acoustic189

sources computed directly from fluid simulations [65, 66]. In this paper, we employ APEs as a linear operator to190

explore the dominant input-output characteristics of deep cavity systems based on the time-averaged mean flow states.191

To achieve this, we incorporate the APE-4 formulation, expressed as192

∂p′

∂t
+ c̄2∇ ·

(
ρ̄u′ + ū

p′

c̄2

)
= c̄2qe, (10)193

194

∂u′

∂t
+∇ (ū · u′) +∇

(
p′

ρ̄

)
= qm, (11)195

where the noise sources are given by196

qc = −∇ · (ρ′u′)
′
+

ρ̄

Cp

Ds′

Dt
, (12)197

198

qm = − (ω × u)
′
+ T ′∇s̄− s′∇T̄ −

(
∇u′ · u′

2

)′

+

(
∇ · τ̄
ρ

)′

. (13)199

The variables marked with a prime symbol denote fluctuating quantities, whereas those with an overbar represent200

time-averaged values. Among the source terms, those encapsulating two primed quantities are generally smaller201

than their counterparts, and consequently, their contribution to the overall sources is considered negligible and thus202

omitted. In addition, considering the high Reynolds number and relatively low Mach number flow discussed in this203

paper, the contributions of viscosity and entropy to the sources can be safely omitted. Consequently, the Lamb vector,204

defined as (ω × u)′, is considered the dominant source term. Applying these simplifications, Eq. (10) and Eq. (11)205

are rewritten in a compact form, expressed as206

∂q′

∂t
= L(q̄)q′ + f ′, (14)207

where L(q̄) denotes the linear operator about the mean flow state q̄ = [p̄, ū, v̄, w̄]
T

and f ′ represents the forcing208

input comprised of the Lamb vector. Accordingly, a modal perturbation of the form209

q′(x, y, z, t) = q̂(x, y) exp i(βz − ωt) + complex conjugate, (15)210

is imposed to Eq. (14) to form an input-output dynamics, expressed as211

q̂ω = −[iωI +L(q̄)]−1f̂ω = R(q̄;ω)f̂ω. (16)212

Here, the resolvent operator R(q̄;ω) relates the input forcing (i.e., Lamb vector), f̂ω, to the output fields as acoustic213

quantities (i.e., acoustic pressure fields), q̂ω, in the frequency space. The complex eigenvalue is represented by214

ω = ωr + iωi, with the real part of the eigenvalue, ωr, determining the physical frequency, while its imaginary215

component determines the radiation loss associated with the acoustic eigenmode (ωi < 0). Furthermore, the acoustic216

eigenmodes of the cavity systems, which may be influenced by the mean flow field [65], can be retrieved by solving the217
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eigenvalue problem presented in the homogeneous form of Eq. (16). Accordingly, the discretized resolvent operator218

is solved using singular value decomposition to determine the directions spanned by the forcing input and the state219

output vectors, such as220

R(q̄;ω) = ÛΣV̂ H , (17)221

where Û = [Û1, Û2, Û3, . . . ] and V̂ = [V̂1, V̂2, V̂3, . . . ] provide the leading optimal sets of responses and the222

corresponding forcing mode vectors. The amplification gains of the leading optimal sets are determined by the223

corresponding singular values Σ = diag(σ1, σ2, σ3, . . . ), which are arranged in descending order. The superscript224

H in Eq. (17) indicates the Hermitian transpose operation. In this study, non-penetrating boundary conditions225

(i.e., zero wall-normal velocity perturbation) are enforced at the wall. Additionally, non-reflecting characteristic226

boundary conditions introduced by Thompson [67, 68] and damping sponge regions are used in combination to227

minimize artificial numerical reflections. The approximation of spatial derivatives was achieved using a standard228

second-order finite difference scheme. Finally, the eigenvalues and eigenvectors of the linear operator were retrieved229

via the Krylov-Schur algorithm [69]. All eigenmodes presented in this paper achieved convergence within a tolerance230

level of ||ωQ̂−LQ̂|| ≤ O(10−14).231

III. PRESSURE FLUCTUATIONS AND OSCILLATION FREQUENCIES232

The self-sustained fluid-resonant oscillation in deep and inclined cavities arises from the interaction between shear-233

layer fluctuations over the cavity opening and an acoustic mode within the cavity. This interaction amplifies large-scale234

vortical structures, altering the flow field and producing intense acoustic pressure fluctuations. This process efficiently235

converts local flow energy into acoustic energy and is illustrated in Figure 3.236

(a) (b) (c)

FIG. 3. Large-scale vortical structures are visualized through iso-contours of instantaneous pressure fluctuations, with the flow
direction from left to right. Surface contours of wall-pressure fluctuations reveal the prominent acoustic field emanating from
deep cavities for inclination angles of (a) α = 90◦, (b) 60◦ and (c) 30◦, respectively.

237

238

This section examines the aeroacoustic behaviour of wall-pressure fluctuations in deep cavities subjected to three239

distinct inclination angles at two specific Mach numbers, resulting in six simulations. Initially, simulations are con-240

ducted using a turbulent inflow dataset at a Mach number of M∞ = 0.3 for four million time steps, corresponding to241

220 non-dimensional time units. After this period, a steady-periodic state of the wall-pressure signal is achieved at242

the cavity base for all inclination angles, as shown in Figure 4(a). Subsequently, the Fourier transform is applied to243

the pressure time signals over an additional non-dimensional time span of approximately 740 samples (collected every244

0.164 time unit) from the computational data, covering a total non-dimensional time of 120. This interval captures245

approximately ten cycles of the lowest fundamental frequency. The resulting time signals are nearly periodic, and246

any steady component is eliminated prior to the Fourier transform. Various windowing functions have been tested,247

and the results exhibit comparable spectrum compositions. The procedures are then repeated with a turbulent inflow248

dataset at a Mach number of M∞ = 0.2, as previously studied by Ho and Kim [23]. The corresponding wall-pressure249

signals for each inclination angle are shown in Figure 4(b). Notably, the time signals from inclined cavities exhibit250

highly periodic oscillations, highlighting the self-sustaining nature of the oscillation at both Mach numbers.251252
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FIG. 4. The spanwise-averaged time signals of pressure fluctuations on the base surface of deep cavities are presented for ( )
α = 90◦, ( ) 60◦ and ( ) 30◦ at free-stream Mach numbers of (a) M∞ = 0.3 and (b) 0.2, respectively.

The power spectra of wall-pressure fluctuations at M∞ = 0.2 are depicted in figure 5(b). The figure shows that all253

three cavity cases (α = 30◦, 60◦, and 90◦) exhibit flow-acoustic resonance closely associated with the fundamental254

frequency (St = 0.386). The authors have previously investigated the orthogonal cavity flow characteristics at this255

fundamental frequency [23], where the critical Mach number for this particular cavity geometry (D/L = 2.632)256

and inflow condition (θ/L = 0.0345) was estimated to be M∞ = 0.2. This critical condition was understood to257

result from a lock-in event between the 1st Rossiter’s streamwise feedback and depthwise acoustic resonance modes.258

Therefore, any deviation in flow speed from this Mach number is expected to produce a sub-optimal flow-acoustic259

resonance. This assumption is supported by the weaker acoustic response generated from the same orthogonal cavity260

at M∞ = 0.3, as shown in figure 5(a). This weak resonance at St = 0.849 coincides with the 2nd Rossiter’s mode, i.e.261

Stn = (n−1/4)/(M∞+1/κ) where κ = 0.57 and n = 2. However, contrary to previously established expectations, the262

inclined cavities at this Mach number produce an entirely unexpected result. First, the fundamental peak frequency263

shifted to a lower value of St = 0.276 which the Rossiter’s model did not predict. It is noteworthy that previous264

experimental studies on orthogonal deep cavities by [8, 9, 24, 25] also reported a critical resonance occurring at the265

similar frequency, which does not conform to existing flow-acoustic resonance theories. Second, and more importantly,266

the inclined cavities generated a significant increase in the peak amplitude by nearly 30 dB compared to the orthogonal267

cavity case and by more than 10 dB even compared to the “optimal” flow-acoustic resonance at M∞ = 0.2. The268

observed shift in the fundamental peak frequency and substantial increase in peak amplitude for inclined cavities at269

M∞ = 0.3 suggest novel flow-acoustic interaction mechanisms at play. Consequently, this paper aims to investigate270

the underlying physical processes responsible for these unexpected and profound results.271272

Figure 6 presents snapshots of the spanwise-averaged instantaneous pressure fluctuations captured at four sequential273

time intervals, each separated by T/4, where T = 1/fp represents the oscillation period corresponding to the tonal274

frequency identified in the pressure spectra of Figure 5(a). These snapshots illustrate the synchronization between275

shear-layer fluctuations and instantaneous pressure oscillations within the deep and inclined cavities. Here, we define276

a surface-averaged acoustic pressure at the cavity base to determine the phase of the resonance cycle:277

χ(t) =
1

Ab

∫
Ab

p′(xb, t)dA, (18)278

where xb and Ab denote the Cartesian coordinates on the surface area of the cavity base, respectively. For brevity,279

the following discussion primarily focuses on the α = 60◦ inclined cavity. Figure 6(a) shows the beginning of an280

oscillation cycle of χ, during which a distinct large-scale vortex is positioned slightly above the cavity opening, as281

revealed by the low-pressure zone near the downstream corner. At this point, nearly complete destructive interference282

occurs between the reflected compressive wave (i.e., p′ > 0) and the incident rarefaction acoustic wave (i.e., p′ < 0),283

resulting in an acoustic pressure equilibrium within the cavity (i.e., χ = 0). Shortly after this, the rarefaction acoustic284

wave from the cavity base begins to dominate the cavity and the shear layer moves downward. Also, as the large-scale285

vortical structure impinges on the downstream corner, additional rarefaction waves are generated. These rarefaction286

waves keep reducing the acoustic pressure within the cavity until it reaches its minimum value, as depicted in figure287

6(b). Meanwhile, a low-pressure region appears near the upstream corner, indicating the emergence of the next288
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FIG. 5. The power spectral density (PSD) of the spanwise-averaged time signals of wall-pressure fluctuations on the base
surface of deep cavities is presented for ( ) α = 90◦, ( ) 60◦ and ( ) 30◦ at free-stream Mach numbers (a) M∞ = 0.3
and (b) 0.2, respectively.

vortical structure. Also, the main streamlines start to collide with the downstream corner, meaning that the flow289

momentum decreases and the pressure increases there, as shown in figure 6(c). At this instant (χ = 0), another290

complete destructive interference occurs between the compressive and rarefaction waves. Afterwards, the compressive291

waves begins to dominate the cavity until χ reaches its maximum value as depicted in figure 6(d). During this process,292

the main streamlines gradually rise from the downstream corner, the flow stagnation lessens and the large-scale vortex293

convects downstream before being ejected from the cavity - going back to figure 6(a).294295

The discussions above implicitly identified two main types of pressure fluctuations, namely the local hydrodynamic296

fluctuations near the cavity opening and acoustic fluctuations surrounding the cavity. The distinction between these297

two components can be further clarified through the magnitude and phase distributions of the Fourier-transformed298

pressure fluctuations. Accordingly, figure 7 shows that the pressure field inside the cavity appears to be primarily299

stationary (i.e., constant phase), with a maximum magnitude (i.e., a pressure node) consistently located at the cavity300

base across all inclinations. This evidence suggests that the pressure field inside the cavity is predominantly acoustic301

in nature and contributed by the depthwise acoustic resonances. Furthermore, these resonances are highly localized302

within the inclined cavities and resemble the “nearly trapped acoustic mode”, that exhibits minimal radiation losses,303

according to Koch [16].304

To facilitate subsequent investigations, we decompose the pressure fluctuations around the cavity into their hydro-305

dynamic and acoustic components using momentum potential theory (MPT) developed by Doak [70]. Essentially,306

Doak’s MPT separates the momentum density, ρu, into rotational and irrotational components through a Helmholtz307

decomposition. The Helmholtz decomposition of ρu may be written as308

ρu = B −∇ψ, ∇ ·B = 0, (19)309

where B and ∇ψ are the solenoidal and irrotational components of ρu, respectively. Substituting Eq. (19) into the310

continuity equation yields a Poisson equation for the irrotational component, with a source term dependent on density311

fluctuation,312

∇2ψ =
∂ρ

∂t
. (20)313

For a single phase continuum fluid, ψ is separated into acoustic component (irrotational and isentropic, denoted ψA)314

and entropic component (irrotational and isobaric, ψE) components, governed by the exact equations315

ψ = ψA + ψE , ∇2ψA =
1

c2
∂ρ

∂t
, ∇2ψE =

∂ρ

∂E

∂E

∂t
. (21)316

Considering the low Mach number in this study, the entropy (thermal) contribution is assumed to be relatively small317

compared to the acoustic contribution, and therefore ψE is not included in the subsequent calculation. Then, the318

momentum equation in terms of the hydrodynamic and acoustic components is obtained by substituting Eq. (19)319
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(a)

(b)

(c)

(d)

FIG. 6. Snapshots of the spanwise-averaged instantaneous pressure fluctuations p′ are shown with superimposed streamlines.
The snapshots are taken at time intervals of T/4 between successive plots (a) to (d), where T represents the oscillation cycle
period of χ. The first, second, and third columns correspond to deep cavities with α = 90◦, 60◦ and 30◦, respectively. Here,
compressive (p′ > 0) and rarefaction (p′ < 0) acoustic waves are visualized as red and blue regions within the interior of the
cavity.

into the momentum equation, expressed as320
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(a) (b) (c)

FIG. 7. The spatial distribution of Fourier-transformed pressure fluctuations at the tonal frequency is shown for deep cavities
with (a) α = 90◦, (b) 60◦ and (c) 30◦. The top row of the contour plots represents the magnitude |p′|, while the bottom row of
the contour plots represents the cosine of the phase cos[Φp′(x, f)−Φχ(x, f)]. Here, Φχ(x, f) denotes the phase of the Fourier
transform of χ, as defined in Eq. (18).

∂

∂t
(B −∇ψ) +∇ ·

[
(B −∇ψ)(B −∇ψ)

ρ
− τij

]
+∇p = 0. (22)321

By taking the divergence of Eq. (22), the Poisson equation for the hydrodynamic pressure fluctuation, p′H322

∇2p′H = SH + S̃H , (23)323

and the Poisson equation for the acoustic pressure fluctuation, p′A324

∇2p′A = SA + S̃A, (24)325

are derived. Accordingly, the hydrodynamic and acoustic pressure fluctuations are obtained by solving the Poisson326

equations in Eq. (23) and Eq. (24), respectively. The numerical implementation is described extensively in [23, 71]327

and the evaluations of the linear (SH and SA) and the non-linear source terms (S̃H and S̃A) are detailed in [72], which328

are not repeated here for brevity.329

Figure 8 reveals notable differences in the spatial distribution of pressure gradients for the acoustic components330

across orthogonal and inclined cavities. In particular, the acoustic pressure gradient tends to concentrate more331

intensely near the downstream corner in inclined cavities, in contrast to the symmetric distribution observed in the332

orthogonal cavity. This discrepancy in the spatial distribution of the acoustic pressure gradient is important for333

elucidating the noise generation process, which will be further discussed in Section V. Additionally, the difference in334

magnitude of the acoustic pressure gradient indicates that the resonant acoustic fields in inclined cavities may produce335

higher acoustic particle velocities compared to those in the orthogonal cavity. To quantify these observations, the336

induced acoustic particle velocity along the cavity opening region is approximated as being proportional to the acoustic337

pressure gradient, using the isentropic Euler equations [73], as expressed by338

dva
dt

= −1

ρ

∂pa
∂y

, (25)339

where ṽa represents the estimated acoustic particle velocity and pa is the decomposed acoustic pressure field. Then,340
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(a) (b) (c)

FIG. 8. The contour plots illustrate the spatial distribution of the magnitude of the decomposed Fourier-transformed pressure
gradient associated with the acoustic component |∂pA/∂y| at the tonal frequency for (a) α = 90◦, (b) 60◦ and (c) 30◦.

by considering a modal fluctuation of the acoustic pressure and spatially averaging the acoustic particle velocity across341

the cavity opening, we obtain an averaged acoustic particle velocity that oscillates across the cavity opening, as given342

by343

va =
1

L

∫ x=L

x=0

1

2πf

∂pa
∂y

dx. (26)344

At tonal frequencies, cavities with inclinations of (α = 90◦, 60◦, and 30◦) exhibit an average acoustic particle velocity345

across the cavity opening of approximately (|va|/u∞ ≈ 9.3×10−3, 2.5×10−1, and 1.1×10−1), respectively. For inclined346

cavities, these amplitude levels are traditionally categorized as “high pulsation levels”, according to Bruggeman347

[3, 74]. Previous studies by Peters [8] have demonstrated that under such extreme conditions, the resonant field348

can significantly alter the vortex trajectory, causing the vortex to enter and exit the cavity rather than following349

the parallel path of an unperturbed shear layer. These intense flow dynamics align with the temporal evolution of350

instantaneous pressure fluctuations and shear-layer oscillations observed in figure 6. In contrast, the acoustic particle351

velocity magnitude in the orthogonal cavity corresponds to “low pulsation levels”, reflecting the subdued shear-layer352

oscillation. This behavior will be further discussed and visualized later in figure 13.353

Figure 9(a) presents a comparison of pressure spectra for all cavity oscillations at M∞ = 0.3, similar to that shown354

in figure 5(a), with frequencies here expressed in Helmholtz numbers, He = fL/a∞, to enable direct comparison with355

the first three least-damped acoustic modes (eigenmodes) obtained from the modal analysis of APEs. These acoustic356

eigenmodes are characterized by complex resonance frequencies, with the real part indicating the physical resonance357

frequencies and the imaginary part measuring the radiation losses (i.e., damping) of the resonances, as outlined in358

Subsection IID. Here, the damping levels may provide useful indications of the relative amplitudes of resonance359

between different modes when an identical acoustic input is imposed. It worth mentioning here that the eigenmode360

analysis is purely based on acoustic perturbation with no flow fluctuation (feedback) involved. The eigenmodes361

analysis indicates possible frequencies (or around them) at which an acoustic resonance may occur. The damping362

levels may be indicative of the relative amplitudes of resonance between different modes when an identical acoustic363

input is imposed without feedback from the flow.364

Figure 9(b) shows that the tonal frequencies of the cavity oscillations atM∞ = 0.3 all reside close to their respective365

acoustic eigenmodes, highlighting the important role of acoustic resonances in supporting the oscillation frequency366

in deep and inclined cavities. When comparing the orthogonal and inclined cavity cases, a 1st depthwise acoustic367

mode is excited in the inclined cavities which have lower radiation losses than the 2nd mode excited in the orthogonal368

cavity. As discussed by Koch [16], acoustic modes with higher radiation losses (i.e., a more negative imaginary part of369

the complex frequency) radiate and dissipate more energy into the surroundings and less energy contained within the370

cavity. This is indeed revealed in figure 10. The inclined cavities (1st mode) show much less leakage of acoustic energy371

into the far field than the orthogonal cavity (2nd mode). A higher level of acoustic (pulsation) energy contained within372

the inclined cavities means that they have the potential to excite the shear layer at a greater magnitude. However,373

the selection of oscillation frequency in deep and inclined cavities is governed by multiple factors, with the disparity374

in radiation losses of depthwise acoustic modes being only one contributing aspect. In the following sections, we375

examine how the vortex dynamics (as a result of the shear-layer perturbation) and the acoustic response of the cavity376

influence frequency selection, particularly at St = 0.276 in inclined cavities.377
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FIG. 9. Plot (a) presents the power spectral density (PSD) of the spanwise-averaged wall-pressure fluctuations for ( )
α = 90◦, ( ) 60◦ and ( ) 30◦ at M∞ = 0.3, with frequency expressed as the Helmholtz number (He = fL/a∞). The
tonal frequencies from the LES, indicated by the vertical dashed lines ( ) at He = 0.083 and He = 0.255, are compared
in panel (b) with the first three least-damped depthwise acoustic modes (eigenmodes) obtained from the modal analysis of
APEs for cavities with ( ) α = 90◦, ( ) 60◦ and ( ) 30◦. Note that the orthogonal cavity produced a resonance with a 2nd
depthwise acoustic mode and the inclined cavities with a 1st mode. The 1st mode exhibits less radiation losses meaning that
more acoustic energy is contained within the cavity (to excite the shear layer). Furthermore, the frequencies of the depthwise
acoustic modes closely match the first classical acoustic quarter-wave (e.g., He = 0.095) and the third acoustic quarter-wave
(e.g., He = 0.285) of a closed tube. In experimental studies, any slight discrepancies in frequency from this classical prediction
are typically minimized by applying end corrections, see Yang et al [9], for example.

(a) (b) (c)

FIG. 10. The contour plots depict the spatial distribution of the pressure magnitude for the eigenmode at frequency nearest to
the tonal frequency in cavities with (a) α = 90◦, (b) 60◦ and (c) 30◦. For fair comparisons, the magnitude of the eigenvector
is normalised such that it is unity at the base of the cavity.

IV. HYDRODYNAMIC FIELDS378

In this section, we discuss the hydrodynamic fields near the cavity opening in detail. As mentioned, the location of379

the coherent vortical structure is crucial to the acoustic emission process. Therefore, an accurate description of the380

position and path traveled by the vortical structure, which is a function of time, is essential for this investigation.381

Generally, the location of the vortical structure can be approximated using the pressure minima technique, as shown382

in Section III. However, it is challenging to justify an accurate quantification of the hydrodynamic mode based on383

the number of discrete low-pressure spots [23]. To overcome this limitation, the location of the vortical structure is384

identified using the equivalent Q-criterion [75], which is given by385

Q = ϵijϵji −
1

2
ω2
i ≈ −∇2p̃H/ρ∞, (27)386
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where ϵij =
1
2 (∂ui/∂xj+∂uj/∂xi) represents the rate of strain, ωi denotes the vorticity of the velocity field, and ∇2p̃H387

is the Laplacian of the hydrodynamic pressure field. This formulation offers two distinct advantages: first, Eq. (27)388

establishes a direct link between the velocity gradient field and the hydrodynamic pressure field to accurately pinpoint389

the location of the vortex. Second, the positive and negative values of the Q-criterion provide valuable insights into390

the strain rate and vorticity of the velocity fields, which are essential for understanding subsequent noise generation391

mechanisms [76].392

Figure 11 shows an oscillation cycle of χ similar to that of figure 6, with particular attention now given to the vortex393

dynamics near the cavity opening region. The Q-criterion, calculated from Eq. (27), is plotted and superimposed394

with streamlines to indicate the shear-layer oscillations near the cavity opening. For brevity, we examine the vortex395

dynamics within the α = 60◦ inclined cavity. Figure 11(a) shows the instant when a large-scale vortex, characterized396

by Q < 0, is located slightly above the cavity opening line at the downstream corner. The vorticity-dominated region397

near the downstream walls is associated with low hydrodynamic pressure (p′H < 0) and is visualized in figure 12. These398

hydrodynamic wall-pressure fluctuations act as a dipole noise source from the surface integral of Curle’s equation [77],399

which were previously identified as the dominant noise source in both shallow and deep cavities [78, 79]. Therefore,400

the presence of low hydrodynamic wall-pressure fluctuations (p′H < 0) correspond to generating rarefaction acoustic401

waves (p′A < 0), which at this point destructively interfere with compressive acoustic waves (p′A > 0) reflected from402

the cavity base during the preceding cycle. This destructive interference leads to the acoustic pressure equilibrium403

within the cavity (i.e., χ = 0), as previously discussed in figure 6(a).404

Continuing to examine the α = 60◦ case, as the large-scale vortex sweeps past the downstream corner, it induces405

stronger interaction with the vorticity field and the downstream walls. At this stage, the additional rarefaction406

waves undergo constructive interference with the acoustic waves reflected from the base of the cavity, until the large-407

scale vortex is completely ejected from the cavity, as shown in figure 11(b). The ejection of the vortex triggers an408

immediate downward flapping of the shear-layer near the upstream corner, accompanied by the emergence of small-409

scale vortices within the separated shear-layer. These small vortices gradually grow and merge, eventually forming a410

single large-scale vortex near the upstream corner, as illustrated in figure 11(c). The further downstream convection411

and development of this large-scale vortex before completing the feedback oscillation cycle is shown in figure 11(d).412

In contrast to the orthogonal cavity case, the recurring interaction between the escaping vortical structure and the413

downstream corner in inclined cavities mirrors the well-documented phenomenon of “vortex above corner” interaction,414

as reported by Tang and Rockwell [80].415

Additionally, we employ the Direct Lyapunov Exponents (DLE) method introduced by Haller [81, 82] to identify416

the Lagrangian Coherent Structures (LCS) present in the turbulent cavity flow fields. The DLE field is defined as417

DLE∆T (x0, t0) =
1

2∆T
log(σT (x0, t0)), (28)418

where σT represents the square of the largest singular value of the Cauchy-Green deformation tensor such that419

σT (x0, t0) = λmax

([
∂x(t0 +∆T, x0, t0)

∂x0

]T [
∂x(t0 +∆T, x0, t0)

∂x0

])
, (29)420

and x(t, x0, t0) denotes the position of a particle at time t, initiating at position x0 at time t0. The DLE field is421

calculated by integrating trajectories in backward time (∆T < 0) and the ridges in the DLE field capture attracting422

Lagrangian coherent structures (attracting LCS) in the flow field [81]. The integration time, ∆T , is adjusted to achieve423

the desired level of detail in the calculation without compromising the location of the attracting LCS boundary. The424

DLE field is visualised in figure 13.425

Based on figures 11 – 13 (also video clips provided as a supplementary material to this paper), we highlight that426

there is a distinctive flow mechanism in the inclined cavities which is significantly different from that of the orthogonal427

cavity. Firstly, the inclined cavities produce a large single vortical structure travelling across the cavity opening which428

manifests a 1st hydrodynamic mode. On the other hand, the orthogonal cavity exhibits two smaller vortices travelling429

along simultaneously, i.e. a 2nd hydrodynamic mode. In the inclined cavities, there is a pronounced level of Kelvin-430

Helmholtz instability and a flapping motion of the shear layer. When the shear layer is flapped downward an intense431

roll-up vortex is created at the upsream corner. The roll-up vortex then keeps growing in size by merging smaller432

eddies nearby as the shear layer flaps upward. The vortex spends a substantial amount of time in growing rather433

than rapidly travelling downstream (to be shown later). This results in a significantly longer cycle period. Also, due434

to the large size, only one vortex occupies the cavity rather than two. We suggest that these are the main reasons435

why the inclined cavities exhibit the 1st hydrodynamic mode which selects a lower-frequency resonance with the 1st436

acoustic mode. In addition, the relatively higher acoustic pulsation energy contained within the inclined cavities (as437

deduced from the eigenmode analysis in the previous section) may have reinforced the excitation of K-H instability438

and shear-layer flapping.439
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(a)

(b)

(c)

(d)

FIG. 11. Snapshots of the spanwise-averaged instantaneous Q-criterion with superimposed streamlines to signify the shear-layer
undulation across the cavity opening with a time interval of T/4 between two successive plots from (a) to (d), where T is the
period of the oscillation cycle of χ. The first, second and third columns correspond to α = 90◦, 60◦ and 30◦, respectively. For
the corresponding hydrodynamic pressure fields, refer to figure 12.
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(a)

(b)

(c)

(d)

FIG. 12. Snapshots of the spanwise-averaged instantaneous hydrodynamic pressure fluctuation p′H with superimposed stream-
lines to signify the shear-layer undulation across the cavity opening with a time interval of T/4 between two successive plots
from (a) to (d), where T is the period of the oscillation cycle of χ. The first, second and third columns correspond to α = 90◦,
60◦ and 30◦, respectively.
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(a)

(b)

(c)

(d)

FIG. 13. Snapshots of the spanwise-averaged instantaneous DLE with superimposed streamlines to signify the shear-layer
undulation across the cavity opening with a time interval of T/4 between two successive plots from (a) to (d), where T is the
period of the oscillation cycle of χ. The first, second and third columns correspond to α = 90◦, 60◦ and 30◦, respectively. For
the corresponding Q-criterion fields, refer to figure 11.
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We suggest that the shear-layer flapping may be quantified by the time rate of change of mass flow rate through the440

cavity opening. First, based on equation 19 used in MPT, the total mass flow rate is decomposed into hydrodynamic441

(ṁH) and acoustic (ṁA) components, and their time rate of change are expressed as442

dṁH

dt
(t) =

1

dt

∫ 1

0

(ρv)H |y=0dx =
1

dt

∫ 1

0

By|y=0dx, (30a)443

dṁA

dt
(t) =

1

dt

∫ 1

0

(ρv)A|y=0dx = − 1

dt

∫ 1

0

∂ψA

∂y

∣∣∣∣
y=0

dx. (30b)444

In addition, the shear-layer flapping may also be characterised by the displacement of a streamline (emerging from445

the upstream corner), ∆ysh, measured at the center of the cavity opening, (x, y) = (0.5, 0). Figure 14 shows the time446

history of dṁH/dt, dṁA/dt and ∆ysh for each cavity. It is apparent that energetic shear-layer flapping is present447

in the inclined cavities and is almost perfectly synchronized with dṁA/dt that is induced by the depthwise acoustic448

resonance. Meanwhile, no contribution from the hydrodynamic component (ṁH) appears here, which makes sense449

because the net mass flow rate of solenoidal (incompressible) flow in a confined geometry should remain zero. However,450

the hydrodynamic component of the vertical momentum (ρv)H offers crucial information about the vortex dynamics451

taking place across the cavity opening (to follow).452
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FIG. 14. Time histories of ( ) dṁA/dt, ( ) dṁH/dt and ( ) ∆ysh for (a) α = 90◦, (b) 60◦ and (c) 30◦.
453

454

Figure 15 shows streamwise phase variations of the Q-criterion, ΦQ(x, f), across the cavity opening for both455

orthogonal and inclined cavities. The phase variations confirm the 2nd (n = 2) and 1st (n = 1) hydrodynamic modes456

present in the orthogonal and inclined cavities, respectively, which satisfy the phase condition ∆ΦQ(x, f) = 2πn,457

as detailed by Rockwell and Naudascher [83]. The plots also reveal that the hydrodynamic fluctuations near the458

upstream and downstream corners remain highly coherent with the wall pressure fluctuation at the base of the cavity459

(cos[ΦQ(x, f) − Φχ(x, f)] = 1). This observation suggests that the phase of hydrodynamic cycle (e.g., from the460

initial formation to the final scattering of the vortex) is perfectly synchronised with the acoustic cycle (i.e., depthwise461

acoustic resonance), thereby creating a lock-in condition.462463

In order to examine the hydrodynamic field in more detail, a Fourier transform of Q-criterion is calculated and its464

magnitude at the resonance frequency is plotted in figure 16. This plot essentially reveals the zones of major vortical465
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FIG. 15. The streamwise phase variation of the Fourier-transformed Q-criterion, ΦQ(x, f), measured across the cavity opening
(i.e., at y = 0) at their respective tonal frequencies for (a) α = 90◦, (b) 60◦ and (c) 30◦. Note that the spatial variation of
ΦQ(x, f) is calculated based on the phase reference of Φχ(x, f). Accordingly, the plots reveal regions of frequency modulation
where the Q-Criterion fluctuation near the upstream and downstream corners remains highly synchronized with the averaged
acoustic wall-pressure fluctuation at the cavity base (cos[ΦQ(x, f)− Φχ(x, f)] = 1). This observation suggests that the phase
of hydrodynamic cycle (e.g., initial vortex formation and subsequent impingement) is highly synchronized with the acoustic
cycle (i.e., depthwise acoustic resonance).

activities contributing to the resonance cycle in each of the three cavity geometries. It is clear that the size of the zone466

is larger in the inclined cases as expected due to the larger vortex sizes visualised earlier. In the α = 60◦ case, the467

vortex is more intense and seemingly undergoes a noticeably undulated travel path. Meanwhile, the vortex generates468

less direct impingement at the downstream corner in the α = 60◦ case whereas the less intense vortex in the α = 30◦469

case makes a more direct impingement. These balacing acts may have contributed to producing a similar sound level470

between the two cavities. However, it should be noted again that these observations are only based on the specific471

Fourier component at St = 0.276 and therefore do not represent the overall picture.472

(a) (b) (c)

FIG. 16. The contour plots show the spatial distribution of the magnitude of Fourier-transformed Q-criterion, |Q(x, f)| at their
respective tonal frequencies for (a) α = 90◦, (b) 60◦ and (c) 30◦.

473

474

We discussed earlier about the relatively slower travel speed of the large vortex in the inclined cavities in relation475

to the growth process of the vortex that is not particularly featured in the orthogonal cavity. In order to estimate the476

speed of the vortex travel, we look at the hydrodynamic component of the vertical momentum (ρv)H fluctuating in477

space and time (across the cavity opening), presented in figure 17. We suggest that the spatio-temporal contour plot478

of (ρv)H (which contains purely hydrodynamic fluctuations) displays the footprint of the large-scale vortex structure479

moving across the cavity opening. If we take an iso-contour line for (ρv)H = 0 (one of the white curves in figure480

17) and calculate the slope of the curve, i.e. dx/dt as a function of x, it shows a representative speed of the vortex481

travel (uV ) at each point across the cavity opening (x ∈ [0, 1] and y = 0). This is repeated for 10 consecutive curves482

of (ρv)H = 0 and an average is obtained. The resulting profiles of uV are shown in figure 18. The results reveal483

that uV is significantly lower in the inclined cavities than that of the orthogonal cavity across most of the cavity484

opening. It is apparent that the slower vortex travel of both inclined cavities occurs in two separate regions: 1) near485
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the upstream corner x ∈ [0, 0.2] and 2) in the mid-to-downstream region x ∈ [0.4, 0.9]. We suggest that the former is486

linked with the initial roll-up of the vortex during the downward flapping of the shear layer, and the latter with the487

further growth of the vortex by entraining/merging adjacent eddies during the upward flapping of the shear layer. An488

additional observation here is that the inclined cavities, as a result of their unique vortex dynamics, produced thicker489

shear layers compared to the orthogonal cavity case, which is shown in figure 19. In this regard, an interesting study490

has been conducted recently by Mathias and Medeiros [84] who discussed the stability of cavity mixing/shear layers.491

They found that the most unstable mode frequency of a shear layer decreased as its thickness increased. This earlier492

study (although conducted for shallow and orthogonal cavities) supports the current explanation of the slower vortex493

travel possibly sustained by the lower-frequency instability of the thicker shear layer in the inclined cavities.494

(a)

(b)

(c)

FIG. 17. Spatio-temporal contour plots of the hydrodynamic component of the vertical momentum (ρv)H across the cavity
opening (y = 0) for (a) α = 90◦, (b) 60◦ and (c) 30◦.

495

496497498

V. AEROACOUSTIC MODE AMPLIFICATIONS AND SELECTIONS499

Section IV highlighted that the vortex dynamics plays a key role in determining the acoustic resonance mode and500

amplitude in deep and inclined cavities. Classical aeroacoustic theories that involve vortex dynamics [85, 86] suggest501

that instantaneous acoustic source power, Π, can be approximated using the following expression:502

Π ≈ −ρ∞
∫∫

x

(ω × u) · ua dx, (31)503

where ω is the vorticity vector and ua refers to the acoustic particle velocity vector. The triple-dot product ((ω×u)·ua)504

provides quantitative insight into the local energy transfer between the hydrodynamic and acoustic fields. In particular,505

the integrand captures the transfer of acoustic energy to hydrodynamic energy (e.g., (ω×u) ·ua > 0) and vice versa.506

For sustained oscillations to occur, it is important for the integral in Eq. (31) to remain positive over an acoustic507

cycle, ensuring that a favorable phase relationship between the Lamb vector (ω × u) and the acoustic field, ua. The508
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FIG. 18. Representative vortex travel speed uV /u∞ estimated for ( ) α = 90◦, ( ) 60◦ and ( ) 30◦. This estimation is
based on iso-contour lines of (ρv)H = 0 in figure 17 from which uV = dx/dt is calculated.
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FIG. 19. Time-averaged profiles of streamwise velocity across the shear layer measured at x = 0.8 for ( ) α = 90◦, ( )
60◦ and ( ) 30◦, displaying thicker shear layers produced in the inclined cavities compared to the orthogonal case.

following discussion further examines this energy exchange process by analyzing the temporal dynamics of the Lamb509

vector within resonant acoustic fields in inclined cavities.510

Figure 20 shows the time evolution of the Lamb vector and the acoustic particle velocity field in an α = 30◦ inclined511

cavity over an acoustic cycle. The acoustic absorption phase is depicted in figures 20(a,b), where hydrodynamic512

instabilities within the shear-layer absorb acoustic energy to form a coherent vortex near the upstream corner, while513

the residual vorticity near the downstream corner from the preceding cycle also contributes to this absorption. The514

second half of the acoustic production phase is captured in figures 20(c,d), where the vorticity-dominated regions are515

now in phase with the acoustic particle velocity field until their ejection from the cavity in the same direction as516

the acoustic particle velocity. Subsequently, figure 21 shows the time evolution of the Lamb vector and the acoustic517

particle velocity field in the α = 60◦ inclined cavity over an similar acoustic cycle. Although there are significant518

similarities with the α = 30◦ inclined cavity, two key differences are observed. First, the vortex structure in the519

α = 60◦ inclined cavity exhibits enhanced spanwise coherence, contributing to a more pronounced Lamb vector and520

consequently enhanced instantaneous acoustic source power, according to Eq. (31). Second, the diminished residual521
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(a) (b)

(c) (d)

FIG. 20. The time evolution of the Lamb vector (ω × u) in the vertical direction for the α = 30◦ inclined cavity is examined
for a single acoustic cycle. The contour plots capture two key time instants: those (a) when the instantaneous acoustic source
power Π reaches its minimum and (c) when it reaches its maximum. The plots (b) and (d) indicate the time junctures when
the instantaneous acoustic source power becomes zero, such as when Π = 0. Here, the superimposed streamline represents the
instantaneous acoustic particle velocity field.

vorticity near the downstream corner in the α = 60◦ inclined cavity reduces the overall absorption of acoustic energy.522

These factors may potentially explain the stronger acoustic response observed in the α = 60◦ inclined cavity.523

The preceding discussion qualitatively explains the intense acoustic response observed in inclined cavities. To further524

investigate the fundamental mechanisms driving noise amplification in these cavity flow systems, an APE-resolvent525

analysis, as outlined in Subsection IID, has been conducted. The primary objective of this analysis is to establish a526

direct quantitative relationship between the Lamb vector and the magnitude of the acoustic response by examining the527

corresponding amplification rates and the forcing-response mode shapes of the APE-resolvent operator. Accordingly,528

figure 22 presents the three leading amplification rates of the APE-resolvent operator across various frequencies.529

The results reveal that the leading amplification rate is significantly higher than the second and third rates at tonal530

frequencies across all cavity inclinations, underscoring the low-rank nature of the cavity oscillations examined in this531

study. Subsequently, this low-rank behavior justifies a rank-1 approximation of the APE-resolvent operator, where532

the dominant leading mode alone sufficiently characterizes the cavity system’s acoustic response. Specifically,533

R(q̄;ω) = ÛΣV̂ H =
∑
i

σiuiv
H
i ≈ σ1u1v

H
1 , (32)534

where u1 and v1 represent the leading forcing and response modes, respectively, while σ1 denotes the gain of the535

leading forcing-response pair. The superscript H in Eq. (32) refers to the Hermitian transpose operation. Note that536

the response and forcing mode shapes are obtained from singular value decomposition, through which the leading mode537

shapes are normalized by construction such that ||u1|| = ||v1|| = 1. Consequently, this approximation establishes a538

quantitative connection between the input forcing, f̂ω (e.g., the Lamb vector), and the corresponding output acoustic539

field quantities, q̂ω (e.g., the acoustic pressure fluctuations), which can be represented as540

q̂ω = R(q̄;ω)f̂ω ≈ σ1u1v
H
1 f̂ω = σ1u1

∑
j

v∗1,j f̂ω,j = σ1u1Fω, (33)541
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(a) (b)

(c) (d)

FIG. 21. The time evolution of the Lamb vector (ω × u) in the vertical direction for the α = 60◦ inclined cavity is examined
for a single acoustic cycle. The contour plots capture two key time instants: those (a) when the instantaneous acoustic source
power, Π, reaches its minimum, and (c) when it reaches its maximum. The plots (b) and (d) indicate the time junctures when
the instantaneous acoustic source power becomes zero, such as when Π = 0. Here, the superimposed streamline represents the
instantaneous acoustic particle velocity field.
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FIG. 22. The low-rank behavior of the APE-resolvent operator is visualized through the first three leading magnification rates:
( ) σ1, ( ) σ2 and ( ) σ3 for (a) α = 90◦, (b) 60◦ and (c) 30◦. The vertical dashed line ( ) indicates the tonal frequency
observed in the LES, while the horizontal dashed line ( ) represents the leading amplification rate σ1 corresponding to that
frequency.

where the index “j” denotes the grid points. Here, the measure of the source and sink is the correlation between542

the leading hydrodynamic forcing (f̂ω,j) and the acoustic response (v∗1,j), i.e. v
∗
1,j f̂ω,j at a given point in space (j ).543

If the correlation is positive (in either of the x- or y−direction), the location can be regarded as a source region544

(v∗1,j f̂ω,j > 0), and if negative, a sink region (v∗1,j f̂ω,j < 0). Meanwhile, Fω = vH
1 f̂ω = v∗

1 · f̂ω is the sum of all545
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sources and sinks. Figure 23 presents the spatial distribution of the reconstructed acoustic pressure field calculated546

using Eq. (33), which shows strong agreement with the LES data, thereby reconfirming the suitability of the rank-1547

approximation for capturing the dominant acoustic response of cavity flows examined in this study.548
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FIG. 23. The first row of contour plots shows the spatial distribution of the magnitude of the reconstructed acoustic pressure
field |p′APE| for (a) α = 90◦, (b) 60◦ and (c) 30◦. The second row of line plots the depthwise distribution of wall-pressure
fluctuations measured along the upstream cavity wall (x = 0) from the ( ) LES in comparison with the ( ) rank-1
approximation computed using Eq. (33).

549

550

Figure 24 provides some useful information showing that factors like σ1 and Fω obtained from the APE-resolvent551

operator correlate well with the sound pressure levels directly observed from the current LES (p′LES) for different cavity552

inclinations. First, the leading gains are higher in the inclined cavities since they are driven by the 1st depthwise553

acoustic modes which have smaller radiation losses (more perturbation energy contained within the cavity) that554

those of the orthogonal cavity as previously discussed from figure 9(b). Second, the sum of all sources and sinks (in555
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FIG. 24. Histogram plots showing (a) the first leading gain of the APE-resolvent operator σ1; (b) the sum of sources and sinks
(magnitude) |Fω|; and, (c) the magnitude of the acoustic pressure |p′LES|, for three different cavity inclinations.
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(a) (b) (c)

FIG. 25. The spatial distribution of the real part of v∗
1 ⊙ f̂ω in the streamwise direction (top panels) and vertical direction

(bottom panels) for (a) α = 90◦, (b) 60◦ and (c) 30◦. Here, the sources and sinks are represented by regions where v∗
1 ⊙ f̂ω > 0

and v∗
1 ⊙ f̂ω < 0, respectively. The phase of the plots is selected such that the imaginary part of Fω is zero.

magnitude) appears also greater in the inclined cavities. On the other hand, the orthogonal cavity seems to suffer556

a significant source-sink cancellation effect, perhaps related to the higher hydrodynamic and acoustic modes that557

prevailed. Figure 25(a) shows source (v∗1,j f̂ω,j > 0) and sink regions (v∗1,j f̂ω,j < 0) in the orthogonal cavity case where558

the two opposite regions have an almost equal size and magnitude leading to a mutual cancellation. In contrast, the559

inclined cavities exhibit unequal sizes of the source and sink regions indicating less effective cancellation between the560

two, as shown in figures 25(b) and (c). This may have contributed to amplifying the sound pressure level, also with561

the help of the minimal radiation losses in the 1st depthwise acoustic mode that prevailed in the inclined cavities.562

Thus far, the discussions have primarily centered on elucidating the aeroacoustic characteristics of cavity oscillations,563

with limited emphasis on the influence of incoming flow properties. To address this gap, we leverage insights from564

the acoustic particle velocity analysis across varying pulsation levels, as discussed in Section III, to assess the impact565

of acoustic forcing near the upstream corner on the cavity oscillation frequency. Here, the effect of acoustic forcing is566

quantified by evaluating the peak acoustic particle displacement induced by depthwise acoustic resonance, expressed567

as568

θa =
|p′|

ρ∞a∞2πHe
, (34)569

where |p′| denotes the magnitude of the Fourier-transformed pressure fluctuations measured at the cavity base, and570

He represents the peak Helmholtz number identified in the pressure spectra of the LES results. According to Bagwell571

[87], lock-in oscillations may occur when the acoustic particle displacement is on the same order of magnitude as the572

momentum thickness. Subsequently, we compare our LES data with previous experimental findings on deep cavity573

flows to provide further insight into the relationship between acoustic forcing and cavity oscillation dynamics.574

Figure 26 presents the ratios of acoustic particle displacement to momentum thickness (θa/θ) as a function of the575

peak Strouhal number collected from previous experimental data and the authors’ computational work. The plot576

reveals three distinct flow-acoustic resonance regimes, i.e. a low-, mid- and high-frequency regimes centred around577

St ∼ 0.27, 0.4 and 0.85, respectively. Note that all the cases in the plot except the current ones are from orthogonal578

deep cavities. What is intriguing in this plot is that there is one experimental case found from Yang et al. [9] which579

occurred at St = 0.27 (as is with the current inclined cavities) even though it came from an orthogonal cavity. Yang580
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FIG. 26. The scatter plot shows the ratio of acoustic particle displacement θa to the momentum thickness θ at three distinct
flow-acoustic resonance regimes. Different symbol colors represent data from various studies on orthogonal cavity flows: ( )
Yang et al. [9], ( ) Bagwell [87], ( ) Forestier et al. [88], ( ) Ho and Kim [23], and ( ) represents the current LES result at
M∞ = 0.3. The current LES results for inclined cavities at ( ) M∞ = 0.2 and ( ) 0.3 are provided. For fair comparison with
experimental studies, the momentum thickness θ is measured at 10% away from the upstream cavity corner, and the values
for each cavity case are provided in Table I. The horizontal line suggests that the ratio between acoustic particle displacement
and momentum thickness (θa/θ ≥ 4) may serve as an indicator for predicting the onset of amplified resonance at St = 0.27.

et al. reported it as an unexpected and intense cavity resonance mode referred to as “h1*a1”. Despite the scarcity581

of data around St ∼ 0.27, we can see a convincing trend present in the plot that a higher value of θa/θ is required582

to produce a resonance at a lower frequency mode. Although it is premature to draw a conclusion with the small583

number of samples available to date, the authors suggest that a threshold condition θa/θ > 4 may be used to predict584

a low-frequency deep-cavity resonance at St ∼ 0.27.585

VI. CONCLUDING REMARKS586

We investigated the aeroacoustic behavior of deep cavities with an aspect ratio of D/L = 2.632 and three different587

inclination angles (α = 30◦, 60◦, and 90◦) at two different Mach numbers (M∞ = 0.2 and 0.3) using wall-resolved large-588

eddy simulations. The inclined cavities at M∞ = 0.3 generated unexpected acoustic responses with peak amplitudes589

nearly 30 dB higher than those observed with the orthogonal cavity. Moreover, the peak frequency (St = 0.276)590

was significantly lower compared to the orthogonal case (St = 0.849). This was not predicted by Rossiter’s model591

that accounts for streamwise feedback mechanism only. Various analysis methods were used to investigate responsible592

physical mechanisms that generated the unexpected results from the inclined cavities. For the orthogonal cavity, a593

lock-in event occurred between the 2nd depthwise acoustic mode (He ≈ 0.255) and the 2nd hydrodynamic mode594

(St = 0.849) which exhibited two small vortices travelling across the cavity opening simultaneously. Coincidentally,595

this frequency also matched Rossiter’s prediction with Stn = (n − 1/4)/(M∞ + 1/κ) where n = 2 and κ = 0.57. In596

contrast, the inclined cavities resulted in a lock-in between the 1st depthwise acoustic mode (He = 0.083) and the597

1st hydrodynamic mode (St = 0.276) which the Rossiter’s model did not predict. The 1st hydrodynamic mode which598

involves only one vortex across the cavity opening was due to a significantly different vortex dynamics produced in599

the inclined cavities. The identified vortex dynamics consists of a pronounced Kelvin-Helmholtz instability in the600

shear layer that produces a roll-up vortex that spends a substantial amount of time growing by merging smaller601

eddies rather than consistently travelling downstream. This process slowed the overall vortex convection speed and602

prolonged the vortex dwell time, ultimately resulting in a lower resonance frequency (a lock-in with the 1st acoustic603

mode). Additionally, due to the large size, only a single vortex occupied the cavity opening.604

We suggested that the enhanced level of Kelvin-Helmholtz instability appeared in the inclined cavities was linked605

with the low level of radiation losses identified through the APE eigenmode analysis. The smaller radiation loss (in606

comparison to the orthogonal cavity case) means that more acoustic perturbation energy is contained within the cavity607

which may have elevated the shear-layer flapping. This effect was also quantified by tracing the change of mass flow608

rate across the cavity opening and also the streamline displacement. Meanwhile, the APE-resolvent analysis displayed609



27

the source and sink regions in each cavity, from which we found that the source-sink cancellation was less pronounced610

in the inclined cavities. These factors contributed to the enhanced amplitude of resonance present in the inclined611

cavities. Finally, we hypothesized that the ratio between the acoustic particle displacement and the momentum612

thickness θa/θ > 4 might be a necessary condition for the onset of the low-frequency resonance (St ∼ 0.27) in deep613

and inclined cavities.614

While the current study provides valuable insights into flow-acoustic resonances in deep and inclined cavity con-615

figurations, it has certain limitations that warrant further research. Firstly, the findings are specific to the aspect616

ratio of L/D = 2.632 and the Mach numbers of 0.2 and 0.3 considered in this study. Further investigations are617

required to better understand the distinctive vortex dynamics and the low-frequency mode selection process across618

various aspect ratios and over a broader range of Mach and Reynolds numbers. Secondly, since this study focused on619

a two-dimensional cavity geometry, the effects of three-dimensional geometries such as cavities with a finite span or620

circular cross-sections with various inclinations are entirely unknown. Additionally, different cavity floor configura-621

tions (e.g., non-orthogonal to the side walls and/or non-planar) may influence resonance frequencies and amplitudes.622

Finally, future studies should explore optimal cavity geometries and/or flow conditions that may lead to strategies623

for mitigating or controlling deep cavity resonance, given the significant practical implications for various engineering624

applications.625
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