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Flow-acoustic resonance in deep and inclined cavities

You Wei Ho'* and Jae Wook Kim?
L Institute of Sound & Vibration Research, University of Southampton, Southampton, SO17 1BJ, United Kingdom
2 Aeronautics € Astronautics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
(Dated: June 27, 2025)

This paper presents numerical investigations of flow-acoustic resonances in deep and inclined
cavities using wall-resolved large-eddy simulations. The study is based on a fixed aspect ratio of
D/L = 2.632, subjected to two Mach numbers of 0.2 and 0.3 (with the focus on the latter) at three
different angles of inclination (o = 30°, 60°, and 90°). Fully turbulent boundary layers generated
from independent precursor simulations are employed upstream of the cavities. The simulation
results show significant differences in aeroacoustic response between inclined and orthogonal cavities,
particularly at M = 0.3, where the inclined cavities exhibit stronger resonances (by more than a
20 dB) at a lower peak frequency (St = 0.276) compared to that of the orthogonal cavity, which
occurred at St = 0.849. Acoustic modal analysis identifies these frequencies as the 1st and 2nd
eigenmodes, respectively. Further analysis shows that the disparity in mode selection between the
orthogonal and inclined cavities is linked with the hydrodynamic modes (vortex dynamics) that pair
with the acoustic modes. In the orthogonal cavity, a 2nd hydrodynamic mode prevailed where two
relatively small vortices were travelling across the cavity opening simultaneously. In the inclined
cavities, however, a single large-scale roll-up vortex, a 1st hydrodynamics mode, is generated in
relation with strong Kelvin-Helmholtz instability in the shear layer. More importantly, the vortex
spends a substantial amount of its lifetime growing in size without travelling downstream rapidly.
This results in a longer crossing time per cycle which correlates with the 1st acoustic eigenmode
frequency (St = 0.276). In addition, an aeroacoustic resolvent analysis indicates that inclined
cavities amplify acoustic responses more effectively and exhibit weaker source-sink cancellations
than the orthogonal cavity. These mechanisms are identified as the primary contributors to the
enhanced aeroacoustic responses in the inclined cavities. Finally, it is proposed that the ratio
between acoustic particle displacement and momentum thicknesses may be used as a criterion to
predict the onset of deep cavity resonance with the distinctive vortex dynamics identified in this
paper.

I. INTRODUCTION

Flow-acoustic resonances driven by aeroacoustic instabilities in deep cavity flows produce high-intensity pressure
waves at discrete frequencies, leading to detrimental effects such as noise pollution and structural fatigue in various
engineering applications. These include safety valves [1, 2], closed side-branches in gas transport systems [3, 4],
turbomachinery [5, 6], and riverine environments [7]. The origin of these resonances lies in the complex interaction
between hydrodynamic instabilities and resonant acoustic fields [3, 8]. When airflow passes over a deep cavity under
specific conditions, it can trigger self-sustained oscillations that couple with a depthwise acoustic mode, generating
intense aerodynamic noise. In this process, acoustic resonance acts as the primary feedback mechanism, amplifying
oscillations and inducing flow tone lock-ins [9]. This phenomenon is fundamentally different from oscillations in shallow
cavities, which are predominantly governed by the Rossiter feedback mechanism driven by upstream acoustic feedback
[10, 11]. Therefore, a better understanding of the distinct physical mechanisms underlying deep cavity oscillations is
essential for mitigating their adverse effects in engineering applications.

The aeroacoustics of deep cavity flows have been extensively studied in the scientific literature. Seminal works
by [10, 12-14] established that deep cavity flows generate intense acoustic responses near depthwise acoustic modes.
Rockwell and Naudascher [15] characterized this phenomenon as fluid resonant oscillation, driven by the interaction
between shear-layer instabilities and depthwise acoustic resonances. Their research revealed that these oscillations
originate from initial shear-layer instabilities near the upstream separation corner. As these instabilities propagate
downstream, they interact with the cavity’s trailing edge and generate acoustic standing waves. This resonant acoustic
field, in turn, induces velocity perturbations that reinforce shear-layer instabilities, thereby sustaining a closed feedback
loop. In deep cavity systems, this loop is particularly pronounced due to their inherent susceptibility to minimally
radiating depthwise acoustic modes [16]. As a result, these acoustic resonances can further amplify shear-layer
instabilities, giving rise to highly coherent vortex structures frequently observed in deep cavity flows [17-20].
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The presence of coherent vortices implies that the phenomenon of flow-acoustic resonances in deep cavities typically
occurs within specific Strouhal number ranges, each corresponding to a distinct hydrodynamic mode of the flow
field. These modes are characterized by the number of convecting vortex structures across the cavity opening that
satisfy the requisite streamwise phase criterion [21-23]. Among these, flow-acoustic resonances driven by the 1st
hydrodynamic mode are well-documented for generating the most intense acoustic responses, predominantly occurring
at a Strouhal number of approximately St =~ 0.4 [18]. In contrast, higher hydrodynamic modes produce weaker
resonances at Strouhal numbers exceeding St ~ 0.8 [9, 18]. Recent experimental investigations on closed side-
branches have revealed an additional category of flow-acoustic resonance at a lower Strouhal number, St = 0.27. This
resonance is distinguished by exceptionally strong acoustic responses, surpassing the dynamic pressure of the flow
[8, 9, 24-26]. Moreover, within this regime, the resonant acoustic field exerts a significant influence on the coherence
and trajectory of vortex structures. Peters [8] observed that under these conditions, the amplification of instabilities
and the intensification of shear-layer oscillations lead to highly nonlinear states, making precise characterization
of the fluid resonant mechanism increasingly complex. However, despite substantial empirical evidence, a detailed
quantitative analysis of the physical mechanisms governing these pronounced flow-acoustic resonances at St ~ 0.27
remains an unresolved challenge.

Recent advances in modal analysis techniques including global linear stability analysis and receptivity analysis
have become essential for investigating long-term flow instabilities and revealing the mechanisms behind instability in
various fluid-flow systems [27-37]. Direct global and adjoint modes obtained from these methods offer critical insights
into structural sensitivity within flow fields [28, 32, 35, 38]. Additionally, non-modal approaches, such as resolvent
analysis, initially introduced by Trefethen et al. [39] and later extended to turbulent mean flows by McKeon et al.
[40] provide a foundational framework for studying energy amplification and the structural response to perturbations
across various frequencies. These methods have been applied to both shallow and deep cavity flows, yielding valuable
insights into their underlying dynamics [41-44]. However, the application of resolvent analysis to examine flow-acoustic
resonances in deep and inclined cavity flows remains unexplored. In addition, to our knowledge, this approach has
not yet been used to identify the optimal forcing, response, and amplification mechanisms of acoustic perturbations
that trigger flow-acoustic resonance in deep cavity configurations.

To date, most numerical studies have focused primarily on orthogonal geometries [45-49]. Consequently, the
mechanisms governing noise generation in turbulent flows over deep and inclined cavities in resonance remain poorly
understood. In this paper, we will addresses these gaps by employing wall-resolved large-eddy simulations (LES) to
examine the distinct vortex dynamics and noise generation process in both orthogonal and inclined configurations.
In particular, the primary objective of this study is to explore the markedly different aeroacoustic responses of
inclined cavities compared to their orthogonal counterparts. For the subsequent discussions, three angles of inclination
(a = 30°, 60°, and 90°) and two flow speeds (M, = 0.2 and 0.3) have been selected to highlight the unique aeroacoustic
behaviours of inclined cavity flows. However, it is important to note that the mechanisms driving the transition of
the aeroacoustic response across critical Mach numbers or optimal inclination angles are not the central focus of this
paper.

This paper is structured and written in the following order. Section IT outlines the computational setup and methods
employed in this study. Sections III and IV present a detailed investigation of the acoustic and hydrodynamic fields
around the cavity configurations. In Section V, the focus shifts to acoustic amplifications and source-sink cancellations
through aeroacoustic resolvent analysis, with particular attention given to the critical role of the ratio of acoustic
particle displacement to momentum thickness in defining distinct resonance behaviours. Finally, concluding remarks
are provided in Section VI.

II. DESCRIPTION OF PROBLEM AND THE COMPUTATIONAL SET-UP

The present study investigates the cavity section with a length of L/h = 0.608 and depth of D/h = 1.6, enclosed
in a channel with a height of 2h, as shown in figure 1. The Reynolds number based on the cavity opening length,
L = 0.038 m, is set to Res, = 261,891 and a freestream Mach number of M., = 0.3 based on the ambient speed of
sound (for air) of as = 340.2 m/s and the reference temperature of T,, = 288 K are also considered in this work.
The current numerical investigation employs a high-resolution implicit large-eddy simulation (ILES) method based
on a wavenumber-optimized discrete filter [50]. The filter is applied directly to the solution (conservative variables) at
every time step and acts as an implicit sub-grid scale (SGS) model that enforces the dissipation of scales smaller than
the filter cutoff wavelength. Garmann et al. [51] performed an extensive analysis of the ILES technique compared to
the traditional implementation of an explicit SGS model and concluded that ILES simulations can correctly capture
the flow physics when the grid is subjected to an appropriate resolution.
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FIG. 1. Visualizations of the current computational domain of the deep and inclined cavity configuration enclosed in a channel.
(a) Instantaneous non-dimensional @-criterion iso-surfaces ( = 5) coloured by non-dimensional vorticity magnitude (Jw;|),
unveiling three-dimensional vortices within the turbulent boundary layer. (b) A spanwise view of the computational domain
used in the current numerical investigation. The cavity length and depth are denoted by L and D, respectively.

A. Governing equations and numerical methods

In this work, the full 3-D compressible Navier-Stokes equations (with a source term for sponge layers included) are
used, which can be expressed in a conservative form, transformed onto a generalised coordinate system as

ot J 851 J &vj n L J’

where the indices i = 1,2,3 and 7 = 1,2, 3 denote the three dimensions. The vectors of the conservative variables,
inviscid and viscous fluxes (that account for losses due to viscous dissipation and thermal conduction), are given by

Q = [p, pu, pv, pw, peg]”

Ej = [puj7 (puuj + 51jp)7 (pU’LLj + 62jp)a (pwu] + 63jp)7 (pet +p)uj]T7 (2)
]T

3

F; = (0,715, 725, T35, uiTji + g

)

with the stress tensor and heat flux vector written as

(0w Ou 20 Oui R TR
s ox;  Ox; 3 “7ox;)’ Y (y—1)Proz;’

3)

where & = {{,n,(} are the generalised coordinates, z; = {z,y, 2z} are the Cartesian coordinates, d;; is the Kronecker
delta, u; = {u,v,w}, e, = p/[(y—1)p|+u;ju;/2 and v = 1.4 for air. The local dynamic viscosity p is calculated by using
Sutherland’s law [52]. In the current set-up, &,  and ¢ are aligned in the streamwise, vertical and spanwise directions,
respectively. The Jacobian determinant of the coordinate transformation (from Cartesian to the generalised) is given
by J7! = |0(z,y,2)/0(&,1,¢)| [53]. The extra source term S on the right-hand side of (1) is non-zero within the
sponge layer only, which is described in Kim et al. [54, 55]. In this paper, the freestream Mach and Reynolds numbers
are defined as Moo = Uoo /oo and Reso = Pootioo L/ fioo Where too = \/VPoo/Poo 18 the ambient speed of sound and oo
is the speed of the freestream mean flow. The governing equations are non-dimensionalised based on the streamwise
cavity opening length L = 38 mm for length scales, the ambient speed of sound a., for velocities, L/ao for time
scales and po.a?, for pressure, unless otherwise notified. Temperature, density and dynamic viscosity are normalised
by their respective ambient values: Too, poo and fise-

The governing equations given above are solved using high-order accurate numerical methods specifically developed
for aeroacoustic simulation on structured grids. The flux derivatives in space are calculated based on fourth-order



127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

4

pentadiagonal compact finite difference schemes with seven-point stencils [56]. Explicit time advancing of the numeri-
cal solution is carried out using the classical fourth-order Runge-Kutta scheme with a CFL number of 0.95. Numerical
stability is maintained by implementing sixth-order pentadiagonal compact filters for which the cutoff wavenumber
(normalized by the grid spacing) is set to 0.857. In addition to the sponge layers used, characteristics-based non-
reflecting boundary conditions (NRBC) based on [57] are applied at the inflow and outflow boundaries to prevent
any outgoing waves from returning to the computational domain. Periodic conditions are used across the spanwise
boundary planes unless otherwise stated. Slip (no penetration) and no-slip wall boundary conditions based on [58]
are applied at the top and bottom channel walls, respectively. The top wall boundary is intended to replicate an
existing experimental set-up at the University of Southampton. Those who use a different boundary setting on the
top boundary, either experimental or computational, will need to take the difference into consideration when they
attempt to compare the data.

The computation is parallelized via domain decomposition and message passing interface (MPI) approaches. The
compact finite difference schemes and filters used are implicit in space due to the inversion of pentadiagonal matrices
involved, which requires a precise and efficient technique for parallelization to avoid numerical artifacts that may
appear at the subdomain boundaries. A recent parallelization approach based on quasi-disjoint matrix systems [59]
offering super-linear scalability is used in the present paper.

B. Simulation set-up and discretisation of the problem

The cavity geometry and the computational domain used in this work comprises /L € [—1.64,4.93] in the stream-
wise direction, y € [—2.63,3.29] in the vertical direction and z/L € [0,0.822] in the spanwise direction. The entire
computational domain; the inner region (physical domain) where meaningful simulation data are obtained; and, the
sponge layer zone is defined as

Do = {z|2/L € [~1.644,4.934],y € [~2.632,3.289], z/L € [0,0.822]},
Dynysical = {@ |2/ L € [~1.644,3.289],y € [—2.632,3.289], z/L € [0,0.822]}, (4)

Dsponge = Doo - Dphysical-

The physical domain, D, consists of a deep cavity with an aspect ratio of D/L = 2.632 enclosed in a straight
rectangular channel with a channel half-height of h/L = 1.644. The channel region is discretised by 960 x 290 x 480
grid points in streamwise, vertical, and spanwise directions. A total of 240 x 240 x 480 grid points are used in the
streamwise, vertical and spanwise directions, respectively, in the cavity region. The mesh in the wall-normal direction
is refined close to the viscous wall y™ ~ 1 to maintain a sufficiently high level of near-wall grid resolution throughout
the viscous wall surfaces.

Res Moo « 0" /L 0/L H

174,594 0.2 90° 0.0434 0.0350 1.24
174,594 0.2 60° 0.0458 0.0368 1.25
174,594 0.2 30° 0.0442 0.0355 1.24
261,891 0.3 90° 0.0379 0.0312 1.22
261,891 0.3 60° 0.0447 0.0360 1.24
261,891 0.3 30° 0.0408 0.0332 1.23

TABLE I. The boundary layer information for the current cavity simulations measured at x = —0.1.

The inlet is located at /L = —1.664 upstream of the cavity, where the turbulent inflow data is injected. The outflow
boundary is placed at a relatively remote location downstream from the cavity, allowing a sufficient distance for the
vortices to dissipate. A precursor simulation is employed to generate the prerequisite turbulent inflow data for the
cavity simulation. The precursor simulation domain size (L X Ly x L) was set to 4899 X 1099 X 2099 with 480 x 240 x 480
grid points in the streamwise, vertical and spanwise directions, respectively. The initial boundary layer thickness,
Jdgg is determined analytically based on Na and Lu [60], and the channel flow is initialised with the turbulent mean
flow profile according to Spalding [61]. In this precursor channel flow simulation, periodic boundary conditions are
applied in streamwise and spanwise directions, and a streamwise pressure gradient is applied to maintain the desired
mass flow rate. The precursor simulation is completed when the mean flow profile is converged, and the obtained
instantaneous flow solutions are injected into the cavity simulation through the inlet plane. Figure 2 shows a close
agreement of the time-averaged turbulent velocity profile and the Reynolds stresses between the current half-channel
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FIG. 2. (a) Time-averaged velocity profile of the turbulent boundary layer; and (b—d) Reynolds stresses obtained from the
current precursor half-channel LES (Re- = 3900), compared with the full-channel DNS (Re. &~ 4200) by Lozano-Durdn and
Jiménez [62].

LES and a full-channel DNS by Lozano-Durdn and Jiménez [62], conducted at Re, = 3900 and 4200, respectively.
The boundary layer data for the current simulations measured at x = —0.1 (10% away from the upstream cavity
corner), are listed in Table I.

C. Definition of variables for statistical analysis

Data processing and analysis are performed upon the completion of the simulation. The main property required in
this study is the power spectral density (PSD) function of the pressure fluctuations around the cavity. To facilitate
the following discussions, we defined the pressure fluctuations here as

p'(x,t) = p(x, t) — p(x), ()

where p() is the time-averaged pressure field. Following the definitions used in Goldstein [63], the PSD functions of
the pressure fluctuations (based on frequency and one-sided) are then calculated by

Sy, f) = lim P@SDP@ LT)

T—00 T

; (6)

where p is an approximate Fourier transform of p, respectively, based on the following definition:

T
P f.T) = / Pz, t)e 2T dt, (7)

-T

and, ‘*’ denotes a complex conjugate. Similarly, the magnitude and the respective phase of the single-sided Fourier
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transform pressure field are calculated by

p(z, £, T)| = 2v/p(=, f, T)p*(z, f,T), (8)

9)

(e, .7) = anctan { GBS LT

Re[p(z, f,T)]

In the above equations, T" represents the half-length of the time signals used for the approximate Fourier transform.
The same procedures and notation are used for other field quantities later in this paper.

D. Aeroacoustic analysis tools based on APEs

The Acoustic Perturbation Equations (APEs) proposed by Ewert and Schrioder [64] have been successfully demon-
strated as a useful hybrid approach for accurately predicting acoustic propagation within cavity flows by using acoustic
sources computed directly from fluid simulations [65, 66]. In this paper, we employ APEs as a linear operator to
explore the dominant input-output characteristics of deep cavity systems based on the time-averaged mean flow states.
To achieve this, we incorporate the APE-4 formulation, expressed as

6 / /
W rev (s +aly) = (10)

8u/ /
at+V(a-u’)+V<g) = gm, (11)

where the noise sources are given by
A ﬁ Ds'
.= —V- L= 12
w0 =~V () + (12)
AN =\

Gm = — (wxw) +T'Vs— VT — (v“ 2“) + <VpT> . (13)

The variables marked with a prime symbol denote fluctuating quantities, whereas those with an overbar represent
time-averaged values. Among the source terms, those encapsulating two primed quantities are generally smaller
than their counterparts, and consequently, their contribution to the overall sources is considered negligible and thus
omitted. In addition, considering the high Reynolds number and relatively low Mach number flow discussed in this
paper, the contributions of viscosity and entropy to the sources can be safely omitted. Consequently, the Lamb vector,
defined as (w x u)’, is considered the dominant source term. Applying these simplifications, Eq. (10) and Eq. (11)
are rewritten in a compact form, expressed as
/
gy a8

where L(q) denotes the linear operator about the mean flow state ¢ = [p, @, U, w]T and f’ represents the forcing
input comprised of the Lamb vector. Accordingly, a modal perturbation of the form

qd' (z,y,2,t) = G(x,y) expi(Bz — wt) + complex conjugate, (15)
is imposed to Eq. (14) to form an input-output dynamics, expressed as
qu = _[iWI+ L(‘j)]ilfw = R((ja W)fw- (16)

Here, the resolvent operator R(q;w) relates the input forcing (i.e., Lamb vector), fw, to the output fields as acoustic
quantities (i.e., acoustic pressure fields), g., in the frequency space. The complex eigenvalue is represented by
w = wy + iw;, with the real part of the eigenvalue, w,, determining the physical frequency, while its imaginary
component determines the radiation loss associated with the acoustic eigenmode (w; < 0). Furthermore, the acoustic
eigenmodes of the cavity systems, which may be influenced by the mean flow field [65], can be retrieved by solving the
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eigenvalue problem presented in the homogeneous form of Eq. (16). Accordingly, the discretized resolvent operator
is solved using singular value decomposition to determine the directions spanned by the forcing input and the state
output vectors, such as

R(gw) =UZV, (17)

where U = [Ul, Us, Us, ...] and V = [Vl, Va, Vs, ...] provide the leading optimal sets of responses and the
corresponding forcing mode vectors. The amplification gains of the leading optimal sets are determined by the
corresponding singular values 3 = diag(o1, o9, 03, ...), which are arranged in descending order. The superscript
H in Eq. (17) indicates the Hermitian transpose operation. In this study, non-penetrating boundary conditions
(i.e., zero wall-normal velocity perturbation) are enforced at the wall. Additionally, non-reflecting characteristic
boundary conditions introduced by Thompson [67, 68] and damping sponge regions are used in combination to
minimize artificial numerical reflections. The approximation of spatial derivatives was achieved using a standard
second-order finite difference scheme. Finally, the eigenvalues and eigenvectors of the linear operator were retrieved
via the Krylov-Schur algorithm [69]. All eigenmodes presented in this paper achieved convergence within a tolerance
level of ||wQ — LQ|| < O(10~14).

III. PRESSURE FLUCTUATIONS AND OSCILLATION FREQUENCIES

The self-sustained fluid-resonant oscillation in deep and inclined cavities arises from the interaction between shear-
layer fluctuations over the cavity opening and an acoustic mode within the cavity. This interaction amplifies large-scale
vortical structures, altering the flow field and producing intense acoustic pressure fluctuations. This process efficiently
converts local flow energy into acoustic energy and is illustrated in Figure 3.

() B .

(e) moa | @

.

-0.072 0 0.072

FIG. 3. Large-scale vortical structures are visualized through iso-contours of instantaneous pressure fluctuations, with the flow
direction from left to right. Surface contours of wall-pressure fluctuations reveal the prominent acoustic field emanating from
deep cavities for inclination angles of (a) o = 90°, (b) 60° and (c) 30°, respectively.

This section examines the aeroacoustic behaviour of wall-pressure fluctuations in deep cavities subjected to three
distinct inclination angles at two specific Mach numbers, resulting in six simulations. Initially, simulations are con-
ducted using a turbulent inflow dataset at a Mach number of M., = 0.3 for four million time steps, corresponding to
220 non-dimensional time units. After this period, a steady-periodic state of the wall-pressure signal is achieved at
the cavity base for all inclination angles, as shown in Figure 4(a). Subsequently, the Fourier transform is applied to
the pressure time signals over an additional non-dimensional time span of approximately 740 samples (collected every
0.164 time unit) from the computational data, covering a total non-dimensional time of 120. This interval captures
approximately ten cycles of the lowest fundamental frequency. The resulting time signals are nearly periodic, and
any steady component is eliminated prior to the Fourier transform. Various windowing functions have been tested,
and the results exhibit comparable spectrum compositions. The procedures are then repeated with a turbulent inflow
dataset at a Mach number of M., = 0.2, as previously studied by Ho and Kim [23]. The corresponding wall-pressure
signals for each inclination angle are shown in Figure 4(b). Notably, the time signals from inclined cavities exhibit
highly periodic oscillations, highlighting the self-sustaining nature of the oscillation at both Mach numbers.
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FIG. 4. The spanwise-averaged time signals of pressure fluctuations on the base surface of deep cavities are presented for (----)
a=90° (—) 60° and (- --) 30° at free-stream Mach numbers of (a) M = 0.3 and (b) 0.2, respectively.

The power spectra of wall-pressure fluctuations at M., = 0.2 are depicted in figure 5(b). The figure shows that all
three cavity cases (o = 30°, 60°, and 90°) exhibit flow-acoustic resonance closely associated with the fundamental
frequency (St = 0.386). The authors have previously investigated the orthogonal cavity flow characteristics at this
fundamental frequency [23], where the critical Mach number for this particular cavity geometry (D/L = 2.632)
and inflow condition (§/L = 0.0345) was estimated to be M = 0.2. This critical condition was understood to
result from a lock-in event between the 1st Rossiter’s streamwise feedback and depthwise acoustic resonance modes.
Therefore, any deviation in flow speed from this Mach number is expected to produce a sub-optimal flow-acoustic
resonance. This assumption is supported by the weaker acoustic response generated from the same orthogonal cavity
at My, = 0.3, as shown in figure 5(a). This weak resonance at St = 0.849 coincides with the 2nd Rossiter’s mode, i.e.
Stn, = (n—1/4)/(M +1/k) where k = 0.57 and n = 2. However, contrary to previously established expectations, the
inclined cavities at this Mach number produce an entirely unexpected result. First, the fundamental peak frequency
shifted to a lower value of St = 0.276 which the Rossiter’s model did not predict. It is noteworthy that previous
experimental studies on orthogonal deep cavities by [8, 9, 24, 25] also reported a critical resonance occurring at the
similar frequency, which does not conform to existing flow-acoustic resonance theories. Second, and more importantly,
the inclined cavities generated a significant increase in the peak amplitude by nearly 30 dB compared to the orthogonal
cavity case and by more than 10 dB even compared to the “optimal” flow-acoustic resonance at Mo, = 0.2. The
observed shift in the fundamental peak frequency and substantial increase in peak amplitude for inclined cavities at
My, = 0.3 suggest novel flow-acoustic interaction mechanisms at play. Consequently, this paper aims to investigate
the underlying physical processes responsible for these unexpected and profound results.

Figure 6 presents snapshots of the spanwise-averaged instantaneous pressure fluctuations captured at four sequential
time intervals, each separated by T'/4, where T' = 1/f, represents the oscillation period corresponding to the tonal
frequency identified in the pressure spectra of Figure 5(a). These snapshots illustrate the synchronization between
shear-layer fluctuations and instantaneous pressure oscillations within the deep and inclined cavities. Here, we define
a surface-averaged acoustic pressure at the cavity base to determine the phase of the resonance cycle:

X(t) = Aib /A P (@, 1)dA, (18)

where z;, and A, denote the Cartesian coordinates on the surface area of the cavity base, respectively. For brevity,
the following discussion primarily focuses on the o = 60° inclined cavity. Figure 6(a) shows the beginning of an
oscillation cycle of x, during which a distinct large-scale vortex is positioned slightly above the cavity opening, as
revealed by the low-pressure zone near the downstream corner. At this point, nearly complete destructive interference
occurs between the reflected compressive wave (i.e., p’ > 0) and the incident rarefaction acoustic wave (i.e., p’ < 0),
resulting in an acoustic pressure equilibrium within the cavity (i.e., x = 0). Shortly after this, the rarefaction acoustic
wave from the cavity base begins to dominate the cavity and the shear layer moves downward. Also, as the large-scale
vortical structure impinges on the downstream corner, additional rarefaction waves are generated. These rarefaction
waves keep reducing the acoustic pressure within the cavity until it reaches its minimum value, as depicted in figure
6(b). Meanwhile, a low-pressure region appears near the upstream corner, indicating the emergence of the next



289

290

291

292

293

298

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

(a) ®
10 10
Str=0.276 St=0.849 St=0.385
10"+
S 107
s 10°
107
'9 | | | | | | '9 1 1 1 1 1 1
10020406 08 1 12 1002704 06 08 1 12

St=fL/U_ St=fL/U._

FIG. 5. The power spectral density (PSD) of the spanwise-averaged time signals of wall-pressure fluctuations on the base
surface of deep cavities is presented for (----) o = 90°, (—) 60° and (- --) 30° at free-stream Mach numbers (a) Mo = 0.3
and (b) 0.2, respectively.

vortical structure. Also, the main streamlines start to collide with the downstream corner, meaning that the flow
momentum decreases and the pressure increases there, as shown in figure 6(c). At this instant (x = 0), another
complete destructive interference occurs between the compressive and rarefaction waves. Afterwards, the compressive
waves begins to dominate the cavity until x reaches its maximum value as depicted in figure 6(d). During this process,
the main streamlines gradually rise from the downstream corner, the flow stagnation lessens and the large-scale vortex
convects downstream before being ejected from the cavity - going back to figure 6(a).

The discussions above implicitly identified two main types of pressure fluctuations, namely the local hydrodynamic
fluctuations near the cavity opening and acoustic fluctuations surrounding the cavity. The distinction between these
two components can be further clarified through the magnitude and phase distributions of the Fourier-transformed
pressure fluctuations. Accordingly, figure 7 shows that the pressure field inside the cavity appears to be primarily
stationary (i.e., constant phase), with a maximum magnitude (i.e., a pressure node) consistently located at the cavity
base across all inclinations. This evidence suggests that the pressure field inside the cavity is predominantly acoustic
in nature and contributed by the depthwise acoustic resonances. Furthermore, these resonances are highly localized
within the inclined cavities and resemble the “nearly trapped acoustic mode”, that exhibits minimal radiation losses,
according to Koch [16].

To facilitate subsequent investigations, we decompose the pressure fluctuations around the cavity into their hydro-
dynamic and acoustic components using momentum potential theory (MPT) developed by Doak [70]. Essentially,
Doak’s MPT separates the momentum density, pu, into rotational and irrotational components through a Helmholtz
decomposition. The Helmholtz decomposition of pu may be written as

pu=B—-Vy, V-B=0, (19)

where B and V4 are the solenoidal and irrotational components of pu, respectively. Substituting Eq. (19) into the
continuity equation yields a Poisson equation for the irrotational component, with a source term dependent on density
fluctuation,
dp
Vi = . 20
yp="0 (20)
For a single phase continuum fluid, 1 is separated into acoustic component (irrotational and isentropic, denoted 1 4)
and entropic component (irrotational and isobaric, ) components, governed by the exact equations

1o
2 ot’

dp OF

— . Vi, = Vg = =22, 21
Y =va+vE ha (i) 9 o1 (21)
Considering the low Mach number in this study, the entropy (thermal) contribution is assumed to be relatively small
compared to the acoustic contribution, and therefore ¥ g is not included in the subsequent calculation. Then, the

momentum equation in terms of the hydrodynamic and acoustic components is obtained by substituting Eq. (19)
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FIG. 6. Snapshots of the spanwise-averaged instantaneous pressure fluctuations p’ are shown with superimposed streamlines.
The snapshots are taken at time intervals of T'/4 between successive plots (a) to (d), where T represents the oscillation cycle
period of . The first, second, and third columns correspond to deep cavities with a = 90°, 60° and 30°, respectively. Here,
compressive (p’ > 0) and rarefaction (p’ < 0) acoustic waves are visualized as red and blue regions within the interior of the

cavity.

into the momentum equation, expressed as
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FIG. 7. The spatial distribution of Fourier-transformed pressure fluctuations at the tonal frequency is shown for deep cavities
with (a) a = 90°, (b) 60° and (c) 30°. The top row of the contour plots represents the magnitude |p’|, while the bottom row of
the contour plots represents the cosine of the phase cos[®,/ (x, f) — ®y(x, f)]. Here, ®y(x, f) denotes the phase of the Fourier
transform of x, as defined in Eq. (18).

G, (B —Vy)(B - V)
5B = V) + V- ,

- 7ij| +Vp=0. (22)

By taking the divergence of Eq. (22), the Poisson equation for the hydrodynamic pressure fluctuation, p’y

V2ply = Su + Su, (23)
and the Poisson equation for the acoustic pressure fluctuation, p’,

V2ply = Sa+Sa, (24)

are derived. Accordingly, the hydrodynamic and acoustic pressure fluctuations are obtained by solving the Poisson
equations in Eq. (23) and Eq. (24), respectively. The numerical implementation is described extensively in [23, 71]
and the evaluations of the linear (Sz and S4) and the non-linear source terms (Sy and S,) are detailed in [72], which
are not repeated here for brevity.

Figure 8 reveals notable differences in the spatial distribution of pressure gradients for the acoustic components
across orthogonal and inclined cavities. In particular, the acoustic pressure gradient tends to concentrate more
intensely near the downstream corner in inclined cavities, in contrast to the symmetric distribution observed in the
orthogonal cavity. This discrepancy in the spatial distribution of the acoustic pressure gradient is important for
elucidating the noise generation process, which will be further discussed in Section V. Additionally, the difference in
magnitude of the acoustic pressure gradient indicates that the resonant acoustic fields in inclined cavities may produce
higher acoustic particle velocities compared to those in the orthogonal cavity. To quantify these observations, the
induced acoustic particle velocity along the cavity opening region is approximated as being proportional to the acoustic
pressure gradient, using the isentropic Euler equations [73], as expressed by

dv, 1 9p,

dt - p oy’

(25)

where 7, represents the estimated acoustic particle velocity and p, is the decomposed acoustic pressure field. Then,
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FIG. 8. The contour plots illustrate the spatial distribution of the magnitude of the decomposed Fourier-transformed pressure
gradient associated with the acoustic component |0pa/dy| at the tonal frequency for (a) o =90°, (b) 60° and (c¢) 30°.

by considering a modal fluctuation of the acoustic pressure and spatially averaging the acoustic particle velocity across
the cavity opening, we obtain an averaged acoustic particle velocity that oscillates across the cavity opening, as given
by

1 ==L 1 op,
701 = — —_— d . 2
b L~/;1::0 2rf Oy v ( 6)

At tonal frequencies, cavities with inclinations of (o = 90°, 60°, and 30°) exhibit an average acoustic particle velocity
across the cavity opening of approximately (|Tq|/too = 9.3x1073,2.5x107 !, and 1.1x107!), respectively. For inclined
cavities, these amplitude levels are traditionally categorized as “high pulsation levels”, according to Bruggeman
[3, 74]. Previous studies by Peters [8] have demonstrated that under such extreme conditions, the resonant field
can significantly alter the vortex trajectory, causing the vortex to enter and exit the cavity rather than following
the parallel path of an unperturbed shear layer. These intense flow dynamics align with the temporal evolution of
instantaneous pressure fluctuations and shear-layer oscillations observed in figure 6. In contrast, the acoustic particle
velocity magnitude in the orthogonal cavity corresponds to “low pulsation levels”, reflecting the subdued shear-layer
oscillation. This behavior will be further discussed and visualized later in figure 13.

Figure 9(a) presents a comparison of pressure spectra for all cavity oscillations at My, = 0.3, similar to that shown
in figure 5(a), with frequencies here expressed in Helmholtz numbers, He = fL/a~, to enable direct comparison with
the first three least-damped acoustic modes (eigenmodes) obtained from the modal analysis of APEs. These acoustic
eigenmodes are characterized by complex resonance frequencies, with the real part indicating the physical resonance
frequencies and the imaginary part measuring the radiation losses (i.e., damping) of the resonances, as outlined in
Subsection IID. Here, the damping levels may provide useful indications of the relative amplitudes of resonance
between different modes when an identical acoustic input is imposed. It worth mentioning here that the eigenmode
analysis is purely based on acoustic perturbation with no flow fluctuation (feedback) involved. The eigenmodes
analysis indicates possible frequencies (or around them) at which an acoustic resonance may occur. The damping
levels may be indicative of the relative amplitudes of resonance between different modes when an identical acoustic
input is imposed without feedback from the flow.

Figure 9(b) shows that the tonal frequencies of the cavity oscillations at M., = 0.3 all reside close to their respective
acoustic eigenmodes, highlighting the important role of acoustic resonances in supporting the oscillation frequency
in deep and inclined cavities. When comparing the orthogonal and inclined cavity cases, a 1st depthwise acoustic
mode is excited in the inclined cavities which have lower radiation losses than the 2nd mode excited in the orthogonal
cavity. As discussed by Koch [16], acoustic modes with higher radiation losses (i.e., a more negative imaginary part of
the complex frequency) radiate and dissipate more energy into the surroundings and less energy contained within the
cavity. This is indeed revealed in figure 10. The inclined cavities (1st mode) show much less leakage of acoustic energy
into the far field than the orthogonal cavity (2nd mode). A higher level of acoustic (pulsation) energy contained within
the inclined cavities means that they have the potential to excite the shear layer at a greater magnitude. However,
the selection of oscillation frequency in deep and inclined cavities is governed by multiple factors, with the disparity
in radiation losses of depthwise acoustic modes being only one contributing aspect. In the following sections, we
examine how the vortex dynamics (as a result of the shear-layer perturbation) and the acoustic response of the cavity
influence frequency selection, particularly at St = 0.276 in inclined cavities.
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FIG. 9. Plot (a) presents the power spectral density (PSD) of the spanwise-averaged wall-pressure fluctuations for (----)
a = 90°, (—) 60° and (---) 30° at Mo = 0.3, with frequency expressed as the Helmholtz number (He = fL/as). The
tonal frequencies from the LES, indicated by the vertical dashed lines (---) at He = 0.083 and He = 0.255, are compared
in panel (b) with the first three least-damped depthwise acoustic modes (eigenmodes) obtained from the modal analysis of
APEs for cavities with (W) o = 90°, (A) 60° and (W) 30°. Note that the orthogonal cavity produced a resonance with a 2nd
depthwise acoustic mode and the inclined cavities with a 1st mode. The 1st mode exhibits less radiation losses meaning that
more acoustic energy is contained within the cavity (to excite the shear layer). Furthermore, the frequencies of the depthwise
acoustic modes closely match the first classical acoustic quarter-wave (e.g., He = 0.095) and the third acoustic quarter-wave
(e.g., He = 0.285) of a closed tube. In experimental studies, any slight discrepancies in frequency from this classical prediction
are typically minimized by applying end corrections, see Yang et al [9], for example.

(b)

FIG. 10. The contour plots depict the spatial distribution of the pressure magnitude for the eigenmode at frequency nearest to
the tonal frequency in cavities with (a) o = 90°, (b) 60° and (c¢) 30°. For fair comparisons, the magnitude of the eigenvector
is normalised such that it is unity at the base of the cavity.

IV. HYDRODYNAMIC FIELDS

In this section, we discuss the hydrodynamic fields near the cavity opening in detail. As mentioned, the location of
the coherent vortical structure is crucial to the acoustic emission process. Therefore, an accurate description of the
position and path traveled by the vortical structure, which is a function of time, is essential for this investigation.
Generally, the location of the vortical structure can be approximated using the pressure minima technique, as shown
in Section III. However, it is challenging to justify an accurate quantification of the hydrodynamic mode based on
the number of discrete low-pressure spots [23]. To overcome this limitation, the location of the vortical structure is
identified using the equivalent Q-criterion [75], which is given by

Q = €ij€j; — Wz'z ~ —Vzp}{/poo, (27)

N
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where €;; = %(31@ /0zj+0u;/Ox;) represents the rate of strain, w; denotes the vorticity of the velocity field, and V?py
is the Laplacian of the hydrodynamic pressure field. This formulation offers two distinct advantages: first, Eq. (27)
establishes a direct link between the velocity gradient field and the hydrodynamic pressure field to accurately pinpoint
the location of the vortex. Second, the positive and negative values of the Q-criterion provide valuable insights into
the strain rate and vorticity of the velocity fields, which are essential for understanding subsequent noise generation
mechanisms [76].

Figure 11 shows an oscillation cycle of x similar to that of figure 6, with particular attention now given to the vortex
dynamics near the cavity opening region. The Q-criterion, calculated from Eq. (27), is plotted and superimposed
with streamlines to indicate the shear-layer oscillations near the cavity opening. For brevity, we examine the vortex
dynamics within the a = 60° inclined cavity. Figure 11(a) shows the instant when a large-scale vortex, characterized
by @ < 0, is located slightly above the cavity opening line at the downstream corner. The vorticity-dominated region
near the downstream walls is associated with low hydrodynamic pressure (p}; < 0) and is visualized in figure 12. These
hydrodynamic wall-pressure fluctuations act as a dipole noise source from the surface integral of Curle’s equation [77],
which were previously identified as the dominant noise source in both shallow and deep cavities [78, 79]. Therefore,
the presence of low hydrodynamic wall-pressure fluctuations (p%; < 0) correspond to generating rarefaction acoustic
waves (p/y < 0), which at this point destructively interfere with compressive acoustic waves (p/y > 0) reflected from
the cavity base during the preceding cycle. This destructive interference leads to the acoustic pressure equilibrium
within the cavity (i.e., x = 0), as previously discussed in figure 6(a).

Continuing to examine the a = 60° case, as the large-scale vortex sweeps past the downstream corner, it induces
stronger interaction with the vorticity field and the downstream walls. At this stage, the additional rarefaction
waves undergo constructive interference with the acoustic waves reflected from the base of the cavity, until the large-
scale vortex is completely ejected from the cavity, as shown in figure 11(b). The ejection of the vortex triggers an
immediate downward flapping of the shear-layer near the upstream corner, accompanied by the emergence of small-
scale vortices within the separated shear-layer. These small vortices gradually grow and merge, eventually forming a
single large-scale vortex near the upstream corner, as illustrated in figure 11(¢). The further downstream convection
and development of this large-scale vortex before completing the feedback oscillation cycle is shown in figure 11(d).
In contrast to the orthogonal cavity case, the recurring interaction between the escaping vortical structure and the
downstream corner in inclined cavities mirrors the well-documented phenomenon of “vortex above corner” interaction,
as reported by Tang and Rockwell [80].

Additionally, we employ the Direct Lyapunov Exponents (DLE) method introduced by Haller [81, 82] to identify
the Lagrangian Coherent Structures (LCS) present in the turbulent cavity flow fields. The DLE field is defined as

1
DLEa7(z0,t0) = AT log(or(xo,to)), (28)

where o represents the square of the largest singular value of the Cauchy-Green deformation tensor such that

ax(to + AT, g, to)]T [8$(t0 + AT, xg, to):|> (29)

or(20,t0) = Amax <{ g Dg

and z(t, zo,to) denotes the position of a particle at time ¢, initiating at position g at time tg. The DLE field is
calculated by integrating trajectories in backward time (AT < 0) and the ridges in the DLE field capture attracting
Lagrangian coherent structures (attracting LCS) in the flow field [81]. The integration time, AT is adjusted to achieve
the desired level of detail in the calculation without compromising the location of the attracting LCS boundary. The
DLE field is visualised in figure 13.

Based on figures 11 — 13 (also video clips provided as a supplementary material to this paper), we highlight that
there is a distinctive flow mechanism in the inclined cavities which is significantly different from that of the orthogonal
cavity. Firstly, the inclined cavities produce a large single vortical structure travelling across the cavity opening which
manifests a 1st hydrodynamic mode. On the other hand, the orthogonal cavity exhibits two smaller vortices travelling
along simultaneously, i.e. a 2nd hydrodynamic mode. In the inclined cavities, there is a pronounced level of Kelvin-
Helmholtz instability and a flapping motion of the shear layer. When the shear layer is flapped downward an intense
roll-up vortex is created at the upsream corner. The roll-up vortex then keeps growing in size by merging smaller
eddies nearby as the shear layer flaps upward. The vortex spends a substantial amount of time in growing rather
than rapidly travelling downstream (to be shown later). This results in a significantly longer cycle period. Also, due
to the large size, only one vortex occupies the cavity rather than two. We suggest that these are the main reasons
why the inclined cavities exhibit the 1st hydrodynamic mode which selects a lower-frequency resonance with the 1st
acoustic mode. In addition, the relatively higher acoustic pulsation energy contained within the inclined cavities (as
deduced from the eigenmode analysis in the previous section) may have reinforced the excitation of K-H instability
and shear-layer flapping.
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FIG. 11. Snapshots of the spanwise-averaged instantaneous QQ-criterion with superimposed streamlines to signify the shear-layer
undulation across the cavity opening with a time interval of T'/4 between two successive plots from (a) to (d), where T is the
period of the oscillation cycle of . The first, second and third columns correspond to a = 90°, 60° and 30°, respectively. For
the corresponding hydrodynamic pressure fields, refer to figure 12.



-0.005 0 0.005

-0.02 0 0.02

16

FIG. 12. Snapshots of the spanwise-averaged instantaneous hydrodynamic pressure fluctuation py with superimposed stream-
lines to signify the shear-layer undulation across the cavity opening with a time interval of T'/4 between two successive plots
from (a) to (d), where T is the period of the oscillation cycle of x. The first, second and third columns correspond to oo = 90°,

60° and 30°, respectively.
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FIG. 13. Snapshots of the spanwise-averaged instantaneous DLE with superimposed streamlines to signify the shear-layer
undulation across the cavity opening with a time interval of T'/4 between two successive plots from (a) to (d), where T is the
period of the oscillation cycle of . The first, second and third columns correspond to a = 90°, 60° and 30°, respectively. For
the corresponding Q-criterion fields, refer to figure 11.
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We suggest that the shear-layer flapping may be quantified by the time rate of change of mass flow rate through the
cavity opening. First, based on equation 19 used in MPT, the total mass flow rate is decomposed into hydrodynamic
(rhy) and acoustic (1 4) components, and their time rate of change are expressed as

dmig I I
L= [ @l = 5 [ B -ode (309)

dnig,,. 1 [ 1 P oya
L0 =5 | ol = [ 54

In addition, the shear-layer flapping may also be characterised by the displacement of a streamline (emerging from
the upstream corner), Aysp, measured at the center of the cavity opening, (z,y) = (0.5,0). Figure 14 shows the time
history of drmy /dt, dima/dt and Ay, for each cavity. It is apparent that energetic shear-layer flapping is present
in the inclined cavities and is almost perfectly synchronized with driv4 /dt that is induced by the depthwise acoustic
resonance. Meanwhile, no contribution from the hydrodynamic component (rivy) appears here, which makes sense
because the net mass flow rate of solenoidal (incompressible) flow in a confined geometry should remain zero. However,
the hydrodynamic component of the vertical momentum (pv)g offers crucial information about the vortex dynamics
taking place across the cavity opening (to follow).
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FIG. 14. Time histories of (- --) drna/dt, (----) drng/dt and (—) Aysp for (a) a =90°, (b) 60° and (c) 30°.

Figure 15 shows streamwise phase variations of the Q-criterion, ®g(x, f), across the cavity opening for both
orthogonal and inclined cavities. The phase variations confirm the 2nd (n = 2) and 1st (n = 1) hydrodynamic modes
present in the orthogonal and inclined cavities, respectively, which satisfy the phase condition A®qg(z, f) = 27n,
as detailed by Rockwell and Naudascher [83]. The plots also reveal that the hydrodynamic fluctuations near the
upstream and downstream corners remain highly coherent with the wall pressure fluctuation at the base of the cavity
(cos[®q(x, f) — ®y(x, f)] = 1). This observation suggests that the phase of hydrodynamic cycle (e.g., from the
initial formation to the final scattering of the vortex) is perfectly synchronised with the acoustic cycle (i.e., depthwise
acoustic resonance), thereby creating a lock-in condition.

In order to examine the hydrodynamic field in more detail, a Fourier transform of Q-criterion is calculated and its
magnitude at the resonance frequency is plotted in figure 16. This plot essentially reveals the zones of major vortical
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FIG. 15. The streamwise phase variation of the Fourier-transformed Q-criterion, ®¢(x, f), measured across the cavity opening
(i.e., at y = 0) at their respective tonal frequencies for (a) a = 90°, (b) 60° and (c) 30°. Note that the spatial variation of
Do (x, f) is calculated based on the phase reference of @, (x, f). Accordingly, the plots reveal regions of frequency modulation
where the Q-Criterion fluctuation near the upstream and downstream corners remains highly synchronized with the averaged
acoustic wall-pressure fluctuation at the cavity base (cos[®g(x, f) — @y (x, f)] = 1). This observation suggests that the phase
of hydrodynamic cycle (e.g., initial vortex formation and subsequent impingement) is highly synchronized with the acoustic
cycle (i.e., depthwise acoustic resonance).

activities contributing to the resonance cycle in each of the three cavity geometries. It is clear that the size of the zone
is larger in the inclined cases as expected due to the larger vortex sizes visualised earlier. In the o = 60° case, the
vortex is more intense and seemingly undergoes a noticeably undulated travel path. Meanwhile, the vortex generates
less direct impingement at the downstream corner in the e = 60° case whereas the less intense vortex in the a = 30°
case makes a more direct impingement. These balacing acts may have contributed to producing a similar sound level
between the two cavities. However, it should be noted again that these observations are only based on the specific
Fourier component at St = 0.276 and therefore do not represent the overall picture.

(a) (b) (c)
o6t Ao G o
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0.6+ 06 0.6 h
0 05 . 1 0 05, 1 0 05, 1

FIG. 16. The contour plots show the spatial distribution of the magnitude of Fourier-transformed Q-criterion, |Q(z, f)| at their
respective tonal frequencies for (a) a = 90°, (b) 60° and (c) 30°.

We discussed earlier about the relatively slower travel speed of the large vortex in the inclined cavities in relation
to the growth process of the vortex that is not particularly featured in the orthogonal cavity. In order to estimate the
speed of the vortex travel, we look at the hydrodynamic component of the vertical momentum (pv)y fluctuating in
space and time (across the cavity opening), presented in figure 17. We suggest that the spatio-temporal contour plot
of (pv)g (which contains purely hydrodynamic fluctuations) displays the footprint of the large-scale vortex structure
moving across the cavity opening. If we take an iso-contour line for (pv)gy = 0 (one of the white curves in figure
17) and calculate the slope of the curve, i.e. dz/dt as a function of z, it shows a representative speed of the vortex
travel (uy ) at each point across the cavity opening (z € [0, 1] and y = 0). This is repeated for 10 consecutive curves
of (pv)g = 0 and an average is obtained. The resulting profiles of uy are shown in figure 18. The results reveal
that wy is significantly lower in the inclined cavities than that of the orthogonal cavity across most of the cavity
opening. It is apparent that the slower vortex travel of both inclined cavities occurs in two separate regions: 1) near
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the upstream corner z € [0,0.2] and 2) in the mid-to-downstream region z € [0.4,0.9]. We suggest that the former is
linked with the initial roll-up of the vortex during the downward flapping of the shear layer, and the latter with the
further growth of the vortex by entraining/merging adjacent eddies during the upward flapping of the shear layer. il
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FIG. 17. Spatio-temporal contour plots of the hydrodynamic component of the vertical momentum (pv)g across the cavity
opening (y = 0) for (a) a =90°, (b) 60° and (c) 30°.

V. AEROACOUSTIC MODE AMPLIFICATIONS AND SELECTIONS

Section IV highlighted that the vortex dynamics plays a key role in determining the acoustic resonance mode and
amplitude in deep and inclined cavities. Classical aeroacoustic theories that involve vortex dynamics [85, 86] suggest
that instantaneous acoustic source power, II, can be approximated using the following expression:

= o [[(ww) - u, da. (31)

where w is the vorticity vector and wu, refers to the acoustic particle velocity vector. The triple-dot product ((wxu)-u,)
provides quantitative insight into the local energy transfer between the hydrodynamic and acoustic fields. In particular,
the integrand captures the transfer of acoustic energy to hydrodynamic energy (e.g., (w X u) - u, > 0) and vice versa.
For sustained oscillations to occur, it is important for the integral in Eq. (31) to remain positive over an acoustic
cycle, ensuring that a favorable phase relationship between the Lamb vector (w x w) and the acoustic field, u,. The
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FIG. 18. Representative vortex travel speed uy /uco estimated for (----) o = 90°, (—) 60° and (- - -) 30°. This estimation is
based on iso-contour lines of (pv)g = 0 in figure 17 from which uy = dz/dt is calculated.
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following discussion further examines this energy exchange process by analyzing the temporal dynamics of the Lamb
vector within resonant acoustic fields in inclined cavities.

Figure 20 shows the time evolution of the Lamb vector and the acoustic particle velocity field in an a = 30° inclined
cavity over an acoustic cycle. The acoustic absorption phase is depicted in figures 20(a,b), where hydrodynamic
instabilities within the shear-layer absorb acoustic energy to form a coherent vortex near the upstream corner, while
the residual vorticity near the downstream corner from the preceding cycle also contributes to this absorption. The
second half of the acoustic production phase is captured in figures 20(c,d), where the vorticity-dominated regions are
now in phase with the acoustic particle velocity field until their ejection from the cavity in the same direction as
the acoustic particle velocity. Subsequently, figure 21 shows the time evolution of the Lamb vector and the acoustic
particle velocity field in the a = 60° inclined cavity over an similar acoustic cycle. Although there are significant
similarities with the a = 30° inclined cavity, two key differences are observed. First, the vortex structure in the
a = 60° inclined cavity exhibits enhanced spanwise coherence, contributing to a more pronounced Lamb vector and
consequently enhanced instantaneous acoustic source power, according to Eq. (31). Second, the diminished residual
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FIG. 20. The time evolution of the Lamb vector (w x u) in the vertical direction for the e = 30° inclined cavity is examined
for a single acoustic cycle. The contour plots capture two key time instants: those (a) when the instantaneous acoustic source
power II reaches its minimum and (¢) when it reaches its maximum. The plots (b) and (d) indicate the time junctures when
the instantaneous acoustic source power becomes zero, such as when II = 0. Here, the superimposed streamline represents the
instantaneous acoustic particle velocity field.

vorticity near the downstream corner in the v = 60° inclined cavity reduces the overall absorption of acoustic energy.
These factors may potentially explain the stronger acoustic response observed in the a = 60° inclined cavity.

The preceding discussion qualitatively explains the intense acoustic response observed in inclined cavities. To further
investigate the fundamental mechanisms driving noise amplification in these cavity flow systems, an APE-resolvent
analysis, as outlined in Subsection II D, has been conducted. The primary objective of this analysis is to establish a
direct quantitative relationship between the Lamb vector and the magnitude of the acoustic response by examining the
corresponding amplification rates and the forcing-response mode shapes of the APE-resolvent operator. Accordingly,
figure 22 presents the three leading amplification rates of the APE-resolvent operator across various frequencies.
The results reveal that the leading amplification rate is significantly higher than the second and third rates at tonal
frequencies across all cavity inclinations, underscoring the low-rank nature of the cavity oscillations examined in this
study. Subsequently, this low-rank behavior justifies a rank-1 approximation of the APE-resolvent operator, where
the dominant leading mode alone sufficiently characterizes the cavity system’s acoustic response. Specifically,

R(Gw)=UsVH = Zaiuivzﬂ ~ oyu vl (32)

3

where u; and wv; represent the leading forcing and response modes, respectively, while o7 denotes the gain of the
leading forcing-response pair. The superscript H in Eq. (32) refers to the Hermitian transpose operation. Note that
the response and forcing mode shapes are obtained from singular value decomposition, through which the leading mode
shapes are normalized by construction such that ||ui|| = ||v1]|] = 1. Consequently, this approximation establishes a
quantitative connection between the input forcing, fw (e.g., the Lamb vector), and the corresponding output acoustic
field quantities, g, (e.g., the acoustic pressure fluctuations), which can be represented as

4w = R(q; w)fw ~ olulvf{fw =o1u Zvi]‘fw,j = our Fy, (33)
J
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FIG. 21. The time evolution of the Lamb vector (w x u) in the vertical direction for the e = 60° inclined cavity is examined
for a single acoustic cycle. The contour plots capture two key time instants: those (a) when the instantaneous acoustic source
power, II, reaches its minimum, and (¢) when it reaches its maximum. The plots (b) and (d) indicate the time junctures when
the instantaneous acoustic source power becomes zero, such as when II = 0. Here, the superimposed streamline represents the
instantaneous acoustic particle velocity field.
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FIG. 22. The low-rank behavior of the APE-resolvent operator is visualized through the first three leading magnification rates:
(W) o1, (®) o2 and (A) o3 for (a) o = 90°, (b) 60° and (c¢) 30°. The vertical dashed line (- - -) indicates the tonal frequency
observed in the LES, while the horizontal dashed line (- - -) represents the leading amplification rate o1 corresponding to that
frequency.

where the index “j” denotes the grid points. Here, the measure of the source and sink is the correlation between
the leading hydrodynamic forcing (f,, ;) and the acoustic response (vij), Le. o] fu,j at a given point in space (4)-
If the correlation is positive (in either of the z- or y—direction), the location can be regarded as a source region
(vf ;fw; > 0), and if negative, a sink region (v ;fu; < 0). Meanwhile, F, = v{' f, = v} - f, is the sum of all
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sources and sinks. Figure 23 presents the spatial distribution of the reconstructed acoustic pressure field calculated
using Eq. (33), which shows strong agreement with the LES data, thereby reconfirming the suitability of the rank-1
approximation for capturing the dominant acoustic response of cavity flows examined in this study.
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FIG. 23. The first row of contour plots shows the spatial distribution of the magnitude of the reconstructed acoustic pressure
field |phpg| for (a) a = 90°, (b) 60° and (c) 30°. The second row of line plots the depthwise distribution of wall-pressure
fluctuations measured along the upstream cavity wall (zx = 0) from the (—) LES in comparison with the (---) rank-1
approximation computed using Eq. (33).

Figure 24 provides some useful information showing that factors like o1 and F,, obtained from the APE-resolvent
operator correlate well with the sound pressure levels directly observed from the current LES (pf ) for different cavity
inclinations. First, the leading gains are higher in the inclined cavities since they are driven by the 1st depthwise
acoustic modes which have smaller radiation losses (more perturbation energy contained within the cavity) that
those of the orthogonal cavity as previously discussed from figure 9(b). Second, the sum of all sources and sinks (in
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FIG. 24. Histogram plots showing (a) the first leading gain of the APE-resolvent operator o1; (b) the sum of sources and sinks
(magnitude) |F,|; and, (c) the magnitude of the acoustic pressure |pf g/, for three different cavity inclinations.
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FIG. 25. The spatial distribution of the real part of vi ® fw in the streamwise direction (top panels) and vertical direction
(bottom panels) for (a) a =90°, (b) 60° and (c¢) 30°. Here, the sources and sinks are represented by regions where v ® f, > 0
and v] © f, < 0, respectively. The phase of the plots is selected such that the imaginary part of F,, is zero.

magnitude) appears also greater in the inclined cavities. On the other hand, the orthogonal cavity seems to suffer
a significant source-sink cancellation effect, perhaps related to the higher hydrodynamic and acoustic modes that
prevailed. Figure 25(a) shows source (v7 ; fuj > 0) and sink regions (7 fuj < 0) in the orthogonal cavity case where
the two opposite regions have an almost equal size and magnitude leading to a mutual cancellation. In contrast, the
inclined cavities exhibit unequal sizes of the source and sink regions indicating less effective cancellation between the
two, as shown in figures 25(b) and (¢). This may have contributed to amplifying the sound pressure level, also with
the help of the minimal radiation losses in the 1st depthwise acoustic mode that prevailed in the inclined cavities.

Thus far, the discussions have primarily centered on elucidating the aeroacoustic characteristics of cavity oscillations,
with limited emphasis on the influence of incoming flow properties. To address this gap, we leverage insights from
the acoustic particle velocity analysis across varying pulsation levels, as discussed in Section III, to assess the impact
of acoustic forcing near the upstream corner on the cavity oscillation frequency. Here, the effect of acoustic forcing is
quantified by evaluating the peak acoustic particle displacement induced by depthwise acoustic resonance, expressed
as

R (34)
Pooloc2mHe'

where |p’| denotes the magnitude of the Fourier-transformed pressure fluctuations measured at the cavity base, and
He represents the peak Helmholtz number identified in the pressure spectra of the LES results. According to Bagwell
[87], lock-in oscillations may occur when the acoustic particle displacement is on the same order of magnitude as the
momentum thickness. Subsequently, we compare our LES data with previous experimental findings on deep cavity
flows to provide further insight into the relationship between acoustic forcing and cavity oscillation dynamics.
Figure 26 presents the ratios of acoustic particle displacement to momentum thickness (6,/6) as a function of the
peak Strouhal number collected from previous experimental data and the authors’ computational work. The plot
reveals three distinct flow-acoustic resonance regimes, i.e. a low-, mid- and high-frequency regimes centred around
St ~ 0.27, 0.4 and 0.85, respectively. Note that all the cases in the plot except the current ones are from orthogonal
deep cavities. What is intriguing in this plot is that there is one experimental case found from Yang et al. [9] which
occurred at St = 0.27 (as is with the current inclined cavities) even though it came from an orthogonal cavity. Yang
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FIG. 26. The scatter plot shows the ratio of acoustic particle displacement 6, to the momentum thickness 6 at three distinct
flow-acoustic resonance regimes. Different symbol colors represent data from various studies on orthogonal cavity flows: (&)
Yang et al. [9], (&) Bagwell [87], (A) Forestier et al. [88], (A) Ho and Kim [23], and (A) represents the current LES result at
Mo, = 0.3. The current LES results for inclined cavities at (H) Mo, = 0.2 and (®) 0.3 are provided. For fair comparison with
experimental studies, the momentum thickness 6 is measured at 10% away from the upstream cavity corner, and the values
for each cavity case are provided in Table I. The horizontal line suggests that the ratio between acoustic particle displacement
and momentum thickness (6,/6 > 4) may serve as an indicator for predicting the onset of amplified resonance at St = 0.27.

et al. reported it as an unexpected and intense cavity resonance mode referred to as “h1*al”. Despite the scarcity
of data around St ~ 0.27, we can see a convincing trend present in the plot that a higher value of 6,/60 is required
to produce a resonance at a lower frequency mode. Although it is premature to draw a conclusion with the small
number of samples available to date, the authors suggest that a threshold condition 6,/ > 4 may be used to predict
a low-frequency deep-cavity resonance at St ~ 0.27.

VI. CONCLUDING REMARKS

We investigated the aeroacoustic behavior of deep cavities with an aspect ratio of D/L = 2.632 and three different
inclination angles (a = 30°, 60°, and 90°) at two different Mach numbers (M, = 0.2 and 0.3) using wall-resolved large-
eddy simulations. The inclined cavities at M., = 0.3 generated unexpected acoustic responses with peak amplitudes
nearly 30 dB higher than those observed with the orthogonal cavity. Moreover, the peak frequency (St = 0.276)
was significantly lower compared to the orthogonal case (St = 0.849). This was not predicted by Rossiter’s model
that accounts for streamwise feedback mechanism only. Various analysis methods were used to investigate responsible
physical mechanisms that generated the unexpected results from the inclined cavities. For the orthogonal cavity, a
lock-in event occurred between the 2nd depthwise acoustic mode (He =~ 0.255) and the 2nd hydrodynamic mode
(St = 0.849) which exhibited two small vortices travelling across the cavity opening simultaneously. Coincidentally,
this frequency also matched Rossiter’s prediction with St, = (n —1/4)/(Ms + 1/k) where n = 2 and x = 0.57. In
contrast, the inclined cavities resulted in a lock-in between the 1st depthwise acoustic mode (He = 0.083) and the
1st hydrodynamic mode (St = 0.276) which the Rossiter’s model did not predict. The 1st hydrodynamic mode which
involves only one vortex across the cavity opening was due to a significantly different vortex dynamics produced in
the inclined cavities. The identified vortex dynamics consists of a pronounced Kelvin-Helmholtz instability in the
shear layer that produces a roll-up vortex that spends a substantial amount of time growing by merging smaller
eddies rather than consistently travelling downstream. This process slowed the overall vortex convection speed and
prolonged the vortex dwell time, ultimately resulting in a lower resonance frequency (a lock-in with the 1st acoustic
mode). Additionally, due to the large size, only a single vortex occupied the cavity opening.

We suggested that the enhanced level of Kelvin-Helmholtz instability appeared in the inclined cavities was linked
with the low level of radiation losses identified through the APE eigenmode analysis. The smaller radiation loss (in
comparison to the orthogonal cavity case) means that more acoustic perturbation energy is contained within the cavity
which may have elevated the shear-layer flapping. This effect was also quantified by tracing the change of mass flow
rate across the cavity opening and also the streamline displacement. Meanwhile, the APE-resolvent analysis displayed
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the source and sink regions in each cavity, from which we found that the source-sink cancellation was less pronounced
in the inclined cavities. These factors contributed to the enhanced amplitude of resonance present in the inclined
cavities. Finally, we hypothesized that the ratio between the acoustic particle displacement and the momentum
thickness 6,/6 > 4 might be a necessary condition for the onset of the low-frequency resonance (St ~ 0.27) in deep
and inclined cavities.

While the current study provides valuable insights into flow-acoustic resonances in deep and inclined cavity con-
figurations, it has certain limitations that warrant further research. Firstly, the findings are specific to the aspect
ratio of L/D = 2.632 and the Mach numbers of 0.2 and 0.3 considered in this study. Further investigations are
required to better understand the distinctive vortex dynamics and the low-frequency mode selection process across
various aspect ratios and over a broader range of Mach and Reynolds numbers. Secondly, since this study focused on
a two-dimensional cavity geometry, the effects of three-dimensional geometries such as cavities with a finite span or
circular cross-sections with various inclinations are entirely unknown. Additionally, different cavity floor configura-
tions (e.g., non-orthogonal to the side walls and/or non-planar) may influence resonance frequencies and amplitudes.
Finally, future studies should explore optimal cavity geometries and/or flow conditions that may lead to strategies
for mitigating or controlling deep cavity resonance, given the significant practical implications for various engineering
applications.
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