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Abstract

Background/Objectives: X-ray computed tomography (XCT) is a powerful tool for volu-
metric imaging, where three-dimensional (3D) images are generated from a large number
of individual X-ray projection images. However, collecting the required number of low-
noise projection images is time-consuming, limiting its applicability to scenarios requiring
high temporal resolution, such as the study of dynamic processes. Inspired by stereo
vision, we previously developed stereo X-ray imaging methods that operate with only
two X-ray projections, enabling the 3D reconstruction of point and line fiducial markers
at significantly faster temporal resolutions. Methods: Building on our prior work, this
paper demonstrates the use of stereo X-ray techniques for 3D reconstruction of sharp object
corners, eliminating the need for internal fiducial markers. This is particularly relevant for
deformation measurement of manufactured components under load. Additionally, we ex-
plore model training using synthetic data when annotated real data is unavailable. Results:
We show that the proposed method can reliably reconstruct sharp corners in 3D using
only two X-ray projections. The results confirm the method’s applicability to real-world
stereo X-ray images without relying on annotated real training datasets. Conclusions: Our
approach enables stereo X-ray 3D reconstruction using synthetic training data that mimics
key characteristics of real data, thereby expanding the method’s applicability in scenarios
with limited training resources.

Keywords: feature detection; 3D mapping; X-ray image reconstruction

1. Introduction
X-ray computed tomography (XCT) is an established volumetric imaging technique

used throughout medical, scientific, and industrial applications. However, in order to
generate volumetric images of high spatial resolution and with limited artefacts, the method
requires a very large number of individual X-ray measurements to be collected from around
the object. Whilst the use of advanced algorithms, such as those based on machine learning
or regularised optimisation (e.g., using total variation (TV) constraints), offers the ability
to reduce the number of required measurements somewhat [1–8], a significant reduction
in the number of measurements is still not possible for most objects without sacrificing
image quality.

We recently demonstrated a different approach [9]. Instead of trying to reconstruct
full tomographic images from limited observations, which requires very strong prior infor-
mation, we instead developed a novel stereo X-ray imaging approach that only recovers
the 3D location of simple features, such as points and lines. The advantage of our new
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method is that it only requires two (stereo) projection images but works without the strong
constraints that are imposed in full image reconstruction from limited measurements. Our
approach thus worked for general objects, as long as these included simple linear fiducial
markers. This approach is of particular interest in time-sensitive applications, where the
internal structure of an object changes rapidly, and where we might only be able to take a
single pair of images at each time step.

In this paper, we extend the above approach from fiducial markers to another com-
monly found set of linear features, namely, the corners and edges of objects. The location
of these point and line features is often more complex to identify. There are several appli-
cations where this might be of interest but where fiducial markers cannot be embedded
into the object. Of particular interest to us are applications where we want to study
a manufactured component with sharp corners and edges whilst they are undergoing
rapid deformations.

As in our previous work, we assume an imaging setup with two or more X-ray sources
and detectors, providing an X-ray stereo vision system. Using ideas from computer stereo
vision, spatial mapping of object corners and edges then becomes possible at the speed of
the detector frame rate, which is orders of magnitude faster than full computed tomography
data acquisition.

In contrast to visible light imaging, where the light registered at a specific location on a
camera’s image sensor is commonly associated with light reflecting from a single 3D point
on the surface of an opaque object, X-ray intensity measured on an X-ray detector contains
X-ray attenuation information from an entire line through the object [10]. Whilst the main
challenge in traditional stereo vision lies in accurately aligning points between the two
images forming a stereo pair [11], for X-ray stereo imaging, not only does this matching
step become more difficult; an additional challenge is the identification of the location of
distinct 3D points in the 2D projected images [9].

1.1. Our Method

Our previous work [9] identified an approach that (1) identifies all point-like features in
the two X-ray views and (2) matches these features between the views. Once identified and
matched, mapping the features into 3D space then employs the same mathematical theory
of projective geometry used in traditional stereo vision. To limit computational complexity
and allow for efficient scaling to realistically sized X-ray projections, we use a block-based
deep learning approach to identify the projected locations of 3D features in 2D space (that
is, we identify the features in the projection images). These identified locations are then
mapped into 3D space using the filtered back-projection (FBP) method [12,13]. Potential
3D feature locations can then be identified as those points where individual back-projected
features overlap between the two views in 3D space. Whilst this is unique, with a high
probability if the features are sparse and randomly distributed in space, in order to further
enhance robustness against the exact localisation of features on the two imaging planes, we
here employ a second deep neural network to process the back-projected volumetric image
to identify feature locations.

1.2. Contributions

Our previous approach is here extended to the mapping of corner and edge features.
Whilst these features are conceptually similar to point and line fiducial markers, the
difference is that they are more difficult to identify in X-ray projection images. Whilst using
a fiducial marker with a higher X-ray attenuation value will produce projection images
with discontinuous image intensities at the fiducial locations, this is not true for edges
and corners, where the image intensity in the projected images changes smoothly at the
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feature locations. Therefore, detecting and matching in this case can pose greater difficulty.
Not only do we demonstrate in this paper that our previous approach still works in this
setting; we here make a second key contribution. In our previous paper, we used a machine
learning method for feature identification that required training. In real applications, we
do, however, seldom have sufficient amounts of real training data to train a model for a
specific imaging task. To overcome this challenge, we here demonstrate that model training
can also be carried out on simplified simulated data matched specifically to a given real
imaging setting. Whilst the trained model in this case would not generalise well to other
objects, this approach allows more efficient training for a more limited set of object features
of interest.

2. Methodology
Our methodology uses three key steps: feature detection in each of the two 2D

projection images, matching features, and mapping features’ locations in three dimensions.
The approach utilises a similar point identification and mapping process to our previ-

ous work [9]. We assume a stereo X-ray tomography system as shown in Figure 1. Features
in each of the stereo images are identified and mapped into 3D space, where the back-
projected volume is used to identify 3D feature location. We summarise our proposed
approach in Figure 2.

Figure 1. For stereo X-ray tomographic imaging with two views, two X-ray projection images of an
object are taken from two different viewing directions.

Figure 2. Overview of the proposed framework. The input is a pair of X-ray projection images. Each
projection is fed independently into the same 2D U-net to compute two different feature maps, where
the background is removed, leaving estimates of the line and point feature locations. Utilising scan
geometry knowledge, the two feature maps are then back-projected into a 3D volume using the FDK
algorithm, with the back-projected volume further processed using a 3D U-net to generate the 3D
spatial feature maps.



Tomography 2025, 11, 84 4 of 13

2.1. Feature Detection

We formulate the feature detection problem as a standard binary classification problem
using a deep neural network that, for each pixel, estimates the probability that this pixel
comes from a feature. A neural network implements a parametrised map

ymask = f (xraw; θ), (1)

where θ are the model parameters, xraw ∈ Rm×n are the X-ray projection images encoding
the spatial distribution of measured X-ray attenuation on one of the imaging planes, and
ymask ∈ Bm×n is a pixel-wise class probability map that can be thresholded to estimate
feature locations. Parameters θ are adapted using stochastic gradient optimisation to
minimise the empirical risk over a training data set

{(
xi

raw, yi
mask

)}N
i=1, which comprises

N image pairs. The function f (·) in Equation (1) is realised using the standard U-net
architecture described in [14] but implemented and trained as a classification network (i.e.,
using a sigmoid activation function and a binary cross-entropy loss).

2.2. Feature Matching and 3D Mapping

As in [9], to derive a robust feature matching and 3D mapping approach, we use
standard filtered back-projection methods to map the identified feature locations into 3D
space. This is followed by a feature location identification step, where a deep neural
network is applied to the 3D image to identify feature locations. Formally, if BL(·) and
BR(·) are the filtered back-projection operators [15] for the left and right projection images
(note—extensions to settings with three or more projections follow the same ideas), then
we train a mapping g(·) that maps the two extracted feature maps ŷL

mask and ŷR
mask to a 3D

tomographic volume yvol ∈ Rm×n×o.

yvol = g
(

BL(ŷL
mask) + BR(ŷR

mask); α
)

(2)

In this formulation, ŷR
mask and ŷL

mask are the estimated 2D feature maps from the left and
right X-ray images, and yvol is the estimated volumetric image encoding the probability that
each voxel contains one of the features. The function g(·) in Equation (2) is parameterised
by trainable parameters α. We use the 3D U-net described in [16] to implement this function.

3. Dataset
We demonstrate the method’s ability by mapping the edge and line features of a test

phantom manufactured from homopolymer acetal. This phantom was imaged previously
in unrelated work [17] but is a useful example here as it contains a range of different linear
edge features. We show a photo of the object together with its original design drawing and
a 3D rendering in Figure 3.

The object was originally scanned over a range of angles, though here we utilise only
two projections taken at approximately 60◦. Scanning was performed on a Nikon XTH225
X-ray micro-tomography system. The original X-ray intensity images are shown in Figure 4.
The 2000 × 2000 detector had a pixel size of 0.2 mm, and the object was scanned with a
source-to-detector distance of about 923 mm and a source object distance of about 290 mm.

To train the feature detection 2D U-net model, we generated synthetic training datasets,
generating 12 3D images of size 256 × 256 × 256. Each image contained several simple 3D
shapes with straight or rounded corners that approximately matched the shapes expected
in the real X-ray images. We then positioned these shapes within a large rectangular prism,
assigning low attenuation to the shapes and higher attenuation to the prism. Gaussian
noise was added to the background. From these 12 3D images, we generated 24 1024× 1024
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2D projection images at random object orientations using the Astra Toolbox [18]. Each 2D
projection was partitioned into 144 overlapping blocks of size 256 × 256, providing 3456
samples for training. We show three randomly selected 2D training data pairs in Figure 5,
where we show the projection images (top) together with the projected ground truth binary
images identifying the locations of the corner and edge features (bottom).

Figure 3. (a) A 3D rendering of the 3D block; (b) a photo of the workpiece; and (c) its CAD drawing.

Figure 4. Intensity projection images of the physical test sample, collected by a Nikon XTH225 X-ray
tomography system with a 60◦ relative rotation.

To train the 3D U-net to map the detected features in the projection images into 3D
space, we generated a 3D edge map from its CAD drawing, which only contains object
edge features. To generate a diverse set of images, the same edge feature map was rotated
with 1◦ intervals around an axis parallel to the longest object side. This generated 360
3D images with edge features, each of size 544 × 64 × 544 voxels and with a voxel size of
0.24 × 0.24 × 0.24 mm3. Each of these 3D blocks was then projected to generate pairs of 2D
projection images, where projections were collected at ±30◦. These ideal 2D feature maps
were then back-projected into 3D images using the FDK algorithm to generate simulated
back-projected feature maps. When training our 3D U-net, we could thus use the simulated
back-projected feature maps as network inputs, with the original clean edge feature maps
as desired outputs. Example data is shown in Figure 6.
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Figure 5. Panel (a) shows three projections from the set of training samples used to train the feature
detection network, whilst panel (b) shows the projected ground truth edge feature maps.

Figure 6. A set of 3D feature mapping training samples. Panel (a) is a thresholded 3D rendering of
the back-projected volume that is used as the input to the machine learning model, and panel (b) is
the ground truth we are trying to predict.

Calibration for Stereo X-Ray Imaging System

Whilst we had nominal values for the main system parameters, at the time of scanning,
the system was not fully calibrated, so the nominal values given above might have signifi-
cant errors. Thus, with only two real projections, using the epipolar constraint method [19]
with manually selected matching points from two real projections, the relative camera ma-
trix between two cameras could be calculated. We here used the first view as the reference
coordinate. Thus, the first camera matrix can be denoted as shown in Equation (3), where
P1 is the projection matrix of the first view, K is the intrinsic matrix, and I is the identity
matrix. The second camera matrix is denoted as shown in Equation (4), where R is the
relative rotation matrix and t is the normalised translation matrix between two views.
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P1 = K[I|0] (3)

P2 = K[R|t] (4)

To further refine the calibration, the simulated 3D edge feature map was projected
using the two estimated camera matrices and compared visually with the two real pro-
jections (see Figure 7). We defined the world coordinates based on the rotation centre of
the stereo X-ray imaging system under the Astra Toolbox. Here, we added a tiny pitch,
roll and yaw to the centre point of the 3D block outline features to control its pose to
make its forward projections under the stereo X-ray geometry mostly overlap with the real
projections, while the two viewing angles were −29◦ and +32◦. The comparison of the
real outline features and simulated projections is shown in Figure 7, demonstrating a good
overlap of the simulated features and the real data after calibration.

Figure 7. The overlap between simulated edge map projections and the real projections. We measured
the geometric error at the object corners and the six screw holes’ positions, finding a five-pixel error
on average due to the geometric calibration procedure.

4. Results
Due to the fact that our system calibration for the available data did not use an

optimised and calibrated calibration phantom, errors in the estimated 3D feature location
were dominated by calibration errors as well as deviations of the manufactured object’s
geometry from the ground truth CAD data (for example, subtractive manufacturing led to
a slight warping of the workpiece). Numerical values that tried to quantify the precision
of locating features in 3D space were thus dominated by errors in the calibration and
assumed ground truth feature locations. Our method is also the first method developed
specifically for the 3D mapping of linear X-ray features from stereo X-ray projections, so
there is no comparable state-of-the-art method available that we could use for relative
performance comparisons. Whilst presenting some numerical results, we primarily limited
our evaluation to visual inspection, which was able to show that (a) features were located
accurately in the projections and (b) the correct matching was performed in 3D.

We evaluated the feature detection and the 3D feature mapping steps independently.

4.1. General Training and Evaluation Approach

Both networks were trained as classification networks for feature detection using the
projections (2D network) or the filtered back-projections of the 2D projections (for the 3D
network) as inputs and the binary images showing 2D projected or 3D point locations as
output. Both networks were implemented using TensorFlow 2.x (TensorFlow, Google Inc.,
Mountain View, CA, USA) and optimised using an NVIDIA GTX4070ti (NVIDIA Corpora-
tion, Santa Clara, CA, USA) graphics card for the 2D network and NVIDIA A100 (NVIDIA
Corporation, Santa Clara, CA, USA) graphics cards on the University of Southampton
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IridisX cluster (Southampton, UK) for the 3D network. We used the Adam optimiser with
the synthetic training data, a learning rate of 10−4, and 100 epochs. The loss function was
the binary cross-entropy.

4.2. Feature Detection

After training the 2D feature detection U-net using the synthetic data described above
as the training set, we used the real projection images from the physical phantom to
test the method. The real test images were processed by converting the measured X-ray
intensity into attenuation values before cropping the images into 338 overlapping blocks
of size 256 × 256. We then applied the 2D U-net to all test sample blocks from both
projections. Probabilities were averaged over all blocks that contained a particular image
pixel before thresholding to produce a full-size feature map. To evaluate the performance
of the method, we used the simulated projections after calibration as our ground truth and
visually compared the CAD data as approximate ground truth to the estimated 2D feature
maps (See Figure 8).

Figure 8. Comparison between the simulated ground truth 2D feature maps (derived from the CAD
data of the object) (a) and the 2D feature maps estimated from the real data (b).

4.3. Three-Dimensional Feature Mapping

We then used the estimated 2D features of the real projections from the feature de-
tection model and, for comparison, the two simulated (CAD-based) feature projections
in order to generate two back-projected volumes using the same calibrated projection
geometry. Both back-projected volumes went through the 3D model trained for 3D spatial
position estimation.
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The back-projected volumes generated by the two simulated projections are shown
in Figure 9 together with the 3D edge feature map estimated with the 3D U-net model.
This can be compared to the back-projected volume generated by the two 2D feature maps
estimated from the real data shown in Figure 10, where we also show the 3D edge feature
map estimated with the 3D U-net model. To numerically evaluate the error between these
two estimations and the ground truth, we compare their corner and screw hole positions to
those for the simulated phantom. As seen in Figure 11, the errors from corners and screw
holes were in the range of between 1 and 7 voxels, or 0.24 mm to 1.68 mm. Considering the
size of the 3D block and the inaccuracy from calibration, these are relatively small errors,
which are assumed to be mainly due to the ad hoc post-scan calibration used here. Better
calibration results could be obtained using a dedicated calibration object with a fixed stereo
X-ray imaging setup.

Figure 9. Visualisation of the operation of the 3D U-net. Panel (a) shows the back-projected volume
generated from two simulated projections of the edge feature maps, whilst panel (b) is the 3D edge
feature map estimated from the top image using the 3D U-net.

Our numerical evaluation of the results was based on the location of features in a
nominal geometry that was also used for system calibration and should theoretically be
aligned with the true object location. Distance errors in feature location between 0.24 mm
and 1.68 mm were found, which were likely dominated by errors in the calibration process,
though a detailed analysis of the dimensional accuracy of the approach will be left to a
future study where a more controlled system calibration approach can be used.

It is important to contrast our approach to related methods such as limited-angle
tomography [20]. In limited-angle tomography, a full 3D object reconstruction is computed
from a few projective measurements using advanced iterative or deep learning-based
image reconstruction algorithms. This is different from our approach in that our stereo
XCT approach only reconstructs the 3D location of point and line features (such as the
edges and corners of objects, as described in the current paper). Whilst stereo XCT thus
only recovers limited 3D information compared to limited-angle XCT, limited-angle CT
has the disadvantage that it requires extremely strong prior knowledge about the imaged
object, which is then exploited in the iterative or deep learning-based reconstruction. If
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we have no prior information on object geometry and density profiles, then limited-angle
reconstruction does lead to images with significant artefacts. For example, filtered back-
projections computed from a pair of projection images would lead to an image almost
without any discernible information. Our stereo XCT method is on the other hand still
able to identify object edges and corners, even if we know nothing about the object’s shape
and density profile. In fact, edges and corners can always be mapped if we are able to
locate and match the edges in the 2D projections without the need to impose any additional
prior object knowledge. This is demonstrated in an example where we image a point-like
object using two X-ray projection views measured from two viewpoints that are roughly 60
degrees apart. The left panel in Figure 12 shows the recovery of that point when using our
stereo XCT technique, whilst the right panel uses the prior information and agnostic filtered
back-projection reconstruction, which reconstructs the point as two lines in 3D space. If the
X-ray views in addition had contained additional objects without clear edges or corners,
then the stereo XCT reconstruction would not have been affected, whilst the limited-angle
reconstruction would have been further contaminated by the additional X-ray attenuation
estimates from the additional object (but again smeared out along the X-ray paths of the
two views).

Figure 10. (a) Back-projected feature maps and (b) estimated 3D features for the real data.

Figure 11. Positioning error in 3D space between the 3D outline estimation by simulated projections
and real outline features.
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Figure 12. Differences between stereo X-ray tomography and limited-view tomography. (a) Stereo
XCT reconstruction of a point-like object. (b) FBP reconstruction of the same object; the object’s
information is smeared out along the X-ray paths that intersect the object.

Our approach also differs substantially from X-ray-based methods proposed in medical
imaging that track objects during surgery. Here, a single projection image is often used in
which an object, such as a medical instrument or tumour, is identified and then tracked in a
single 2D X-ray projection image [21]. Whilst some of these methods also use deep learning-
based methods to estimate the location of the object in 3D space, as this information is not
measured in a single X-ray projection, this estimate needs to rely again on prior information
such as knowledge of typical human anatomy or preoperative full CT scans.

5. Discussion and Conclusions
In this paper, we extended the stereo X-ray tomography framework from our previous

work to the estimation of the 3D location of the corners and edges of 3D objects. Using two
deep neural networks trained using simulated data, we could extract point and line feature
locations from two real projection images and, using the calibrated camera matrices of the
system, project these back into 3D space. To identify feature location in 3D space, a further
3D neural network was used, again trained on simulated data.

Considering that the main objective of this work was to extend our previous study by
applying the stereo X-ray tomography system to more complex and realistic scenarios, we
aimed to reconstruct 3D features using only a pair of uncalibrated projection images and the
object’s initial blueprint. While the geometry estimated through calibration may introduce
certain errors, which in turn affect the accuracy of feature localisation and consequently
impact the final 3D mapping, the resulting errors appear to be within a manageable range.
From a qualitative perspective, the system successfully achieved its intended purpose and
produced reliable results, identifying 2D feature locations with few omissions and false
positives, whilst the 3D method clearly matched the correct features to translate these
into 3D.

A potential limitation that warrants further investigation in future work is the general-
izability of this approach to different feature geometries and object complexities. Although
our training data was generated using simple geometric patterns placed in various con-
figurations, there are inherent differences in appearance and physical characteristics from
real experimental data. This introduces a possible risk that visual similarities may not fully
capture underlying structural differences, potentially affecting generalisation performance.
We plan to address this limitation in future work by further enhancing the diversity and
realism of the training data. In this work, we roughly categorised features into point
features (such as highly attenuating points and corners) and line features (including highly
attenuating linear features and object edges). However, in real-world applications, features



Tomography 2025, 11, 84 12 of 13

may often be more difficult to estimate. Point-like and line-like features can potentially vary
in their width (for example, a rounded object corner leads to a slightly smeared-out linear
feature in the projections). Furthermore, the strength (and thus visibility) of these features
in the projection image will vary with object contrast. For a method trained for a specific
application, it is thus crucial to match these aspects in the simulated data to the expected
feature range in the real data. If instead the aim is to develop a deep learning-based model
that works over a much wider range of objects, the greater variation of feature width and
contrasts expected in this more general set of applications will need to be taken into account.
As always in deep learning-based methods, matching the statistics of these properties in the
training data to those in the expected real data will minimise the expected average error.

Herein, we were also limited in that we only had suitable data for a single object.
The effect of geometric object complexity, imaging noise, and (possibly) contrast on multi-
material objects was thus not evaluated, though the influence of noise on feature detection
has already been studied in our previous work with fiducial markers, and it is to be
expected that increased noise will lead to decreased performance in 2D feature detection.
For the detection of edge features, the ‘sharpness’, i.e., the radius of an object’s edge, will
likely also play a key role in the exact localisation of the edge in both two dimensions and,
ultimately, three dimensions. These are issues we hope to investigate in future work.
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