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Abstract: X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, 1

where three-dimensional (3D) images are generated from a large number of individual 2

X-ray projection images. Collecting the required number of low noise projection images 3

is however time-consuming and so the technique is not currently applicable when spatial 4

information needs to be collected with high temporal resolution, such as in the study of 5

dynamic processes. In our previous work, inspired by stereo vision, we developed stereo 6

X-ray imaging methods that operate with only two X-ray projection images. Previously, we 7

have shown how this allowed us to map point and line fiducial markers into 3D space at 8

significantly faster temporal resolutions. In this paper, we make two further contributions. 9

Firstly, instead of utilising internal fiducial markers, we demonstrate the applicability of 10

the method to the 3D mapping of sharp object corners, a problem of interest in measuring 11

the deformation of manufactured components under different loads. Furthermore, we 12

demonstrate how the approach can be applied to real stereo X-ray data, even in settings 13

where we do not have the annotated real training data that was required for the training of 14

our previous Machine Learning approach. This is achieved by substituting the real data 15

with a relatively simple synthetic training dataset designed to mimic key aspects of the real 16

data. 17

Keywords: feature detection; 3D mapping; X-ray image reconstruction 18

1. Introduction 19

X-ray Computed Tomography (XCT) is an established volumetric imaging technique 20

used throughout medical, scientific and industrial applications. However, in order to 21

generate volumetric images of high spatial resolution and with limited artefacts, the method 22

requires a very large number of individual X-ray measurements to be collected from around 23

the object. Whilst the use of advanced algorithms, such as those based on machine learning 24

or regularised optimisation (e.g using Total Variation (TV) constraints) offers the ability to 25

reduce the number of required measurements somewhat [1–8], a significant reduction in 26

the number of measurements is still not possible for most objects without sacrificing image 27

quality. 28

We recently demonstrated a different approach [9]. Instead of trying to reconstruct 29

full tomographic images from limited observations, which requires very strong prior infor- 30

mation, we instead developed a novel stereo X-ray imaging approach that only recovered 31

the 3D location of simple features, such as points and lines. The advantage of our new 32

method is that it only requires two (stereo) projection images, but works without the strong 33

constraints that are imposed in full image reconstruction from limited measurements. Our 34

approach thus worked for general objects, as long as these included simple linear fiducial 35
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markers. This approach is of particular interest in time-sensitive applications, where the 36

internal structure of an object changes rapidly, and where we might only be able to take a 37

single pair of images at each time step. 38

In this paper, we extend the above approach from fiducial markers to another com- 39

monly found set of linear features, namely the corners and edges of objects. The location 40

of these point and line features is often more complex to identify. There are several appli- 41

cations where this might be of interest, but where fiducial markers cannot be embedded 42

into the object. Of particular interest to us are applications where we want to study a 43

manufactured component with sharp corners and edges whilst they are undergoing rapid 44

deformations. 45

As in our previous work, we assume an imaging setup with two or more X-ray sources 46

and detectors, providing an X-ray stereo vision system. Using ideas from computer stereo 47

vision, spatial mapping of object corners and edges then becomes possible at the speed of 48

the detector frame rate, which is orders of magnitude faster than full computed tomography 49

data acquisition. 50

In contrast to visible light imaging, where the light registered at a specific location on a 51

camera’s image sensor is commonly associated with light reflecting from a single 3D point 52

on the surface of an opaque object, X-ray intensity measured on an X-ray detector contain 53

X-ray attenuation information from an entire line through the object [10]. Whilst the main 54

challenge in traditional stereo vision lies in accurately aligning points between the two 55

images forming a stereo pair [11], for X-ray stereo imaging, not only does this matching 56

step become more difficult, an additional challenge is the identification of the location of 57

distinct 3D points in the 2D projected images [9]. 58

1.1. Our method 59

Our previous work [9] has identified an approach that 1) identifies all point-like fea- 60

tures in the two X-ray views, and 2) matches these features between the views. Once 61

identified and matched, mapping the features into 3D space then employed the same 62

mathematical theory of projective geometry used in traditional stereo vision. For limit 63

computational complexity and allow for efficient scaling to realistically sized X-ray projec- 64

tions, we use a block-based deep learning approach to identify the projected locations of 65

3D features in 2D space (that is, we identify the features in the projection images). These 66

identified locations are then mapped into 3D space using the filtered back-projection (FBP) 67

method [12,13]. Potential 3D feature locations can then be identified as those points where 68

individual back-projected features overlap between the two views in 3D space. Whilst 69

this is unique with a high probability if the features are sparse and randomly distributed 70

in space, to further enhance the robustness against the exact localisation of features on 71

the two imaging planes, we here employ a second deep neural network to process the 72

back-projected volumetric image to identify feature locations. 73

1.2. Contributions 74

Our previous approach is here extended to the mapping of corner and edge features. 75

Whilst these features are conceptually similar to point and line fiducial markers, the 76

difference is that they are more difficult to identify in X-ray projection images. Whilst using 77

a fiducial marker with a higher X-ray attenuation value will produce projection images 78

with discontinuous image intensities at the fiducial locations, this is not true for edges 79

and corners, where the image intensity in the projected images changes smoothly at the 80

feature locations. Therefore, detecting and matching in this case can pose greater difficulty. 81

Not only do we demonstrate in this paper that our previous approach still works in this 82

setting, we here make a second key contribution. In our previous paper, we used a machine 83



Version July 28, 2025 submitted to Tomography 3 of 15

learning method for feature identification that required training. In real applications, we 84

do however seldom have sufficient amounts of real training data to train a model for a 85

specific imaging task. To overcome this challenge, we here demonstrate that model training 86

can also be done on simplified simulated data matched specifically to a given real imaging 87

setting. Whilst the trained model in this case would not generalise well to other objects, this 88

approach allows more efficient training for a more limited set of object features of interest. 89

2. Methodology 90

Our methodology uses three key steps: feature detection in each of the two 2D 91

projection images, matching features, and mapping features’ locations in 3D.

Figure 1. For stereo X-ray tomographic imaging with two views, two X-ray projection images are
taken of an object from two different viewing directions.

92

The approach utilises a similar point identification and mapping process to our previ- 93

ous work [9]. We assume a stereo X-ray tomography system as shown in 1. Features in each 94

of the stereo images are identified and mapped into 3D space, where the back-projected 95

volume is used to identify 3D feature location. We summarise our proposed approach in 96

Fig. 2. 97

2.1. Feature Detection 98

We formulate the feature detection problem as a standard binary classification problem, 99

using a deep neural network that, for each pixel, estimates the probability that this pixel 100

comes from a feature. A neural network implements a parametrised map 101

ymask = f (xraw; θ), (1)

where θ are the model parameters, xraw ∈ Rm×n is the X-ray projection images encoding 102

the spacial distribution of measured X-ray attenuation on one of the imaging planes and 103

ymask ∈ Bm×n is a pixel wise class probability map that can be thresholded to estimate 104

feature locations. Parameters θ adapted using stochastic gradient optimisation to minimise 105

the empirical risk over a training data-set
{(

xi
raw, yi

mask
)}N

i=1 which comprises N image 106

pairs. The function f (·) in Eq. (1) is realised using the standard U-net architecture described 107

in [14], but implemented and trained as a classification network(i.e. using a sigmoid 108

activation function and a binary cross-entropy loss). 109
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Figure 2. Overview of the proposed framework. The input is a pair of X-ray projection images. Each
projection is fed independently into the same 2D U-net to compute two different feature maps, where
the background is removed, leaving estimates of the line and point feature locations. Utilising scan
geometry knowledge, the two feature maps are then back-projected into a 3D volume using the FDK
algorithm, with the back-projected volume further processed using a 3D U-net to generate the 3D
spatial feature maps.

2.2. Feature matching and 3D mapping 110

As in [9], to derive a robust feature matching and 3D mapping approach, we use 111

standard filtered back-projection methods to map the identified feature locations into 3D 112

space. This is followed by a feature location identification step, where a deep neural 113

network is applied to the 3D image to identify feature locations. Formally, if BL(·) and 114

BR(·) are the filtered back-projection operators [15] for the left and right projection images1, 115

then we train a mapping g(·) that maps the two extracted feature maps ŷL
mask and ŷR

mask to 116

a 3D tomographic volume yvol ∈ Rm×n×o. 117

yvol = g
(

BL(ŷL
mask) + BR(ŷR

mask); α
)

(2)

Here, ŷR
mask and ŷL

mask are the estimated 2D feature maps estimated from the left and right 118

X-ray images and yvol is the estimated volumetric image encoding the probability that 119

each voxel contains one of the features. The function g(·) in Eq. (2) is again parameterised 120

by trainable parameters α. We here use the 3D U-net described in [16] to implement this 121

function. 122

3. Dataset 123

We demonstrate the method’s ability by mapping the edge and line features of a test 124

phantom manufactured from homopolymer acetal. This phantom was imaged previously 125

in unrelated work [17] but is a useful example here as ir contains a range of different linear 126

edge features. We show a photo of the object together with its original design drawing and 127

a 3D rendering in Fig. 3. 128

The object was originally scanned over a range of angles, though here we utilise only 129

two projections taken at approximately 60◦. Scanning was performed on a Nikon XTH225 130

X-ray micro-tomography system. The original X-ray intensity images are shown in Fig. 131

6. The 2000 × 2000 detector had a pixel size of 0.2mm and the object was scanned with a 132

source-to-detector distance of about 923mm, and a source object distance of about 290mm. 133

To train the feature detection 2D U-net model, we generated synthetic training datasets, 134

generating 12 3D images of size 256 × 256 × 256. Each image contained several simple 3D 135

shapes with straight or rounded corners that approximately matched the shapes expected 136

in the real X-ray images. We then positioned these shapes within a large rectangular prism, 137

1 Note, extensions to settings with three or more projections follow the same ideas
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assigning low attenuation to the shapes and higher attenuation to the prism. Gaussian 138

noise was added to the background. From these 12 3D images we generate 24 1024 × 1024 139

2D projection images at random object orientations using the Astra Toolbox [18]. Each 2D 140

projection was partitioned into 144 overlapping blocks of size 256 × 256, providing 3456 141

samples for training. We show three randomly selected 2D training data pairs in Fig. 4, 142

where we show the projection images (top) together with the projected ground truth binary 143

images identifying the locations of the corner and edge features (bottom). 144

To train the 3D U-net to map the detected features in the projection images into 3D 145

space, we generate a 3D edge map from its CAD drawing, which only contains object 146

edge features. To generate a diverse set of images, the same edge feature map was rotated 147

with 1◦ intervals around an axis parallel to the longest object side. This generated 360 148

3D images with edge features, each of size 544 × 64 × 544 voxels and with a voxel size of 149

0.24 × 0.24 × 0.24mm3. Each of these 3D blocks was then projected to generate pairs of 2D 150

projection images, where projections were collected at ±30◦. These ideal 2D feature maps 151

were then back-projected into 3D images using the FDK algorithm to generate simulated 152

back-projected feature maps. When training our 3D U-net, we can thus use the simulated 153

back-projected feature maps as network inputs, with the original clean edge feature maps 154

as desired outputs. Example data is shown in Fig. 5. 155

3.1. Calibration for stereo X-ray imaging system 156

Whilst we had nominal values for the main system parameters, at the time of scanning, 157

the system was not fully calibrated so that the nominal values given above might have 158

significant errors. Thus, with only two real projections, by the epipolar constraint method 159

[19] with manually selected matching points from two real projections, the relative camera 160

matrix between two cameras can be calculated. We here use the first view as the reference 161

Figure 3. a) A 3D rendering of the 3D block; b) a photo of the workpiece and c) its CAD drawing.
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coordinate. Thus, the first camera matrix can be denoted as Eq. (3), where P1 is the 162

projection matrix of the first view, K is the intrinsic matrix, and I is the identity matrix. The 163

second camera matrix is denoted as Eq. (4), where R is the relative rotation matrix and t is 164

the normalised translation matrix between two views. 165

P1 = K[I|0] (3)

P2 = K[R|t] (4)

To further refine the calibration, the simulated 3D edge feature map was projected 166

using the two estimated camera matrices and compared visually with the two real projec- 167

tions (see Fig 7). We define the world coordinates based on the rotation centre of the stereo 168

X-ray imaging system under the Astra Toolbox. Here we add a tiny pitch, roll and yaw 169

to the centre point of the 3D block outline features to control its pose to make its forward 170

projections under the stereo X-ray geometry mostly overlap with the real projections, while 171

the two views angle are −29◦ and +32◦.The comparison of the real outline features and 172

simulated projections is shown in Fig. 7, demonstrating a good overlap of the simulated 173

features and the real data after calibration. 174

4. Results 175

Due to the fact that our system calibration for the available data did not use an 176

optimised and calibrated calibration phantom, errors in the estimated 3D feature location 177

are dominated by calibration errors as well as deviations of the manufactured object’s 178

geometry from the ground truth CAD data (for example, subtractive manufacturing led to 179

a slight warping of the workpiece). Numerical values that try to quantify the precision of 180

locating features in 3D space are thus dominated by errors in the calibration and assumed 181

ground truth feature locations. Our method is also the first method developed specifically 182

for the 3D mapping of linear X-ray features from stereo X-ray projections so that there is no 183

Figure 4. Panel a) shows three projections from the set of training samples used to train the feature
detection network whilst panel b) shows the projected ground truth edge feature maps.
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Figure 5. A set of 3D feature mapping training samples. Panel a) is a thresholded 3D rendering of the
back-projected volume that is used as the input to the machine learning model, and panel b) is the
ground truth we are trying to predict.

Figure 6. Intensity projection images of the physical test sample, collected by Nikon XTH225 X-ray
tomography system with a 60◦ relative rotation.
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Figure 7. The overlap between simulated edge map projections and the real projections. We measured
the geometric error at the object corners and the six screw holes positions, finding a 5 pixels error on
average due to the geometric calibration procedure.

comparable state-of-the-art method available that we could use for relative performance 184

comparisons. Whilst presenting some numerical results, we primarily limit our evaluation 185

to visual inspection, which is able to show that a) features are located accurately in the 186

projections and the correct matching is performed in 3D. 187

We evaluate feature detection and the 3D feature mapping steps independently. 188

4.1. General training and evaluation approach 189

Both networks were trained as classification networks for feature detection using the 190

projections (2D network) or the filtered back-projection of the 2D projections (for the 3D 191

network) as inputs and the binary images showing 2D projected or 3D point locations as 192

output. Both networks were implemented using TensorFlow 2.x and optimised using an 193

Nvidia GTX4070ti graphics card for 2D network and NVIDIA A100 graphics cards on the 194

University of Southampton IridisX cluster for the 3D network. We use the Adam optimiser 195

with the synthetic training data, a learning rate of 10−4 and 100 epochs. The loss function 196

was the binary cross-entropy. 197

4.2. Feature Detection 198

After training the 2D feature detection U-net using the synthetic data described above 199

as the training set, we used the real projection images from the physical phantom to test the 200

method. The real test images were processed by converting the measured X-ray intensity 201

into attenuation values before cropping the images into 338 overlapping blocks of size 202

256 × 256. We then applied the 2D U-net to all test sample blocks from both projections. 203

Probabilities were averaged over all blocks that contained a particular image pixel before 204

thresholding to produce a full size feature map. To evaluate the performance of the method, 205

we use the simulated projections after calibration as our ground truth and visually compare 206

the CAD data as approximate ground truth to the estimated 2D feature maps (See Fig. 8). 207

4.3. 3D Feature mapping 208

We then used the estimated 2D features of the real projections from the feature de- 209

tection model and, for comparison, the two simulated (CAD-based) feature projections 210

in order to generate two back-projected volumes using the same calibrated projection 211

geometry. Both back-projected volumes will go through the 3D model trained for 3D spatial 212

position estimation. 213

The back-projected volumes generated by the two simulated projections are shown 214

in Fig. 9 together with the 3D edge-feature map estimated with the 3D U-net model. This 215
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Figure 8. Comparison between the simulated ground truth 2D feature maps (derived from the CAD
data of the object)(a) and the 2D feature maps estimated from the real data (b).
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Figure 9. Visualisation of the operation of the 3D U-net. Panel a) shows the back-projected volume
generated from two simulated projections of the edge feature maps, whilst panel b) is the 3D edge
feature map estimated from the top image using the 3D U-net.

can be compared to the back-projected volume generated by the two 2D feature maps 216

estimated from the real data shown in Fig. 10, where we also show the 3D edge-feature 217

map estimated with the 3D U-net model. To numerically evaluate the error between these 218

two estimations and the ground truth, we compare their corner and screw holes positions 219

to those for the simulated phantom. As seen in Fig. 11, the errors from corners and screw 220

holes are in the range of between 1 to 7 voxels, or 0.24mm to 1.68mm. Considering the 221

size of the 3D block and the inaccuracy from calibration, these are relatively small errors, 222

which are assumed to be mainly due to the ad hoc post-scan calibration used here. Better 223

calibration results could be obtained using a dedicated calibration object with a fixed stereo 224

X-ray imaging setup. 225

A numerical evaluation of the results was based on the location of features in a nominal 226

geometry that was also used for system calibration and should theoretically be aligned 227

with the true object location. Distance errors in feature location between 0.24mm to 1.68mm 228

were found which were likely dominated by errors in the calibration process, though a 229

detailed analysis of the dimensional accuracy of the approach will be left to a future study 230

where a more controlled system calibration approach can be used. 231

It is important to contrast our approach to related methods such as limited-angle 232

tomography [20]. In limited-angle tomography, a full 3D object reconstruction is computed 233

from a few projective measurements using advanced iterative or deep learning based 234

image reconstruction algorithms. This is different from our approach in that our stereo 235

XCT approach only reconstructs the 3D location of point and line features (such as the 236

edges and corners of objects as done in the current paper). Whilst stereo XCT thus only 237

recovers limited 3D information compared to limited angle XCT, limited angle CT has 238

the disadvantage that it requires extremely strong prior knowledge about the imaged 239

object, which is then exploited in the iterative or deep learning based reconstruction. If 240

we had no prior information on object geometry and density profiles, then limited-angle 241
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Figure 10. a) Back-projected feature maps and b) estimated 3D features for the real data.

Figure 11. The positions error in 3D space between the 3D outline estimation by simulated projections
and real outline features.



Version July 28, 2025 submitted to Tomography 12 of 15

Figure 12. Differences between stereo X-ray tomography and limited-view tomography. a): Stereo
XCT reconstruction of a point-like object. b) FBP reconstruction of the same object, the object’s
information is smeared out along the X-ray paths that intersect the object.

reconstruction does lead to images with significant artefacts. For example, filtered back- 242

projections computed from a pair of projection images would lead to an image without 243

nearly any discernible information. Our stereo XCT method is on the other hand still able 244

to identify object edges and corners, even if we know nothing about the object’s shape 245

and density profile. In fact, edges and corners can always be mapped if we are able to 246

locate and match the edges in the 2D projections without the need to impose any additional 247

prior object knowledge. This is demonstrated in an example where we image a point-like 248

object using two X-ray projection views measured from two viewpoints that are roughly 60 249

degrees apart. The left panel in Fig. 12 shows the recovery of that point when using our 250

stereo XCT technique, whilst the right panel uses the prior information agnostic filtered 251

back-projection reconstruction, which reconstructs the point as two lines in 3D space. If the 252

X-ray views in addition had contained additional objects without clear edges or corners, 253

then the stereo XCT reconstruction would not have been effected, whilst the limited angle 254

reconstruction would be further contaminated by the additional X-ray attenuation estimates 255

from the additional object, but again smeared out along the X-ray paths of the two views. 256

Our approach also differs substantially from X-ray based methods proposed in medical 257

imaging that track objects during surgery. Here, a single projection image is often used in 258

which an object, such as a medical instrument or tumour is identified and then tracked in 259

a single 2D X-ray projection image [21]. Whilst some of these methods use deep learning 260

based methods to also estimate the location of the object in 3D space, as this information 261

is not measured in a single X-ray projection, this estimate needs to rely again on prior 262

information such as knowledge of typical human anatomy or preoperative full CT scans. 263

5. Discussion and conclusions 264

In this paper, we extended the stereo X-ray tomography framework from our previous 265

work to the estimation of the 3D location of the corners and edges of 3D objects. Using two 266

deep neural networks, trained using simulated data, we could extract point and line feature 267

locations from the two real projection images and, using the calibrated camera matrices 268

of the system, project these back into 3D space. To identify feature location in 3D space, a 269

further 3D neural network was used, again trained on simulated data. 270

Considering that the main objective of this work is to extend our previous study by 271

applying the stereo X-ray tomography system to more complex and realistic scenarios, we 272

aim to reconstruct 3D features using only a pair of uncalibrated projection images and the 273

object’s initial blueprint. While the geometry estimated through calibration may introduce 274
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certain errors, which in turn affect the accuracy of feature localisation and consequently 275

impact the final 3D mapping, the resulting errors appear to be within a manageable range. 276

From a qualitative perspective, the system successfully achieves its intended purpose and 277

produces reliable results, identifying 2D feature locations with few omissions and false 278

positives whilst the 3D method clearly matches the correct features to locate these into 3D. 279

A potential limitation that warrants further investigation in future work is the general- 280

izability of the approach to different feature geometries and object complexities. Although 281

our training data was generated using simple geometric patterns placed in various configu- 282

rations, there are inherent differences in appearance and physical characteristics compared 283

to real experimental data. This introduces a possible risk that visual similarities may not 284

fully capture underlying structural differences, potentially affecting generalisation perfor- 285

mance. We plan to address this limitation in future work by further enhancing the diversity 286

and realism of the training data.In this work, we roughly categorise features into point 287

features (such as highly attenuating points and corners) and line features (including highly 288

attenuating linear features and object edges). However, in real-world applications, features 289

might often be more difficult to estimate. Point-like and line-like features can potentially 290

vary in their width (for example, a rounded object corner leads to a slightly smeared out 291

linear feature in the projections. Furthermore, the strength (and thus visibility) of these 292

features in the projection image will vary with object contrast. For a method trained for a 293

specific application, it is thus crucial to match these aspects in the simulated data to the 294

expected feature range in the real data. If instead, the aim is to develop a deep learning 295

based model that works over a much wider range of objects, the greater variation of feature 296

width and contrasts expected in this more general set of applications will need to be taken 297

into account. As always in deep learning based methods, matching the statistics of these 298

properties in the training data to those in the expected real data will minimise the expected 299

average error. 300

We were here also limited in that we only had suitable data for a single object. The 301

effect of geometric object complexity, imaging noise and possibly contrast for multi-material 302

objects was thus not evaluated, though the influence of noise on feature detection was 303

already studied in our previous work with fiducial markers and it is to be expected that 304

increased noise will lead to a decreased performance in 2D feature detectability. For the 305

detection of edge features, the ’sharpness’, i.e. radius of an object’s edge, will likely also 306

play a key role in the exact localisation of the edge in both 2D and then ultimately 3D. These 307

are issues we hope to investigate in future work. 308
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Abbreviations 323

The following abbreviations are used in this manuscript: 324

325

XCT X-ray Computed Tomography
3D Three-dimensional
FBP Filtered back-projection
TV Total Variation

326
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