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Abstract 27 

CD1-restricted T cells constitute an unconventional arm of immunity that recognises 28 

lipid antigens, a feature particularly pertinent to Mycobacterium tuberculosis (Mtb), a 29 

pathogen with a lipid-rich cell wall. Unlike classical MHC-restricted responses, CD1-30 

mediated lipid antigen presentation includes donor-unrestricted T cell responses, 31 

offering a promising pathway for universally protective tuberculosis (TB) vaccines. This 32 

review explores the biology of CD1 isoforms, the functional diversity of CD1-restricted 33 

T cell subsets, and their roles in TB immunity. We discuss Mtb’s lipid antigens, 34 

mechanisms of CD1 trafficking and antigen presentation, immune evasion strategies, 35 

and emerging translational insights. By highlighting key knowledge gaps and future 36 

directions, we argue that harnessing CD1-restricted T cells could unlock novel vaccine 37 

strategies against the world’s leading infectious killer.  38 

Introduction 39 

In 2023, 10.8 million people fell ill with tuberculosis (TB), and 1.25 million died, making 40 

it the world’s leading cause of death from an infectious disease. The causative agent, 41 

Mycobacterium tuberculosis (Mtb), is estimated to infect around a quarter of the global 42 

population (1). Although TB primarily affects the lungs, it can also manifest in other 43 

parts of the body (2). The disease is highly contagious, disproportionately affects those 44 

living in poverty, and is costly and time-consuming to treat, all of which contribute to 45 

its immense global health burden (3). Compounding these challenges, the emergence 46 

of antibiotic-resistant Mtb strains poses a growing threat to TB control efforts (2).  47 

Host immune responses to TB have traditionally focused on peptide antigens 48 

presented by MHC class I and class II molecules, which are well studied in the context 49 

of conventional T cell immunity. However, these molecules are encoded by some of 50 

the most polymorphic genes in the human genome (4), resulting in substantial inter-51 

individual variability in immune responses to Mtb (5,6).  52 

Mtb has a complex and lipid-rich cell wall, known as the mycolyl-arabinogalactan-53 

peptidoglycan complex (7). Around 6% of the Mtb genome is dedicated to lipid 54 

metabolism  (8), and lipids constitute approximately 40% of the cell envelope by weight 55 

(9). This unusual lipid composition underpins the pathogen’s virulence and resistance 56 
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to antibiotics (10–15). Indeed, some of the most effective TB drugs, such as isoniazid, 57 

act by inhibiting Mtb lipid biosynthesis (8).  58 

Importantly, these lipid components of the Mtb cell wall can be presented by CD1 59 

molecules, a family of non-classical antigen-presenting molecules, to activate CD1-60 

restricted T cells and initiate antimicrobial immune responses (8). Unlike MHC 61 

molecules, CD1 proteins are virtually non-polymorphic, meaning that the responses 62 

they elicit are genetically unrestricted and shared across the population (16,17). This 63 

feature makes CD1 an attractive target for broadly effective TB vaccines, capable of 64 

overcoming the genetic variability that hampers conventional MHC-restricted vaccine 65 

approaches (18).  66 

Despite their potential, CD1-restricted T cells remain underexplored in TB research, in 67 

part due to the technical challenges associated with studying them. However, 68 

harnessing these unconventional T cell responses may offer a novel strategy to 69 

enhance the efficacy of future TB vaccines (19). CD1-restricted T cell activation in TB 70 

appears to occur via two distinct but potentially complementary mechanisms. The first 71 

involves direct recognition of mycobacterial lipid antigens, such as mycolic acid, 72 

glucose monomycolate (GMM), or phosphomycoketides, presented by CD1 molecules 73 

on infected antigen-presenting cells (20–22). The second involves infection- or 74 

inflammation-induced remodelling of host lipid metabolism, leading to enhanced 75 

presentation of stimulatory self-lipids by CD1 and activation of autoreactive T cells 76 

(23). For instance, Toll-like receptor (TLR) signalling has been shown to promote the 77 

presentation of endogenous lipids such as sulfatide and GM1 (23), and in the case of 78 

CD1d-restricted iNKT cells, Brennan et al. (2011) demonstrated that microbial sensing 79 

by antigen-presenting cells (APCs) can induce self-lipid switching that drives T cell 80 

activation even in the absence of microbial antigens (24). Clarifying the relative 81 

importance of these pathways is essential for rational vaccine design and for 82 

maximising the potential of CD1-targeted immunity. 83 

Mechanisms of lipid antigen presentation by CD1 molecules 84 

CD1 molecules are a family of non-polymorphic, non-classical MHC class I-like 85 

antigen-presenting molecules encoded on chromosome 1. They are specialised for 86 

the presentation of both self- and foreign lipid antigens to T cells. Based on sequence 87 
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similarities, CD1 isoforms are classified into three groups: group 1 molecules (CD1a, 88 

CD1b, and CD1c), which are expressed exclusively by antigen-presenting cells (25) 89 

and cortical thymocytes, where they likely contribute to thymic selection of CD1-90 

restricted T cells (26). CD1d, the sole member of group 2, is expressed across a 91 

broader range of immune cells (27). In contrast, CD1e, the only group 3 molecule, is 92 

restricted to intracellular compartments. CD1e localises to late endosomal 93 

compartments and facilitates lipid loading onto other CD1 isoforms (28). Structurally, 94 

CD1 molecules share homology with MHC class I molecules. Each CD1 molecule 95 

comprises a heavy chain with α1 and α2 domains forming the antigen-binding groove, 96 

structured as two antiparallel α-helices over a β-pleated sheet, and an 97 

immunoglobulin-like α3 domain with a transmembrane region and a short cytoplasmic 98 

tail anchoring the molecule to the membrane. Like MHC class I molecules, CD1 99 

molecules associate non-covalently with β2-microglobulin. Lipid antigens bind within 100 

deep hydrophobic channels, with their polar headgroups exposed at the solvent 101 

interface for recognition by the T cell receptor (TCR). Differences in the size and shape 102 

of the antigen-binding grooves among CD1 isoforms facilitate the presentation of a 103 

wide range of lipid antigens (29–35).   104 

CD1 molecules are synthesised in the endoplasmic reticulum (ER), where they 105 

associate with β2-microglobulin and undergo glycosylation, promoting interaction with 106 

ER chaperones such as calnexin, ERp57, and calreticulin (36–38). During 107 

biosynthesis, CD1 molecules bind endogenous lipids; some of these lipids stabilise 108 

the molecule, while others may be antigenic (39,40). Following trafficking through the 109 

Golgi apparatus, CD1 molecules are transported to the plasma membrane. 110 

Once at the cell surface, most CD1 molecules (excluding CD1a) are internalised via a 111 

clathrin-dependent pathway mediated by adaptor protein complex 2 (AP2), which 112 

recognises a tyrosine-based motif within their cytoplasmic tails (41–44). In contrast, 113 

CD1a lacks a tyrosine-based motif and is internalised independently of clathrin and 114 

AP2, through a Rab22a- and ADP-ribosylation factor 6 (ARF6)-dependent mechanism 115 

(45). After internalisation, CD1a and CD1c recycle predominantly through the early 116 

endocytic system back to the plasma membrane. CD1b and CD1d also recycle but, 117 

owing to differences in their sorting motifs, can additionally engage adaptor protein 118 

complex 3 (AP3) within sorting endosomes, facilitating trafficking through late 119 

endosomal and lysosomal compartments (46–48). CD1c can access both early and 120 
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late endocytic pathways, giving it the most widespread distribution among CD1 121 

isoforms within the endosomal system (41).  122 

Endocytic compartments are enriched with exogenous lipids delivered via 123 

macropinocytosis (49), mannose receptors (50), langerin (51), and the low-density 124 

lipoprotein receptor (52). Within these compartments, internalised CD1 molecules 125 

encounter a variety of endogenous and exogenous lipid antigens. Lipid exchange is 126 

facilitated by CD1e and saposins, small non-enzymatic proteins found in lysosomes 127 

(28,53–55). Thus, internalisation and trafficking through the endosomal system are 128 

crucial for the acquisition and presentation of lipid antigens (30). However, emerging 129 

evidence suggests that CD1a, possibly due to the more open structure of its binding 130 

groove, may also facilitate lipid exchange directly at the cell surface under neutral pH 131 

conditions (56,57).  132 

T cell responses to Mtb infection are unusual in that multiple T cell subsets recognise 133 

lipid antigens, many of which are derived from the Mtb cell wall and are presented by 134 

CD1 molecules (58). It is thought that the distinctive composition of the Mtb cell wall, 135 

together with the intracellular lifestyle of the bacilli, converges with CD1 loading 136 

pathways to promote lipid antigen presentation (26,58,59). Accordingly, CD1-137 

restricted lipid presentation is considered a key element in the initiation and modulation 138 

of immune responses against Mtb. 139 

CD1-restricted T cells in tuberculosis immunity 140 

Both αβ and γδ T cells have been shown to recognise lipid antigens presented by CD1 141 

molecules. Despite the non-polymorphic nature of the CD1 system, the repertoire of 142 

CD1-restricted TCRs in humans is highly diverse (353,356,357). Increasing evidence 143 

highlights the importance of both αβ and γδ T cell subsets in host immune responses 144 

to Mtb infection (223,224,352,358,359). 145 

Although αβ T cells are far more frequent in the blood, γδ T cells have gained 146 

significant research interest, particularly in the context of infection (60). γδ T cells 147 

normally account for approximately 4% of circulating T cells (61), but during infections 148 

such as TB, they can expand dramatically, representing up to 50% of the peripheral T 149 

cell pool  (62–66). In fact, γδ T cells constitute the highest frequency of Mtb-reactive T 150 

cells in human peripheral blood  (67). Hoft et al. (1998) demonstrated that γδ T cells 151 
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were the most dramatically expanded population following stimulation of PBMCs from 152 

Bacille Calmette-Guérin (BCG)-vaccinated individuals with mycobacterial antigens. 153 

These γδ T cells also exhibited helper functions, supporting mycobacteria-specific 154 

CD4+ and CD8+ T cell responses (68). Moreover, γδ T cells have been shown to 155 

promote dendritic cell maturation, further linking them to the orchestration of both 156 

adaptive and innate immunity (69).  157 

Human Vδ1 T cells have been reported to recognise all CD1 isoforms (70–79) 158 

whereas Vδ2 T cells predominantly recognise butyrophilins due to their TCRs usually 159 

containing the canonical Vγ9 chain (80–83). While Vδ2 T cells dominate the γδ T cell 160 

compartment in the blood of healthy individuals (84), TCR sequencing studies reveal 161 

that during active TB, the proportion of Vδ1 T cells increases markedly, resulting in 162 

codominance of Vδ1 and Vδ2 populations (16). In the lungs of TB patients, the γδ T 163 

cell repertoire is often highly skewed, dominated by locally expanded Vδ1 T cell clones 164 

(16). Given their abundance, elucidating the functional roles of Vδ1 T cells could 165 

significantly enhance our understanding of protective immunity to TB. Furthermore, 166 

due to their potent cytotoxicity and ability to exhibit immunological memory, Vδ1 T cells 167 

represent an attractive target for next-generation TB vaccine strategies (16,71,85–89). 168 

Pioneering studies by Porcelli et al. (1998) provided direct evidence of CD1-restricted 169 

T cell responses. From healthy donor samples, they generated two T cell lines, BK6 170 

(expressing an αβTCR) and IDP2 (expressing a γδTCR), both of which lacked CD4 171 

and CD8 expression. Both lines could lyse the MOLT-4 T cell line in a CD1-dependent 172 

but MHC-independent manner (70). Lysis by BK6 was blocked by anti-CD1a 173 

antibodies, while lysis by IDP2 was blocked by anti-CD1c antibodies, demonstrating 174 

restriction by CD1a and CD1c, respectively. Blocking experiments confirmed that 175 

responses were TCR-mediated through the TCR-CD3 complex. Moreover, both T cell 176 

lines lysed mouse hybridoma and rhabdomyosarcoma cell lines transduced to express 177 

CD1a or CD1c, respectively, further confirming CD1 restriction (70).  178 

Subsequent work by Rosat et al. (1999) described the generation of two CD8+ αβTCR-179 

expressing T cell lines, CD8-1 and CD8-2, by stimulating PBMCs with Mtb lysates. 180 

CD8-1 specifically lysed CD1c-transfected target cells pulsed with Mtb lysates, while 181 

CD8-2 specifically lysed CD1a-transfected targets, with responses inhibited by 182 

blocking antibodies against CD1c and CD1a, respectively (90). Lysis was dependent 183 
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on Mtb-derived lipid antigens, as no lysis occurred when target cells were pulsed with 184 

non-mycobacterial lysates or left untreated. Additionally, CD8-1 and CD8-2 secreted 185 

IFN-γ and TNF-α in response to Mtb antigen, but not Th2 or regulatory cytokines such 186 

as IL-4 or IL-10 (90). However, it is important to note that these responses were 187 

measured against Mtb lysate-pulsed APCs rather than live Mtb-infected cells, which 188 

may present distinct antigens.  189 

Sieling et al. (2000) generated three CD4+ αβTCR-expressing T cell lines (LCD4.1, 190 

LCD4.2, and LCD4.3) from the skin lesions of leprosy patients (91). These T cells 191 

released IFN-γ in response to Mycobacterium leprae sonicate-pulsed dendritic cells 192 

(DCs), but not untreated DCs. Blocking experiments demonstrated that LCD4.1 193 

responses were CD1c-restricted, while LCD4.2 and LCD4.3 were CD1b-restricted. 194 

Antigen specificity studies revealed that LCD4.2 recognised phosphatidylinositol 195 

mannoside and LCD4.3 recognised mycolic acid. Importantly, anti-CD4 blocking 196 

antibodies inhibited responses of MHC class II-restricted control T cells, but not 197 

LCD4.1 or LCD4.3, indicating that CD4 co-receptor engagement is not essential for 198 

CD1-restricted T cell activation (91).  199 

By the early 2000s, strong evidence supported a role for CD1-restricted T cells in the 200 

immune response to Mtb. However, it remained unclear whether these cells expanded 201 

following Mtb exposure or differed in frequency between healthy and TB-infected 202 

individuals. Using PBMCs from PPD-positive and PPD-negative individuals, Ulrichs et 203 

al. (2003) demonstrated that T cells from PPD-positive individuals exhibited greater 204 

proliferation and IFN-γ secretion in response to Mtb lipid extracts, and these responses 205 

were largely CD1-dependent (92). CD3+ cell depletion abrogated IFN-γ production, 206 

confirming T cell involvement. Notably, CD1-restricted T cell responses were reduced 207 

or absent in active TB patients, suggesting that effective CD1-mediated immunity may 208 

be important for controlling Mtb infection, or that CD1-restricted T cells might migrate 209 

into infected lung tissue during active disease. Immunomagnetic separation further 210 

revealed that these responses were stronger in CD4+ compared to CD8+ T cells (92).  211 

Kawashima et al. (2003) extended these findings by demonstrating that following BCG 212 

vaccination, CD8+ but not CD4+ T cells mounted CD1-restricted IFN-γ responses 213 

against BCG-infected dendritic cells. Responses by CD4+ T cells were dependent on 214 

MHC class II and unaffected by anti-CD1 blockade (93). Given that CD4+ T cell 215 
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responses are essential for effective TB immunity (94–101), optimising TB vaccines 216 

to elicit robust CD4+ CD1-restricted memory T cell responses may be critical for 217 

achieving durable protection. 218 

One of the major obstacles to studying CD1-restricted T cells is that mice lack group 219 

1 CD1 molecules. To address this, Felio et al. (2009) developed a transgenic mouse 220 

model expressing human CD1a, CD1b, and CD1c. In response to Mtb infection, these 221 

mice generated CD1-restricted T cell responses characterised by cytotoxicity, IFN-γ 222 

production, and memory formation (102).  223 

Although most mammals possess group 1 CD1 genes, muroid rodents (mice and rats) 224 

are an exception (103–106). Thus, guinea pigs, which express CD1b and CD1c, have 225 

also been used as an alternative model. Hiromatsu et al. (2002) showed that guinea 226 

pigs immunised with Mtb lipids generated CD1-restricted T cell responses that were 227 

cytotoxic and exhibited immunological memory (107). In subsequent studies it was 228 

shown that immunised guinea pigs had reduced lung pathology as well as reduced 229 

bacterial burden in the lungs and spleen following Mtb infection (108). Together, these 230 

findings highlight the importance of CD1-restricted T cells in immunity to Mtb and 231 

underscore their potential as targets for future TB vaccine development. 232 

 233 

 234 

Table 1. Number of CD1 genes across different mammalian species. CD1 gene 235 

counts were identified using BLAST-based genome searches. Data are adapted 236 

from Reinink et al. (2016) which systematically analysed CD1 gene families across 237 

mammalian genomes (109). 238 
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CD1a-restricted responses to infection 239 

CD1a is highly expressed by Langerhans cells (LCs) and plays an important role in 240 

generating T cell responses in the skin and at other mucosal sites (51,110). Unlike 241 

other CD1 isoforms, CD1a may be capable of lipid exchange at the plasma membrane 242 

under neutral pH conditions, possibly due to the more open structure of its binding 243 

groove. CD1a molecules are also stabilised by exogenous lipids present in serum 244 

(56,57). 245 

LCs are a specialised subset of dendritic cells critical for initiating and regulating 246 

immune responses in the skin. Hunger et al. (2004) compared the expression of 247 

dendritic cell markers on LCs and conventional DCs. LCs exhibited higher expression 248 

of langerin (CD207), CD58, and CD1a, whereas DCs expressed higher levels of 249 

CD86, CD11c, CD1b, and HLA-DR; expression of CD14, CD80, CD83, and CD1c was 250 

similar between the two populations (51). Using CD1a+ LC-like DCs derived from 251 

leprosy patients, two CD1a-restricted αβTCR-expressing T cell clones, B2.1 and 252 

B2.11, were generated. Both clones were double-negative (DN) for CD4 and CD8, 253 

and they proliferated in response to CD1a+ LC-like DCs pulsed with Mycobacterium 254 

leprae extracts. Their responses were specifically inhibited by anti-CD1a, but not anti-255 

CD1b or anti-CD1c, blocking antibodies, confirming CD1a restriction (51). 256 

Interestingly, B2.1 and B2.11 also responded to extracts from M. tuberculosis, 257 

Mycobacterium smegmatis, and Mycobacterium phlei, but not to extracts from 258 

Mycobacterium avium, Nocardia, Aspergillus, or Rhodococcus species, suggesting 259 

recognition of a specific exogenous lipid antigen present in a subset of bacterial 260 

species. These clones expanded and secreted IFN-γ when co-cultured with LC-like 261 

DCs but showed only limited responses to monocyte-derived DCs (MoDCs), 262 

highlighting the superior ability of LCs to stimulate CD1a-restricted T cell responses 263 

(51). Langerin is involved in pathogen sensing (111) and in the formation of Birbeck 264 

granules (112). Given the differences in langerin expression between LCs and DCs, 265 

Hunger et al. investigated its role in CD1a-restricted responses. Pre-treatment of LC-266 

like DCs with anti-langerin antibodies before, but not after, pulsing with M. leprae 267 

extracts inhibited T cell proliferation, suggesting that langerin is involved in the uptake, 268 

processing, or presentation of lipid antigens (51).  269 
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In parallel, Moody et al. (2004) used a CD1a-restricted αβTCR transfected J.RT3-T3.5 270 

T cell reporter line to screen Mtb lipid fractions for antigens (113). High-performance 271 

liquid chromatography and mass spectrometry identified a series of related stimulatory 272 

lipids. Further structural analysis using nuclear magnetic resonance and mass 273 

spectrometry revealed the antigen as a lipopeptide, named didehydroxymycobactin, 274 

likely an intermediate in the mycobactin biosynthetic pathway of the Mtb cell wall. 275 

Importantly, Mtb-infected MoDCs, but not uninfected cells, could present this antigen 276 

to activate the CD1a-restricted reporter line, confirming that didehydroxymycobactin is 277 

naturally processed and presented during infection (113).  278 

CD1b-restricted responses to infection 279 

Among the group 1 CD1 molecules, CD1b is unique in its ability to present lipid 280 

antigens with very long acyl chains, such as mycolic acid (114). CD1b-restricted T 281 

cells are the best characterised of all group 1 CD1-restricted populations, and 282 

extensive studies have established their role in responses to Mtb infection. 283 

The first evidence of CD1 antigen presentation came from Porcelli et al. (1992), who 284 

generated a CD1b-restricted T cell line from αβTCR-expressing double-negative (DN) 285 

T cells cultured with Mtb extract-pulsed MoDCs. These T cells lysed Mtb-infected, 286 

CD1b-transfected C1R cells, but not cells transfected with CD1a, CD1c, or empty 287 

vectors, demonstrating CD1b restriction (115). 288 

Building on this, Beckman et al. (1994) identified mycolic acid as a lipid antigen 289 

presented by CD1b using organic phase separation and T cell proliferation assays. A 290 

CD1b-restricted T cell clone, DN1, specifically recognised mycolic acid derivatives, 291 

including 6,6'-trehalosedimycolate, but not irrelevant lipids, suggesting TCR-mediated 292 

recognition (21). Further studies expanded the catalogue of CD1b-presented antigens. 293 

Sieling et al. (1995) identified lipoarabinomannan as a mycobacterial lipid recognised 294 

in a CD1b-dependent manner by DN αβ T cells derived from leprosy patients and 295 

healthy donors, with these T cells capable of lysing antigen-pulsed monocytes and 296 

secreting IFN-γ (116). 297 

Similarly, Stenger et al. (1997) showed that CD1b-restricted T cells from TB patients 298 

and healthy donors could lyse Mtb-infected macrophages in a CD1-dependent 299 

manner. Distinct cytotoxic mechanisms were observed: DN T cells relied on Fas-FasL 300 
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interactions, while CD8+ T cells used granule-mediated killing. Importantly, CD8+ T 301 

cells, but not DN T cells, significantly reduced intracellular Mtb growth, likely via 302 

granulysin secretion (117,118). 303 

The identification of specific mycobacterial lipid antigens continued with Moody et al. 304 

(1997), who demonstrated that the LDN5 T cell clone recognised GMM presented by 305 

CD1b (22). Gilleron et al. (2004) later characterised Ac2SGL, a sulfoglycolipid, as a 306 

potent CD1b-restricted antigen stimulating IFN-γ and granulysin secretion by CD8+ T 307 

cells, leading to reduced Mtb growth. Responses to Ac2SGL required endosomal 308 

processing and were absent in PBMCs from PPD-negative individuals, suggesting 309 

selective expansion with prior Mtb exposure (119).  Layre et al. (2009) identified 310 

glycerol monomycolate (GroMM) as another CD1b-presented antigen using the 311 

Z5B71 T cell clone. IFN-γ responses to GroMM were observed in BCG-vaccinated and 312 

latent TB individuals, but absent in active TB, suggesting defective memory responses 313 

during disease (120).  314 

Montamat-Sicotte et al. (2011) further demonstrated that mycolic acid-specific CD1b-315 

restricted T cells were enriched in TB patients, including at the site of infection 316 

(bronchoalveolar lavage fluid), and persisted long after treatment, indicating durable 317 

memory responses. Interestingly, BCG vaccination alone did not generate strong 318 

mycolic acid-specific memory T cells, possibly due to differences in mycolic acid 319 

structure between Mtb and BCG strains (121–123).  320 

The development of CD1b tetramers revolutionised the study of CD1b-restricted T 321 

cells. Kasmar et al. (2011) showed that GMM-loaded CD1b tetramers specifically 322 

stained the LDN5 T cell clone and rare T cells in TB patient PBMCs, which were 323 

predominantly CD4+ (124). Rhijn et al. (2013) used tetramers to isolate and 324 

characterise CD1b-GMM specific T cell clones. High-affinity clones, called germline-325 

encoded mycolyl lipid-reactive (GEM) T cells, all shared a TRAV1-2–TRAJ9 α-chain 326 

signature and expressed predominantly CD4. TCR sequencing confirmed that both α- 327 

and β-chains contributed to antigen specificity. GEM T cells expanded in TB patients, 328 

supporting their role in immune responses to Mtb (125). In contrast, LDN5-like T cells, 329 

expressing TRAV17 and TRBV4-1, represented a second group of GMM-specific T 330 

cells with more diverse TCR usage and coreceptor expression (126). 331 
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Functional evidence for CD1b-mediated protection came from Busch et al. (2016), who 332 

showed that lipoarabinomannan-specific CD1b-restricted T cells from latent TB 333 

individuals inhibited Mtb growth in MoDCs, and that these T cells produced granulysin, 334 

a molecule essential for direct killing of Mtb (118,127).  335 

Most recently, Sakai et al. (2024) identified trehalose monomycolate (TMM) as a novel 336 

CD1b-presented antigen. Using CD1b tetramers and single-cell RNA and TCR 337 

sequencing, they showed that TMM-specific T cells upregulate cytotoxic molecules 338 

such as granzyme B, perforin, and granulysin. These T cells expanded in TB patients 339 

and recognised TMM from multiple mycobacterial species but required the trehalose 340 

headgroup for TCR recognition (128). Cryo-electron microscopy revealed the ternary 341 

structure of the CD1b-TMM-TCR complex, providing detailed molecular insights into 342 

lipid antigen recognition. 343 

Finally, Zhao et al. (2015) generated a transgenic mouse model expressing human 344 

CD1a, CD1b, CD1c, and a DN1 TCR specific for mycolic acid. In this model, DN1 T 345 

cells reduced Mtb burden after adoptive transfer, highlighting the protective capacity 346 

of CD1b-restricted T cells during TB infection (129). Together, these findings establish 347 

CD1b-restricted T cells as key contributors to host defence against Mtb and highlight 348 

their potential as targets for next-generation TB vaccines. 349 

CD1c-restricted responses to infection 350 

Among the group 1 CD1 molecules, CD1c is the most widely expressed and exhibits 351 

the broadest distribution throughout the endocytic system (25,27,41,130–133). This 352 

extensive trafficking enables CD1c to survey a diverse range of lipid antigens. 353 

Moreover, unlike other CD1 isoforms, CD1c lipid loading is independent of 354 

compartment acidification, a process that Mtb actively inhibits to evade phagocytic 355 

destruction, giving CD1c a potential advantage in infection settings (41,134).  356 

Both αβ and γδ T cells can recognise lipid antigens presented by CD1c. Despite the 357 

non-polymorphic nature of the CD1 system, the repertoire of CD1c-restricted TCRs is 358 

highly diverse (70,71,131,132,135–138).  359 

Moody et al. (2000) first demonstrated that lymphocytes from individuals with prior Mtb 360 

exposure and positive PPD skin tests showed significantly greater proliferation and 361 



. 

13 
 

activation in response to synthetic isoprenoid glycolipids, structurally similar to Mtb 362 

antigens, in a CD1c-dependent manner. These findings provided the first evidence of 363 

CD1c-mediated lipid-specific memory T cell responses in infectious disease (131). 364 

Building on this, Matsunaga et al. (2004) investigated the CD1c-restricted T cell line 365 

CD8-1 (previously described by Rosat et al. (90)). They demonstrated that CD8-1 cells 366 

proliferated in response to CD1c-transfected C1R cells pulsed with Mtb or BCG whole 367 

lipid extracts, as well as with mannosyl-β-1-phosphoisoprenoids, a family of Mtb lipid 368 

antigens presented by CD1c (131). Disruption of the pks12 gene in Mtb abrogated the 369 

synthesis of mannosyl-β-1-phosphoisoprenoids, and lipid extracts from pks12 370 

knockout strains failed to activate CD8-1 T cells. Mass spectrometry confirmed the 371 

absence of mannosyl-β-1-phosphoisoprenoids in the mutant strains, establishing 372 

pks12 as essential for their biosynthesis (8). Among these antigens, mannosyl-β1-373 

phosphomycoketide (MPM) is now recognised as a major target for CD1c-restricted T 374 

cell responses in Mtb-exposed individuals (139).  375 

Further work by Ly et al. (2013) expanded the repertoire of known CD1c-presented 376 

Mtb lipids. Using fractionated lipid extracts and the DN6 CD1c-restricted T cell line as 377 

a reporter, they identified a novel antigen, C32 phosphomycoketide (PM), a fully 378 

saturated C32 alkylphosphate structurally related to MPM (139). DN6 T cells were 379 

strongly activated by PM-pulsed MoDCs, but not by extracts from pks12-deficient Mtb, 380 

confirming PM as a natural mycoketide antigen. Notably, DN6 responded to both PM 381 

and deglycosylated forms of MPM, suggesting that antigen processing by APCs, 382 

involving removal of β-linked mannose units, can influence CD1c-restricted T cell 383 

recognition. Plate-bound CD1c experiments further confirmed distinct modes of 384 

recognition by different T cell clones (139).  385 

Currently, PM and MPM remain the only two natural CD1c-presented Mtb lipid 386 

antigens that have been clearly identified (131,132,139–141). Further antigen 387 

discovery will likely be important for optimising TB vaccines aimed at targeting CD1c-388 

restricted T cell responses. 389 

To address antigen stability, Reijneveld et al. (2021) synthesised an MPM analogue, 390 

MPM-3, designed to resist enzymatic hydrolysis during antigen processing. In vitro 391 

immunisation with MPM-3 expanded MPM-specific T cells that demonstrated dual 392 

reactivity towards both MPM and MPM-3. These findings suggest that MPM-3 could 393 
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serve as a more stable vaccine component for inducing robust CD1c-restricted T cell 394 

responses (142). 395 

CD1d-mediated responses to mycobacteria 396 

CD1d presents lipid antigens to natural killer T (NKT) cells, including invariant NKT 397 

(iNKT) cells and some Vδ1 T cells (73,143). NKT cells are a distinct population of 398 

αβTCR-expressing T cells that co-express natural killer (NK) markers such as CD94 399 

and CD161 (144). In humans, iNKT cells, also referred to as type 1 NKT cells, are 400 

defined by expression of a semi-invariant Vα24-Jα18 TCR (145,146), whereas type 2 401 

NKT cells possess a more diverse TCR repertoire (147). The synthetic 402 

glycosphingolipid α-galactosylceramide (α-GalCer), originally isolated from a marine 403 

sponge, binds CD1d and strongly activates iNKT cells by engaging their TCR with high 404 

affinity (148–150). The development of CD1d-α-GalCer tetramers enabled detailed 405 

characterisation of iNKT cells in both mice and humans (151,152). Importantly, α-406 

GalCer does not activate type 2 NKT cells, providing a selective tool for studying iNKT 407 

biology. Much of our understanding of CD1d-restricted immunity stems from iNKT cell 408 

research, largely because both CD1d and iNKT cells are conserved across mice and 409 

humans (153), unlike group 1 CD1 molecules, which are absent in murine models. 410 

While iNKT cells were first investigated in the context of cancer, where α-GalCer 411 

treatment reduced tumour metastases and improved survival in mouse models (154),  412 

they have also been implicated in protection against Mtb infection. Chackerian et al. 413 

(2002) showed that α-GalCer administration prolonged survival and reduced lung 414 

bacterial burden in Mtb-infected CD1d-sufficient, but not CD1d-deficient mice, 415 

demonstrating a CD1d-dependent protective effect (155).  416 

Subsequent studies identified microbial lipid antigens presented by CD1d. Fisher et 417 

al. (2004) demonstrated that phosphatidylinositol mannoside (PIM), a lipid isolated 418 

from BCG, could stimulate murine iNKT cells via CD1d presentation. Using CD1d-419 

transfected B cell lymphoma cells pulsed with PIM, they observed IFN-γ secretion from 420 

Vα14-Jα281 transgenic mouse splenic T cells, a response abrogated by anti-CD1d 421 

blocking antibodies. These responses were absent with untransfected B cells, 422 

confirming CD1d restriction. Moreover, CD1d-PIM tetramers could stain murine iNKT 423 

cells similarly to CD1d-α-GalCer tetramers (156). 424 
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Investigations in humans revealed that iNKT cell clones stained by both CD1d-PIM 425 

and CD1d-α-GalCer tetramers also secreted IFN-γ and lysed CD1d-transfected HeLa 426 

cells pulsed with PIM. No lysis was observed when untransfected HeLa cells were 427 

used, confirming CD1d-restricted recognition. These findings identify PIM as a 428 

mycobacterial lipid antigen capable of activating human iNKT cells (156). Beyond 429 

recognition of foreign lipids, iNKT cells can also be activated by stress-induced self-430 

lipid antigens. Brennan et al. (2011) showed that TLR stimulation of dendritic cells 431 

triggers lipid remodelling, promoting presentation of endogenous agonists on CD1d 432 

and enhancing iNKT activation in the absence of microbial lipid antigens. This ‘self-433 

lipid switching’ provides a key mechanism by which innate immune cues can modulate 434 

CD1d-restricted T cell responses during infection (24). Functional studies further 435 

demonstrated a role for iNKT cells in controlling Mtb infection. Sada-Ovalle et al. 436 

(2008) showed that murine iNKT cells upregulated the activation marker CD69 upon 437 

contact with Mtb-infected macrophages, but not uninfected controls. Splenocytes from 438 

wild-type, but not iNKT-deficient, mice were able to reduce Mtb growth in infected 439 

macrophages. Furthermore, splenocytes failed to control Mtb growth when infected 440 

macrophages lacked CD1d, demonstrating the necessity of CD1d-mediated 441 

presentation. Pure iNKT cell lines were sufficient to inhibit Mtb growth when cultured 442 

with infected macrophages, and adoptive transfer of iNKT cells into irradiated, Mtb-443 

infected mice significantly reduced bacterial burden in both lungs and spleen (157).  444 

Collectively, these findings suggest that CD1d-restricted iNKT cells can contribute to 445 

anti-Mtb immunity. However, conflicting results exist. One study found no significant 446 

difference in survival between wild-type and CD1d-deficient mice infected with Mtb, 447 

suggesting that CD1d-restricted responses may not be essential for protection (158). 448 

Thus, while evidence supports a role for iNKT cells in immunity to Mtb, their 449 

contribution may vary depending on the infection model and experimental conditions. 450 

Autoreactivity is an intrinsic feature of CD1 biology 451 

An unusual feature of CD1-restricted T cells is their frequent autoreactivity. Although 452 

thymic selection minimises self-reactivity in conventional T cells, CD1-autoreactive T 453 

cells are nevertheless abundant in healthy individuals (26).  454 
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De Jong et al. (2010) showed that T cells from all 14 healthy donors tested exhibited 455 

reactivity towards CD1a-expressing K562 cells, whereas responses to CD1b, CD1c, 456 

or CD1d were less common. Blocking with anti-CD1a antibodies confirmed CD1a 457 

restriction. CD1a-autoreactive T cells, comprising approximately 2% of circulating T 458 

cells, were predominantly CD4+, produced IFN-γ, IL-22, and sometimes IL-13, but 459 

often lacked IL-2 production. Many expressed cutaneous lymphocyte antigen (CLA), 460 

suggesting skin homing. T cells isolated from skin biopsies similarly showed CD1a 461 

reactivity, with stronger responses when stimulated by Langerhans cells (159). 462 

De Lalla et al. (2011) independently confirmed that CD1 autoreactivity is relatively 463 

frequent. Single-cell cloning revealed that around 10% of both CD4+ and DN αβT cells 464 

were self-reactive to CD1 molecules, predominantly CD1a and CD1c. TCR repertoire 465 

analysis showed high diversity among self-reactive clones, contrasting with the 466 

invariant TCRs of iNKT cells (160). CD1c-autoreactive T cells were functionally 467 

heterogeneous: CD4+ clones were more likely to secrete TNF-α, DN clones secreted 468 

GM-CSF, and some clones produced both Th1 and Th2 cytokines. Importantly, CD1a- 469 

and CD1c-autoreactive clones demonstrated cytotoxicity against target cells 470 

expressing their cognate CD1 isoforms without exogenous antigen, indicating intrinsic 471 

autoreactive killing potential (160). Beyond classical Th1 cytokines, CD1-autoreactive 472 

T cells can secrete a broad range of effector molecules, including GM-CSF, IL-13, IL-473 

22, and IL-5 (161–163). For example, CD1c- and CD1b-autoreactive T cell clones 474 

have been shown to produce polyfunctional responses that include both Th1 and Th2 475 

cytokines, and in some cases, GM-CSF and IL-22, which can enhance antigen 476 

presentation, promote monocyte recruitment, and contribute to mucosal barrier 477 

integrity (161,163). IL-13 and IL-5, though traditionally associated with Th2 responses, 478 

may modulate inflammation or tissue repair in TB lesions. These findings suggest that 479 

CD1-restricted T cells may play diverse immunomodulatory roles during TB infection, 480 

beyond direct cytotoxicity or classical macrophage activation. 481 

 482 

Despite their prevalence, CD1-restricted self-reactive T cells rarely cause pathology, 483 

suggesting regulatory mechanisms are in place. Nevertheless, associations with 484 

autoimmune diseases have been reported. CD1c+ antigen-presenting cells infiltrate 485 

lesions in Graves’ disease and Hashimoto’s thyroiditis, and T cells capable of lysing 486 
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CD1c+ targets have been isolated from thyroid tissue (164). In systemic lupus 487 

erythematosus (SLE), DN T cells reactive to CD1c can produce IL-4 and IFN-γ, and 488 

may support IgG production by CD1c+ B cells (165). In rheumatoid arthritis, synovial 489 

fluid contains increased numbers of activated CD1c+ dendritic cells that stimulate 490 

CD4+ T cells, although CD1c restriction was not definitively proven (166). 491 

Autoreactivity has also been implicated in multiple sclerosis (MS). Shamshiev et al. 492 

(1999) found increased frequencies of T cells reactive to brain-derived glycolipids in 493 

MS patients. Two T cell clones recognised monosialo-ganglioside GM1 presented by 494 

CD1b, and responses were blocked by anti-CD1b antibodies, implicating CD1b in 495 

autoreactive responses against myelin components (167). 496 

Recent mechanistic studies have further clarified how CD1 autoreactivity may be 497 

regulated. De Jong et al. (2014) demonstrated that CD1a-autoreactive T cells, such 498 

as clone BC2, recognised CD1a loaded with endogenous lipids from the epidermis, 499 

including squalene from sebaceous glands. These findings suggest that spatial 500 

separation of self-lipids, for example, lipids located beyond T cell access in healthy 501 

skin, helps prevent inappropriate activation (168). Moreover, Betts et al. (2017) 502 

showed that the contact dermatitis agent 2,4-dinitrochlorobenzene (DNCB) activates 503 

CD1a-autoreactive T cells, suggesting environmental exposures can trigger 504 

pathological autoreactive responses (169). In functional studies, DNCB-treated 505 

CD1a+ APCs stimulated a polyfunctional cytokine response from autoreactive T cells. 506 

Guo et al. (2018) engineered K562 cells to express high levels of CD1c and used them 507 

to stimulate peripheral blood T cells without exogenous antigen (170). Activated T cells 508 

upregulated CD154 and showed enrichment of TRBV4+ TCRs, specifically TRBV4-1. 509 

Responses were blocked by anti-CD1c antibodies. When TRBV4-1+ TCRs were 510 

transduced onto Jurkat cells, they responded to CD1c-expressing targets, confirming 511 

CD1c autoreactivity (170).  512 

Further mechanistic insights have come from studies of lipid antigen structure. Cotton 513 

et al. (2021) found that sphingomyelins with long unsaturated acyl chains (e.g., 42:2 514 

sphingomyelin) inhibit CD1a-TCR interactions by protruding from the antigen-binding 515 

groove and sterically blocking TCR engagement, whereas shorter chain 516 

sphingomyelins are permissive. Thus, specific endogenous lipids can negatively 517 

regulate CD1a autoreactivity (23). 518 
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Structural studies also support a model of direct CD1 recognition without lipid co-519 

recognition. Wun et al. (2018) solved the structure of an autoreactive CD1c-restricted 520 

TCR bound to CD1c presenting a fully sequestered endogenous lipid. The TCR 521 

contacted CD1c itself rather than the presented lipid, consistent with "CD1-as-antigen" 522 

recognition. These findings explain how high frequencies of autoreactive CD1c-523 

restricted T cells can exist without constant activation, provided regulatory 524 

mechanisms are intact (130). 525 

Several broader mechanisms are also thought to limit autoreactive responses: 526 

• Inhibitory lipid loading: Endogenous lipids with bulky head groups, such as 527 

phosphatidylcholine or sphingomyelin, may block TCR access to CD1 528 

molecules (23). 529 

• Tissue-specific CD1 expression: Although CD1c is expressed on B-cells, 530 

group 1 CD1 molecules are expressed relatively sparsely in the peripheral 531 

blood, restricting opportunities for autoreactive encounters (130,171).  532 

• TCR internalisation: In CD1b-transgenic mice, autoreactive CD1b-restricted T 533 

cells showed reduced surface TCR expression compared to wild-type mice, 534 

suggesting that downregulation of TCR levels may suppress autoreactivity in 535 

vivo (172).  536 

Together, these mechanisms contribute to immune tolerance, preventing frequent 537 

autoreactivity from manifesting as autoimmune disease. Importantly, autoreactivity 538 

does not necessarily equate to autoimmunity, and controlled self-reactivity may even 539 

have physiological roles yet to be fully defined. 540 

CD1-autoreactive T cells: Are they really so evil? 541 

Despite their association with autoimmune diseases, CD1-autoreactive T cells have 542 

been conserved throughout human evolution, suggesting they may play beneficial 543 

roles in immunity. 544 

CD1c is expressed on several haematological malignancies, including B cell acute 545 

lymphoblastic leukaemia (B-ALL) and acute myeloid leukaemia (AML) in both adults 546 

and children (173). Lepore et al. (2014) isolated CD1c-autoreactive T cell clones from 547 
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healthy donors and found that these clones secreted GM-CSF and IFN-γ in response 548 

to CD1c-transfected THP1 and C1R cells in a CD1c-dependent manner. Lipid 549 

extraction and fractionation of THP1 cells identified a stimulatory lipid, later determined 550 

by mass spectrometry as methyl-lysophosphatidic acid (mLPA). Synthetic mLPA 551 

analogues loaded onto recombinant CD1c similarly activated CD1c-autoreactive T 552 

cells, confirming mLPA as an endogenous immunogenic ligand. 553 

Functionally, mLPA-specific T cell clones secreted IFN-γ in response to co-culture with 554 

CD1c+ AML cells, but not with healthy monocytes. Despite lower CD1c expression on 555 

some AML cells compared to monocytes, stronger T cell activation was observed 556 

against the leukemic cells, suggesting increased mLPA presentation. Similarly, B-ALL 557 

cells induced greater IFN-γ secretion compared to normal B cells despite similar CD1c 558 

expression levels. Direct quantification showed mLPA accumulation was significantly 559 

higher in leukaemic cells than in healthy cells. 560 

mLPA-specific T cells preferentially killed B-ALL and AML cells while sparing most 561 

normal B cells and monocytes. Killing was CD1c-dependent, as blocking antibodies 562 

abrogated cytotoxicity. In vivo, mLPA-specific T cells prolonged survival in an 563 

immunodeficient mouse model grafted with CD1c+ MOLT-4 leukemia cells. 564 

Furthermore, healthy donor T cells transduced with mLPA-specific TCRs acquired the 565 

ability to recognise and respond to CD1c+ target cells, demonstrating the therapeutic 566 

potential of CD1c-autoreactive TCRs  (173). Beyond cancer, CD1-autoreactive T cells 567 

have also been shown to contribute to antimicrobial immunity. Vincent et al. (2005) 568 

generated 15 group 1 CD1-restricted T cell clones by stimulating CD4-depleted T cells 569 

with CD1-expressing MoDCs and lipid extracts from Mtb, E. coli, or Yersinia 570 

enterocolitica. All clones were CD8+ αβTCR+ T cells that proliferated in response to 571 

CD1-expressing MoDCs without additional stimulation, demonstrating autoreactivity. 572 

These T cells were highly cytotoxic against CD1-transfected HeLa and C1R cells, as 573 

well as MoDCs. Cytokine profiling showed expression of IFN-γ, GM-CSF, IL-5, and IL-574 

13, and functional responses were abrogated by CD1-blocking antibodies. Moreover, 575 

CD1a- and CD1b-restricted TCRs transduced into Jurkat cells conferred both self-576 

reactivity and enhanced responses to microbial lipids, highlighting dual specificity for 577 

self- and foreign antigens (161).  578 
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Similarly, Roy et al. (2016) identified CD1c-restricted γδ T cells through CD1c-PM 579 

tetramer staining of human PBMCs. Sorted lines predominantly expressed the Vδ1 580 

TCR chain, confirming that Vδ1 cells are the main γδ T cell population recognising 581 

CD1c (71,72). Upon transduction of Vδ1+ TCRs into Jurkat cells, spontaneous 582 

activation was observed, indicating low-level autoreactivity towards endogenous CD1c 583 

ligands. These TCR-transduced Jurkat cells responded more strongly when 584 

stimulated with PM, demonstrating dual reactivity to both endogenous and microbial 585 

lipid antigens. Binding studies confirmed that different lipids modulated TCR 586 

engagement: some TCRs bound more strongly to CD1c presenting self-lipids, while 587 

others preferred microbial lipids (72).  588 

Following on from previous work (172), Bagchi et al. (2016) demonstrated that a 589 

CD1b-autoreactive T cell line, which recognises phospholipids, secreted IL-2 in 590 

response to plate-bound CD1b protein loaded with lipids extracted from normal cells, 591 

indicating autoreactivity. However, IL-2 secretion was significantly higher when CD1b 592 

was loaded with lipids extracted from the T lymphoblast cell line MOLT-4, suggesting 593 

that cancer cell-derived lipids are more immunogenic. Furthermore, these T cells were 594 

able to lyse CD1b-transfected, but not wild-type, murine RMA-S T cell lymphoma cells, 595 

confirming CD1b-restricted recognition and cytotoxicity (174).  596 

In follow-up experiments, mice were inoculated with either wild-type or CD1b-597 

transfected RMA-S tumour cells, alongside CD1b-autoreactive T cells. On day 14, 598 

mice were sacrificed, and tumour size was measured. Tumour growth was significantly 599 

reduced in mice that received CD1b-transfected RMA-S cells and CD1b-autoreactive 600 

T cells, suggesting that these T cells can mediate anti-tumour immunity in a CD1b-601 

dependent manner. In contrast, no reduction in tumour size was observed in mice 602 

inoculated with wild-type RMA-S cells, confirming that the protective effect was 603 

specifically mediated by CD1b recognition (174). Collectively, these findings suggest 604 

that CD1-autoreactive T cells, rather than being solely pathogenic, may have 605 

beneficial roles in immune surveillance. Based on this evidence, CD1-autoreactive T 606 

cells could contribute to host defence against both tumours and infections and may 607 

play a previously underappreciated role in the immune response to infectious diseases 608 

such as tuberculosis (Figure 1). 609 
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TLR signalling modulates CD1-autoreactive T cell responses during 610 

infection   611 

TLR stimulation can influence the functional responses of CD1-autoreactive T cells, 612 

linking innate immune sensing to adaptive lipid-specific immunity. De Libero et al. 613 

(2005) investigated two CD1a-restricted T cell clones specific for sulfatide and two 614 

CD1b-restricted clones specific for monosialo-ganglioside GM1 (175). When co-615 

cultured with immature DCs infected with E. coli, B. subtilis, S. aureus, or BCG, all four 616 

clones secreted IFN-γ. Similarly, stimulation of DCs or CD1-transfected THP1 cells 617 

with the TLR4 agonist LPS or the TLR2 agonist Pam3Cys significantly enhanced IFN-618 

γ production by these CD1-autoreactive clones. Responses were CD1-dependent, as 619 

blocking antibodies abrogated T cell activation, and were not observed in MHC class 620 

II-restricted or γδ T cell clones under identical conditions (175). 621 

Mechanistically, LPS and Pam3Cys stimulation modestly increased CD1 and co-622 

stimulatory molecule expression (B7.1, CD40) on DCs and THP1 cells. More strikingly, 623 

infection or TLR stimulation induced increased synthesis of the self-lipid antigens 624 

sulfatide and monosialo-ganglioside GM1, suggesting that infection-driven changes in 625 

lipid metabolism enhance CD1-restricted T cell activation by elevating the abundance 626 

of stimulatory self-lipids (175). This mechanism is mirrored in the CD1d–iNKT cell axis, 627 

where TLR activation of dendritic cells drives lipidome remodelling and presentation 628 

of stimulatory self-lipids, enabling iNKT activation in the absence of microbial antigens 629 

(24). Earlier work from the same group showed that microbial infection can activate 630 

iNKT cells via CD1d-mediated presentation of endogenous lipids, further supporting 631 

TLR-induced self-lipid switching as a general mechanism of CD1-restricted immunity 632 

(176). Zeissig et al. (2012) similarly demonstrated that hepatitis B virus infection alters 633 

hepatocyte lipid composition to generate CD1d-presented lysophospholipids, 634 

triggering NKT cell activation (177). Together, these findings highlight a broader 635 

mechanism by which pathogen sensing promotes autoreactive T cell responses 636 

through enhanced self-lipid presentation. 637 

Li et al. (2011) further explored this phenomenon using a transgenic mouse model 638 

expressing group 1 CD1 molecules and a CD1b-autoreactive TCR (172). Treatment 639 

of bone marrow-derived DCs with Pam3Cys, LPS, or Listeria monocytogenes infection 640 

resulted in heightened secretion of IFN-γ and IL-17A from CD1b-autoreactive T cells 641 
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compared to untreated controls. Following in vivo challenge with Listeria 642 

monocytogenes, CD1b-autoreactive T cells upregulated the activation marker CD69 643 

and contributed to a reduced bacterial burden in the liver and spleen, compared to 644 

non-transferred controls. These findings suggest that TLR2 and TLR4 signalling can 645 

amplify CD1b-autoreactive T cell responses during infection, promoting pathogen 646 

clearance (172). This highlights a model in which inflammation-driven upregulation of 647 

CD1 expression and stress lipid synthesis can activate CD1-autoreactive T cells, even 648 

in the absence of strong pathogen-derived lipid presentation. For a more extensive 649 

discussion on how TLR pathways intersect with CD1-restricted T cell immunity, we 650 

refer readers to the comprehensive review by Moody et al. (2006) (178). 651 

 652 

Figure 1. Both Mtb lipid-specific and CD1-autoreactive T cells respond to Mtb 653 

infection. Both Mtb lipid-specific and CD1-autoreactive T cells respond to Mtb 654 

infection. Mtb lipid-specific T cells become cytotoxic and secrete IFN-γ and TNF-α 655 

(90,107,117,128) in response to Mtb lipid antigens presented by CD1 molecules on 656 

infected APCs. CD1-autoreactive T cells can also become cytotoxic and secrete IFN-657 

γ in response to either Mtb lipid or stress-induced self-lipid antigens presented by CD1 658 

molecules on infected APCs (72,161). While Mtb can gain access to the cytosol, it 659 

predominantly resides in the phagosome, where it is sensed by innate receptors and 660 

processed for antigen presentation. TLR signalling enhances these responses by 661 
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upregulating CD1 expression, costimulatory molecules, and presentation of 662 

stimulatory self-lipids. Specifically, TLR2 and TLR4, which recognise Mtb lipoproteins 663 

and cell wall components, are shown in the figure. These receptors bridge innate 664 

sensing of Mtb with adaptive CD1-restricted T cell responses. Secreted IFN-γ and 665 

TNF-α can stimulate macrophages to enhance antimicrobial functions (175,179). 666 

Image created using BioArt. 667 

 668 

Mtb infection influences CD1 expression  669 

During the late 1990s and early 2000s, a series of studies investigated how 670 

mycobacterial infection affects CD1 molecule expression by APCs. 671 

Stenger et al. (1998) infected human adherent mononuclear cells (AMNCs) treated 672 

with GM-CSF and IL-4 with live Mtb and measured group 1 CD1 expression by flow 673 

cytometry. No significant changes were observed at 4 hours post-infection; however, 674 

by 24 hours, reduced staining of all group 1 CD1 isoforms was evident, and by 48 675 

hours, expression was undetectable (180). Quantitative RT-PCR confirmed a 676 

substantial decrease in group 1 CD1 mRNA levels in infected cells compared to 677 

controls. Notably, infection with heat-killed Mtb did not reduce CD1 expression, 678 

indicating that live bacilli are necessary for this effect. Using a transwell system, the 679 

authors demonstrated that soluble factors alone were insufficient to mediate CD1 680 

downregulation, suggesting that direct interactions between live Mtb and host cells are 681 

required (180).  682 

Giuliani et al. (2001) further explored the effects of mycobacteria on CD1 expression. 683 

They found that infection with live BCG inhibited the GM-CSF-induced upregulation of 684 

group 1 CD1 molecules, particularly CD1b. In contrast to Stenger et al., heat-killed 685 

BCG also suppressed CD1b expression, attributed to alternative mRNA splicing 686 

mechanisms. Interestingly, using a transwell system, they observed that soluble 687 

factors secreted by BCG-infected AMNCs could reduce CD1b expression in adjacent 688 

uninfected cells, suggesting a mechanism of bystander suppression not observed with 689 

Mtb (181).  690 
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Wen et al. (2013) later demonstrated that CD1c mRNA levels are reduced in PBMCs 691 

from TB patients compared to healthy controls (182). An inverse correlation between 692 

CD1c expression and miR-381-3p levels was identified, suggesting post-693 

transcriptional regulation. Binding of miR-381-3p to the 3' untranslated region of CD1c 694 

was confirmed using a luciferase reporter assay. Overexpression of miR-381-3p in 695 

DCs decreased CD1c expression, while inhibition of miR-381-3p restored it. 696 

Furthermore, BCG infection increased miR-381-3p levels and decreased CD1c 697 

expression, effects reversible with miR-381-3p inhibition. Importantly, blocking miR-698 

381-3p enhanced CD1c-restricted T cell responses to BCG, suggesting that miR-381-699 

3p inhibitors could be therapeutically useful to improve vaccine-induced CD1-700 

mediated immunity (182). 701 

Given that mycobacteria have coevolved with innate immune systems (183), it is 702 

plausible that downregulating group 1 CD1 molecule expression represents an 703 

immune evasion strategy, limiting recognition by CD1-restricted T cells. These findings 704 

collectively suggest that modulation of CD1 expression by mycobacteria could impair 705 

host immunity, and that targeting these pathways could lead to improved vaccine 706 

strategies capable of eliciting more robust CD1-restricted memory responses (180–707 

182). Given Mtb’s ability to modulate CD1 expression, it is essential that future vaccine 708 

strategies account for these evasion mechanisms.  709 

In the following section, we review the current landscape of TB vaccine development 710 

and explore how targeting CD1-restricted immunity could offer new opportunities for 711 

protection. 712 

TB vaccine development 713 

Developing a more effective vaccine remains one of the most promising strategies to 714 

control TB and limit the rise of antibiotic-resistant strains. The only currently available 715 

TB vaccine, BCG, contains an attenuated form of Mycobacterium bovis (184). 716 

Although BCG is widely administered and offers relatively high protection against 717 

childhood TB meningitis and miliary TB, it provides limited protection against 718 

pulmonary TB in adults and adolescents, the major drivers of Mtb transmission 719 

(18,185–187). Furthermore, BCG is contraindicated in immunocompromised 720 



. 

25 
 

individuals, including those with untreated HIV infection, due to the risk of 721 

disseminated BCG infection (188).  722 

Several new TB vaccine candidates have entered clinical trials in recent years. One 723 

strategy involves viral-vectored vaccines such as MVA85A, based on a modified 724 

vaccinia Ankara virus expressing Mtb antigen 85A. Despite encouraging preclinical 725 

data, MVA85A failed to provide protection in Phase IIb clinical trials in infants and 726 

adults, marking a major disappointment as the first new TB vaccine candidate to 727 

undergo an efficacy trial in over 80 years (189–191). 728 

Subunit vaccines have also been explored. H56:IC31 is a fusion protein combining 729 

Ag85B, ESAT-6, and Rv2660c, the latter preferentially expressed during Mtb latency 730 

(192). In mice, a BCG prime followed by an H56:IC31 boost reduced lung bacterial 731 

burden after Mtb challenge (193).  In cynomolgus macaques, H56:IC31 boosting after 732 

BCG vaccination delayed progression to active TB, extended survival, and reduced 733 

pathology (194). Early-phase human trials showed that H56:IC31 was well tolerated 734 

and induced robust IgG and antigen-specific CD4+ T cell responses in both Mtb-735 

infected and uninfected individuals (195,196). However, in a Phase IIb trial, although 736 

immunogenic, H56:IC31 unexpectedly showed higher TB incidence among vaccinees 737 

(5.8%) compared to placebo (3.4%) (197). 738 

Another prominent candidate is M72/AS01E, a recombinant fusion protein vaccine 739 

combining the Mtb antigens PepA and PPE18. PepA is thought to function as a serine 740 

protease (198), while PPE18 may interact with TLR2, inducing immunosuppressive 741 

IL-10 responses (199–201), and promoting Mtb survival (202). However, PPE18 742 

exhibits substantial structural variability across strains (203), raising concerns about 743 

antigenic consistency. The Phase IIb trial of M72/AS01E was hailed as a breakthrough 744 

by the WHO, demonstrating approximately 50% protection against progression to 745 

active TB three years post-vaccination (204). Nevertheless, injection-site 746 

reactogenicity led to delayed recruitment in some Phase II trials (205), and the 747 

moderate efficacy suggests further vaccine improvements are still needed. 748 

One limitation of viral-vectored, subunit, and recombinant fusion vaccines is their 749 

narrow antigenic focus. None of MVA85A, H56:IC31, or M72/AS01E can generate 750 

CD1-restricted memory responses to Mtb lipids. However, future formulations could 751 

incorporate immunogenic lipid antigens to elicit CD1-restricted immunity. Morgun et 752 
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al. (2023) developed a nanoparticle-based TB vaccine containing both mycolic acid 753 

and the protein antigen Ag85B. In mice, this formulation activated adoptively 754 

transferred DN1 T cells (specific for mycolic acid) and Ag85B-specific T cells in vivo. 755 

Additionally, human mycolic acid-specific T cells responded to the same nanoparticles 756 

in vitro, highlighting the potential of subunit vaccine platforms that combine lipid and 757 

protein antigens to elicit broad CD1- and MHC-restricted T cell responses (206). 758 

Whole-cell vaccines offer broader antigen presentation, including lipid antigens (93). 759 

MTBVAC, a live attenuated Mtb strain with deletions in phoP and fadD26, genes 760 

essential for virulence lipid synthesis, is currently in Phase III trials (207–212). Another 761 

candidate, VPM1002, is a recombinant BCG expressing listeriolysin O from Listeria 762 

monocytogenes and lacking urease C. This enables phagosome acidification and 763 

cytosolic antigen release, enhancing immunogenicity (190,213–219). 764 

However, because both Mtb and BCG have been shown to downregulate CD1 765 

expression and impair CD1-restricted T cell responses (180–182), MTBVAC and 766 

VPM1002 may still have limited capacity to induce optimal CD1-restricted memory. 767 

Identifying and reversing the mechanisms by which mycobacteria suppress CD1 768 

expression could offer a route to improving future vaccines. It also remains unclear 769 

whether optimal CD1-restricted responses should be elicited by including defined 770 

mycobacterial lipids as vaccine immunogens, or by leveraging innate activation to 771 

drive self-lipid presentation and autoreactive T cell activation. Both approaches merit 772 

investigation. 773 

Importantly, CD1 molecules are non-polymorphic, meaning immune responses to 774 

CD1-presented antigens are shared across genetically diverse human populations. 775 

Thus, targeting CD1-restricted responses may enable broader and more universal 776 

vaccine coverage (18). Furthermore, lipid antigens are less prone to mutational 777 

escape compared to peptides presented by classical MHC molecules, as alterations 778 

to essential lipid biosynthetic pathways often compromise bacterial viability (173).  779 

Given the major advances in TB vaccine development in recent years, there is real 780 

hope that new immunisation tools capable of providing better global protection are 781 

within reach. Targeting CD1-restricted T cell responses offers a promising strategy to 782 

boost future vaccine efficacy against TB, the world’s leading infectious killer (1,19). 783 
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Conclusion and future directions 784 

CD1-restricted T cells offer a compelling yet underutilised opportunity to transform TB 785 

vaccine development. Their capacity to recognise lipid antigens via non-polymorphic 786 

CD1 molecules allows for genetically unrestricted, population-wide immune responses 787 

(17,18). While pathogen-specific  (21,22,91,113,116,119,120,123–128,131,139,156)    788 

and autoreactive (72,161,172,175) CD1-restricted T cells can both contribute to 789 

antimicrobial defence, Mtb’s ability to downregulate CD1 expression presents a key 790 

challenge (180–182). Current vaccines fail to engage lipid-specific memory 791 

responses, revealing a critical gap. Future strategies that incorporate immunogenic 792 

lipid antigens, restore CD1 expression (182), and selectively expand protective CD1-793 

restricted T cell subsets may deliver the next leap in TB vaccine efficacy. Integrating 794 

CD1-targeted immunity could move us closer to durable, universal protection against 795 

TB. 796 
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