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Abstract

CD1-restricted T cells constitute an unconventional arm of immunity that recognises
lipid antigens, a feature particularly pertinent to Mycobacterium tuberculosis (Mtb), a
pathogen with a lipid-rich cell wall. Unlike classical MHC-restricted responses, CD1-
mediated lipid antigen presentation includes donor-unrestricted T cell responses,
offering a promising pathway for universally protective tuberculosis (TB) vaccines. This
review explores the biology of CD1 isoforms, the functional diversity of CD1-restricted
T cell subsets, and their roles in TB immunity. We discuss Mtb’s lipid antigens,
mechanisms of CD1 trafficking and antigen presentation, immune evasion strategies,
and emerging translational insights. By highlighting key knowledge gaps and future
directions, we argue that harnessing CD1-restricted T cells could unlock novel vaccine

strategies against the world’s leading infectious Killer.

Introduction

In 2023, 10.8 million people fell ill with tuberculosis (TB), and 1.25 million died, making
it the world’s leading cause of death from an infectious disease. The causative agent,
Mycobacterium tuberculosis (Mtb), is estimated to infect around a quarter of the global
population (1). Although TB primarily affects the lungs, it can also manifest in other
parts of the body (2). The disease is highly contagious, disproportionately affects those
living in poverty, and is costly and time-consuming to treat, all of which contribute to
its immense global health burden (3). Compounding these challenges, the emergence

of antibiotic-resistant Mtb strains poses a growing threat to TB control efforts (2).

Host immune responses to TB have traditionally focused on peptide antigens
presented by MHC class | and class Il molecules, which are well studied in the context
of conventional T cell immunity. However, these molecules are encoded by some of
the most polymorphic genes in the human genome (4), resulting in substantial inter-
individual variability in immune responses to Mtb (5,6).

Mtb has a complex and lipid-rich cell wall, known as the mycolyl-arabinogalactan-
peptidoglycan complex (7). Around 6% of the Mtb genome is dedicated to lipid
metabolism (8), and lipids constitute approximately 40% of the cell envelope by weight

(9). This unusual lipid composition underpins the pathogen’s virulence and resistance
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to antibiotics (10-15). Indeed, some of the most effective TB drugs, such as isoniazid,
act by inhibiting Mtb lipid biosynthesis (8).

Importantly, these lipid components of the Mtb cell wall can be presented by CD1
molecules, a family of non-classical antigen-presenting molecules, to activate CD1-
restricted T cells and initiate antimicrobial immune responses (8). Unlike MHC
molecules, CD1 proteins are virtually non-polymorphic, meaning that the responses
they elicit are genetically unrestricted and shared across the population (16,17). This
feature makes CD1 an attractive target for broadly effective TB vaccines, capable of
overcoming the genetic variability that hampers conventional MHC-restricted vaccine

approaches (18).

Despite their potential, CD1-restricted T cells remain underexplored in TB research, in
part due to the technical challenges associated with studying them. However,
harnessing these unconventional T cell responses may offer a novel strategy to
enhance the efficacy of future TB vaccines (19). CD1-restricted T cell activation in TB
appears to occur via two distinct but potentially complementary mechanisms. The first
involves direct recognition of mycobacterial lipid antigens, such as mycolic acid,
glucose monomycolate (GMM), or phosphomycoketides, presented by CD1 molecules
on infected antigen-presenting cells (20-22). The second involves infection- or
inflammation-induced remodelling of host lipid metabolism, leading to enhanced
presentation of stimulatory self-lipids by CD1 and activation of autoreactive T cells
(23). For instance, Toll-like receptor (TLR) signalling has been shown to promote the
presentation of endogenous lipids such as sulfatide and GM1 (23), and in the case of
CD1d-restricted INKT cells, Brennan et al. (2011) demonstrated that microbial sensing
by antigen-presenting cells (APCs) can induce self-lipid switching that drives T cell
activation even in the absence of microbial antigens (24). Clarifying the relative
importance of these pathways is essential for rational vaccine design and for

maximising the potential of CD1-targeted immunity.

Mechanisms of lipid antigen presentation by CD1 molecules

CD1 molecules are a family of non-polymorphic, non-classical MHC class I-like
antigen-presenting molecules encoded on chromosome 1. They are specialised for

the presentation of both self- and foreign lipid antigens to T cells. Based on sequence
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similarities, CD1 isoforms are classified into three groups: group 1 molecules (CD1a,
CD1b, and CD1c), which are expressed exclusively by antigen-presenting cells (25)
and cortical thymocytes, where they likely contribute to thymic selection of CD1-
restricted T cells (26). CD1d, the sole member of group 2, is expressed across a
broader range of immune cells (27). In contrast, CD1e, the only group 3 molecule, is
restricted to intracellular compartments. CDle localises to late endosomal
compartments and facilitates lipid loading onto other CD1 isoforms (28). Structurally,
CD1 molecules share homology with MHC class | molecules. Each CD1 molecule
comprises a heavy chain with a1 and a2 domains forming the antigen-binding groove,
structured as two antiparallel a-helices over a [p-pleated sheet, and an
immunoglobulin-like a3 domain with a transmembrane region and a short cytoplasmic
tail anchoring the molecule to the membrane. Like MHC class | molecules, CD1
molecules associate non-covalently with 32-microglobulin. Lipid antigens bind within
deep hydrophobic channels, with their polar headgroups exposed at the solvent
interface for recognition by the T cell receptor (TCR). Differences in the size and shape
of the antigen-binding grooves among CD1 isoforms facilitate the presentation of a

wide range of lipid antigens (29-35).

CD1 molecules are synthesised in the endoplasmic reticulum (ER), where they
associate with B2-microglobulin and undergo glycosylation, promoting interaction with
ER chaperones such as calnexin, ERp57, and calreticulin (36-38). During
biosynthesis, CD1 molecules bind endogenous lipids; some of these lipids stabilise
the molecule, while others may be antigenic (39,40). Following trafficking through the

Golgi apparatus, CD1 molecules are transported to the plasma membrane.

Once at the cell surface, most CD1 molecules (excluding CD1a) are internalised via a
clathrin-dependent pathway mediated by adaptor protein complex 2 (AP2), which
recognises a tyrosine-based motif within their cytoplasmic tails (41-44). In contrast,
CD1a lacks a tyrosine-based motif and is internalised independently of clathrin and
AP2, through a Rab22a- and ADP-ribosylation factor 6 (ARF6)-dependent mechanism
(45). After internalisation, CD1a and CD1c recycle predominantly through the early
endocytic system back to the plasma membrane. CD1b and CD1d also recycle but,
owing to differences in their sorting motifs, can additionally engage adaptor protein
complex 3 (AP3) within sorting endosomes, facilitating trafficking through late

endosomal and lysosomal compartments (46—48). CD1c can access both early and

4
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late endocytic pathways, giving it the most widespread distribution among CD1
isoforms within the endosomal system (41).

Endocytic compartments are enriched with exogenous lipids delivered via
macropinocytosis (49), mannose receptors (50), langerin (51), and the low-density
lipoprotein receptor (52). Within these compartments, internalised CD1 molecules
encounter a variety of endogenous and exogenous lipid antigens. Lipid exchange is
facilitated by CD1le and saposins, small non-enzymatic proteins found in lysosomes
(28,53-55). Thus, internalisation and trafficking through the endosomal system are
crucial for the acquisition and presentation of lipid antigens (30). However, emerging
evidence suggests that CD1a, possibly due to the more open structure of its binding
groove, may also facilitate lipid exchange directly at the cell surface under neutral pH
conditions (56,57).

T cell responses to Mtb infection are unusual in that multiple T cell subsets recognise
lipid antigens, many of which are derived from the Mtb cell wall and are presented by
CD1 molecules (58). It is thought that the distinctive composition of the Mtb cell wall,
together with the intracellular lifestyle of the bacilli, converges with CD1 loading
pathways to promote lipid antigen presentation (26,58,59). Accordingly, CD1-
restricted lipid presentation is considered a key element in the initiation and modulation

of immune responses against Mtb.

CD1-restricted T cells in tuberculosis immunity

Both af3 and yd T cells have been shown to recognise lipid antigens presented by CD1
molecules. Despite the non-polymorphic nature of the CD1 system, the repertoire of
CD1-restricted TCRs in humans is highly diverse (353,356,357). Increasing evidence
highlights the importance of both a8 and yd T cell subsets in host immune responses
to Mtb infection (223,224,352,358,359).

Although a3 T cells are far more frequent in the blood, y& T cells have gained
significant research interest, particularly in the context of infection (60). yo T cells
normally account for approximately 4% of circulating T cells (61), but during infections
such as TB, they can expand dramatically, representing up to 50% of the peripheral T
cell pool (62—-66). In fact, yd T cells constitute the highest frequency of Mtb-reactive T
cells in human peripheral blood (67). Hoft et al. (1998) demonstrated that yo T cells

5
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were the most dramatically expanded population following stimulation of PBMCs from
Bacille Calmette-Guérin (BCG)-vaccinated individuals with mycobacterial antigens.
These yd T cells also exhibited helper functions, supporting mycobacteria-specific
CD4+ and CD8+ T cell responses (68). Moreover, yd T cells have been shown to
promote dendritic cell maturation, further linking them to the orchestration of both
adaptive and innate immunity (69).

Human V&1 T cells have been reported to recognise all CD1 isoforms (70-79)
whereas Vo2 T cells predominantly recognise butyrophilins due to their TCRs usually
containing the canonical Vy9 chain (80-83). While V&2 T cells dominate the yd T cell
compartment in the blood of healthy individuals (84), TCR sequencing studies reveal
that during active TB, the proportion of V&1 T cells increases markedly, resulting in
codominance of V&1 and Vb2 populations (16). In the lungs of TB patients, the yd T
cell repertoire is often highly skewed, dominated by locally expanded V&1 T cell clones
(16). Given their abundance, elucidating the functional roles of V&1 T cells could
significantly enhance our understanding of protective immunity to TB. Furthermore,
due to their potent cytotoxicity and ability to exhibit immunological memory, V1 T cells

represent an attractive target for next-generation TB vaccine strategies (16,71,85—-89).

Pioneering studies by Porcelli et al. (1998) provided direct evidence of CD1-restricted
T cell responses. From healthy donor samples, they generated two T cell lines, BK6
(expressing an afTCR) and IDP2 (expressing a ydTCR), both of which lacked CD4
and CD8 expression. Both lines could lyse the MOLT-4 T cell line in a CD1-dependent
but MHC-independent manner (70). Lysis by BK6 was blocked by anti-CDla
antibodies, while lysis by IDP2 was blocked by anti-CD1c antibodies, demonstrating
restriction by CDla and CDl1c, respectively. Blocking experiments confirmed that
responses were TCR-mediated through the TCR-CD3 complex. Moreover, both T cell
lines lysed mouse hybridoma and rhabdomyosarcoma cell lines transduced to express

CD1a or CD1c, respectively, further confirming CD1 restriction (70).

Subsequent work by Rosat et al. (1999) described the generation of two CD8+ aBTCR-
expressing T cell lines, CD8-1 and CD8-2, by stimulating PBMCs with Mtb lysates.
CD8-1 specifically lysed CD1c-transfected target cells pulsed with Mtb lysates, while
CD8-2 specifically lysed CDla-transfected targets, with responses inhibited by
blocking antibodies against CD1c and CD1a, respectively (90). Lysis was dependent
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on Mtb-derived lipid antigens, as no lysis occurred when target cells were pulsed with
non-mycobacterial lysates or left untreated. Additionally, CD8-1 and CD8-2 secreted
IFN-y and TNF-a in response to Mtb antigen, but not Th2 or regulatory cytokines such
as IL-4 or IL-10 (90). However, it is important to note that these responses were
measured against Mtb lysate-pulsed APCs rather than live Mtb-infected cells, which
may present distinct antigens.

Sieling et al. (2000) generated three CD4+ afTCR-expressing T cell lines (LCD4.1,
LCD4.2, and LCD4.3) from the skin lesions of leprosy patients (91). These T cells
released IFN-y in response to Mycobacterium leprae sonicate-pulsed dendritic cells
(DCs), but not untreated DCs. Blocking experiments demonstrated that LCD4.1
responses were CD1lc-restricted, while LCD4.2 and LCD4.3 were CD1b-restricted.
Antigen specificity studies revealed that LCD4.2 recognised phosphatidylinositol
mannoside and LCD4.3 recognised mycolic acid. Importantly, anti-CD4 blocking
antibodies inhibited responses of MHC class ll-restricted control T cells, but not
LCDA4.1 or LCDA4.3, indicating that CD4 co-receptor engagement is not essential for
CD1-restricted T cell activation (91).

By the early 2000s, strong evidence supported a role for CD1-restricted T cells in the
immune response to Mth. However, it remained unclear whether these cells expanded
following Mtb exposure or differed in frequency between healthy and TB-infected
individuals. Using PBMCs from PPD-positive and PPD-negative individuals, Ulrichs et
al. (2003) demonstrated that T cells from PPD-positive individuals exhibited greater
proliferation and IFN-y secretion in response to Mtb lipid extracts, and these responses
were largely CD1-dependent (92). CD3+ cell depletion abrogated IFN-y production,
confirming T cell involvement. Notably, CD1-restricted T cell responses were reduced
or absent in active TB patients, suggesting that effective CD1-mediated immunity may
be important for controlling Mtb infection, or that CD1-restricted T cells might migrate
into infected lung tissue during active disease. Immunomagnetic separation further

revealed that these responses were stronger in CD4+ compared to CD8+ T cells (92).

Kawashima et al. (2003) extended these findings by demonstrating that following BCG
vaccination, CD8+ but not CD4+ T cells mounted CD1-restricted IFN-y responses
against BCG-infected dendritic cells. Responses by CD4+ T cells were dependent on
MHC class Il and unaffected by anti-CD1 blockade (93). Given that CD4+ T cell
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responses are essential for effective TB immunity (94-101), optimising TB vaccines
to elicit robust CD4+ CD1-restricted memory T cell responses may be critical for

achieving durable protection.

One of the major obstacles to studying CD1-restricted T cells is that mice lack group
1 CD1 molecules. To address this, Felio et al. (2009) developed a transgenic mouse
model expressing human CD1a, CD1b, and CD1c. In response to Mtb infection, these
mice generated CD1-restricted T cell responses characterised by cytotoxicity, IFN-y

production, and memory formation (102).

Although most mammals possess group 1 CD1 genes, muroid rodents (mice and rats)
are an exception (103-106). Thus, guinea pigs, which express CD1b and CD1c, have
also been used as an alternative model. Hiromatsu et al. (2002) showed that guinea
pigs immunised with Mtb lipids generated CD1-restricted T cell responses that were
cytotoxic and exhibited immunological memory (107). In subsequent studies it was
shown that immunised guinea pigs had reduced lung pathology as well as reduced
bacterial burden in the lungs and spleen following Mtb infection (108). Together, these
findings highlight the importance of CD1-restricted T cells in immunity to Mtb and

underscore their potential as targets for future TB vaccine development.

< > > Number of genes
Common name Binomial species name Genome
CD1a CD1b CD1c cD1d CD1e |Total CD1

Alpaca Vicugna pacos vicPac2 1 1 1 1 1 5
Bonobo Pan paniscus panPan1 1 1 1 1 1 5
Chimpanzee Pan troglodytes panTro4 1 1 1 1 1 5
Dog Canis lupus CanFam3 9 1 1 1 1 13
Elephant Loxodonta africana loxAfr3 1 2 1 1 1 6
Horse Equus caballus equCab2 9 2 2 1 2 16
Human Homo sapiens hg38 1 1 ) 1 1 5
Megabat Pteropus vampyrus pteVam1 3 1 1 0 1 6
Microbat Myotis lucifugus myoLuc2 17 2 0 5 2 26
Mouse Mus musculus mm10 0 0 0 2 0 2
Panda Ailuropoda melanoleuca ailMel1 8 1 1 1 1 12
Pig Sus scrofa susScr3 2 1 1 1 2 7
Rabbit Oryctolagus cuniculus oryCun2 5 2 0 1 2 10
Rhesus macaque Macaca mulatta rheMac3 2 1 1 1 1 6

Table 1. Number of CD1 genes across different mammalian species. CD1 gene
counts were identified using BLAST-based genome searches. Data are adapted
from Reinink et al. (2016) which systematically analysed CD1 gene families across

mammalian genomes (109).
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CDla-restricted responses to infection

CD1a is highly expressed by Langerhans cells (LCs) and plays an important role in
generating T cell responses in the skin and at other mucosal sites (51,110). Unlike
other CD1 isoforms, CD1a may be capable of lipid exchange at the plasma membrane
under neutral pH conditions, possibly due to the more open structure of its binding
groove. CDla molecules are also stabilised by exogenous lipids present in serum
(56,57).

LCs are a specialised subset of dendritic cells critical for initiating and regulating
immune responses in the skin. Hunger et al. (2004) compared the expression of
dendritic cell markers on LCs and conventional DCs. LCs exhibited higher expression
of langerin (CD207), CD58, and CD1a, whereas DCs expressed higher levels of
CD86, CD11c, CD1b, and HLA-DR; expression of CD14, CD80, CD83, and CD1c was
similar between the two populations (51). Using CD1la+ LC-like DCs derived from
leprosy patients, two CDla-restricted afTCR-expressing T cell clones, B2.1 and
B2.11, were generated. Both clones were double-negative (DN) for CD4 and CD8,
and they proliferated in response to CDla+ LC-like DCs pulsed with Mycobacterium
leprae extracts. Their responses were specifically inhibited by anti-CD1a, but not anti-

CD1b or anti-CD1c, blocking antibodies, confirming CD1a restriction (51).

Interestingly, B2.1 and B2.11 also responded to extracts from M. tuberculosis,
Mycobacterium smegmatis, and Mycobacterium phlei, but not to extracts from
Mycobacterium avium, Nocardia, Aspergillus, or Rhodococcus species, suggesting
recognition of a specific exogenous lipid antigen present in a subset of bacterial
species. These clones expanded and secreted IFN-y when co-cultured with LC-like
DCs but showed only limited responses to monocyte-derived DCs (MoDCs),
highlighting the superior ability of LCs to stimulate CDla-restricted T cell responses
(51). Langerin is involved in pathogen sensing (111) and in the formation of Birbeck
granules (112). Given the differences in langerin expression between LCs and DCs,
Hunger et al. investigated its role in CDl1a-restricted responses. Pre-treatment of LC-
like DCs with anti-langerin antibodies before, but not after, pulsing with M. leprae
extracts inhibited T cell proliferation, suggesting that langerin is involved in the uptake,

processing, or presentation of lipid antigens (51).
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In parallel, Moody et al. (2004) used a CD1la-restricted aBTCR transfected J.RT3-T3.5
T cell reporter line to screen Mtb lipid fractions for antigens (113). High-performance
liquid chromatography and mass spectrometry identified a series of related stimulatory
lipids. Further structural analysis using nuclear magnetic resonance and mass
spectrometry revealed the antigen as a lipopeptide, named didehydroxymycobactin,
likely an intermediate in the mycobactin biosynthetic pathway of the Mtb cell wall.
Importantly, Mtb-infected MoDCs, but not uninfected cells, could present this antigen
to activate the CD1a-restricted reporter line, confirming that didehydroxymycobactin is

naturally processed and presented during infection (113).

CD1b-restricted responses to infection

Among the group 1 CD1 molecules, CD1b is unique in its ability to present lipid
antigens with very long acyl chains, such as mycolic acid (114). CD1b-restricted T
cells are the best characterised of all group 1 CD1-restricted populations, and

extensive studies have established their role in responses to Mtb infection.

The first evidence of CD1 antigen presentation came from Porcelli et al. (1992), who
generated a CD1b-restricted T cell line from aBTCR-expressing double-negative (DN)
T cells cultured with Mtb extract-pulsed MoDCs. These T cells lysed Mtb-infected,
CD1b-transfected C1R cells, but not cells transfected with CD1a, CD1c, or empty
vectors, demonstrating CD1b restriction (115).

Building on this, Beckman et al. (1994) identified mycolic acid as a lipid antigen
presented by CD1b using organic phase separation and T cell proliferation assays. A
CD1b-restricted T cell clone, DN1, specifically recognised mycolic acid derivatives,
including 6,6'-trehalosedimycolate, but not irrelevant lipids, suggesting TCR-mediated
recognition (21). Further studies expanded the catalogue of CD1b-presented antigens.
Sieling et al. (1995) identified lipoarabinomannan as a mycobacterial lipid recognised
in a CD1b-dependent manner by DN aB T cells derived from leprosy patients and
healthy donors, with these T cells capable of lysing antigen-pulsed monocytes and
secreting IFN-y (116).

Similarly, Stenger et al. (1997) showed that CD1b-restricted T cells from TB patients
and healthy donors could lyse Mtb-infected macrophages in a CD1-dependent

manner. Distinct cytotoxic mechanisms were observed: DN T cells relied on Fas-FasL
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interactions, while CD8+ T cells used granule-mediated killing. Importantly, CD8+ T
cells, but not DN T cells, significantly reduced intracellular Mtb growth, likely via

granulysin secretion (117,118).

The identification of specific mycobacterial lipid antigens continued with Moody et al.
(1997), who demonstrated that the LDN5 T cell clone recognised GMM presented by
CD1b (22). Gilleron et al. (2004) later characterised Ac2SGL, a sulfoglycolipid, as a
potent CD1b-restricted antigen stimulating IFN-y and granulysin secretion by CD8+ T
cells, leading to reduced Mtb growth. Responses to Ac2SGL required endosomal
processing and were absent in PBMCs from PPD-negative individuals, suggesting
selective expansion with prior Mtb exposure (119). Layre et al. (2009) identified
glycerol monomycolate (GroMM) as another CD1b-presented antigen using the
Z5B71 T cell clone. IFN-y responses to GroMM were observed in BCG-vaccinated and
latent TB individuals, but absent in active TB, suggesting defective memory responses

during disease (120).

Montamat-Sicotte et al. (2011) further demonstrated that mycolic acid-specific CD1b-
restricted T cells were enriched in TB patients, including at the site of infection
(bronchoalveolar lavage fluid), and persisted long after treatment, indicating durable
memory responses. Interestingly, BCG vaccination alone did not generate strong
mycolic acid-specific memory T cells, possibly due to differences in mycolic acid
structure between Mtb and BCG strains (121-123).

The development of CD1b tetramers revolutionised the study of CD1b-restricted T
cells. Kasmar et al. (2011) showed that GMM-loaded CD1b tetramers specifically
stained the LDN5 T cell clone and rare T cells in TB patient PBMCs, which were
predominantly CD4+ (124). Rhijn et al. (2013) used tetramers to isolate and
characterise CD1b-GMM specific T cell clones. High-affinity clones, called germline-
encoded mycolyl lipid-reactive (GEM) T cells, all shared a TRAV1-2—-TRAJ9 a-chain
signature and expressed predominantly CD4. TCR sequencing confirmed that both a-
and B-chains contributed to antigen specificity. GEM T cells expanded in TB patients,
supporting their role in immune responses to Mtb (125). In contrast, LDN5-like T cells,
expressing TRAV17 and TRBV4-1, represented a second group of GMM-specific T

cells with more diverse TCR usage and coreceptor expression (126).
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Functional evidence for CD1b-mediated protection came from Busch et al. (2016), who
showed that lipoarabinomannan-specific CD1b-restricted T cells from latent TB
individuals inhibited Mtb growth in MoDCs, and that these T cells produced granulysin,
a molecule essential for direct killing of Mtb (118,127).

Most recently, Sakai et al. (2024) identified trehalose monomycolate (TMM) as a novel
CD1b-presented antigen. Using CD1b tetramers and single-cell RNA and TCR
sequencing, they showed that TMM-specific T cells upregulate cytotoxic molecules
such as granzyme B, perforin, and granulysin. These T cells expanded in TB patients
and recognised TMM from multiple mycobacterial species but required the trehalose
headgroup for TCR recognition (128). Cryo-electron microscopy revealed the ternary
structure of the CD1b-TMM-TCR complex, providing detailed molecular insights into
lipid antigen recognition.

Finally, Zhao et al. (2015) generated a transgenic mouse model expressing human
CDl1a, CD1b, CD1c, and a DN1 TCR specific for mycolic acid. In this model, DN1 T
cells reduced Mtb burden after adoptive transfer, highlighting the protective capacity
of CD1b-restricted T cells during TB infection (129). Together, these findings establish
CD1b-restricted T cells as key contributors to host defence against Mtb and highlight

their potential as targets for next-generation TB vaccines.

CD1c-restricted responses to infection

Among the group 1 CD1 molecules, CD1c is the most widely expressed and exhibits
the broadest distribution throughout the endocytic system (25,27,41,130-133). This
extensive trafficking enables CD1c to survey a diverse range of lipid antigens.
Moreover, unlike other CD1 isoforms, CD1c lipid loading is independent of
compartment acidification, a process that Mtb actively inhibits to evade phagocytic

destruction, giving CD1c a potential advantage in infection settings (41,134).

Both af and yd T cells can recognise lipid antigens presented by CD1c. Despite the
non-polymorphic nature of the CD1 system, the repertoire of CD1c-restricted TCRs is
highly diverse (70,71,131,132,135-138).

Moody et al. (2000) first demonstrated that lymphocytes from individuals with prior Mtb
exposure and positive PPD skin tests showed significantly greater proliferation and

12
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activation in response to synthetic isoprenoid glycolipids, structurally similar to Mtb
antigens, in a CD1c-dependent manner. These findings provided the first evidence of

CD1c-mediated lipid-specific memory T cell responses in infectious disease (131).

Building on this, Matsunaga et al. (2004) investigated the CD1c-restricted T cell line
CD8-1 (previously described by Rosat et al. (90)). They demonstrated that CD8-1 cells
proliferated in response to CD1c-transfected C1R cells pulsed with Mtb or BCG whole
lipid extracts, as well as with mannosyl--1-phosphoisoprenoids, a family of Mtb lipid
antigens presented by CD1c (131). Disruption of the pks12 gene in Mtb abrogated the
synthesis of mannosyl-B-1-phosphoisoprenoids, and lipid extracts from pksl2
knockout strains failed to activate CD8-1 T cells. Mass spectrometry confirmed the
absence of mannosyl-B-1-phosphoisoprenoids in the mutant strains, establishing
pksl1l2 as essential for their biosynthesis (8). Among these antigens, mannosyl-31-
phosphomycoketide (MPM) is now recognised as a major target for CD1c-restricted T

cell responses in Mtb-exposed individuals (139).

Further work by Ly et al. (2013) expanded the repertoire of known CD1c-presented
Mtb lipids. Using fractionated lipid extracts and the DN6 CD1c-restricted T cell line as
a reporter, they identified a novel antigen, C32 phosphomycoketide (PM), a fully
saturated C32 alkylphosphate structurally related to MPM (139). DN6 T cells were
strongly activated by PM-pulsed MoDCs, but not by extracts from pks12-deficient Mtb,
confirming PM as a natural mycoketide antigen. Notably, DN6 responded to both PM
and deglycosylated forms of MPM, suggesting that antigen processing by APCs,
involving removal of B-linked mannose units, can influence CD1c-restricted T cell
recognition. Plate-bound CD1c experiments further confirmed distinct modes of
recognition by different T cell clones (139).

Currently, PM and MPM remain the only two natural CD1c-presented Mtb lipid
antigens that have been clearly identified (131,132,139-141). Further antigen
discovery will likely be important for optimising TB vaccines aimed at targeting CD1c-

restricted T cell responses.

To address antigen stability, Reijneveld et al. (2021) synthesised an MPM analogue,
MPM-3, designed to resist enzymatic hydrolysis during antigen processing. In vitro
immunisation with MPM-3 expanded MPM-specific T cells that demonstrated dual
reactivity towards both MPM and MPM-3. These findings suggest that MPM-3 could
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serve as a more stable vaccine component for inducing robust CD1c-restricted T cell

responses (142).

CD1l1d-mediated responses to mycobacteria

CD1d presents lipid antigens to natural killer T (NKT) cells, including invariant NKT
(INKT) cells and some V&1 T cells (73,143). NKT cells are a distinct population of
aBTCR-expressing T cells that co-express natural killer (NK) markers such as CD94
and CD161 (144). In humans, INKT cells, also referred to as type 1 NKT cells, are
defined by expression of a semi-invariant Va24-Ja18 TCR (145,146), whereas type 2
NKT cells possess a more diverse TCR repertoire (147). The synthetic
glycosphingolipid a-galactosylceramide (a-GalCer), originally isolated from a marine
sponge, binds CD1d and strongly activates iNKT cells by engaging their TCR with high
affinity (148-150). The development of CD1d-a-GalCer tetramers enabled detailed
characterisation of iNKT cells in both mice and humans (151,152). Importantly, a-
GalCer does not activate type 2 NKT cells, providing a selective tool for studying INKT
biology. Much of our understanding of CD1d-restricted immunity stems from iNKT cell
research, largely because both CD1d and iNKT cells are conserved across mice and

humans (153), unlike group 1 CD1 molecules, which are absent in murine models.

While iNKT cells were first investigated in the context of cancer, where a-GalCer
treatment reduced tumour metastases and improved survival in mouse models (154),
they have also been implicated in protection against Mtb infection. Chackerian et al.
(2002) showed that a-GalCer administration prolonged survival and reduced lung
bacterial burden in Mtb-infected CD1d-sufficient, but not CD21d-deficient mice,
demonstrating a CD1d-dependent protective effect (155).

Subsequent studies identified microbial lipid antigens presented by CD1d. Fisher et
al. (2004) demonstrated that phosphatidylinositol mannoside (PIM), a lipid isolated
from BCG, could stimulate murine iNKT cells via CD1d presentation. Using CD1d-
transfected B cell ymphoma cells pulsed with PIM, they observed IFN-y secretion from
Va14-Ja281 transgenic mouse splenic T cells, a response abrogated by anti-CD1d
blocking antibodies. These responses were absent with untransfected B cells,
confirming CD1d restriction. Moreover, CD1d-PIM tetramers could stain murine iNKT

cells similarly to CD1d-a-GalCer tetramers (156).
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Investigations in humans revealed that INKT cell clones stained by both CD1d-PIM
and CD1d-a-GalCer tetramers also secreted IFN-y and lysed CD1d-transfected HelLa
cells pulsed with PIM. No lysis was observed when untransfected HelLa cells were
used, confirming CD1d-restricted recognition. These findings identify PIM as a
mycobacterial lipid antigen capable of activating human iNKT cells (156). Beyond
recognition of foreign lipids, INKT cells can also be activated by stress-induced self-
lipid antigens. Brennan et al. (2011) showed that TLR stimulation of dendritic cells
triggers lipid remodelling, promoting presentation of endogenous agonists on CD1d
and enhancing iNKT activation in the absence of microbial lipid antigens. This ‘self-
lipid switching’ provides a key mechanism by which innate immune cues can modulate
CD1d-restricted T cell responses during infection (24). Functional studies further
demonstrated a role for INKT cells in controlling Mtb infection. Sada-Ovalle et al.
(2008) showed that murine iNKT cells upregulated the activation marker CD69 upon
contact with Mtb-infected macrophages, but not uninfected controls. Splenocytes from
wild-type, but not iINKT-deficient, mice were able to reduce Mtb growth in infected
macrophages. Furthermore, splenocytes failed to control Mtb growth when infected
macrophages lacked CD1d, demonstrating the necessity of CD1d-mediated
presentation. Pure iNKT cell lines were sufficient to inhibit Mtb growth when cultured
with infected macrophages, and adoptive transfer of iINKT cells into irradiated, Mtb-

infected mice significantly reduced bacterial burden in both lungs and spleen (157).

Collectively, these findings suggest that CD1d-restricted iNKT cells can contribute to
anti-Mtb immunity. However, conflicting results exist. One study found no significant
difference in survival between wild-type and CD1d-deficient mice infected with Mtb,
suggesting that CD1d-restricted responses may not be essential for protection (158).
Thus, while evidence supports a role for iINKT cells in immunity to Mtb, their

contribution may vary depending on the infection model and experimental conditions.

Autoreactivity is an intrinsic feature of CD1 biology

An unusual feature of CD1-restricted T cells is their frequent autoreactivity. Although
thymic selection minimises self-reactivity in conventional T cells, CD1-autoreactive T
cells are nevertheless abundant in healthy individuals (26).
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De Jong et al. (2010) showed that T cells from all 14 healthy donors tested exhibited
reactivity towards CD1la-expressing K562 cells, whereas responses to CD1b, CDl1c,
or CD1d were less common. Blocking with anti-CDla antibodies confirmed CDla
restriction. CDla-autoreactive T cells, comprising approximately 2% of circulating T
cells, were predominantly CD4+, produced IFN-y, IL-22, and sometimes IL-13, but
often lacked IL-2 production. Many expressed cutaneous lymphocyte antigen (CLA),
suggesting skin homing. T cells isolated from skin biopsies similarly showed CD1la

reactivity, with stronger responses when stimulated by Langerhans cells (159).

De Lalla et al. (2011) independently confirmed that CD1 autoreactivity is relatively
frequent. Single-cell cloning revealed that around 10% of both CD4+ and DN af3T cells
were self-reactive to CD1 molecules, predominantly CDla and CD1c. TCR repertoire
analysis showed high diversity among self-reactive clones, contrasting with the
invariant TCRs of iINKT cells (160). CD1c-autoreactive T cells were functionally
heterogeneous: CD4+ clones were more likely to secrete TNF-a, DN clones secreted
GM-CSF, and some clones produced both Th1l and Th2 cytokines. Importantly, CD1a-
and CD1c-autoreactive clones demonstrated cytotoxicity against target cells
expressing their cognate CD1 isoforms without exogenous antigen, indicating intrinsic
autoreactive killing potential (160). Beyond classical Thl cytokines, CD1-autoreactive
T cells can secrete a broad range of effector molecules, including GM-CSF, IL-13, IL-
22, and IL-5 (161-163). For example, CD1c- and CD1b-autoreactive T cell clones
have been shown to produce polyfunctional responses that include both Thl and Th2
cytokines, and in some cases, GM-CSF and IL-22, which can enhance antigen
presentation, promote monocyte recruitment, and contribute to mucosal barrier
integrity (161,163). IL-13 and IL-5, though traditionally associated with Th2 responses,
may modulate inflammation or tissue repair in TB lesions. These findings suggest that
CD1-restricted T cells may play diverse immunomodulatory roles during TB infection,

beyond direct cytotoxicity or classical macrophage activation.

Despite their prevalence, CD1-restricted self-reactive T cells rarely cause pathology,
suggesting regulatory mechanisms are in place. Nevertheless, associations with
autoimmune diseases have been reported. CD1c+ antigen-presenting cells infiltrate

lesions in Graves’ disease and Hashimoto’s thyroiditis, and T cells capable of lysing
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CD1c+ targets have been isolated from thyroid tissue (164). In systemic lupus
erythematosus (SLE), DN T cells reactive to CD1c can produce IL-4 and IFN-y, and
may support IgG production by CD1c+ B cells (165). In rheumatoid arthritis, synovial
fluid contains increased numbers of activated CD1c+ dendritic cells that stimulate
CD4+ T cells, although CD1c restriction was not definitively proven (166).
Autoreactivity has also been implicated in multiple sclerosis (MS). Shamshiev et al.
(1999) found increased frequencies of T cells reactive to brain-derived glycolipids in
MS patients. Two T cell clones recognised monosialo-ganglioside GM1 presented by
CD1b, and responses were blocked by anti-CD1b antibodies, implicating CD1b in
autoreactive responses against myelin components (167).

Recent mechanistic studies have further clarified how CD1 autoreactivity may be
regulated. De Jong et al. (2014) demonstrated that CDl1a-autoreactive T cells, such
as clone BC2, recognised CD1a loaded with endogenous lipids from the epidermis,
including squalene from sebaceous glands. These findings suggest that spatial
separation of self-lipids, for example, lipids located beyond T cell access in healthy
skin, helps prevent inappropriate activation (168). Moreover, Betts et al. (2017)
showed that the contact dermatitis agent 2,4-dinitrochlorobenzene (DNCB) activates
CDla-autoreactive T cells, suggesting environmental exposures can trigger
pathological autoreactive responses (169). In functional studies, DNCB-treated

CD1la+ APCs stimulated a polyfunctional cytokine response from autoreactive T cells.

Guo et al. (2018) engineered K562 cells to express high levels of CD1c and used them
to stimulate peripheral blood T cells without exogenous antigen (170). Activated T cells
upregulated CD154 and showed enrichment of TRBV4+ TCRs, specifically TRBV4-1.
Responses were blocked by anti-CD1c antibodies. When TRBV4-1+ TCRs were
transduced onto Jurkat cells, they responded to CD1c-expressing targets, confirming
CD1c autoreactivity (170).

Further mechanistic insights have come from studies of lipid antigen structure. Cotton
et al. (2021) found that sphingomyelins with long unsaturated acyl chains (e.g., 42:2
sphingomyelin) inhibit CD1a-TCR interactions by protruding from the antigen-binding
groove and sterically blocking TCR engagement, whereas shorter chain
sphingomyelins are permissive. Thus, specific endogenous lipids can negatively

regulate CD1a autoreactivity (23).
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Structural studies also support a model of direct CD1 recognition without lipid co-
recognition. Wun et al. (2018) solved the structure of an autoreactive CD1c-restricted
TCR bound to CD1c presenting a fully sequestered endogenous lipid. The TCR
contacted CD1c itself rather than the presented lipid, consistent with "CD1-as-antigen"
recognition. These findings explain how high frequencies of autoreactive CDlc-
restricted T cells can exist without constant activation, provided regulatory

mechanisms are intact (130).
Several broader mechanisms are also thought to limit autoreactive responses:

e Inhibitory lipid loading: Endogenous lipids with bulky head groups, such as
phosphatidylcholine or sphingomyelin, may block TCR access to CD1

molecules (23).

e Tissue-specific CD1 expression: Although CD1c is expressed on B-cells,
group 1 CD1 molecules are expressed relatively sparsely in the peripheral
blood, restricting opportunities for autoreactive encounters (130,171).

« TCRinternalisation: In CD1b-transgenic mice, autoreactive CD1b-restricted T
cells showed reduced surface TCR expression compared to wild-type mice,
suggesting that downregulation of TCR levels may suppress autoreactivity in
vivo (172).

Together, these mechanisms contribute to immune tolerance, preventing frequent
autoreactivity from manifesting as autoimmune disease. Importantly, autoreactivity
does not necessarily equate to autoimmunity, and controlled self-reactivity may even

have physiological roles yet to be fully defined.

CD1-autoreactive T cells: Are they really so evil?

Despite their association with autoimmune diseases, CD1-autoreactive T cells have
been conserved throughout human evolution, suggesting they may play beneficial

roles in immunity.

CD1c is expressed on several haematological malignancies, including B cell acute
lymphoblastic leukaemia (B-ALL) and acute myeloid leukaemia (AML) in both adults

and children (173). Lepore et al. (2014) isolated CD1c-autoreactive T cell clones from
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healthy donors and found that these clones secreted GM-CSF and IFN-y in response
to CDl1c-transfected THP1 and C1R cells in a CDlc-dependent manner. Lipid
extraction and fractionation of THP1 cells identified a stimulatory lipid, later determined
by mass spectrometry as methyl-lysophosphatidic acid (mLPA). Synthetic mLPA
analogues loaded onto recombinant CD1c similarly activated CD1c-autoreactive T

cells, confirming mLPA as an endogenous immunogenic ligand.

Functionally, mLPA-specific T cell clones secreted IFN-y in response to co-culture with
CD1c+ AML cells, but not with healthy monocytes. Despite lower CD1c expression on
some AML cells compared to monocytes, stronger T cell activation was observed
against the leukemic cells, suggesting increased mLPA presentation. Similarly, B-ALL
cells induced greater IFN-y secretion compared to normal B cells despite similar CD1c
expression levels. Direct quantification showed mLPA accumulation was significantly
higher in leukaemic cells than in healthy cells.

mLPA-specific T cells preferentially killed B-ALL and AML cells while sparing most
normal B cells and monocytes. Killing was CD1c-dependent, as blocking antibodies
abrogated cytotoxicity. In vivo, mLPA-specific T cells prolonged survival in an
immunodeficient mouse model grafted with CD1lc+ MOLT-4 leukemia cells.
Furthermore, healthy donor T cells transduced with mLPA-specific TCRs acquired the
ability to recognise and respond to CD1c+ target cells, demonstrating the therapeutic
potential of CD1c-autoreactive TCRs (173). Beyond cancer, CD1-autoreactive T cells
have also been shown to contribute to antimicrobial immunity. Vincent et al. (2005)
generated 15 group 1 CD1-restricted T cell clones by stimulating CD4-depleted T cells
with CD1-expressing MoDCs and lipid extracts from Mtb, E. coli, or Yersinia
enterocolitica. All clones were CD8+ aTCR+ T cells that proliferated in response to
CD1-expressing MoDCs without additional stimulation, demonstrating autoreactivity.
These T cells were highly cytotoxic against CD1-transfected HeLa and C1R cells, as
well as MoDCs. Cytokine profiling showed expression of IFN-y, GM-CSF, IL-5, and IL-
13, and functional responses were abrogated by CD1-blocking antibodies. Moreover,
CD1a- and CD1b-restricted TCRs transduced into Jurkat cells conferred both self-
reactivity and enhanced responses to microbial lipids, highlighting dual specificity for
self- and foreign antigens (161).
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Similarly, Roy et al. (2016) identified CD1c-restricted yd T cells through CD1c-PM
tetramer staining of human PBMCs. Sorted lines predominantly expressed the Vo1
TCR chain, confirming that V&1 cells are the main yd T cell population recognising
CD1c (71,72). Upon transduction of Vd1+ TCRs into Jurkat cells, spontaneous
activation was observed, indicating low-level autoreactivity towards endogenous CD1c
ligands. These TCR-transduced Jurkat cells responded more strongly when
stimulated with PM, demonstrating dual reactivity to both endogenous and microbial
lipid antigens. Binding studies confirmed that different lipids modulated TCR
engagement: some TCRs bound more strongly to CD1c presenting self-lipids, while
others preferred microbial lipids (72).

Following on from previous work (172), Bagchi et al. (2016) demonstrated that a
CD1b-autoreactive T cell line, which recognises phospholipids, secreted IL-2 in
response to plate-bound CD1b protein loaded with lipids extracted from normal cells,
indicating autoreactivity. However, IL-2 secretion was significantly higher when CD1b
was loaded with lipids extracted from the T lymphoblast cell line MOLT-4, suggesting
that cancer cell-derived lipids are more immunogenic. Furthermore, these T cells were
able to lyse CD1b-transfected, but not wild-type, murine RMA-S T cell lymphoma cells,

confirming CD1b-restricted recognition and cytotoxicity (174).

In follow-up experiments, mice were inoculated with either wild-type or CD1b-
transfected RMA-S tumour cells, alongside CD1b-autoreactive T cells. On day 14,
mice were sacrificed, and tumour size was measured. Tumour growth was significantly
reduced in mice that received CD1b-transfected RMA-S cells and CD1b-autoreactive
T cells, suggesting that these T cells can mediate anti-tumour immunity in a CD1b-
dependent manner. In contrast, no reduction in tumour size was observed in mice
inoculated with wild-type RMA-S cells, confirming that the protective effect was
specifically mediated by CD1b recognition (174). Collectively, these findings suggest
that CD1-autoreactive T cells, rather than being solely pathogenic, may have
beneficial roles in immune surveillance. Based on this evidence, CD1-autoreactive T
cells could contribute to host defence against both tumours and infections and may
play a previously underappreciated role in the immune response to infectious diseases
such as tuberculosis (Figure 1).
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TLR signalling modulates CD1-autoreactive T cell responses during
infection

TLR stimulation can influence the functional responses of CD1-autoreactive T cells,
linking innate immune sensing to adaptive lipid-specific immunity. De Libero et al.
(2005) investigated two CDla-restricted T cell clones specific for sulfatide and two
CD1b-restricted clones specific for monosialo-ganglioside GM1 (175). When co-
cultured with immature DCs infected with E. coli, B. subtilis, S. aureus, or BCG, all four
clones secreted IFN-y. Similarly, stimulation of DCs or CD1-transfected THP1 cells
with the TLR4 agonist LPS or the TLR2 agonist Pam3Cys significantly enhanced IFN-
y production by these CD1-autoreactive clones. Responses were CD1-dependent, as
blocking antibodies abrogated T cell activation, and were not observed in MHC class

lI-restricted or yo T cell clones under identical conditions (175).

Mechanistically, LPS and Pam3Cys stimulation modestly increased CD1 and co-
stimulatory molecule expression (B7.1, CD40) on DCs and THP1 cells. More strikingly,
infection or TLR stimulation induced increased synthesis of the self-lipid antigens
sulfatide and monosialo-ganglioside GM1, suggesting that infection-driven changes in
lipid metabolism enhance CD1-restricted T cell activation by elevating the abundance
of stimulatory self-lipids (175). This mechanism is mirrored in the CD1d—iNKT cell axis,
where TLR activation of dendritic cells drives lipidome remodelling and presentation
of stimulatory self-lipids, enabling INKT activation in the absence of microbial antigens
(24). Earlier work from the same group showed that microbial infection can activate
INKT cells via CD1d-mediated presentation of endogenous lipids, further supporting
TLR-induced self-lipid switching as a general mechanism of CD1-restricted immunity
(176). Zeissig et al. (2012) similarly demonstrated that hepatitis B virus infection alters
hepatocyte lipid composition to generate CD1d-presented lysophospholipids,
triggering NKT cell activation (177). Together, these findings highlight a broader
mechanism by which pathogen sensing promotes autoreactive T cell responses

through enhanced self-lipid presentation.

Li et al. (2011) further explored this phenomenon using a transgenic mouse model
expressing group 1 CD1 molecules and a CD1b-autoreactive TCR (172). Treatment
of bone marrow-derived DCs with Pam3Cys, LPS, or Listeria monocytogenes infection

resulted in heightened secretion of IFN-y and IL-17A from CD1b-autoreactive T cells
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compared to untreated controls. Following in vivo challenge with Listeria
monocytogenes, CD1b-autoreactive T cells upregulated the activation marker CD69
and contributed to a reduced bacterial burden in the liver and spleen, compared to
non-transferred controls. These findings suggest that TLR2 and TLR4 signalling can
amplify CD1b-autoreactive T cell responses during infection, promoting pathogen
clearance (172). This highlights a model in which inflammation-driven upregulation of
CD1 expression and stress lipid synthesis can activate CD1-autoreactive T cells, even
in the absence of strong pathogen-derived lipid presentation. For a more extensive
discussion on how TLR pathways intersect with CD1-restricted T cell immunity, we
refer readers to the comprehensive review by Moody et al. (2006) (178).

Phagocytosis Macrophage
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Figure 1. Both Mtb lipid-specific and CD1-autoreactive T cells respond to Mtb
infection. Both Mtb lipid-specific and CD1-autoreactive T cells respond to Mtb
infection. Mtb lipid-specific T cells become cytotoxic and secrete IFN-y and TNF-a
(90,107,117,128) in response to Mtb lipid antigens presented by CD1 molecules on
infected APCs. CD1-autoreactive T cells can also become cytotoxic and secrete IFN-
y in response to either Mtb lipid or stress-induced self-lipid antigens presented by CD1
molecules on infected APCs (72,161). While Mtb can gain access to the cytosol, it
predominantly resides in the phagosome, where it is sensed by innate receptors and
processed for antigen presentation. TLR signalling enhances these responses by
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upregulating CD1 expression, costimulatory molecules, and presentation of
stimulatory self-lipids. Specifically, TLR2 and TLR4, which recognise Mtb lipoproteins
and cell wall components, are shown in the figure. These receptors bridge innate
sensing of Mtb with adaptive CD1-restricted T cell responses. Secreted IFN-y and
TNF-a can stimulate macrophages to enhance antimicrobial functions (175,179).

Image created using BioArt.

Mtb infection influences CD1 expression

During the late 1990s and early 2000s, a series of studies investigated how

mycobacterial infection affects CD1 molecule expression by APCs.

Stenger et al. (1998) infected human adherent mononuclear cells (AMNCSs) treated
with GM-CSF and IL-4 with live Mtb and measured group 1 CD1 expression by flow
cytometry. No significant changes were observed at 4 hours post-infection; however,
by 24 hours, reduced staining of all group 1 CD1 isoforms was evident, and by 48
hours, expression was undetectable (180). Quantitative RT-PCR confirmed a
substantial decrease in group 1 CD1 mRNA levels in infected cells compared to
controls. Notably, infection with heat-killed Mtb did not reduce CD1 expression,
indicating that live bacilli are necessary for this effect. Using a transwell system, the
authors demonstrated that soluble factors alone were insufficient to mediate CD1
downregulation, suggesting that direct interactions between live Mtb and host cells are
required (180).

Giuliani et al. (2001) further explored the effects of mycobacteria on CD1 expression.
They found that infection with live BCG inhibited the GM-CSF-induced upregulation of
group 1 CD1 molecules, particularly CD1b. In contrast to Stenger et al., heat-killed
BCG also suppressed CD1b expression, attributed to alternative mRNA splicing
mechanisms. Interestingly, using a transwell system, they observed that soluble
factors secreted by BCG-infected AMNCs could reduce CD1b expression in adjacent
uninfected cells, suggesting a mechanism of bystander suppression not observed with
Mtb (181).
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Wen et al. (2013) later demonstrated that CD1c mRNA levels are reduced in PBMCs
from TB patients compared to healthy controls (182). An inverse correlation between
CD1c expression and miR-381-3p levels was identified, suggesting post-
transcriptional regulation. Binding of miR-381-3p to the 3' untranslated region of CD1c
was confirmed using a luciferase reporter assay. Overexpression of miR-381-3p in
DCs decreased CDI1c expression, while inhibition of miR-381-3p restored it.
Furthermore, BCG infection increased miR-381-3p levels and decreased CDl1c
expression, effects reversible with miR-381-3p inhibition. Importantly, blocking miR-
381-3p enhanced CD1c-restricted T cell responses to BCG, suggesting that miR-381-
3p inhibitors could be therapeutically useful to improve vaccine-induced CD1-

mediated immunity (182).

Given that mycobacteria have coevolved with innate immune systems (183), it is
plausible that downregulating group 1 CD1 molecule expression represents an
immune evasion strategy, limiting recognition by CD1-restricted T cells. These findings
collectively suggest that modulation of CD1 expression by mycobacteria could impair
host immunity, and that targeting these pathways could lead to improved vaccine
strategies capable of eliciting more robust CD1-restricted memory responses (180—
182). Given Mtb’s ability to modulate CD1 expression, it is essential that future vaccine

strategies account for these evasion mechanisms.

In the following section, we review the current landscape of TB vaccine development
and explore how targeting CD1-restricted immunity could offer new opportunities for

protection.

TB vaccine development

Developing a more effective vaccine remains one of the most promising strategies to
control TB and limit the rise of antibiotic-resistant strains. The only currently available
TB vaccine, BCG, contains an attenuated form of Mycobacterium bovis (184).
Although BCG is widely administered and offers relatively high protection against
childhood TB meningitis and miliary TB, it provides limited protection against
pulmonary TB in adults and adolescents, the major drivers of Mtb transmission

(18,185-187). Furthermore, BCG is contraindicated in immunocompromised
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individuals, including those with untreated HIV infection, due to the risk of
disseminated BCG infection (188).

Several new TB vaccine candidates have entered clinical trials in recent years. One
strategy involves viral-vectored vaccines such as MVAS85A, based on a modified
vaccinia Ankara virus expressing Mtb antigen 85A. Despite encouraging preclinical
data, MVAB85A failed to provide protection in Phase llb clinical trials in infants and
adults, marking a major disappointment as the first new TB vaccine candidate to

undergo an efficacy trial in over 80 years (189-191).

Subunit vaccines have also been explored. H56:1C31 is a fusion protein combining
Ag85B, ESAT-6, and Rv2660c, the latter preferentially expressed during Mtb latency
(192). In mice, a BCG prime followed by an H56:1C31 boost reduced lung bacterial
burden after Mtb challenge (193). In cynomolgus macaques, H56:1C31 boosting after
BCG vaccination delayed progression to active TB, extended survival, and reduced
pathology (194). Early-phase human trials showed that H56:1C31 was well tolerated
and induced robust IgG and antigen-specific CD4+ T cell responses in both Mtb-
infected and uninfected individuals (195,196). However, in a Phase llb trial, although
immunogenic, H56:1C31 unexpectedly showed higher TB incidence among vaccinees
(5.8%) compared to placebo (3.4%) (197).

Another prominent candidate is M72/AS0O1E, a recombinant fusion protein vaccine
combining the Mtb antigens PepA and PPE18. PepA is thought to function as a serine
protease (198), while PPE18 may interact with TLR2, inducing immunosuppressive
IL-10 responses (199-201), and promoting Mtb survival (202). However, PPE18
exhibits substantial structural variability across strains (203), raising concerns about
antigenic consistency. The Phase llb trial of M72/AS01E was hailed as a breakthrough
by the WHO, demonstrating approximately 50% protection against progression to
active TB three vyears post-vaccination (204). Nevertheless, injection-site
reactogenicity led to delayed recruitment in some Phase Il trials (205), and the

moderate efficacy suggests further vaccine improvements are still needed.

One limitation of viral-vectored, subunit, and recombinant fusion vaccines is their
narrow antigenic focus. None of MVA85A, H56:1C31, or M72/ASO1E can generate
CD1-restricted memory responses to Mtb lipids. However, future formulations could

incorporate immunogenic lipid antigens to elicit CD1-restricted immunity. Morgun et
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al. (2023) developed a nanoparticle-based TB vaccine containing both mycolic acid
and the protein antigen Ag85B. In mice, this formulation activated adoptively
transferred DN1 T cells (specific for mycolic acid) and Ag85B-specific T cells in vivo.
Additionally, human mycolic acid-specific T cells responded to the same nanoparticles
in vitro, highlighting the potential of subunit vaccine platforms that combine lipid and
protein antigens to elicit broad CD1- and MHC-restricted T cell responses (206).

Whole-cell vaccines offer broader antigen presentation, including lipid antigens (93).
MTBVAC, a live attenuated Mtb strain with deletions in phoP and fadD26, genes
essential for virulence lipid synthesis, is currently in Phase lll trials (207—212). Another
candidate, VPM1002, is a recombinant BCG expressing listeriolysin O from Listeria
monocytogenes and lacking urease C. This enables phagosome acidification and

cytosolic antigen release, enhancing immunogenicity (190,213-219).

However, because both Mtb and BCG have been shown to downregulate CD1
expression and impair CD1-restricted T cell responses (180-182), MTBVAC and
VPM1002 may still have limited capacity to induce optimal CD1-restricted memory.
Identifying and reversing the mechanisms by which mycobacteria suppress CD1
expression could offer a route to improving future vaccines. It also remains unclear
whether optimal CD1-restricted responses should be elicited by including defined
mycobacterial lipids as vaccine immunogens, or by leveraging innate activation to
drive self-lipid presentation and autoreactive T cell activation. Both approaches merit

investigation.

Importantly, CD1 molecules are non-polymorphic, meaning immune responses to
CD1-presented antigens are shared across genetically diverse human populations.
Thus, targeting CD1-restricted responses may enable broader and more universal
vaccine coverage (18). Furthermore, lipid antigens are less prone to mutational
escape compared to peptides presented by classical MHC molecules, as alterations
to essential lipid biosynthetic pathways often compromise bacterial viability (173).

Given the major advances in TB vaccine development in recent years, there is real
hope that new immunisation tools capable of providing better global protection are
within reach. Targeting CD1-restricted T cell responses offers a promising strategy to

boost future vaccine efficacy against TB, the world’s leading infectious killer (1,19).
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Conclusion and future directions

CD1-restricted T cells offer a compelling yet underutilised opportunity to transform TB
vaccine development. Their capacity to recognise lipid antigens via non-polymorphic
CD1 molecules allows for genetically unrestricted, population-wide immune responses
(17,18). While pathogen-specific (21,22,91,113,116,119,120,123-128,131,139,156)
and autoreactive (72,161,172,175) CD1-restricted T cells can both contribute to
antimicrobial defence, Mtb’s ability to downregulate CD1 expression presents a key
challenge (180-182). Current vaccines fail to engage lipid-specific memory
responses, revealing a critical gap. Future strategies that incorporate immunogenic
lipid antigens, restore CD1 expression (182), and selectively expand protective CD1-
restricted T cell subsets may deliver the next leap in TB vaccine efficacy. Integrating
CD1-targeted immunity could move us closer to durable, universal protection against
TB.
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