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Abstract
Smart agriculture brings massive amounts of real-time images generated via modern information and communication tech-
nology. Promptly providing accurate estimates of fruit/vegetable information, such as location, quantity, and size, is worth
studying. Therefore, we focus on exploring a deep learning-based backbone model for heatmap regression to capture the yield
information. This singular and lightweight architecture effectively addresses the unified challenge of object counting, location
detection, and size estimation for fruits/vegetables. However, when dealing with real-world applications, the data distribution
shift would happen in response to the collection of new data. Moreover, some unseen fruits/vegetables often appear during the
training process. All of these give rise to the open set recognition (OSR) problem. In such an OSR environment, a test-time
domain adaptation approach based on deep learning is proposed for multi-class object localization and size estimation. This
is the first attempt at unsupervised domain adaptation for heatmap regression tasks. Furthermore, to overcome the drawback
of lacking a public dataset, a new benchmark dataset (including synthetic and real image data) has been created and collected
to train, test, and evaluate our approach. Extensive experimental evaluations prove that our approach can achieve accurate
predictions in the OSR setting within a single epoch of test-time optimization without altering the training process.

Keywords Domain adaptation · Object counting · Size estimation · Open set recognition · Adaptive receptive fields ·
Synthetic dataset

Introduction

The Fourth Industrial Revolution (Industry 4.0) created
opportunities for companies from different sectors to adopt
new technologies and gain competitive advantages in domes-
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tic and global market digital transformation [1]. This digital
revolution introduces modern technologies and innovations,
such as the Internet of Things, to the agricultural field, which
forms “Smart Agriculture” [2]. Food production is estimated
to decrease from 7 to 23% due to climate change [3]. Smart
agriculture with growth monitoring is one of the scalable
solutions for sustainable crop production. Aiming to guar-
antee crop production while reducing resource use, artificial
intelligence has been widely applied in agriculture to auto-
mate traditional farming processes [4]. Smart sensors are now
commonly used to capture real-time images of crops, allow-
ing for effective monitoring and prediction of their growth.
With integrated Semantic Image Segmentation algorithms,
it can automatically pre-process these photos to remove the
noise information, such as background or occlusion of stems
and leaves, for the convenience of the latter stage of data anal-
ysis. However, massive amounts of data will be generated
every day. One of the main challenges in smart agriculture is
how to process the data efficiently and effectively. For exam-
ple, it is important to provide adequate yield information
for farmers to plan harvesting operations in a competitive
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market. In this scenario, real-time growth monitoring to cap-
ture the number, size, and surface outlook information of
each individual fruit/vegetable from the images sent from
the field is worth studying. This paper proposes a top-down
deep learning model for detecting, classifying, counting, and
estimating the size and count of various types of fruits and
vegetables. This approach aims to circumvent the shortcom-
ings of the classical bottom-up method that relies heavily on
accurate segmentation. This study aims to address the prob-
lem of identifying the target object from images with many
irrelevant objects, such as leaves and stems, and capturing
its size. Moreover, there are various kinds of fruits and veg-
etables in the real world, resulting in distribution shifts when
new data is collected. Such shifts may be caused by changes
in the properties or domain of the new data [5, 6]. The dis-
tribution shift can also occur because the training data fails
to cover all aspects of the distribution [5, 7, 8]. All of these
give rise to the open set recognition (OSR) problem, a more
challenging and realistic setting where test samples are from
unseen classes during training [9]. Therefore, how to achieve
such localization, counting, and size estimation tasks in an
OSR setting is our main challenge.

Although deep learning (DL) can be very useful for this
problem and has already been used in smart farming and
other real-world applications, due to the lack of proper
datasets, most existing research mainly focuses on scenar-
ios where: (1) only one type of object exists in the dataset;
(2) only a single object in each image is considered. Pro-
viding such individual object information (i.e., size and
position) for the images by hand annotation is time- and
effort-consuming, especially since there are huge numbers
of objects (fruits/vegetables) in the image and/or multiple
classes of objects exist in the dataset. The lack of a proper
training dataset is the reason why most current research sep-
arately studies the counting and size estimation problems.
In addition, none of the research considers an OSR setting.
The detail of related literature is explained in detail in the
“Literature Review and Methodology” section.

Contributions and Paper Structure

The contributions of this paper are summarized as follows:

• We propose a deep learning-based backbonemodel pred-
icated on heatmap regression. This is a singular and
lightweight architecture which effectively addresses the
unified challenge of object counting, location detection,
and size estimation.

• A testing-time adaptation-based approach is further
developed to fine-tune the trained backbone model
to handle previously unseen classes of objects. This
approach is the first attempt to handle source-free domain
adaptation on a heatmap regression task. The best strate-

gies and parameter settings for different scenarios and
tasks in this approach are tested and discussed.

• A new benchmark dataset (which includes synthetic and
real image data) is created and collected to train, test, and
evaluate the approachesmentioned above for the open set
object counting, localization, and size estimation prob-
lems. It could be customized and used as a benchmark or
testbed for future studies.

• We further conduct experiments to compare the perfor-
mance of our model with prior arts, and ours can achieve
state-of-the-art performance on the proposed benchmark
dataset.

The rest of the paper is organized as follows: In the “Lit-
erature Review and Methodology” section, state-of-the-art
related works from aspects of automated object counting,
object size estimation, andTTAare reviewed. From these, the
challenges and research questions of this area are identified.
The details of the proposed framework for multi-class object
counting and size estimation in the OSR setting for the smart
agriculture application are depicted in the “A TTA-Based
Approach for Multi-Class Object Localization and Size
Estimation” section. In the “Experiments for TTA-Based
Approach in OSR” section, we illustrate the designed exper-
iments for our TTA-based approach for multi-class object
counting and size estimation in an OSR setting. The “Con-
clusion” section discusses the management implications of
our work and concludes the article.

Literature Review andMethodology

In this section, we review related works from the aspects
of object counting and size estimation datasets, as well as
the TTA, to identify the challenges and research questions
addressed in this paper. Our methodology for such research
questions is also depicted.

Challenges and Research Questions

Compared to machine learning methods, deep neural net-
works (DNNs) have shown great capabilities for classifica-
tion and regression in image processing. Therefore, it could
achieve higher accuracy while better utilizing computing
resources in a shorter time [10–12]. Nowadays, DNN is
increasingly used for target detection and recognition in the
computer vision area [10, 13–15]. Inspired by these, we rec-
ognize that using deep learning techniques for image-based
object localization and size estimation can be highly ben-
eficial for addressing our research problem. This approach
can help farmers know more fruit/vegetable yield informa-
tion and enable unmanned aerial vehicles (UAVs) to harvest
autonomously.
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Most existing works focus on counting a single class of
objects in the image. For example, crowd counting has been
studied extensively in recent years [11, 14]. Most works
in this area have employed DL techniques and achieved
impressive progress in terms of counting accuracy [11].
Although many benchmark datasets have been published,
such as ShanghaiTech [16], UCF_CC_50 and UCF_QNRF
[17], only one class is annotated in the images of these
datasets. Even there exist some multi-class object counting
datasets, such as Tobacco leaf counting from [18], KR-
GRUIDAE collected by Go et al. [19] which contain 4
different species of Crane and Anser albifrons, these datasets
are not fruit/vegetable related and cannot be applied to appli-
cations in smart agriculture. When multiple object classes
exist in the dataset to be counted separately in different
images (which happens in smart agriculture, i.e., different
species of fruits on one farm), multiple models must be
trained and deployed. It is imperative to have one unified
model for multi-class object counting and object size esti-
mation. However, the lack of proper fruit/vegetable datasets
containing multiple object classes in images and proper
datasets for estimating object size has been the main barrier
to such research.

Most previous studies use traditional detection algorithms
for size estimation. Such methods are based on hand-crafted
pixel counting [20–22], which has lower performance and
cannot return size and position information for the indi-
vidual object instance. Classical bottom-up approaches are
dependent on the accuracy of object segmentation. DL-based
Semantic Image Segmentation algorithms such as DeepLab
[23] and U-Net [24] faced the challenge in the field of identi-
fying individual objects fromagroupof fruit/vegetables close
to each other and output-related position and size informa-
tion. Segment anythingmodel (SAM) is designed and trained
based on 11M images (annotated with 1Bmasks) to segment
objects of interest in an image based on a given prompt-
based definition of the tasks, e.g., points and boxes [25].
This requirement of training datasets and high computing
resources is a barrier to applying SAM in smart agriculture
to address the aforementioned research problems. For most
of the current object size estimation datasets, there is only one
single object in each image or one kind of item, such as straw-
berry [21], boiled-rice [26], and orange [4]. Even though
there are some works related to fruits/vegetables (which are

analyzed in Table 1), they mostly focus on either single-class
object counting or single object size estimation.Most of these
datasets cannot be used in the application of multi-object
counting and size estimation problems in smart agriculture.
Therefore, considering the limited computing resources in
the application scenario of the farm in smart agriculture, how
to train a lightweight DL-based model to detect and identify
individual objects for multiple objects in object counting and
size estimation remains an open problem. To the best of our
knowledge, no existing work focuses on this. Therefore, the
lack of a public dataset containingmultiple object classes and
proper information for object numbers and size information
for each of its images, and the method to train appropriate
lightweight DL-based models for multi-object counting and
individual size estimation problems in smart agriculture are
the first two challenges we faced.

As mentioned above, there are a huge number of different
kinds of fruits & vegetables in the real world. In real-world
tasks, the data distribution usually shifts alongwith the newly
collected data. Such shifts may be due to changes in the prop-
erties or domain of the new data [5, 6]. For example, a new
kind of fruit/vegetable on the tree/crop that has not been seen
in the training dataset needs localization and size estimation.
The distribution shift can also occur because the training
data fails to cover all aspects of the distribution [5, 7, 8].
This gives rise to the OSR problem, a more challenging and
realistic setting where test samples are from unseen classes
during training [9]. However, most of the aforementioned
works do not consider the new classes of objects beyond their
training datasets. Hence, the generalization ability to the out-
of-distribution (OoD) samples of this approach is questioned.
Even SAM can segment objects of types that it has not seen
without any additional training, but this is achieved based
on the specific model architecture in a high-computational
resource environment and a uniquely large dataset. Con-
sequently, our primary research objective is identified: to
address our first two challenges in an open-set learning con-
text, which is also our third challenge. Domain Adaptation
is a promising solution that extrapolates from training data
to test data from a different distribution.

Domain adaptation-based methods aim to generalize a
model to new distributions while assuming some knowl-
edge about the test distribution, such as unlabeled examples
or a few labelled examples known [5, 6, 9]. Liang et al.

Table 1 Comparison between current fruit/vegetable counting and size estimation datasets and E-MOCSE13

Datasets/works Purpose No. of classes Object counting Size estimation Extensible Use in OSR

ImageNet [10, 31]; VegFru [32] Object Classification Single/multi � × × ×
Kiwi [33]; Orange[34]; Strawberry [35] Object Detection Single � × × �
Starberry [21]; UAV-Orange [4] Size Estimation Single × � × ×
E-MOCSE13 (Ours) OSR Multi � � � �
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[27] proposed a method based on the assumption that the
source and target domain data have the same classifier in a
common latent space, in which the source encoding mod-
ule is fine-tuned by maximizing the mutual information
between the latent layer features and the classifier output
layer. This adapts the classification knowledge obtained from
the source domain to the target domain,making the target data
classification output closer to the source data classification
output. These methods that combine data augmentation and
self-supervised learning can effectively circumvent the lim-
itations of the source domain, and improve the model’s gen-
eralization ability for open domains, regardless of whether
the source data is accessible or not [28]. Therefore, domain
adaptation-based methods provide a more widely applicable
solution for open-domain problems in practical scenarios by
minimizing local risk.

Methodology

In object detection tasks, object counting, localization,
and size estimation are conventionally addressed as sepa-
rate regression tasks, necessitating the regression of three
real-valued parameters. Considering this and to solve the
aforementioned second challenge, we propose a backbone
model that aims to consolidate these three tasks by for-
mulating them as a unified heatmap regression problem.
Specifically, we convert the input images into heatmaps
using annotations, which serve as the targets for regression.
Before implementing a domain adaptation strategy for OSR
problems, it is essential to design a compatible model that
serves as the adaptation target and undergoes supervised
training while ensuring differentiability. Focusing on this,
our proposed approach utilizes HRNet [29] as the backbone
architecture and employsmulti-scale fusion to enhance high-
resolution representations. In addition, we design two heads
for jointly estimating object location and size. Mean squared
error (MSE) loss functions are used for heatmap comparison.
The number of objects can be obtained by counting the peaks
of the locations. The resulting compatible model is trained in
a supervised manner to ensure the necessary differentiability
for stable adaptation and optimization during unsupervised
testing. Unlike SAM which is a bottom-up approach (seg-
ment targets in the images based on input prompt first, then
do the object size estimation, and make a final decision at
the end of the clustering), our approach’s objective function
is checked in each iteration to see whether it is improved
or NOT with the addition of new sub-clusters: (1) each sub-
cluster is further partitioned into two new sub-clusters if the
fitness value is improved in the last split; (2) reject the split
if the objective function does not improve. Given this inter-
nal heuristic for cluster acceptance or rejection, the most
probable number of states is typically identified within a
few iterations, compared to the N-1 iterations required by

most bottom-up methods. This simple implementation and
accelerated computational speed make divisive clustering an
attractive alternative that only requires fewer trainingdatasets
and computing resources [30].

To train and test such designed models while solv-
ing the aforementioned first challenge, we create a new
dataset named E-MOCSE13, which includes synthetic and
real image data. A detailed description of E-MOCSE13 is
included in the “EvaluationMetrics andExperimentDataset”
section. Table 1 summarizes the comparative analysis of
state-of-the-art fruit/vegetable object classification, count-
ing, and size estimation datasets/works with our extended
E-MOCSE13, which shows the advantages of our dataset.
This builds fundamentals for our research of object counting
and size estimation problems in OSR.

The reason we are not creating real fruit/vegetable image
datasets is that obtaining image annotations would be time-
consuming and labor-intensive, especially when there are
many objects in each image. Unity 3D is a cross-platform
game engine that can create a 2D or 3D customized game
scene and object, and set the physics properties for all 3D
objects to simulate the physical effect in the real world [36].
It has been demonstrated that the data created by a gaming
engine can be used in real applications and experiments [37,
38]. Useful prior knowledge can be gained during the exper-
iment since the generated dataset can simulate the real-world
scenario, so that the problem domain can be consistent with
the real application [13]. Thus, we could say it is promis-
ing to import synthetic pictures instead of real images in
our experiments to solve the problem of multi-class object
counting and size estimation. Besides, the real images part
of our dataset can be used to evaluate the performance of our
model (trained from the synthetic dataset), and TTA fine-
tuning strategies can prove the feasibility of our approach in
real-world application scenarios, which is conducted in the
“The Experiment on the Real Image Dataset” section.

After getting the experiment datasets, we aim to solve
the third challenge, that is to build a unified model and
domain adaptation strategy. In this way, the problems of
target counting, localization, and size estimation can be
addressed simultaneously. The previously unseen species of
fruits and vegetables, i.e., new images that (only) contain a
new object class but do not include any labeling information,
can be handled.With the image preprocessing algorithm (i.e.,
DeepLab and U-Net) integrated with the smart sensor, some
of the noise information, such as background or even stems
and leaves, can be removed. As a result, our problem can be
formulated as shown in Fig. 1.

Traditional algorithms for unsupervised domain adapta-
tion tasks heavily rely on the accessibility of source domain
data [39–41]. In practice, factors such as privacy protection,
data storage and transmission costs, and computational bur-
den often limit the implementation of these method [42]. To
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Fig. 1 An illustration of the unified problem of multi-class object counting, position detection, and size estimation in OSR

overcome this problem, the Source-Free UDA task has grad-
ually attracted attention. Under this setting, models trained
on source domain data can only solve unsupervised domain
adaptation problemswith unlabeled target domain data. Con-
sidering the restricted access to source domain data, learning
domain-invariant features becomes more difficult. During
testing/inference time, the model needs to generalize for
unseen data from different domains [42]. In many applica-
tion scenarios, such as Medical Image Segmentation, access
is restricted to only test data and pre-trained models [43]. As
a result, the givenmodelmust be fine-tunedwith the test sam-
ples to overcome the distribution discrepancies between the
training and test data, which is commonly known as testing-
time adaptation (TTA) [7]. To achieve this, TTA optimizes
the model for confidence, measured by the entropy of its pre-
dictions, and updates the model’s parameters online on each
batch. The best result is achieved in one epoch of test-time
optimizationwithout altering the training process.Moreover,
Niu et al. investigated the instability of TTA and found that
the batch norm layer is a crucial factor. They further pro-
posed removing partial noisy samples with large gradients
and encouraging model weights to approach a flat minimum
[44].

Although TTA has many advantages, Sun et al. noted that
small unlabeled batches of shifted data can potentially be
accessed just before prediction time [29]. This observation
leads to a simple yet effective method called Test-time batch
normalization (BN) to leverage test batch statistics instead

of training statistics. BNadapt and α-BN [45, 46] correct
the BN statistics for reducing covariate shift. Based on this,
Su et al. [47] found that the inexact target statistics largely
stem from the substantially reduced class diversity in batches
and also introduced the test-time exponentialmoving average
(TEMA) method to bridge the class diversity gap between
training and testing batches. However, these methods all
focus only on the model’s capability of generalization to a
specific task, such as classification or segmentation. Also,
certain noisy test samples can still disturb model adaptation
and result in collapsed trivial solutions [44]. To address these
issues, we propose a method to fine-tune the BN layer of the
source encoding module, with the objective of Entropy Min-
imization. We further select partial samples with different
levels of entropy values and optimize the model for confi-
dence. This strategy thus adapts the acquired knowledge from
the source domain to the target domain, thereby enhancing
the model’s generalization capability that encompasses the
whole target domain. The results are achieved in one epoch
of test-time optimization without altering the training pro-
cess. Moreover, in contrast with the aforementioned work,
our proposed model is capable of predicting object counting,
localization, and size estimation simultaneously. To the best
of our knowledge, we are the first to attempt to design TTA
strategies for heatmap regression.

Note: In this paper, similar to [4], we do not estimate the
actual diameter, length, or volumeof the object. Still, they can
be derived by multiplying a constant factor (can be obtained
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by measuring a reference real-object in an image, also this
value depends on camera distance to the objects and cam-
era focal lengths, and these parameters are adjustable in our
datasets generating framework; for a real dataset from the
field in smart agriculture, these two corresponding parame-
ters can be known from the distance between the smart sensor
and the tree and the camera focal lengths of the smart sensor)
with the estimated sizes [48]. In otherwords,we focus on esti-
mating the relative scale of an object and refer to this relative
scale as object size, without causing ambiguity. According
to the object’s relative size, the weight of this object can be
obtained by comparing it to a reference object from the same
class.

A TTA-Based Approach for Multi-Class
Object Localization and Size Estimation

In this section, we introduce our proposed deep learning-
based framework for extracting information about product
size and quantity in the product bundle image with the task of
the OSR. Figure2 depicts the diagram of the proposed TTA-
based approach for multi-class Object Localization and Size
Estimation problems.

We use the following notations to express the testing-time
adaptation settings. Let Fθ (x) denote amodel trained on seen
domain images DSeen = {(xi , ysi , yci )}Ni=1 with location and
size labels, where θ is the model parameter. The goal of test-
time adaptation is to enhance the performance of Fθ (x) on
unseen OoD test samples DUnseen = {x j }Mj=1 without labels.
To introduce novel tasks and data, we propose a deep model
with high-resolution net (HRNet) [29] as the backbone.How-
ever, at the training phase, themodel is trained exclusively on
the seen data with labels and does not implement any domain
adaptation pipeline. Entropy minimization and Batch Nor-
malization operations are solely executed during the testing
phase.

BackboneModel

In this work, we treat the problem of Localization and Size
Estimation as regression. The architecture is illustrated in
Fig. 3.HRNet [29] serves as the backbone architecture,which
is a general-purpose convolutional neural network for tasks
like semantic segmentation, object detection, and image clas-
sification, and could be modified and utilized to achieve
our tasks. The pre-trained HRNet is used to extract multi-
resolution featuremaps h(x), shown in Fig. 3. In addition, the
repeated multi-scale fusion pipeline is employed to enhance
high-resolution representations, thereby improving the accu-
racy of the predicted heatmaps. As we aim to estimate the
object’s location and size jointly, we have designed two heads
accordingly.We regress the heatmaps simply from the output

of HRNet concatenated representations. Two loss functions,
defined as the mean squared error Lc

MSE , L
s
MSE , are com-

pared with the predicted heatmaps ŷc and ŷs with their
corresponding ground truth heatmaps yc and ys , respectively.
Note that c and s represent the tasks of position detection and
size estimation, respectively. The ground truth heatmaps for
object location yc are generated by applying a 2D Gaussian:

yc ∼ N (μc, σ c), μc =object coordinates, σ c ∝ object si ze

ξ
,

(1)

with the standard deviation being proportional to the size of
the object (ξ = 3 empirically) and centered at the object’s
location. Similarly, the ground-truth heatmaps for object size
ys are generated by:

ys ∼ N (μs , σ s), μs = object coordinates, σ s = object si ze.

(2)

Since the location and quantity of objects are positively
correlated, our approach does not involve the case ofmultiple
overlapping layers. Accordingly, the number of objects can
be obtained by counting the peaks of their respective location
maps, called peak maps.

As a result, we obtain a compatible model that serves
as the adaptation target and must undergo supervised train-
ing while ensuring differentiability. This is because during
testing, we need to optimize the model in an unsupervised
manner. Therefore, the model has to be trained while keep-
ing differentiability in mind to ensure stable adaptation and
optimization.

TTA Based Approach

During the training phase, our proposed model Fθ (xs) is
trained with normalized heatmaps yc and ys to regress the
location and size of an image xs . Once a trainedmodel Fθ (xs)
with parameters θ is obtained, we focus solely on the unla-
beled test set Xt during the test phase, which can include
OoD data (as shown in Fig. 3). Inspired by [7], we use test
entropy as the test-time objective. Since our model output is
a heatmap, we need to apply p(ŷ) = Sof tmax(ŷ > 0) to
the output to obtain probabilities.

During testing, we optimize our model by minimizing the
predicted entropy by adjusting its BN layer. Specifically, the
target mini-batch input X (i)

t is used to passively calculate
the corresponding target statistics μ

(i)
t = E[Xt ], σ

2(i)
t =

E[(μ(i)
t − X (i)

t )2], and mix both source and target statistics
before forwarding i th BN layer:

μ(i) = αμ(i)
s + (1 − α)μ

(i)
t , (3)
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Fig. 2 Diagram of the proposed OSR approach for multi-class object counting, position detection, and size estimation

σ i = ασ (i)
s + (1 − α)σ

(i)
t , (4)

y(i) = γ (i) x
(i) − μ(i)

σ (i) + β(i)
, (5)

where μs and σs are source statistics, and α is a hyper-
parameter to alleviate the estimated error caused by the small
batch size. This process normalizes the input data x (i) using
the mixed mean and standard deviation, and then applies
an affine transformation using scale parameter γ and shift
parameter β to produce the corresponding output y(i). The
statistics (μ

(i)
t , σ

2(i)
t ) are calibrated from the target data,

while the affine parameters γ (i), β(i) in BN layers are opti-
mized with the loss function:

LH = −
H×W∑

n=1

p(ŷn) log p(ŷn). (6)

This approach is fully self-supervised, and it updates the
parameters for all BN layers only once for each test batch.
Pseudo-labeling tunes a confidence threshold, assigns pre-
dictions over the threshold as labels, and then optimizes the
model to these pseudo-labels before testing. For unlabeled
target data, we calculate the entropy of the predicted heatmap
and divide the samples by different entropy levels based on
a set threshold value. Pseudo-label sampling method makes
use of stratified samples and associated predictions as self-
supervised samples for tuning BN layers, resulting in further
optimization of testing performance.

Experiments for TTA-Based Approach in OSR

In this section, our experiments for the TTA-based approach
(described in the “A TTA-Based Approach for Multi-Class
Object Localization and Size Estimation” section) are pre-
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Fig. 3 The framework of the proposed model to multi-class object counting, position detection, and size estimation

sented. This evaluates the performance of our approach for
extracting information on fruit/vegetable size and quantity
from images in the OSR. The results prove that our approach
can work as an enabling technology in Smart Agriculture.
In the following, we first show the experiment of how we
train a deep learning-based backbone model for multi-class
object localization, size estimation, and counting problems.
The optimal strategies and parameter settings of the pro-
posed TTA-based approach are evaluated and discussed for
tasks under different scenarios. Lastly, we test our proposed
models, trained on the synthetic datasets, on the collected
real image dataset. A comparative experiment is further
conducted between our model and SAM on the real-image
dataset. All experiments are implemented on an Nvidia Volta
V100 GPU, and our source code and data are publicly avail-
able (link is provided in Appendix 1).

EvaluationMetrics and Experiment Dataset

Wedescribe the evaluationmetrics and data used for the three
tasks shown inFig. 1 (object counting, position detection, and
size estimation) in our experiment.

From the aspect of localization and size estimation, we
use root mean square error (RMSE) to evaluate the detected
position and size estimation errors of each object. The reason
for using the RMSE in our experiments is that the distance
between the object’s ground-truth position and the predicted
one is naturally calculated by the root mean square. The
RMSE for object size estimation is calculated over all object
instances in all the test images.

RMSEsize =

√√√√√ 1
∑Nt

i=1 ni

Nt∑

i=1

ni∑

j=1

(ysi j − ŷsi j )
2 (7)

RMSEdistance =

√√√√√ 1
∑Nt

i=1 ni

Nt∑

i=1

ni∑

j=1

((xci j − x̂ ci j )
2 + (yci j − ŷci j )

2)

(8)

where ysi j and ŷ
s
i j are the ground truth and predicted sizes; x

c
i j

(yci j ) and x̂
c
i j (ŷ

c
i j ) are the ground truth and predicted position,

in the x-axis (y-axis) of the j-th object instance in the i-th
test image.

For object counting, we also use RMSE to evaluate the
performance:

RMSEcount =
√√√√ 1

Nt

Nt∑

i=1

(y peaki − ŷ peaki )2 (9)

where y peaki and ŷ peaki are the ground truth and predicted
peakmap for the i-th test image respectively, Nt is the number
of test images.

The synthetic part of our E-MOCSE13 dataset for the
unified problem of object counting and size estimation in
OSR has the following settings:

• 390 images in total, and 30 images per class, with a reso-
lution of 512*512. The ground truth information for each
image is provided in a text file, which includes the total
amount, label, relative size, and position of each object.

• 13 classes of fruits or vegetables: apple, artichoke, avo-
cado, banana, carrot, courgette, garlic, melon, onion,
orange, pear, tomato, and shallot. Based on the shapes of
these objects, the banana, tomato, and garlic are selected
as the OoD dataset used in the experiment. The rest of
the classes are set as the in-distribution (ID) dataset.

• Each class in our dataset contains 6 groups, which are
combinations of counts and sizes in different ranges.
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Table 2 Detail of six groups of images in the dataset

Small amount Large amount

Small size Count range: 30–70; Size range: 1.8–2.4 Count range: 70–110; Size range: 1.8–2.4

Medium size Count range: 30–70; Size range: 2.4–3.0 Count range: 70–110; Size range: 2.4–3.0

Large size Count range: 30–70; Size range: 3.0–3.6 Count range: 70–110; Size range: 3.0–3.6

Table 2 gives the details of all groups. Each group has
5 images, three of which are used as the training-set in
the ID dataset, and the rest of the two images of each
group are used as the validation-set. The OoD dataset
is used as the test-dataset in our experiment. We also
select two images from each group for each class in OoD
to build a smaller-test-dataset. The mixture of ID and
OoD can be seen as the noises added to create a joint dis-
tribution, so that it increases the complexity of the OSR
to test the generalization performance.

The real part of E-MOCSE13 dataset is created from
Google Images and COCO dataset [49]. Figure4 shows the
thumbnails of them. They contain adjacent or non-adjacent
or occluded apples, oranges, and tomatos of different sizes
and numbers. The settings of this real image dataset are listed
as follows:

• It contains 3 classes (apple, orange, and tomato) and 11,
7, and 5 images for each class correspondingly, in which
apple and orange are set as ID classes and tomato is set
as OoD class in our synthetic dataset.

• To increase the complexity of counting tasks, we dupli-
cate and combine these source images to make each of
our test images contain 15 to 30 objects. The labels and
positions of all objects in our real image dataset are hand-
annotated.

• To get the relative size of each object, we first assume
the parameters of the camera distance to the objects and
camera focal lengths for all source images are the same
as those in our synthetic dataset. Under this assumption,
a ratio exists for each class that measures the number
of pixels per given scale in the source images of this

class [4]. This ratio is equivalent to the ratio of images
of this class in our synthetic dataset. This ratio for each
class can be calculated based on the average total pixel
number and the average relative size of all objects in any
image of this class within our synthetic dataset. Then,
we preprocess each source image to count the total pixel
number for each object within it (the details are shown in
Appendix 2) and, based on the corresponding class ratio,
determine its relative size.

The Experiment of BackboneModel Training

In this section, we depict our experiment on how to train a
backbone model to output the three tasks (object counting,
localization, and size estimation) simultaneously.

Experiment Setting

The experiment setting of the backbonemodel training is dis-
cussed. A pre-trainedHRNet [29] is implemented in PyTorch
[50] in this experiment. The Adam optimizer is employed for
training. The initial learning rate (LR) is set to 1e-3, the min-
imum LR is set to 5e-7, and the cosine annealing schedule
is employed during the training process. The learning rate in
this schedule starts high and decreases rapidly to a minimum
value near zero before increasing again to the maximum,
which is a typical aggressive learning rate schedule [51]. The
batch size is set to 16. Since the model can always converge
after around 400 epochs, we set the total number of train-
ing epochs to 500. For every 10 epochs after 150 epochs,
we set it as the checkpoint to save the trained model. In the
experiment, we use the whole training set of the ID dataset

Fig. 4 Collected sources images
(thumbnails)

...elppA

...egnarO

...otamoT
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described before to train amodel to getmore prior knowledge
for different kinds of fruits/vegetables.

According to the proposed TTA strategy, the training pro-
cess aims to generate a compatible model that can achieve
strong OoD generalization, specifically for examples drawn
from distributions that differ from the training set. The output
position heatmap and size heatmap have a size of 128*128,
which is 1/4 of the input image. The method we use to adapt
the ground truth position heatmap and size heatmap with
the prediction output during the training is the loss function
we used “MSEloss”, they all have the same size. For test-
ing, a position heatmap, a size heatmap, and a peak map of
the test figure could be output by feeding the whole image
to the trained model. The peak map is used to count the
objects in the image by aggregating all the pixel values. We
use the function “MaxPool2d” from PyTorch to get the peak
map from the output heatmap. Through segmentation, the
individual-identified object with its position and size can be
obtained. Figure5 shows an example of the output heatmap,
size heatmap, and peak map.

Experiment Training Result

During the experiment, a training backbonemodel is saved as
a checkpoint every 10 epochs. The aims of the experiment in
this section are (1) validate these checkpoint models by using
the validation-set; (2) examine the OoD generation on the
unseen classes of data by using the smaller-test-dataset.

Figure6 shows the experiment results of the training
model from all checkpoints. The upper left subfigure demon-

strates the change in the counting RMSE of the trainedmodel
with the increased number of epochs in the training pro-
cess. Under two different inputs of the validation-set or the
smaller-test-set, both the RMSE decrease with the increased
number of epochs and finally converge after 400 epochs. The
best RMSE under the validation-set and the smaller-test-
set is 3.121 and 4.381 at 400 epochs, respectively. Since the
range of object numbers in images of the dataset is 30 to 110
(listed in Table 2), 3.121 (4.381) is a relatively small number
compared with numbers in this range, with the counting error
at most 10.4% (14.6%) in this scenario. All these mean that
the training model can get enough prior knowledge through
feature representation learning, and proves it has good OoD
generalizations on the object counting task.

The upper right subfigure in Fig. 6 shows the changes in
distance RMSE for each object of the validation-set and the
smaller-test-dataset with the increased number of epochs.
Unlike the decreasing trend of the counting RMSE, the dis-
tance RMSE for each object fluctuated with values of 10
or 4 for both input datasets, respectively. Compared to the
size of the heatmap 128*128, the distance error on the object
detection task is relatively small, around 7.81% or 3.1%. The
fluctuation of the distance RMSE suggests that the model has
converged after 150 training epochs. Increasing the number
of epochs does not have a positive effect on the results of
the localization task. Furthermore, the distance RMSE in the
OoD dataset is almost 2.5 times higher than in the ID dataset.
All these mean the OoD generalizations of the trained model
for the task of object detection are acceptable but could be
further explored to improve.

Fig. 5 The example output results of banana (unseen class of data during the training) for one of its test images: input image (upper left), heatmap
ground truth (upper right), output heatmap (lower left), output peak map (lower middle), and output size heatmap (lower right)
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Fig. 6 Validation is performed for trained models at different checkpoints, with a focus on changes in counting RMSE (upper left), distance RMSE
(upper right), and size estimation RMSE (lower left and right)

The lower two subfigures in Fig. 6 depict the decreasing
trend of size estimationRMSE for each object under the input
of the validation-set or the smaller-test-dataset with the
increasing number of epochs, which is similar to the results
of the object counting task. From the figure, we can see that
the test results converge after 450 epochs with values around
0.15 and 0.52. From Table 2, we observe that the objects in
the test images have a size range of 1.8 to 3.6. The RMSE
values of 0.15 and 0.52 (which denote prediction errors of
at most 8.33% and 28.8%, respectively) are relatively small
compared to this range. Therefore, we can conclude that the
trainingmodel performswell in terms of size estimation tasks
under the ID dataset. However, the RMSE value for size esti-
mation in theOoDdataset is higher than that of the IDdataset,
indicating the potential for improvement via the incorpora-
tion of the TTA strategy.

In this experiment, we test the performance of the trained
backbone model under the validation-set and the smaller-
test-dataset on tasks of object counting, localization, and
size estimation. It performs well for all tasks under the ID
dataset. However, the performance of the trained model on
the tasks of object localization and size estimation under
the OoD dataset could be further improved, which is imple-
mented in the next section.

Note: For the scenario of multiple classes of objects that
exist in the same figure, we slightly modify the framework

by adding a classification head in Fig. 3 to output multiple
heatmaps/size heatmaps (each for one class), while keeping
our backbone of the deep model backbone for feature rep-
resentation learning. A similar approach has been achieved
and implemented in our previous work [13]. Since our exper-
iments mainly focus on object counting, localization, and
size estimation for OoDGeneralization issues, and the appli-
cation scenario is smart agriculture (normally one type of
fruit/vegetable exists in one crop/tree), we will not present
or discuss the corresponding experiment results for this sce-
nario.

The Experiment of Fine-Tuning the BackboneModels

In this section, we experiment with different strategies and
parameter settings under TTA-primal and TTA-ft strategies
to improve our backbone predictive model when training and
test data with different distributions.

Experiment Setting

We use the trained models from the “The Experiment of
Backbone Model Training” section under checkpoints of
epochs 350 and 380 as the backbone model to test TTA-
primal and TTA-ft domain adaptation strategies. TTA-primal
calibrates the statistics (μ

(i)
t , σ

2(i)
t ) for all BN layers, utiliz-
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ing test data. Notably, it does not update any of the affine
parameters in the BN layers, thereby negating the need
to fine-tune the model. However, the use of Pseudo-label
sampling can be toggled to update these statistics for data
exhibiting ‘Top k minimum’ entropy. In TTA-ft, the aim is
to optimize the affine parameters γ (i) and β(i) in BN layers
with a loss function by fine-tuning the model. The statistics
calibration feature is an optional choice, as is the option to
incorporate Pseudo-label sampling for selecting Top k min-
imum or Top k maximum entropy data for fine-tuning.

The testing OoD datasets are the smaller-test-dataset
and test-dataset described in the “Evaluation Metrics and
Experiment Dataset” section. To adapt different domains or
distributions during testing, entropy loss is used to mini-
mize the entropy of model predictions. To minimize entropy,
our approach normalizes and transforms inference on target
data by estimating statistics and optimizing affine parame-
ters batch-by-batch. The times of affine transformation for
both TTA-primal and TTA-ft during the testing can be set as
1 or 2. Specifically, TTA-ft will update the affine parameters
during the testing with a learning rate. The optimal learn-
ing rate needs to be tested, and the batch size is set to 16
(the same as the backbone model training). During testing,
we select the top k percentage of samples with the maxi-
mum or minimum entropy loss values to do the adaptation
for the model. The possible value of k could be 10, 20, 50,
and 100. The combinations of the parameter settings men-
tioned above are listed in Table 3, where BS is short for batch
size and ‘-’ means the parameter is not available in this set-
ting. The test results of trained models from epochs 350 and
380 on two test datasets under these parameter settings are
shown in the “Experiment Result” section. All the results
shown in the following section are the mean values of exper-
imental results from multiple runs (2–3 times). The reason
for this is to avoid possible bias. The results from the dif-
ferent runs are quite close, and the variance in the results is
small. The potential reason is that the DL-based models and
TTA we implemented are well-designed, robust, and confi-
dent enough to make similar decisions in every run.

Experiment Result

The experiment results of the fine-tunedmodels under differ-
ent combinations of settings are shown and discussed. Due
to the space limitation, Tables 4, 5, 6, and 7 show the results
fine-tuned on the checkpoint 380 backbone model. The
parameter setting with the best RMSEdistance, RMSEsize

or RMSEcount in each block of the table is in bold, and the
second best is underscored italic.

Table 4 lists the detailed results of different LR settings for
adopting the TTA strategy on two different testing datasets
under sample selection ratio 1 and batch size 16. The test
results on two datasets from the original backbone model
(from checkpoint epochs 380) are also listed in the first row
for each block as a comparison. From the table, we can see
the best RMSEdistance on the smaller-test-dataset is lower
from 10.3 to 6.0 under the TTA-ft approach with setting LR
to 5e-3 and switching off statistics calibration, which is quite
close to 4.90 - RMSEdistance of the original backbonemodel
testing on IDdataset (validation-set). The results RMSEsize

of different settings are quite close to the original backbone
model, around 0.51. It may suggest further testing in a larger
range of parameter settings. This similar result of size may
indicate that our synthetic images may lack the reflection
towards the real-world heterogeneity of the fruit size. The
best RMSEcount from the table is 3.29, which is improved
compared with the RMSEcount of the original backbone
model testing on the same OoD dataset 5.48. Except for the
best values, from Table 4, we can find that different setting
strategiesmaybring better performance for the different tasks
under this groups of parameter settings: i.e., switching on
the statistics calibration can improve models’ performance
on the task of position detection, but switching off it can get
better counting results. Moreover, the results indicate that
fine-tuning all BN layers of the model with testing data is
advantageous in achieving domain generalization.

Based on the number of images in two test datasets and the
results from Table 4, for the following experiments, we set
the LRs used to update the affine under the TTA-FT approach

Table 3 The combinations of parameter settings

Methods Max or Min entropy Sample selection
ratio (k)

Statistics calibra-
tion (μ

(i)
t , σ

2(i)
t )

LR to optimize affine Affine transfor-
mation times

TTA-ft – 1 (BS= 16) True, false 1e-2, 1e-3,1e-4,1e-5, 5e-3,5e-4 –

– 1 True, false 1e-3 1, 2

Top k minimum 0.1, 0.2, 0.5 True 1e-3 1, 2

Top k minimum 0.1, 0.2, 0.5 False 1e-3 1, 2

Top k maximum 0.1, 0.2, 0.5 True 1e-3 1, 2

Top k maximum 0.1, 0.2, 0.5 False 1e-3 1, 2

TTA-primal – 1 True – 1, 2

Top k minimum 0.1, 0.2, 0.5 True – 1, 2
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Table 4 Experiment results of different LR under batch size 16

Test dataset Fine-tune
approach

Sample selection
ratio (k)

Statistics
Calibration

LR to update
affine

RMSEdistance↓ RMSEsize↓ RMSEcount↓

Smaller test dataset – – – – 10.30 0.51 5.48

TTA-ft 1 (BS= 16) False 1e-2 9.44 0.58 3.29

TTA-ft 1 (BS= 16) False 5e-3 6.42 0.52 3.56

TTA-ft 1 (BS= 16) False 1e-3 7.24 0.51 4.30

TTA-ft 1 (BS= 16) False 5e-4 6.80 0.51 4.76

TTA-ft 1 (BS= 16) False 1e-4 10.29 0.51 5.27

TTA-ft 1 (BS= 16) False 1e-5 10.30 0.51 5.45

TTA-ft 1 (BS= 16) True 1e-2 8.59 0.52 10.18

TTA-ft 1 (BS= 16) True 5e-3 6.00 0.50 7.20

TTA-ft 1 (BS= 16) True 1e-3 8.05 0.51 5.96

TTA-ft 1 (BS= 16) True 5e-4 8.08 0.51 5.57

TTA-ft 1 (BS= 16) True 1e-4 7.72 0.50 5.50

TTA-ft 1 (BS= 16) True 1e-5 7.75 0.51 5.45

TTA-primal 1 (BS= 16) True – 7.75 0.51 5.50

Test dataset – – – – 9.15 0.46 5.59

TTA-ft 1 (BS= 16) False 1e-2 9.20 0.55 8.71

TTA-ft 1 (BS= 16) False 5e-3 11.76 0.56 12.31

TTA-ft 1 (BS= 16) False 1e-3 9.80 0.47 4.20

TTA-ft 1 (BS= 16) False 5e-4 9.68 0.46 4.48

TTA-ft 1 (BS= 16) False 1e-4 8.80 0.45 5.43

TTA-ft 1 (BS= 16) False 1e-5 9.15 0.46 5.59

TTA-ft 1 (BS= 16) True 1e-2 12.79 0.60 9.22

TTA-ft 1 (BS= 16) True 5e-3 8.66 0.53 6.91

TTA-ft 1 (BS= 16) True 1e-3 8.44 0.47 5.72

TTA-ft 1 (BS= 16) True 5e-4 8.35 0.46 5.66

TTA-ft 1 (BS= 16) True 1e-4 8.46 0.47 5.77

TTA-ft 1 (BS= 16) True 1e-5 8.47 0.47 5.76

TTA-primal 1 (BS= 16) True – 8.47 0.47 5.79

as 1e − 3 when testing the smaller-test-dataset and 5e − 4
when testing the test-dataset. Table 5 lists the results of dif-
ferent parameter combinations ofmaximumorminimum loss
value, different sample selection ratios, and affine transfor-
mation times under the TTA-ft approach. In this experiment,
we set the statistics calibration to false for all runs. Based
on the best and second-best values of each metric from the
table, the best strategies under this group can be found: select
the top 50% (10%) of samples with the maximum (mini-
mum) entropy loss values to do the adaptation for the task of
object position detection (object counting). Compared with
the results in Table 4, we can conduct the following truths:
(1) both of the best values of RMSEdistance and RMSEcount

in this table are lower than the best values in Table 4 respec-
tively; (2) samewith the previous groupof parameter settings,
the performance of the fine-tuned backbonemodel under this
group of parameters is also not improved on the task of object
size estimation.

Upon enabling statistics calibration, we conducted the
same experiment for the aforementioned parameter combi-
nations as listed in Table 5, and recorded their respective
results in Table 6. Interestingly, the best strategies within
this group are reversed compared to the previous group:
select the top 50% (50%) of samples with the minimum
(maximum) entropy loss values to do the adaptation for
the task of object position detection (object counting). The
best results on metrics RMSEdistance are lower than the
best values in Table 4 when using the full test dataset,
which indicates that the confidence level of pseudo-labels
decreases with an increasing number of test samples. In this
scenario, enabling statistics calibration would be beneficial.
However, concerning the optimal result for the RMSEcount

metric, it is noted that while the predicted coordinates may
experience some deviation, the counting threshold is rel-
atively lenient. Thus, incorporating more test data would
have a positive effect on its performance, as demonstrated
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Table 5 Testing results of different parameter combinations of maximum or minimum loss value, different sample selection ratios, and affine
transformation times on the TTA-ft approach(1)

Test dataset and gen-
eral settings

Min or Max
Entropy

Sample selection
ratio (k)

Affine transfor-
mation times

RMSEdistance↓ RMSEsize↓ RMSEcount↓

Smaller test dataset,
LR=1e-3, Statistics
Calibration: True

Top k min 0.1 1 7.87 0.51 5.03

Top k min 0.1 2 8.77 0.51 4.70

Top k min 0.2 1 9.21 0.51 5.46

Top k min 0.2 2 9.19 0.51 5.45

Top k min 0.5 1 10.34 0.50 5.81

Top k min 0.5 2 9.26 0.51 5.74

– 1 1 10.29 0.51 5.61

– 1 2 9.12 0.51 5.63

Top k max 0.1 1 9.13 0.51 5.77

Top k max 0.1 2 9.14 0.51 5.70

Top k max 0.2 1 10.20 0.50 5.56

Top k max 0.2 2 9.00 0.51 5.64

Top k max 0.5 1 7.71 0.51 5.76

Top k max 0.5 2 7.70 0.52 6.04

Test dataset, LR=5e-
4, statistics calibra-
tion: True

Top k min 0.1 1 8.09 0.46 5.16

Top k min 0.1 2 8.73 0.47 4.97

Top k min 0.2 1 8.68 0.46 5.37

Top k min 0.2 2 8.93 0.46 5.21

Top k min 0.5 1 9.06 0.45 5.75

Top k min 0.5 2 8.61 0.45 5.61

– 1 1 8.92 0.46 5.67

– 1 2 8.52 0.46 5.61

Top k max 0.1 1 8.42 0.46 5.75

Top k max 0.1 2 8.54 0.47 5.69

Top k max 0.2 1 8.87 0.45 5.72

Top k max 0.2 2 8.27 0.46 5.87

Top k max 0.5 1 8.05 0.46 5.71

Top k max 0.5 2 8.09 0.46 5.85

by the discrepancy compared to the optimal values shown in
Table 4.

Table 7 lists the testing results from the TTA-primal
approach with different combinations of sample selection
ratios and affine transformation times. The best strategies for
the object position detection and counting tasks are the same:
select the top 10% of samples with the minimum entropy
loss values for adaptation. But still, the best results on met-
rics RMSEdistance and RMSEcount are lower than the best
values in Table 4 on these two metrics, respectively. This
outcome aligns with our expectations.

In this section, we extensively evaluated the performance
of fine-tuned models using varied parameter settings. When
using OoD data, our TTA-based approach demonstrated

noteworthy enhancement in both object localization and
counting tasks. The metric of RMSEsize remained relatively
constant, potentially attributed to the greater complexity
involved in assessing size features of novel fruits and veg-
etables, particularly under limited testing data. Our way of
finding the best strategy on the TTA approach to fine-tune
the model for domain adaptation under different target tasks
can be a reference for future similar work. It is concluded as
follows.

Parameter Tuning Approach In scenarios with a smaller
dataset (such as smaller-test-dataset in this paper),weprefer
to use a batch size of 16, updating only the affine parameters
with a learning rate between 5e-3 and 5e-4. This approach
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Table 6 Testing results of different parameter combinations of maximum or minimum loss value, different sample selection ratios, and affine
transformation times on the TTA-ft approach(2)

Test dataset and general settings Min or Max
Entropy

Sample selec-
tion ratio (k)

Affine transfor-
mation times

RMSEdistance↓ RMSEsize↓ RMSEcount↓

Smaller test dataset, LR=1e-3,
statistics calibration: False

Top k min 0.1 1 9.04 0.51 5.10

Top k min 0.1 2 8.90 0.51 4.96

Top k min 0.2 1 8.13 0.51 5.22

Top k min 0.2 2 8.94 0.51 4.90

Top k min 0.5 1 8.13 0.51 5.07

Top k min 0.5 2 8.17 0.52 4.71

– 1 1 10.30 0.51 5.43

– 1 2 9.14 0.50 5.35

Top k max 0.1 1 10.26 0.51 4.89

Top k max 0.1 2 10.28 0.51 4.63

Top k max 0.2 1 10.30 0.51 4.84

Top k max 0.2 2 8.94 0.52 4.90

Top k max 0.5 1 9.00 0.51 4.83

Top k max 0.5 2 9.06 0.51 4.62

Test dataset, LR=5e-4, statistics
calibration: False

Top k min 0.1 1 8.94 0.46 5.44

Top k min 0.1 2 8.26 0.46 5.34

Top k min 0.2 1 8.05 0.46 5.52

Top k min 0.2 2 8.46 0.46 5.38

Top k min 0.5 1 8.05 0.46 5.40

Top k min 0.5 2 8.09 0.46 5.40

– 1 1 9.20 0.46 5.18

– 1 2 8.89 0.45 4.78

Top k max 0.1 1 9.66 0.46 5.29

Top k max 0.1 2 9.17 0.46 5.03

Top k max 0.2 1 9.14 0.46 5.34

Top k max 0.2 2 9.56 0.46 5.06

Top k max 0.5 1 9.29 0.46 5.23

Top k max 0.5 2 8.63 0.46 4.89

ensures more accurate localization estimation on OoD data.
This preference is due to the limited testing data, which
results in a relatively minor covariance shift caused by the
unseen set. Conversely, with a relatively larger dataset (like
the full test dataset we used), selecting the maximum top
samples yields better localization accuracy compared to the
minimum top samples. Since maximum top samples bring
significant covariance shifts, it is necessary to update both
the statistics calibration and affine parameters. Regardless
of the testing set size, the optimal counting performance is
achieved when the batch size is set to 16 and only affine
parameters are updated. This is because statistics calibration
does not influence the counting process. Furthermore, since
size regression is less dependent on the shape of the detected
objects, the backbone model demonstrates the best general-

izability for this task. Consequently, it is also less likely to
be affected by statistics calibration.

The Experiment on the Real Image Dataset

In this section, we evaluate the performance of our model
(trained from the synthetic dataset) and TTA fine-tuning
strategies by using the collected real image dataset from
the E-MOCSE13. The feasibility of our approach to real-
world application scenarios is validated.

Experiment Results

We first test the trained backbone model obtained from the
“The Experiment of Backbone Model Training” section by
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Table 7 Testing results of different parameter combinations of different sample selection ratios and affine transformation times on the TTA-primal
approach

Test dataset and general settings Min or Max
loss

Sample selection
ratio (k)

Affine transfor-
mation times

RMSEdistance↓ RMSEsize↓ RMSEcount↓

Smaller test set, statistics cali-
bration: True

Top k min 0.1 1 7.88 0.51 5.02

Top k min 0.1 2 8.99 0.52 4.61

Top k min 0.2 1 9.30 0.51 5.55

Top k min 0.2 2 9.26 0.51 5.38

Top k min 0.5 1 9.12 0.51 5.44

Top k min 0.5 2 9.28 0.51 5.38

– 1 1 10.30 0.51 5.45

– 1 2 9.14 0.50 5.35

Test dataset, statistics calibra-
tion: True

Top k min 0.1 1 8.26 0.46 5.09

Top k min 0.1 2 8.90 0.47 5.00

Top k min 0.2 1 8.69 0.46 5.23

Top k min 0.2 2 8.70 0.47 5.17

Top k min 0.5 1 9.06 0.46 5.53

Top k min 0.5 2 8.69 0.45 5.42

– 1 1 9.14 0.46 5.62

– 1 2 8.63 0.45 5.46

using the two sets of images: apple+orange (ID) and tomato
(OoD), respectively. In this experiment, we compare our
models to the segment anything (SAM) [25]. A bounding
box has to be offered to generate the segmentationmask from
SAM.We include rough- and fine-bounding boxes to test the
result, shown in Fig. 7. Specifically, the rough-bounding box
covers a pile or a gathering of fruits, while the fine-bounding
box is generated by each fruit’s location to cover a single
fruit. Therefore, we do not measure the distance for SAM
as the location information is already used in the bounding
box. Moreover, as we use the pre-trained SAMmodel in this
comparison, we do not label the “ID” or “OoD” in the table.

For the results of all checkpoints, we only show the best
results in the first two rows inTable 8 due to space limitations.
For the ID test, our model achieves the best RMSEdistance

and RMSEsize values: 5.22 and 0.17, respectively, at epoch
300. Our model with the checkpoint from epoch 350 gets
the best RMSEdistance of 7.06 and RMSEsize of 0.43 on
the OoD test. All these results are compatible with the best
ones on the synthetic dataset. According to Fig. 6, the best
RMSEdistance scores for synthetic ID and OoD are 3.68
and 6.62, and the best RMSEsize for ID and OoD are 0.14
and 0.47, respectively. In Table 8, the RMSEcounting scores
of 0 on OoD test data are obtained due to the relatively
small number of objects contained in each image (15–30)

of this dataset, compared to the synthetic dataset (30–110).
The images of ID test data contain more objects (15–50) and
have a large number of adjacent/partly-covered objects, the
RMSEcount shows as 2.57 is still much better than the best
test corresponding results of the synthetic dataset in Fig. 6:
3.12. Another reason to affect the RMSEcount of ID test
data is that the range of object relative scales in it is 1.4–
9.4, which was much wider than the range of object relative
scales in the synthetic dataset 1.8–3.6 (shown inTable 2). The
aforementioned results prove the capability for good gener-
alization of our backbone model. The results of SAM show
that the fine-bounding box offers a significantly advanced
result compared to the rough-bounding box. The RMSEsize

of the fine-bounding box SAM remains inferior to that of
our proposed models for both datasets. The RMSEcount of
the fine-bounding box SAM for the apple+orange dataset
leads the backbone model by 0.64. On the other hand, the
result of SAM for the tomato dataset is behind both the back-
bone model and the one with TTA-ft. The SAM model is
designed as a generalized solution approach to segmenta-
tion. When handling images in our scenario, it may lack the
capability of precise segmentation due to the fine-bounding
box SAM. It requires a specific design of the neural net-
works to obtain precise information on the number, size, and
location.
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Fig. 7 SAM segmentation results on apple+orange and tomato dataset

Similar to the “The Experiment of Fine-Tuning the Back-
bone Models” section, we further experiment with different
strategies and parameter settings under TTA-primal and
TTA-ft for improving our backbone predictive model when
tested on tomato. The best results, along with corresponding
strategies and parameter settings, are listed in the third row
in Table 8. The RMSEdistance and RMSEsize are improved
by 0.16 and 0.02, respectively, which are improved com-
pared with before. It is noticed that the RMSEcount for the
ID classes is 2.57 compared to the restOoD results. The back-
bone model may fail to separate the pile fruit cases in the real

image dataset, as shown in the apple and orange images in
Fig. 7. It is a limitation that we can add the occlusion cases
to further improve the E-MOSE13 dataset in the future. All
these results show that useful prior knowledge can be gained
when using our synthetic data in the experiment, since our
dataset simulates the real-world scenario to keep the prob-
lem domain the same as the real application problem. This
demonstrates the feasibility and high prediction accuracy of
our approach, which is trained and tested using a synthetic
dataset for real-world application scenarioswithout requiring
further training.

Table 8 Experiment results on real image dataset

Test data Model Pareameters RMSEdistance↓ RMSEsize↓ RMSEcount↓
Apple+Orange (ID) backbone checkpoint of epochs 300 5.22 0.17 2.57

Tomato (OoD) backbone checkpoint of epochs 350 7.06 0.43 0.00

Tomato (OoD) backbone+TTA-ft Sample selection ratio 1, affine time 1, LR 0.001 (Table 5) 6.90 0.41 0.00

Apple+Orange SAM With rough-bounding box − 5.19 22.76

Tomato SAM With rough-bounding box − 3.82 7.60

Apple+Orange SAM With fine-bounding box − 1.00 1.93

Tomato SAM With fine-bounding box − 0.95 1.41
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Conclusion

To capture the number, size, and location information of the
individual fruit/vegetable from the images, this paper pro-
poses a test-time domain adaptation approach based on deep
learning for multi-class object counting, localization, and
size estimation in an OSR environment. A new benchmark
dataset (which includes a synthetic dataset generated from
Unity 3D and a collected real image dataset) is used to train
and test our approach. This dataset could be customized and
further used as a testbed for future studies. Extensive experi-
mental evaluations are also conducted on this dataset, and the
high prediction accuracies for tasks such as object localiza-
tion, size estimation, and counting in the OSR setting prove
the feasibility and effectiveness of our approach in real-world
application scenarios. Our framework is proposed for smart
agriculture to automate the traditional farming process and
help the farmer make decisions through growth monitoring
and yield estimation. There are still some limitations regard-
ing the generated E-MOSE13, such as the light and shade
variation, etc. Such weaknesses can be further customized
for wider and better usage, e.g., adding trees, crops, leaves,
or other backgrounds to better simulate real scenarios of the
farm field (we do not do this in this paper for the reason
of framework and model parameter tuning approach testing
purposes).

In our forthcoming research, we intend to emphasizemore
complex scenarios and settings, such as 3D object segmen-
tation, counting, and size estimation, which rely on 3D point
cloud datasets. To support these future scenarios, we plan to
increase the variety of the E-MOCSE13, such as the vari-
ety of the fruit sizes. Additionally, to address the challenges
associated with testing in domains involving both synthetic
and real-world data, we aim to explore the use of fully test-
time adaptive techniques, such as domain adaptationmethods
and real-time parameter adjustment of trainedmodels. In this

case, the performance and generalization of deep learning
models will be improved.

Appendix 1. Source Code and Data Link

All experiments are implemented on an Nvidia Volta V100
GPU, and our source code and data are publicly available at:
https://github.com/liulei1260/TTA-of-a-Multi-Class-
Object-Localization-and-Size-Estimation-Framework

Appendix 2. Fruit Total Pixel Number
Annotation for Background Removed
Pictures

The preprocessing of real fruit images was implemented on
MATLABwith the ImageProcessingToolbox. For this study,
the annotation process was led by authors, who coordinated
two annotators from both Southampton and Eindhoven to
systematically categorize and analyze the dataset. The total
pixel number of each fruit in the image was calculated by
partial automation processing and verified by the annota-
tor. Afterward, the authors checked the annotation and the
pixel numbers. Therefore, the annotation of the real fruit
image represented the best knowledge from the annotator.
The annotation process was performed as follows:

Figure8 illustrates the annotation processing of an exam-
ple image. After the background removal, only bare fruits
were left within the given picture, shown in Fig. 8a. The
orange segmentation could be achieved by thresholding in
the YCbCr space. The color segmentation would generate a
binary mask, shown in Fig. 8b. Afterwards, if there were sev-
eral noises on the target objects, such as the stem or pedicle,
a median filter was applied to remove the unexpected area.
For the example case, there was no need to apply the filter.

Fig. 8 The example of the pixel annotation for the background removed
fruits. a The input orange image. bThe binarymask after color segmen-
tation on the YCbCr color space. c The binary mask after the watershed

segmentation. d The mask for each individual orange. e The pixel his-
togram for each individual orange
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With the connection of multiple objects (the top row oranges
in Fig. 8a), the watershed algorithm was used to separate the
objects, shown in Fig. 8c. By checking the completeness of
each object’s boundary and separating the objects, the sepa-
rated orangemaskwas given, shown in Fig. 8d. The separated
mask for each individual orange was accumulated, result-
ing in Fig. 8e. After the automated processing, the annotator
checked the intermediate and final masks for each image.
The annotated mask would offer the ground truth of each
fruit. Therefore, the accurate pixel numbers for the real fruit
images were generated.
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