
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Michael William O’Sullivan (2024) ”An Investigation into Passive Information gathering for

Ad-Hoc Mesh Network Assessment”, University of Southampton, Faculty of Engineering and Physical

Sciences , PhD Thesis, pagination.

Data: Michael William O’Sullivan (2024) ”An Investigation into Passive Information gathering for

Ad-Hoc Mesh Network Assessment”. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

An Investigation into Passive Information
Gathering for Uncooperative Ad-Hoc Mesh

Network Assessment.
DOI: 10.5258/SOTON/D30111

by

Michael William O’Sullivan
PhD

ORCiD: 0000-0002-4216-4287

A thesis for the degree of
Doctor of Philosophy

July 2025

http://www.southampton.ac.uk
http://orcid.org/10.5258/SOTON/D30111
http://orcid.org/0000-0002-4216-4287

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

An Investigation into Passive Information Gathering for Uncooperative Ad-Hoc
Mesh Network Assessment.

by Michael William O’Sullivan

An Ad-Hoc Mesh Network is a wireless network formed spontaneously and
dynamically by a group of wireless devices without the need for infrastructure or
centralised administration. Its life cycle is divided into four phases: formation,
operation, maintenance, and disbandment. This thesis aims to illustrate the information
available to an adversary of an Ad-Hoc Mesh Network during phases 1 and 2 of the life
cycle.
The first phase focuses on the formation stages of the life cycle and investigates the
nodes’ initial spatial distribution. The goal is to establish a foundation for a
methodology that predicts the locations of missing nodes. It is assumed that the
adversary is aware of the Network Topology Generator (TG) being used, enabling them
to estimate the placement of unobserved nodes based on observed node positions. The
outcome for this phase of this thesis demonstrates 78%accuracy in correctly classifying
the TG that produces select topology using a Gaussian Naive Bayes probabilistic
clustering.
The second phase identifies the routing algorithm responsible for distributing network
traffic throughout an Ad-Hoc Mesh network. From an adversarial perspective, this
knowledge will enable them to follow data paths from a target node to network
collection locations. The goal is to examine variations in network traffic that an outside
party can identify using data available to an adversary or encrypted inter-node
interactions. The research shows that of the various machine learning techniques,
Support Vector Machine, Decision Tree and Random Forest gave the most accurate
results of 99%. These accuracies were maintained as the sample size was reduced to 5
consecutive packets from 5 randomly chosen nodes.
In the final phase, a methodology is created to track influential nodes and investigate
an extension of the operation stage of the life cycle. By predicting influential nodes, an
adversary can target those nodes that will carry the most data, potentially causing data
interception or network disruption. This research identifies that a Temporal Graph
Networks link prediction methodology gave a 90% accuracy when determining which
nodes will maintain or gain influence in the near future (roughly 9 mins of its
operation). It also demonstrates that the mobility model used to generate the data does
not statistically affect the outcome.

http://www.southampton.ac.uk

iv

v

ix

xi

xv

xvii

Contents

List of Figures

List of Tables

Acknowledgements

Definitions and Abbreviations

1 Introduction

1
1.1 Applications of Ad Hoc Mesh Networks 1
1.2 Evolution and Importance of Ad Hoc Mesh Networks 2
1.3 Research Gaps and Motivations . 4
1.4 Aim of Research . 4
1.5 Research Phases . 5

1.5.1 Phase 1: Formation Phase Analysis 5
1.5.2 Phase 2: Identifying the Routing Algorithm 6
1.5.3 Phase 3: Tracking Influential Nodes 6

1.6 Ad Hoc Mesh Network Vulnerabilities . 6
1.6.1 Vulnerability in Ad Hoc Mesh Networks 7
1.6.2 Information Gathering . 8
1.6.3 Active Gathering . 8
1.6.4 Passive Gathering . 9
1.6.5 Information Gathering on Ad-Hoc Mesh Networks 9

1.7 Topology Bias . 9
1.8 Routing Algorithm Reconnaissance . 11
1.9 Influential Node Detection . 12
1.10 Structure of the Thesis . 13

2 Background 15
2.1 Data Generation . 15

2.1.1 NS3 . 16
2.2 Topology Generation . 16

2.2.1 Boston University Representative Internet Topology 16
2.2.2 Node Placement Algorithm for Realistic Topologies 19
2.2.3 Georgia Tech Internetwork Topology Model 19

2.3 Routing Protocols . 20

vi CONTENTS

2.3.1 Reactive Routing . 21
2.3.1.1 Ad-hoc On-Demand Distance Vector (AODV) 21
2.3.1.2 Dynamic Source Routing (DSR) 22

2.3.2 Proactive Routing . 24
2.3.2.1 Optimized Link State Routing Protocol (OLSR) 24
2.3.2.2 Destination Sequenced Distance Vector Protocol (DSDV) 25

2.3.3 Hybrid Routing . 25
2.3.3.1 Zone Routing Protocol (ZRP) 26

2.4 Mobility Models . 26
2.4.1 Column Mobility Model . 26
2.4.2 Probabilistic Random Walk Mobility Model 27
2.4.3 SMOOTH Mobility Model . 27

2.5 Topology Features . 27
2.5.1 Inter-Node Distance. 28
2.5.2 Spatial Distribution. 28
2.5.3 Node Density. 29
2.5.4 Shared Neighbours Distribution. 29
2.5.5 Clustering Coefficient. 30
2.5.6 Sequential Feature Selection (SFS) 30

2.6 Machine Learning Algorithm . 31
2.7 Unsupervised Learning . 32

2.7.1 K-Means Distortion Curve . 32
2.7.2 Affinity Probability . 32

2.8 Semi-Supervised Clustering . 33
2.9 Supervised Learning . 33

2.9.1 Convolutional Neural Network Analysis 33
2.9.2 Probabilistic Clustering . 34

2.9.2.1 Bernoulli . 34
2.9.2.2 Gaussian . 35
2.9.2.3 Multinomial . 35

2.9.3 Support Vector Machine . 36
2.9.4 MeanShift . 38
2.9.5 Agglomerative Clustering . 39
2.9.6 DBScan . 40
2.9.7 Spectral Clustering . 41
2.9.8 Birch Clustering . 43
2.9.9 Decision Tree . 44
2.9.10 Random Forest . 47
2.9.11 Deep Forest Neural Network . 50

2.10 Centrality . 51
2.10.1 Eigenvector Centrality . 51
2.10.2 Degree Centrality . 51
2.10.3 Closeness Centrality . 51
2.10.4 Betweenness Centrality . 52
2.10.5 Bridging Coefficient . 53
2.10.6 Bridging Nodes . 54
2.10.7 Bridging Centrality . 56

CONTENTS vii

2.10.8 Data Collection . 56
2.10.9 Data Extraction . 56
2.10.10 Link/Edge Prediction . 57

2.11 Similarity Measures . 60
2.11.1 Euclidean Distance . 60
2.11.2 Manhattan Distance . 60
2.11.3 Cosine Similarity . 60

3 Related Work 63

4 Phase 1: Topology Bias 69
4.1 Bias Index . 71
4.2 Methodology . 71

4.2.1 Bernoulli Naive Bayes . 71
4.2.2 Gaussian Naive Bayes . 71
4.2.3 MultinomialNB Naive Bayes . 72

4.3 Experimental Analysis . 72
4.3.1 Experiment 1 . 73
4.3.2 Experiment 2 . 74
4.3.3 Features Analysis . 76
4.3.4 Mislabelled Points . 78

4.4 Research Question 1 . 78
4.5 Research Question 2 . 79

5 Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks 81
5.1 Reconnaissance in Ad-Hoc Mesh Networks 82
5.2 Machine Learning for Traffic Analysis in Ad-Hoc Mesh Networks 83
5.3 Methodology . 83

5.3.1 SVM with K-means . 84
5.3.2 Decision Tree . 84
5.3.3 Random Forest . 84
5.3.4 Convolutional Neural Network . 84
5.3.5 Bernoulli Naive Bayes . 85
5.3.6 Gaussian Naive Bayes . 85
5.3.7 Deep Forest Neural Network . 85

5.4 Research Question 3 . 86
5.5 Research Question 4: . 91
5.6 Research Question 5: . 96

6 Phase 3: Influential Node Detection in Wireless Sensor Networks: A Tempo-
ral and Adversarial Perspective 97
6.1 Influential Node Detection Problem Definitions 97
6.2 Facilitators within Ad-Hoc Mesh Networks 98
6.3 Methodology . 100

6.3.1 Link prediction . 100
6.3.1.1 Weighted GCNLayer . 100
6.3.1.2 Non Weighted and Weighted GraphSAGE 100
6.3.1.3 Weighted TGN . 101

viii CONTENTS

6.3.2 Centrality . 101
6.3.3 Similarity Measures . 101

6.4 Centrality Measures for Determining Influential Nodes in Ad-Hoc Mesh
Networks . 102

6.5 Research Question 6: . 102
6.6 Research Question 7: . 103
6.7 Research Question 8: . 104

7 Discussion 105
7.1 Overview of Machine Learning Models 105
7.2 Phase 1: Identifying Node Placement Bias 106

7.2.1 Research Question 1 . 107
7.2.2 Research Question 2 . 108
7.2.3 Results and Observations . 108
7.2.4 Justification of Model Selection . 108
7.2.5 Analysis . 109

Gaussian Naive Bayes (GNB): 109
k-Nearest Neighbors (k-NN): 110
Unsupervised Clustering (MS, AC, Spectral): 110

7.2.6 Summary . 110
7.3 Phase 2: Identifying Routing Algorithms 110

7.3.1 Research Question 3 . 111
7.3.2 Research Question 4 . 111
7.3.3 Research Question 5 . 112
7.3.4 Results . 113
7.3.5 Justification of Model Selection . 113
7.3.6 Analysis . 114
7.3.7 Normalisation . 115

7.4 Phase 3: Identifying and Forecasting Influential Nodes in a Wireless Sen-
sor Network . 116
7.4.1 Research Question 6 . 117
7.4.2 Research Question 7 . 117
7.4.3 Research Question 8 . 117
7.4.4 Results and Observations . 118
7.4.5 Justification of Model Selection . 119
7.4.6 Analysis . 120
7.4.7 Summary . 121

7.5 Comparative Summary of Results Across All Phases 121
7.5.1 Rationale Behind Model Selection 123

8 Conclusions 125
8.1 Overall Findings . 125
8.2 Further Work . 126

8.2.1 Network Topology Generator (Chapter 4) 126
8.2.2 Routing Algorithm Prediction (Chapter 5) 126
8.2.3 Influential Node Prediction (Chapter 6) 127

ix

List of Figures

2.1 Partition of a Topology Area with 1000 Units Sides in 100 Smaller Squares,
each with 100 Units Sides. This Partitioning is used to Compute Spatial
Distribution Reatures. 28

2.2 Node Density Feature. 29
2.3 Nodes 1 and 2 are Shared Neighbours of Nodes 3 and 4. In this case, the

Value of Shared Neighbours Count for Nodes 3 and 4 is 2. 29
2.4 The Neighbours of Node 3 are Nodes 1, 2, 4 and 5. Among those Neigh-

bours, there is a Pair of Nodes, i.e. nodes 4 and 5, which are Neighbours
of Each Other, while Nodes 1 and 2 are not Neighbours of any other Node. 30

2.5 K-Mean Distortion Curve . 32

4.1 Classification Accuracy by Varying the Number of Used Features for a
Specific Fold. 77

xi

List of Tables

2.1 Assigned Weights . 58

4.1 Final List of Features. 70
4.2 Analysis for Untrained Analysis of Features 73
4.3 Clustering Algorithm using Trained Analysis 73
4.4 Classification Accuracy against Random Selection. 74
4.5 Classification Accuracy and Corresponding Features set for the First 5

Iterations of FSS. 75
4.6 Average Value for Combination of TGs for Experiment 2 —Single Topolo-

gies . 76
4.7 Bias Index for Combination of TGs for Experiment 2 76
4.8 Bias Index of the Considered TGs. 77
4.9 Classification Accuracy for the Three Classification Algorithms. 77
4.10 Final List of Features . 77
4.11 Table of Accuracy against Number of Features for all Generators 78
4.12 Classification Accuracy for the Three Classification Algorithms. As 10-

Fold Cross-Validation is Used, the Classification Accuracy al for each
Fold is reported as well. 79

5.1 Packet Header Fields used to generate Feature Vectors. 87
5.2 Results from Field Combinations, 2 Classes 88
5.3 Analytic Test with 2 and 3 Algorithm and Average Accuracy obtained. . 89
5.4 Reduced Aperture Sampling for CNN. 90
5.5 Reduced Aperture Sampling for SVM with K Means. 91
5.6 Reduced Aperture Sampling for Random Forest. 92
5.7 Reduced Aperture Sampling for Decision Tree. 93
5.8 Confusion Matrix for SVM with K-Means. 93
5.9 Confusion Matrix for Random Forest. 93
5.10 Confusion Matrix for Decision Tree. 94
5.11 Confusion Matrix for CNN. 94
5.12 Testing Normalisation. 95

6.1 Link Prediction . 103
6.2 Similarity Results . 104
6.3 Mobility Results . 104

7.1 Strengths and Weaknesses of ML Models 106
7.2 Node Placement Strategy Classification Accuracy 108
7.3 Routing Protocol Identification Accuracy 113

xii LIST OF TABLES

7.4 Comparative Summary of Results Across Phases 122

xv

Acknowledgements

I want to sincerely thank Dr. Paul Brittan for all of his help and inspiration during the
course of my studies. Sincere thanks goes out to my PhD supervisors, Prof. Vladimiro
Sassone and Dr. Leonardo Aniello, for their excellent guidance and support. Lastly, I
would like to thank my wife for her unwavering support and understanding over the
past few years; without her, I could not have finished my studies.

xvii

Definitions and Abbreviations

AES Advanced Encryption Standard
AH Authentication Header
AMI Advanced Metering Infrastructure
AODV Ad Hoc On-Demand Distance Vector
ARP Address Resolution Protocol
AS Autonomous Systems
BRITE Boston University Representative Internet Topology
BRP Bordercast Resolution Protocol
CNA Computer Network Attack
CND Computer Network Defence
CNE Computer Network Exploitation
CNN Convolutional Neural Network
CNO Computer Network Operation
CS Continuous Simulation
CSV comma-separated values
DANETs Drone Ad Hoc Networks
DAPs Data Aggregation Points
DARPA Defence Advanced Research Projects Agency
DT Decision Tree
DES Discrete Event Simulation
DSDV Destination Sequenced Distance Vector
DSR Dynamic Source Routing
ESP Encapsulating Security Payload
FANETs Flying Ad Hoc Networks
FSS Forward Sequential Selection
GCN Graph Convolutional Network
GLMR Gator Landmine Replacement
GT − ITM Georgia Tech Internetwork Topology Model
HNA Host and Network Association packet
IARP IntrA-zone Routing Protocol
c ICT Inter-Contact Times
IERP IntEr-zone Routing Protocol

xviii DEFINITIONS AND ABBREVIATIONS

IoT Internet of Things
IP Internet Protocol
IPsec Internet Protocol Security
LAN Local Area Network
MAC Media Access Control
MANETs Mobile Ad Hoc Networks
MCs Mesh Clients
MID Multiple Interface Declaration packet
ML Machine Learning
MRs Mesh Routers
MWSN Mobile Wireless Sensor Network
NS3 Network Simulator version 3
NPART Node Placement Algorithm for Realistic Topologies
OLSR Optimized Link State Routing
PCAP Packet Capture
PDS Privacy Database Structure
PR Proactive Routing
QoS Qualify of Service
RF Random Forest
RERR Route Error packet
RR Reactive Routing
RREP Route Reply packet
RREP − ACK Route Reply Acknowledgement packet
RREQ Route Request packet
SBFS Sequential Backward Floating Selection
SBS Sequential Backward Selection
SDN Software Defined Networks
SFFS Sequential Forward Floating Selection
SFS Sequential Forward Selection
SVM Support Vector Machine
TC Topology Control packet
TG Topology Generator
TGN Temporal Graph Network
TTL Time-to live Exceeded
TPL Truncated Power-Law
UAVs Unmanned Ariel Vehicles
UBI Upper Bound Interchange
UDP User Datagram Protocol
VANETs Vehicular Ad Hoc Networks
V2I Vehicle to Infrastructure
V2RL Vehicle to Real

DEFINITIONS AND ABBREVIATIONS xix

V2U Vehicle to User
V2V Vehicle to Vehicle
WIN − T Warrior Information Network – Tactical
WINS Wireless Integrated Network Sensors
WLANs Wireless Local Area Networks
WSN Wireless Sensor Network
ZRP Zone Routing Protocol

1

Chapter 1

Introduction

This thesis explores how passive information gathering can uncover critical insights
about uncooperative ad hoc mesh networks. In which we mean, passive gathering
refers to that which is observing network traffic without directly interacting with the
network, while uncooperative means that the target network does not under the
control of the person analysing the network.

Ad hoc mesh networks operate using a decentralised topology, where devices (or
nodes) work together to implement routing protocols. Each node not only transmits
its own data but also forwards traffic for others nodes , this transmission of data
following a specific algorithm to reach the intended destination. Unlike traditional
networks, ad hoc mesh networks lack fixed infrastructure, and communication is
limited to nodes within each other’s transmission range. These networks have a wide
range of applications, from wireless sensor networks and vehicular ad hoc networks
(VANETs) to mobile ad hoc networks (MANETs). Their use extends from everyday
scenarios to high-stakes environments like military operations.

Many aspects of ad hoc mesh networks remain active areas of research, including
routing protocols Cheng and Hancke (2016); Cheng and Lin (2017) and security Xu
et al. (2016, 2017)). To evaluate proposed solutions, researchers often rely on
simulations, which allow for preliminary testing and validation of effectiveness.
Simulations typically involve testing various approaches on different network
topologies. This is to ensure that the results are not limited to specific configurations.
From the paper Günes and Akgün (2011), designing and selecting appropriate test
network topologies is a crucial step in any network protocol simulation.

1.1 Applications of Ad Hoc Mesh Networks

Ad hoc mesh networks play a key role in various fields:

2 Chapter 1. Introduction

• Mobile Ad Hoc Networks (MANETS)

Military Operations: These networks, such as the Joint Tactical Radio
System (JTRS) published in (Schiavone et al. (2006)) and Warrior Information
Network–Tactical (WIN-T) which can be found on the website (Win), provide
dynamic communication in environments without fixed infrastructure.

Challenges: Frequent topology changes due to node mobility and
interruptions in line-of-sight (LOS) connectivity.

• Gator Landmine Replacement (GLMR) program

This has been developed as a networked munition system. Networked
munitions are designed to replace traditional anti-personnel persistent and
non-persistent munitions. The sensor and communications capabilities of the
system will notify a soldier that someone is close to the munition when an
enemy enters a networked munitions field, as described in the project website 1

• Vehicular ad hoc networks (VANETs)

This is where the concept of mobile ad hoc networks has been applied to the
domain of vehicles. Information can be relayed via vehicle-to-vehicle or
vehicle-to-infrastructure communications for road safety, navigation, and other
road services.

• Mobile wireless sensor network (MWSN)

This is where a network is made up of mobile sensor nodes in a wireless
sensor network (WSN). This is again typified by the rapid topology-changing
environment in the area of environmental monitoring or surveillance.

• Drone ad hoc networks (DANETs)

Also called Flying Ad Hoc Networks (FANETs), these are employed for
military reconnaissance and civil applications like photogrammetry and
search-and-rescue operations.

Despite their varied applications, research into adversarial routing identification and
undisclosed routing in these networks remains limited. This is increasingly critical as
ad hoc mesh networks are deployed in military and defence contexts, as set out in the
project web-page 2

1.2 Evolution and Importance of Ad Hoc Mesh Networks

Originally developed for military applications by organizations like DARPA Wang
et al. (2009), ad hoc mesh networks were valued for their self-healing capabilities,

1https://www.army.mil/article/165263/peo ammo stands up new product management office
2https://mwi.usma.edu/era-drone-swarm-coming-need-ready/

1.2. Evolution and Importance of Ad Hoc Mesh Networks 3

allowing nodes to join or leave the network without disrupting overall performance.
Early civilian adoption was limited due to challenges like low throughput and weak
security. However, advances in multi-hop communication and dynamic topology
have led to broader research and real-world applications in areas such as Vehicular Ad
Hoc Networks (VANETs), Mobile Wireless Sensor Networks (MWSNs), and
Disruption-Tolerant Networks (DANETs).

Examples of Emerging Use Cases:

• VANETs: In urban environments, vehicles communicate dynamically with
minimal constraints on power, storage, or computational resources (Lèbre et al.
(2014)).

Subcategories of VANETs include:

– Vehicle-to-Real (V2RL): Real-world autonomous vehicle applications, such
as Google’s driverless car project (Luettel et al. (2012)).

– Vehicle-to-Vehicle (V2V): Direct communication between cars to enhance
traffic safety and coordination (Biswas et al. (2006)).

– Vehicle-to-Infrastructure (V2I): Interaction between vehicles and roadside
units or smart infrastructure (Tee and Lee (2010)).

– Vehicle-to-User (V2U): Systems that enable direct communication between
vehicles and personal devices (Birk (2011)).

• Wireless Integrated Network Sensors (WINS):

WINS technology is widely used in fields such as healthcare, industrial
automation, and environmental monitoring. A subset of WINS, known as
Personal Area Networks (PANs), supports wearable devices for tracking
physiological signals. While PANs are commonly wireless, wired
implementations are often preferred for short-range applications, such as EEG
monitoring in telemedicine Martin et al. (2000) & Jovanov et al. (1999).

Types of Ad Hoc Mesh Networks

Ad hoc mesh networks can be classified into two main categories:

• Homogeneous Networks: In these networks, all nodes are identical and perform
the same functions. One example is client-based wireless mobile networks,
where peer-to-peer communication occurs between mobile devices. A notable
example is drone swarms, which rely on uniform nodes for collective operation.

• Heterogeneous Networks: These networks consist of different types of nodes
with specialised roles, such as mesh routers (MRs) and mesh clients (MCs). A

4 Chapter 1. Introduction

common example is infrastructure-based backbone networks used in community
setups, where routers serve as access points for local users. This model is often
seen in community and neighbourhood networks Akyildiz et al. (2005).

1.3 Research Gaps and Motivations

Research on ad hoc mesh networks has largely focused on improving routing
protocols and security. However, there is limited investigation into scenarios where
the network’s routing mechanisms are undisclosed or adversarial entities aim to
identify them. This gap is critical, especially for military and defence applications,
where understanding adversarial strategies and network vulnerabilities could have
significant implications, such as vulnerability to adversarial attacks, inability to
predict network behaviour or compromised network resilience. This thesis addresses
this gap by exploring methodologies to gather actionable insights from passive
observations.

The study aims to:

• Expose security weaknesses in ad hoc mesh networks by examining how
passive data gathering can reveal crucial information about network topology,
routing algorithms, and influential nodes.

• Investigate the impact of topology generators (TGs) on network simulations,
highlighting how biases introduced by these TGs can assist adversaries to infer
node placements.

• Identify and predict influential nodes in dynamic, mobile networks, providing
insights into how attackers might target key nodes for interception or disruption.

• Develop machine learning methods to classify routing algorithms used in
encrypted networks, simulating real-world attack strategies.

• Strengthen network security by proposing ways to minimise TG bias and better
predict node importance, helping network operators defend against these
emerging threats.

1.4 Aim of Research

Ad Hoc Mesh Networks are wireless networks that form naturally and flexibly among
wireless devices without requiring centralised administration or infrastructure. The
lifecycle of these networks can be divided into the following phases as set out in Zhan
et al. (2022):

1.5. Research Phases 5

1. Formation During this phase, wireless devices that are in close proximity to one
another construct the network. To build a network topology and choose a
routing protocol, the devices talk to one another.

2. Operation: After the network has been established, the devices begin
exchanging data with one another. The optimal path for data transfer is chosen
using the routing protocol.

3. Maintenance: During this phase, the network is examined to make sure it is
operating properly. The network topology is monitored by the routing protocol,
which also updates the routing tables to reflect any changes.

4. Disbandment: Either all of the devices depart the network or the network is no
longer required. To update their routing tables and rearrange the network
architecture, the remaining devices connect.

This research explores what information an adversary can access during the
Formation and Operation phases. It demonstrates how passive data gathering can
reveal critical details throughout the lifecycle, dividing the study into three phases.

The first phase focuses on the formation stages of the life cycle and investigates the
nodes’ initial spatial distribution. The goal of the research is to lay the foundation for a
methodology to predict the location of missing nodes. The initial step is to determine
the Network Topology Generator (TG) that generated the node placement of observed
nodes.

1.5 Research Phases

1.5.1 Phase 1: Formation Phase Analysis

As set out in the paper by Alrumaih and Alenazi (2023), topology generators allow
network node’s placement to be designed before simulation. Simulating these
network topology provides a practical method for designing, testing, and
implementing complex real-world networks. This enables the pre-planning of ad hoc
mesh network deployments.

Additionally, Camilo et al. (2007) discuss sensor networks in which nodes can be
either randomly deployed or arranged using a topology generator. Random
placement often results in uneven area coverage, whereas a topology generator allows
for calculated node placement. This approach also carries risks that an adversary
could use the generator’s instructions to deduce the locations of any unobserved
nodes by analysing the nodes that are visible, potentially targeting key links during or
after initial placement, as noted by Bhunia et al. (2018).

6 Chapter 1. Introduction

Hric et al. (2016) introduces an approach to predict missing nodes using network
metadata, differing from methods that primarily predict missing edges, such as those
proposed by Cimini et al. (2015); Musmeci et al. (2013). While edge prediction is
popular, it does not address scenarios where entire nodes must be forecasted but
remain unobserved.

1.5.2 Phase 2: Identifying the Routing Algorithm

The second phase of the research focuses on identifying the routing algorithm
responsible for distributing traffic in an ad hoc mesh network, addressing part of the
second life cycle stage. From an adversarial perspective, understanding these routing
mechanisms enables tracking of data paths from target nodes to network collection
points.

With Ad Hoc Mesh Networks, unlike traditional networks that broadcast packets over
segments, they use point-to-point links for data distribution. Once the network is
discovered, a path is established for data flow.

Research on mesh network security and attacks, such as that by Siddiqui et al. (2007),
underscores the importance of understanding the network’s architecture and routing
scheme for effective exploitation. This phase investigates variations in network traffic
that adversaries can detect, relying on data accessible to them—such as encrypted
inter-node communications—to ensure realistic analysis.

1.5.3 Phase 3: Tracking Influential Nodes

The final phase develops a method for identifying and tracking influential nodes
during the Operation stage and predicts their roles beyond the observed data.

Influential nodes are those responsible for a significant portion of the network’s data
flow. Predicting these nodes allows an adversary to strategically target them for
interception or disruption. Successfully identifying these critical nodes provides an
advantage in compromising the network’s overall functionality.

1.6 Ad Hoc Mesh Network Vulnerabilities

Research highlights key vulnerabilities that adversaries can exploit during the
network lifecycle:

• During the Formation phase, adversaries can infer the location of unobserved
nodes using topology generators and observed node placements.

1.6. Ad Hoc Mesh Network Vulnerabilities 7

• In the Operation phase, routing algorithms can be identified to trace data paths
and predict traffic patterns.

• By tracking the influential nodes within a network, an adversary can target
those nodes that will become important for data transfer either to disrupting or
intercepting communication.

This study demonstrates how adversaries can exploit passive data gathering to
uncover crucial network details, even in secure or encrypted environments.

1.6.1 Vulnerability in Ad Hoc Mesh Networks

A vulnerability is any weakness in a device, network, or system that an attacker can
exploit. In the case of uncooperative networks, identifying these vulnerabilities is the
first step toward gathering useful intelligence. Ad hoc mesh networks, in particular,
have several security gaps that adversaries can take advantage of, depending on the
communication layers involved.

The type of attack used depends on the attacker’s goal—whether it’s to disrupt
network operations or silently intercept information. Some common tactics include
passive eavesdropping, jamming, MAC address spoofing, and traffic replay attacks
Sen (2013). Each of these methods is designed to manipulate network behaviour in a
specific way, either by injecting malicious activity or by passively monitoring data
flows.

To counter such threats, the military has developed a structured approach to cyber
defence and offensive operations. One such framework is the Computer Network
Operation (CNO) strategy, introduced by Scaparrotti, which divides cyber activities
into three main categories:

• Computer Network Attack (CNA): Actions aimed at disrupting or disabling
network functionality.

• Computer Network Defence (CND): Security measures designed to protect and
secure network infrastructure.

• Computer Network Exploitation (CNE): Gaining unauthorised access to extract
valuable intelligence.

As part of CNE, the Cyber Kill Chain, developed by Lockheed Martin, outlines the
key steps attackers follow to infiltrate a network. The first stage —reconnaissance
—focuses on gathering intelligence about a network’s structure and routing processes.
In traditional networks, attackers might use several techniques to map out their
targets, including:

8 Chapter 1. Introduction

• Host Detection: Identifying active devices within the network.

• Port Enumeration: Scanning for open and accessible network ports.

• Vulnerability Assessment: Analysing security flaws that could be exploited.

Shaikh et al. (2008) highlight how attackers use these techniques to uncover critical
details, such as which devices are running key services, what ports are left exposed,
and even the type and version of operating systems in use. Similarly, White et al.
(2019) discuss how passive network sniffing can reveal the overall topology of a
system.

When it comes to ad hoc mesh networks, things get even more complex. Because
these networks are decentralised and mobile, attackers have additional opportunities
to exploit shifting node positions, unstable connections, and dynamic routing
protocols. Unlike traditional networks, where devices typically remain in fixed
locations, ad hoc mesh networks constantly evolve—making security both more
challenging and more critical.

1.6.2 Information Gathering

The goal of information gathering is to collect as much relevant data as possible about
a specific target. Depending on the method used, a significant amount of valuable
information can be uncovered. In broadband wireless networks, the use of air as the
medium for data transmission makes them particularly susceptible to eavesdropping.
This vulnerability arises from the open nature of wireless communications. Attackers
can exploit intercepted communications to identify and disable sensor nodes by
uncovering their physical locations. Additionally, adversaries may access
application-specific message content, such as message IDs, timestamps, and other
metadata, alongside the nodes’ positions Padmavathi et al. (2009).

In traditional networks, information gathering can be classified into two main types:
active and passive.

1.6.3 Active Gathering

Active information gathering involves directly interacting with the target network to
collect data. While this method can yield more extensive information than passive
gathering, it is often unauthorised and carries the risk of triggering the target system’s
security alerts. The direct interaction between the attacker and the target increases the
likelihood of detection. A common example of active gathering is port scanning, a
technique used to identify open or closed ports at an IP address. By scanning ports,

1.7. Topology Bias 9

attackers can determine which services are actively running on the target network.
Each active service represents a potential vulnerability that could be exploited.

1.6.4 Passive Gathering

Passive information gathering seeks to learn about the target network’s architecture
without directly interacting with its components. This method is safer and less
intrusive, as it does not engage the target system. Instead, the attacker queries the
target system indirectly, often through intermediary systems, minimizing the risk of
detection. The primary goal of passive information gathering is to observe the target
network and collect data discreetly. This technique is often preferred in scenarios
where avoiding detection is critical.

1.6.5 Information Gathering on Ad-Hoc Mesh Networks

When applied to Ad Hoc Mesh Networks, information gathering aims to determine
what data can be passively collected from the network. This research focuses
exclusively on passive methods. Examples include:

• Promiscuous Interception: Listening to data transmissions from endpoint or
transition nodes without participating in the communication. Only the
necessary operational data is intercepted and analysed.

• Observation: Examining the spatial distribution of nodes within the network to
infer patterns or structures.

Ad Hoc Mesh Networks, like other wireless systems, are inherently vulnerable to
eavesdropping due to their use of air as a transmission medium. As noted by Khan
et al. (2008), wireless connections are particularly susceptible to interception. Passive
listening devices, or ”sniffers,” can be strategically positioned to capture transmitted
data discreetly. This vulnerability has been demonstrated in the context of the Internet
of Things (IoT), as shown by Crnogorac et al. (2022). By leveraging these passive
techniques, attackers can gather critical data about network operations without
alerting the target system, emphasizing the need for enhanced security measures in
wireless environments.

1.7 Topology Bias

Chapter 4 explores the impact of Network Topology Generators (TGs), which are
commonly used to create network topologies based on predefined models, real-world

10 Chapter 1. Introduction

measurements, and tuneable parameters. While TGs are designed to generate
representative topologies, their differing assumptions and methods often lead to
diverse outputs. These variations can influence simulation outcomes, as highlighted
by Magoni and Pansiot (2001); Heckmann et al. (2003).

This raises the hypothesis that the choice of topology generator (TG) may introduce
bias in Ad-Hoc Mesh Network simulations, as TGs determine the initial placement of
nodes. Given that network topology significantly influences how the network evolves,
knowledge of the TG could enable adversaries to infer the original positions of nodes.

Given that TGs differ in methodology, researchers often select a TG based on the
specific mathematical or physical model they need. To minimise bias, it is
recommended to use topologies from multiple TGs during experiments, ensuring
results are not skewed by a specific TG or subset of TGs. This research examines the
initial node placement generated by various TGs, analysing differences to reduce the
number of TGs required while maintaining representative topology diversity. The
chapter addresses the following research questions:

• Research Question 1: How to measure the difference between topologies
generated by distinct TGs?

• Research Question 2: How to choose what TG, or TGs, to reduce such a bias?

The approach involves creating a numeric representation of topologies using features
like inter-node distance, clustering, and node density. Topologies are modelled as
vectors, enabling comparison through distance metrics. Bias is quantified using
Hedges’ g effect size measure to compute a bias index that evaluates differences
between topologies generated by specific TGs or subsets versus all TGs.

Machine learning techniques are employed to assess classification
accuracy—determining how accurately the source TG of a topology can be identified.
The methodology to reduce bias uses the bias index to select TGs, depending on the
allowable number of TGs in use.

Key findings and contributions include:

• Using a single TG likely introduces bias, but among individual TGs, NPART is
the least biased.

• For two TGs, BRITE and NPART minimise bias.

• Topologies can be classified with nearly 78% accuracy using specific topology
features.

1.8. Routing Algorithm Reconnaissance 11

• A framework to minimise bias based on TG features like inter-node distance,
spatial distribution, and clustering.

This research, the first to systematically investigate TG-induced bias in Ad-Hoc Mesh
Networks, demonstrates significant differences in TG outputs and proposes practical
methods for minimizing bias.

1.8 Routing Algorithm Reconnaissance

With the node placement biases established, the next logical step was to investigate
how these placements influence routing behaviors within ad hoc mesh networks.
Chapter 5 explores the routing algorithms used in the target mesh network, aiming to
classify which specific algorithm is in use. Most research on ad hoc mesh networks,
such as Ian F. and Xudong (2005) and Grossglauser and Tse (2002), has primarily
focused on enhancing network capacity or scalability, as detailed by Ou et al. (2004)
and Eriksson et al. (2007), rather than addressing security. Originally, mesh networks
were designed with minimal or no security measures, relying instead on enforcement
at the application layer, as discussed by Lopez et al. (2021). Securing ad hoc mesh
networks and their protocols poses challenges due to their open medium, dynamic
topology, and distributed nature, as explored in Shi-Chang et al. (2010), Lou et al.
(2009).

The inherent characteristics of ad hoc mesh networks, as highlighted by Olakanmi and
Dada (2020), create numerous vulnerabilities, including intrusion, data modification,
and identity tracing. Data is transmitted from a source node to a destination through
multiple intermediary nodes, exposing these networks to potential attacks.
Adversaries targeting such networks are likely to operate in hostile environments,
prompting network operators to implement stronger security measures, such as traffic
encryption, to protect data distribution.

If the development of ad hoc mesh networks follows a trajectory similar to traditional
networks, packet encryption will likely become a standard security feature. This
underscores two primary motivations for this research: (1) understanding how a
network attack might be executed and (2) addressing scenarios where the entire
network is not visible to the attacker.

In ad hoc mesh networks, mobility introduces a new dimension, allowing attackers to
analyze how data flows through the network. These flows depend heavily on the
routing algorithm in use. Identifying the algorithm from a non-intrusive standpoint
could provide attackers with critical insights. To account for the anticipated
encryption of future networks and ensure the relevance of this research, the study
relies on metadata from encrypted traffic.

12 Chapter 1. Introduction

Research Questions This phase of the research seeks to address the following
questions:

• Research Question 3: What is the most accurate machine learning based
approach to detect the routing algorithm used in an ad-hoc mesh network?

• Research Question 4: How is the detection accuracy affected if we consider
routing algorithms of the same class?

• Research Question 5: How is the detection accuracy affected if we reduce either
the number of nodes from which data is gathered or how much data is collected
from each node?

RQ3 and RQ4 are investigated by creating multiple networks, capturing traffic routed
through these networks during various simulations, and applying machine learning
techniques to predict routing algorithms. The analysis identifies methods yielding the
highest accuracy.

RQ5 builds on this by selecting the most effective combinations of packet fields and
gradually reducing the dataset size to evaluate the point where accuracy becomes
unacceptable.

The study examines two datasets. The first contains data from two classes of routing
algorithms: AODV (Reactive Routing) and OLSR (Proactive Routing). The second
includes three algorithms: AODV, OLSR, and Dynamic Source Routing (DSR), with
DSR providing an additional example of a reactive routing algorithm.

1.9 Influential Node Detection

Chapter 6 explores the use of link prediction to assess node importance, aiming to
forecast which nodes will become influential in the near future. Identifying influential
nodes is crucial across various domains, from technological to biological networks, as
discussed in the works of Zhang et al. (2013) Buldyrev et al. (2010), Fath et al. (2007).
This research focuses specifically on wireless sensor networks (WSNs), which rely on
peer-to-peer communication to relay sensor data to sink nodes.

In such networks, data flow toward the sink nodes can create bottlenecks when one or
more nodes become primary facilitators of this flow, potentially leading to resource
issues. For an adversary, the ability to predict these facilitator nodes offers strategic
advantages, such as capturing nodes to disrupt or manipulate data flow or increasing
opportunities for intercepting content. On the other hand, network operators would
benefit from identifying these nodes in advance to optimise their performance and

1.10. Structure of the Thesis 13

adapt to the data flow demands. Facilitator nodes can be identified by determining
which nodes are most influential within the network.

In mobile networks, identifying future flow facilitators becomes increasingly complex.
As nodes shift positions to gather data, existing links break, and new connections are
formed, complicating the prediction of influential nodes. This highlights the temporal
nature of the network: nodes deemed highly influential at the beginning of a
deployment may not hold the same status midway or at its conclusion.

This phase of research raises the questions

• Research Question 6: When considering a dynamic ad-hoc mesh network with
a temporal-dependent, what type of link prediction is the most effective?

• Research Question 7: Considering the same temporal-dependent ad-hoc mesh
network and how the mapping of the participating node’s influence changes
over time. How accurate is predicting the node’s influence compared with those
calculated using the ground truth?

• Research Question 8: Is there any significant impact on predicting nodal
influencer ranking by the original mobility model for the data generation?

1.10 Structure of the Thesis

• Chapter 2: Background.

• Chapter 3: Related Work.

• Chapter 4: Research on Topology Bias.

• Chapter 5: Routing Algorithm Reconnaissance.

• Chapter 6: Influential Node Detection.

• Chapter 7: Discussion.

• Chapter 8: Conclusions and Future Work.

15

Chapter 2

Background

This chapter aims to review the approaches taken for data generation, machine
learning techniques and other concepts used within the research undertaken for this
thesis.

2.1 Data Generation

The data for this research and analysis is generated via a simulated model. A
simulation is an algorithm that simulates a real-world event and can be employed to
test various strategies. The capacity to compare millions of possibilities using a
simulation is extremely advantageous when dealing with a very complex system. It
should be kept in mind that simulations can never be as precise as their real-world
equivalents.

Beyond the costs associated with using real-world data, simulations are used for a
variety of other reasons. It enables tests that may be repeated with established
outcomes by utilising predetermined parameters. Furthermore, this is quite rare in
practice; it is more likely that a smaller dataset is accessible. It is typical in a simulated
environment to be able to collect data from all involved nodes. There will be situations
where using real-time data is better, such as when determining how environmental
and geographic factors affect a network that may span kilometres. The capacity to
acquire all data is achievable when using live data, but it would be costly and
impractical.

The type of simulation used is in the form of discrete event simulation (DES) as
opposed to continuous simulation (CS). DES operates a sequence of discrete events
that occur in different time intervals, whereas CS continuously tracks system
responses through the duration of the simulation. This is done to imitate a system that
consists of a network of separate nodes and the data that travels between them. DES

16 Chapter 2. Background

was chosen as the data generation method because the transmissions take the form of
discrete occurrences known as packets.

2.1.1 NS3

NS3.29 is the simulation tool used for this study. NS3, a network simulator described
by Riley and Henderson (2010), employs discrete event simulation to model network
behaviour. To create an effective test environment, the nodes in the simulation must
be distributed across the area in such a way that they can form and break connections,
which helps generate a representative dataset for analysis. The nodes are placed
within the predefined test region using various Topology Generators (TGs), and the
simulation runs for a specified duration. Each node in the simulation functions as a
Wi-Fi device, using the 802.11a protocol. As the simulation runs, each node collects
Packet Capture (PCAP) files, recording any network traffic entering or leaving that
node.

2.2 Topology Generation

Before starting any simulation, the participating nodes need to be positioned within
the test area. To avoid introducing any bias, the nodes must be placed randomly. If
done manually, there’s a natural tendency to place nodes in areas where none are
present, which could bias the experiment. To prevent this, Topology Generators (TGs)
are used, which employ specific algorithms to generate pseudo-random node
placements. The main concern is whether these TGs introduce bias themselves, and
whether this can be measured. This issue is addressed in the first phase of the
research, with further details in 4, which has been published in O’Sullivan et al. (2020).

The node placement can be based on predefined models or real-world measurements,
as described in 3.

2.2.1 Boston University Representative Internet Topology

The first TG used in this study is the Boston University Representative Internet
Topology (BRITE), which was introduced by Medina et al. (2001b). BRITE is a
universal, model-based TG that allows for the addition of new models. Unlike
model-driven TGs, which are based on a specific design model, BRITE is designed to
be flexible and extendable. It uses various models for node placement, such as the Flat
model, Hierarchical model, and other sub models.

2.2. Topology Generation 17

• Flat Router model:

This model focuses on router-level topologies, specifically for router networks. It
offers two versions: RouterWaxman and RouterBarabasiAlbert, both of which
place nodes randomly or using a heavy-tailed approach.

• Flat AS-level model:

This is similar to the Flat Router model but is used for generating AS-level
topologies. It also includes two versions: ASWaxman and ASBarabasiAlbert.

• Hierarchical Topologies model:

This model creates Internet-like topologies using either a top-down or
bottom-up approach, building router-level topologies first, and then adding AS
nodes.

For our experiments, the Flat AS-Level model was chosen because it is more
representative of a mesh network, generating router-level topologies with
interconnected routers. In studies of node placement, the connection style was less
important than the node placement itself.

The configuration file for the BRITE topology generator can be summarised:

• Topology Type:

– 1: AS-level

– 2: Router-level

– 3: Imported File

• N: Number of nodes

• HS: 1000 Size of the plane (horizontal scale)

• LS: 1000 Size of the plane (vertical scale)

• NodePlacement:

– 1: Random

– 2: Heavy-tailed

– 3: Imported

• GrowthType

– 1: Incremental

– 2: All at once)

• PreferentialConnectivity:

18 Chapter 2. Background

– 0: None

– 1: On

• EdgeConnection

– 1: Random

– 2: Nearest Neighbor

– 3: Mixed

• Bandwidth:

– 1: Constant

– 2: Uniform

– 3: Heavy-tailed

– 4: Exponential

• BWMin: Minimum bandwidth value

• BWMax: Maximum bandwidth value

• OutputBRITE:

– 1: Enabled

– 0: Disabled

• OutputOTTER

– 1: Enabled

– 0: Disabled)

• OutputNS:

– 1: Enabled,

– 0: Disabled

• OutputDML:

– 1: Enabled

– 0: Disabled

• OutputJavasim:

– 1: Enabled

– 0: Disabled

2.2. Topology Generation 19

2.2.2 Node Placement Algorithm for Realistic Topologies

The Node Placement Algorithm for Realistic Topologies (NPART), as proposed by
Milic and Malek (2009), generates network topologies based on real-world properties.
Unlike purely random networks, NPART generates topologies that respect several
features of real networks. Some sociological and technological factors that influence
network structure were identified in earlier research Aha and Bankert (1996), which
guided the development of this algorithm. Key aspects include:

• New participants are more likely to join areas with high connectivity.

• Every participant is expected to have at least one connection to the rest of the
network, possibly creating a large number of pendant nodes.

• A pendant node can become a seed for a new subnetwork.

• The network specifies the area it occupies, rather than the other way around.

NPART offers various configuration options for generating topologies, including
models based on real-world cities such as Berlin (275 nodes) and Leipzig (346 nodes),
along with uniform, grid, quasi-grid, and random waypoint models.

The configuration file for NPART is of the following style:

• Area size:

Defining the geographical boundaries of the simulated network.

• Node density:

Specifying the average number of nodes per unit area.

• Placement algorithm type:

Choosing between different algorithms like ”uniform random”, ”grid based”, or
”city-based”.

• Geographical data file:

Specifying a file containing real-world geographical information to guide node
placement

2.2.3 Georgia Tech Internetwork Topology Model

The Georgia Tech Internetwork Topology Model (GT-ITM), introduced by Calvert
et al. (1997), is another model-based TG designed for wide-area networks. It offers two
main node placement options: Flat Random Graphs and Hierarchical models.

20 Chapter 2. Background

• Flat Random Graphs:

This model distributes nodes randomly across the test area. While not intended
to mirror real-world topologies exactly, it is simple and widely used for testing.
A variation of this model uses Waxman probability to generate more realistic
topologies.

• Hierarchical model:

This model connects smaller components according to a larger-scale structure,
suggesting that it is more suitable for clustering.

For our study, the Flat Random Graph model was selected because it better represents
ad hoc mesh networks.

The simple configuration parameters that govern this generator can be summarised as:

• Network size:

Specifies the desired number of nodes in your network.

• Hierarchy levels: Set the number of levels in the network hierarchy (e.g., how
many transit levels).

• Connection probabilities:

Defines the likelihood of connections between nodes at different levels.

• Seed value:

Sets a seed value for the random number generator to ensure reproducibility of
your generated network.

2.3 Routing Protocols

The mechanism to route data within Ad-hoc mesh networks can be divided into 3
classes: Proactive, Reactive and Hybrid. This grouping describes how the network
finds and maintains the routing tables for the participating nodes. There are
differences in the way the data packets are presented to the network between these
classes, and there are subtle differences between the different algorithms within the
same class.

The routing protocols are responsible for establishing paths between the source and
the destination. It is also responsible for maintaining the path between these two
nodes until the communication has finished, as described in Jorg (2003)

2.3. Routing Protocols 21

2.3.1 Reactive Routing

The first routing algorithm to consider is the reactive routing protocol, these are also
known as on-demand routing algorithms. The differentiating factor for the reactive
protocols is that it does not need to maintain a route between all pairs of network
nodes. It establishes the route from the source node to the destination node when a
data packet needs to be transmitted.

2.3.1.1 Ad-hoc On-Demand Distance Vector (AODV)

Like other Reactive Routing protocols, AODV published in Perkins et al. (2003)
determines the route to the destination when a node needs to send data to that
destination. The entries in the node’s routing table are kept for as long as they are
needed. If a source node needs to send data to a destination, the routing table is first
queried, if no entry exists for the destination then the routing request mechanism is
activated. During this phase, a route request packet (RREQ) is sent out to all
neighbouring nodes. These nodes, in turn, will check their routing tables for the
destination in question. If there is no entry for the destination, the RREQ is
rebroadcasted. When the destination node is reached, or an intermediate node has a
current route to the destination, a route reply message (RREP) is then sent back to the
source, creating a path from source to the destination in its routing table. Other
packets used within this protocol include ’HELLO’ messages, which are used locally
to determine a node’s neighbours but perform poorly in an 802.11 environment. A
route error message (RERR) is generated when a link between nodes is lost.

AODV packets These packets are transmitted by the nodes participating in the AODV
protocol and are characterised into several types.

1. Address Resolution Protocol , referred to as (ARP) is generated when a node
does not know the MAC layer address of the next hop in the path. The ARP
packet is broadcast and asks if any of the nodes are using the address. When a
node recognises the address as its own, it replies to ARP with its own MAC
address which can then update the originator node’s address cache.

2. Route Request , referred to as (RREQ), is a multi-cast message transmitted by a
node at the initiation of the route discovery process when it needs to transmit
data to a destination. It is received by all of the node’s neighbours, who, if they
do not have a route to the required destination, will in turn rebroadcast to its
neighbours.

3. Route Reply , referred to as (RREP), is the message sent in response to receiving
the RREQ in one of two cases. First, if the node is the destination, or secondly, if

22 Chapter 2. Background

the node has a valid route to the destination. In either case, the node transmits
the RREP back to the node that sent the RREQ message, which is then forwarded
to the originator of the Routing Request along the same path the original RREP
was sent.

4. Route Error , referred to as RERR, is the message sent when a link cannot
transmit a packet between two nodes due to connection interruption. The RERR
is sent by the node that has detected the interruption back along the path to the
originating source.

5. Route Reply Acknowledgement , referred to as RREP-ACK, is the message that
is sent in response to a RREP message. This is done when the original RREP has
asked for an acknowledgement by setting a flag in the message.

6. Time-to-Live Exceeded This packet occurs when a routing request exceeds a
time-to-live (TTL) value of a packet that reaches zero and notification is then
returned to the originator. It is a mechanism that is designed to prevent
unnecessary network-wide dissemination of routing request packets, and its
value is set in the header of a routing request. The mechanism that describes this
behaviour is complicated but to simplify it, the node that sends out the routing
request with the TTL flag set to a predefined value (usually 2). If the routing
request times out without a corresponding routing reply, the originator
broadcasts the request again with the TTL incremented by a predefined value
(usually 2). This mechanism continues until the TTL reaches a third value
(usually 7).

7. HELLO HELLO messages are used for detecting and monitoring links to the
neighbour’s status. Depending on the configuration, the node may offer
connectivity information by broadcasting local HELLO messages. In 802.11,
broadcasting is often done at a lower bit rate than unicasting, thus HELLO
messages can travel further than unicast data. When not implemented the
network uses layer 2 feedback. A Link is considered to be broken if frame
transmission results in a transmission failure for all retries. This mechanism is
meant for active links and works faster than using the HELLO method.

8. Data Packet The remainder of the packets are classified as data packets. These
packets contain user data that is being transmitted from the source to destination
nodes and are of various sizes depending on the amount of data being
transmitted.

2.3.1.2 Dynamic Source Routing (DSR)

DSR published in Johnson and Maltz (1996) & Johnson et al. (2001) is another Reactive
Routing protocol, where it only determines a route when the source node needs to

2.3. Routing Protocols 23

send data to a destination. There are two mechanisms for routing: discovery and
maintenance. The discovery mechanism builds a route from source to destination
within the header of a ROUTE REQUEST packet which it sends to its neighbours.
Each node that forwards this ROUTE REQUEST adds to the sequence of the header.
When the packet reaches the destination it replies to the source with a ROUTE REPLY
including the route taken in the reply. The maintenance mechanism used within this
protocol utilises the fact that in each hop of the transmission between source and
destination, a delivery receipt is generated on successful delivery. If a particular node
does not receive this receipt within a defined limit, it will notify the originator with a
ROUTE ERROR. The source will remove this link from its routing table and perform a
discovery mechanism.

DSR Packets The packets that are transmitted by the nodes are characterised into
several types.

1. Address Resolution Protocol As described in the AODV packet section.

2. Route Request is part of the route discovery phase where the initiating node
transmits a local broadcast packet, which is received by all the nodes within the
node’s wireless transmission range. The message identifies the node that
initiates the request, the target and a unique request ID. It also contains a record
listing the address of each intermediate node through which this particular
message has been forwarded.

3. Route Reply is the packet returned by the route discovery back to the initiator. It
contains a copy of the accumulated route recorded in the Route Request. If the
initiator has already received another ROUTE REQUEST message from the
bearing with the same request ID, it is discarded.

4. Route Error is the packet that is returned to the original sender if the original
route request is re-transmitted more than the maximum number of allowed hops
with no receipt confirmation. The route error packet will identify the link over
which the packet could not be forwarded.

5. Acknowledgement 3 mechanisms are used to confirm the reachability of the
next-hop when transmitting from source to destination. A route request
acknowledgement may be used. The network can use a low-level
acknowledgement signal provided by the node’s MAC layer protocol.
Alternatively, the sender may be able to ’hear’ that the host is transmitting the
packet again; this is termed ’passive acknowledgement’.

6. Data Packet As described in the AODV packet section.

24 Chapter 2. Background

2.3.2 Proactive Routing

Unlike reactive routing, in proactive routing, each node in the network has a routing
table to determine the path a data packet needs to travel when being transmitted to
other nodes in the network. The individual nodes hold records for all the destinations
in the routing table, with the number of hops required to reach each destination. The
routing entry is tagged with a sequence number created by the destination node. To
maintain stability, each station broadcasts and modifies its routing table from time to
time.

2.3.2.1 Optimized Link State Routing Protocol (OLSR)

OLSR published in Clausen and Jacquet (2003) is a routing algorithm within the
Proactive style, and it operates as a table-driven system for the routing mechanism.
Nodes within the network use a ’HELLO’ message to discover their direct neighbours
- (1-hop neighbour) and their neighbours that need a second hop to reach - (2-hop
neighbour). Using this information, multipoint relays (MPRs) are elected, and these
become a set of nodes that together can re-transmit network changes via Topology
Control (TC) messages. Via this mechanism, each node maintains a network topology
and chooses the MPR that offers the best route to the destination that they need to
transmit to.

1. Address Resolution Protocol As described in the AODV packet section.

2. HELLO message is transmitted at regular intervals to detect neighbours and the
state of the links to them. The initiating node (A) sends an empty HELLO
message to a neighbouring node (B) which registers the initiator as an
asymmetric neighbour because B cannot find its address in the HELLO message.
B then sends a HELLO declaring A as an asymmetric neighbour. When A
receives this message it finds its address in it and therefore sets B as a symmetric
neighbour. This time A includes B in the HELLO it sends, and B registers A as a
symmetric neighbour upon reception of the HELLO message.

Upon receiving a HELLO message from a symmetric neighbour, all reported
symmetric neighbours, not including addresses belonging to the local node, are
added or updated in the two-hop neighbour set. Entries in the two-hop
neighbour set are all based on main addresses, so for all received entries in the
HELLO message, the MID set is queried for the main address.

3. Topology Control (TC). TC messages are flooded using the multipoint relay
(MPR) optimisation. This is done on a regular interval, but TC messages are also
generated immediately when changes are detected in the MPR selector set.

2.3. Routing Protocols 25

4. Multiple Interface Declaration referred to as (MID) messages and is used to
declare the presence of multiple interfaces on a node.

5. Host and Network Association referred to as (HNA). This message is used
when a node announces itself as a gateway.

6. Data Packet As described in the AODV packet section.

2.3.2.2 Destination Sequenced Distance Vector Protocol (DSDV)

DSDV set out in (Perkins and Bhagwat (1994)) is another type of proactive routing
protocol. Each node’s routing table is updated periodically. These tables contain
Node, Destination, Next Hop, Distance and Sequence Number. The Distance field
specifies the hop count from the source to the destination, and the sequence number is
generated from the destination and ensures route freshness. The tables can be updated
in one of two methods, a full dump of all routing information or as an incremental
dump of information changed since that last full dump.

1. Address Resolution Protocol As described in the AODV packet section.

2. Periodic Updates and is sometimes referred to as full dump, Every node
periodically updates all of its selected routes on all of its interfaces, including
any recently retracted routes. When the neighbours receive this packet, it will
update their routing table and retransmit the update packet. The update data is
also kept for a while to wait for the arrival of the best route for each particular
destination node in each node before updating its routing table and
retransmitting the update packet.

3. Trigger Updates are small updates in-between the periodic updates. These are
sent out whenever a node receives a DSDV packet that causes a change in its
routing table.

4. Data Packet As described in the AODV packet section.

2.3.3 Hybrid Routing

Hybrid routing, sometimes referred to as balanced-hybrid routing, is a third
classification of routing algorithm. It is a mix between reactive and proactive routing
and takes the strengths of each type of the two classes of routing.

26 Chapter 2. Background

2.3.3.1 Zone Routing Protocol (ZRP)

An example of hybrid routing is ZRP, as published in Haas and Pearlman (1998)
which maintains routing information for a local neighbourhood. This is likened to the
proactive routing algorithm. Additionally, the ZRP uses reactive routing to acquire
routing information for destinations outside the local neighbourhood. ZRP defines a
zone around nodes, and within these zones proactive routing is used, outside of it,
nodes use reactive routing.

ZRP refers to the locally proactive routing component as the Intra-zone Routing
Protocol. The globally reactive routing component is named Inter-zone Routing
Protocol described in Haas et al. (2001).

1. Address Resolution Protocol As described in the AODV packet section.

2. IntrA-zone Routing Protocol referred to as IARP. IARP maintains routing
information for nodes that are within the routing zone of the node.

3. IntEr-zone Routing Protocol referred to as IERP. IERP is a family of reactive
routing protocols that offer enhanced route discovery and route maintenance
services based on local connectivity monitored by IARP

4. Bordercast Resolution Protocol, referred to as BRP. BRP uses a map of an
extended routing zone to construct bordercast trees for the query packets.

5. Data Packet As described in the AODV packet section.

2.4 Mobility Models

Mobility models are important for analysing algorithms and protocols in wireless
local area networks (WLANs) and self-organizing wireless ad hoc networks, as
discussed by Bettstetter (2001). These models can be categorised in different ways,
such as whether they are random or depend on temporal or spatial aspects.

For the generation of data for this research, examples of these models were used to
inform the simulation about the nodal movement during the simulation. Several
mobility models can synthesise the movement during the simulation of an ad-hoc
mesh network. The specific models explored during this research are:

2.4.1 Column Mobility Model

This model simulates nodes that move together in a spatially dependent manner. A
group of nodes travels in unison from one location to another, maintaining a

2.5. Topology Features 27

controlled proximity to one another. For instance, a line of nodes could move across a
field, such as in a search line as defined in Camp et al. (2002).

2.4.2 Probabilistic Random Walk Mobility Model

This model is an example where the movement is random, where at each step, a
calculation utilises a set of probabilities to determine the next direction that the node
moves. It uses a probability matrix that defines the probabilities of a node moving
forwards, backwards, or remaining still in both the x, y and optionally z directions, as
defined in Camp et al. (2002).

2.4.3 SMOOTH Mobility Model

The SMOOTH model, or Smooth Random Mobility Model, accounts for temporal
dependency in node movement. It is based on real-world human movement patterns
and imitates mobility traces collected from various scenarios, as detailed by Munjal
et al. (2011). The model incorporates several factors, including:

• Flights: The straight-line distance between consecutive waypoints. The
distribution of mobile nodes follows a truncated power law (TPL). ICTs
(Inter-contact Times): The amount of time between two nodes’ successive
contacts.

• Pause-times: The time a node pauses at a waypoint.

• Waypoint Preferences: Mobile nodes tend to visit popular waypoints.

• Movement Patterns: Nodes usually visit the closest waypoint first, although this
is not always the case.

• Non-uniform Distribution: Mobile nodes are not evenly distributed throughout
the network.

• Communities of Interest: Nodes with similar interests often form communities
and tend to move within these groups.

2.5 Topology Features

When considering the research for the phase covered in Chapter 4 the focus is on the
features that are likely to be the most representative to show variance within
topologies. Consideration is given to the features that characterise the placement of

28 Chapter 2. Background

the nodes within the test plane and the relationships between nodes. Features are
extracted by looking at the following aspects of a generic topology: inter-node
distance, node spatial distribution, node density, shared node neighbours and node
clustering coefficient.

2.5.1 Inter-Node Distance.

For this feature, the following is considered (i) the minimum distance, (ii) the
maximum distance, (iii) the distance range ’(max distance) - (min distance)’ (iv) the
mode, i.e. the most frequent value 1, (v) how many times the mode occurs, (vi) the
mean value and (vii) the standard deviation.

2.5.2 Spatial Distribution.

By taking inspiration from the Quadrat Method set out in Greig-Smith (1952) which is
used to test the Complete Spatial Randomness hypothesis, the topology area is
partitioned into smaller squares. The number of nodes within these squares is
calculated, and various features are extracted from these measurements. Figure 2.1
shows an example of topology area partitioning.

FIGURE 2.1: Partition of a Topology Area with 1000 Units Sides in 100 Smaller Squares,
each with 100 Units Sides. This Partitioning is used to Compute Spatial Distribution

Reatures.

The features extracted are (i) the minimum number of nodes in a square, (ii) the
maximum number of nodes, (iii) the value range ’(max number) - (min number)’ (iv)
the mode and (v) how many times the mode occurs.

1If there are more most-frequent values, by convention the smallest is picked.

2.5. Topology Features 29

2.5.3 Node Density.

For a given radius around a node, the number of other connected nodes is calculated.
This is classed as the node’s density. The features are calculated based on increasing
the radius from the centre node as can be seen in figure 2.2.

node 1

5

10

20

30

40

60

80

100

node 2

node 3

node 4

node 5

node 6

node 7

node 8

FIGURE 2.2: Node Density Feature.

2.5.4 Shared Neighbours Distribution.

For any given pair of nodes and and a set radius, the shared neighbours feature as
defined in Nowak et al. (2014) are those nodes that are connected. Figure 2.3 shows an
example where nodes 1 and 3 are shared neighbours of nodes 3 and 4.

node 2

node 3

node 4

node 1

FIGURE 2.3: Nodes 1 and 2 are Shared Neighbours of Nodes 3 and 4. In this case, the
Value of Shared Neighbours Count for Nodes 3 and 4 is 2.

These features are generated corresponding to the average shared neighbours count
for a given radius, defined as follows

30 Chapter 2. Background

2.5.5 Clustering Coefficient.

The clustering coefficient as defined in Holland and Leinhardt (1971) of a node is a
measure based on the number of node pairs that lie within a given radius and are
neighbours of each other. An example is reported in Figure 2.4.

node 1

node 2

node 3

node 4

node 5

FIGURE 2.4: The Neighbours of Node 3 are Nodes 1, 2, 4 and 5. Among those Neigh-
bours, there is a Pair of Nodes, i.e. nodes 4 and 5, which are Neighbours of Each Other,

while Nodes 1 and 2 are not Neighbours of any other Node.

Features extracted corresponding to the average cluster coefficient for a given radius.

2.5.6 Sequential Feature Selection (SFS)

As described in Aha and Bankert (1996) and Rückstieß et al. (2011) is used to reduce
the initial dimension feature space to the optimal number of features. The goal is to
create a subset of features that explain the most variance in the dataset. This is done
by either adding or removing one feature at a time and measuring the classifier
performance until the subset of the desired features has been created. There are four
different flavours of SFAs available:

• Sequential Forward Selection (SFS): SFS is a bottom-up search method that
begins with an empty set of features and gradually adds features based on an
evaluation function. At each iteration, the algorithm selects the best feature from
the remaining ones that haven’t yet been added to the feature set.

• Sequential Backward Selection (SBS): In contrast to SFS, SBS starts with a full
set of features and removes them one by one, selecting which feature to
eliminate at each step. The goal is to improve the criterion by iteratively
removing less important features.

• Sequential Forward Floating Selection (SFFS): SFFS is an extension of SFS,
incorporating an additional step that allows the removal of features once they’ve

2.6. Machine Learning Algorithm 31

been added to the set. This floating variant helps produce a more optimized set
of features by adding or excluding features during the procedure.

• Sequential Backward Floating Selection (SBFS): Similar to SFFS, SBFS is the
floating variant of SBS. It works by removing features but also allows for the
reintroduction of previously excluded features to improve the feature set.

2.6 Machine Learning Algorithm

Various methodologies are employed in machine learning (ML). This section offers a
basic overview of the ML techniques used in this research and does not attempt to
cover the entire scope of the field. Generally, ML techniques are categorised into two
main types: parametric and non-parametric algorithms, as outlined by Brownlee.

Parametric algorithms use a function to map input data to output data (predictions),
incorporating weights and biases. Non-parametric algorithms, on the other hand, aim
to find the best mapping function by using input data to organise the output into
classes.

Throughout this research, several ML algorithms were used, evaluated, and compared
based on their performance. Initially, the choice of algorithms wasn’t clear, and
relevant studies didn’t provide a definitive recommendation. To avoid bias toward
either parametric or non-parametric methods, random examples of both were chosen.
These examples were assessed for their predictive accuracy to identify the best
algorithm for the analysis.

Examples of parametric algorithms include Neural Networks and Probabilistic
Clustering. For Neural Networks, a Convolutional Neural Network (CNN) was
selected as a standard representative. For Probabilistic Clustering, Bernoulli Naive
Bayes and Gaussian Naive Bayes were used. For non-parametric algorithms, the
Support Vector Machine (SVM) was chosen initially. SVM was developed to enhance
both training and prediction efficiency, using cluster centres obtained through
k-means clustering (as described by Bang and Jhun (2014)). Random Forest was also
selected because of its ability to handle datasets with a large number of predictor
variables, as highlighted by Speiser et al. (2019)). Additionally, Deep Forest Neural
Networks were chosen for their potential to combine the advantages of both Deep
Neural Networks and Random Forests.

32 Chapter 2. Background

2.7 Unsupervised Learning

Unsupervised learning techniques are employed when no class information is
provided. The algorithm is tasked with determining how many classes exist within
the dataset. In this research, two algorithms were considered: the K-means distortion
curve and affinity propagation. The K-means distortion curve was evaluated by
calculating distortion for different numbers of clusters. Affinity propagation was
iterated until convergence, and the number of clusters or cluster members was
recorded.

2.7.1 K-Means Distortion Curve

The distortion curve, figure 2.5, shows the distortion against the perceived number of
clusters. The change in the incline of the graph shows the optimal number of clusters,
where for this plot the optimal number is 2.

FIGURE 2.5: K-Mean Distortion Curve

2.7.2 Affinity Probability

When affinity probability clustering was used to give the optimal number of clusters,
it gave a value of 148, which seemed excessive.

2.8. Semi-Supervised Clustering 33

2.8 Semi-Supervised Clustering

The accuracy of the classifier is determined by using the topology generator ground
truth. This method involves splitting the ground truth data into two parts: one used
for training the classifier and the other for testing. The classification accuracy is then
calculated based on these two sets. To ensure reliable results, cross-validation and a
train/test split were employed during the analysis.

To minimise any potential bias that could arise from how the ground truth data is
split, a well-established technique called k-fold cross-validation was applied, as
outlined in Stone (1974). This method divides the data into k equally sized folds. The
classifier is trained from scratch using all but one of these folds, which is held out for
testing. This process is repeated k times, with each fold being used for validation once.
In this analysis, we used 10-fold cross-validation, a common approach as shown in the
work of Bengio BENGIOY and Grandvalet YVESGRANDVALET (2004). The final
accuracy is calculated by averaging the accuracy values achieved in each of the k
iterations, ensuring an unbiased evaluation of the classifier.

Additionally, the data was split into training and testing sets in a 25%/75% ratio. As
shown in Tables 4.2 and 4.3 , the DBScan algorithm failed to classify the data properly,
instead labelling all points as outliers.

2.9 Supervised Learning

Supervised learning techniques rely on labeled data, where each input is associated
with a known output—for example, identifying the topology generator responsible
for producing a given dataset. To evaluate model performance, the dataset is typically
split into training and testing subsets. This separation ensures that the model is
evaluated on previously unseen data, preventing overlap between training and testing
phases and reducing the risk of overfitting.

2.9.1 Convolutional Neural Network Analysis

Convolutional Neural Networks (CNNs) are typically used for image classification,
where they identify patterns within images to classify them. An input image is made
up of three colour channels: red, green, and blue. This allows the CNN to extract
colour-related features from the image for classification. The process involves
applying filters, known as convolutional kernels, of a predefined pixel size over the
image. These kernels are three-dimensional and examine the interaction between the

34 Chapter 2. Background

colour channels. The output of this process is a single value that represents a grid cell,
or pixel, in the resulting feature map.

Although CNNs are most commonly used in image identification, this research
repurposes the CNN technique to work with data generated from an Ad-Hoc Mesh
Network.

2.9.2 Probabilistic Clustering

Probabilistic clustering, as described by Friedman et al. (1999), consists of algorithms
designed to find the best fit for classifying data. One of these algorithms is Naı̈ve
Bayes, as defined by McCallum et al. (1998). Naı̈ve Bayes is a probabilistic classifier
that groups data into distinct classes. It calculates the mean and standard deviation of
the selected features, and then determines the probability that a new data point
belongs to any of the existing classes. The ”naı̈ve” in its name comes from the
assumption that the features are independent of each other, which simplifies the
classification process but may not always hold true in practice.

2.9.2.1 Bernoulli

Bernoulli Naı̈ve Bayes, defined in Larkey and Croft (1996) uses the Bernoulli
distribution, named after Swiss mathematician Jacob Bernoulli as published in the
paper Khoshnevisan (2002) it assumes that all the features are binary i.e. they have
only two values.

The following are the parameters set out in the documentation, all defaults were used
where applicable. Parameters:

• alphafloat or array-like of shape (n features,), default 1.0

Additive (Laplace/Lidstone) smoothing parameter (set alpha=0 and
force alpha=True, for no smoothing).

• force alpha bool, default True

If False and alpha is less than 1e-10, it will set alpha to 1e-10. If True, alpha will
remain unchanged. This may cause numerical errors if alpha is too close to 0.

• binarize float or None, default 0.0

Threshold for binarising (mapping to booleans) of sample features. If None,
input is presumed to already consist of binary vectors.

2.9. Supervised Learning 35

• fit prior bool, default True

Whether to learn class prior probabilities or not. If false, a uniform prior will be
used.

• class prior array-like of shape (n classes), default None

Prior probabilities of the classes. If specified, the priors are not adjusted
according to the data.

2.9.2.2 Gaussian

Gaussian Naive Bayes Bishop and Nasrabadi (2006) assume the data is distributed
according to a Gaussian distribution within the features, it is used in cases when all
features are continuous. he following are the parameters set out in the documentation,
all defaults were used where applicable.

Parameters:

• priors array-like of shape (n classes,), default None

Prior probabilities of the classes. If specified, the priors are not adjusted
according to the data.

• var smoothing float, default 1e-9

Portion of the largest variance of all features that is added to variances for
calculation stability.

2.9.2.3 Multinomial

Multinomial Naive Bayes Devroye et al. (2013) assume the data is distributed
according to a multinomial distributed data distribution within the features. For this
experimentation, we used sklearn’s implementation as documented at sci (d), with no
change to the default values, unless stated..

The following are the parameters set out in the documentation, all defaults were used
where applicable.

Parameters:

• alpha float or array-like of shape (n features,), default 1.0

Additive (Laplace/Lidstone) smoothing parameter (set alpha=0 and
force alpha=True, for no smoothing).

36 Chapter 2. Background

• force alpha bool, default True

If False and alpha is less than 1e-10, it will set alpha to 1e-10. If True, alpha will
remain unchanged. This may cause numerical errors if alpha is too close to 0.

• fit prior bool, default True

Whether to learn class prior probabilities or not. If false, a uniform prior will be
used.

• class prior array-like of shape (n classes,), default None

Prior probabilities of the classes. If specified, the priors are not adjusted
according to the data.

2.9.3 Support Vector Machine

Support vector machine (SVM) with k-means clustering is a class of supervised
learning that can be used to classify data and was used as the representative method
for this experiment.

The SVM aims to create a hyperplane that separates the classes from data points from
each class with the greatest margin between the individual classes. The technique can
then be used to classify new data points based on which side of the hyperplane it lies.
In regards to their use within this experiment, the mean value for each field was
calculated per sample, giving one value per field in each sample.

A single run of the analysis was thought not to be representative of the results so a
k-fold cross-validation technique was used with a k value of 5 with a train/test dataset
split of 80/20%. This meant that the whole sample set was split into 80% which was
used to train the SVM, and 20% used to validate the result. This was repeated 5 times
with the accuracy noted and the average accuracy used as the final result.

The following are the parameters set out in the documentation, all defaults were used
where applicable.

Parameters:

• C , float default 1.0

Regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive. The penalty is a squared l2 penalty.
For an intuitive visualization of the effects of scaling the regularization
parameter C

• kernel - ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ default ’rbf’

2.9. Supervised Learning 37

Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will
be used. If a callable is given it is used to pre-compute the kernel matrix from
data matrices; that matrix should be an array of shape (n samples, n samples).
For an intuitive visualization of different kernel types.

• degree, int default 3

Degree of the polynomial kernel function (‘poly’). Must be non-negative.
Ignored by all other kernels.

• gamma - ‘scale’, ‘auto’ or float default ’scale’

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. if gamma=’scale’ (default) is
passed then it uses 1 / (n features * X.var()) as value of gamma, if ‘auto’, uses 1 /
n features if float, must be nonnegative.

• coef0 , float default 0.0

Independent term in kernel function. It is only significant in ‘poly’ and
‘sigmoid’. shrinkingbool, default True

Whether to use the shrinking heuristic. probabilitybool, default False

Whether to enable probability estimates. This must be enabled prior to calling
fit, will slow down that method as it internally uses 5-fold cross-validation, and
predict proba may be inconsistent with predict.

• tolfloat default 1e-3

Tolerance for stopping criterion.

• cache sizefloat default 200

Specify the size of the kernel cache (in MB).

• class weightdict or ‘balanced’ default None

Set the parameter C of class i to class weight[i]*C for SVC. If not given, all
classes are supposed to have weight one. The “balanced” mode uses the values
of y to automatically adjust weights inversely proportional to class frequencies
in the input data as n samples / (n classes * np.bincount(y)).

• verbosebool default False

Enable verbose output. Note that this setting takes advantage of a per-process
runtime setting in libsvm that, if enabled, may not work properly in a
multithreaded context. max iterint, default -1

Hard limit on iterations within solver, or -1 for no limit.
decision function shape‘ovo’, ‘ovr’, default ’ovr’

Whether to return a one-vs-rest (‘ovr’) decision function of shape (n samples,
n classes) as all other classifiers, or the original one-vs-one (‘ovo’) decision

38 Chapter 2. Background

function of libsvm which has shape (n samples, n classes * (n classes - 1) / 2).
However, note that internally, one-vs-one (‘ovo’) is always used as a multi-class
strategy to train models; an ovr matrix is only constructed from the ovo matrix.
The parameter is ignored for binary classification.

• break tiesbool default False

If true, decision function shape=’ovr’, and number of classes ¿ 2, predict will
break ties according to the confidence values of decision function; otherwise the
first class among the tied classes is returned. Please note that breaking ties comes
at a relatively high computational cost compared to a simple predict.

• random stateint, RandomState instance or None default None

Controls the pseudo random number generation for shuffling the data for
probability estimates. Ignored when probability is False. Pass an int for
reproducible output across multiple function calls.

2.9.4 MeanShift

Parameters:

• bandwidthfloat default None

Bandwidth used in the flat kernel.

If not given, the bandwidth is estimated using
sklearn.cluster.estimate bandwidth; see the documentation for that function for
hints on scalability (see also the Notes, below). seedsarray-like of shape
(n samples, n features), default None

Seeds used to initialize kernels. If not set, the seeds are calculated by
clustering.get bin seeds with bandwidth as the grid size and default values for
other parameters.

• bin seeding bool, default False

If true, initial kernel locations are not locations of all points, but rather the
location of the discretized version of points, where points are binned onto a grid
whose coarseness corresponds to the bandwidth. Setting this option to True will
speed up the algorithm because fewer seeds will be initialized. The default value
is False. Ignored if seeds argument is not None.

• min bin freqint, default 1

To speed up the algorithm, accept only those bins with at least min bin freq
points as seeds.

2.9. Supervised Learning 39

• cluster all bool, default True

If true, then all points are clustered, even those orphans that are not within any
kernel. Orphans are assigned to the nearest kernel. If false, then orphans are
given cluster label -1.

• n jobsint default None

The number of jobs to use for the computation. The following tasks benefit from
the parallelization:

The search of nearest neighbours for bandwidth estimation and label
assignments. See the details in the docstring of the NearestNeighbors class.

Hill-climbing optimization for all seeds.

None means 1 unless in a joblib.parallel backend context. -1 means using all
processors. See Glossary for more details.

• max iterint default 300

Maximum number of iterations, per seed point before the clustering operation
terminates (for that seed point), if has not converged yet.

2.9.5 Agglomerative Clustering

Parameters:

• n clusters int or None, default 2

The number of clusters to find. It must be None if distance threshold is not
None. metricstr or callable, default euclidean

Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”,
“manhattan”, “cosine”, or “precomputed”. If linkage is “ward”, only
“euclidean” is accepted. If “precomputed”, a distance matrix is needed as input
for the fit method. If connectivity is None, linkage is “single” and affinity is not
“precomputed” any valid pairwise distance metric can be assigned.

• memory str or object with the joblib. Memory interface, default None

Used to cache the output of the computation of the tree. By default, no caching is
done. If a string is given, it is the path to the caching directory.

• connectivity array-like, sparse matrix, or callable, default None

Connectivity matrix. Defines for each sample the neighbouring samples
following a given structure of the data. This can be a connectivity matrix itself or
a callable that transforms the data into a connectivity matrix, such as derived

40 Chapter 2. Background

from kneighbors graph. Default is None, i.e, the hierarchical clustering
algorithm is unstructured.

For an example of connectivity matrix using kneighbors graph

• compute full tree ‘auto’ or bool, default auto

Stop early the construction of the tree at n clusters. This is useful to decrease
computation time if the number of clusters is not small compared to the number
of samples. This option is useful only when specifying a connectivity matrix.
Note also that when varying the number of clusters and using caching, it may be
advantageous to compute the full tree. It must be True if distance threshold is
not None. By default compute full tree is “auto”, which is equivalent to True
when distance threshold is not None or that n clusters is inferior to the
maximum between 100 or 0.02 * n samples. Otherwise, “auto” is equivalent to
False.

• linkage ‘ward’, ‘complete’, ‘average’, ‘single’, default=’ward’

Which linkage criterion to use. The linkage criterion determines which distance
to use between sets of observation. The algorithm will merge the pairs of cluster
that minimize this criterion.

‘ward’ minimizes the variance of the clusters being merged.

‘average’ uses the average of the distances of each observation of the two sets.

‘complete’ or ‘maximum’ linkage uses the maximum distances between all
observations of the two sets.

‘single’ uses the minimum of the distances between all observations of the two
sets.

• distance threshold float, default None

The linkage distance threshold at or above which clusters will not be merged. If
not None, n clusters must be None and compute full tree must be True.

• compute distances bool, default False

Computes distances between clusters even if distance threshold is not used.
This can be used to make dendrogram visualization, but introduces a
computational and memory overhead.

2.9.6 DBScan

Parameters:

• epsfloat default 0.5

2.9. Supervised Learning 41

The maximum distance between two samples for one to be considered as in the
neighborhood of the other. This is not a maximum bound on the distances of
points within a cluster. This is the most important DBSCAN parameter to choose
appropriately for your data set and distance function.

• min samples int, default 5

The number of samples (or total weight) in a neighborhood for a point to be
considered as a core point. This includes the point itself. If min samples is set to
a higher value, DBSCAN will find denser clusters, whereas if it is set to a lower
value, the found clusters will be more sparse.

• metric str, or callable, default euclidean

The metric to use when calculating distance between instances in a feature array.
If metric is a string or callable, it must be one of the options allowed by
sklearn.metrics.pairwise distances for its metric parameter. If metric is
“precomputed”, X is assumed to be a distance matrix and must be square. X
may be a sparse graph, in which case only “nonzero” elements may be
considered neighbors for DBSCAN.

• metric params dict, default None

Additional keyword arguments for the metric function.

• algorithm ‘auto’, ‘ball tree’, ‘kd tree’, ‘brute’, default auto

The algorithm to be used by the NearestNeighbors module to compute
pointwise distances and find nearest neighbors. See NearestNeighbors module
documentation for details.

• leaf size int, default 30

Leaf size passed to BallTree or cKDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The
optimal value depends on the nature of the problem.

• pfloat default None

The power of the Minkowski metric to be used to calculate distance between
points. If None, then p=2 (equivalent to the Euclidean distance).

• n jobs int, default None

The number of parallel jobs to run. None means 1 unless in a
joblib.parallel backend context. -1 means using all processors.

2.9.7 Spectral Clustering

Parameters:

42 Chapter 2. Background

• affinity array-like, sparse matrix of shape (n samples, n samples)

The affinity matrix describing the relationship of the samples to embed. Must be
symmetric.

• n clusters int, default None

Number of clusters to extract.

• n components int, default n clusters

Number of eigenvectors to use for the spectral embedding.

• eigen solver None, ‘arpack’, ‘lobpcg’, or ‘amg’

The eigenvalue decomposition method. If None then ’arpack’ is used. See [4] for
more details regarding ’lobpcg’. Eigensolver ’amg’ runs ’lobpcg’ with optional
Algebraic MultiGrid preconditioning and requires pyamg to be installed.

• random state int, RandomState instance, default None

A pseudo random number generator used for the initialization of the lobpcg
eigenvectors decomposition when eigen solver == ’amg’, and for the K-Means
initialization. Use an int to make the results deterministic across calls.

• n init int, default 10

Number of time the k-means algorithm will be run with different centroid seeds.
The final results will be the best output of n init consecutive runs in terms of
inertia. Only used if assign labels=’kmeans’.

• eigen tol float, default auto

Stopping criterion for eigendecomposition of the Laplacian matrix. If
eigen tol=”auto” then the passed tolerance will depend on the eigen solver:

If eigen solver=”arpack”, then eigen tol=0.0;

If eigen solver=”lobpcg” or eigen solver=”amg”, then eigen tol=None which
configures the underlying lobpcg solver to automatically resolve the value
according to their heuristics. See, scipy.sparse.linalg.lobpcg for details.

• assign labels ‘kmeans’, ‘discretize’, ‘cluster qr’, default kmeans

The strategy to use to assign labels in the embedding space. There are three
ways to assign labels after the Laplacian embedding. k-means can be applied
and is a popular choice. But it can also be sensitive to initialization.
Discretization is another approach which is less sensitive to random
initialization [3]. The cluster qr method [5] directly extracts clusters from
eigenvectors in spectral clustering. In contrast to k-means and discretization,
cluster qr has no tuning parameters and is not an iterative method, yet may
outperform k-means and discretization in terms of both quality and speed. For a

2.9. Supervised Learning 43

detailed comparison of clustering strategies, refer to the following example:
Segmenting the picture of greek coins in regions.

• verbosebool default False

Verbosity mode.

2.9.8 Birch Clustering

Parameters:

• threshold float, default 0.5

The radius of the subcluster obtained by merging a new sample and the closest
subcluster should be lesser than the threshold. Otherwise a new subcluster is
started. Setting this value to be very low promotes splitting and vice-versa.

• branching factor int, default 50

Maximum number of CF subclusters in each node. If a new samples enters such
that the number of subclusters exceed the branching factor then that node is
split into two nodes with the subclusters redistributed in each. The parent
subcluster of that node is removed and two new subclusters are added as
parents of the 2 split nodes.

• n clusters int, instance of sklearn.cluster model or None, default 3

Number of clusters after the final clustering step, which treats the subclusters
from the leaves as new samples.

None : the final clustering step is not performed and the subclusters are returned
as they are.

sklearn.cluster Estimator : If a model is provided, the model is fit treating the
subclusters as new samples and the initial data is mapped to the label of the
closest subcluster.

int : the model fit is AgglomerativeClustering with n clusters set to be equal to
the int.

• compute labels bool, default True

Whether or not to compute labels for each fit. copybool, default True

Whether or not to make a copy of the given data. If set to False, the initial data
will be overwritten.

44 Chapter 2. Background

2.9.9 Decision Tree

Decision Tree published in Quinlan (1986) is a widely used machine learning
algorithm that performs both classification and regression tasks. It models decisions
and their possible consequences in a tree-like structure, where each internal node
represents a decision or a test on a particular feature, each branch represents the
outcome of that decision, and each leaf node represents the final output or class label.

The process of building a Decision Tree involves recursively splitting the data into
subsets based on feature values. The aim is to create branches that result in the purest
possible divisions, where each subset contains data points that belong to the same
class or have similar output values. To determine the best feature to split the data at
each node, algorithms like Gini impurity or Information Gain are often used, which
measure how well the data is separated by a particular feature.

Once the tree is built, predictions are made by following the path from the root node
to a leaf node, based on the values of the input features. The model outputs the class
or predicted value associated with the leaf node that the input data reaches.

Decision Trees are particularly known for their simplicity and interpretability. Since
they closely mimic human decision-making processes, they are easy to visualise and
understand. However, they are prone to over-fitting, especially when the tree is too
deep, meaning it can fit the training data very well but fail to generalise to new, unseen
data. Techniques like pruning (removing parts of the tree that don’t improve the
model) and ensemble methods like Random Forests can be used to mitigate this issue.

In summary, Decision Trees are powerful tools for classification and regression tasks,
offering both transparency and versatility in modelling complex decision-making
processes.

The following are the parameters set out in the documentation, all defaults were used
where applicable.

Parameters:

• criterion: gini, entropy, log loss default gini The function to measure the
quality of a split. Supported criteria are “gini” for the Gini impurity and
“log loss” and “entropy” both for the Shannon information gain, see
Mathematical formulation.

• splitter: best, random, default best

The strategy used to choose the split at each node. Supported strategies are
“best” to choose the best split and “random” to choose the best random split.

2.9. Supervised Learning 45

• max depth, int default None

The maximum depth of the tree. If None, then nodes are expanded until all
leaves are pure or until all leaves contain less than min samples split samples.

• min samples split: int or float default 2

The minimum number of samples required to split an internal node

– If int, then consider min samples split as the minimum number.

– If float, then min samples split is a fraction and ceil(min samples split *
n samples) are the minimum number of samples for each split.

• min samples leaf: int or float default 1

The minimum number of samples required to be at a leaf node. A split point at
any depth will only be considered if it leaves at least min samples leaf training
samples in each of the left and right branches. This may have the effect of
smoothing the model, especially in regression.

– If int, then consider min samples leaf as the minimum number.

– If float, then min samples leaf is a fraction and ceil(min samples leaf *
n samples) are the minimum number of samples for each node.

• min weight fraction leaf float, default 0.0

The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node. Samples have equal weight when
sample weight is not provided.

• max features int, float or “sqrt”, “log2”, default None

The number of features to consider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a fraction and max(1, int(max features *
n features in)) features are considered at each split.

– If “sqrt”, then max features=sqrt(n features).

– If “log2”, then max features=log2(n features).

– If None, then max features=n features.

• random state: int, RandomState instance or None default None

Controls the randomness of the estimator. The features are always randomly
permuted at each split, even if splitter is set to ”best”. When max features ¡
n features, the algorithm will select max features at random at each split before
finding the best split among them. But the best found split may vary across
different runs, even if max features=n features. That is the case, if the

46 Chapter 2. Background

improvement of the criterion is identical for several splits and one split has to be
selected at random. To obtain a deterministic behaviour during fitting,
random state has to be fixed to an integer.

• max leaf nodes int, default None

Grow a tree with max leaf nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.

• min impurity decrease float, default 0.0

A node will be split if this split induces a decrease of the impurity greater than
or equal to this value.

• class weight dict, list of dict or “balanced”, default None

Weights associated with classes in the form class label: weight. If None, all
classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

The “balanced” mode uses the values of y to automatically adjust weights
inversely proportional to class frequencies in the input data as n samples /
(n classes * np.bincount(y))

For multi-output, the weights of each column of y will be multiplied.

• ccp alpha non-negative float, default 0.0

Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree
with the largest cost complexity that is smaller than ccp alpha will be chosen. By
default, no pruning is performed.

• monotonic cst: array-like of int of shape (n features) default None

Indicates the monotonicity constraint to enforce on each feature.

– 1: monotonic increase

– 0: no constraint

– -1: monotonic decrease

If monotonic cst is None, no constraints are applied.

Monotonicity constraints are not supported for:

– multiclass classifications (i.e. when n classes ¿ 2),

– multioutput classifications (i.e. when n outputs ¿ 1),

– classifications trained on data with missing values.

2.9. Supervised Learning 47

2.9.10 Random Forest

A Random Forest published in Breiman (2001) is an ensemble learning method used
for both classification and regression tasks. It builds multiple Decision Trees during
the training process and merges their results to improve the model’s accuracy and
robustness. The key idea behind Random Forest is to create a forest of trees, where
each tree is trained on a random subset of the training data, and the final prediction is
made by averaging the results of all individual trees in the case of regression or by
using majority voting in the case of classification.

The process of building a Random Forest involves two main components:

• Bootstrapping (Bagging): For each tree in the forest, a random subset of the
training data is selected with replacement (i.e., some data points may be
repeated in the subset). This subset is used to train the tree, allowing each tree to
be trained on slightly different data.

• Feature Randomness : During the construction of each tree, only a random
subset of features is considered for splitting at each node, rather than evaluating
all features. This helps create diversity among the trees and prevents over-fitting
by reducing the model’s reliance on any single feature.

Once all the trees are trained, the Random Forest makes its prediction by aggregating
the predictions of all the trees. For classification tasks, it uses majority voting, where
the class that most trees predict becomes the final output. For regression tasks, it uses
the average of all tree predictions.

The strength of Random Forest lies in its ability to handle large datasets with high
dimensionality, as well as its robustness to over-fitting, especially when compared to a
single Decision Tree. Because each tree is trained on a random subset of the data and
features, the model can generalise better and perform well even on unseen data.
Furthermore, Random Forests provide a measure of feature importance, allowing
users to understand which features are most influential in making predictions.

Despite its many strengths, Random Forest can be computationally expensive and
may not perform well in real-time applications due to the complexity of combining
multiple trees. However, it remains one of the most widely used and powerful
algorithms in machine learning.

In conclusion, Random Forest is a versatile and highly effective ensemble method,
leveraging the power of multiple Decision Trees to enhance predictive performance
and reduce the risk of over-fitting, making it an excellent choice for many machine
learning tasks.

48 Chapter 2. Background

The following are the parameters set out in the documentation, all defaults were used
where applicable.

Parameters:

• n estimatorsint default 100 - The number of trees in the forest.

• criterion “gini”, “entropy”, “log loss” default gini

The function to measure the quality of a split. Supported criteria are “gini” for
the Gini impurity and “log loss” and “entropy” both for the Shannon
information gain, see Mathematical formulation. Note: This parameter is
tree-specific.

• max depthint default None

The maximum depth of the tree. If None, then nodes are expanded until all
leaves are pure or until all leaves contain less than min samples split samples.

• nmin samples splitint or float default 2

The minimum number of samples required to split an internal node: If int, then
consider min samples split as the minimum number. If float, then
min samples split is a fraction and ceil(min samples split * n samples) are the
minimum number of samples for each split.

• min samples leafint or float default1

The minimum number of samples required to be at a leaf node. A split point at
any depth will only be considered if it leaves at least min samples leaf training
samples in each of the left and right branches. This may have the effect of
smoothing the model, especially in regression. If int, then consider
min samples leaf as the minimum number. If float, then min samples leaf is a
fraction and ceil(min samples leaf * n samples) are the minimum number of
samples for each node.

• min weight fraction leaf float default 0.0

The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node. Samples have equal weight when
sample weight is not provided.

• max features“sqrt”, “log2”, None, int or float default ”sqrt”

The number of features to consider when looking for the best split: If int, then
consider max features features at each split. If float, then max features is a
fraction and max(1, int(max features * n features in)) features are considered at
each split. If “sqrt”, then max features=sqrt(n features). If “log2”, then
max features=log2(n features). If None, then max features=n features.

2.9. Supervised Learning 49

• max leaf nodesint default None

Grow trees with max leaf nodes in best-first fashion. Best nodes are defined as
relative reduction in impurity. If None then unlimited number of leaf nodes.
min impurity decreasefloat, default 0.0

A node will be split if this split induces a decrease of the impurity greater than
or equal to this value.

The weighted impurity decrease equation is the following:

N t / N * (impurity - N t R / N t * right impurity - N t L / N t * left impurity)

where N is the total number of samples, N t is the number of samples at the
current node, N t L is the number of samples in the left child, and N t R is the
number of samples in the right child.

N, N t, N t R and N t L all refer to the weighted sum, if sample weight is
passed.

• bootstrapbool default True

Whether bootstrap samples are used when building trees. If False, the whole
dataset is used to build each tree.

• oob scorebool or callable default False

Whether to use outofbag samples to estimate the generalization score. By
default, accuracy score is used. Provide a callable with signature metric(y true,
y pred) to use a custom metric. Only available if bootstrap=True.

• n jobsint default None

The number of jobs to run in parallel. fit, predict, decision path and apply are all
parallelized over the trees. None means 1 unless in a joblib.parallel backend
context. -1 means using all processors. See Glossary for more details.

• random stateint, RandomState instance or None default None

Controls both the randomness of the bootstrapping of the samples used when
building trees (if bootstrap=True) and the sampling of the features to consider
when looking for the best split at each node (if max features ¡ n features).

• verboseint default 0

Controls the verbosity when fitting and predicting.

• warm startbool default False

When set to True, reuse the solution of the previous call to fit and add more
estimators to the ensemble, otherwise, just fit a whole new forest. See Glossary
and Fitting additional trees for details.

50 Chapter 2. Background

• class weigh - “balanced”, “balanced subsample” , dict or list of dictsdefault
None

Weights associated with classes in the form class label: weight. If not given, all
classes are supposed to have weight one. For multi-output problems, a list of
dicts can be provided in the same order as the columns of y.

The “balanced” mode uses the values of y to automatically adjust weights
inversely proportional to class frequencies in the input data as n samples /
(n classes * np.bincount(y))

The “balanced subsample” mode is the same as “balanced” except that weights
are computed based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

• ccp alphanon-negative float default 0.0

Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree
with the largest cost complexity that is smaller than ccp alpha will be chosen. By
default, no pruning is performed. See Minimal Cost-Complexity Pruning for
details.

• max samplesint or float default None

If bootstrap is True, the number of samples to draw from X to train each base
estimator. If None (default), then draw X.shape[0] samples. If int, then draw
max samples samples. If float, then draw max(round(n samples * max samples),
1) samples. Thus, max samples should be in the interval (0.0, 1.0].

• monotonic cstarray-like of int of shape (n features) default None

2.9.11 Deep Forest Neural Network

Deep Forest, as described in Zhou and Feng (2017) is an alternative to the traditional
deep neural network. It uses a mixture of random forest as a probability distribution
over classes and conventional classification. Deep neural networks use the last layer to
classify the different classes while having ’hidden layers’ trained via
back-propagation. Deep forest uses a layer-by-layer processing approach; each layer is
an ensemble of decision tree forests that receive feature information processed by its
preceding layer. Each layer is a mix of ’completely random forests’ and ’random
forests’, with each forest producing an estimate of class distribution and then
averaging across all trees in the same forest. The ultimate layer’s predictions are
averaged, and the overall predictions are used in evaluation.

2.10. Centrality 51

2.10 Centrality

The use of centrality metrics is used in Chapter 6 to identify influence nodes set out in
Tulu et al. (2018b), the following measures are used during the analysis for this
chapter.

2.10.1 Eigenvector Centrality

’Eigenvector centrality’ is the first centrality to take into account. This is a measure of
a node’s influence within a network. It assigns relative scores to each node in the
network based on the hypothesis that connections to high-scoring nodes add more to
a node’s score than do equal connections to low-scoring nodes. In a study that was
reported in the paper Tulu et al. (2018a), the nodes that disseminated information
through the network the slowest were identified by using eigenvector centrality,
which consistently performed the worst among the centrality measures.

2.10.2 Degree Centrality

The next centrality is that of ’degree centrality’ published in Freeman (1978). This is
the simplest to understand and is defined as the number of links a node has.
Assuming that there is a maximum of one edge per pair of nodes, its value ranges
from 0 to the ’number of nodes in the network’ (if the network allows a node to have
an edge back to itself) or ’number of nodes in the network’ -1 if not.

The input parameters required where as follows:

• G: graph - A NetworkX graph.

In the research, it is assumed that if this value is low (zero) for a particular node, then
the node has minimal or no links and so is isolated from the network. Whereas if the
value is high (one), the node has the maximum number of links.

2.10.3 Closeness Centrality

The next centrality is that of ’closeness centrality’ from the same paper Freeman
(1978). It calculates the distances from a single point to all other points in the network.
A low value for this centrality indicates the more central position the node is in the
network, and a high value indicates they are less central.

The specific parameters for this centrality are:

52 Chapter 2. Background

• G: graph - A NetworkX graph.

• u: node, optional - Return only the value for node u

• distance - edge attribute key, optional default None

Use the specified edge attribute as the edge distance in shortest path
calculations. If None (the default) all edges have a distance of 1. Absent edge
attributes are assigned a distance of 1. Note that no check is performed to ensure
that edges have the provided attribute.

• wf improved: bool optional default True

If True, scale by the fraction of nodes reachable. This gives the Wasserman and
Faust improved formula. For single component graphs it is the same as the
original formula.

Where applicable all defaults are used.

2.10.4 Betweenness Centrality

Betweenness centrality, described in the same paper Freeman (1978) is an indication of
the number of times the node is involved in the shortest path between other nodes in
the network. A high betweenness centrality value indicates that the node is involved
in the highest number of shortest paths.

The input parameters required where as follows::

• G: graph - A NetworkX graph.

• k: int - optional default None

If k is not None use k node samples to estimate betweenness. The value of k ¡= n
where n is the number of nodes in the graph. Higher values give better
approximation.

• normalized: bool - Set to True

If True the betweenness values are normalized by 2/((n-1)(n-2)) for graphs, and
1/((n-1)(n-2)) for directed graphs where n is the number of nodes in G.

• weight: None or string - optional default None

If None, all edge weights are considered equal. Otherwise holds the name of the
edge attribute used as weight. Weights are used to calculate weighted shortest
paths, so they are interpreted as distances.

2.10. Centrality 53

• endpoints: bool - optional

If True include the endpoints in the shortest path counts.

• seed: integer - random state, or default None

Indicator of random number generation state. See Randomness. Note that this is
only used if k is not None.

2.10.5 Bridging Coefficient

The bridging coefficient described in Hwang et al. (2006) is a metric used to measure
the strength of connections between different groups or clusters within a network. In
the context of network analysis, it identifies how well a node acts as a bridge between
two distinct clusters or communities. The concept is derived from the idea that certain
nodes in a network have the ability to connect otherwise separate groups, facilitating
the flow of information or resources between them.

In a graph or network, nodes are often grouped together based on their proximity or
connection patterns, forming clusters. The Bridging Coefficient quantifies how much a
node is involved in connecting different clusters, acting as an intermediary between
them. This is particularly useful in the study of social networks, biological networks,
and communication systems, where the ability of a node to connect distinct
communities can play a key role in the dynamics of the network.

To calculate the Bridging Coefficient for a node, the following steps are typically
followed:

• Identification of Clusters: First, the network is divided into clusters or
communities. This can be done using various clustering algorithms or
community detection techniques.

• Node’s Role as a Bridge: Next, for each node, the number of distinct clusters it
connects is determined. If a node is only connected to other nodes within the
same cluster, it is not considered a bridge. However, if the node connects nodes
from two or more different clusters, it plays the role of a bridge.

• Coefficient Calculation: The Bridging Coefficient is then computed based on
how many clusters a node connects and the relative strength of these
connections. A higher Bridging Coefficient indicates a more significant role in
connecting diverse parts of the network.

In real-world networks, nodes with a high Bridging Coefficient are considered critical
for communication, information exchange, and resilience. For example, in social
networks, individuals with high bridging scores may act as central figures that

54 Chapter 2. Background

connect different social groups or communities. In biological networks, such nodes
may represent key proteins that facilitate interactions between different biochemical
pathways.

However, the concept of the Bridging Coefficient also has its limitations. It does not
account for the flow of information or the intensity of interactions between the
connected clusters, which may be critical in some applications. Additionally, the
coefficient depends on the clustering algorithm used to divide the network, which
may vary in effectiveness depending on the network’s structure.

Overall, the Bridging Coefficient serves as a useful tool for identifying key nodes that
facilitate the connectivity between different parts of a network, enabling better
understanding of network structure and function.

2.10.6 Bridging Nodes

Bridging Nodes described in Liu et al. (2019) refer to nodes within a network that
connect two or more distinct clusters or communities. These nodes are critical in
maintaining the overall connectivity of the network by serving as intermediaries
between otherwise isolated groups. In network analysis, bridging nodes are often
viewed as vital for the flow of information, resources, or influence across different
parts of a system, as they facilitate communication between otherwise disconnected
clusters.

In graph theory and network science, a community or cluster refers to a group of
nodes that are more densely connected to each other than to the rest of the network.
Bridging nodes, therefore, play an essential role in linking separate communities,
making them key to understanding the structure and behaviour of complex networks,
such as social networks, communication networks, or biological systems.

The concept of a bridging node is tied closely to the idea of modularity and
community detection, as it highlights the nodes responsible for bridging gaps between
different network sections. These nodes may exhibit different characteristics
depending on the network’s context, but they often have higher degrees of
connectivity than other nodes, allowing them to connect multiple groups.

Here is an overview of how bridging nodes are identified and why they are important:

• Identification of Communities: The first step in identifying bridging nodes is to
divide the network into distinct clusters or communities, typically using
community detection algorithms such as modularity optimization or spectral
clustering.

2.10. Centrality 55

• Connectivity Analysis: Once the network is divided into communities, the
nodes that appear in more than one community are considered potential
bridging nodes. These nodes typically have edges (connections) that link
different clusters. The more clusters a node connects, the more influential it
becomes as a bridging node.

• Node’s Role in the Network: Bridging nodes often serve as important conduits
for information flow within the network. They can connect isolated groups and
facilitate communication between them, allowing the network to function as a
whole rather than as fragmented sections. In social networks, for example,
bridging nodes may represent individuals who connect disparate social groups,
while in communication networks, they could represent routers or switches that
link different sub-networks.

• Significance of Bridging Nodes: The presence of bridging nodes can
significantly impact the structure and resilience of the network. They are often
crucial for ensuring the network’s connectivity, robustness, and functionality.
Their removal can result in fragmentation of the network, leading to
disconnection between otherwise connected communities.

• Applications and Implications: In social networks, bridging nodes might
correspond to individuals who connect different social groups or subcultures,
potentially enabling the spread of information or ideas. In biological networks,
bridging nodes could represent proteins or molecules that link different
biological pathways or systems, making them critical for cellular function. In
communication systems, bridging nodes might be routers or switches that link
various network segments and enable the efficient transfer of data.

Although bridging nodes are essential for maintaining network connectivity, they can
also be a vulnerability point. If a bridging node fails or is removed, the network may
become fragmented into separate, isolated communities. This makes bridging nodes a
critical focus in studies of network resilience and fault tolerance.

Overall, bridging nodes are fundamental components of networks that maintain
inter-community connections and ensure the cohesion and functionality of the overall
system. Their role is especially important in large, complex networks where various
sub-networks or groups need to interact and collaborate. Identifying these nodes helps
in understanding the flow and dynamics within networks, and can provide insights
into improving the efficiency, resilience, and performance of the network as a whole.

56 Chapter 2. Background

2.10.7 Bridging Centrality

Bridging centrality is a combination of the bridging coefficient and betweenness
centrality. It is a metric to quantitatively measure the extent of the bridging capability
of all nodes or edges in the network described in Hwang et al. (2008)

2.10.8 Data Collection

The methodology for data generation remained consistent throughout each phase of
the research. Network traffic data was gathered using the ns-3 discrete-event network
simulator (Riley and Henderson (2010)), version 3 release 29. This simulator allows
the creation of ad-hoc mesh networks where nodes exchange messages using a
predefined routing algorithm. During each simulation, the generated traffic is
recorded as PCAP files at each participating node.

For each run, a set number of nodes are randomly placed within a test area using one
of three node placement algorithms: NPART, BRITE, or GT-ITM. Each algorithm is
used in one-third of the simulation runs. Throughout each run, packets are sent
continuously from randomly selected source nodes to randomly chosen destination
nodes. The random selections are determined by the pseudo-random number
generator built into the simulation software.

The data collected in these simulations consists of data packets traversing a mesh
network, which is formed by spatially distributed nodes. These networks are referred
to as multi-hop ad-hoc mesh networks because the route from the source to the
destination involves several intermediary hops, as explained by Pešović et al. (2010).
The term ”ad-hoc” highlights that the network’s infrastructure is not predefined.

2.10.9 Data Extraction

Network traffic is captured by every node within the simulation and then aggregated
into a single comma-separated values (CSV) file. The captured traffic includes all
packets exchanged between the intermediate nodes along the route from source to
destination. Each captured packet contains both layer 3 (IP) routing information and
layer 2 (MAC) routing information. The layer 3 information includes the source and
destination IP addresses, while the layer 2 information contains the MAC address of
the next hop along the route.

2.10. Centrality 57

2.10.10 Link/Edge Prediction

Link or Edge Prediction is the process of forecasting the likelihood that an edge will
occur between two named nodes at a specific time in the future. This probability is
calculated using a model trained on previous occurrences of edges. Examples of link
prediction applications include predicting friendships in social networks (as discussed
in Berahmand et al. (2022)), co-authorship in citation networks (Makarov et al. (2019)
), and drug discovery (Wu et al. (2018)).

The most common method for predicting links is topology-based. This approach
assumes that the frequency of links during the training period determines their
temporal effect. Because there is no time element considered, this method can be
viewed as a static model. It works by analysing network structure and predicting new
links by matching nodes with similar patterns.

During the research on Node Importance in Temporal Dynamic Networks, outlined in
6, the first method employed in the analysis phase uses this static model, assuming
that all edges between two nodes are equally important. To do this, each edge is
assigned a weight based on its frequency during the simulation. The technique used
was a Graph Convolutional Network (GCN) with the ’GCNLayer’ described by Kipf
and Welling (2016), with no weight applied to the links.

The second method follows the same approach with the ’GCNLayer’, but this time,
link weights are determined by the occurrence of different packet types. To calculate
the weight of a link, we count the number of times each packet type occurs during a
specific time slice. This value is then multiplied by the frequency of the packet’s
occurrence, as outlined in Table 2.1. For consistency across experiments, the same
packet values are used throughout. The time slice consists of 200 packets, which
provided sufficient data for centrality measures, ensuring representative granularity.

Our use of ’GCNLayer’ we followed the parameters set out in the documentation, all
defaults were used where applicable.

• Parameters:

– in feats (int) – Input feature size; i.e, the number of dimensions of h(l)j.

– out feats (int) – Output feature size; i.e., the number of dimensions of
h(l+1)i.

– norm (str, optional) – How to apply the normalizer. Can be one of the
following values:

* right, to divide the aggregated messages by each node’s in-degrees,
which is equivalent to averaging the received messages.

* none, where no normalization is applied.

58 Chapter 2. Background

* both (default), where the messages are scaled with 1/cji above,
equivalent to symmetric normalisation.

* left, to divide the messages sent out from each node by its out-degrees,
equivalent to random walk normalisation.

– weight (bool, optional) – If True, apply a linear layer. Otherwise,
aggregating the messages without a weight matrix.

– bias (bool, optional) – If True, adds a learnable bias to the output. Default:
True.

– activation (callable activation function/layer or None, optional) – If not
None, applies an activation function to the updated node features. Default:
None.

– allow zero in degree (bool, optional) – If there are 0-in-degree nodes in
the graph, output for those nodes will be invalid since no message will be
passed to those nodes. This is harmful for some applications causing silent
performance regression. This module will raise a DGLError if it detects
0-in-degree nodes in input graph. By setting True, it will suppress the check
and let the users handle it by themselves. Default: False.

TABLE 2.1: Assigned Weights

Packet Type Weight
Route Request 1
Route Reply 2
Route Error 3
Route Reply Acknowledgement 4
Time-to-live exceeded 5
Data 6

The next method applied to link prediction is the GraphSAGE algorithm, as
introduced by Hamilton et al. (2017). GraphSAGE uses a stochastic generalization of
graph convolutions, specifically designed for link prediction tasks. For this approach,
the same packet weighting method is applied to generate link weights.

When using ’GraphSAGE’, all the defaults where used as set out in the following
documentation, where applicable.

• Parameters:

– in feats (int) – Input feature size; i.e, the number of dimensions of h(l)j.

– out feats (int) – Output feature size; i.e., the number of dimensions of
h(l+1)i.

2.10. Centrality 59

– norm (str, optional) – How to apply the normalizer. Can be one of the
following values:

* right, to divide the aggregated messages by each node’s in-degrees,
which is equivalent to averaging the received messages.

* none, where no normalization is applied.

* both (default), where the messages are scaled with 1/cji above,
equivalent to symmetric normalisation.

* left, to divide the messages sent out from each node by its out-degrees,
equivalent to random walk normalisation.

– weight (bool, optional) – If True, apply a linear layer. Otherwise,
aggregating the messages without a weight matrix.

– bias (bool, optional) – If True, adds a learnable bias to the output. Default:
True.

– activation (callable activation function/layer or None, optional) – If not
None, applies an activation function to the updated node features. Default:
None.

– allow zero in degree (bool, optional) – If there are 0-in-degree nodes in
the graph, output for those nodes will be invalid since no message will be
passed to those nodes. This is harmful for some applications causing silent
performance regression. This module will raise a DGLError if it detects
0-in-degree nodes in input graph. By setting True, it will suppress the check
and let the users handle it by themselves. Default: False.

The final method used in the analysis incorporates the temporal aspect of the
simulation, as outlined in the paper by Rossi et al. (2020). This approach utilises
continuous-time dynamic graphs represented as a sequence of events to predict links.
In this method, dynamic graphs update in real time by adding or removing link
information, so each link only influences the graph for the duration of its existence. As
with previous methods, the same weighting approach is used to generate edge
weights.

The simulation runs for 1800 seconds, providing a baseline for the creation and
destruction of links as the nodes move within the simulation area. To evaluate the
accuracy of link prediction, the simulation data is split into three sections: training,
validation, and testing, in a 70/15/15 ratio. The first 70% of the data is used for
training the prediction methods, the next 15% is for validating the trained model, and
the final 15% is used for testing the accuracy of the model. This split ensures that the
data used for training is not reused for validation or testing, helping to prevent
over-fitting.

60 Chapter 2. Background

2.11 Similarity Measures

The similarity measure are divided into Euclidean, Manhattan and Cosine, all of
which are programmatically calculated in the sections using following equations.

2.11.1 Euclidean Distance

Euclidean distance is a widely used metric for calculating the distance between two
points with numeric attributes. It is computed by taking the square root of the sum of
the squared differences between the corresponding elements of two vectors. This
method is particularly effective when working with low-dimensional data, where the
magnitude of the vectors plays an important role in measurement. A Euclidean
distance of zero means the two points are identical, whereas a large distance indicates
little similarity between them.

d (p, q) =
√

∑n
i=1 (qi − pi)

2

2.11.2 Manhattan Distance

Also referred to as city block distance or taxicab geometry, Manhattan distance
measures the distance between two points by summing the absolute differences of
their Cartesian coordinates. This measure is more suitable for high-dimensional data,
as the lower the value of the Manhattan distance, the closer the two points are to each
other.

d (p, q) = ∑ |(qi − pi)|

2.11.3 Cosine Similarity

Cosine similarity calculates the normalised dot product between two vectors. By
measuring the cosine of the angle between them, this metric determines how similar
two objects are. A cosine similarity value close to 1 indicates that the objects are highly
similar, while a value near 0 signifies that they are less similar.

The Cosine Similarity is calculated using the SciPy library - Sci - scipy.spatial.distance

Parameters:

• u: array like of floats - Input array.

• v: array like of floats - Input array.

2.11. Similarity Measures 61

• w: array like of floats - optional

The weights for each value in u and v. Default None, which gives each value a weight
of 1.0

63

Chapter 3

Related Work

As outlined in chapter 1, this research is divided into three phases: the first phase
examines topology generators (TGs), the second focuses on routing algorithms, and
the third investigates influential nodes within complex networks.

The first phase concentrates on TGs, which are essential for simulating network
topologies. These generators primarily differ in the methods they use to place nodes
within a network, as explained by Sanni et al. (2013), and in how the nodes are
represented, as discussed by Heckmann et al. (2003). Node placement strategies
generally fall into two categories: predefined models or real-world measurements.
Predefined models may follow a specific probability distribution, such as the Waxman
model proposed by Waxman (1988), or maintain certain node-to-node distances, as
seen in chain or grid node placement models. On the other hand, real-world
measurements rely on actual data from existing network topologies to inform node
placement.

TGs can be further categorised into two main types:

• Placement model: In this model, nodes are randomly positioned according to
probability distributions, like the BRITE model introduced by Medina et al.
(2001a).

• Measurement model: This approach positions nodes based on real-world data,
such as power transmission data, to reflect actual network conditions. One
example of this is the NPART model, proposed by Milic and Malek (2009).

Network topologies can also be classified into AS-level and router-level topologies, as
noted by Heckmann et al. (2003). In AS-level topologies, each node represents an
autonomous system (AS), and edges denote peering agreements between them. In
router-level topologies, nodes represent routers, and edges represent direct
connections between them.

64 Chapter 3. Related Work

Topologies can be categorised into AS-level and router-level types, as discussed by
Heckmann et al. (2003). In AS-level topologies, each node represents an autonomous
system (AS), with edges indicating peering agreements between the systems. On the
other hand, router-level topologies treat nodes as routers, and edges signify one-hop
connectivity between them. Router-level topologies offer two main options for node
placement: random placement and heavy-tailed distribution. In the random
placement model, nodes are distributed randomly across the test plane, while in the
heavy-tailed distribution model, the plane is divided into squares. Nodes are then
placed in each square based on a heavily-tailed distribution.

In the first phase of this research, Topology Generators (TGs) are examined. These
generators primarily differ in how node placement is determined, as outlined by
Sanni et al. (2013), and what each node represents, as explained by Heckmann et al.
(2003). Node placement can follow either a predefined model or be based on real-world
measurements. For predefined models, various probability distributions, such as the
Waxman model Waxman (1988), may be used. Alternatively, specific strategies, like
chain node placement (where nodes are placed along a line) or grid node placement (where
nodes are placed at the intersections of squares), can be employed. In contrast,
real-world measurements use actual data from existing network topologies to
determine node positions.

TGs can be grouped into two main categories:

• Placement model: Nodes are randomly positioned based on a probability
distribution, such as the BRITE model Medina et al. (2001a).

• Measurement model: Nodes are positioned based on real-world measurements,
such as power transmission data, as seen with the NPART model Milic and
Malek (2009).

As noted by Heckmann et al. (2003), topologies are typically divided into AS-level and
router-level types. In AS-level topologies, nodes represent autonomous systems (AS),
and edges represent peering agreements. In router-level topologies, nodes represent
routers, and edges denote one-hop connectivity. Router-level topologies provide two
primary placement options: random placement and heavy-tailed distribution. In the
random placement model, nodes are randomly distributed across the plane, while in
the heavy-tailed distribution model, the plane is divided into squares, and nodes are
placed within each square according to a heavily-tailed distribution. Once the values
are assigned, nodes are randomly positioned within each square.

Previous works, such as Sanni et al. (2013); Nowak et al. (2014); Medina et al.
(2001b,a); Milic and Malek (2009), emphasise the importance of correctly representing
network topologies in studies of ad hoc mesh networks. Magoni and Pansiot (2006,

65

2002, 2001) argue that topologies are typically modelled as undirected graphs, where
network devices are represented as nodes and communication links as edges.
Topology Generators (TGs) are commonly used to test network protocols, and the
choice of the initial topology can significantly influence the results, as demonstrated
by Magoni and Pansiot (2001); Heckmann et al. (2003). TGs can generate many nodes
within the test plane and replicate a physical representation of the topology. However,
few models are verified with real measurements, and there is often reliance on
mathematical models or power/signal transmission data.

Most research in this field is aimed at creating new or improved TGs, or at
highlighting the limitations or inadequacies of existing ones. While TGs provide
valuable metrics for studying topologies, there appears to be a gap in research focused
on assessing potential biases introduced by different TGs. Some works address this
issue by examining the realism of generated topologies.

Magoni and Pansiot (2006) compare three TGs for Internet topologies, evaluating
their effectiveness by comparing generated topologies with real-world Internet maps.
Similarly, Magoni and Pansiot (2002) analyse six TGs in terms of their accuracy by
comparing topology properties with real Internet maps. Several studies have explored
various aspects of TGs, including how realistic the generated topologies are. Rossi
et al. (2013) propose a framework for analysing Internet topologies using a multi-level
approach, based on graph measures and reference datasets, to determine if Internet
TGs meet their stated objectives and how realistic they are. In their work, Heckmann
et al. (2003) compare three TGs by evaluating the similarity between generated
topologies and real-world topologies.

The focus of many previous publications has been to analyse and compare existing
topology generators (TGs). However, this research distinguishes itself by shifting the
focus from the typical comparison of how well generated topologies replicate
real-world networks, to exploring whether the choice of TG—either selecting one over
another or using multiple generators—can introduce bias. This novel approach adds a
new perspective to the previous work, which has mainly concentrated on comparing
the availability and quality of TGs.

This research is particularly relevant to the wireless advanced metering infrastructure
(AMI) network, a system used for communication between smart utility meters and
utility companies. Unlike typical internet topologies, AMI networks do not rely on the
full TCP/IP protocol stack and have a distinct physical topology. A key characteristic
of AMI networks is the close correlation between building locations and node
connectivity, as highlighted by Nowak et al. (2014). A noteworthy feature of these
networks is the role of data aggregation points (DAPs), which are designed to collect
and transmit data. Gallardo et al. (2021) propose a machine learning-based algorithm
for optimizing the placement of DAPs in residential grids, creating a bipartite

66 Chapter 3. Related Work

structure with DAPs and feeder nodes. However, this research assumes that all nodes
are identical, which is a critical difference. In the context of adversaries targeting these
networks, identifying the TG used to place nodes could be a crucial factor in
determining the location of missing nodes.

The second phase of this research is centred on reconnaissance within Ad-Hoc Mesh
networks. The need for reconnaissance suggests the presence of hidden elements that
could be uncovered through various methods. Initially, Ad-Hoc Mesh networks were
designed with minimal or no security, assuming that security measures would be
applied at the application layer, as noted by Lopez et al. (2021). These networks, with
their open medium, dynamic topologies, and wide distribution, pose significant
security challenges, as discussed in Shi-Chang et al. (2010), Lou et al. (2009) .

In Ad-Hoc Mesh networks, data flows from a source node to a destination through
various intermediary nodes. This decentralised structure increases the potential for
infiltration, data alteration, or identity tracing, as emphasised by Olakanmi and Dada
(2020). As a result, it becomes clear that Ad-Hoc Mesh networks require robust
security measures and careful consideration of traffic encryption to function securely,
particularly in hostile environments.

One potential solution for encrypting traffic in these networks is the use of IPsec, as
suggested by Witzke et al. (2012). IPsec offers two modes: Transport mode and Tunnel
mode. The research recommends using IPsec in Tunnel mode to encrypt traffic in
Ad-Hoc Mesh networks, as outlined by López-Millán et al. (2023). IPsec includes two
key components: the Authentication Header (AH) and the Encapsulating Security
Payload (ESP), as described by Raza et al. (2010). To ensure that data reaches its
destination, either a new IP header is added, or routing information is left
unencrypted (in plain-text) to preserve routing functionality.

A recent study by Anajemba et al. (2020) introduces an updated encryption standard,
I-AES, in combination with a privacy database structure (PDS) to address privacy
concerns in the context of the Internet of Things (IoT). Given that IoT networks share
similarities with Ad-Hoc Mesh networks—both connect numerous low-powered
devices—this approach could be applicable to both types of networks, providing
further insights into securing communication within these environments.

Many studies, such as those by Siddiqui et al. (2007) and Rajendran et al. (2021), have
pointed out security flaws and impersonation attacks within networks, stressing the
importance of understanding the network architecture and routing schemes in ad hoc
mesh networks. This knowledge is becoming increasingly critical, particularly in
military contexts, where such security concerns are more pressing. Attackers often try
to gather detailed information about the network, such as its layout, security
measures, and data flow rules. This aligns with findings from Alshamrani (2020),
which also explores how similar tactics are used to attack software-defined networks

67

(SDNs). However, ad-hoc mesh networks differ from SDNs because of their highly
mobile nature, which adds an extra layer of complexity to their security challenges.

The focus of this research is on examining the variations in network traffic that might
be detected by external sources. This study particularly looks at data that would be
available if the inter-node connections were encrypted, aiming to enhance real-world
accuracy. The ultimate goal is to explore how choosing a specific topology generator
(TG) for node placement might lead to biased results and how this could impact
security.

The final phase of this study investigates the identification of influential nodes in
complex networks. There is significant cross-disciplinary interest in understanding
these influential nodes, with applications in areas such as disease spread Wang et al.
(2016), intelligent networks Faris et al. (2019), and even time series prediction
(Pravilovic et al. (2017). In the context of wireless sensor networks (WSNs) and
advanced metering infrastructures (AMIs), which are both types of ad-hoc mesh
networks, the research focuses on how specific data aggregation points (DAPs) receive
and process data. In these networks, the nodes not only collect data but also pass it on
to DAPs. The nodes play a crucial role in connecting the network and ensuring that
data is delivered efficiently.

The concept of identifying influential nodes extends to social networks as well.
Research by Song et al. (2016) discusses how, over time, the influence of individuals in
these networks changes as connections are made or broken. This concept of influence
maximization, where a set of ”seed” nodes is selected to impact the largest number of
people, has parallels in ad hoc mesh networks. For example, the connectivity between
nodes in a mesh network can influence how information spreads or is blocked.

Furthermore, this research investigates the use of centrality metrics to analyse node
importance. Jain and Reddy (2013) show how these metrics are applied to optimise the
placement of sink nodes in wireless networks, especially when dealing with real-time
video data. In ad-hoc networks, nodes with high centrality are often responsible for
forwarding large amounts of data. If these nodes are overburdened, they can deplete
their resources quickly, leading to issues such as delays or dropped connections.

Mobile sensor networks are another example where node centrality plays a crucial
role, especially when static sensors cannot be installed in hazardous environments, as
described by Howard et al. (2002). In military communications, nodes with high
centrality may serve as local hubs, making them potential targets due to the traffic
they handle, as Kim and Anderson (2012) note. In the case of disease dissemination,
identifying nodes with high centrality is equally important, as they can accelerate the
spread of infections, as discussed by Lawyer (2015).

68 Chapter 3. Related Work

In the study of complex networks, predicting future links is a key area of interest.
Berahmand et al. (2022) focus on the random walk algorithm, which they prefer for
predicting future links in a network. As part of this research phase, the use of various
mobility algorithms, including the random walk approach, will be examined.

While using centrality measures for identifying influential nodes is not new, papers
like Kim and Anderson (2012) suggest that betweenness and closeness centrality are
particularly useful, even though they can be computationally expensive. Other
approaches, such as LeaderRank Lü et al. (2011) and PageRank BrinS (1998), have
been used to identify influential nodes. More recently, the ANiceRank algorithm Yao
and Ji (2019) has been developed to enhance LeaderRank by considering the personal
attributes of nodes.

Finally, the concept of temporal networks is discussed by Kim and Anderson (2012),
who propose that temporal slices may lose their effectiveness when network
topologies change too rapidly. However, during this research, it was found that node
centrality tends to stabilise towards the end of simulations, meaning predictions for
identifying influential nodes remain accurate using the proposed methods.

Other recent work, like that in Rossi et al. (2020), suggests a new framework for
Temporal Graph Networks, which is applied to continuous-time dynamic graphs,
adding another layer of complexity and understanding in the study of network
behaviours.

69

Chapter 4

Phase 1: Topology Bias

As previously suggested, if a human were to place nodes within a test area, there is a
likelihood that a bias could be induced in the resultant experiment. This phase of
research then investigates the presence of bias in the initial placement of nodes in
artificial Ad Hoc Mesh Network topologies produced by different TGs. A
methodology is proposed to assess such bias and introduce two metrics to quantify
the diversity of the topologies generated by a TG with respect to all the available TGs,
which can then be used to select what TGs to use. The research set out to address the
following questions:

• Research Question 1: How to measure the difference between topologies
generated by distinct TGs? i.e. how to characterise the bias introduced by the
choice of a specific TG rather than using all the TGs?

• Research Question 2: How to choose what TG(s), to reduce such a bias?

The significance of research experiments depends heavily on the representativeness of
artificial topologies. Indeed, if they were not drawn fairly, obtained results would only
apply to a subset of possible configurations, hence they would lack the appropriate
generality required to port them to the real world. Although using multiple TGs could
mitigate this issue by generating topologies in several different ways, this would
entail a significant additional effort. Hence, the problem then arises of what TGs to
choose, among several available generators, to maximise the representativeness of
generated topologies and reduce the number of TGs to use. Experiments were carried
out on three well-known TGs, namely BRITE, NPART and GT-ITM as described in
section 2.2. In particular, given a fixed number of available TGs. A total of 35 features
were extracted from the data, and the extent of these features is tabulated in 4.1.
Visual inspection of the topologies from the NPART, BRITE and GT-ITM generators
seemed identical and distinguishing which TG produced which topology structure

70 Chapter 4. Phase 1: Topology Bias

was impossible. The results of the unsupervised experiment gave the result of an
optimum value of 2 classes.

TABLE 4.1: Final List of Features.

Spatial Randomness
0 Minimum cell count
1 Maximum cell count
2 Cell count range
3 Cell count mode
4 Cell count modal count

Inter-node distance features
5 Maximum euclidean distance
6 Minimum euclidean distance
7 Range of euclidean distance
8 Mean of euclidean distance
9 Mode of euclidean distance

10 Modal count of euclidean distance
11 Standard deviation of euclidean distance

Node density
12 Node density with radius of 5 units
13 Node density with radius of 10 units
14 Node density with radius of 20 units
15 Node density with radius of 30 units
16 Node density with radius of 40 units
17 Node density with radius of 60 units
18 Node density with radius of 80 units
19 Node density with radius of 100 units

Shared neighbours distribution
20 Shared neighbours distribution with radius of 5 units
21 Shared neighbours distribution with radius of 10 units
22 Shared neighbours distribution with radius of 20 units
23 Shared neighbours distribution with radius of 30 units
24 Shared neighbours distribution with radius of 40 units
25 Shared neighbours distribution with radius of 60 units
26 Shared neighbours distribution with radius of 80 units
27 Shared neighbours distribution with radius of 100 units

Clustering coefficient
28 Clustering coefficient with radius of 5 units
29 Clustering coefficient with radius of 10 units
30 Clustering coefficient with radius of 20 units
31 Clustering coefficient with radius of 30 units
32 Clustering coefficient with radius of 40 units
33 Clustering coefficient with radius of 60 units
34 Clustering coefficient with radius of 80 units
35 Clustering coefficient with radius of 100 units

The first location of the target Ad-Hoc Mesh Network’s nodes will, as was stated in
the introduction, enable an adversary to set up an interception point to disrupt a key

4.1. Bias Index 71

network link. A side benefit is that knowing which TG was used to produce the
placement can help locate unknown nodes when all of their locations are unknown.

4.1 Bias Index

A bias index was proposed for a TG concerning all the TGs. This was measured as the
distance between the topologies generated by the selected TG and those generated by
all the topologies. This distance is computed from 7 features for inter-node distances,
5 features for spatial distribution, and as many features as the 8 radii defined above
for (i) node density, (ii) shared neighbours distribution, and (iii) clustering coefficient.

To estimate the standardised mean, Hedges’ g is used as set out in Hedges (1981), to
calculate the difference between two populations, i.e. the average distance between
the elements of two different populations, measured in standard deviations. Although
in its original form it only applies to single-dimension elements, it is proposed to
extend Hedges’ g to multiple dimensions to quantify the difference between
topologies.

4.2 Methodology

Taking the basic premise set out in section 2.6 for machine learning algorithms, the
programmatically implementation uses the library scikit-learn which is based on the
paper -(Pedregosa et al., 2011) and the additional information need to replicate the
experiments is set out as follows:

4.2.1 Bernoulli Naive Bayes

This is the first of three Naive Bayes methods use for the analysis of the data as
described in section 2.9.2.1. For this experimentation we used sklearn’s
implementation as documented on the scikit-learn page for Bernoulli Naive Bayes
page 1 (sci, a), with no change to the default values, unless stated.

4.2.2 Gaussian Naive Bayes

The second of Naive Bayes methods as described in section 2.9.2.2. For this
experimentation, we used sklearn’s implementation as documented on the scikit-learn

1https://scikit-learn.org/1.6/modules/generated/sklearn.naive bayes.BernoulliNB.htmlbernoullinb

72 Chapter 4. Phase 1: Topology Bias

page for Gaussian Naive Bayes 2 (sci, c), with no change to the default values, unless
stated.

4.2.3 MultinomialNB Naive Bayes

The last of Naive Bayes methods as described in section 2.9.2.3. For this
experimentation, we used sklearn’s implementation as documented on the scikit-learn
page for MultinomialNB Naive Bayes page 3 sci (d), with no change to the default
values, unless stated.

4.3 Experimental Analysis

To investigate how to measure the difference between topologies, two experiments are
undertaken to identify if any features could give a better accuracy of predicting a TG
than a random chance. Data was taken from 3000 generated topologies consisting of
1000 topologies for each of the 3 TG. Each generation contained 1000 nodes in a
reference area that was 1000 x 1000 units long. To give more realistic results, the nodes
are free to establish connections with other nodes placed within a specific distance.
This distance (referred to as radius) is randomly chosen from a set of predefined
distances (5, 10, 20, 30, 40, 60, 80, 100 units) to mitigate any effect connection distance
could have on the simulations.

The first experiment was a path discovery exercise that generates network traffic using
the network utility ”Ping” and collects that traffic as PCAP (packet capture) data.
While evaluating delivery and packet loss statistics, the second experiment looks at a
network’s throughput. The trials are repeated several times to produce a sufficient
amount of data for the analysis phase. Relevant features are extracted from the data
through processing, and these features are then the foundation for the machine
learning methods discussed earlier in this work. This is done to compare the accuracy
of forecasting TGs to that of making random decisions.

As experiment 2 supports the hypothesis, what single or combination of TG’s is
considered to minimise the Hedges’ g and therefore best reflects the total population of
topologies.

2https://scikit-learn.org/1.6/modules/generated/sklearn.naive bayes.BernoulliNB.htmlsklearn.naivebayes.GaussianNB.html
3https://scikit-learn.org/1.6/modules/generated/sklearn.naive bayes.BernoulliNB.htmlsklearn.naivebayes.MultinomialNB.html

4.3. Experimental Analysis 73

Algorithm Correct Incorrect
K Means 66.63 33.37
Mean Shift 33.13 67.87
Agglomerative Clustering 33.90 66.10
DBScan 0.0 100.00a

Spectral 25.76 74.24
Birch 0.03 99.97

TABLE 4.2: Analysis for Untrained Analysis of
Features

a Note: All DBScan points marked as outliers.

Algorithm Correct Incorrect
Agglomerative Clustering 34.00 66.00
DBScan 0 100a

Spectral 34.05 65.95

TABLE 4.3: Clustering Algorithm using
Trained Analysis

a Note: All DBScan points marked as outliers.

4.3.1 Experiment 1

The first of the experiments examined was the use of ‘ping’ across random network
structures; this tests the reachability of a node on the network. A predefined number
of nodes was placed in a test area of 1000 x 1000 using one of the three TGs. The
number of nodes chosen were from a set {200, 250, 300, 350, 400,450, 500 or 600}. The
start and finish nodes of the ping message were next selected at random from among
the nodes included in the experiment. Every node’s PCAP files were gathered to
display the network discovery process and the ping’s network traversal. Some nodes
may produce empty files because they are not participating in the ”ping”; these files
are ignored. For the next five minutes after the experiment began, each node
performed a random walk to give the ’ping’ path a chance to break and create other
paths. A total of 5790 runs were recorded, with 1930 runs from each of the
classification’s classes, to balance the classes.

A simple unsupervised technique gave an accuracy of 67%, this increased to an
accuracy of 72% when the probabilistic algorithms were used. These techniques were
supplied will all features, however using the sequential feature selection (SFS) to
reduce the number of features involved in the analysis gave a final accuracy of 78.6%.
This showed that the “Clustering coefficient with a radius of 20 units” by itself
explained all the variance when comparing BRITE vs NPART and BRITE vs GT-ITM.
While the greatest accuracy for NPART vs GT-ITM was explained by the Inter-node
distance feature (Mode of Euclidean distance).

74 Chapter 4. Phase 1: Topology Bias

It was thought interesting to see how the wrongly predicted values were distributed.
The BRITE class was always classified correctly, while NPART and GT-ITM are often
misclassified as one another. This reinforced the finding of the unsupervised learning
that 2 of the TGs were difficult to distinguish.

To get clearer results, the analysis was then broken down into paired comparisons.
This showed that BRITE could be distinguished from either of the other two classes
with 100% accuracy while NPART and GTITM gave a maximum of 64% accuracy,
increasing to 77% when applying SFS.

Sequential Feature Selection and K nearest neighbour as set out in Benedetti (1977)
classification is used for the analysis stage of this experiment. k-fold cross-validation
set out in Stone (1974) used, and the accuracy score was averaged score used to test the
accuracy. The use of Sequential Feature Selection is to reduce the feature set to a subset
of the most relevant features to the problem by using accuracy as the performance
measure. This not only resulted in providing the most relevant features but also gave
the accuracy of the prediction. Assuming that the choice TG is fair then the probability
of obtaining a correct prediction is 1⁄3 or 33.333%. Using the same experimental data,
ignoring any features and randomly picking TG for each entry, using Python’s
(pseudo) random floating point number generator. Tabulating the results of both the
random choice, and the choice guided by the Sequential Feature Selector

TABLE 4.4: Classification Accuracy against Random Selection.

Algorithm Classification Accuracy (%)
GaussianNB 35.66
Random Selection 33.03

(Table 4.4), 33.03% is obtained compared with 35.66% when using SFS. This
experiment was conducted using k-fold cross-validation to resample the data, by
dividing the data into k group, where for this experiment case k is 5. Each group in
turn was held as a test, whilst the other groups were used to train the model. Multiple
runs consistently gave an average accuracy over the 5 folds, resulting in a 2% increase
from random chance, which could not be said to be statistically relevant.

4.3.2 Experiment 2

The second experiment undertaken consisted of the same 1000 by 1000 test area was
used, and the TG’s were used to place several nodes there. The nodes were then
randomly assigned to preconfigured topologies from all 3 TG, ranging in size from 50
to 100 nodes. Each node employed a random walk for the next five minutes after the
experimental start. These nodes were then picked at random to send packets to a sink
node, which created the traffic. This simulated a situation where there were

4.3. Experimental Analysis 75

competing routes and bandwidth restrictions. As opposed to a PCAP file, timing and
delivery statistics were taken for this experiment. These measurements were 1) an
average of all flows and 2) an average of all packets.

Again, using Sequential Feature Selection and K nearest neighbour, the features used
in this experiment were reduced to the subset of the most relevant to the problem by
using accuracy as the performance measure. This not only gives an indicator of which
were the most relevant features, but also an idea of the accuracy of the prediction,
(using the best features prediction against using a randomly picked prediction for
TG). Using an NS3 library ”ns3-network-performance-tool-v2” 4 a description can be
accessed using the link E2E, the features measured during the analysis were Network
Throughput, Packet Loss Ratio, End to End Delay (Min, Max, Median and Average)
and Jitter, which were measured both as an averaging of all network flows through the
network and as an averaging of all packets transmitted during the experiment.

TABLE 4.5: Classification Accuracy and Corresponding Features set for the First 5
Iterations of FSS.

Features Accuracy Feature IDs
1 0.6259981 11
2 0.61746557 11,1
3 0.53926863 11,1,4
4 0.52700189 11,1,4,5
5 0.45196711 11,1,4,5,0

Using the same assumption as with Experiment 1, where the choice of TG was ’fair’,
then the probability of getting a correct choice was 1⁄3 or 33.333%. With the same
Python’s (pseudo) random generator, a random choice as to the TG against the actual
was measured, with similar results of 0.3330 accuracy recorded. With the prediction
guided by the Sequential Feature Selector (Table 4.5), a maximised result of 0.6259981
is obtained from the best feature.

A similar analysis was used in Experiment 2, and k-fold cross-validation was used,
where k equals 5. The ’minimum end-to-end delay’ measuring feature was the only
combination of characteristics that provided the highest accuracy; hence, any
additional features decreased accuracy. When the choice of TG was based on the
characteristic of ”minimum delay incurred for a packet to traverse the network”
averaged over all packets during the respective experiment, the result of 62.599% can
be regarded to be statistically meaningful.

4https://github.com/neje/ns3-network-performance-tool-v2

76 Chapter 4. Phase 1: Topology Bias

TABLE 4.6: Average Value for Combination of TGs for Experiment 2 —Single Topolo-
gies

Feature BRITE NPART GT-ITM
trans-pack 54.8453 54.8136 54.8445
trans-flow 55.0582 55.0284 55.0594
throu-pack 27355.6239 27688.5487 27026.1971
throu-flow 589032.0771 621210.2999 601630.2906

tx-pack 1072.1736 1071.5547 1072.1566
tx-flow 34992.4028 35040.2717 35646.5816
rx-pack 730.6027 742.4705 721.8805
rx-flow 730.6027 742.4705 721.8805
loss-all 31.6733 30.7880 32.4961

loss-flow 31.6727 30.7874 32.4961
E2E-min-all 16.5445 14.3950 16.5833

E2E-min-flow 0.6874 0.6867 0.6874
E2E-max-all 3385.2774 3229.6150 3418.5973

E2E-max-flow 3385.2774 3229.6150 3418.5973
E2E-ave-pack 320.4106 307.5570 327.3486
E2E-ave-flow 277.3359 271.2663 283.9076
E2E-jit-pack 298.9616 292.2095 306.5563
E2E-jit-flow 318.7785 310.9312 326.4664

Note: Average rounded to four decimal places.

TABLE 4.7: Bias Index for Combination of TGs for Experiment 2

Feature BRITE NPART GT-ITM BRITE- BRITE- NPART-
NPART GT-ITM GT-ITM

trans-pack 0.0015746 0.00295112 0.00145226 0.0007233 0.0014921 0.0007701
trans-flow 0.0013882 0.00285795 0.00156149 0.0007778 0.0014483 0.0006716
throu-pack 0.0005424 0.01966216 0.02048955 0.0102483 0.0102094 0.0003426
throu-flow 0.0355235 0.03898646 0.00612829 0.0030575 0.0202070 0.0168320

tx-pack 0.0015762 0.00295155 0.00145106 0.0007227 0.0014923 0.0007708
tx-flow 0.0090793 0.00752873 0.01709739 0.0085780 0.0037669 0.0049980
rx-pack 0.0028131 0.02350926 0.02233989 0.0110867 0.0123047 0.0007952
rx-flow 0.0028131 0.02350926 0.02233989 0.0110867 0.0123047 0.0007952
loss-all 0.0009769 0.02053885 0.02092578 0.0104674 0.0106442 0.0001252

loss-flow 0.0009768 0.02053895 0.02092593 0.0104680 0.0106443 0.0001253
E2E-min-all 0.0176351 0.03613450 0.01859785 0.0094410 0.0176339 0.0086659

E2E-min-flow 0.0325921 0.04506267 0.03106953 0.0122679 0.0355718 0.0129038
E2E-max-all 0.0121476 0.03290375 0.02178707 0.0108917 0.0167048 0.0056328

E2E-max-flow 0.0121476 0.03290375 0.02178707 0.0108917 0.0167048 0.0056328
E2E-ave-pack 0.0051636 0.02549998 0.02164926 0.0108394 0.0130691 0.0019803
E2E-ave-flow 0.0000014 0.01668297 0.01805647 0.0090210 0.0087372 0.0006081
E2E-jit-pack 0.0002610 0.01800765 0.01968096 0.0098381 0.0094060 0.0007424
E2E-jit-flow 0.0006104 0.01925311 0.02005763 0.0100234 0.0100316 0.0003010

Note: Highlighted values are the lowest value for each fea-
ture.

4.3.3 Features Analysis

Carrying out a more detailed analysis of which features are weighted most for
classification by applying the Forward Sequential Selection (FSS) method as a
sequential feature selector. FSS works sequentially, starting with an empty set of
features and at each iteration adding the feature to the set that yields the highest
accuracy.

4.3. Experimental Analysis 77

TABLE 4.8: Bias Index of the Considered TGs.

Topology Generator(s) Bias index
NPART 1.890
GT-ITM 2.145
BRITE 4.282
BRITE + NPART 0.908
BRITE + GT-ITM 0.976
NPART + GT-ITM 2.430

TABLE 4.9: Classification Accuracy for the Three Classification Algorithms.

Algorithm Classification Accuracy (%)
GaussianNB 77.95
BernoulliNB 58.56
MultinomialNB 70.07

FIGURE 4.1: Classification Accuracy by Varying the Number of Used Features for a
Specific Fold.

Figure 4.1 shows how the classification accuracy varies with the number of considered
features, for a single fold, and that the highest accuracy is achieved with 4 features.

TABLE 4.10: Final List of Features

Feature rank Feature description
1st 31. Shared neighbours distribution with 30 units radius
2nd 6. Minimum Euclidean distance
3rd 30. Shared neighbours distribution with 20 units radius
4th 14. Node density with 20 units radius

Table 4.10 lists the four features yielding the highest classification accuracy. About the
three TGs employed in our tests, this feature analysis identifies the key differences in

78 Chapter 4. Phase 1: Topology Bias

the topologies produced by the various TGs. The exact application such topologies
must be employed for, or how much those qualities matter for the intended scenario,
will determine if this can introduce bias.

TABLE 4.11: Table of Accuracy against Number of Features for all Generators

Number of Accuracy Combination of
features features
1 0.668 31
2 0.769 31,6
3 0.783 31,6,30
4 0.786 31,6,30,14
5 0.786 31,6,30,14,13
6 0.786 31,6,30,14,13,12
7 0.786 31,6,30,14,13,12,15
8 0.786 31,6,30,14,13,12,15,16
9 0.786 31,6,30,14,13,12,15,16,20

4.3.4 Mislabelled Points

Taking the fact that when predicting the class of new data points when using a
probabilistic clustering, this gives only an average accuracy of 77.95%, the breakdown
of those mislabelled was investigated.

When all classes were analysed it was found that out of those mislabelled points,
47.8% of GT-ITM points are misclassed as NPART while 52.2% of NPART are
misclassed as GT-ITM. BRITE data points are never misclassed, which meant that
when comparing between pairs of TG’s BRITE vs NPART or BRITE vs GT-ITM the
were no misclassifications. hen looking at the comparison of NPART vs GT-ITM, it
was found that out of those data points that were misclassified, 75% of NPART was
misclassed as GT-ITM and 25% of GT-ITM were misclassed as NPART.

When all three classes are analysed together, BRITE is always categorised correctly
and GT-ITM and NPART are mislabelled equally. As a sample of training vs testing
data was randomly selected, this could explain the slight difference in percentage.

4.4 Research Question 1

How to characterise the bias introduced by the choice of a specific TG rather than
using all the TGs?

A TG’s bias index about all other TGs was proposed. The difference between the
topologies produced by the chosen TG and those produced by all the topologies was

4.5. Research Question 2 79

used to measure this. This distance is calculated using seven features for the distances
between nodes, five features for the spatial distribution, and as many features for the
node density, shared neighbour distribution, and clustering coefficient as there are
radii for each of the eight parameters that were previously determined.

TABLE 4.12: Classification Accuracy for the Three Classification Algorithms. As 10-
Fold Cross-Validation is Used, the Classification Accuracy al for each Fold is reported

as well.

Algorithm Fold-wise Classif. Accuracy (%) Ave Acc (%)
GaussianNB 78.6, 78.6, 77.6, 77.6, 77.6, 82.3, 78.3, 74.6, 79.0, 75.3 77.95
BernoulliNB 57.3, 56.6, 55.7, 58.7, 60.7, 60.7, 56.0, 60.3, 64.0, 55.6 58.56
MultinomialNB 71.7, 67.7, 78.3, 70.7, 69.0, 70.3, 66.0, 72.0, 64.7, 70.3 70.07

As previously mentioned, the bias index is calculated for each TG and between each
pair of TGs. The results are shown in table 4.8. BRITE topologies seem to deviate
significantly from NPART and GT-ITM topologies, and vice versa. This implies that
using each TG separately would result in a collection of topologies that is very
different from the set of topologies that includes all of the topologies. Conversely,
NPART appears to generate topologies that are less different from all accessible TGs’
topologies overall. According to Table 4.8, the findings also indicated that BRITE and
NPART, which have the lowest combined bias, seem to be the best options for a pair of
TGs.

The accuracy of the categorisation is evaluated to find out how well topologies can be
divided according to their TG. The higher the classification accuracy, the more
markedly diverse topologies generated by various TGs are from one another. While
selecting and optimising classifiers to improve classification accuracy is standard
routine, in this case, our primary focus is on establishing whether the accuracy can be
appreciably greater than 1/3. Three different probability distributions the
multinomial, Bernoulli, and Gaussian were employed to test if the outcomes are
consistently independent of the particular distribution. These are all illustrations of
the Naive Bayes classifier, which was selected due to its ease of use. The classification
accuracy for each of the three techniques is displayed in table 4.9, where it is evident
that every value is noticeably greater than 1/3. The accuracy results are an average of
k-folds, the individual values are set out in the Table 4.12

4.5 Research Question 2

How to choose what TG(s), to use to reduce such a bias?

Results from both experiments showed that when using the artificial networks
produced by a single TG, a detectable bias was introduced which could then

80 Chapter 4. Phase 1: Topology Bias

potentially jeopardise related experiments. This problem can be mitigated by
considering topologies generated by all three of the TGs to generate topologies. If
however only two TGs could be chosen, BRITE and NPART proved to be the TG pair
with the lowest bias. Finally, when only one TG was chosen, it would be logical to
choose the of TG that shows the least bias, which was the NPART TG.

It has been established that one or more of our features were biased, which allowed
the K nearest neighbour to categorise the findings with an accuracy of 62.599%. The
average values of the characteristics noted in experiment 2 are tabulated in Table 4.6.
It demonstrated that there was little difference for each TG or TG combination. This
might be due to the different population sizes, so to counteract this, the Hedges’ g is
computed, as explained in section 4.1. This uses the standardised mean difference
between two populations, and in this instance, the population would be each TG and
each pair of TGs, compared to all TGs.

Using Hedges’ g to look at the mean and standard deviation of each feature, this gave a
measure of distance between that of a single TG or pair of TG’s from all populations
within the experiment. If all TGs are used it would be like comparing two identical
populations and hence would have given a value of zero. Therefore looking at the
value of Hedges’ g that is closest to zero for the majority of features. As can be seen
from Table 4.7, the combination of the NPART TG and GT-ITM TG gives the lowest
Hedges’ g for the greatest number (2⁄3) of features.

81

Chapter 5

Phase 2: Routing Algorithm
Reconnaissance in Ad-Hoc Mesh
Networks

This phase of the research demonstrated that it is possible to predict the routing
algorithm based on the data transmitted by nodes in an Ad-hoc Mesh Network. The
investigation aimed to address the following questions:

• Research Question 3: What is the most accurate machine learning (ML)-based
approach for detecting the routing algorithm used in an Ad-hoc Mesh Network?

• Research Question 4: How does the detection accuracy change when
considering routing algorithms within the same class?

• Research Question 5: How is the detection accuracy affected by reducing either
the number of nodes from which data is collected or the amount of data
gathered from each node?

As previously mentioned, the study experiments rely on simulation data. In these
simulations, network traffic is encrypted, as would be expected in real-world
scenarios, meaning that only the metadata of the network is available for analysis.
There are several encryption methods, but for this study, IPsec was employed, as
outlined in Witzke et al. (2012).

IPsec operates in two modes: Transport mode and Tunnel mode. Research suggests
that Tunnel mode, as discussed by Reddy and Thilagam (2013), is optimal for
encrypting traffic in Ad-hoc Mesh Networks. IPsec defines two key components: the
Authentication Header (AH) and the Encapsulating Security Payload (ESP), as
explained by Raza et al. (2010). (2010). If each node had to decrypt the header data to

82Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

route the traffic, it would require additional computational power to manage the
overhead. As a result, to maintain efficiency, either a new IP header would be added,
or routing information would remain unencrypted (in plain text).

In a related study, Anajemba et al. (2020) explored privacy issues within the Internet of
Things (IoT), recommending advancements in encryption standards (I-AES)
combined with a privacy database structure (PDS). Similar to IoT networks, Ad-hoc
Mesh Networks involve numerous lower-powered devices connected through fewer
higher-powered devices.

The research in this phase focused on the routing of data within such networks.
Routing can be divided based on how each node manages its knowledge of the
network. These methods generally involve either storing this information in a table
updated periodically (Proactive Routing) or requesting routing information when
data transmission begins (Reactive Routing). This distinction forms the basis of the
Proactive and Reactive routing methods.

‘Proactive Routing’ (PR) involves a predefined table that holds the ‘next hop’ on the
path to a destination. This table is updated periodically via broadcasts, which spread
routing information across the network. On the other hand, ‘Reactive Routing’ (RR)
only discovers routes when a packet needs to be sent to a specific destination,
populating the routing table when necessary. When both methods are combined in the
same network, it is referred to as ‘Hybrid Routing’ (HR).

Hybrid Routing blends Proactive and Reactive approaches. The network is divided
into zones, where nodes within a zone use Proactive Routing to maintain routing
information for other nodes in the same zone. To communicate outside of the zone,
Reactive Routing is used to discover the path. Thus, nodes apply different routing
algorithms based on the destination node’s location in the network.

At the time of writing, there was limited simulation software available to fully
emulate Hybrid Routing for this research. Given that creating a custom simulator
could inadvertently introduce biases that would affect the study, the decision was
made not to use Hybrid Routing in the investigation.

5.1 Reconnaissance in Ad-Hoc Mesh Networks

Reconnaissance attacks on ad-hoc mesh networks are not a new concept. The work of
Alshamrani (2020) , which discusses attacks on software-defined networks (SDNs),
provides relevant insights. It suggests that if a part of the network can be
compromised, it could generate specific traffic patterns that an attacker could observe.
A non-intrusive method of gathering this information would be especially

5.2. Machine Learning for Traffic Analysis in Ad-Hoc Mesh Networks 83

advantageous. The task of identifying the routing algorithm becomes even more
crucial when investigating encrypted traffic, as in ad-hoc mesh networks, particularly
when probing port usage or embedded services.

From an adversarial perspective, a target network can span a large area. If an attacker
is located at one end of the network, they may not have visibility of traffic occurring at
the other end. In cases where data is being gathered within a limited range, it might
not capture all nodes involved in a transaction. To address this, a holistic approach
was taken in the research, focusing less on specific nodes and instead analysing
packets transmitted or received by individual nodes. Early attempts to differentiate
point-to-point traffic based on well-defined port numbers showed limitations, as some
programs use arbitrary ports to hide their activities Karagiannis et al. (2004).

5.2 Machine Learning for Traffic Analysis in Ad-Hoc Mesh
Networks

Machine learning (ML) has found various applications within ad-hoc mesh networks,
and its use in military mobile ad-hoc networks (MANETs) is discussed in Kant et al.
(2008). Since this study focuses on how data is routed through the network, ML is
primarily applied to route optimization, as demonstrated in the work of Mao et al.
(2018), Stampa et al. (2017). Upon reviewing the existing literature, it’s clear that ML
has been used extensively in many areas of ad-hoc mesh networks, including guiding
mobile nodes, as noted in Kuskonmaz et al. (2019).

Machine learning has also been applied in signal intelligence. For example, Jagannath
et al. (2019) highlight the use of deep learning for modulation classification.
Additionally, automata have been employed for channel assignment learning Sarao
(2019). While there is ample precedence for applying ML in ad-hoc mesh networks,
there is no universally accepted method or technique for doing so. As a result, the first
step in this phase of the research was to identify which ML technique yields the most
accurate results.

5.3 Methodology

Taking the basic premise set out in section 2.6 for machine learning algorithms, the
programmatically implementation uses the library scikit-learn which is based on the
paper -Pedregosa et al. (2011) and the additional information need to replicate the
experiments are set out as follows:

84Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

5.3.1 SVM with K-means

For Support Vector Machine as described in section 2.9.3. The implementation
followed the documentation 1 - sci (f).

5.3.2 Decision Tree

For Decision Tree as described in section 2.9.9. The implementation followed the
documentation 2 - sci (b).

5.3.3 Random Forest

For Random Forest as described in section 2.9.10. The implementation followed the
documentation 3 - sci (e).

5.3.4 Convolutional Neural Network

For Convolutional Neural Network as described in section 2.9.1. The specific
architecture can be summarised as follows:

Architecture Breakdown

• Convolutional Layers:

– conv1: A convolutional layer that takes 1 input channel (grayscale image)
and produces 8 output channels with a kernel size of (3, 5).

– conv2: Takes the output of conv1 (8 channels) and produces 16 channels
with a kernel size of (3, 5).

– conv3: Takes the output of conv2 (16 channels) and produces 32 channels
with a kernel size of (3, 5).

• Fully Connected Layers (Linear Layers):

– fc1: A fully connected layer that takes the output from the final
convolutional layer (flattened) and maps it to 128 features.

– fc2: A fully connected layer that reduces the dimensionality from 128 to 64.

– fc3: A final fully connected layer that outputs 3 values (perhaps
corresponding to 3 classes for classification).

1https://scikit-learn.org/1.5/modules/generated/sklearn.svm.SVC.html
2hhttps://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
3https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestClassifier.html

5.3. Methodology 85

• Activation, Pooling and Regularisation

ReLU activation functions are applied after each convolutional and fully
connected layer. Max-pooling with a window size of (2, 2) is applied after the
first two convolutional layers to reduce spatial dimensions. Additionally,
dropout layers can be introduced after fully connected layers to reduce
overfitting by randomly deactivating a fraction of neurons during training. This
is a common regularisation technique in CNNs.

5.3.5 Bernoulli Naive Bayes

For an explanation of the parameters used for Bernoulli Naive Bayes, see previous
section 4.2.1

5.3.6 Gaussian Naive Bayes

For an explanation of the parameters used for Gaussian Naive Bayes, see previous
section 4.2.2

5.3.7 Deep Forest Neural Network

This is a neural network implementation of a Deep Forest Neural Network or Neural
Decision Forest (NDF), which combines a deep neural network (to extract features)
with decision trees (for classification) and expands section 2.9.11 and for the
experiment during this phase the following architecture is employed:

Architecture Breakdown

The neural network consists of three primary classes:

• FeatureLayer (the feature extractor based on convolutional layers)

• Tree (a single decision tree, where each tree makes decisions based on features
extracted from the input)

• Forest (a collection of decision trees that aggregate predictions)

• NeuralDecisionForest (the entire model that combines the feature layer with the
forest of trees)

• FeatureLayer (Feature Extraction) Convolutional Layers:

86Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

– Conv1: 2 input channels → 8 output channels, kernel size (3,3), followed by
ReLU and max-pooling.

– Conv2: 8 input channels → 16 output channels, kernel size (3,3), followed
by ReLU and max-pooling.

– Conv3: 16 input channels → 32 output channels, kernel size (3,3), followed
by ReLU and max-pooling.

– Dropout: Applied after each convolutional layer to prevent overfitting.

• Tree (Decision Tree)

Each tree in the forest is a decision tree. It has a depth (depth), number of input
features (n in feature), a feature mask (which decides which features are used
for splitting at each node), and leaf probabilities (pi), which define the class
distribution at each leaf.

– Features: Each tree uses a subset of the features (used feature rate).

– Decision Layer A linear layer followed by sigmoid activation that
calculates the decision at each node in the tree.

– Route Probability@ This is computed based on the decision at each node
and passed through the tree layers to determine the final leaf probabilities.

• Forest (Random Forest of Decision Trees)

The forest consists of n tree trees, where each tree independently computes class
probabilities. The final output probability is the average of the probabilities
predicted by each tree.

• NeuralDecisionForest

The complete model consists of the feature layer (CNN) and the forest (decision
trees). The feature layer processes the input data, and its output is fed into the
forest for classification.

5.4 Research Question 3

To address the research question, a dataset was compiled with two classes—AODV
and OLSR—based on simulations. Before any meaningful investigation could be
undertaken, it was crucial to investigate how different combinations of network
packet fields influenced machine learning accuracy. This was done by applying the
same machine learning technique to various field combinations and comparing the
results.

To answer Research Question 3 (RQ3), the research process was divided into three
stages: (i) selecting suitable machine learning algorithms, (ii) extracting feature

5.4. Research Question 3 87

vectors from captured data, and (iii) feeding these vectors into the ML algorithms to
assess their accuracy in detecting the routing algorithm. For stage (i), all seven
machine learning algorithms introduced in Section 2.6 were tested to identify the
most accurate ones. The four algorithms with the highest accuracy were then chosen
for further analysis.

In stage (ii), each feature vector represented a sequence of P consecutive packets sent
by each of the N nodes. This approach allowed us to capture patterns in packet
transmission over time and space, which could help distinguish between the routing
algorithms. The average accuracy of these models over multiple experiments is shown
in Table 5.2.

It was found that the Random Forest (RF) algorithm achieved the highest accuracy
across several combinations. To simplify the analysis, the field combinations that
yielded the highest accuracy for the Support Vector Machine (SVM) algorithm were
used in subsequent experiments. The results showed that for the Convolutional
Neural Network (CNN), the highest accuracy—91%—was achieved when using the IP
header length as a single field. For SVM and RF, combining IP header length, Subtype
frame, and UDP length resulted in accuracies of 99.98% and 99.87%, respectively. For
Decision Trees (DT), a combination of frame length, IP header length, and UDP length
resulted in 99.94% accuracy.

TABLE 5.1: Packet Header Fields used to generate Feature Vectors.

Field Description
frame.len Length of frame
ip.hdr len Length of header
wlan.fc.subtype Management frames subtype
udp.length Length of the UDP header plus the UDP data

During the investigation, data was collected from network simulations, where for
each packet, all header fields up to Layer 3 were extracted and included in the feature
vector. The only exceptions were fields that were specific to the particular simulation
run (such as ‘frame.number’ and ‘frame.time epoch’) or the network topology used
(such as ‘ip.src’, ‘ip.dst’, ‘wlan.ta’, and ‘wlan.ra’). The resulting feature vectors were
composed of the four header fields listed in Table 5.1. To determine which field
combinations provided the best accuracy, all possible 15 combinations of these four
fields were tested.

The research identified the top three algorithms for routing algorithm detection:
Support Vector Machine (SVM) with K-Means, Decision Tree (DT), and Random Forest
(RF). Both the SVM and RF algorithms produced the best results when using the field
combination of ‘wlan.fc.subtype’, ‘ip.hdr len’, and ‘udp.length’. The DT algorithm
performed best with a combination of ‘frame.len’, ‘ip.hdr len’, and ‘udp.length’.

88Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

TABLE 5.2: Results from Field Combinations, 2 Classes

Combination CNN Acc (%) SVM Acc (%) RF Acc (%) DT Acc (%)
FL, HL, S, UL 0.7599 0.9998 0.9984 0.9992
FL, S, UL. 0.7361 0.9899 0.9971 0.9971
FL, HL, UL. 0.7353 0.9996 0.9984 0.9994
FL, HL, S 0.6025 0.9998 0.8642 0.9905
HL, S, UL 0.8054 0.9998 0.9987 0.9993
S, UL. 0.7193 0.9983 0.9786 0.9972
HL, S 0.8156 0.9998 0.6661 0.9900
FL, HL 0.5681 0.9947 0.9652 0.8357
FL, S 0.5281 0.9817 0.6546 0.9731
FL, UL 0.7383 0.9918 0.9917 0.9867
HL, UL 0.7332 0.9809 0.9917 0.9993
FL only 0.5299 0.8082 0.6451 0.5002
HL only 0.9152 0.9123 0.8807 0.8357
S only 0.8745 0.8896 0.6510 0.9366
UL Only 0.8374 0.9376 0.9600 0.9867

FL = Frame len, S = Subtype, HL = Header Len,
UL = UDP Len

Accuracy was found to decrease when considering routing algorithms within the same
’Reactive Routing’ (RR) class. Reducing the number of nodes in the network or the
amount of data collected from each node had minimal impact on detection accuracy.

The machine learning algorithms investigated were from two categories: parametric
and non-parametric. Parametric algorithms use weights and bias to match input data
to output data, while non-parametric algorithms construct a mapping function to find
the best fit from input data to output classes. Out of the seven techniques initially
considered, four were chosen for further analysis due to their high accuracy: CNN,
SVM, RF, and DT.

For the four selected algorithms, SVM, RF, and DT used the mean value of each
sample to classify the different routing algorithms, correlating to the number of
control packets within the sample. The CNN technique, on the other hand, focused on
groups of packets and their interactions, providing high accuracy when handling
full-size samples but showing decreased accuracy as sample size was reduced. All
four techniques demonstrated that the field ‘frame.len’ by itself gave the lowest
predictive accuracy.

When using convolutional neural networks for classification, the results showed that
CNN could match the performance of SVM when applied to two classes, but its
accuracy dropped when used with three classes. This suggests that CNN struggles
when combining information from different channels. This issue warrants further
investigation, as CNN’s accuracy was based on a single feature.

5.4. Research Question 3 89

Two scenarios were considered during the research: one involved classifying data
from Proactive Routing (PR) and Reactive Routing (RR), and the other focused on
classifying a single (PR) example and two (RR) examples. The findings were as
follows: in the first scenario, SVM achieved 100% accuracy, which dropped to 97.96%
in the second scenario. For RF, accuracy was 97.96% for two classes and 96.51% for
three classes. For DT, the first scenario resulted in 99.90% accuracy for two classes and
99.80% for three classes.

In the second scenario, the minimum sample size required to maintain accuracy was
investigated. It was found that SVM maintained its accuracy even when the sample
size was reduced to the smallest size—five nodes with five consecutive packets. This
indicates that it is highly likely that the routing protocol used within an Ad-Hoc Mesh
Network can be predicted with high accuracy based on traffic from just a small sample
(five) of randomly chosen nodes, using a minimum of five consecutive packets,
whether they are transmission or reception packets.

Given that each simulation could generate up to 100,000 packets, processing the entire
dataset for analysis would require excessive computational resources. To manage this,
the output of the simulations was divided into slices of 500 consecutive packets per
node to reduce computational cost. Subsequently, the number of techniques used for
experimentation was reduced.

Initially, seven techniques were considered, but this was deemed too many for the full
set of experiments. The techniques were then reduced to four. To determine which
techniques to eliminate, all were tested against two classes (AODV and OLSR) and
three classes (two from the (RR) class and one from the (PR) class), with the results
summarized in Table 5.3. Based on these results, the final selection of algorithms was
made, discarding Deep Forest Neural Network, Bernoulli Naive Bayes, and Gaussian
Naive Bayes, as they demonstrated the lowest average accuracy.

TABLE 5.3: Analytic Test with 2 and 3 Algorithm and Average Accuracy obtained.

Algorithm
Result

2 Class Acc 3 Class Acc Ave Acc

SVM with K-means 1.00 0.980 0.990
Random Forest 0.999 0.996 0.998
Convolutional NN 0.9895 0.932 0.960
Bernoulli Naive Bayes 0.9871 0.962 0.95655
Gaussian Naive Bayes 0.9579 0.926 0.88495
Deep Forest NN 0.919 0.670 0.7945
Decision Tree 0.999 0.997 0.998

To address RQ3, we examined the field combinations that yielded the highest
accuracy for each of the selected machine learning algorithms. The results,
summarized in Table 5.2, showed that for CNN, the single field ’ip.hdr len’ achieved

90Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

an accuracy of 91.52%. For SVM and RF, the field combination of ’wlan.fc.subtype’,
’ip.hdr len’, and ’udp.length’ resulted in an accuracy around 99%. Finally, for Decision
Tree (DT), the combination of ’frame.len’, ’ip.hdr len’, and ’udp.length’ reached an
accuracy of 99.94%.

It’s worth noting that for the 2-class analysis using the full sample size, SVM achieved
the highest accuracy of 100%, while both RF and DT reached 99.99%. However, when
the sample was reduced to just 5 nodes and 5 consecutive packets, SVM’s accuracy
dropped to 99%, while RF and DT performed slightly better with 99.1%. In the case of
the 3-class analysis, DT maintained an accuracy of 99.1%, while RF decreased from
99.1% to 98.9% and SVM dropped from 99% to 96.5%.

TABLE 5.4: Reduced Aperture Sampling for CNN.

Sample
Nodes Classes 50 40 30 20 10 5

500 2 0.880 0.864 0.892 0.869 0.887 n/a
3 0.749 0.752 0.770 0.763 0.795 n/a

400 2 0.872 0.873 0.879 0.847 0.862 n/a
3 0.735 0.744 0.791 0.755 0.804 n/a

300 2 0.885 0.892 0.884 0.863 0.866 n/a
3 0.750 0.734 0.739 0.763 0.767 n/a

200 2 0.902 0.902 0.912 0.874 0.846 n/a
3 0.736 0.763 0.776 0.789 0.745 n/a

100 2 0.859 0.835 0.822 0.793 0.745 n/a
3 0.700 0.707 0.701 0.718 0.660 n/a

50 2 0.817 0.803 0.784 0.735 0.709 n/a
3 0.715 0.702 0.709 0.693 0.642 n/a

40 2 0.807 0.803 0.751 0.735 0.691 n/a
3 0.674 0.721 0.673 0.648 0.610 n/a

30 2 0.788 0.761 0.746 0.713 0.665 n/a
3 0.709 0.705 0.681 0.717 0.668 n/a

20 2 0.775 0.752 0.722 0.697 0.662 n/a
3 0.658 0.682 0.679 0.668 0.677 n/a

10 2 0.728 0.718 0.678 0.667 0.640 n/a
3 0.590 0.613 0.587 0.560 0.533 n/a

5 2 n/a n/a n/a n/a n/a n/a
3 n/a n/a n/a n/a n/a n/a

The analysis shows that SVM delivers the highest accuracy when distinguishing
between two classes, while DT proves more effective when handling three classes.
Notably, DT maintains its accuracy even when the sample size is reduced, indicating
its robustness against limited data. These findings suggest that DT provides highly
accurate predictions, particularly when the algorithms belong to different classes, as
the differences in network traffic patterns are more pronounced.

However, when a third class is introduced, SVM experiences a slight drop in accuracy.
This suggests that the additional class shares similarities with an existing one, making
it harder for SVM to differentiate between them.

5.5. Research Question 4: 91

TABLE 5.5: Reduced Aperture Sampling for SVM with K Means.

Sample
Nodes Classes 50 40 30 20 10 5

500 2 1.000 1.000 1.000 1.000 1.000 1.00
3 0.980 0.980 0.980 0.980 0.977 0.976

400 2 1.000 1.000 1.000 1.000 1.000 1.00
3 0.980 0.980 0.980 0.979 0.979 0.976

300 2 0.999 1.000 0.999 0.999 1.000 0.998
3 0.980 0.979 0.979 0.979 0.9778 0.974

200 2 1.000 0.999 0.999 0.999 0.999 0.999
3 0.979 0.979 0.979 0.979 0.975 0.972

100 2 0.997 0.998 0.999 0.998 0.996 0.990
3 0.975 0.975 0.973 0.972 0.969 0.961

50 2 0.999 0.998 0.999 0.999 0.995 0.995
3 0.975 0.975 0.974 0.972 0.967 0.957

40 2 0.998 0.999 0.999 0.997 0.998 0.994
3 0.975 0.975 0.972 0.969 0.963 0.961

30 2 0.999 0.999 0.998 0.999 0.998 0.996
3 0.975 0.973 0.972 0.969 0.962 0.966

20 2 0.9996 0.9986 0.9993 0.9989 0.9986 0.9971
3 0.9740 0.9720 0.9706 0.9666 0.9676 0.9699

10 2 1.00 0.998 0.997 0.999 0.997 0.994
3 0.972 0.964 0.969 0.975 0.978 0.974

5 2 0.998 0.999 0.999 0.998 0.995 0.990
3 0.973 0.977 0.982 0.984 0.983 0.965

The combination of fields selected for the analysis reflects the underlying patterns of
routing behaviour. While these fields do not directly identify the type of protocol
used, they highlight the ratio of control packets to regular data packets—an indicator
of the routing style. This explains the results of the two-class analysis, where AODV
and OLSR were examined. These protocols use fundamentally different routing
mechanisms: AODV, part of the reactive routing class, discovers routes only when
needed, whereas OLSR, belonging to the proactive routing class, maintains routing
tables through periodic broadcasts.

Ultimately, the results suggest that the metadata analysed—derived from a
combination of packet fields—could potentially be used to identify individual packet
types involved in the routing algorithms, offering insights into how data flows
through the network.

5.5 Research Question 4:

The confusion matrices in Table 5.8, Table 5.9 ,Table 5.10 and Table 5.11 illustrate how
each technique—SVM, Random Forest, Decision Tree, and CNN—misclassifies
predictions among AODV, DSR, and OLSR. A slight imbalance exists in the three
classes within the matrices for SVM, Random Forest, and Decision Tree.

92Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

TABLE 5.6: Reduced Aperture Sampling for Random Forest.

Sample
Nodes Classes 50 40 30 20 10 5

500 2 1.000 1.000 1.000 1.000 1.000 0.999
3 0.997 0.997 0.997 0.996 0.995 0.995

400 2 1.000 1.000 1.000 1.000 1.000 0.994
3 0.997 0.997 0.997 0.995 0.995 0.993

300 2 1.000 1.000 1.000 1.0007 1.000 0.999
3 0.996 0.996 0.996 0.995 0.993 0.993

200 2 1.0005 0.999 0.999 1.000 0.999 0.999
3 0.994 0.994 0.994 0.993 0.992 0.993

100 2 0.998 0.999 0.999 0.998 0.997 0.995
3 0.992 0.992 0.992 0.992 0.991 0.993

50 2 0.999 0.999 0.999 0.998 0.998 0.996
3 0.993 0.992 0.992 0.993 0.993 0.993

40 2 1.000 0.999 0.999 0.999 0.998 0.992
3 0.992 0.993 0.992 0.993 0.993 0.992

30 2 0.999 0.999 0.999 0.999 0.998 0.996
3 0.993 0.993 0.993 0.993 0.994 0.994

20 2 0.999 0.999 0.999 0.999 0.998 0.996
3 0.993 0.993 0.994 0.993 0.994 0.994

10 2 0.999 0.999 0.997 0.998 0.997 0.993
3 0.994 0.995 0.996 0.995 0.996 0.991

5 2 0.999 0.999 0.999 0.998 0.996 0.991
3 0.995 0.994 0.997 0.997 0.994 0.989

For example, across 6,000 runs, the class selection was not strictly divided into 2,000
instances per class due to the randomness of the training/testing split. As a result,
some classes had slightly more instances while others had fewer. However, this
imbalance is corrected when averaging results over multiple repetitions and
incorporating them into other experiments.

To answer RQ4, the choice between SVM, RF, DT and CNN for the analysis is based
on the results in Table 5.2. The highest accuracy for any combination for the CNN is
91.52%, while the accuracy for SVM, DT and RF is in the region of 99%.

The most suitable analytical technique for this study appears to be the Decision Tree
(DT) method, as its accuracy remains consistent regardless of whether the sample size
is reduced or the classification moves from two to three classes.

Several key points emerge from these findings. Firstly, increasing the number of fields
analysed during the Convolutional Neural Network (CNN) evaluation seemed to
dilute its accuracy. This is evident in the results, where using three fields yielded a
maximum accuracy of 80%, compared to 91.52% when only a single field was used. In
contrast, the Support Vector Machine (SVM) analysis showed the opposite
trend—achieving a maximum accuracy of 99.97% with a combination of three fields,
but only 88% when relying on a single field.

5.5. Research Question 4: 93

TABLE 5.7: Reduced Aperture Sampling for Decision Tree.

Sample
Nodes Classes 50 40 30 20 10 5

500 2 0.999 0.999 0.999 0.999 0.999 0.999
3 0.977 0.977 0.978 0.975 0.974 0.976

400 2 0.999 0.999 0.999 0.999 0.999 0.999
3 0.977 0.975 0.999 0.974 0.974 0.975

300 2 0.999 0.999 0.999 0.999 0.998 0.998
3 0.975 0.974 0.976 0.974 0.974 0.977

200 2 0.998 0.999 0.999 0.999 0.998 0.998
3 0.975 0.974 0.974 0.976 0.976 0.982

100 2 0.998 0.998 0.997 0.996 0.997 0.995
3 0.971 0.971 0.972 0.976 0.980 0.985

50 2 0.998 0.998 0.998 0.998 0.996 0.995
3 0.975 0.976 0.979 0.981 0.988 0.989

40 2 0.998 0.998 0.998 0.998 0.997 0.994
3 0.975 0.976 0.979 0.981 0.988 0.989

30 2 0.998 0.998 0.998 0.998 0.997 0.994
3 0.978 0.980 0.983 0.986 0.991 0.992

20 2 0.998 0.999 0.999 0.998 0.998 0.995
3 0.983 0.984 0.985 0.989 0.993 0.992

10 2 0.998 0.998 0.996 0.997 0.996 0.994
3 0.990 0.991 0.994 0.994 0.994 0.992

5 2 0.998 0.998 0.998 0.996 0.994 0.991
3 0.995 0.994 0.996 0.996 0.994 0.991

TABLE 5.8: Confusion Matrix for SVM with K-Means.

Predicted
Real

AODV DSR OLSR

AODV 1971 0 16
DSR 0 2018 0
OLSR 2 0 1993

TABLE 5.9: Confusion Matrix for Random Forest.

Predicted
Real

AODV DSR OLSR

AODV 1984 0 3
DSR 0 2018 0
OLSR 9 0 1986

This difference can be explained by the way each algorithm processes data. When
CNN analyses multiple fields, its convolutional kernel searches for patterns across
both connected packets and the relationships between fields, focusing on how they
interact. With a single field, however, the kernel still looks across multiple packets but
focuses solely on identifying patterns within that one field.

On the other hand, SVM treats each sample as a single data point for its analysis. In

94Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

TABLE 5.10: Confusion Matrix for Decision Tree.

Predicted
Real

AODV DSR OLSR

AODV 1991 7 0
DSR 29 1991 5
OLSR 6 0 1971

TABLE 5.11: Confusion Matrix for CNN.

Predicted
Real

AODV DSR OLSR

AODV 2631 83 39
DSR 98 2224 526
OLSR 271 693 2435

this study, SVM averaged the values from each packet within a sample for a particular
field, collecting these data points from all samples to form its dataset. This means
SVM is less concerned with how fields interact across packets and more focused on
the statistical characteristics of individual fields.

As shown in Table 5.2, CNN produced higher accuracy when using a single field (such
as Header Length), while SVM and Random Forest (RF) performed better with a
combination of multiple fields (Header Length, Subtype, and UDP Length).
Interestingly, differences between routing algorithm classes were more distinguishable
when CNN analysed a single field across multiple packets, compared to analysing
multiple fields simultaneously. Conversely, SVM and RF more effectively identified
class differences when using multiple fields, especially when evaluating samples as a
whole rather than examining multiple packets independently.

For each machine learning algorithm, 10,000 samples were used per class, with a
standard k value of 5 — representing the number of groups into which data points
were split. The CNN method included both training and testing phases, where data
was randomly divided during each analysis. To minimize random error and align
with the other ML techniques, the CNN analysis was repeated five times, resetting the
model after each run, and the accuracy scores were averaged across all repetitions.
This approach ensured consistency with the k value used in cross-validation.

During CNN model training, the training dataset was loaded in randomly selected
batches until all data had been processed. This randomization introduced slight
variation into each repetition, reinforcing the robustness of the results.

The decision not to use normalized data, as opposed to non-normalized data, is
supported by the results shown in Table 5.12, which indicate a slight decrease in
accuracy with normalization. While it is standard practice to normalize data as part of

5.5. Research Question 4: 95

TABLE 5.12: Testing Normalisation.

Sample
Result

Normalised UnNormalised

500 x 50 0.968497 0.989498
400 x 50 0.988784 0.989284
300 x 50 0.988499 0.989213
200 x 50 0.989571 0.987570
100 x 50 0.985498 0.986998

the preparation for convolutional neural networks (CNN), a comparative run of the
experiment using both normalized and non-normalized data revealed that
normalization resulted in marginally lower accuracy, as reflected in Table 5.12. This
may be attributed to the nature of the selected fields for testing—three of which were
binary, taking values of either zero or a specific number, while the fourth had a limited
range of values.

The confusion matrices presented in Tables 5.8, 5.9, 5.10 and 5.11 illustrate the number
of correct and incorrect predictions, as well as how the misclassification were
distributed across the classes. The results show minimal misclassification for SVM,
Decision Tree (DT), and Random Forest (RF), aligning with the accuracy scores
observed in Table 5.3. Notably, the CNN analysis reveals a pattern: when AODV is
misclassified, it tends to be labelled as OLSR, while OLSR, when misclassified, is more
likely to be classified as DSR. The proportions suggest that CNN perceives OLSR as
being more similar to DSR, with AODV appearing further removed from both.

The reducing aperture sampling method explored in the research aimed to decrease
sample sizes while repeating the SVM, RF, DT, and CNN analyses. This approach was
applied to both the two-class (AODV and OLSR) and three-class (AODV, DSR, and
OLSR) experiments. Field selections were guided by the combinations that produced
the highest accuracy, as outlined in Table 5.3.

The findings highlight that for the two-class analysis, SVM, DT, and RF consistently
achieved the highest accuracy, effectively distinguishing between AODV and OLSR.
However, when a third class was introduced, RF maintained its accuracy, whereas
SVM’s performance showed a slight decline. In contrast, the CNN performed
reasonably well with two classes but experienced a significant drop in accuracy when
a third class was added. An edge case emerged when using either a minimal sample
of five nodes or five packets — under these conditions, the CNN model failed, as the
convolutional kernel was unable to effectively traverse the limited sample size.

96Chapter 5. Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks

5.6 Research Question 5:

This experiment aims to reflect real-world conditions, acknowledging that it’s often
impractical to capture all traffic transmitted to and from every node in a network. This
mirrors a scenario where an Ad-Hoc Mesh network is spread across a large area,
making it impossible for an observer to gather data from every point in the network.
The analysis shows that the same level of accuracy can be achieved using data from
just five nodes — whether connected or unconnected — and any five consecutive
packets, with both SVM and RF performing reliably under these conditions.

To address RQ5, the experiment focuses on using smaller feature vectors to account
for situations where fewer packets per node are collected, fewer nodes are observed,
or both. The packets and nodes are reduced using the same dataset applied to RQ3
and RQ4.

Various combinations of node count and packets per node are tested by iteratively
reducing both. The first step involves determining the number of packets, ”X,” to
remove at each iteration. The last X packets generated by a node are discarded — not
randomly, but consecutively — to better simulate real-world wireless networks, where
packet losses typically happen in bursts, as described by Da Silva and Pedroso (2019).

Similarly, the number of nodes considered is reduced iteratively, with ”Y” nodes
randomly removed at each step. The same methodology used in RQ4 is applied here
to assess how detection accuracy changes when fewer packets are collected or when
data comes from a smaller subset of nodes.

97

Chapter 6

Phase 3: Influential Node Detection
in Wireless Sensor Networks: A
Temporal and Adversarial
Perspective

The concept of influential nodes is a key research area, with applications spanning
technological and biological networks, as demonstrated in works like Zhang et al.
(2013) Buldyrev et al. (2010), Fath et al. (2007). This research phase focuses on Wireless
Sensor Networks (WSNs), specifically scenarios where sensors collect data, and nodes
relay this data to sink nodes for processing, as discussed in Jain and Reddy (2013).

Adversaries may attempt to exploit network communications by eavesdropping and
analysing content. Identifying influential nodes in advance could enable them to
target these nodes for maximum disruption. Conversely, network operators could use
such insights to optimise network performance by mitigating resource bottlenecks at
these critical nodes.

6.1 Influential Node Detection Problem Definitions

The problem of identifying influential nodes within complex networks is crucial for
addressing challenges such as:

• Adversarial Attack on Ad Hoc Mesh Network Unmanned Aerial Vehicles
(UAVs) often form cooperative networks to accomplish complex missions, as
detailed in Lopez et al. (2021). Adversaries may attempt to intercept

98
Chapter 6. Phase 3: Influential Node Detection in Wireless Sensor Networks: A

Temporal and Adversarial Perspective

communications, as suggested by Thandava Meganathan and Palanichamy
(2015). A more effective strategy might be targeting aggregation points—nodes
central to data flow—to disrupt operations or boost data interception.

• Sensor Network Data Aggregation Points WSNs comprise independent nodes
that gather environmental data and relay it to aggregation points for processing.
In hazardous environments, static sensors may not suffice, requiring mobile
sensors to ensure adequate coverage, as discussed in Howard et al. (2002).
Predicting nodes with higher data throughput can help optimise network
performance.

• Epidemiology Influential spreaders of disease, as studied by Malliaros et al.
(2016) and Sun et al. (2018), are analogous to facilitator nodes in networks.
Targeting these nodes in UAV mesh networks could isolate significant portions
of the network, disrupting data flow.

6.2 Facilitators within Ad-Hoc Mesh Networks

This research focuses on influential nodes, referred to as facilitators in this context.
Facilitators are critical nodes through which the majority of data flows to reach the
sink node. When a single node or a small group of nodes becomes the primary
conduit for data flow, it can lead to resource strain on these nodes, potentially
disrupting the network.

Similarly, military operations rely on mobile ad-hoc mesh networks to maintain
communication as personnel move through the field. These networks share the
dynamic and decentralised nature of the wireless sensor networks (WSNs) studied
here.

This research develops a method to identify facilitator nodes by determining which
nodes hold the greatest influence within the network. Identifying these influential
nodes is crucial because their high level of traffic makes them more prone to resource
depletion, posing operational challenges for the WSN. For attackers, pinpointing these
nodes offers strategic advantages, such as capturing facilitator nodes to alter the
network’s data flow or enhancing content interception by predicting their location.

The challenge of identifying facilitator nodes becomes even more complex in
networks with mobile structures. In such scenarios, as nodes shift to new positions,
existing data links break and new ones form, altering the pathways to the sink node.
Consequently, the nodes deemed most significant at the beginning of a deployment
may lose their influence as the network evolves, underscoring the dynamic nature of
facilitator nodes over time.

6.2. Facilitators within Ad-Hoc Mesh Networks 99

The questions that this phase of research aims to answer are:

• Research Question 6: When considering a dynamic ad-hoc mesh network with
a temporal dependent, what type of link prediction is the most effective?

• Research Question 7: Considering how a node’s influence changes over time.
How accurate is the nodal influence generated from the predicted data
compared with those calculated using the ground truth?

• Research Question 8: To mimic the real world, several mobility models will be
used to guide individual node’s movements during the simulations. Does the
mobility model that generates the data impact predicting nodal influencer
ranking?

Wireless Sensor Networks (WSNs) can exist in either static or dynamic forms. A static
WSN, commonly seen in the utility industry, involves networks like smart meters that
connect household devices and forward readings to central collection points (Parvin
(2019)). These networks typically have a central controller, and data is distributed
across the network to all nodes. However, as noted by Kariuki (2019), such
environments face significant security challenges, particularly regarding attacks on
the network.

Dynamic WSNs, on the other hand, often deploy mobile sensors to address scenarios
where static sensors cannot be optimally placed, such as in hazardous or toxic
conditions (Howard et al. (2002)). Mobile sensors improve coverage by adjusting their
positions based on the environmental requirements.

A study by Song et al. (2016) explores tracking influential nodes in social networks,
where users constantly add and remove connections, altering the impact of individual
nodes. This process of ”friending” and ”unfriending” mirrors the formation and
dissolution of data links in ad-hoc mesh networks. The study introduces the Upper
Bound Interchange Greedy (UBI) method, an extension of influence maximisation.
This approach identifies a set of ”seed” nodes in a social network to maximise their
influence on others. The research utilised data from three real-world social networks:
a mobile phone network where calls form edges between users, and two citation
networks, HepPh and HepTh, where edges represent paper citations.

While the paper effectively examines influential node tracking, its analysis relies
heavily on the UBI methodology and focuses on previously identified seed sets to
evaluate nodal influence. Furthermore, it uses a limited number of networks as the
basis for its conclusions.

In contrast, this phase of research employs centrality metrics to predict influential
nodes using traffic data from prior activity. The methodology involves data gathered

100
Chapter 6. Phase 3: Influential Node Detection in Wireless Sensor Networks: A

Temporal and Adversarial Perspective

from Monte Carlo experiments across 2,100 simulations. Unlike the Song et al. (2016).
study, this research leverages scenarios generated by three distinct mobility models to
provide a more robust and diverse analysis.

6.3 Methodology

Taking the basic premise set out in section 2.10.10 for link prediction, section 2.10 for
the centrality and the additional information need to replicate the experiments are
setout as follows:

6.3.1 Link prediction

The first set of parameters describe are those involve in the link prediction
methodologies. These are based on the papers Wang et al. (2020) for Digital Graph
Library and Rossi et al. (2020) for Temporal Graph Networks.

6.3.1.1 Weighted GCNLayer

For the methodology implementing the Weighted GCNLayer, a Graph Convolutional
Network model was created consisting of two Deep Graph Library layers, the Deep
Graph Library library GCNLayers, each GCNLayer performs message passing on all
the nodes then applies a fully-connected layer this can be found in the documentation
that can be found DGL. For this experiment the links were weighted following the
weighting set out in the Table 2.1

From the links that represent the connections between nodes within the our network,
25% were removed and used as the test while the remainder was used to train the
model. New links were calculated using the DGL built in ’DotPredictor’ function.

6.3.1.2 Non Weighted and Weighted GraphSAGE

Similar to the Weighted GCNLayer description, the methodology implementing the
Non Weighted and Weighted GraghSage, a Graph Convolutional Network model was
created consisting of two GraphSAGE layers, the Deep Graph Library library
SAGEConv was used for these layers, each computes new node representations by
averaging neighbour information as set out in the documentation that can be found
DGL. Two experiments were run in this section, the first where all links were treated
as having the same weight and the second following the weighting set out in the Table
2.1. And as for the GCNLayer, 25% of the links were used for the test set and the

6.3. Methodology 101

remainder was used to train the model. New links were calculated using the DGL
builtin ’DotPredictor’ function.

6.3.1.3 Weighted TGN

The weighted TGN was generated using the methodology set out in the paper Rossi
et al. (2020). During the investigation is was found that the use of the memory of a
node updated after an event was not necessary so was therefore not included in the
experiment.

The model hyper-parameters as set out in the above paper, the specific parameters
that are used during this experiment were as follows:

• BATCH SIZE = 200 - The is the size of the batch for the CNN.

• NUM NEIGHBORS = 10 - The number of neighbours to sample during each
iteration.

• NUM EPOCH = 50 - The number of epochs for each run.

• NUM HEADS = 2 - The number of heads used in attention layer.

• DROP OUT = 0.1 - The dropout probability for the CNN.

• UM LAYER = 1 - The number of network layers for the CNN.

• NODE DIM = 100 - The dimensions of the node embedding.

• TIME DIM = 100 - The dimensions of the time embedding.

• MESSAGE DIM = 100 - The dimensions of the messages.

6.3.2 Centrality

The centrality measure used within this phases utilises the Networkx suite of software,
based on the paper Hagberg et al. (2008). Where applicable all defaults were used.

6.3.3 Similarity Measures

As referenced in section 2.11, the similarity measures are all programmatically
calculated for Euclidean Distance, Manhattan Distance and Cosine Similarity using
the equations set out in the referenced section.

102
Chapter 6. Phase 3: Influential Node Detection in Wireless Sensor Networks: A

Temporal and Adversarial Perspective

6.4 Centrality Measures for Determining Influential Nodes in
Ad-Hoc Mesh Networks

Identifying influential nodes using centrality measures is a well-established concept.
Chen et al. (2012) suggests that betweenness and closeness centrality provide more
accurate results, though they come with higher computational complexity. In contrast,
Eigenvector centrality is considered less effective (Tulu et al. (2018a)). Algorithms
such as LeaderRank (Lü et al. (2011)) and PageRank (BrinS (1998)) have been
employed to identify influential nodes, with newer methods like ANiceRank (Yao and
Ji (2019)) enhancing LeaderRank by factoring in the personal attributes of the nodes.

The concept of temporal networks is discussed by Kim and Anderson (2012), who
propose that using temporal slices becomes problematic when the network topology
changes too rapidly. This implies that node centrality may also shift at the same pace.
Our research found that node centrality tends to stabilise toward the end of the
simulation, and predictions of highly influential nodes remain consistent with the
proposed methodology. Additionally, a recent framework by Rossi et al. (2020)
introduced Temporal Graph Networks, which apply to continuous-time dynamic
graphs.

In our study, we investigate the application of network centrality metrics to analyze
data. Similar techniques are seen in Jain and Reddy (2013), where optimising the
placement of sink nodes improved the quality of service (QoS) metrics for video data
streams in the network. Their findings show that higher centrality correlates with
increased network traffic through a node, highlighting its importance. As the data
transfer on these nodes grows, their resources are consumed more rapidly, supporting
the problem defined in Section 6.1.

This research emphasises the effectiveness of using QoS as a measure of influence. It
also highlights the importance of considering a node’s spatial placement and
proximity to other nodes. Our findings reaffirm that betweenness and closeness
centrality are superior indicators of influence, while bridging centrality provides
valuable insights into potential weaknesses in the overall network structure.

6.5 Research Question 6:

To answer this question, four types of predictive methodologies described in 2.10.10
were used to analyse the full data set of 2100 network simulations, consisting of 700
simulations for each of the mobility models described in 2.4. Each simulation lasted
for 30 minutes/1800 seconds. During the data generation stage, link weighting was

6.6. Research Question 7: 103

applied to three of the four techniques. Determining the types of packets that the
connection traffic was made of was crucial for establishing the accuracy of the results.

The predictive efficiency is determined by comparing the links predicted by a specific
link prediction method to the actual links in the ground truth data. The process
involves training the model on the first 70% of the data (ordered by timestamp),
validating it on the next 15%, and testing the link prediction on the final 15%. This last
segment corresponds to 9 minutes (540 seconds) of link data.

Efficiency is calculated by matching the links predicted at each timestamp with the
corresponding links in the ground truth, providing a measure of the method’s
accuracy.

TABLE 6.1: Link Prediction

Link Prediction Efficiency
Non weighted GraphSage 0.619
Weighted GraphSage 0.7319
Weighted GCNLayer 0.8007
Weighted TGN 0.9036

The efficiency of the different predictive methodologies is tabulated in Table 6.1. It
can be seen that three of the techniques that do not take into account the temporal the
aspect of the data gave a lower score of 10%.

6.6 Research Question 7:

Taking the technique that gave the highest score in Section 6.5, a new dataset was
generated for every simulation run. This second dataset consisted of the same data as
the original simulated data, but with the last 15% of the data being replaced by
predicted link data.

For each centrality measure, the four centralities: degree 2.10.2, closeness 2.10.3,
betweeness 2.10.4, and bridging 2.10.7, were calculated on the original simulated data
and this new hybrid data. This gave two time series of centrality.

As the simulation generates temporal-dependant data, the centralities are calculated
in temporal slices. Two arbitrary values were used for the analysis: 200 packets per
time-slices, and 3 seconds for packet ’expiration’. The time slice consisted of 200
packets, as these values gave enough data for the centrality measure to produce
representative granularity.

104
Chapter 6. Phase 3: Influential Node Detection in Wireless Sensor Networks: A

Temporal and Adversarial Perspective

The packet ’expiration’ was the length of time after which the packet was removed
from the simulation data. This built a mapping of the centralities over time, allowing
for a visual comparison between the original data and the predictive data.

TABLE 6.2: Similarity Results

Similarity Measures
Deg. Euclidean 3.2127
Deg. Manhattan 27.8883
Deg. Cosine 0.9696
Bet. Euclidean 0.1864
Bet. Manhattan 1.4979
Bet. Cosine 0.9910
Close. Euclidean 4.5931
Close. Manhattan 39.9619
Close. Cosine 0.9721
Bridg. Euclidean 0.0151
Bridg. Manhattan 0.1134
Bridg. Cosine 0.9959

Graphs were generated showing each centrality measure against the time series for
the original data with the predicted data and a visual comparison was undertaken.
This however proved to be inconclusive as the pairs of graphs were too similar.
Therefore the next steps used to employ the three similarity measures set out in 2.11
were calculated and the results tabulated in Table 6.2.

6.7 Research Question 8:

TABLE 6.3: Mobility Results

Column Probabilistic SMOOTH
Deg. Cosine 0.9677 0.9717 0.9718
Bet. Cosine 0.9911 0.9908 0.9909
Close. Cosine 0.9699 0.9746 0.9745
Bridg. Cosine 0.9958 0.9960 0.9962

To answer this question, the same methodology is employed as described in Section
6.7, but with more granularity. Each mobility model set out in Section 2.4 is treated as
an individual class. As in Section 6.6, the Cosine Similarity measure and centrality
measure divisions were repeated, and the results were tabulated in Table 6.3.

105

Chapter 7

Discussion

This research demonstrates how information unintentionally “leaked” from an Ad
Hoc Mesh Network can be exploited by an adversary. It spans three phases, covering
initial network setup, ongoing operations, and predictions of future interactions. Each
phase highlights methods to extract actionable intelligence from such networks.

7.1 Overview of Machine Learning Models

Before presenting results, it is important to understand the relative strengths and
weaknesses of the machine learning models used in this study. This helps
contextualise the observed performance differences across tasks.

106 Chapter 7. Discussion

TABLE 7.1: Strengths and Weaknesses of ML Models

Model Strengths Weaknesses
Support Vector
Machine (SVM)

Handles high-dimensional
data well; effective with
small to medium datasets;
kernel trick allows modelling
of non-linear patterns.

Requires careful parame-
ter tuning; less scalable to
large datasets; limited inter-
pretability.

Random Forest
(RF)

Handles non-linearity and
feature interactions well;
reduces overfitting via en-
sembling; outputs feature
importance.

Less interpretable; can be bi-
ased toward features with
more levels.

Decision Tree
(DT)

Interpretable; fast training
and inference; can handle
mixed feature types.

Prone to overfitting; instabil-
ity due to high variance.

k-Nearest Neigh-
bors (k-NN)

Simple to implement; non-
parametric; no training
phase.

Poor scalability; sensitive to
irrelevant features and data
scaling.

Naive Bayes Fast and efficient; performs
well on high-dimensional
sparse data; easy to imple-
ment.

Assumes feature indepen-
dence, which is rarely true;
less accurate on complex
relationships.

Convolutional
Neural Network
(CNN)

Excellent for grid-structured
data (e.g., images); captures
spatial hierarchies; automati-
cally learns relevant features.

Requires large labelled
datasets; computationally
intensive; less interpretable.

Deep Forest (gc-
Forest)

Capable of deep represen-
tation learning without
backpropagation; less data-
hungry than deep neural
networks; interpretable
structure.

Deep Forest implementations
such as deep-forest remain
relatively niche, with fewer
contributors and limited
integration into major ML
pipelines.

7.2 Phase 1: Identifying Node Placement Bias

In the first phase of this thesis, a methodology was presented to characterise the bias
introduced by the mechanism used to generate node placements within a test area.
This software, called TG, generates node placements based on predefined network
models or real-world measurements and the adjustable parameters that influence the

7.2. Phase 1: Identifying Node Placement Bias 107

process. The experimentation in this phase focused on three common generators:
NPART, BRITE, and GT-ITM. The first task was to use visual inspection of the
generated topologies. This could not identify differences between the topologies,
necessitating a systematic method to distinguish between them.

To analyse the generated topologies, spatial placement data was extracted for all three
generators. Initial analysis used silhouette clustering on unlabeled data to estimate the
number of natural “classes” or generators present. This class-agnostic algorithm
suggested an optimal division into two classes, despite the actual number being three,
indicating that the data lacked clear separation into distinct groups.

K-means clustering was applied to the data; this identified three clusters that aligned
with the actual number of generators. This achieved an accuracy of 67%. Next, a
probabilistic algorithm, Naive Bayes, was applied to the data and due to its simplicity,
increasing the accuracy to 72%. This was further improved by applying sequential
feature selection (SFS)—a method that optimises combinations of spatial placement
measurements—the accuracy rose to 78.6%.

To generate the accuracy, the data was split into training and testing sets. The model
was then trained on one portion and was then evaluated on the remaining test data to
ensure an unbiased assessment of its performance. A examination of improperly
classified samples revealed that errors were not evenly distributed among the three
classifications. NPART and GT-ITM shared the faults evenly, however the BRITE class
was continuously correctly classified. To enhance the outcomes, pairwise comparisons
between the classes were conducted.

This demonstrated that BRITE could be 100% accurately differentiated from NPART
and GT-ITM. However, distinguishing between NPART and GT-ITM achieved only
64% accuracy, which improved to 77% when using SFS.

SFS was again applied to identify the most informative features for classification.
Among the many extracted features, the “Clustering coefficient with a radius of 20
units” was most effective in differentiating BRITE from NPART and GT-ITM. For
distinguishing between NPART and GT-ITM, the “Inter-node distance feature – Mode
of Euclidean distance” proved most informative.

7.2.1 Research Question 1

Research Question 1 (RQ1) addresses the question, ”How can we characterise the bias
introduced by using a specific TG instead of considering all TGs collectively?” To
explore this, a ”Bias Index” was proposed to quantify the differences between features
observed in a single topology and the same features across the entire population of
topologies.

108 Chapter 7. Discussion

The magnitude of these differences provided an objective measure of bias.
Meanwhile, the variance in these differences revealed how distinct the TGs are,
enabling the differentiation of topologies generated by different TGs based on specific
characteristics, regardless of the overall extent of the differences.

7.2.2 Research Question 2

To answer Research Question 2 (RQ2), ”How can we select the TG or TGs to minimise
bias?”. The ideal solution would be to use a combination of all three TGs, as this
would provide the greatest diversity. However, this may not always be practical in all
experiments. Therefore, if the choice is limited to two TGs, the combination that gave
the lowest Hedges’ g value is NPART and GT-ITM, indicating minimal bias. If only a
single TG can be used, NPART is the preferred option, as it also produces the lowest
Hedges’ g in such cases.

7.2.3 Results and Observations

In this phase, the models were tasked with distinguishing between different node
placement strategies — specifically, uniform grid layouts, random deployments, and
clustered formations. The dataset included statistical descriptors of node degree, edge
length distribution, clustering coefficients, and topological centrality measures. These
features were extracted from synthetic networks generated under each strategy.

Table 7.2 presents the classification accuracy of each machine learning model.

TABLE 7.2: Node Placement Strategy Classification Accuracy

Model Accuracy (%)
k-Nearest Neighbors (k-NN) 66.63
Mean Shift (MS) 33.13
Agglomerative Clustering (AC) 33.9
Spectral 34.05
Gaussian Naive Bayes 77.95

7.2.4 Justification of Model Selection

In Phase 1, the core objective was to classify the topology generator (TG) responsible
for a given network topology based on spatial and structural features. This is
essentially a supervised multiclass classification task on moderately dimensional,
structured data. To this end, several machine learning models were selected to balance
interpretability, computational efficiency, and classification accuracy.

7.2. Phase 1: Identifying Node Placement Bias 109

Gaussian Naive Bayes (GNB) was chosen as the primary model due to its suitability
for continuous-valued features and its assumption of feature independence, which
holds reasonably well in the context of extracted network features such as inter-node
distance, clustering coefficient, and spatial distribution. GNB provided a baseline with
strong performance and low training overhead, making it a reliable and interpretable
first-pass classifier.

In parallel, k-Nearest Neighbors (k-NN) was explored due to its simplicity and
effectiveness in spatially driven classification problems. However, its sensitivity to
feature scaling and the curse of dimensionality made it less robust than GNB in the
presence of noisy or overlapping features across TGs.

For unsupervised analysis, clustering methods including MeanShift, Agglomerative
Clustering, and Spectral Clustering were used to assess whether natural groupings
existed among the topology features without relying on label supervision. This helped
validate the underlying assumption that TGs produce distinct, learnable patterns in
spatial distribution. These methods were particularly helpful in determining feature
discriminability before committing to a supervised classification pipeline.

Ultimately, Gaussian Naive Bayes was retained for its combination of performance (as
set out in Table 4.12, 78% classification accuracy for Gaussian Naive Bayes) and low
complexity, while the clustering models informed the feature engineering and bias
analysis pipeline. These decisions ensured that the methodology remained
lightweight and reproducible while offering actionable insights for topology generator
bias assessment.

7.2.5 Analysis

Gaussian Naive Bayes achieved the highest classification accuracy in this task,
followed by k-Nearest Neighbors. Unsupervised clustering approaches (Mean Shift,
Agglomerative, and Spectral Clustering) performed near chance level, highlighting
the difficulty of separating node placement biases without explicit labels.

Gaussian Naive Bayes (GNB): The strong performance of GNB suggests that the
features selected for this task (e.g., node degree distribution, clustering coefficient, and
centrality) provided enough signal for statistical separation across placement types.
Despite its simplifying assumption of feature independence, GNB benefited from the
fact that different placement strategies lead to distinct distributions of local graph
statistics, particularly in cases of tightly clustered vs. uniformly spread nodes.

110 Chapter 7. Discussion

k-Nearest Neighbors (k-NN): k-NN performed moderately well. Its effectiveness
stemmed from capturing local similarity patterns in feature space, especially when
certain topological metrics clustered tightly for specific node layouts. However, its
performance likely suffered due to high-dimensional feature space and the curse of
dimensionality. Feature scaling and the selection of distance metrics (e.g., Euclidean)
would have further influenced the results.

Unsupervised Clustering (MS, AC, Spectral): These models performed poorly,
with classification accuracy near random guessing. This reflects two primary
challenges: (1) the features may not cluster cleanly in the high-dimensional space
without supervision, and (2) unsupervised algorithms lack contextual understanding
of class labels, which reduces their ability to discover structure tied to specific
deployment strategies. Spectral Clustering, though more flexible than others, likely
failed to identify meaningful graph partitions without clearer cluster boundaries in
feature space.

7.2.6 Summary

This phase confirms that node placement strategies do manifest distinguishable
structural characteristics in network topologies — but only when leveraged by models
with strong probabilistic foundations (e.g., GNB) or local similarity metrics (e.g.,
k-NN). The poor performance of unsupervised methods emphasises the importance of
labelled data and domain-informed feature engineering. These findings suggest that,
although implicit, node placement leaves a detectable fingerprint, and that supervised
learning is better suited to uncover these patterns than generic clustering.

7.3 Phase 2: Identifying Routing Algorithms

Building on the node placement analysis, the second phase examined routing
algorithms. It focused on determining the routing algorithm used in an ad-hoc mesh
network by analysing network traffic characteristics. Several assumptions were made
about the network under investigation: it was uncooperative (the network did not
voluntarily provide information about its routing algorithm), its traffic was encrypted
(packet data could not be intercepted directly), and all data collection had to be
passive—no active querying or participation in the network was allowed.

7.3. Phase 2: Identifying Routing Algorithms 111

7.3.1 Research Question 3

RQ3 investigates: ”What is the most accurate machine learning (ML) approach for
detecting the routing algorithm in an ad-hoc mesh network?”

The process started by selecting data packet fields relevant to the routing mechanism.
Irrelevant fields were eliminated, and combinations of relevant fields were tested with
different ML algorithms to determine the most effective setup for accuracy. Table 5.2
summarises the results.

By holding the field combination constant and testing various algorithms, it was found
that Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF)
achieved the highest accuracy at 99.99%–100%, while Convolutional Neural Networks
(CNN) scored 98.95%. Other algorithms, such as Naive Bayes (95.79%) and Deep
Forest (91.9%), performed slightly worse. Sequential testing revealed that SVM and
RF were the most accurate, while other models still demonstrated strong performance.

7.3.2 Research Question 4

RQ4 explores: ”How does detection accuracy change when analysing routing
algorithms of the same class?”

Algorithms in the same class, such as AODV and DSR (Reactive Routing), share
similar mechanisms for determining routes. This raised the question of whether they
could still be distinguished, especially when mixed with data from other classes (e.g.,
Proactive Routing).

The analysis utilised the top-performing algorithms (SVM, RF, DT and CNN) from the
previous question. For a 2-class comparison, SVM achieved perfect accuracy (100%),
RF and DT scored 99.99%, and CNN reached 98.95%. However, in a 3-class scenario,
DT retained the highest accuracy at 99.7%, with RF slightly lower at 99.6%, while SVM
and CNN dropped to 98% and 81.2%, respectively. DT experienced the smallest
performance drop (0.2%), demonstrating its robustness across both 2-class and 3-class
analyses.

Further analysis (Table 5.2) highlighted the impact of field combinations. For CNN,
accuracy decreased as more fields were added, with a 3-field combination achieving
81.2% accuracy compared to 91.52% with a single field. Conversely, SVM, DT and RF
performed better with multiple fields, with SVM achieving 99.97% accuracy using
three fields compared to 88% with one.

This discrepancy arises because CNN analyses interactions across multiple packets
and fields, while SVM averages values from packets into a single data point. As a

112 Chapter 7. Discussion

result, CNN excels with single-field analysis over multiple packets, whereas SVM and
RF benefit from multiple fields analysed per packet. Overall, RF emerged as the most
reliable for distinguishing routing algorithms, particularly when transitioning from 2
to 3 classes.

7.3.3 Research Question 5

RQ5 examines: ”How does detection accuracy change when reducing either the
number of nodes sampled or the amount of data collected per node?”

For a 2-class analysis, SVM achieved the highest accuracy at 100%, while RF and DT
followed closely at 99.99%. However, with reduced samples (e.g., 5 nodes and 5
consecutive packets), DT and RF slightly outperformed SVM, scoring 99.1% versus
99%. In a 3-class analysis, DT maintained its accuracy of 99.1% , RF dropped to 98.9%
and SVM to 96.5%.

DT demonstrated no accuracy decline under reduced sampling conditions, indicating
greater stability. SVM, DT and RF excelled when analysing algorithms from different
classes, as their network traffic characteristics were distinct. However, when a third
class was introduced, SVM’s effectiveness diminished slightly, likely due to the
similarity between classes diluting its classification ability.

This analysis suggests that SVM, DT and RF can achieve high accuracy even with
minimal data—sampling any 5 nodes and 5 consecutive packets yields reliable results,
regardless of whether the nodes are connected or independent.

The use of CNN for routing algorithm classification, rather than its typical application
in image recognition, revealed intriguing behaviour. While CNN matched SVM’s
accuracy in 2-class scenarios, it struggled with 3-class problems, likely due to
difficulties combining information from different channels. Further research is
required to understand these limitations.

From Table 5.4, CNN’s performance also varied significantly depending on the field
combinations, excelling with single-field analysis but lagging with multiple fields. In
contrast, SVM, DT and RF consistently benefited from analysing multiple fields
together, further underscoring their suitability for scenarios involving complex,
multi-class data.

Among the machine learning approaches tested, RF consistently offered the most
robust performance across different conditions, making it the best choice for detecting
routing algorithms in diverse scenarios.

7.3. Phase 2: Identifying Routing Algorithms 113

7.3.4 Results

The classification accuracies of the four models on the routing protocol identification
task are presented in Table 7.3.

TABLE 7.3: Routing Protocol Identification Accuracy

Model Accuracy
SVM 99.0%
RF 99.8%
DT 99.8%

CNN 96.0%

7.3.5 Justification of Model Selection

In Phase 2, the research aimed to classify the routing algorithm used by an ad hoc
mesh network based on passively observed packet metadata. This presented a
multi-class classification problem over structured but noisy data, with a strong
emphasis on maintaining high accuracy under conditions of limited data availability
and encryption. Consequently, multiple machine learning models were selected based
on their robustness, ability to generalise from small samples, and performance under
dimensional constraints.

Support Vector Machines (SVM) were employed as a principal classifier due to their
effectiveness in high-dimensional feature spaces and their strong theoretical
foundations for binary and multi-class classification. SVMs are particularly
well-suited for sparse datasets where only limited features can be derived from
encrypted packet headers. Their use in conjunction with K-means clustering also
facilitated semi-supervised exploration of latent structure in the dataset.

This classifier achieved very high accuracy (99.0%) in full-data settings, benefiting
from its ability to create optimal decision boundaries in high-dimensional spaces.
However, SVM performance was slightly less stable when the dataset was constrained
to fewer packets or nodes, likely due to its sensitivity to the availability of support
vectors and class boundary clarity in smaller sample sizes.

Decision Trees were included for their simplicity, speed, and high interpretability.
Given that packet features are often hierarchical or categorical in nature (e.g., protocol
type, TTL ranges), Decision Trees provided a natural fit for modelling rule-based
distinctions between routing protocols.

This classifier performed strongly, achieving accuracy scores nearly equivalent to RF,
especially under reduced-data conditions. Its interpretable rule-based structure was

114 Chapter 7. Discussion

well suited to the categorical and numeric packet fields, such as ’wlan.fc.subtype’,
’ip.hdr len’, and ’udp.length’.

Random Forests, as an ensemble of Decision Trees, were leveraged to reduce
overfitting and improve generalisation. They consistently achieved high accuracy
across a range of test conditions and proved resilient when the dataset was
constrained to a small number of packets per node—a critical factor for adversarial
scenarios.

This classifier achieved the highest accuracy across all experimental conditions,
including multi-class classification and reduced-node/packet sampling. Its ensemble
approach, which aggregates the outputs of multiple decision trees, allowed it to
capture complex non-linear relationships between packet-level features while
maintaining resilience to noise and overfitting. This made RF particularly effective
when the feature space was shallow but structured, as is typical in encrypted
metadata scenarios.

Convolutional Neural Networks (CNNs) were tested to explore whether spatial or
sequential patterns within packet metadata could be exploited. While CNNs
performed well on larger input sizes, their performance degraded with reduced data,
and the computational complexity was not justified in all cases. However, they
provided useful contrast during comparative evaluation.

This classifier achieved the lowest accuracy of the evaluated models. While CNNs are
powerful for extracting spatial or sequential patterns, they typically require large, rich
datasets to learn effective representations. In this context, the limited number of fields
per packet and the abstract nature of the data made CNNs less effective compared to
tree-based and kernel methods.

The selected models were benchmarked across various combinations of routing
protocols (e.g., AODV, OLSR, DSR) and under progressive data reduction scenarios.
This allowed for a systematic evaluation of each classifier’s tolerance to limited
visibility—an essential consideration for realistic passive reconnaissance.

In summary, the superior performance of Random Forest and Decision Tree models
can be attributed to their capacity to handle structured yet limited features robustly,
making them particularly well-suited for passive traffic analysis under constrained
observation conditions.

7.3.6 Analysis

SVM, Random Forest and Decision Tree outperform CNN in this task. This can be
attributed to their ability to model complex and non-linear patterns in the input

7.3. Phase 2: Identifying Routing Algorithms 115

features. Routing protocol behaviours, especially in encrypted or aggregate contexts,
often involve nuanced and non-linear characteristics.

• SVM excels due to its kernel trick, allowing it to find optimal hyperplanes in
transformed feature spaces. It is particularly effective for non-linearly separable
data and benefits from its margin-maximising objective.

• Random Forest leverages ensemble learning to average across multiple decision
trees, reducing variance and enhancing generalisation. It captures feature
interactions well and is robust against overfitting.

• Decision Tree overfits the training data more easily, especially in the absence of
pruning or regularisation, limiting its performance on unseen data.

• CNN are typically effective when data exhibits spatial or temporal structure, as
in images or sequences. However, in this experiment, the features are likely not
spatially correlated in a way that CNNs can exploit. The curse of dimensionality
is less of an issue for CNNs due to parameter sharing, but without meaningful
local structure, their inductive bias becomes a limitation rather than a strength.

The SVM model achieved higher accuracy in routing algorithm classification due to
the specific nature of the feature space derived from packet metadata. The packet
headers used (e.g., TTL, source/destination, hop count) form a sparse but
well-structured vector space. SVMs are particularly effective in such conditions
because they construct optimal hyperplanes in high-dimensional space, maximising
margin between class boundaries. This proved advantageous when distinguishing
between protocols with subtle behavioural differences (e.g., OLSR vs AODV).

In contrast, Decision Trees and Random Forests are sensitive to feature splits and can
suffer from overfitting in small or noisy datasets, especially when features have
overlapping value ranges across classes. The CNN performed well on larger datasets
but was less stable when using reduced-aperture data, where SVM retained consistent
performance due to its robustness with small sample sizes.

7.3.7 Normalisation

It is standard practice to normalise data as part of preparing it for a convolutional
neural network (CNN). However, a test comparing normalised and non-normalised
data revealed that normalisation resulted in slightly lower accuracy, as shown in
Table 5.12. This outcome may be due to the nature of the chosen fields, three of which
were binary (taking values of either zero or a specific value), while the remaining field
had a limited range of values.

116 Chapter 7. Discussion

The confusion matrices in Tables 5.8, 5.9, 5.10 and 5.11 provide a detailed breakdown
of the predictions, showing both correct and incorrect classifications and how
misclassification occurred. In the cases of SVM, Decision Tree and Random Forest,
misclassification were minimal, consistent with the results in Table 5.3. For CNN, the
analysis showed a distinct pattern: when AODV was misclassified, it was more often
categorised as OLSR rather than DSR. Conversely, when OLSR was misclassified, it
was usually labelled as DSR.

From these proportions, it can be inferred that CNN perceives OLSR as being closer to
DSR, with AODV appearing more distinct and further away in its classification
framework.

7.4 Phase 3: Identifying and Forecasting Influential Nodes in
a Wireless Sensor Network

The final phase of the research focused on determining whether it was feasible to
identify influential nodes in a wireless sensor network and predict their future
behaviour. The study compared various link prediction methods and evaluated their
accuracy based on how well their predictions matched the actual data. The findings
revealed that the most accurate prediction method relied on timing.

Influential nodes in the network were defined as those with the highest centralities,
serving as a proxy for their level of influence. The centralities considered in the
analysis were degree, betweenness, closeness, and bridging. Degree centrality
measures the number of direct connections a node has. While this provides some
insight, it is not a precise indicator of influence because it focuses on quantity rather
than the quality of connections.

Closeness centrality indicates how near a node is to all other nodes in the network.
Nodes with high closeness centrality are important because they can quickly share
information with other nodes in the network.

Betweenness centrality measures how often a node appears on the shortest paths
between pairs of nodes. A node with high betweenness centrality is more influential
as it plays a crucial role in data flow. Bridging centrality evaluates the importance of
nodes in connecting distinct groups within the network. It is also useful for
identifying critical nodes that may disrupt information flow in the network.

The analysis involved comparing centrality values derived from the original data with
those from predicted link data. The first step was to track how centrality measures
changed over time and compare the results. Two key observations emerged:

7.4. Phase 3: Identifying and Forecasting Influential Nodes in a Wireless Sensor
Network 117

• Visually distinguishing between the data sets was challenging.

• The ranking of nodes by centrality stabilised over time, with higher-ranking
nodes maintaining their status as the simulation progressed.

7.4.1 Research Question 6

RQ6 asks, ”Which is the best technique for link prediction in a wireless network?” The
research concluded that Temporal Graph Networks (TGNs) were the most effective
approach, yielding prediction 10% higher than non-temporal techniques. This finding
makes sense because the data from the simulation of a time-dependent ad-hoc mesh
network naturally changes over time, and the temporal nature of the data provides
relevant, dynamic information. Methods that do not account for this temporal aspect
are missing vital details, reducing their effectiveness.

7.4.2 Research Question 7

RQ7 addresses the question, ”How accurately can the predicted nodal influence be
compared with ground truth values over time?” Visual comparisons of predicted and
actual data were inconclusive. Therefore, we applied similarity measures like
Euclidean Distance, Manhattan Distance, and Cosine Similarity. Euclidean and
Manhattan distances were less effective at distinguishing between different mobility
models because their measurements depend on the units they use.

On the other hand, Cosine Similarity proved more informative, providing a scale from
0 (completely dissimilar) to 1 (completely similar). The research demonstrated that
Cosine Similarity yielded average values of 0.98 across the four centralities,
suggesting that the predicted link data closely matched the original data.

7.4.3 Research Question 8

RQ8 asks, ”Does the mobility model used to generate data affect the prediction of
nodal influencer rankings?” The study used three mobility models that accounted for
random dependencies on temporal or spatial aspects, raising the question of whether
these models impact the prediction of nodal influence.

In general, the mobility model had minimal impact on the results. The degree of
influence was only marginally affected—by about 0.01%—for the Degree and
Closeness centrality measures when using Cosine Similarity. This suggests that the
link prediction results were largely unaffected by the mobility model. The slight
reduction in accuracy could be due to the column mobility model, which involves

118 Chapter 7. Discussion

spatial dependency and causes nodes to travel as a group. This model likely reduced
the amount of new connection data available for individual nodes, thereby slightly
influencing the prediction. This suggested that future work on this phase could
include empirical curves showing the average number of new connections per node
over time, but the phenomenon is consistent with both the mobility model design and
the observed improvements in classifier stability.

While connection rate data was not collected during this experiments, this behaviour
is reflected in the classification results: models such as Random Forest and Decision
Tree performed better under mobility scenarios with lower neighbour entropy. This
implies that reduced topological churn (i.e., fewer new neighbours) provides more
stable patterns for classification.

7.4.4 Results and Observations

The third and final phase of the study investigated the feasibility of identifying
influential nodes in a wireless sensor network (WSN) and forecasting their behaviour
over time. This was achieved through link prediction techniques applied to
time-dependent simulation data. The models were evaluated based on their ability to
accurately reflect the true influence of nodes, measured using network centrality
metrics.

Influence Metrics and Methodology

Influential nodes were defined using four key centrality measures:

• Degree Centrality: Number of direct links a node has.

• Closeness Centrality: How near a node is to all other nodes, indicative of
efficient information dissemination.

• Betweenness Centrality: The frequency with which a node appears on shortest
paths between other nodes.

• Bridging Centrality: A node’s role in connecting distinct communities within
the network.

Centrality values were computed on both original network data and the predicted
links from various models. Temporal evolution of these metrics was analysed to
observe whether node rankings remained consistent across time.

7.4. Phase 3: Identifying and Forecasting Influential Nodes in a Wireless Sensor
Network 119

Key Observations

• Centrality rankings stabilised over time — nodes that became influential
remained so as the simulation progressed.

• Visual differentiation between actual and predicted centrality plots was difficult,
prompting the use of numerical similarity measures.

• Cosine Similarity scores averaged around 0.98 across all centrality metrics,
indicating high similarity between predicted and actual node rankings.

Model Performance

Temporal Graph Networks (TGNs) outperformed other link prediction models,
achieving up to 10% higher accuracy. Their advantage is attributed to their design,
which captures the temporal dynamics inherent in ad-hoc mesh network data.
Non-temporal models lacked this capacity, resulting in a loss of important temporal
context.

Mobility Model Impact

Three different mobility models were used to simulate node movement, including
spatial and temporal dependencies. Results showed negligible impact on influence
prediction:

• Average differences in predicted centralities were less than 0.01% for Degree and
Closeness centrality.

• The Column Mobility Model had a marginal effect due to group movement,
reducing the diversity of link formation.

Both Column Mobility Model and the SMOOTH Mobility Model simulate correlated
or community-based node movement. In these cases, nodes tend to maintain stable
neighbour sets over time, resulting in fewer new link formations.

7.4.5 Justification of Model Selection

In Phase 3, the goal was to predict future influential nodes within a dynamic wireless
sensor network using passive data. This task posed significant challenges due to the
temporal and structural complexity of the network, requiring models capable of
learning from both topological features and temporal dependencies. The nature of this

120 Chapter 7. Discussion

task aligned closely with the field of temporal graph learning, guiding the choice of
machine learning techniques.

The Temporal Graph Network (TGN) was selected as the primary model due to its
design for temporal link prediction in evolving graphs. TGN integrates historical
interactions over time with structural embeddings, enabling it to learn patterns in how
node influence changes dynamically. This was particularly relevant for predicting
future facilitator nodes whose roles evolve as connections form and break over time.
Its high accuracy (approx. 90%) validated its suitability for this context.

For comparison, simpler graph-based models such as GraphSAGE and Graph
Convolutional Networks (GCNs) were also evaluated. These models provided a
baseline for spatial inference but lacked temporal granularity. While they performed
adequately when time windows were collapsed, they underperformed in real-time
forecasting scenarios.

Additionally, a range of centrality-based heuristics (e.g., betweenness, eigenvector,
degree centrality) were used as traditional benchmarks. These methods offered
interpretability and helped validate model predictions but were inherently static and
thus limited in temporal generalisation.

The inclusion of similarity measures such as Cosine and Euclidean distance further
supported the analysis by enabling a measure of alignment between predicted and
actual node importance rankings. These were useful in quantifying the predictive
quality of learned embeddings relative to ground-truth rankings.

Model selection in this phase was thus driven by three core considerations:

• the temporal nature of the data,

• the mobility and dynamism of node roles,

• the need for high-resolution link prediction over time.

The adoption of TGN over more traditional or static models reflects the increasing
need for adaptive learning in mobile network security and adversarial prediction. The
results confirm that temporal representation learning is a critical capability for
forecasting influential nodes in dynamic environments.

7.4.6 Analysis

These results confirm that influential node detection in a WSN is both feasible and
accurate when temporal information is incorporated. The effectiveness of TGNs
highlights the importance of temporal continuity in modelling evolving networks.

7.5. Comparative Summary of Results Across All Phases 121

The consistently high Cosine Similarity scores validate that predicted links can
reliably replicate the structure and influence hierarchy of the original network.

While some metrics like Euclidean and Manhattan distances were less informative
due to their sensitivity to scale, Cosine Similarity emerged as a robust measure for
comparing influence rankings.

The minimal influence of mobility models suggests that the underlying dynamics of
node influence are governed more by link formation patterns than by specific
movement behaviours. This robustness implies broader applicability of the approach
across varied WSN scenarios.

7.4.7 Summary

Phase 3 demonstrates that the forecasting of influential nodes in wireless sensor
networks is achievable with high accuracy using temporal graph-based models. This
has practical implications for pre-emptive routing optimisation, load balancing, and
failure recovery in dynamic wireless environments. Future work may explore
integrating Graph Neural Networks (GNNs) or attention mechanisms to further
enhance the granularity and interpretability of influence prediction.

7.5 Comparative Summary of Results Across All Phases

This study was structured into three distinct experimental phases, each focusing on a
critical challenge in the analysis and optimisation of Wireless Sensor Networks
(WSNs). The phases explored different Machine Learning (ML) and Graph-based
techniques for node classification, behaviour prediction, and influence modelling. The
table below and subsequent discussion summarise and contrast the main findings of
each phase.

122 Chapter 7. Discussion

Overview Table

TABLE 7.4: Comparative Summary of Results Across Phases

Phase Primary Task Best Performing Tech-
niques

Key Observations

Phase 1: Node
Placement Bias

Identifying spatial
clustering and node
deployment bias

Gaussian Naive Bayes
(77.95%)

Naive Bayes ex-
celled due to its
probabilistic han-
dling of feature
distributions. Mean
Shift, AC, and
Spectral performed
poorly due to dif-
ficulty modelling
sparsely clustered
data.

Phase 2: Routing
Protocol Identifica-
tion

Classifying routing
protocols from node
behaviour

Support Vector Machines
and Random Forests

Both models per-
formed well due
to their capacity to
separate non-linear
patterns and handle
noisy or overlap-
ping features. CNN
underperformed
due to sensitivity to
poorly scaled input
data and curse of
dimensionality.

Phase 3: Influential
Node Detectionn

Predicting and rank-
ing key nodes in a
dynamic WSN

Temporal Graph Net-
works (TGN) with Cosine
Similarity (avg. 98%)

TGN effectively cap-
tured the temporal
evolution of node
centrality. Cosine
similarity was ro-
bust in validating
prediction quality.
Mobility models
had minimal im-
pact.

7.5. Comparative Summary of Results Across All Phases 123

Cross-Phase Analysis

Each phase addressed a distinct dimension of WSN behaviour, requiring tailored
analytical approaches:

• Phase 1 leveraged density-based and probabilistic models to detect node
placement bias. It demonstrated that simple statistical classifiers such as Naive
Bayes can outperform complex clustering methods when spatial distribution is
highly structured.

• Phase 2 showed the strength of supervised learning models in distinguishing
between routing protocols. SVMs and Random Forests performed reliably due
to their robustness in handling high-dimensional feature spaces and non-linear
separability, while CNNs struggled due to insufficient feature scaling and
dimensional complexity.

• Phase 3 extended the analysis into temporal forecasting using dynamic graph
learning. The success of Temporal Graph Networks highlighted the critical role
of temporal data in modelling real-time systems. Centrality metrics and
similarity comparisons validated the consistency and accuracy of predictions.

7.5.1 Rationale Behind Model Selection

The selection of machine learning models across all three experimental phases was
guided by a combination of theoretical suitability, empirical effectiveness, and the
nature of the data available. In Phase 1, simpler probabilistic models such as Gaussian
Naive Bayes (GNB) were prioritised due to the statistical regularity and independence
assumptions of spatial features. While more complex ensemble methods like Random
Forests were later evaluated, initial emphasis was placed on interpretable models that
could highlight the contribution of specific topology characteristics. Unsupervised
methods, though initially considered for their class-agnostic approach,
underperformed due to the subtlety of clustering differences and high-dimensional
feature space.

In Phase 2, the decision to test Support Vector Machines (SVM), Random Forests (RF),
and Decision Trees (DT) reflected their proven robustness in classifying non-linear and
overlapping feature spaces typical of encrypted routing behaviour. Although CNNs
are conventionally used in spatial domains, they were included to explore whether
sequential or packet-based features might exhibit spatially structured patterns
amenable to convolutional processing. Similarly, Deep Forest was tested for its
promise of deep representation learning without requiring extensive data, though its
relative novelty presented tuning challenges. The use of multiple field combinations

124 Chapter 7. Discussion

and variations in sampling size further justified ensemble and margin-based methods,
which maintained high performance under constrained conditions.

For Phase 3, model selection was driven by the temporal nature of the data. Temporal
Graph Networks (TGNs) were favoured for their ability to model dynamic link
evolution, outperforming static graph learning methods. While Graph Neural
Networks such as GraphSAGE were tested, they lacked the capacity to incorporate
fine-grained temporal transitions between snapshots. Additionally, interpretability
considerations played a role in evaluating centrality-based influence metrics,
balancing model complexity with actionable insight. This tiered model selection
strategy ensured alignment between the learning approach and the specific structural,
behavioural, and temporal nuances of each phase.

Concluding Remarks

Collectively, the three phases provide a comprehensive framework for analysing WSN
dynamics—from static spatial structure to temporal influence propagation. The study
underscores the importance of selecting ML models that align with the underlying
data characteristics: probabilistic models for spatial bias, ensemble classifiers for
behavioural classification, and temporal graph learning for dynamic prediction.

This tiered approach could serve as a modular blueprint for future WSN optimisation
systems, enabling both static analysis and real-time adaptive strategies.

The findings highlighted that even a small amount of information can be passively
collected from an ad hoc mesh network, offering valuable insights without direct
intervention.

125

Chapter 8

Conclusions

8.1 Overall Findings

This research demonstrates that passive information gathering can reveal critical
insights about uncooperative ad hoc mesh networks, spanning three key phases:
identifying node placement bias, detecting routing algorithms, and Influential Node
Detection. Each phase builds upon the last, forming a cohesive exploration of how
seemingly minimal, passively collected data can be used to extract meaningful
intelligence.

Phase One established that the choice of topology generators (TGs) used to simulate
ad hoc mesh networks introduces measurable bias into node placements. A ”Bias
Index” was proposed to quantify these differences, and experiments with NPART,
BRITE, and GT-ITM revealed that BRITE-generated topologies were distinctly
clustered. These findings underscore the importance of considering TG-induced bias
when designing network simulations, as failing to do so may skew experimental
results and limit real-world applicability.

Phase Two explored whether machine learning (ML) techniques could accurately
identify routing algorithms based on passively collected network traffic. The study
confirmed that even when traffic was encrypted, metadata analysis — focusing on
fields like wlan.fc.subtype, ip.hdr len, and udp.length — enabled accurate
classification. Decision Tree (DT), Support Vector Machine (SVM), and Random Forest
(RF) models achieved near-perfect accuracy (99.99–100%) for two-class routing
algorithm detection, while DT remained the most stable when expanded to three
classes. Notably, reducing the sample size — to as few as five nodes and five
consecutive packets — had minimal impact on accuracy, suggesting that only small
data samples are required for reliable routing algorithm identification.

126 Chapter 8. Conclusions

Phase Three shifted focus to influential node detection within a dynamic wireless
sensor network. The study compared link prediction techniques and found that
Temporal Graph Networks (TGNs) outperformed non-temporal methods by 10%,
leveraging time-dependent changes in node connectivity. Centrality metrics —
including Degree, Betweenness, Closeness, and Bridging — provided a means of
ranking node influence, with Cosine Similarity achieving an alignment score of 0.98
when comparing predicted and actual node rankings. Interestingly, mobility models
had minimal effect on prediction accuracy, though spatially dependent models like
column mobility showed a slight reduction, likely due to nodes moving in
coordinated groups. Collectively, these findings highlight the broader implications of
passive data gathering. Across all three phases, the research revealed that even
limited, encrypted network data can be exploited to uncover node placement
strategies, identify routing algorithms, and forecast influential nodes — all without
direct network interaction. This not only exposes vulnerabilities in ad hoc mesh
networks but also offers a framework for further studies into network dynamics,
especially in adversarial contexts.

8.2 Further Work

The following are examples of further work that align with the 3 phases.

8.2.1 Network Topology Generator (Chapter 4)

Future research could refine methodologies for predicting missing node placements
based on observed node locations. This could involve leveraging the random seed
values used to initialise topology generators (TGs), which influence the deterministic
placement of nodes. By understanding or controlling these seeds, it may be possible to
better reconstruct or predict missing node positions based on observed patterns.

8.2.2 Routing Algorithm Prediction (Chapter 5)

Building on routing algorithm identification, future work could focus on using the
identified algorithms to predict data packet paths, enhancing an adversary’s ability to
anticipate routing behaviour.

8.2. Further Work 127

8.2.3 Influential Node Prediction (Chapter 6)

Further research could explore the accuracy and time horizons for future influential
node detection nodes. Extending the forecasting capabilities of these algorithms
would offer deeper insights into network dynamics.

Collectively, these areas of future work would expand our understanding of passive
information gathering and its applications in uncooperative ad hoc mesh networks.

129

Bibliography

Deep graph library (dgl). URL https://docs.dgl.ai/en/0.8.x/index.html. ns3-

network-performance-tool-v2.

https://github.com/neje/ns3-network-performance-tool-v2.

Scipy. URL https://docs.scipy.org/doc/scipy/reference/generated/scipy.

spatial.distance.cosine.html.

Warfighter information network-tactical (win-t). https://gdmissionsystems.com/

communications/warfighter-information-network-tactical. Accessed:
2023-06-26.

scikit-learn for naive bayes bernoullinb, a. URL
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.

BernoulliNB.html#sklearn.naive_bayes.BernoulliNB.html.

scikit-learn for decision tree classifier, b. URL hhttps://scikit-learn.org/stable/

modules/generated/sklearn.tree.DecisionTreeClassifier.html.

scikit-learn for naive bayes gaussiannb, c. URL
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.

BernoulliNB.html#sklearn.naive_bayes.GaussianNB.html.

scikit-learn for naive bayes multinomialnb, d. URL
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.

BernoulliNB.html#sklearn.naive_bayes.MultinomialNB.html.

scikit-learn for random forest, e. URL https://scikit-learn.org/1.5/modules/

generated/sklearn.ensemble.RandomForestClassifier.html.

scikit-learn for svm, f. URL
https://scikit-learn.org/1.5/modules/generated/sklearn.svm.SVC.html.

David W Aha and Richard L Bankert. A comparative evaluation of sequential feature
selection algorithms. In Learning from data, pages 199–206. Springer, 1996.

https://docs.dgl.ai/en/0.8.x/index.html
https://github.com/neje/ns3-network-performance-tool-v2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html
https://gdmissionsystems.com/communications/warfighter-information-network-tactical
https://gdmissionsystems.com/communications/warfighter-information-network-tactical
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB.html
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB.html
hhttps://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
hhttps://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/1.5/modules/generated/sklearn.svm.SVC.html

130 BIBLIOGRAPHY

Ian F Akyildiz, Xudong Wang, and Weilin Wang. Wireless mesh networks: a survey.
Computer networks, 47(4):445–487, 2005.

Thuraya NI Alrumaih and Mohammed JF Alenazi. Genind: An industrial network
topology generator. Alexandria Engineering Journal, 79:56–71, 2023.

Adel Alshamrani. Reconnaissance attack in sdn based environments. In 2020 27th
International Conference on Telecommunications (ICT), pages 1–5. IEEE, 2020.

Joseph Henry Anajemba, Celestine Iwendi, Mohit Mittal, and Tang Yue. Improved
advance encryption standard with a privacy database structure for iot nodes. In
2020 IEEE 9th International Conference on Communication Systems and Network
Technologies (CSNT), pages 201–206. IEEE, 2020.

Sungwan Bang and Myoungshic Jhun. Weighted support vector machine using
k-means clustering. Communications in Statistics-Simulation and Computation, 43(10):
2307–2324, 2014.

Jacqueline K Benedetti. On the nonparametric estimation of regression functions.
Journal of the Royal Statistical Society: Series B (Methodological), 39(2):248–253, 1977.

Yoshua Bengio BENGIOY and Yves Grandvalet YVESGRANDVALET. No Unbiased
Estimator of the Variance of K-Fold Cross-Validation. Journal of Machine Learning
Research, 5:1089–1105, 2004.

Kamal Berahmand, Elahe Nasiri, Saman Forouzandeh, and Yuefeng Li. A preference
random walk algorithm for link prediction through mutual influence nodes in
complex networks. Journal of king saud university-computer and information sciences, 34
(8):5375–5387, 2022.

Christian Bettstetter. Mobility modeling in wireless networks: categorization, smooth
movement, and border effects. ACM SIGMOBILE Mobile Computing and
Communications Review, 5(3):55–66, 2001.

Suman Bhunia, Paulo Alexandre Regis, and Shamik Sengupta. Distributed adaptive
beam nulling to survive against jamming in 3d uav mesh networks. Computer
Networks, 137:83–97, 2018.

Christoph Birk. Automotive it-services and applications. Institute of Media Informatics
Ulm University, page 53, 2011.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

Subir Biswas, Raymond Tatchikou, and Francois Dion. Vehicle-to-vehicle wireless
communication protocols for enhancing highway traffic safety. IEEE communications
magazine, 44(1):74–82, 2006.

BIBLIOGRAPHY 131

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

PageL BrinS. Theanatomyofalarge scalehypertextualwebsearch engine.
ComputerNetworksandISDNSystems, 30(1):107r117, 1998.

Jason Brownlee. Parametric and Nonparametric Machine Learning Algorithms. URL
https://machinelearningmastery.com/

parametric-and-nonparametric-machine-learning-algorithms/.

Sergey V Buldyrev, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo
Havlin. Catastrophic cascade of failures in interdependent networks. Nature, 464
(7291):1025–1028, 2010.

Kenneth L Calvert, Matthew B Doar, and Ellen W Zegura. Modeling internet topology.
IEEE Communications magazine, 35(6):160–163, 1997.

Tiago Camilo, Jorge Sá Silva, André Rodrigues, and Fernando Boavida. Gensen: A
topology generator for real wireless sensor networks deployment. In Software
Technologies for Embedded and Ubiquitous Systems: 5th IFIP WG 10.2 International
Workshop, SEUS 2007, Santorini Island, Greece, May 2007. Revised Papers 5, pages
436–445. Springer, 2007.

Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models for ad hoc
network research. Wireless communications and mobile computing, 2(5):483–502, 2002.

Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao Zhou.
Identifying influential nodes in complex networks. Physica a: Statistical mechanics
and its applications, 391(4):1777–1787, 2012.

Bo Cheng and G. Hancke. Energy efficient scalable video manycast in wireless ad-hoc
networks. In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics
Society, pages 6216–6221, Oct 2016. .

C. Cheng and S. Lin. A hole-bypassing routing algorithm for wanets. In 2017 IEEE
42nd Conference on Local Computer Networks (LCN), pages 547–550, Oct 2017. .

Giulio Cimini, Tiziano Squartini, Andrea Gabrielli, and Diego Garlaschelli. Estimating
topological properties of weighted networks from limited information. Physical
Review E, 92(4):040802, 2015.

Thomas Clausen and Philippe Jacquet. Optimized link state routing protocol (olsr).
Technical report, 2003.

Jelena Crnogorac, Jovan Crnogorac, Mališa Vučinić, Enis Kočan, and Thomas
Watteyne. Dense multi-channel sniffing in large iot networks. IEEE Access, 10:
105101–105110, 2022.

https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/
https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/

132 BIBLIOGRAPHY

Carlos Alexandre Gouvea Da Silva and Carlos Marcelo Pedroso. Mac-layer packet
loss models for wi-fi networks: A survey. IEEE Access, 7:180512–180531, 2019.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern
recognition, volume 31. Springer Science & Business Media, 2013.

Jakob Eriksson, Michalis Faloutsos, and Srikanth V Krishnamurthy. Dart: Dynamic
address routing for scalable ad hoc and mesh networks. IEEE/ACM transactions on
Networking, 15(1):119–132, 2007.

Hossam Faris, Al-Zoubi Ala’M, Ali Asghar Heidari, Ibrahim Aljarah, Majdi Mafarja,
Mohammad A Hassonah, and Hamido Fujita. An intelligent system for spam
detection and identification of the most relevant features based on evolutionary
random weight networks. Information Fusion, 48:67–83, 2019.

Brian D Fath, Ursula M Scharler, Robert E Ulanowicz, and Bruce Hannon. Ecological
network analysis: network construction. Ecological modelling, 208(1):49–55, 2007.

Linton C Freeman. Centrality in social networks conceptual clarification. Social
networks, 1(3):215–239, 1978.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic
relational models. In IJCAI, volume 99, pages 1300–1309, 1999.

José Luis Gallardo, Mohamed A Ahmed, and Nicolás Jara. Clustering
algorithm-based network planning for advanced metering infrastructure in smart
grid. IEEE Access, 9:48992–49006, 2021.

Peter Greig-Smith. The use of random and contiguous quadrats in the study of the
structure of plant communities. Annals of Botany, pages 293–316, 1952.

Matthias Grossglauser and David NC Tse. Mobility increases the capacity of ad hoc
wireless networks. IEEE/ACM transactions on networking, 10(4):477–486, 2002.

M. H. Günes and M. B. Akgün. Link-level network topology generation. In
Proceedings of 31st International Conference on Distributed Computing Systems
Workshops (ICDCSW), pages 140–145, 2011.

Zygmunt J Haas and Marc R Pearlman. The performance of query control schemes for
the zone routing protocol. ACM SIGCOMM Computer Communication Review, 28(4):
167–177, 1998.

Zygmunt J Haas, Marc R Pearlman, and P Samar. Interzone routing protocol (ierp),
june 2001. IETFInternet Draft, draft-ietf-manet-ierp-01. txt, 2001.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

BIBLIOGRAPHY 133

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In NIPS, 2017.

Oliver Heckmann, Michael Piringer, Jens Schmitt, and Ralf Steinmetz. On realistic
network topologies for simulation. In Proceedings of the ACM SIGCOMM workshop on
Models, methods and tools for reproducible network research, pages 28–32. ACM, 2003.

L. V. Hedges. Distribution Theory for Glass’s Estimator of Effect size and Related
Estimators. Journal of Educational and Behavioral Statistics, 1981. .

Paul W. Holland and Samuel Leinhardt. Transitivity in Structural Models of Small
Groups. Comparative Group Studies, 1971. ISSN 0010-4108. .

Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. An incremental
self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2):
113–126, 2002.

Darko Hric, Tiago P Peixoto, and Santo Fortunato. Network structure, metadata, and
the prediction of missing nodes and annotations. Physical Review X, 6(3):031038,
2016.

Woochang Hwang, Young-rae Cho, Aidong Zhang, and Murali Ramanathan. Bridging
centrality: identifying bridging nodes in scale-free networks. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 20–23, 2006.

Woochang Hwang, Taehyong Kim, Murali Ramanathan, and Aidong Zhang. Bridging
centrality: Graph mining from element level to group level. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New
York, NY, USA, 2008. Association for Computing Machinery. . URL
https://doi.org/10.1145/1401890.1401934.

Akylidiz Ian F. and Wang Xudong. A Survey on Wireless Mesh Networks. IEEE
Communications Magazine, 43(September):23–30, 2005. ISSN 01636804. .

Jithin Jagannath, Nicholas Polosky, Anu Jagannath, Francesco Restuccia, and
Tommaso Melodia. Machine learning for wireless communications in the internet of
things: A comprehensive survey. Ad Hoc Networks, 93:101913, 2019.

Aarti Jain and BVR Reddy. Node centrality in wireless sensor networks: Importance,
applications and advances. In 2013 3rd IEEE International Advance Computing
Conference (IACC), pages 127–131. IEEE, 2013.

David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless
networks. Mobile computing, pages 153–181, 1996.

https://doi.org/10.1145/1401890.1401934

134 BIBLIOGRAPHY

David B Johnson, David A Maltz, Josh Broch, et al. Dsr: The dynamic source routing
protocol for multi-hop wireless ad hoc networks. Ad hoc networking, 5(1):139–172,
2001.

David Oliver Jorg. Performance comparison of manet routing protocols in different
network sizes. Computer Networks & Distributed Systems, 2003.

Emil Jovanov, Dusan Starcević, Aleksandar Samardzić, Andy Marsh, and Zeljko
Obrenović. Eeg analysis in a telemedical virtual world. Future Generation Computer
Systems, 15(2):255–263, 1999.

Latha Kant, Kenneth Young, Ossama Younis, David Shallcross, Kaustubh Sinkar,
A Mcauley, Kyriakos Manousakis, Kirk Chang, and Charles Graff. Network science
based approaches to design and analyze manets for military applications. IEEE
Communications Magazine, 46(11):55–61, 2008.

Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and KC Claffy. Transport
layer identification of p2p traffic. In Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement, pages 121–134, 2004.

Gabriel G Kariuki. A survey on possible attacks in vehicular ad hoc network. J. of
Telecomm. and Information Technology, 2019.

Shafiullah Khan, Noor Mast, Kok-Keong Loo, and A Silahuddin. Passive security
threats and consequences in ieee 802.11 wireless mesh networks. 2; 3, 2008.

Davar Khoshnevisan. Mathematical Probability. 2002.

Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex
networks. Physical Review E, 85(2):026107, 2012.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

Bulut Kuskonmaz, Huseyin Ozkan, and Ozgur Gurbuz. Machine learning based
smart steering for wireless mesh networks. Ad Hoc Networks, 88:98–111, 2019.

Leah S Larkey and W Bruce Croft. Combining Classifers in Text Categorization.
Proceedings of the 19th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 289–297, 1996. .

Marie-Ange Lèbre, Frédéric Le Mouël, Eric Ménard, Julien Dillschneider, and Richard
Denis. Vanet applications: Hot use cases. arXiv preprint arXiv:1407.4088, 2014.

Wei Liu, Matteo Pellegrini, and Aiping Wu. Identification of bridging centrality in
complex networks. IEEE Access, 7:93123–93130, 2019.

BIBLIOGRAPHY 135

Martin Andreoni Lopez, Michael Baddeley, Willian T Lunardi, Anshul Pandey, and
Jean-Pierre Giacalone. Towards secure wireless mesh networks for uav swarm
connectivity: Current threats, research, and opportunities. arXiv preprint
arXiv:2108.13154, 2021.

Gabriel López-Millán, Rafael Marı́n-López, Fernando Pereñı́guez-Garcı́a, Oscar
Canovas, and José Antonio Parra Espı́n. Analysis and practical validation of a
standard sdn-based framework for ipsec management. Computer Standards &
Interfaces, 83:103665, 2023.

Wenjing Lou, Wei Liu, Yanchao Zhang, and Yuguang Fang. Spread: Improving
network security by multipath routing in mobile ad hoc networks. Wireless
Networks, 15(3):279–294, 2009.

Linyuan Lü, Yi-Cheng Zhang, Chi Ho Yeung, and Tao Zhou. Leaders in social
networks, the delicious case. PloS one, 6(6):e21202, 2011.

Thorsten Luettel, Michael Himmelsbach, and Hans-Joachim Wuensche. Autonomous
ground vehicles—concepts and a path to the future. Proceedings of the IEEE, 100
(Special Centennial Issue):1831–1839, 2012.

D. Magoni and J. Pansiot. Evaluation of internet topology generators by power law
and distance indicators. In Proceedings 10th IEEE International Conference on Networks
(ICON 2002). Towards Network Superiority (Cat. No.02EX588), pages 401–406, 2002.

Damien Magoni and J J Pansiot. Analysis and Comparison of Internet Topology
Generators. NETWORKING 2002: Networking Technologies, Services, and Protocols;
Performance of Computer and Communication Networks; Mobile and Wireless
Communications, 2345:364–375, 2006.

Damien Magoni and Jean-Jacques Pansiot. Influence of network topology on protocol
simulation. In International Conference on Networking, pages 762–770. Springer, 2001.

Ilya Makarov, Olga Gerasimova, Pavel Sulimov, and Leonid E Zhukov. Dual network
embedding for representing research interests in the link prediction problem on
co-authorship networks. PeerJ Computer Science, 5:e172, 2019.

Fragkiskos D Malliaros, Maria-Evgenia G Rossi, and Michalis Vazirgiannis. Locating
influential nodes in complex networks. Scientific reports, 6(1):1–10, 2016.

Bomin Mao, Fengxiao Tang, Zubair Md Fadlullah, Nei Kato, Osamu Akashi, Takeru
Inoue, and Kimihiro Mizutani. A novel non-supervised deep-learning-based
network traffic control method for software defined wireless networks. IEEE
Wireless Communications, 25(4):74–81, 2018.

Thomas Martin, Emil Jovanov, and Dejan Raskovic. Issues in wearable computing for
medical monitoring applications: a case study of a wearable ecg monitoring device.

136 BIBLIOGRAPHY

In Digest of Papers. Fourth International Symposium on Wearable Computers, pages
43–49. IEEE, 2000.

Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categorization,
volume 752, pages 41–48. Citeseer, 1998.

A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: an approach to universal
topology generation. In MASCOTS 2001, Proceedings Ninth International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pages 346–353, Aug 2001a. .

Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: Universal
Topology Generation from a User’s Perspective. Technical report, Boston, MA,
USA, 2001b.

Bratislav Milic and Miroslaw Malek. NPART-node placement algorithm for realistic
topologies in wireless multihop network simulation. In Proceedings of the 2nd
international conference on simulation tools and techniques, 2009.

Aarti Munjal, Tracy Camp, and William C Navidi. Smooth: a simple way to model
human mobility. In Proceedings of the 14th ACM international conference on Modeling,
analysis and simulation of wireless and mobile systems, pages 351–360, 2011.

Nicolò Musmeci, Stefano Battiston, Guido Caldarelli, Michelangelo Puliga, and
Andrea Gabrielli. Bootstrapping topological properties and systemic risk of
complex networks using the fitness model. Journal of Statistical Physics, 151:720–734,
2013.

S Nowak, M Nowak, and K Grochla. Properties of advanced metering infrastructure
networks’ topologies. Network Operations and Management Symposium (NOMS), 2014
IEEE, pages 1–6, 2014. .

Oladayo Olufemi Olakanmi and Adedamola Dada. Wireless sensor networks (wsns):
Security and privacy issues and solutions. In Wireless Mesh Networks-Security,
Architectures and Protocols. IntechOpen, 2020.

Michael O’Sullivan, Leonardo Aniello, and Vladimiro Sassone. A methodology to
select topology generators for ad hoc mesh network simulations. J. Commun., 15(10):
741–746, 2020.

Canhui Ou, Hui Zang, Narendra K Singhal, Keyao Zhu, Laxman H Sahasrabuddhe,
Robert A MacDonald, and Biswanath Mukherjee. Subpath protection for scalability
and fast recovery in optical wdm mesh networks. IEEE Journal on Selected Areas in
Communications, 22(9):1859–1875, 2004.

BIBLIOGRAPHY 137

Dr G Padmavathi, Mrs Shanmugapriya, et al. A survey of attacks, security
mechanisms and challenges in wireless sensor networks. arXiv preprint
arXiv:0909.0576, 2009.

J Rejina Parvin. An overview of wireless mesh networks. Wireless Mesh
Networks-Security, Architectures and Protocols, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Charles Perkins, Elizabeth M Royer, and S Das. Ad-hoc on demand distance vector
routing (aodv). Technical report, Internet-Draft, November 1997.
draft-ietf-manet-aodv-00. txt, 2003.

Charles E Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers. ACM SIGCOMM computer
communication review, 24(4):234–244, 1994.

Uroš M Pešović, Jože J Mohorko, Karl Benkič, and Žarko F Čučej. Single-hop vs.
multi-hop–energy efficiency analysis in wireless sensor networks. In 18th
telecommunications forum, TELFOR, 2010.

Sonja Pravilovic, Massimo Bilancia, Annalisa Appice, and Donato Malerba. Using
multiple time series analysis for geosensor data forecasting. Information Sciences,
380:31–52, 2017.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

Regan Rajendran et al. An optimal strategy to countermeasure the impersonation
attack in wireless mesh network. International Journal of Information Technology, 13(3):
1033–1038, 2021.

Shahid Raza, Tony Chung, Simon Duquennoy, Thiemo Voigt, Utz Roedig, et al.
Securing internet of things with lightweight ipsec, 2010.

K Ganesh Reddy and P Santhi Thilagam. Hierarchical wireless mesh networks
scalable secure framework. International Journal of Information and Network Security
(IJINS) Volume, 2(2):167–176, 2013.

George F Riley and Thomas R Henderson. The ns-3 network simulator. In Modeling
and tools for network simulation, pages 15–34. Springer, 2010.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti,
and Michael Bronstein. Temporal graph networks for deep learning on dynamic
graphs. In ICML 2020 Workshop on Graph Representation Learning, 2020.

138 BIBLIOGRAPHY

R Rossi, S Fahmy, and N Talukder. A Multi-Level Approach for Evaluating Internet
Topology Generators. 2013 IFIP Networking Conference, pages 9 pp.–9 pp., 2013.

Thomas Rückstieß, Christian Osendorfer, and Patrick Van Der Smagt. Sequential
feature selection for classification. In AI 2011: Advances in Artificial Intelligence: 24th
Australasian Joint Conference, Perth, Australia, December 5-8, 2011. Proceedings 24,
pages 132–141. Springer, 2011.

M L Sanni, A A Hashim, F Anwar, G S M Ahmed, and S Ali. How to model wireless
mesh networks topology. IOP Conference Series: Materials Science and Engineering, 53
(1):012037, 2013.

Pushpender Sarao. Machine learning and deep learning techniques on wireless
networks. International Journal of Engineering Research and Technology, 12(3):311–320,
2019.

Curtis M. Scaparrotti. Joint publication 3-13 information operations.

L. Schiavone, N. Browne, R. North, L. Schiavone, N. Browne, and R. North. Joint
tactical radio system - connecting the gig to the tactical edge. In MILCOM 2006 -
2006 IEEE Military Communications conference, pages 1–6, Oct 2006. .

Jaydip Sen. Security and privacy issues in wireless mesh networks: A survey. In
Wireless networks and security, pages 189–272. Springer, 2013.

Siraj A. Shaikh, Howard Chivers, Philip Nobles, John A. Clark, and Hao Chen.
Network reconnaissance. Network Security, 2008(11):12–16, 2008. ISSN 1353-4858. .
URL
https://www.sciencedirect.com/science/article/pii/S1353485808701296.

Li Shi-Chang, Yang Hao-Lan, and Zhu Qing-Sheng. Research on manet security
architecture design. In 2010 International Conference on Signal Acquisition and
Processing, pages 90–93. IEEE, 2010.

Muhammad Shoaib Siddiqui et al. Security issues in wireless mesh networks. In 2007
International Conference on Multimedia and Ubiquitous Engineering (MUE’07), pages
717–722. IEEE, 2007.

Guojie Song, Yuanhao Li, Xiaodong Chen, Xinran He, and Jie Tang. Influential node
tracking on dynamic social network: An interchange greedy approach. IEEE
Transactions on Knowledge and Data Engineering, 29(2):359–372, 2016.

Jaime Lynn Speiser, Michael E Miller, Janet Tooze, and Edward Ip. A comparison of
random forest variable selection methods for classification prediction modeling.
Expert systems with applications, 134:93–101, 2019.

https://www.sciencedirect.com/science/article/pii/S1353485808701296

BIBLIOGRAPHY 139

Giorgio Stampa, Marta Arias, David Sánchez-Charles, Victor Muntés-Mulero, and
Albert Cabellos. A deep-reinforcement learning approach for software-defined
networking routing optimization. arXiv preprint arXiv:1709.07080, 2017.

Mervyn Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the royal statistical society. Series B (Methodological), pages 111–147, 1974.

Peng Gang Sun, Yi Ning Quan, Qi Guang Miao, and Juan Chi. Identifying influential
genes in protein–protein interaction networks. Information Sciences, 454:229–241,
2018.

CATH Tee and A Lee. A novel routing protocol—junction based adaptive reactive
routing (jarr) for vanet in city environments. In 2010 European Wireless Conference
(EW), pages 1–6. IEEE, 2010.

Navamani Thandava Meganathan and Yogesh Palanichamy. Privacy preserved and
secured reliable routing protocol for wireless mesh networks. The Scientific World
Journal, 2015, 2015.

Muluneh Mekonnen Tulu, Ronghui Hou, and Talha Younas. Identifying influential
nodes based on community structure to speed up the dissemination of information
in complex network. IEEE Access, 6:7390–7401, 2018a. .

Muluneh Mekonnen Tulu, Ronghui Hou, and Talha Younas. Identifying influential
nodes based on community structure to speed up the dissemination of information
in complex network. IEEE Access, 6:7390–7401, 2018b.

Jungfang Wang, Bin Xie, and Dharma P Agrawal. Journey from mobile ad hoc
networks to wireless mesh networks. In Guide to wireless mesh networks, pages 1–30.
Springer, 2009.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,
and Zheng Zhang. Deep graph library: A graph-centric, highly-performant package
for graph neural networks, 2020. URL https://arxiv.org/abs/1909.01315.

Zhen Wang, Chris T Bauch, Samit Bhattacharyya, Alberto d’Onofrio, Piero Manfredi,
Matjaž Perc, Nicola Perra, Marcel Salathé, and Dawei Zhao. Statistical physics of
vaccination. Physics Reports, 664:1–113, 2016.

B. M. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in
Communications, 6(9):1617–1622, Dec 1988. ISSN 0733-8716. .

Ruffin White, Gianluca Caiazza, Chenxu Jiang, Xinyue Ou, Zhiyue Yang, Agostino
Cortesi, and Henrik Christensen. Network reconnaissance and vulnerability
excavation of secure dds systems. In 2019 IEEE European symposium on security and
privacy workshops (EUROS&PW), pages 57–66. IEEE, 2019.

https://arxiv.org/abs/1909.01315

140 BIBLIOGRAPHY

Edward L Witzke, Joseph P Brenkosh, Karl L Green, Loren E Riblett, and James M
Wiseman. Encryption in mobile wireless mesh networks. In 2012 IEEE International
Carnahan Conference on Security Technology (ICCST), pages 251–256. IEEE, 2012.

Zengrui Wu, Weihua Li, Guixia Liu, and Yun Tang. Network-based methods for
prediction of drug-target interactions. Frontiers in pharmacology, 9:1134, 2018.

Y. Xu, J. Liu, Y. Shen, X. Jiang, and T. Taleb. Security/qos-aware route selection in
multi-hop wireless ad hoc networks. In 2016 IEEE International Conference on
Communications (ICC), pages 1–6, May 2016. .

Y. Xu, J. Liu, O. Takahashi, N. Shiratori, and X. Jiang. Soqr: Secure optimal qos routing
in wireless ad hoc networks. In Proceedings of IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–6, 2017.

Yong Yao and Cong Ji. Identifying influential users by improving leaderrank. In The
International Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery, pages 459–467. Springer, 2019.

Guang Zhan, Zheng Gong, Quanhui Lv, Zan Zhou, Zian Wang, Zhen Yang, and
Deyun Zhou. Flight test of autonomous formation management for multiple
fixed-wing uavs based on missile parallel method. Drones, 6(5):99, 2022.

Xiaohang Zhang, Ji Zhu, Qi Wang, and Han Zhao. Identifying influential nodes in
complex networks with community structure. Knowledge-Based Systems, 42:74–84,
2013.

Zhi-Hua Zhou and Ji Feng. Deep forest. arXiv preprint arXiv:1702.08835, 2017.

	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	Definitions and Abbreviations
	1 Introduction
	1.1 Applications of Ad Hoc Mesh Networks
	1.2 Evolution and Importance of Ad Hoc Mesh Networks
	1.3 Research Gaps and Motivations
	1.4 Aim of Research
	1.5 Research Phases
	1.5.1 Phase 1: Formation Phase Analysis
	1.5.2 Phase 2: Identifying the Routing Algorithm
	1.5.3 Phase 3: Tracking Influential Nodes

	1.6 Ad Hoc Mesh Network Vulnerabilities
	1.6.1 Vulnerability in Ad Hoc Mesh Networks
	1.6.2 Information Gathering
	1.6.3 Active Gathering
	1.6.4 Passive Gathering
	1.6.5 Information Gathering on Ad-Hoc Mesh Networks

	1.7 Topology Bias
	1.8 Routing Algorithm Reconnaissance
	1.9 Influential Node Detection
	1.10 Structure of the Thesis

	2 Background
	2.1 Data Generation
	2.1.1 NS3

	2.2 Topology Generation
	2.2.1 Boston University Representative Internet Topology
	2.2.2 Node Placement Algorithm for Realistic Topologies
	2.2.3 Georgia Tech Internetwork Topology Model

	2.3 Routing Protocols
	2.3.1 Reactive Routing
	2.3.1.1 Ad-hoc On-Demand Distance Vector (AODV)
	2.3.1.2 Dynamic Source Routing (DSR)

	2.3.2 Proactive Routing
	2.3.2.1 Optimized Link State Routing Protocol (OLSR)
	2.3.2.2 Destination Sequenced Distance Vector Protocol (DSDV)

	2.3.3 Hybrid Routing
	2.3.3.1 Zone Routing Protocol (ZRP)

	2.4 Mobility Models
	2.4.1 Column Mobility Model
	2.4.2 Probabilistic Random Walk Mobility Model
	2.4.3 SMOOTH Mobility Model

	2.5 Topology Features
	2.5.1 Inter-Node Distance.
	2.5.2 Spatial Distribution.
	2.5.3 Node Density.
	2.5.4 Shared Neighbours Distribution.
	2.5.5 Clustering Coefficient.
	2.5.6 Sequential Feature Selection (SFS)

	2.6 Machine Learning Algorithm
	2.7 Unsupervised Learning
	2.7.1 K-Means Distortion Curve
	2.7.2 Affinity Probability

	2.8 Semi-Supervised Clustering
	2.9 Supervised Learning
	2.9.1 Convolutional Neural Network Analysis
	2.9.2 Probabilistic Clustering
	2.9.2.1 Bernoulli
	2.9.2.2 Gaussian
	2.9.2.3 Multinomial

	2.9.3 Support Vector Machine
	2.9.4 MeanShift
	2.9.5 Agglomerative Clustering
	2.9.6 DBScan
	2.9.7 Spectral Clustering
	2.9.8 Birch Clustering
	2.9.9 Decision Tree
	2.9.10 Random Forest
	2.9.11 Deep Forest Neural Network

	2.10 Centrality
	2.10.1 Eigenvector Centrality
	2.10.2 Degree Centrality
	2.10.3 Closeness Centrality
	2.10.4 Betweenness Centrality
	2.10.5 Bridging Coefficient
	2.10.6 Bridging Nodes
	2.10.7 Bridging Centrality
	2.10.8 Data Collection
	2.10.9 Data Extraction
	2.10.10 Link/Edge Prediction

	2.11 Similarity Measures
	2.11.1 Euclidean Distance
	2.11.2 Manhattan Distance
	2.11.3 Cosine Similarity

	3 Related Work
	4 Phase 1: Topology Bias
	4.1 Bias Index
	4.2 Methodology
	4.2.1 Bernoulli Naive Bayes
	4.2.2 Gaussian Naive Bayes
	4.2.3 MultinomialNB Naive Bayes

	4.3 Experimental Analysis
	4.3.1 Experiment 1
	4.3.2 Experiment 2
	4.3.3 Features Analysis
	4.3.4 Mislabelled Points

	4.4 Research Question 1
	4.5 Research Question 2

	5 Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks
	5.1 Reconnaissance in Ad-Hoc Mesh Networks
	5.2 Machine Learning for Traffic Analysis in Ad-Hoc Mesh Networks
	5.3 Methodology
	5.3.1 SVM with K-means
	5.3.2 Decision Tree
	5.3.3 Random Forest
	5.3.4 Convolutional Neural Network
	5.3.5 Bernoulli Naive Bayes
	5.3.6 Gaussian Naive Bayes
	5.3.7 Deep Forest Neural Network

	5.4 Research Question 3
	5.5 Research Question 4:
	5.6 Research Question 5:

	6 Phase 3: Influential Node Detection in Wireless Sensor Networks: A Temporal and Adversarial Perspective
	6.1 Influential Node Detection Problem Definitions
	6.2 Facilitators within Ad-Hoc Mesh Networks
	6.3 Methodology
	6.3.1 Link prediction
	6.3.1.1 Weighted GCNLayer
	6.3.1.2 Non Weighted and Weighted GraphSAGE
	6.3.1.3 Weighted TGN

	6.3.2 Centrality
	6.3.3 Similarity Measures

	6.4 Centrality Measures for Determining Influential Nodes in Ad-Hoc Mesh Networks
	6.5 Research Question 6:
	6.6 Research Question 7:
	6.7 Research Question 8:

	7 Discussion
	7.1 Overview of Machine Learning Models
	7.2 Phase 1: Identifying Node Placement Bias
	7.2.1 Research Question 1
	7.2.2 Research Question 2
	7.2.3 Results and Observations
	7.2.4 Justification of Model Selection
	7.2.5 Analysis
	Gaussian Naive Bayes (GNB):
	k-Nearest Neighbors (k-NN):
	Unsupervised Clustering (MS, AC, Spectral):

	7.2.6 Summary

	7.3 Phase 2: Identifying Routing Algorithms
	7.3.1 Research Question 3
	7.3.2 Research Question 4
	7.3.3 Research Question 5
	7.3.4 Results
	7.3.5 Justification of Model Selection
	7.3.6 Analysis
	7.3.7 Normalisation

	7.4 Phase 3: Identifying and Forecasting Influential Nodes in a Wireless Sensor Network
	7.4.1 Research Question 6
	7.4.2 Research Question 7
	7.4.3 Research Question 8
	7.4.4 Results and Observations
	7.4.5 Justification of Model Selection
	7.4.6 Analysis
	7.4.7 Summary

	7.5 Comparative Summary of Results Across All Phases
	7.5.1 Rationale Behind Model Selection

	8 Conclusions
	8.1 Overall Findings
	8.2 Further Work
	8.2.1 Network Topology Generator (Chapter 4)
	8.2.2 Routing Algorithm Prediction (Chapter 5)
	8.2.3 Influential Node Prediction (Chapter 6)

	183e2a72-89b2-4463-bf4c-099802aab09d.pdf
	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	Definitions and Abbreviations
	1 Introduction
	1.1 Applications of Ad Hoc Mesh Networks
	1.2 Evolution and Importance of Ad Hoc Mesh Networks
	1.3 Research Gaps and Motivations
	1.4 Aim of Research
	1.5 Research Phases
	1.5.1 Phase 1: Formation Phase Analysis
	1.5.2 Phase 2: Identifying the Routing Algorithm
	1.5.3 Phase 3: Tracking Influential Nodes

	1.6 Ad Hoc Mesh Network Vulnerabilities
	1.6.1 Vulnerability in Ad Hoc Mesh Networks
	1.6.2 Information Gathering
	1.6.3 Active Gathering
	1.6.4 Passive Gathering
	1.6.5 Information Gathering on Ad-Hoc Mesh Networks

	1.7 Topology Bias
	1.8 Routing Algorithm Reconnaissance
	1.9 Influential Node Detection
	1.10 Structure of the Thesis

	2 Background
	2.1 Data Generation
	2.1.1 NS3

	2.2 Topology Generation
	2.2.1 Boston University Representative Internet Topology
	2.2.2 Node Placement Algorithm for Realistic Topologies
	2.2.3 Georgia Tech Internetwork Topology Model

	2.3 Routing Protocols
	2.3.1 Reactive Routing
	2.3.1.1 Ad-hoc On-Demand Distance Vector (AODV)
	2.3.1.2 Dynamic Source Routing (DSR)

	2.3.2 Proactive Routing
	2.3.2.1 Optimized Link State Routing Protocol (OLSR)
	2.3.2.2 Destination Sequenced Distance Vector Protocol (DSDV)

	2.3.3 Hybrid Routing
	2.3.3.1 Zone Routing Protocol (ZRP)

	2.4 Mobility Models
	2.4.1 Column Mobility Model
	2.4.2 Probabilistic Random Walk Mobility Model
	2.4.3 SMOOTH Mobility Model

	2.5 Topology Features
	2.5.1 Inter-Node Distance.
	2.5.2 Spatial Distribution.
	2.5.3 Node Density.
	2.5.4 Shared Neighbours Distribution.
	2.5.5 Clustering Coefficient.
	2.5.6 Sequential Feature Selection (SFS)

	2.6 Machine Learning Algorithm
	2.7 Unsupervised Learning
	2.7.1 K-Means Distortion Curve
	2.7.2 Affinity Probability

	2.8 Semi-Supervised Clustering
	2.9 Supervised Learning
	2.9.1 Convolutional Neural Network Analysis
	2.9.2 Probabilistic Clustering
	2.9.2.1 Bernoulli
	2.9.2.2 Gaussian
	2.9.2.3 Multinomial

	2.9.3 Support Vector Machine
	2.9.4 MeanShift
	2.9.5 Agglomerative Clustering
	2.9.6 DBScan
	2.9.7 Spectral Clustering
	2.9.8 Birch Clustering
	2.9.9 Decision Tree
	2.9.10 Random Forest
	2.9.11 Deep Forest Neural Network

	2.10 Centrality
	2.10.1 Eigenvector Centrality
	2.10.2 Degree Centrality
	2.10.3 Closeness Centrality
	2.10.4 Betweenness Centrality
	2.10.5 Bridging Coefficient
	2.10.6 Bridging Nodes
	2.10.7 Bridging Centrality
	2.10.8 Data Collection
	2.10.9 Data Extraction
	2.10.10 Link/Edge Prediction

	2.11 Similarity Measures
	2.11.1 Euclidean Distance
	2.11.2 Manhattan Distance
	2.11.3 Cosine Similarity

	3 Related Work
	4 Phase 1: Topology Bias
	4.1 Bias Index
	4.2 Methodology
	4.2.1 Bernoulli Naive Bayes
	4.2.2 Gaussian Naive Bayes
	4.2.3 MultinomialNB Naive Bayes

	4.3 Experimental Analysis
	4.3.1 Experiment 1
	4.3.2 Experiment 2
	4.3.3 Features Analysis
	4.3.4 Mislabelled Points

	4.4 Research Question 1
	4.5 Research Question 2

	5 Phase 2: Routing Algorithm Reconnaissance in Ad-Hoc Mesh Networks
	5.1 Reconnaissance in Ad-Hoc Mesh Networks
	5.2 Machine Learning for Traffic Analysis in Ad-Hoc Mesh Networks
	5.3 Methodology
	5.3.1 SVM with K-means
	5.3.2 Decision Tree
	5.3.3 Random Forest
	5.3.4 Convolutional Neural Network
	5.3.5 Bernoulli Naive Bayes
	5.3.6 Gaussian Naive Bayes
	5.3.7 Deep Forest Neural Network

	5.4 Research Question 3
	5.5 Research Question 4:
	5.6 Research Question 5:

	6 Phase 3: Influential Node Detection in Wireless Sensor Networks: A Temporal and Adversarial Perspective
	6.1 Influential Node Detection Problem Definitions
	6.2 Facilitators within Ad-Hoc Mesh Networks
	6.3 Methodology
	6.3.1 Link prediction
	6.3.1.1 Weighted GCNLayer
	6.3.1.2 Non Weighted and Weighted GraphSAGE
	6.3.1.3 Weighted TGN

	6.3.2 Centrality
	6.3.3 Similarity Measures

	6.4 Centrality Measures for Determining Influential Nodes in Ad-Hoc Mesh Networks
	6.5 Research Question 6:
	6.6 Research Question 7:
	6.7 Research Question 8:

	7 Discussion
	7.1 Overview of Machine Learning Models
	7.2 Phase 1: Identifying Node Placement Bias
	7.2.1 Research Question 1
	7.2.2 Research Question 2
	7.2.3 Results and Observations
	7.2.4 Justification of Model Selection
	7.2.5 Analysis
	Gaussian Naive Bayes (GNB):
	k-Nearest Neighbors (k-NN):
	Unsupervised Clustering (MS, AC, Spectral):

	7.2.6 Summary

	7.3 Phase 2: Identifying Routing Algorithms
	7.3.1 Research Question 3
	7.3.2 Research Question 4
	7.3.3 Research Question 5
	7.3.4 Results
	7.3.5 Justification of Model Selection
	7.3.6 Analysis
	7.3.7 Normalisation

	7.4 Phase 3: Identifying and Forecasting Influential Nodes in a Wireless Sensor Network
	7.4.1 Research Question 6
	7.4.2 Research Question 7
	7.4.3 Research Question 8
	7.4.4 Results and Observations
	7.4.5 Justification of Model Selection
	7.4.6 Analysis
	7.4.7 Summary

	7.5 Comparative Summary of Results Across All Phases
	7.5.1 Rationale Behind Model Selection

	8 Conclusions
	8.1 Overall Findings
	8.2 Further Work
	8.2.1 Network Topology Generator (Chapter 4)
	8.2.2 Routing Algorithm Prediction (Chapter 5)
	8.2.3 Influential Node Prediction (Chapter 6)

