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Abstract

Background: Mobile health (mHealth) technologies, such as smartphones and wearables, enable continuous assessments of
individual health information. In chronic musculoskeletal conditions, pain flares, defined as periods of increased pain severity,
often coincide with worsening disease activity and cause significant impacts on physical and emotional well-being. Using
mHealth technologies can provide insights into individual pain patterns and associated factors.

Objective: This study aims to characterize pain flares and identify associated factors in rheumatoid arthritis (RA) by (1)
describing the frequency and duration of pain flares using progressively stringent definitions based on pain severity, and (2)
exploring associations between pain flares and temporal changes in symptoms across emotional, cognitive, and behavioral
domains.

Methods: Our 30-day mHealth study collected daily pain severity and related symptoms (scores 1-5, higher are worse) via a
smartphone app and passively recorded sleep and physical activity via a wrist-worn accelerometer. Pain flares were defined
using a S5-point scale: (1) above average (AA): pain severity > personal median, (2) above threshold (AT): pain severity >
3, and (3) move above threshold (MAT): pain severity moves from 1, 2, 3 to 4 or 5. A case-crossover analysis compared
within-person variations of daily symptoms across hazard (3 days before a pain flare) and control (3 days not preceding a pain
flare) periods using mean and intraindividual standard deviation. Conditional logistic regression estimated the odds ratio (OR)
for pain flare occurrence.

Results: A total of 195 participants (160/195, 82.1% females; mean age 57.2 years; average years with RA: 11.3) contributed
5290 days of data. Of these, 88.7% (173/195) experienced at least 1 AA flare (median monthly rate 4, IQR 2.1-5). Nearly
half experienced at least 1 AT or MAT flare (median monthly rate 2, IQR 1-4). These pain flares lasted 2 days (IQR 2-3)
on average across definitions, with some extending up to 12 days. Worsening mood over 3 days was associated with a 2-fold
increase in the likelihood of AT flares the following day (OR 2.04, IQR 1.06-3.94; P<.05). Greater variability in anxiety
over 3 days increased the likelihood of both AT (OR 1.67, IQR 1.01-2.78; P<.05) and MAT flares (OR 1.82, IQR 1.08-3.07;
P<.05). Similarly, greater variability in sleepiness (OR 1.89, IQR 1.03-3.47; P<.05) also increased the likelihood of AT flares.
Sedentary time (%) consistently showed almost no influence across all definitions. Similarly, the simplest definition of AA
demonstrated no significant associations across all symptoms.
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Conclusions: Pain flares were commonly observed in RA. Changes in sleep patterns and emotional distress were associated
with pain flare occurrences. This analysis demonstrates the potential of daily mHealth data to identify pain flares, opening
opportunities for timely monitoring and personalized management.
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Introduction

Digital technology plays a crucial role in modern medicine.
It not only improves the essential routines and workflows
of health care but also helps minimize accessibility barriers
and time and location constraints, as well as streamlining
health data management. As digital technology advances and
becomes widely adopted, it is transforming our approach
to addressing individual health needs by moving beyond
traditional self-report methods and enabling more dynamic
and continuous assessments. We can now collect patient
information from multiple sources with greater time-vary-
ing details over extended periods. Mobile health (mHealth)
devices, such as smartphones and wearables, allow patients
to log symptoms actively through numerical scales or visual
tools [1-5]. They can also passively capture high-resolution
streams of health-related and contextual information, such
as sleep, physical activity, or weather with minimal burden
[3,5]. This enhanced capability of characterizing temporal
changes in symptom patterns can deepen our understanding
of individual health trajectories at a more granular level and
open opportunities to improve disease management through
more personalized strategies.

Individuals with chronic musculoskeletal conditions, such
as rheumatoid arthritis (RA), typically experience persis-
tent pain that requires continuous treatment and long-term
management. Daily fluctuations in pain are common [6,7].
While not all fluctuations require clinical attention, periods
of significantly increased pain severity, known as pain flares,
have a greater impact and present clinical challenges due to
their variability and unpredictability [8-10]. Pain flares often
occur concurrently with escalated disease activity [11-13], but
not every occurrence involves inflamed disease activity, nor
does inflamed disease activity always result in escalated pain
[11]. Additionally, pain flares exhibit considerable heteroge-
neity both within and across individuals and are influenced
by a complex interplay of biopsychosocial, behavioral, and
environmental factors [3,14-17]. For example, depression was
identified as a significant contributing factor for more severe
pain and greater pain fluctuations in rheumatic diseases [16].
Longer time spent in bed and more severe fatigue were
observed to heighten the risk of a pain flare in low back pain,
characterized by a 2-point increase over the average pain
[18,19]. These factors collectively contribute to a multitude
of impacts, including functional disability, cognitive decline,
emotional distress, diminished social interactions, and a lower
quality of life [20,21].

Several studies on chronic pain have demonstrated the
acceptability, feasibility, and usability of smartphone apps
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and wearables for remotely monitoring pain severity, disease
activity, and associated factors such as sleep patterns,
physical activity, mood, and weather conditions [1,3-5]. They
have identified specific associations that influence fluctua-
tions in pain severity. For example, certain weather condi-
tions, including higher relative humidity and wind speed and
lower atmospheric pressure, were associated with increased
pain severity [3]. Worsening symptoms in the preceding
week, characterized by higher mean scores and steeper
slopes in physical activity, fatigue, sleep difficulty, physical
and emotional well-being, and coping ability, were associ-
ated with a greater likelihood of self-reported flares [4].
In our exploratory study, we advanced previous research
by leveraging daily patient-generated health data captured
by mHealth devices to characterize pain flares and identify
associated factors in a RA cohort. Our objectives included
(1) describing the frequency and duration of pain flares
using progressively stringent definitions based on self-repor-
ted pain severity, and (2) exploring associations between pain
flares and temporal changes in symptoms across emotional,
cognitive, and behavioral domains.

Methods
mHealth Cohort Study in RA

This secondary analysis used data from a prospective
mHealth cohort study that investigated quality of life, sleep,
and rheumatoid arthritis (QUASAR) [5]. The QUASAR study
recruited 285 participants from the National Rheumatoid
Arthritis Society (a UK-wide patient organization) between
May 2017 and July 2018. Eligible participants were aged
18 years and older, with a self-reported clinical diagnosis
of RA and receiving disease-modifying antirheumatic drugs
[22], had access to an Android or iOS smartphone or
tablet, and were not employed in shift work. Participants
completed a paper-based baseline questionnaire including
demographics, information about RA, and their health status.
Over the 30-day study period, participants wore a validated
triaxial accelerometer (MotionWatch 8 by CamNtech [23-25])
to measure sleep and physical activity. They also used a
co-designed smartphone app (uMotif) to complete a daily
sleep diary (The 9-item Consensus Sleep Diary, CSD [26])
and provide 10 daily symptoms (pain severity, illness impact,
fatigue, mood, well-being, anxiety, disease control, challenge,
sleepiness, and concentration) twice a day on a 5-point
ordinal scale, once in the morning and once in the evening.
Follow-up questionnaires were completed every 10 days after
the baseline. A detailed description of the QUASAR study
can be found in the protocol [27].
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Data Preparation

Participants

A total of 266 participants gave consent for their data to be
used for secondary purposes. To be included in the analysis,
participants were required to (1) provide symptom data via
the study app, (2) provide pain severity data for at least 7
consecutive days, and (3) achieve a completion rate of =70%
for pain severity data.

Baseline Assessments

Demographic data included sex (male or female), age,
ethnicity (White or non-White), marital status (single, married
or with partner, or separated), occupations (employed, retired,
voluntary, or seeking work), smoking status (never, past,
or current), and average weekly alcohol consumption (none,
moderate: 1-15 units, and heavy: =16 units).

Information about RA included disease duration, men-
opausal status, other associated rheumatic diseases (osteo-
arthritis, spondyloarthropathy or ankylosing spondylitis,
fibromyalgia or chronic widespread pain, gout or other
crystal arthritis, Sjogren syndrome, thyroid disorder, diabetes,
multiple sclerosis, and hypertension), sleep-related prob-
lems (restless leg syndrome and obstructive sleep apnea
or snoring), current medications (sleep medicine and pain
medicine), and disease activity, measured by Routine
Assessment of Patient Index Data 3 (RAPID-3, score
range: 0-30) [28]. Disease activity was categorized into
near remission (<3), low severity (3.1-6), moderate severity
(6.1-12), and high severity (=12).

Health status information consisted of sleep quality,
assessed by the Pittsburgh Sleep Quality Index (score range
0-21, score of >5 indicates poor sleep quality) [29]; insom-
nia, evaluated by the Sleep Condition Indicator (score range
0-32, score of <16 indicates probable insomnia) [30]; and
anxiety and depression, assessed using the Hospital Anxiety
and Depression Scale (HADS, score range 0-21) [31]. HADS
was categorized into normal (0-7), borderline case (8-10), and
case (11-21).

Pain Severity and lliness Impact

Pain severity and illness impact were scored from 1 (no pain/
impact) to 5 (very severe pain/impact) [32]. Higher scores
represent greater severity. We used records submitted after
12 PM for data consistency and completeness. For multiple
entries within the same day, we selected the final record.

Exposure Data

Exposure data consisted of 12 items, including 9 daily
self-reported symptoms and 3 objective measurements. All
self-reported scores were adjusted to follow the same
direction, with higher scores being worse (score range 1-5).
Similar to pain and impact data, only 1 record after 12
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PM was included for each day. These daily self-reported
symptoms were fatigue (no fatigue to very severe fatigue),
mood (very happy to depressed), well-being (very well to
very unwell), anxiety (very well to very anxious), disease
control (very good control to no control), challenge (not
challenging to severely challenging), sleepiness (not sleepy
to very sleepy), concentration (excellent to poor), and sleep
quality (very good to very poor). Sleep quality was measured
by the CSD.

Objective measurements obtained from accelerometer data
[33,34] included sleep efficiency (%), sedentary time (%),
and time in bed (hour). Sleep efficiency was calculated as the
ratio of actual sleep time to total time spent in bed. Sedentary
time was defined as the ratio of time spent being sedentary
during waking hours. The MotionWatch 8 was configured to
sleep mode, capturing limb or bodily movements in 30-sec-
ond epochs. The raw accelerometer data were processed with
MotionWare, an actigraphy software developed by CamN-
tech. Physical activity during waking hours was calculated by
excluding total sleep time and categorizing into 3 segments:
sedentary, low, and moderate to vigorous behavior. The cut
point of the MotionWatch 8 for sedentary behavior was
<178.50 counts per minute, while moderate to vigorous
activity was set at =562.50 counts per minute [35]. Any
activity level between these boundaries was recorded as low
activity.

Pain Flare Cycle

A pain flare cycle was divided into 3 phases: preflare, flare,
and postflare. The flare was the interval from when pain
severity increased until it subsided. Preflare and postflare
represented the period of time before and after the flare,
respectively.

The onset of a pain flare was defined using a 5-point
scale [32,36], including (1) above average (AA): pain severity
greater than personal median, (2) above threshold (AT): pain
severity greater than 3, and (3) move above threshold (MAT):
pain severity moves from 1, 2, or 3 yesterday to either 4
or 5 today. These definitions capture increasingly complex
movements in pain levels and demonstrate at least a 25%
change, meeting the minimum clinical importance difference
[37].

When pain flares occur over multiple consecutive days, the
first day of the sequence was identified as the onset of that
flare. The end of a pain flare was marked by pain severity
returning to the personal median or lower. All flare onsets
must occur above the personal median pain scores to avoid
conflicts with the criteria defining the end of a flare. When
multiple flares end on the same date because of recurring
onsets without any return in between, we remove onsets that
occurred after the first one to avoid double counting. Figure 1
shows examples of pain flare identification.
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Figure 1. Pain flare identification. The figure shows how pain flares are identified using the definition of above threshold. (A) Pain flare cycle with
a median pain score of 2. It includes preflare (green), flare (red), and postflare (blue) phases. The duration of the flare (5 days) is marked between
the onset (blue dot) and end (orange dot). (B) Two scenarios of exclusion. Left: the onset (day 4) meets the definition, but the pain severity is at the
personal median pain level, conflicting with the criterion for the end of a pain flare. Right: 2 flare onsets (days 2 and 4) meet the definition but end on
the same day (day 5). The second onset (day 4) is removed to avoid double counting.
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In addition to identifying pain flares by their severity, we
examined their residual impact in the postflare phase. A
carry-on effect was identified for those pain flares where,
although pain severity had subsided, the overall illness
impact remained elevated above personal median level. The
measurement of carry-on effect began from the end of the
flare and continued until the illness impact returned to the
individual’s median level or below.

Hazard and Control Periods

Hazard periods were selected as the 3 days leading up
to each pain flare (preflare phase), excluding any days
overlapping with other flares. As a result, not every pain
flare was included in the analysis, as it might not have 3

https://mhealth.jmir.org/2025/1/e64889

Flare Postflare

Median=2
Threshold=3

Onset 2

Onset 1

e e

Above
threshold

Above

threshold End

[ ——

Threshold=3
Median=2

7 1 2 3 4 5 6 7
Days

nonoverlapping consecutive preflare days. Control periods
were selected using a full stratum bidirectional approach
[38] as any 3-day interval that neither preceded a pain flare
nor overlapped with other flares or hazard periods, thereby
fulfilling the exchangeability assumption for the case-cross-
over study design [39]. This ensured that there was no
overlap between hazard and control periods, and that control
periods served as referent windows that were sufficiently
recent for comparison and could potentially have been pain
flares [40]. Additionally, eligible hazard and control periods
must have had complete data for 12 exposures. By using this
design, participants serve as their own control, eliminating
time-invariant confounders (eg, age, sex, and diagnosis). Each
participant with at least 1 hazard and 1 control period formed
a risk set. Figure 2 demonstrates the identification of hazard
and control periods.
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Figure 2. Identification of hazard and control periods. The figure illustrates how hazard and control periods are selected and how risk sets are formed.
Hazard periods (green) are 3 days prior to flares (red). Control periods (blue) are 3 days that neither preceded flares (red) nor overlapped with hazard
periods (green). A risk set is formed by at least 1 hazard period and 1 control period. Hazard periods (H1 and H2) are compared bidirectionally with
control periods (eg, C1, C2, and C3). Ineligible days (white) are excluded from the analysis due to incomplete data.
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Statistical Methods to account for within-participant correlation due to multiple

Primary Analysis

All analyses were performed using R (version 4.3.1; R
Foundation for Statistical Computing). Descriptive analysis
was conducted to describe demographics, information about
RA, and health status, as well as to characterize pain flares
with 3 definitions. For each definition, pain flares were
summarized by their frequency, duration, 30-day monthly
rate, and the duration of impact.

Conditional logistic regression was used to estimate the
odds ratio (OR) for pain flare occurrence. For each pain flare
definition, we compared the changes over the 3 days prior to
a flare (hazard) with the 3 days that did not precede a flare
(control), across a total of 12 exposures. Mean and intraindi-
vidual standard deviation (iSD) were used to describe hazard
and control periods [41]. The mean represents the average
level of each exposure over 3 days. The iSD captures the
magnitude of fluctuation over 3 days in each exposure, with
higher values indicating increased day-to-day variability. This
approach allowed us to determine whether variations in these
exposures were associated with pain flares occurring.

Regression models of each definition were analyzed
independently. The modeling consisted of 2 steps. First,
each of the 12 exposures was analyzed separately using 2
metrics (mean and iSD) in univariable models. This resulted
in 24 univariable models, with 2 metrics for each exposure.
Subsequently, both metrics for each of the 12 exposures were
included in multivariable models, resulting in 12 models.
All models were fit using robust sandwich standard errors
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hazard periods. The findings were presented as ORs with
95% ClIs of the likelihood of a pain flare. A 95% CI that
does not include the value of 1 indicates a statistically
significant association, equivalent to achieving significance
as determined by a P value.

Sensitivity Analysis

Sensitivity analysis was performed to assess the time overlap
among control periods. In the primary analysis, control
periods were selected as any 3-day interval not preceding
a pain flare, during which time overlap was inherently
allowed (Figure 2) and could lead to compounding effects of
exposures [40,42]. To address this, we conducted a nonover-
lap analysis, where control periods were selected as discrete,
sequential 3-day intervals (eg, C1 and C4 in Figure 2). This
eliminates time overlaps between control periods, thereby
avoiding any compounding exposure effect.

Ethical Considerations

Ethical approval for this secondary analysis was not required.
All participants provided consent for secondary use, and all
data were fully anonymized. Approval was granted to the
QUASAR study [5] by the National Research Ethics Service
Committee North West-Liverpool Central Research Ethics
Committee (reference: 17/NW/0217).
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Results

Overview

Of the 266 participants who consented for secondary use,
195 (73.3%) were included in the analysis (mean age 57.2
years; mean duration living with RA 11.3 years; 160/195,
82.1% females; 160/195, 82.1% White ethnicity; 92/195,

Hsu et al

47.2% employed full time or part-time; and 148/195, 75.9%
married or with partner). These participants contributed a
total of 5290 person-days of pain data and 3832 person-days
of complete exposure data. Figure 3 shows the participant
inclusion process. The reasons for exclusion were failing
to provide symptom data (n=1) and achieve the required
completion rate (n=70).

Figure 3. Flow diagram for participant inclusion. The figure shows the participant inclusion process based on three criteria: (1) provides symptom
data, (2) provides pain data for at least 7 consecutive days, and (3) achieves a completion rate of =70%. The dash-lined box describes the approaches
taken to remove duplicates and excessive data, without excluding any participant.

Consented secondary use
N=266

Provided daily symptom data
N=265

Provided at least 7 consecutive
days of pain data
N=205

Data cleaning (no participants excluded)
(1) Removed repeated pain records, retaining
only the last entry for each day
(2) Removed pain records exceeding 30
consecutive days

—— No symptom data (1)

Y

—— > Lacked 7 consecutive days of pain data (60)

——  Excluded pain data completion rate < 70% (10)

Participants included in the analysis
N=195

Baseline Health Characteristics

Besides RA, 60.5% (118/195) of the participants had one
or more coexisting conditions. The most prevalent comorbid
condition in this cohort was osteoarthritis (60/195, 30.8%),
followed by hypertension (40/195, 20.5%), thyroid disor-
der (28/195, 14.4%), fibromyalgia (25/195, 12.8%), and
Sjogren syndrome (24/195, 12.3%). Most females (119/160,
74.4%) had experienced menopause. Pain medication use
was common (157/195, 80.5%). About one-third were also
under medical treatment for sleep issues (54/195, 27.7%).
More than half had never smoked (107/195, 54.9%) and were
consuming moderate alcohol weekly (103/195, 52.8%).

High severity of RA (RAPID-3 median 12.7, IQR
7.5-17.5) was reported in more than half of the cohort
(105/195, 53.8%). Baseline pain level was moderate (median
5.5, IQR 3-7) on a 11-point scale. Sleep disturbances were
common, with 86.7% (169/195) experiencing poor sleep
quality (Pittsburgh Sleep Quality Index median 10.3, IQR
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7.5-13.3) and 37.4% (73/195) having probable insomnia
(Sleep Condition Indicator median 19, IQR 13-23). Anxiety
cases were reported in 34.4% (67/195) of the cohort (HADS
anxiety median 9, IQR 7-11), whereas 18.5% (36/195) were
considered depression cases (HADS depression median 7,
IQR 4-10). Table S1 in Multimedia Appendix 1 provides
detailed baseline characteristics.

Pain Flare Characteristics

As shown in Table 1, the frequency of pain flares decreased
when applying stricter definitions. About 88.7% (173/195)
of the participants had at least 1 AA flare, with a median
monthly rate of 4 flares (IQR 2.1-5). Nearly half of the
participants experienced at least 1 AT (49.2%, 96/195) or
MAT (45.6%, 89/195) flare, with a median monthly rate of
2 flares (IQR 1-4). The average duration of pain flares was
consistent across definitions, with a median of 2 days (IQR
2-3). However, pain flares could last up to 12 days before
returning to personal median level or lower.
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Above average Above threshold Move above threshold
Participants with =1 flare, n (%) 173 (88.7) 96 (49.2) 89 (45.6)
Flare counts, n 662 248 230
Flare duration (days)
Median (IQR) 2(2-3) 2 (2-3) 2(2-3)
Minimum days 2 2 2
Maximum days 12 9 9
30-day monthly rate (flares)
Median (IQR) 4 (2.1-5) 2(1-4) 2 (1-4)
Minimum flares 1 1 1
Maximum flares 9 8 8

Pain Flare Impact

Analysis of pain flare impact found that fewer than 20% of
pain flares across all definitions were affected by carry-on
effect (Table 2). In other words, more than 80% of pain
flares ended when both their pain severity and illness impact
returned to personal median or lower on the same day.

Table 2. Pain flare impact characteristics.

Among affected pain flares, a small number were excluded
due to either missing impact data or insufficient data time
frame. The average duration of these impact-affected pain
flares was approximately 4 days but could last up to 12 days.
The average duration of impact ranged from as short as 1 day
to a week.

Above average Above threshold Move above threshold
Total flares affected, n (%) 120 (18.1) 35(14.1) 34 (14.8)
Total flares analyzed, n 111 34 33
Flare duration (days)
Median (IQR) 4 (3-5) 4 (3-5) 4 (3-5)
Minimum days 3 3 3
Maximum days 12 11 9
Impact duration (days)
Median (IQR) 1(1-2) 1.5 (1-2.8) 1(1-2)
Minimum days 1 1
Maximum days 7 6 5

Associations Between Daily Symptoms
and Pain Flares

For all definitions, about half of the participants in each
subgroup had both hazard and control periods for analy-
sis (Table S2 in Multimedia Appendix 1). As the defini-
tions became stricter, we observed changes in the strength
and direction of the relationships between exposures and
pain flares. In both univariable and multivariable models,
mood demonstrated consistent patterns across all definitions.
Mood mean scores were positively associated with pain flare
occurrence, whereas iSD scores were negatively associated.
Meanwhile, the ORs for sedentary time consistently showed
almost no effect, remaining near or at the null value.

Patient-Reported Exposures

As shown in Figure 4, none of the 9 self-reported symptoms
showed a statistically significant relationship with AA flares.
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However, significant associations were observed for AT and
MAT flares. For example, a single unit increase in anxiety
mean scores over 3 days was associated with a 1.5 times
increased likelihood of an AT flare the following day (OR
1.5,95% CI 1.02-2.2). Higher anxiety iSD scores over 3 days
were associated with almost a 2-fold increase in the odds
of an AT flare the next day (OR 1.92, 95% CI 1.13-3.27)
and a 1.83 times increased likelihood of a MAT flare (OR
1.83, 95% CI 1.05-3.21). Likewise, higher sleepiness iSD
scores over 3 days nearly doubled the odds of an AT flare the
next day (OR 1.97, 95% CI 1.03-3.74). Conversely, higher
well-being mean scores reduced the odds of an AT flare by
about half (OR 0.52,95% CI 0.3-0.93).

JMIR Mhealth Uhealth 2025 | vol. 13 1 e64889 | p. 7
(page number not for citation purposes)


https://mhealth.jmir.org/2025/1/e64889

JMIR MHEALTH AND UHEALTH

Hsu et al

Figure 4. Univariable models across pain flare definitions. The figure shows the results of univariable models across all definitions. Mean (blue) and
iSD (pink) were analyzed independently for each of the 12 exposures. *P<.05. iSD: intraindividual standard deviation.
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In the multivariable models (Figure 5), higher mood mean
scores over 3 days were more clearly associated with AT
flares, showing a 2-fold increase in the odds after adjusting
for the iSD effect (OR 2.04, 95% CI 1.06-3.94). Higher
anxiety iSD scores over 3 days were associated with a
1.67 times increased likelihood of an AT flare the next day
(OR 1.67, 95% CI 1.01-2.78), and a 1.82 times increased
likelihood of a MAT flare (OR 1.82, 95% CI 1.08-3.07).

https://mhealth.jmir.org/2025/1/¢64889

These associations weakened slightly after adjusting for the
mean effect. While anxiety mean scores continued to show
a positive relationship with AT flares, this association was
no longer significant. Well-being mean scores maintained a
negative association with AT flares after adjusting for the iSD
effect, reducing the odds by nearly half (OR 0.51, 95% CI
0.27-0.97). See full results in Tables S3 and S4 in Multimedia
Appendix 1.
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Figure 5. Multivariable models across pain flare definitions. The figure shows the results of multivariable models across all definitions. Both mean
(green) and iSD (orange) were included in the analysis for each of the 12 exposures. *P<.05. iSD: intraindividual standard deviation.
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Accelerometer-Derived Exposures

All objective measurements, including sedentary time, sleep
efficiency, and time in bed, demonstrated no significant
associations with pain flares across definitions in both
univariable and multivariable models (Figures 4 and 5). The
majority of associations were near or at an OR of 1, even
after adjustments were made for the mean and iSD effects.
Full results are shown in Tables S3 and S4 in Multimedia
Appendix 1.
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Sensitivity Analysis

The results of the nonoverlap analysis were similar to those
of the primary analysis, with most displaying narrower
confidence intervals. However, variations in direction and
strength of associations were observed. Across primary and
nonoverlap analyses, no significant association was observed
in AA flares. As shown in Figure 6, higher sleepiness iSD
scores over 3 days were consistently associated with a 2-fold
increase in the odds of an AT flare the next day, with an OR
of 2.04 (95% CI 1.13-3.71) in the univariable model and 1.99
(95% CI 1.09-3.63) after adjusting for the mean effect.
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Figure 6. Sensitivity analysis results for primary and nonoverlap models. The figure shows sensitivity analysis results for primary and nonoverlap
models of sleepiness and sleep efficiency. The multivariable model includes mean (green) and iSD (orange). *P<.05. iSD: intraindividual standard

deviation.
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effect. Similarly, higher sleep efficiency iSD scores reduced
the likelihood of a MAT flare the following day (OR 0.87,
95% CI 0.76-0.99) but did not persist after adjusting the
mean effect. Full results are shown in Figures S1 and S2 in
Multimedia Appendix 1.
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This exploratory study demonstrates the potential of mHealth
technologies to improve our understanding of pain fluctua-
tions in RA. By leveraging daily patient-generated health
data, it was possible to describe the frequency and dura-
tion of pain flares and identify within-person associated
factors. These findings would be difficult to obtain through
traditional assessments. However, achieving this level of
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understanding also relied on sustained patient engagement
with the technology, which is challenging due to various
barriers such as user fatigue, technology literacy, or motiva-
tion [43]. The loss of engagement can substantially impact
the quality of data, leading to biases, misinterpretation, and
incorrect conclusions. The QUASAR study, achieving near
90% engagement [5], provides a strong foundation for our
analysis. The results led to 3 novel observations regarding
pain flares and implications for future pain research using
mHealth technologies. Additionally, we discuss limitations
that need to be addressed for future improvement.

First, using 3 numerically defined pain flares, we found
that the average duration consistently spans 2 days across
all definitions. When considering their overall impact, the
average duration extends to 4 days for all definitions.
This suggests that, regardless of the sudden increase in
pain severity, the initial surge typically diminishes within
a few days; however, the reduction in pain severity does
not necessarily indicate the end of its impact. Qualitative
studies have documented the experience of flare-ups as highly
individualized and complex [11,20]. Pain flares cannot be
fully explained by pain levels alone; their broader impact
must also be considered.

Second, emotional distress, as measured by mood and
anxiety, is closely associated with pain flares. Feeling more
depressed over 3 days appears to increase the likelihood of
experiencing a pain flare the following day, consistent with
previous research indicating that higher levels of depres-
sion are associated with increased pain [16]. Conversely,
experiencing a higher degree of mood changes seems to
reduce the likelihood of pain flare occurrence. This suggests
that varied mood fluctuations could represent normal mood
regulation, rather than being in a heightened depressive
state. Contrary to previous findings indicating no predic-
tive relationship between anxiety and pain variability [16],
our findings show that feeling more anxious and experienc-
ing more fluctuations in anxiety over 3 days increase the
likelihood of pain flares.

Finally, patient-reported and accelerometer-derived
measurements of sleep demonstrate varied relationships with
pain flares. Perceived sleep quality shows no noticeable
associations, regardless of the definition used. Perceived
sleepiness shows a positive association with pain flares,
except under the simplest definition where it has nearly
no influence. A positive association was observed between
longer time spent in bed and an increased likelihood of
pain flares, a pattern similarly noted in low back pain
[19]. However, none of these associations were statistically
significant. Sleep efficiency demonstrates almost no influence
on pain flares across definitions. It is worth noting that
self-reported sleep patterns did not strongly correlate with
actigraphy-derived sleep patterns in the QUASAR study [5].
Perceived and objective sleep measurements may capture
different aspects of sleep issues. For example, perceived
sleepiness likely reflects the cumulative impact of long-term
poor sleep, whereas sleep efficiency could indicate short-term
fluctuations in sleep patterns. The choice between subjective
or objective sleep measures needs to be guided by their
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clinical relevance to pain management and tailored to the
individual needs, a process that mHealth technologies can
facilitate by integrating data from multiple sources to provide
a more holistic view of sleep patterns.

The remaining symptoms, including perceived fatigue,
concentration, disease control, and challenge, did not exhibit
consistent patterns across definitions. Their temporal changes
may not be directly associated with the occurrence of
pain flares but might instead be more salient in their
impact afterward. Sedentary time demonstrates minimal to
no associations with pain flares. A similar pattern was also
observed in prior research on low back pain, which found
that longer sedentary behavior did not increase the odds of
pain flares the next day [19]. An unexpected association
was observed for well-being, where feeling more unwell
appeared to lower the likelihood of pain flare occurrence.
This counterintuitive finding needs further investigation, as
changes in emotional state could alter pain management
behaviors and potentially influence the pain experience [44].

Study Strengths and Limitations

The study strengths include using a large sample size with
more than 15% of participants from diverse ethnic back-
grounds, examining across multiple numerically defined pain
flares, and employing case-crossover design, which collec-
tively enhance the robustness of capturing within-person
variations over time. Several limitations need to be highligh-
ted.

First, the nature of RA as an inflammatory disease may
complicate the definition of pain flares. Our approach using
pain severity alone may overlook other factors contributing to
increased pain, such as inflammation or medication changes.
Second, despite using 3 definitions to encompass diverse pain
fluctuations, participants with consistently mild or severe pain
may not have been included in the analysis because their
lack of fluctuations failed to meet any of the definitions.
Third, we selected a 3-day window for hazard and control
periods and adopted a full stratum bidirectional approach
to maximize data availability. This approach was chosen to
account for the constraints of the 30-day study period while
minimizing overlaps between hazard periods and pain flares.
However, there were overlaps between control periods and
postflare phases, during which symptoms could persist and
potentially intertwine with the carry-on effects of pain flares.
Excluding postflare phases and using alternative options, such
as a 7-day window, were considered but deemed unsuitable,
given the data availability. Our sensitivity analysis supports
the current approach as a robust method. Employing a
rolling window to capture fluctuations in exposures reflects
real-world dynamics. After adjusting for these overlaps, we
observed the same patterns in exposure outcome associa-
tions with expected variations due to changes in statistical
power. Fourth, physical activity was not quantified based on
individual calibration, and the accelerometer was optimized
to record sleep data, potentially compromising the sensitiv-
ity in detecting movements during daytime. Finally, days
with missing data for pain or any of the 12 exposures were
excluded. This likely introduced selection bias, reducing the

JMIR Mhealth Uhealth 2025 | vol. 13 | ¢64889 | p. 11
(page number not for citation purposes)


https://mhealth.jmir.org/2025/1/e64889

JMIR MHEALTH AND UHEALTH

number of participants included in the analysis and limiting
the availability of hazard and control periods. Imputation was
not used to avoid introducing bias, as the missing data were
likely not missing at random.

Implications and Future Research

The study provides a novel narrative in understanding
pain flares through daily patient-generated data. It shows
the potential of mHealth technologies for multidimensional
monitoring of symptom patterns. This approach enables a
more nuanced understanding of individual pain experiences
and associated factors, which offers health care providers
and patients an opportunity to better predict and proactively
manage pain flares [45]. Incorporating both patient-reported
and accelerometer-derived measures allows for capturing a
more complete view of a patient’s condition and its pro-
gression. It also nudges active patient involvement in their
own care, promoting self-monitoring to increase awareness.
However, it is important to recognize that patient engagement
with mHealth technologies remains a significant challenge
in digital health research, with issues such as data missing-
ness affecting the quality of the data or lack of transparency
compromising the integrity of reporting. Digital exclusion,
contributed by factors such as socioeconomic disparities or
lack of digital skills, is another critical factor that could limit
the generalizability of digital health research. The QUASAR
study, for example, excluded individuals who did not own
a personal smartphone or tablet. This restriction may have
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inadvertently overlooked certain populations and their unique
characteristics.

For pain research specifically, future studies are recom-
mended to include multiple pain-related symptoms and
explore how symptoms vary during different stages of pain
flares. This approach will enhance our understanding of their
nuances and impact on patients, potentially leading to more
timely monitoring and personalized management strategies.
Furthermore, future studies also need to consider the impact
of digital exclusion and strive for greater inclusivity to
encourage wider participation.

Conclusions

Our study, which leveraged mHealth technologies and
numerically defined pain severity, has concluded that pain
flares are commonly observed in patients with RA. The
analysis of daily patient-generated health data indicates that
changes in sleep patterns and emotional distress over 3 days
may be associated with the occurrence of pain flares the
following day. This study represents an early example of
identifying pain flares using daily data, opening opportuni-
ties for timely monitoring and personalized management. As
digital technologies evolve, they hold significant potential to
transform how we understand and manage chronic conditions.
It is also crucial to address the challenges of patient engage-
ment, the impact of digital exclusion, and the need for greater
inclusivity in future research.
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