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and obesity. Analysing blood biomarkers, particularly 
lipid profiles, is essential for assessing risk and develop-
ing therapeutic strategies to prevent cardiovascular events. 
Elevated cholesterol levels affect 43% of adults in England, 
and reducing LDL-C by just 1 mmol/L can lower the risk 
of CVD by 22% (Samarasekera et al. 2023; Trialists et 
al. 2010). Therefore, maintaining optimal LDL-C levels is 
critical to mitigating the strong link between high choles-
terol and CVD (Chary et al. 2023).

LDL-C levels are stratified into risk categories: con-
centrations below 3 mmol/L are considered optimal, while 
levels between 3.0 and 3.3 mmol/L are classified as above 
optimal. Measurements ranging from 3.4 to 4.1 mmol/L 
indicate borderline risk, while values between 4.2 and 4.9 
mmol/L are categorised as high risk. Levels exceeding 5.0 
mmol/L are deemed very high risk, reflecting a significant 
association with increased CVD incidence (NIH 2024). 
The most extreme genetic manifestation of increased serum 
LDL-C level is familial hypercholesterolemia (FH), an 

Introduction

The British Heart Foundation reports that approximately 7.6 
million people in the UK, including individuals in all age 
groups, are living with cardiovascular disease (CVD) (BHF 
2024). Although lifestyle factors such as diet and physical 
activity contribute significantly to CVD risk, genetic pre-
disposition also plays a crucial role. Medical risk factors 
of CVD include hypertension, diabetes, high cholesterol, 
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Abstract
Elevated cholesterol increases risk of diseases such as heart disease, chronic kidney disease and diabetes and early detec-
tion and diagnosis is desirable to enable preventative intervention. This study seeks to elucidate genetic factors affecting 
low-density lipoprotein cholesterol (LDL-C) levels in blood, enabling development of personalised strategies for lipid 
management and cardiovascular disease prevention. GenePy, a gene pathogenicity scoring tool, condenses genetic variant 
data into a single burden score for both individuals and genes. GenePy scores were evaluated across all genes to assess 
their association with blood cholesterol levels, excluding participants on cholesterol-lowering medications. Nonparamet-
ric tests analysed the relationship between GenePy scores and cholesterol levels in those aged < 60 years and ≥ 60 years. 
GenePy was effective in identifying PCSK9, APOE, and LDLR as the genes most critically influencing plasma cholesterol 
at a population level. Of note, the strongest genetic effect observed was a protective loss of function effect in the PCSK9 
gene. Novel significant signals driving blood LDL-C levels that are common to both age groups include: BPIFB6 that 
has a role in lipid binding and transport; FAIM that has a role in regulation of lipogenesis, SLAMF9 previously implicated 
in macrophage cholesterol loading; CLU—a component of HDL; SAA1 with a known role in cholesterol homeostasis. 
A gene-based analysis integrating common, rare, and private variations identifies genes influencing blood LDL-C levels. 
Developing effective polygenic risk scores requires a comprehensive understanding of genetic factors affecting cholesterol 
to improve prediction and personalise treatment plans.
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autosomal dominant disorder associated with abnormally 
elevated levels of LDL-C; other conditions such as familial 
combined hyperlipidemia and polygenic hypercholesterol-
emia also contribute to hypercholesterolemia. Monogenic 
FH is primarily caused by pathogenic mutations in LDLR, 
APOB, and PCSK9, as well as specific variants in APOE or 
rare autosomal variants in LDLRAP1 (Abifadel and Boileau 
2023). Approximately 79% of cases are linked to mutations 
in LDLR, while mutations in APOB and gain-of-function 
(GoF) mutations in PCSK9 account for 5% and < 1% of 
cases, respectively. In very rare instances, homozygous 
recessive FH results from mutations in LDLRAP1. Other 
cases may involve polygenic or monogenic mutations in 
genes such as APOE, SREBP2, and STAP1 (Henderson et al. 
2016). A recent cryo-electron microscopy study of LDLR-
ApoB100 interaction revealed multiple binding sites and 
showed how these sites contribute to the overall avidity of 
the interaction. Mutations affecting this interaction can lead 
to the development of FH (Reimund et al. 2024).

The genetic basis of hypercholesterolemia exhibits inter-
individual variability, influenced by differences in mono-
genic mutations, polygenic contributions, and their potential 
interplay with environmental factors. Genetic screening can 
be conducted to accurately assess which risk factors are rel-
evant to an individual. NHS standard or care now recom-
mends individuals with first-degree family history of FH are 
referred for cascade testing (Hub 2024). Where a patient’s 
LDL-C level is above 4.9 mmol/L, or above 4.0 mmol/L and 
they have a personal or family history of premature athero-
sclerotic cardiovascular disease, a repeat lipid profile test 
will be recommended after three months. If, upon follow-
up, the individual meets the definition of FH in the Simon 
Broome, FHWales, or Dutch Lipid Clinic Network criteria, 
they will be referred for FH genetic testing. If family history 
is unavailable and the LDL-C level remains elevated despite 
healthy lifestyle changes, genetic screening will be recom-
mended (Hub 2024).

Patients with moderately elevated lipoprotein levels 
may benefit from dietary and exercise modifications (Kelly 
2010), but those with significantly raised cholesterol typi-
cally require medication, primarily statins (Iyen et al. 2021), 
to manage LDL-C levels. In the UK, around 7.5 million 
individuals are treated with statins (Kulkarni et al. 2024), 
with atorvastatin, simvastatin, and rosuvastatin being the 
most prescribed due to their effectiveness in reducing cho-
lesterol and cardiovascular risk. Alternative treatments like 
ezetimibe and PCSK9 inhibitors are used for statin-intol-
erant patients or those at high cardiovascular risk (Khan et 
al. 2021; Kim et al. 2022). Treatment decisions are based 
on factors such as efficacy, side effects, and liver func-
tion (Kulkarni et al. 2024). In addition to pharmacological 
intervention, lifestyle modifications, including smoking 

cessation, a healthy diet, and regular physical activity, are 
essential to preventing disease progression.

Genome-wide association studies (GWAS) of LDL-C 
have identified numerous genes involved in cholesterol reg-
ulation, including pathways related to LDL receptor activ-
ity, cholesterol biosynthesis, absorption, and lipoprotein 
metabolism. The GWAS catalog (Catalog 2024) compiles 
many LDL-C-associated genes, often showing small effect 
sizes. However, a significant proportion of genetic variabil-
ity remains unexplained. This “missing heritability” is partly 
attributable to rare variants. Traditional GWAS, focused on 
common variants and failed to capture the impact of gene 
interactions or rare variants with large effects, limiting the 
development of precise individualised risk scores. Future 
research should explore novel gene-disease associations to 
advance personalised medicine.

In this study, we integrate genetic variant calls from 
rich whole exome sequencing using GenePy (Mossotto et 
al. 2019). GenePy is a tool to reduce the sparsity of vari-
ant calls files derived from genomic sequencing. It provides 
a whole-gene pathogenic burden score that aggregates all 
variants observed in a given gene in any one individual, into 
a single pathogenicity burden score for each gene. GenePy 
scores are intuitive whereby higher scores for any one gene 
reflects a higher pathogenic burden. Retaining signal from 
common and rare variation, GenePy has the potential to 
enhance causal disease gene detection and indicate genes 
with individually rare but collectively important clinical 
impact. This study differs from traditional association test-
ing that detects altered genetic variant allele frequencies in 
cases compared to controls. Instead, we ask if the individu-
als with the highest pathogenic variant burden in a given 
gene are compared to those with the lowest pathogenic bur-
den in the same gene, do they have significantly different 
blood cholesterol levels? We test this agnostically across 
all genes. The number of tests is limited by the number of 
genes in the genome and so controls for the ever-expanding 
set of rare and private variation observed as we sequence 
more individuals.

Methods

UK biobank

UK Biobank is a large-scale, prospective biomedical data-
base containing phenotypic, lifestyle, clinical, imaging, and 
genetic data of 500,000 individuals. Consenting partici-
pants, aged 40–69 at the time of recruitment, were volun-
tarily recruited between 2006 and 2010 across the UK. The 
database is fully compliant with data privacy regulations 
and all records have been de-identified (Biobank 2024). Our 
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study utilises the Phase 2 whole exome sequencing data of 
200,620 individuals along with their respective phenotype 
and clinical data. UK Biobank access was provided under 
approved project ID 72911.

Genetic data handling

To interpret variant-level data, we employed GenePy, a tool 
that quantifies the pathogenic burden of common and rare 
deleterious variation within individual genes (Mossotto et 
al. 2019; Rentzsch et al. 2019; Seaby et al. 2024). To cal-
culate the GenePy score, all variants are annotated with 
deleteriousness, population frequency, and zygosity (indi-
cating whether the variant is inherited from one or both par-
ents) prior to aggregation of variant-level scores to generate 
gene-level scores for each individual.

All 10 million variants were annotated using CADD-
Phred scores (CADD v1.6) (Rentzsch et al. 2019), which 
provide a normalised measure of deleteriousness for each 
variant (− 10 × log10 of the rank of a variant among 9 bil-
lion potential substitutions). Population allele frequencies 
were obtained from gnomAD (non-Finnish European popu-
lation) (gnomAD 2022), using the Ensembl Variant Effect 
Predictor (VEP) (McLaren et al. 2016). We implemented a 
multi-step quality control and annotation pipeline to ensure 
the generation of a high-confidence variant dataset for sub-
sequent analyses. Variants were initially filtered based on 
genotype quality, requiring a minimum read depth (DP ≥ 8) 
and allelic balance (AB ≥ 0.15) to retain reliable hetero-
zygous calls. All homozygous reference genotypes (GT = 
“0/0”) were included in calculations. Variants with an F_
MISSING value below 0.12 and Hardy-Weinberg Equilib-
rium (HWE) p-values exceeding the Bonferroni-corrected 
threshold of 0.05 were retained, ensuring a final dataset 
enriched for high-quality, biologically plausible variants 
with minimal genotyping errors. In order to prioritise vari-
ants with a higher likelihood of deleterious effects on gene 
function, we applied an additional filter to retain only vari-
ants with a CADD-Phred score ≥ 20. This filter can result 
in some genes where all individuals have a GenePy score 
of zero, indicating that the net effect of the variants within 
the gene was not deemed “pathogenic” by GenePy. There-
fore, for downstream large data analysis, a cut-off thresh-
old was applied to only select genes with more than five 
non-zero values, as tests on genes with fewer non-zero val-
ues are insufficiently powered. The final gene set excluded 
poorly annotated genes without International Commission 
on Genetic Nomenclature (ICGN) codes, Y chromosome 
genes, and olfactory genes (Karczewski et al. 2020).

To process scores for 20,031 genes across 200,620 indi-
viduals, we implemented GenePy (V3) [​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​
m​/​U​​o​S​-​​H​G​I​​G​/​G​​e​n​e​​P​y​-​2​​/​t​​r​e​e​​/​V​3​/​​G​e​n​​e​P​y​​2​_​U​​K​B​i​​o​b​a​n​​k​/​​

N​e​x​t​f​l​o​w​_​G​e​n​e​p​y​2​_​U​K​B​B​_​V​3], leveraging the Nextflow 
framework (GenePy 2024) on a local high-performance 
computing cluster IRIDIS. Nextflow dynamically allocates 
CPU and RAM resources based on the specific require-
ments of each processing step, enabling scalable and effi-
cient analysis of this large dataset.

Clinical data handling

LDL-C measurement (UK Biobank field 30780) was 
taken as a continuous trait for analyses. For participants 
with multiple LDL-C measurements, the earliest measure-
ment was taken. Participants with missing LDL-C values 
or values flagged as non-reproducible were excluded. Due 
to the known correlation whereby blood cholesterol lev-
els increase with age in a manner independent of genetic 
mutation (Bertolotti et al. 2023), we analysed participants 
whose cholesterol measurements were taken when aged 
< 60 years separately from those whose cholesterol mea-
surements were taken aged ≥ 60 years. Males and females 
were assessed separately for X-linked genes.

UK Biobank data include an estimate of kinship for each 
pair of individuals computed using KING software (Mani-
chaikul et al. 2010). For this analysis, where individuals 
with third- or higher degree relationship were identified, 
we retained only the youngest participant to avoid potential 
confounding caused by related individuals. Age at the time 
of blood LDL measurement was calculated as the difference 
between their year of birth (field 34) and the date of the LDL 
assay (field 30781).

In addition to statins, drugs such as niacin (McKenney 
2004), conjugated oestrogens, oestrogen products, and 
gestrinone (Feingold et al. 2017) can either increase or 
decrease LDL-C levels. Treatment/medication data (field 
20003) was extracted for each participant (refer Supple-
mentary Table S1 for full list of drugs). To avoid noise 
introduced by therapeutic alteration of LDL-C levels, par-
ticipants on these drugs were excluded from downstream 
analyses.

Statistical approaches used in our analysis

Using Python 3.9, we modelled blood LDL-C distribu-
tions across participant subsets. Shapiro-Wilk test was 
used to assess blood LDL-C normality. The Kolmogorov–
Smirnov (K–S) test was used to compare blood LDL-C 
distributions between participant subsets: those not using 
cholesterol-lowering medications, those for whom medica-
tion usage data was unavailable, and those confirmed to be 
taking LDL-C-lowering drugs. The Mann-Whitney U test 
was employed to assess differences in blood LDL-C levels 
between participants with extreme GenePy values.
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exome sequencing data, 10,008 participants missing LDL-C 
measurements, and 13,452 individuals identified as having 
at least third-degree relationships were excluded. A total of 
177,142 participants were retained and stratified based on 
medication use into three groups: 99,137 participants not 
using any of the specified medications, 28,104 participants 
taking at least one drug impacting cholesterol, and 49,901 
participants with no information on medication use (Fig. 1).

LDL-C distribution and medication use

The density distribution of LDL-C levels across the above 
groups is presented in Fig.  2. Participants not taking any 
medications exhibited a mean LDL-C value of 3.70. The 
LDL-C density profile for participants with missing drug 
information did not significantly deviate from that of par-
ticipants positively identified as not taking lipid lowering 
medication (K–S p = 0.29). This evidenced the assumption 
that those participants without evidence of relevant drug 
use were not administered lipid lower medication, and the 
groups were merged in subsequent analyses. As expected, 
the density distribution for participants reported on cho-
lesterol lowering medication had significantly lower mean 
LDL-C (2.79 mmol/L) and these individuals were excluded 
from downstream analyses.

Demographic characteristics

Demographic data for participants stratified by drug use is 
presented in Table 1. While the overall number of female 
participants exceeds that of males, the proportion of male 
participants on medication was higher, consistent with 
established trends indicating a higher prevalence of hyper-
cholesterolemia and CVD among men (Ingelsson et al. 
2007). Additionally, medication use increased with advanc-
ing age, highlighting the link between age and the need 
for pharmacological interventions. Among participants on 
drug, women exhibit a higher mean and standard deviation 
in LDL-C compared to men.

Gene set refinement

The initial dataset included 24,625 genes. Following exclu-
sion of genes with fewer than five nonzero values (n = 
933), olfactory genes (n = 359), poorly annotated genes 
(n = 3277), and Y chromosome genes (n = 25)-a final set of 
20,031 genes were assessed in 149,038. Autosomal genes 
(n = 19,270) were assessed separately to X chromosome 
genes.

The preprocessed clinical and genomic data were inte-
grated using participant ID. For each of the genes in the 
GenePy matrix, participants were ranked and binned, based 
on ascending GenePy scores, into 100 bins, with 1% of par-
ticipants in each bin. Prior to statistical testing, the highest 
ranked percentile bin was checked and individual samples 
with GenePy scores of zero were excluded. Mann-Whitney 
U test was performed to compare LDL-C levels of partici-
pants in the lowest and highest ranked GenePy bins for each 
gene.

Due to the established sparse nature of genomic data, 
many of the lowest percentile GenePy bins were uniformly 
zero and individual assignment to these bins was arbitrary. 
Therefore, we bootstrapped the Mann-Whitney U test 1000 
times, randomly shuffling participants each time before 
ranking in order of ascending GenePy score. For each gene, 
the mean p-value along with the standard deviation on 1000 
iterations was recorded. Genes whereby a significant dif-
ference in blood LDL-C levels between participants with 
extreme quantile GenePy scores for any given gene, were 
adjusted using the Benjamini–Hochberg method (false dis-
covery rate (FDR)). An FDR-adjusted p-value below 0.01 
was taken as significant evidence of genetic impact on 
LDL-C levels.

KEGG 2021 human gene set (Kanehisa et al. 2025), 
which provides information on biological pathways, molec-
ular interactions, and reaction network information, was 
applied using Enrichr in Python to identify overrepresented 
pathways among genes significant after FDR correction.

Protein-protein interaction networks depict the func-
tional and physical interaction between a set of proteins and 
can be used to infer function, disease associations, and iden-
tify functional modules. We performed a network analysis 
of significant genes after FDR correction using the multiple 
proteins search facility provided by STRING-db website 
(Consortium 2024). Constraints were set to include interac-
tions from very reliable sources only (experimental data and 
curated databases).

Results

This section presents the outcomes of data preprocessing 
steps, the identification of significant genes associated with 
blood LDL-C levels, pathway enrichment analyses of the 
identified genes, and a protein-protein interaction (PPI) net-
work analysis of the significant genes.

Study population and data filtering

The initial cohort comprised 200,620 participants. Fol-
lowing data preprocessing, 18 participants without whole 
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the lowest, were those routinely used in clinical practice 
and the NHS Genomic Test Directory PanelApp(England 
2023) for hypercholesterolemia. Of the five PanelApp genes 
indicated for diagnostic assessment, three (PCSK9, APOE, 
and LDLR) are amongst those for whom individuals with 
the most extreme GenePy scores, have the greatest differ-
ence in blood cholesterol levels in all analyses (Fig. 3). This 
result reinforces both the critical role of these genes in lipid 
metabolism at the population level and the sensitivity of our 
analytical approach using GenePy. A fourth PanelApp gene, 
APOB, was significant in the analysis of LDL-C measure-
ment taken at any age (p = 1.6 × 10−4) and in those age ≥ 60 
years (p = 9.02 × 10−4), but cholesterol measurements were 
not significantly different in individuals with lowest and 
highest pathogenic burden in APOB in the smaller group 
where the measurement was taken aged < 60 years. Our 
approach did not identify the fifth gene, LDLRAP1, likely 
due to the extreme rarity with which this gene impacts cho-
lesterol across populations.

We considered the GenePy percentile distribution for the 
diagnostic PanelApp genes across blood cholesterol mea-
surements taken at an age < 60 years and ≥ 60 years (Fig. 4). 
For both groups, a distinct shift in LDL-C values in the final 
bin of LDLR, is observed. Individuals ranked in the high-
est percentile of GenePy scores for LDLR, had a markedly 

Genetic links to LDL-C

GenePy scores were calculated for all individuals and for 
each gene, individuals were ranked by their score and allo-
cated to percentile bins. Mann Whitney U tests were con-
ducted by comparing LDL-C levels between the lowest 
and highest ranked GenePy score bins for each gene. This 
analysis was conducted for participants whose LDL-C lev-
els were measured at an age < 60 years (n< 60 years=50,563) 
and ≥ 60 years (n≥60 years=98,443); and for the combined 
group (nall=149,038). Thirty-two participants with missing 
age information were included exclusively in the combined 
analysis. Analysis limited to the younger group identified 
665 nominally significant (p < 0.05) autosomal genes, with 
only three genes achieving FDR significance. Analysis of 
group measured aged ≥ 60 years, 1,066 autosomal genes 
were nominally significant with 56 genes withstanding 
FDR adjustment. The combined group analysis identified 
2,514 genes as nominally significant, of which 668 were 
significant after FDR correction. A parallel coordinate plot 
shows the top 100 genes across all three analyses (Fig. 3). 
Our study successfully identified established genes known 
to causally influence LDL-C levels. The genes with most 
significant difference in LDL-C levels in individuals with 
the highest GenePy pathogenic burden versus those with 

Fig. 1  Workflow illustrating the preprocessing steps and statistical analysis pipeline

 

1 3



S. Sunny et al.

Table 1  Clinical characteristics of UK biobank participants used for analysis. Data are presented for two categories of participants. The “not on 
drug” category merges individuals who are not taking any cholesterol-lowering medications as well as those for whom information on medication 
use is unavailable
Demographics Not on drug (N = 149,038) On drug (N = 28,104) All

Female (n = 86,244) Male (n = 62,724) All Female (n = 11,123) Male (n = 16,981) All
Age in years
 < 60 33.33% 34.75% 50,563 07.63% 09.11% 2,396 97,367
 ≥ 60 66.65% 65.24% 98,443 92.29% 90.85% 25,692 79,775
Smoking
 Never smoked (0) 60.98% 52.25% 85,399 55.06% 38.55% 12,670 98,069
 Former smoker (1) 31.08% 35.44% 48,672 35.52% 49.46% 12,350 61,022
 Current smoker (2) 07.94% 11.86% 14,291 08.65% 11.27% 2875 17,166
BMI in kg/m2

 Mean: 26.67 27.40 26.98 29.41 29.25 29.32 27.35
 Range: 56.83 53.53 56.83 49.78 42.47 49.78 56.83
 Std: 04.99 04.03 04.62 05.61 04.46 04.95 04.75
LDL-C in mmol/L
 Mean: 03.71 03.70 03.70 02.90 02.71 02.79 03.56
 Range: 08.99 08.03 08.99 08.71 06.35 08.82 09.09
 Std: 00.84 00.78 00.81 00.72 00.68 00.70 00.86

Fig. 2  Density distribution of LDL-C values based on drug use information of participants
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on pathway information, enabling the assessment of enrich-
ment of significant genes within molecular functions. Table 2 
identifies six enriched pathways, with roles in lipid metab-
olism being well-supported by existing literature(Gudas 
2022). The metabolism of xenobiotics by cytochrome P450 
represents the most significantly enriched pathway (p = 3.79 
× 10−3). Unsurprisingly, the cholesterol metabolism pathway 
governing synthesis, transport, and regulation of cholesterol 
levels, was identified as highly significantly enriched in 
the genes implicated in blood cholesterol measurements at 
any age, in age ≥ 60 years, and in age < 60 years (pall=6.19 
× 10−3, p≥60=3.71 × 10−4, and p< 60=1.47 × 10−8) (Supple-
mentary Table S2, Table S3). The steroid hormone biosyn-
thesis pathway (p = 1.69 × 10−2) facilitates the enzymatic 
conversion of cholesterol into various steroid hormones. 
The ABC transporter pathway (p = 1.75 × 10−2) is essential 
for the transport of diverse substrates, including lipids and 
cholesterol trafficking. Together, these findings underscore 
the multifaceted genetic regulation of cholesterol metabo-
lism and transport and underpin the mechanisms influencing 
LDL-C levels. While a direct link between the pentose and 
glucuronate interconversions pathway and LDL-C metab-
olism is not well characterised, its involvement in carbo-
hydrate metabolism(BioPortal 2024), which can influence 
lipid regulation, may indicate an indirect role.

Network analysis

Network analysis performed using STRING-db revealed 
functional and physical associations among proteins 
encoded by genes identified as FDR significant in the analy-
sis involving cholesterol measurements taken at any age. 
These genes are depicted as nodes in the network, while 
edges indicate evidence-supported interactions (Supple-
mentary Fig. S3). Figure 5 depicts the network interactions 
for the largest observed subgraph that connects a substantial 
number of genes identified by our analysis as biologically 
significant. Interestingly, proteins encoded by novel gene 
candidates such as CLU, SAA1, and AHNAK2, which rank 
among the top 100 genes in all analyses, are found to inter-
act with well-established genes, including APOE, LDLR, 
and PCSK9. These interactions strengthen the potential rele-
vance of these novel genes in influencing blood cholesterol.

Discussion

The GenePy tool offers an alternative method for linking 
rich genetic variation with clinically relevant phenotypes. 
The score integrates rare variation overlooked by GWAS 
with common variants. It collapses the vast set of all varia-
tions observed through sequencing studies, into a pathogenic 

higher blood cholesterol level compared to those in the low-
est bin (p< 60 years=1.16 × 10−5, p≥60 years=8.07 × 10−7). This is 
consistent with the expectation that pathogenic LoF variants 
in the gene encoding the LDL receptor protein, results in 
higher circulating cholesterol levels. Somewhat counter-
intuitively, we observed a protective effect of the PCSK9 
gene showing that across a large population, LoF variants in 
this gene impose a cholesterol lowering effect and this out-
weighs the known, but very rare gain of function variation 
very infrequently observed in families with FH. The pattern 
for APOE is distinctive, whereby much more common vari-
ation that influences pathogenic mutation burden evident 
across the top 16 bins has a significant cholesterol lowering 
impact across cholesterol measurements taken at age ≥ 60 
and age < 60 years (p≥60 years=5.08 × 10−26, p< 60 years=3.74 
× 10−9). In the most extreme bins however, this effect is tem-
pered by genetic variation with opposing effect. These data 
underpin the unmet need to better characterise the direction 
of individual variant effects. APOB is a gene characterised 
by much more extensive genetic heterogeneity across the 
whole cohort. For this gene, most individuals have a GenePy 
score > 0, and we observe a gradual but significant (p = 9.02 
× 10−4) decline in blood cholesterol in individuals ranked in 
the highest percentile for pathogenic burden when analysis 
is done using ≥ 60 years group. We do not observe a signifi-
cant difference in cholesterol levels comparing individual at 
extreme percentiles for this gene in < 60 years group.

In addition to implicating known diagnostics disease 
genes, our analyses detected genes previously identified 
through GWAS (Fig.  3). Furthermore, significant signals 
were observed in genes not previously associated with 
blood LDL-C. Interestingly, a number of these genes confer 
function with plausible relevance to lipid handling. These 
findings demonstrate potential of alternative methods that 
encompass rare variation in identifying potentially new con-
tributors to LDL-C regulation.

The analysis of the X chromosome genes provided some 
insights. Insulin receptor substrate 4 (IRS4) gene withstood 
FDR correction (p = 6.91 × 10−3) in the analysis that con-
siders cholesterol measurements taken from male partici-
pants who were ≥ 60 years (Supplementary Figure S3). It 
is nominally significant (p = 1.02 × 10−2) in the analysis of 
cholesterol levels of females in the same age group. Isocitric 
dehydrogenase subunit gamma (IDH3G), a gene involved 
in carbohydrate metabolic process, is another notable gene 
appearing in the top list of both these analyses (pfemale=1.96 
× 10−4, pmale=5.09 × 10−3).

Pathway enrichment analysis of LDL-C

Genes significant in the analysis of blood cholesterol mea-
sured at any age (nFDR corrected=668) were aggregated based 
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to cholesterol handling that warrant further scrutiny. The 
significant association of these genes with LDL-C, observed 
in analyses using two independent sample sets from differ-
ent age groups, underscores their potential importance.

Implications of lipid associated genes in metabolic 
regulation, blood pressure, and lipid traits

Our analysis identified several genes implicated in lipid-
associated traits, including fat metabolism and lipid accu-
mulation. Although no direct association between BPIFB6 
and LDL-C has been previously reported, this gene was 
identified in both independent groups of individuals with 
cholesterol measurements taken pre and post 60 years. This 
gene is not well studied but is structurally related to proteins 
capable of binding phospholipids and lipopolysaccharides 
(Mulero et al. 2002). FAIM encodes a protein regulator of 
pituitary adenylate cyclase-activating polypeptide (PACAP) 
that has an important metabolic role in attenuating hepatic 
lipid accumulation, obesity-induced insulin resistance 
(Feng et al. 2024) and lipid metabolism in obese liver (Xiao 
et al. 2019) to attenuate metabolic disorders by reducing 
hepatic lipid accumulation (Luo et al. 2022). Results across 
the independent pre and post 60 cholesterol measurement 
subgroups replicate an effect of SAA1 gene. Studies suggest 
SAA1 has critical relationship with HDL-C level (Carty et 
al. 2009), can potentially alter lipid homeostasis (Sullivan 
et al. 2010), has regulatory function in cholesterol metabo-
lism (Huang et al. 2024), and its suppression can help in 
high fat diet induced insulin resistance (Wang et al. 2019). 
CLU in its secreted form is a component of HDL-C and has 
role in metabolic and cardiovascular diseases (Park et al. 
2014). While the APOB gene is firmly established in FH, 
our results implicate its receptor APOBR and it is perhaps 
unsurprising that the collective impact of rare and common 
variation in this gene alters cholesterol (Fujita et al. 2005). 
The gene shows nominal significance in the analyses of both 
age groups, and in the combined analysis, it withstood FDR 
correction (pFDR_adj=9.72 × 10−9).

ANGPTL3 is a known GWAS gene linked to LDL-C, 
with published studies confirming its role in cardiovascu-
lar events in older populations (Hussain et al. 2021). Our 
findings align with this, as the gene shows significant asso-
ciations (p = 1.78 × 10−4) in older cohort and does not dem-
onstrate any significance in younger population.

IRS4 is part of insulin signaling pathway and its upregu-
lation can lead to insulin resistance (Pandey et al. 2023). 
IDH3G is of importance because of its involvement in the 
peroxisomal lipid metabolism superpathway. A reduced 
expression of this gene is found in patients with arterioscle-
rosis and abdominal aortic aneurysm (Gu et al. 2024).

burden score for each gene, that can be compared between 
individuals. Integrating frequency and deleteriousness into 
the algorithm takes advantage of our improving resources 
and has the potential to detect novel associations not previ-
ously observed.

Encouragingly, our approach using GenePy score identi-
fies the known genes of most important clinical significance 
amongst the most significant results. PCSK9 is the gene 
with most significant change in cholesterol levels compar-
ing individuals with the highest and lowest percentile scores 
when GenePy modelling incorporates the collective com-
mon impact of rare deleterious variants. Gain of function 
mutations in this gene are a known cause of familial hyper-
cholesterolemia and individual variants conferring this 
effect are detected through diagnostic sequencing. However, 
our data convey the wider impact of loss of function (LoF) 
in this gene in suppressing LDL cholesterol at a population 
level. This protective effect warrants clinical consideration 
when assessing an individual patient’s personalised risk. 
Our investigation also identified the important FH diagnos-
tic genes APOE and LDLR amongst the most highly signifi-
cant. Our population level analysis did not detect the very 
rare but established role for the LDLRAP1. This is likely 
because our scan of all genes allocates individual into rela-
tively broad percentile bins, and the proportion of individu-
als actually impacted by this gene is substantially less than 
1%. Our aim in this study was to identify aggregated signals 
of variation whereby, although individual variants may be 
rare, their collective contribution to disease impacts at least 
1% of the cohort. An alternative approach using GenePy that 
prioritised assessment of individuals with the most extreme 
scores has proven successful in detecting causes of very rare 
clinical manifestations(Seaby et al. 2024). Such an applica-
tion was outside the scope of the current study.

In addition to strongly established causal genes, our 
study identified several additional genes linked to CVD, 
diabetes, metabolic syndrome, and neurological disorders 
in relation to LDL-C through analyses of entire cohorts, 
elder sub-cohorts and younger sub-cohorts. While a number 
of these genes were previously implicated by GWAS, we 
detected genes with strong plausible functional relationship 

Fig. 3  Parallel coordinate plot displaying the 100 genes with most sig-
nificant difference in pathogenic burden comparing patients with low-
est and highest blood cholesterol levels. Results for participants whose 
blood cholesterol measurement was recorded at an age < 60 years (n = 
50,563, left panel), ≥ 60 years (n = 98,443, middle panel) and finally 
all participants (n = 149,038, right panel). Genes are colour-coded to 
indicate PanelApp genes that are routinely tested following referral 
for (familial) hypercholesterolemia (red); genes previously identified 
through GWAS (orange); novel genes not previously implicated in 
GWAS that are common to subgroups (green). Novel genes are anno-
tated with keywords indicating evidence for potential plausible func-
tion in influencing blood cholesterol. Nominal p-values are shown for 
all genes. HDL-C HDL cholesterol
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strains of mouse implicated the protein encoded SLAMF9 in 
cholesterol loading (Berisha et al. 2013). Our findings add 
further evidence implicating this gene with blood choles-
terol measured at any age.

Genetic insights into cardiovascular diseases and 
associated traits

Our study has identified several genes associated with car-
diovascular diseases. GWAS have previously linked the 

Liver enzyme regulation and genetic links with 
LDL-C levels

The liver is the regulatory hub for serum cholesterol levels 
and hepatic dysfunction is known to impact LDL-C levels 
(Chrostek et al. 2014; Jiang et al. 2014). The combined acti-
vation of SLAMF9 and SLAMF8 induces macrophage activ-
ity, while their downregulation modulates the expression of 
TLR4, thereby attenuating endotoxin-induced liver inflam-
mation (Zeng et al. 2020). Experiments conducted on two 

Fig. 4  Histogram shows the relationship between LDL-C and GenePy 
scores of UK Biobank participants across 100 percentile bins. All 
p-values are embedded in the figure. Left panel: LDL-C measure-

ments recorded at an age < 60 years; Right panel: LDL-C measure-
ments recorded at an age ≥ 60 years
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truncating and splice variants can be assumed to cause LoF, 
missense variants are far commoner and the research com-
munity lacks reliable inference of gain or loss of function 
for most variants in this important class.

In our study, we used CADD 1.6 to infer variant delete-
riousness for incorporation into the GenePy score. No in 
silico predictor of variant deleteriousness is infallible and 
there are likely limitations to CADD, however this score 
applies a balanced approach to sense and missense cod-
ing variants as well as all non-coding variation– a feature 
lacking in many other deleteriousness annotation tools. 
Common to all analyses using genomic data derived from 
short read sequencing, the variants called from these data 
are unphased– meaning they are not reliably assigned to 
either the maternal or paternal haplotype. Efforts to estimate 
phase fail for rare variation. Therefore, the GenePy scores 
generated herein, represent a composite score reflecting the 
combined burden from both maternal and paternal chromo-
somes and this obfuscates genetic signal and reduces power 
to link variation to phenotypes. As the costs of long-range 
sequencing falls, the ability to calculate GenePy scores for 
each parental copy will afford more refined modelling and 
greater sensitivity for signal detection.

Conclusion

Genes identified in previous genetic associations of hyper-
cholesterolemia, are unable to explain all the genetic patho-
genicity of the disease. Alternative approaches that make 
improved use of the vast amounts of rare variant data 
observed through sequencing are likely to identify at least 
some of this missing heritability. Our study, which uses the 
GenePy score, demonstrates sensitivity in recapitulating 
the strongest known genetic causes. The approach further 
uncovers strong evidence suggesting additional genes in 
functional pathways established to be critical in cholesterol 
homeostasis. These genes may harbour rare variation that 
collectively impact a clinically relevant fraction of the UK 
population. It is desirable that we move towards a model 
of prediction and early intervention in order to reduce the 
health economic burden that is the sequelae of raised cho-
lesterol. However, to be effective, approaches using poly-
genic risks scores demand that variant data on the most 
comprehensive set of genes that alter cholesterol handling 
are inclusively modelled. Our study suggests the need to 
consider a wider set of genes that may harbour rare varia-
tion impacting the common phenotype of raised cholesterol 
and suggests the need for further independent studies across 
different populations.

Keratin Associated Protein 10-4 (KRTAP10-4) gene with 
increased risk of major adverse cardiovascular events 
(MACE) (Liu et al. 2021). Specifically, the missense variant 
rs201441480 in KRTAP10-4 has been identified as a poten-
tial risk factor for MACE. Although the underlying mecha-
nisms remain unclear, our study now adds to the evidence 
suggesting that variation in this gene may influence LDL-C 
levels.

Limitations

Volunteer-based recruitment of participants to the UK Bio-
bank cohort used in this study imposes limitations on the 
generalisability of the findings to a broader population. 
Over 90% of the participants are of European ancestry, 
restricting the applicability of results to other ethnic groups. 
Additionally, only 5.5% of the UK population at the time 
was represented in the study, with a majority being older 
adults, women, and individuals from higher socio-economic 
strata(van Alten et al. 2024). UK Biobank is a globally 
recognised resource of considerable value to the research 
community, but there are some limitations to the depth of 
clinical data and the rigour of self-reported data.

The GenePy framework has inherent limitations in com-
mon with many statistical genetic approaches. While GenePy 
scores can be tuned to integrate only variants inferred to 
have functional impact (CADD scores > 20), this does not 
account for the directionality of the effect. Although protein 

Table 2  Enrichment analysis of FDR significant genes from analysis 
considering cholesterol measurements taken at any age
Pathway p Com-

bined 
score

Genes

Metabolism of 
xenobiotics by cy- 
tochrome P450

3.79 
× 10−3

19.14 UGT2B10,AKR7 
A3,CYP2B6,GSTA3, 
UGT2B15, DHDH, CYP3 
A5, CBR3

Cholesterol 
metabolism

6.18 
× 10−3

20.20 ANGPTL3, PCSK9, 
APOC3, APOE, APOB, 
LDLR

Steroid hormone 
biosynthesis

1.59 
× 10−2

13.15 UGT2B10,CYP3 A7-CYP3 
A51P, UGT2B15, AKR1 
C4, CYP3 A5, CYP3 A7

ABC transporters 1.66 
× 10−2

14.90 ABCA10, ABCB5, TAP1, 
ABCA7, ABCC12

Retinol metabolism 2.58 
× 10−2

10.30 UGT2B10,CYP3 A7-CYP3 
A51P, CYP2B6, UGT2B15, 
CYP3 A5, CYP3 A7

Pentose and 
glucoronate 
interconver- sions

2.59 
× 10−2

14.17 UGT2B10, UGT2B15, 
DHDH, SORD

The first column represents the enriched pathways
‘Combined score’ is a function of p-value and z-score, i.e., it inte-
grates statistical significance and strength of enrichment
Only significant pathways are included in the table
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