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Abstract

Elevated cholesterol increases risk of diseases such as heart disease, chronic kidney disease and diabetes and early detec-
tion and diagnosis is desirable to enable preventative intervention. This study seeks to elucidate genetic factors affecting
low-density lipoprotein cholesterol (LDL-C) levels in blood, enabling development of personalised strategies for lipid
management and cardiovascular disease prevention. GenePy, a gene pathogenicity scoring tool, condenses genetic variant
data into a single burden score for both individuals and genes. GenePy scores were evaluated across all genes to assess
their association with blood cholesterol levels, excluding participants on cholesterol-lowering medications. Nonparamet-
ric tests analysed the relationship between GenePy scores and cholesterol levels in those aged <60 years and >60 years.
GenePy was effective in identifying PCSK9, APOE, and LDLR as the genes most critically influencing plasma cholesterol
at a population level. Of note, the strongest genetic effect observed was a protective loss of function effect in the PCSK9
gene. Novel significant signals driving blood LDL-C levels that are common to both age groups include: BPIFB6 that
has a role in lipid binding and transport; FAIM that has a role in regulation of lipogenesis, SLAMF9 previously implicated
in macrophage cholesterol loading; CLU—a component of HDL; S44/ with a known role in cholesterol homeostasis.
A gene-based analysis integrating common, rare, and private variations identifies genes influencing blood LDL-C levels.
Developing effective polygenic risk scores requires a comprehensive understanding of genetic factors affecting cholesterol
to improve prediction and personalise treatment plans.
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Introduction

The British Heart Foundation reports that approximately 7.6
million people in the UK, including individuals in all age
groups, are living with cardiovascular disease (CVD) (BHF
2024). Although lifestyle factors such as diet and physical
activity contribute significantly to CVD risk, genetic pre-
disposition also plays a crucial role. Medical risk factors
of CVD include hypertension, diabetes, high cholesterol,
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and obesity. Analysing blood biomarkers, particularly
lipid profiles, is essential for assessing risk and develop-
ing therapeutic strategies to prevent cardiovascular events.
Elevated cholesterol levels affect 43% of adults in England,
and reducing LDL-C by just | mmol/L can lower the risk
of CVD by 22% (Samarasekera et al. 2023; Trialists et
al. 2010). Therefore, maintaining optimal LDL-C levels is
critical to mitigating the strong link between high choles-
terol and CVD (Chary et al. 2023).

LDL-C levels are stratified into risk categories: con-
centrations below 3 mmol/L are considered optimal, while
levels between 3.0 and 3.3 mmol/L are classified as above
optimal. Measurements ranging from 3.4 to 4.1 mmol/L
indicate borderline risk, while values between 4.2 and 4.9
mmol/L are categorised as high risk. Levels exceeding 5.0
mmol/L are deemed very high risk, reflecting a significant
association with increased CVD incidence (NIH 2024).
The most extreme genetic manifestation of increased serum
LDL-C level is familial hypercholesterolemia (FH), an
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autosomal dominant disorder associated with abnormally
elevated levels of LDL-C; other conditions such as familial
combined hyperlipidemia and polygenic hypercholesterol-
emia also contribute to hypercholesterolemia. Monogenic
FH is primarily caused by pathogenic mutations in LDLR,
APOB, and PCSK9Y, as well as specific variants in APOE or
rare autosomal variants in LDLRAP1 (Abifadel and Boileau
2023). Approximately 79% of cases are linked to mutations
in LDLR, while mutations in APOB and gain-of-function
(GoF) mutations in PCSK9 account for 5% and <1% of
cases, respectively. In very rare instances, homozygous
recessive FH results from mutations in LDLRAPI. Other
cases may involve polygenic or monogenic mutations in
genes such as APOE, SREBP2, and STAP! (Henderson et al.
2016). A recent cryo-electron microscopy study of LDLR-
ApoB100 interaction revealed multiple binding sites and
showed how these sites contribute to the overall avidity of
the interaction. Mutations affecting this interaction can lead
to the development of FH (Reimund et al. 2024).

The genetic basis of hypercholesterolemia exhibits inter-
individual variability, influenced by differences in mono-
genic mutations, polygenic contributions, and their potential
interplay with environmental factors. Genetic screening can
be conducted to accurately assess which risk factors are rel-
evant to an individual. NHS standard or care now recom-
mends individuals with first-degree family history of FH are
referred for cascade testing (Hub 2024). Where a patient’s
LDL-C level is above 4.9 mmol/L, or above 4.0 mmol/L and
they have a personal or family history of premature athero-
sclerotic cardiovascular disease, a repeat lipid profile test
will be recommended after three months. If, upon follow-
up, the individual meets the definition of FH in the Simon
Broome, FHWales, or Dutch Lipid Clinic Network criteria,
they will be referred for FH genetic testing. If family history
is unavailable and the LDL-C level remains elevated despite
healthy lifestyle changes, genetic screening will be recom-
mended (Hub 2024).

Patients with moderately elevated lipoprotein levels
may benefit from dietary and exercise modifications (Kelly
2010), but those with significantly raised cholesterol typi-
cally require medication, primarily statins (Iyen et al. 2021),
to manage LDL-C levels. In the UK, around 7.5 million
individuals are treated with statins (Kulkarni et al. 2024),
with atorvastatin, simvastatin, and rosuvastatin being the
most prescribed due to their effectiveness in reducing cho-
lesterol and cardiovascular risk. Alternative treatments like
ezetimibe and PCSK9 inhibitors are used for statin-intol-
erant patients or those at high cardiovascular risk (Khan et
al. 2021; Kim et al. 2022). Treatment decisions are based
on factors such as efficacy, side effects, and liver func-
tion (Kulkarni et al. 2024). In addition to pharmacological
intervention, lifestyle modifications, including smoking
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cessation, a healthy diet, and regular physical activity, are
essential to preventing disease progression.

Genome-wide association studies (GWAS) of LDL-C
have identified numerous genes involved in cholesterol reg-
ulation, including pathways related to LDL receptor activ-
ity, cholesterol biosynthesis, absorption, and lipoprotein
metabolism. The GWAS catalog (Catalog 2024) compiles
many LDL-C-associated genes, often showing small effect
sizes. However, a significant proportion of genetic variabil-
ity remains unexplained. This “missing heritability” is partly
attributable to rare variants. Traditional GWAS, focused on
common variants and failed to capture the impact of gene
interactions or rare variants with large effects, limiting the
development of precise individualised risk scores. Future
research should explore novel gene-disease associations to
advance personalised medicine.

In this study, we integrate genetic variant calls from
rich whole exome sequencing using GenePy (Mossotto et
al. 2019). GenePy is a tool to reduce the sparsity of vari-
ant calls files derived from genomic sequencing. It provides
a whole-gene pathogenic burden score that aggregates all
variants observed in a given gene in any one individual, into
a single pathogenicity burden score for each gene. GenePy
scores are intuitive whereby higher scores for any one gene
reflects a higher pathogenic burden. Retaining signal from
common and rare variation, GenePy has the potential to
enhance causal disease gene detection and indicate genes
with individually rare but collectively important clinical
impact. This study differs from traditional association test-
ing that detects altered genetic variant allele frequencies in
cases compared to controls. Instead, we ask if the individu-
als with the highest pathogenic variant burden in a given
gene are compared to those with the lowest pathogenic bur-
den in the same gene, do they have significantly different
blood cholesterol levels? We test this agnostically across
all genes. The number of tests is limited by the number of
genes in the genome and so controls for the ever-expanding
set of rare and private variation observed as we sequence
more individuals.

Methods
UK biobank

UK Biobank is a large-scale, prospective biomedical data-
base containing phenotypic, lifestyle, clinical, imaging, and
genetic data of 500,000 individuals. Consenting partici-
pants, aged 40—-69 at the time of recruitment, were volun-
tarily recruited between 2006 and 2010 across the UK. The
database is fully compliant with data privacy regulations
and all records have been de-identified (Biobank 2024). Our
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study utilises the Phase 2 whole exome sequencing data of
200,620 individuals along with their respective phenotype
and clinical data. UK Biobank access was provided under
approved project ID 72911.

Genetic data handling

To interpret variant-level data, we employed GenePy, a tool
that quantifies the pathogenic burden of common and rare
deleterious variation within individual genes (Mossotto et
al. 2019; Rentzsch et al. 2019; Seaby et al. 2024). To cal-
culate the GenePy score, all variants are annotated with
deleteriousness, population frequency, and zygosity (indi-
cating whether the variant is inherited from one or both par-
ents) prior to aggregation of variant-level scores to generate
gene-level scores for each individual.

All 10 million variants were annotated using CADD-
Phred scores (CADD v1.6) (Rentzsch et al. 2019), which
provide a normalised measure of deleteriousness for each
variant (— 10 x logl0 of the rank of a variant among 9 bil-
lion potential substitutions). Population allele frequencies
were obtained from gnomAD (non-Finnish European popu-
lation) (gnomAD 2022), using the Ensembl Variant Effect
Predictor (VEP) (McLaren et al. 2016). We implemented a
multi-step quality control and annotation pipeline to ensure
the generation of a high-confidence variant dataset for sub-
sequent analyses. Variants were initially filtered based on
genotype quality, requiring a minimum read depth (DP>8)
and allelic balance (AB>0.15) to retain reliable hetero-
zygous calls. All homozygous reference genotypes (GT =
“0/0”) were included in calculations. Variants with an F_
MISSING value below 0.12 and Hardy-Weinberg Equilib-
rium (HWE) p-values exceeding the Bonferroni-corrected
threshold of 0.05 were retained, ensuring a final dataset
enriched for high-quality, biologically plausible variants
with minimal genotyping errors. In order to prioritise vari-
ants with a higher likelihood of deleterious effects on gene
function, we applied an additional filter to retain only vari-
ants with a CADD-Phred score>20. This filter can result
in some genes where all individuals have a GenePy score
of zero, indicating that the net effect of the variants within
the gene was not deemed “pathogenic” by GenePy. There-
fore, for downstream large data analysis, a cut-off thresh-
old was applied to only select genes with more than five
non-zero values, as tests on genes with fewer non-zero val-
ues are insufficiently powered. The final gene set excluded
poorly annotated genes without International Commission
on Genetic Nomenclature (ICGN) codes, Y chromosome
genes, and olfactory genes (Karczewski et al. 2020).

To process scores for 20,031 genes across 200,620 indi-
viduals, we implemented GenePy (V3) [https://github.co
m/UoS-HGIG/GenePy-2/tree/V3/GenePy2 UKBiobank/

Nextflow Genepy2 UKBB V3], leveraging the Nextflow
framework (GenePy 2024) on a local high-performance
computing cluster IRIDIS. Nextflow dynamically allocates
CPU and RAM resources based on the specific require-
ments of each processing step, enabling scalable and effi-
cient analysis of this large dataset.

Clinical data handling

LDL-C measurement (UK Biobank field 30780) was
taken as a continuous trait for analyses. For participants
with multiple LDL-C measurements, the earliest measure-
ment was taken. Participants with missing LDL-C values
or values flagged as non-reproducible were excluded. Due
to the known correlation whereby blood cholesterol lev-
els increase with age in a manner independent of genetic
mutation (Bertolotti et al. 2023), we analysed participants
whose cholesterol measurements were taken when aged
<60 years separately from those whose cholesterol mea-
surements were taken aged >60 years. Males and females
were assessed separately for X-linked genes.

UK Biobank data include an estimate of kinship for each
pair of individuals computed using KING software (Mani-
chaikul et al. 2010). For this analysis, where individuals
with third- or higher degree relationship were identified,
we retained only the youngest participant to avoid potential
confounding caused by related individuals. Age at the time
of blood LDL measurement was calculated as the difference
between their year of birth (field 34) and the date of the LDL
assay (field 30781).

In addition to statins, drugs such as niacin (McKenney
2004), conjugated oestrogens, oestrogen products, and
gestrinone (Feingold et al. 2017) can either increase or
decrease LDL-C levels. Treatment/medication data (field
20003) was extracted for each participant (refer Supple-
mentary Table S1 for full list of drugs). To avoid noise
introduced by therapeutic alteration of LDL-C levels, par-
ticipants on these drugs were excluded from downstream
analyses.

Statistical approaches used in our analysis

Using Python 3.9, we modelled blood LDL-C distribu-
tions across participant subsets. Shapiro-Wilk test was
used to assess blood LDL-C normality. The Kolmogorov—
Smirnov (K-S) test was used to compare blood LDL-C
distributions between participant subsets: those not using
cholesterol-lowering medications, those for whom medica-
tion usage data was unavailable, and those confirmed to be
taking LDL-C-lowering drugs. The Mann-Whitney U test
was employed to assess differences in blood LDL-C levels
between participants with extreme GenePy values.
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The preprocessed clinical and genomic data were inte-
grated using participant ID. For each of the genes in the
GenePy matrix, participants were ranked and binned, based
on ascending GenePy scores, into 100 bins, with 1% of par-
ticipants in each bin. Prior to statistical testing, the highest
ranked percentile bin was checked and individual samples
with GenePy scores of zero were excluded. Mann-Whitney
U test was performed to compare LDL-C levels of partici-
pants in the lowest and highest ranked GenePy bins for each
gene.

Due to the established sparse nature of genomic data,
many of the lowest percentile GenePy bins were uniformly
zero and individual assignment to these bins was arbitrary.
Therefore, we bootstrapped the Mann-Whitney U test 1000
times, randomly shuffling participants each time before
ranking in order of ascending GenePy score. For each gene,
the mean p-value along with the standard deviation on 1000
iterations was recorded. Genes whereby a significant dif-
ference in blood LDL-C levels between participants with
extreme quantile GenePy scores for any given gene, were
adjusted using the Benjamini—Hochberg method (false dis-
covery rate (FDR)). An FDR-adjusted p-value below 0.01
was taken as significant evidence of genetic impact on
LDL-C levels.

KEGG 2021 human gene set (Kanehisa et al. 2025),
which provides information on biological pathways, molec-
ular interactions, and reaction network information, was
applied using Enrichr in Python to identify overrepresented
pathways among genes significant after FDR correction.

Protein-protein interaction networks depict the func-
tional and physical interaction between a set of proteins and
can be used to infer function, disease associations, and iden-
tify functional modules. We performed a network analysis
of significant genes after FDR correction using the multiple
proteins search facility provided by STRING-db website
(Consortium 2024). Constraints were set to include interac-
tions from very reliable sources only (experimental data and
curated databases).

Results

This section presents the outcomes of data preprocessing
steps, the identification of significant genes associated with
blood LDL-C levels, pathway enrichment analyses of the
identified genes, and a protein-protein interaction (PPI) net-
work analysis of the significant genes.

Study population and data filtering

The initial cohort comprised 200,620 participants. Fol-
lowing data preprocessing, 18 participants without whole
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exome sequencing data, 10,008 participants missing LDL-C
measurements, and 13,452 individuals identified as having
at least third-degree relationships were excluded. A total of
177,142 participants were retained and stratified based on
medication use into three groups: 99,137 participants not
using any of the specified medications, 28,104 participants
taking at least one drug impacting cholesterol, and 49,901
participants with no information on medication use (Fig. 1).

LDL-C distribution and medication use

The density distribution of LDL-C levels across the above
groups is presented in Fig. 2. Participants not taking any
medications exhibited a mean LDL-C value of 3.70. The
LDL-C density profile for participants with missing drug
information did not significantly deviate from that of par-
ticipants positively identified as not taking lipid lowering
medication (K-S p= 0.29). This evidenced the assumption
that those participants without evidence of relevant drug
use were not administered lipid lower medication, and the
groups were merged in subsequent analyses. As expected,
the density distribution for participants reported on cho-
lesterol lowering medication had significantly lower mean
LDL-C (2.79 mmol/L) and these individuals were excluded
from downstream analyses.

Demographic characteristics

Demographic data for participants stratified by drug use is
presented in Table 1. While the overall number of female
participants exceeds that of males, the proportion of male
participants on medication was higher, consistent with
established trends indicating a higher prevalence of hyper-
cholesterolemia and CVD among men (Ingelsson et al.
2007). Additionally, medication use increased with advanc-
ing age, highlighting the link between age and the need
for pharmacological interventions. Among participants on
drug, women exhibit a higher mean and standard deviation
in LDL-C compared to men.

Gene set refinement

The initial dataset included 24,625 genes. Following exclu-
sion of genes with fewer than five nonzero values (n=
933), olfactory genes (n= 359), poorly annotated genes
(n=3277), and Y chromosome genes (n= 25)-a final set of
20,031 genes were assessed in 149,038. Autosomal genes
(n= 19,270) were assessed separately to X chromosome
genes.
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Fig. 1 Workflow illustrating the preprocessing steps and statistical analysis pipeline

Genetic links to LDL-C

GenePy scores were calculated for all individuals and for
each gene, individuals were ranked by their score and allo-
cated to percentile bins. Mann Whitney U tests were con-
ducted by comparing LDL-C levels between the lowest
and highest ranked GenePy score bins for each gene. This
analysis was conducted for participants whose LDL-C lev-
els were measured at an age <60 years (. 49 years=50,563)
and >60 years (Nug years=98,443); and for the combined
group (n,;=149,038). Thirty-two participants with missing
age information were included exclusively in the combined
analysis. Analysis limited to the younger group identified
665 nominally significant (p< 0.05) autosomal genes, with
only three genes achieving FDR significance. Analysis of
group measured aged >60 years, 1,066 autosomal genes
were nominally significant with 56 genes withstanding
FDR adjustment. The combined group analysis identified
2,514 genes as nominally significant, of which 668 were
significant after FDR correction. A parallel coordinate plot
shows the top 100 genes across all three analyses (Fig. 3).
Our study successfully identified established genes known
to causally influence LDL-C levels. The genes with most
significant difference in LDL-C levels in individuals with
the highest GenePy pathogenic burden versus those with

the lowest, were those routinely used in clinical practice
and the NHS Genomic Test Directory PanelApp(England
2023) for hypercholesterolemia. Of the five PanelApp genes
indicated for diagnostic assessment, three (PCSK9, APOE,
and LDLR) are amongst those for whom individuals with
the most extreme GenePy scores, have the greatest differ-
ence in blood cholesterol levels in all analyses (Fig. 3). This
result reinforces both the critical role of these genes in lipid
metabolism at the population level and the sensitivity of our
analytical approach using GenePy. A fourth PanelApp gene,
APOB, was significant in the analysis of LDL-C measure-
ment taken at any age (p= 1.6 x 10™*) and in those age >60
years (p=9.02 x 10~*), but cholesterol measurements were
not significantly different in individuals with lowest and
highest pathogenic burden in APOB in the smaller group
where the measurement was taken aged <60 years. Our
approach did not identify the fifth gene, LDLRAPI, likely
due to the extreme rarity with which this gene impacts cho-
lesterol across populations.

We considered the GenePy percentile distribution for the
diagnostic PanelApp genes across blood cholesterol mea-
surements taken at an age <60 years and > 60 years (Fig. 4).
For both groups, a distinct shift in LDL-C values in the final
bin of LDLR, is observed. Individuals ranked in the high-
est percentile of GenePy scores for LDLR, had a markedly
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Fig. 2 Density distribution of LDL-C values based on drug use information of participants

Table 1 Clinical characteristics of UK biobank participants used for analysis. Data are presented for two categories of participants. The “not on
drug” category merges individuals who are not taking any cholesterol-lowering medications as well as those for whom information on medication
use is unavailable

Demographics Not on drug (N=149,038) On drug (N=28,104) All
Female (n=86,244) Male (n=62,724) All Female (n=11,123) Male (n=16,981) All

Age in years

<60 33.33% 34.75% 50,563  07.63% 09.11% 2,396 97,367
>60 66.65% 65.24% 98,443 92.29% 90.85% 25,692 79,775
Smoking

Never smoked (0) 60.98% 52.25% 85,399  55.06% 38.55% 12,670 98,069
Former smoker (1)  31.08% 35.44% 48,672 35.52% 49.46% 12,350 61,022
Current smoker (2)  07.94% 11.86% 14,291  08.65% 11.27% 2875 17,166
BMI in kg/m?

Mean: 26.67 27.40 26.98 29.41 29.25 29.32 27.35
Range: 56.83 53.53 56.83 49.78 42.47 49.78 56.83
Std: 04.99 04.03 04.62 05.61 04.46 04.95 04.75
LDL-C in mmol/L

Mean: 03.71 03.70 03.70 02.90 02.71 02.79 03.56
Range: 08.99 08.03 08.99 08.71 06.35 08.82 09.09
Std: 00.84 00.78 00.81 00.72 00.68 00.70 00.86
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higher blood cholesterol level compared to those in the low-
est bin (P g9 years=1-16 X 10 Pogp year=8.07 X 1077). This is
consistent with the expectation that pathogenic LoF variants
in the gene encoding the LDL receptor protein, results in
higher circulating cholesterol levels. Somewhat counter-
intuitively, we observed a protective effect of the PCSK9
gene showing that across a large population, LoF variants in
this gene impose a cholesterol lowering effect and this out-
weighs the known, but very rare gain of function variation
very infrequently observed in families with FH. The pattern
for APOE is distinctive, whereby much more common vari-
ation that influences pathogenic mutation burden evident
across the top 16 bins has a significant cholesterol lowering
impact across cholesterol measurements taken at age >60
and age <60 years (P40 years—-08 % 107, p_ 4 years—3- 14
x 107?). In the most extreme bins however, this effect is tem-
pered by genetic variation with opposing effect. These data
underpin the unmet need to better characterise the direction
of individual variant effects. APOB is a gene characterised
by much more extensive genetic heterogeneity across the
whole cohort. For this gene, most individuals have a GenePy
score >0, and we observe a gradual but significant (p=9.02
% 107#) decline in blood cholesterol in individuals ranked in
the highest percentile for pathogenic burden when analysis
is done using >60 years group. We do not observe a signifi-
cant difference in cholesterol levels comparing individual at
extreme percentiles for this gene in <60 years group.

In addition to implicating known diagnostics disease
genes, our analyses detected genes previously identified
through GWAS (Fig. 3). Furthermore, significant signals
were observed in genes not previously associated with
blood LDL-C. Interestingly, a number of these genes confer
function with plausible relevance to lipid handling. These
findings demonstrate potential of alternative methods that
encompass rare variation in identifying potentially new con-
tributors to LDL-C regulation.

The analysis of the X chromosome genes provided some
insights. Insulin receptor substrate 4 (/RS4) gene withstood
FDR correction (p= 6.91 x107°) in the analysis that con-
siders cholesterol measurements taken from male partici-
pants who were >60 years (Supplementary Figure S3). It
is nominally significant (p= 1.02 x 10~?) in the analysis of
cholesterol levels of females in the same age group. Isocitric
dehydrogenase subunit gamma (/DH3G), a gene involved
in carbohydrate metabolic process, is another notable gene
appearing in the top list of both these analyses (Psae=1.96
X107, =509 x 1073).

Pathway enrichment analysis of LDL-C

Genes significant in the analysis of blood cholesterol mea-
sured at any age (DppR comectea—008) Were aggregated based

on pathway information, enabling the assessment of enrich-
ment of significant genes within molecular functions. Table 2
identifies six enriched pathways, with roles in lipid metab-
olism being well-supported by existing literature(Gudas
2022). The metabolism of xenobiotics by cytochrome P450
represents the most significantly enriched pathway (p=3.79
x 1073). Unsurprisingly, the cholesterol metabolism pathway
governing synthesis, transport, and regulation of cholesterol
levels, was identified as highly significantly enriched in
the genes implicated in blood cholesterol measurements at
any age, in age >60 years, and in age <60 years (p,;=6.19
x 1073, pogo=3.71 x 107, and p. 4=1.47 x10"®) (Supple-
mentary Table S2, Table S3). The steroid hormone biosyn-
thesis pathway (p= 1.69 x 1072) facilitates the enzymatic
conversion of cholesterol into various steroid hormones.
The ABC transporter pathway (p= 1.75 x 1072) is essential
for the transport of diverse substrates, including lipids and
cholesterol trafficking. Together, these findings underscore
the multifaceted genetic regulation of cholesterol metabo-
lism and transport and underpin the mechanisms influencing
LDL-C levels. While a direct link between the pentose and
glucuronate interconversions pathway and LDL-C metab-
olism is not well characterised, its involvement in carbo-
hydrate metabolism(BioPortal 2024), which can influence
lipid regulation, may indicate an indirect role.

Network analysis

Network analysis performed using STRING-db revealed
functional and physical associations among proteins
encoded by genes identified as FDR significant in the analy-
sis involving cholesterol measurements taken at any age.
These genes are depicted as nodes in the network, while
edges indicate evidence-supported interactions (Supple-
mentary Fig. S3). Figure 5 depicts the network interactions
for the largest observed subgraph that connects a substantial
number of genes identified by our analysis as biologically
significant. Interestingly, proteins encoded by novel gene
candidates such as CLU, SAAI, and AHNAK?2, which rank
among the top 100 genes in all analyses, are found to inter-
act with well-established genes, including 4POE, LDLR,
and PCSKY. These interactions strengthen the potential rele-
vance of these novel genes in influencing blood cholesterol.

Discussion

The GenePy tool offers an alternative method for linking
rich genetic variation with clinically relevant phenotypes.
The score integrates rare variation overlooked by GWAS
with common variants. It collapses the vast set of all varia-
tions observed through sequencing studies, into a pathogenic
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@® PanelApp Genes

<60 age group (n=50,563)

PCSK9 (8.90e-19)
APOE (3.88e-13)
LDLR (1.81e-09)
ULK4 (9.12e-06)
TSPEAR (2.46e-05)
Lipid binding site  BPIFB6 (6.40e-05)
TSPAN19 (8.83e-05)
Hepatic lipid accumulation FAIM (1.15e-04)
VRK3 (2.01e-04)
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{ Fig. 3 Parallel coordinate plot displaying the 100 genes with most sig-
nificant difference in pathogenic burden comparing patients with low-
est and highest blood cholesterol levels. Results for participants whose
blood cholesterol measurement was recorded at an age <60 years (n=
50,563, left panel), >60 years (n= 98,443, middle panel) and finally
all participants (n= 149,038, right panel). Genes are colour-coded to
indicate PanelApp genes that are routinely tested following referral
for (familial) hypercholesterolemia (red); genes previously identified
through GWAS (orange); novel genes not previously implicated in
GWAS that are common to subgroups (green). Novel genes are anno-
tated with keywords indicating evidence for potential plausible func-
tion in influencing blood cholesterol. Nominal p-values are shown for
all genes. HDL-C HDL cholesterol

burden score for each gene, that can be compared between
individuals. Integrating frequency and deleteriousness into
the algorithm takes advantage of our improving resources
and has the potential to detect novel associations not previ-
ously observed.

Encouragingly, our approach using GenePy score identi-
fies the known genes of most important clinical significance
amongst the most significant results. PCSK9 is the gene
with most significant change in cholesterol levels compar-
ing individuals with the highest and lowest percentile scores
when GenePy modelling incorporates the collective com-
mon impact of rare deleterious variants. Gain of function
mutations in this gene are a known cause of familial hyper-
cholesterolemia and individual variants conferring this
effect are detected through diagnostic sequencing. However,
our data convey the wider impact of loss of function (LoF)
in this gene in suppressing LDL cholesterol at a population
level. This protective effect warrants clinical consideration
when assessing an individual patient’s personalised risk.
Our investigation also identified the important FH diagnos-
tic genes APOE and LDLR amongst the most highly signifi-
cant. Our population level analysis did not detect the very
rare but established role for the LDLRAPI. This is likely
because our scan of all genes allocates individual into rela-
tively broad percentile bins, and the proportion of individu-
als actually impacted by this gene is substantially less than
1%. Our aim in this study was to identify aggregated signals
of variation whereby, although individual variants may be
rare, their collective contribution to disease impacts at least
1% of the cohort. An alternative approach using GenePy that
prioritised assessment of individuals with the most extreme
scores has proven successful in detecting causes of very rare
clinical manifestations(Seaby et al. 2024). Such an applica-
tion was outside the scope of the current study.

In addition to strongly established causal genes, our
study identified several additional genes linked to CVD,
diabetes, metabolic syndrome, and neurological disorders
in relation to LDL-C through analyses of entire cohorts,
elder sub-cohorts and younger sub-cohorts. While a number
of these genes were previously implicated by GWAS, we
detected genes with strong plausible functional relationship

to cholesterol handling that warrant further scrutiny. The
significant association of these genes with LDL-C, observed
in analyses using two independent sample sets from differ-
ent age groups, underscores their potential importance.

Implications of lipid associated genes in metabolic
regulation, blood pressure, and lipid traits

Our analysis identified several genes implicated in lipid-
associated traits, including fat metabolism and lipid accu-
mulation. Although no direct association between BPIFB6
and LDL-C has been previously reported, this gene was
identified in both independent groups of individuals with
cholesterol measurements taken pre and post 60 years. This
gene is not well studied but is structurally related to proteins
capable of binding phospholipids and lipopolysaccharides
(Mulero et al. 2002). FAIM encodes a protein regulator of
pituitary adenylate cyclase-activating polypeptide (PACAP)
that has an important metabolic role in attenuating hepatic
lipid accumulation, obesity-induced insulin resistance
(Feng et al. 2024) and lipid metabolism in obese liver (Xiao
et al. 2019) to attenuate metabolic disorders by reducing
hepatic lipid accumulation (Luo et al. 2022). Results across
the independent pre and post 60 cholesterol measurement
subgroups replicate an effect of SA47 gene. Studies suggest
SAAI has critical relationship with HDL-C level (Carty et
al. 2009), can potentially alter lipid homeostasis (Sullivan
et al. 2010), has regulatory function in cholesterol metabo-
lism (Huang et al. 2024), and its suppression can help in
high fat diet induced insulin resistance (Wang et al. 2019).
CLU in its secreted form is a component of HDL-C and has
role in metabolic and cardiovascular diseases (Park et al.
2014). While the APOB gene is firmly established in FH,
our results implicate its receptor APOBR and it is perhaps
unsurprising that the collective impact of rare and common
variation in this gene alters cholesterol (Fujita et al. 2005).
The gene shows nominal significance in the analyses of both
age groups, and in the combined analysis, it withstood FDR
correction (Pppg_og=9-72 X 107°).

ANGPTL3 is a known GWAS gene linked to LDL-C,
with published studies confirming its role in cardiovascu-
lar events in older populations (Hussain et al. 2021). Our
findings align with this, as the gene shows significant asso-
ciations (p=1.78 x 10™#) in older cohort and does not dem-
onstrate any significance in younger population.

IRS4 is part of insulin signaling pathway and its upregu-
lation can lead to insulin resistance (Pandey et al. 2023).
IDH3G is of importance because of its involvement in the
peroxisomal lipid metabolism superpathway. A reduced
expression of this gene is found in patients with arterioscle-
rosis and abdominal aortic aneurysm (Gu et al. 2024).
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Fig. 4 Histogram shows the relationship between LDL-C and GenePy
scores of UK Biobank participants across 100 percentile bins. All
p-values are embedded in the figure. Left panel: LDL-C measure-

Liver enzyme regulation and genetic links with
LDL-Clevels

The liver is the regulatory hub for serum cholesterol levels
and hepatic dysfunction is known to impact LDL-C levels
(Chrostek et al. 2014; Jiang et al. 2014). The combined acti-
vation of SLAMF9 and SLAMF'§ induces macrophage activ-
ity, while their downregulation modulates the expression of
TLR4, thereby attenuating endotoxin-induced liver inflam-
mation (Zeng et al. 2020). Experiments conducted on two

@ Springer

ments recorded at an age <60 years; Right panel: LDL-C measure-
ments recorded at an age >60 years

strains of mouse implicated the protein encoded SLAMF9 in
cholesterol loading (Berisha et al. 2013). Our findings add
further evidence implicating this gene with blood choles-
terol measured at any age.

Genetic insights into cardiovascular diseases and
associated traits

Our study has identified several genes associated with car-
diovascular diseases. GWAS have previously linked the
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Table 2 Enrichment analysis of FDR significant genes from analysis
considering cholesterol measurements taken at any age

Pathway p Com-  Genes
bined
score
Metabolism of 3.79 19.14  UGT2B10,AKR7
xenobiotics by cy-  x1073 A3,CYP2B6,GSTA3,
tochrome P450 UGT2B15, DHDH, CYP3
A5, CBR3
Cholesterol 6.18 20.20 ANGPTL3, PCSK9,
metabolism x1073 APOC3, APOE, APOB,
LDLR
Steroid hormone 1.59 13.15 UGT2B10,CYP3 A7-CYP3
biosynthesis x1072 AS51P, UGT2B15, AKRI
C4, CYP3 A5, CYP3 A7
ABC transporters 1.66 1490 ABCAI0,ABCBS5, TAPI,
x1072 ABCA7, ABCCI2
Retinol metabolism  2.58 10.30 UGT2BI10,CYP3 A7-CYP3
x1072 A51P, CYP2B6, UGT2BI 5,
CYP3 A5, CYP3 A7
Pentose and 2.59 14.17 UGT2B10, UGT2BI1S5,
glucoronate x107? DHDH, SORD

interconver- sions
The first column represents the enriched pathways

‘Combined score’ is a function of p-value and z-score, i.e., it inte-
grates statistical significance and strength of enrichment

Only significant pathways are included in the table

Keratin Associated Protein 10-4 (KRTAP10-4) gene with
increased risk of major adverse cardiovascular events
(MACE) (Liu et al. 2021). Specifically, the missense variant
rs201441480 in KRTAP10-4 has been identified as a poten-
tial risk factor for MACE. Although the underlying mecha-
nisms remain unclear, our study now adds to the evidence
suggesting that variation in this gene may influence LDL-C
levels.

Limitations

Volunteer-based recruitment of participants to the UK Bio-
bank cohort used in this study imposes limitations on the
generalisability of the findings to a broader population.
Over 90% of the participants are of European ancestry,
restricting the applicability of results to other ethnic groups.
Additionally, only 5.5% of the UK population at the time
was represented in the study, with a majority being older
adults, women, and individuals from higher socio-economic
strata(van Alten et al. 2024). UK Biobank is a globally
recognised resource of considerable value to the research
community, but there are some limitations to the depth of
clinical data and the rigour of self-reported data.

The GenePy framework has inherent limitations in com-
mon with many statistical genetic approaches. While GenePy
scores can be tuned to integrate only variants inferred to
have functional impact (CADD scores >20), this does not
account for the directionality of the effect. Although protein

truncating and splice variants can be assumed to cause LoF,
missense variants are far commoner and the research com-
munity lacks reliable inference of gain or loss of function
for most variants in this important class.

In our study, we used CADD 1.6 to infer variant delete-
riousness for incorporation into the GenePy score. No in
silico predictor of variant deleteriousness is infallible and
there are likely limitations to CADD, however this score
applies a balanced approach to sense and missense cod-
ing variants as well as all non-coding variation— a feature
lacking in many other deleteriousness annotation tools.
Common to all analyses using genomic data derived from
short read sequencing, the variants called from these data
are unphased— meaning they are not reliably assigned to
either the maternal or paternal haplotype. Efforts to estimate
phase fail for rare variation. Therefore, the GenePy scores
generated herein, represent a composite score reflecting the
combined burden from both maternal and paternal chromo-
somes and this obfuscates genetic signal and reduces power
to link variation to phenotypes. As the costs of long-range
sequencing falls, the ability to calculate GenePy scores for
each parental copy will afford more refined modelling and
greater sensitivity for signal detection.

Conclusion

Genes identified in previous genetic associations of hyper-
cholesterolemia, are unable to explain all the genetic patho-
genicity of the disease. Alternative approaches that make
improved use of the vast amounts of rare variant data
observed through sequencing are likely to identify at least
some of this missing heritability. Our study, which uses the
GenePy score, demonstrates sensitivity in recapitulating
the strongest known genetic causes. The approach further
uncovers strong evidence suggesting additional genes in
functional pathways established to be critical in cholesterol
homeostasis. These genes may harbour rare variation that
collectively impact a clinically relevant fraction of the UK
population. It is desirable that we move towards a model
of prediction and early intervention in order to reduce the
health economic burden that is the sequelae of raised cho-
lesterol. However, to be effective, approaches using poly-
genic risks scores demand that variant data on the most
comprehensive set of genes that alter cholesterol handling
are inclusively modelled. Our study suggests the need to
consider a wider set of genes that may harbour rare varia-
tion impacting the common phenotype of raised cholesterol
and suggests the need for further independent studies across
different populations.

@ Springer



S. Sunny et al.

@ Springer

Experimentally determined
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{ Fig. 5 Protein—protein interaction network generated using STRING-
db based on FDR-significant genes from “all participants” analysis.
Each node represents a protein encoded by a significant gene, while
edges indicate functional and physical associations. Magenta edges
denote experimentally validated interactions, and teal blue edges rep-
resent interactions curated from databases. Node colorings are random
and have no significance
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