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ABSTRACT
In pulsed dynamic nuclear polarization (DNP), enhancement of bulk nuclear polarization requires the repeated application of a microwave
pulse sequence. So far, analysis of a one-time transfer of electron spin polarization to a dipolar-coupled nuclear spin has guided the design of
DNP pulse sequences. This has obvious shortcomings, such as the inability to predict the optimal repetition time. In an actual pulsed DNP
experiment, a balance is reached between the polarization arriving from the unpaired electrons and nuclear relaxation. In this article, we
explore three algorithms to compute this stroboscopic steady state: (1) explicit time evolution by propagator squaring, (2) generation of an
effective propagator using the matrix logarithm, and (3) direct calculation of the steady state with the Newton–Raphson method. Algorithm
(2) is numerically unstable in dissipative DNP settings. Algorithms (1) and (3) are both stable; algorithm (3) is the most efficient. We compare
the steady-state simulations to existing experimental results at 0.34 and 1.2 T and to the first experimental observation of X-inverse-X (XiX)
DNP at 3.4 T. The agreement is good and improves further when electron–proton distance and electron Rabi frequency distributions are
accounted for. We demonstrate that the trajectory of the spin system during one-time application of a microwave pulse sequence differs from
the steady orbit. This has implications for DNP pulse sequence design.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0283196

I. INTRODUCTION

A well-designed dynamic nuclear polarization (DNP) pulse
sequence rapidly transfers electron spin polarization to nearby
nuclear spins; its repeated application generates enhanced polariza-
tion of bulk nuclei [Fig. 1(a)]. This approach is a useful alternative
to classical continuous-wave DNP1–3 because it can produce flexible
excitation of the electron spins as well as more efficient polarization
transfer. Of particular interest is the use of pulsed DNP to enhance
the sensitivity of high-resolution magic-angle spinning nuclear mag-
netic resonance (MAS NMR);4,5 however, to make this possible,
several technical challenges have to be addressed. Most signifi-
cantly, DNP pulse sequences require a high electron Rabi frequency

(ω1S = −γeB1, with γe being the electron gyromagnetic ratio and B1
being the magnetic field component of the microwave irradiation),
on the order of 10 MHz at least. Depending on the MAS rotor size
and conversion factor of the probe, this means an estimated peak
microwave power of 100 W or more. Above 95 GHz (the electron
Larmor frequency at 3.4 T; the corresponding proton Larmor fre-
quency is 144 MHz), coherent sources with such output power are
difficult to make.

As one approaches the millimeter wave regime, solid-state
sources and amplifiers are no longer able to produce high-power
irradiation.6 For wavelengths up to about a millimeter, slow-wave
vacuum devices such as the klystron are a viable alternative7 and
are currently successfully used in high-resolution MAS DNP at
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FIG. 1. (a) General scheme of pulsed DNP. One instance of a DNP pulse sequence transfers electron spin polarization from a paramagnetic species or polarizing agent
to a nearby nucleus, typically a proton. To build up enhanced polarization of bulk nuclei, the sequence is applied hundreds to thousands of times. The optimal repetition
time, trep, typically on the order of a millisecond, depends on the pulse sequence and relaxation properties of the chemical system. (b) DNP pulse sequences consisting
of monochromatic, constant amplitude pulses. Polarization transfer occurs at the matching condition. For Nuclear spin Orientation Via Electron spin Locking (NOVEL),
the electron Rabi frequency (also referred to as the nutation frequency), ω1S, has to match the nuclear Larmor frequency, ω0I. The possibility of microwave irradiation off

resonance (Ω ≠ 0) is accommodated in the general matching condition ∣ωeff∣ =

√

ω2
1S +Ω2

= ∣ω0I∣. For Time-Optimized Pulsed (TOP), X-inverse-X (XiX), and Two-Pulse
Phase Modulation (TPPM) DNP, a multiple of the modulation frequency, ωm = 2π/tm, plus or minus the effective frequency, ωeff = β/tm, with β being the effective flip angle of
the electron spin magnetization due to each block of the sequence, has to match the nuclear Larmor frequency: kωm + lωeff + nω0I = 0, with k = ±1,±2, . . . and l, n = ±1.
The contact time, tc, varies from a few hundred nanoseconds to a few microseconds, depending on the sequence.

9.4 T/400 MHz/263 GHz.8 At still higher fields and frequencies,
interaction structures (of the dimension of the wavelength) become
too fine and incompatible with the generation of high-power irradi-
ation. Instead, overmoded, fast-wave vacuum devices must be used.
For this reason, dedicated gyrotrons were developed as the sources
of continuous high-frequency, high-power (typically tens of watts)
irradiation in MAS DNP up to 21.1 T/900 MHz/592 GHz.9,10 Gen-
erating nanosecond or picosecond pulses with fast-wave devices,
however, comes with its own difficulties. Phase and frequency sta-
bility, for example, are notoriously difficult to maintain. A strategy
to overcome this is to first generate coherent pulses at low power
(milliwatts to watts) using a solid-state source and amplify them (by
about 30 dB) using a fast-wave device.11 Prototypes that follow this
strategy have been built.12,13 Direct generation at high power is also
being explored.14

Recent years have seen a surge in the development of DNP
pulse sequences and their experimental implementations at low
magnetic field. They can be broadly classified into: (1) pulse
sequences with monochromatic pulses of fixed amplitude and phase
that meet a matching condition [see Fig. 1(b) for an overview]
and (2) pulse sequences that rely on adiabatic passage through a
matching condition and, therefore, typically include a frequency
or amplitude sweep.15–17 NOVEL18 and (without the initial 90○

pulse) pulsed solid-effect19 were the first sequences in the for-
mer category. The TOP/XiX/TPPM DNP and also the Broadband
Excitation by Amplitude Modulation (BEAM) sequence20–23 com-
prise a next generation and have the advantage that the match-
ing condition can be met even if the electron Rabi frequency is
well below the nuclear Larmor frequency. However, the enhance-
ment and build-up time of the nuclear polarization still depend
on the sequence in combination with the available peak microwave
power.

We recently investigated the TOP, XiX, and TPPM DNP
sequences both theoretically and experimentally.22 The match-
ing condition and the effective Hamiltonian were derived using
operator-based triple-mode Floquet theory24 in combination with
the Van Vleck–Primas perturbation approach.25 Both were sub-
sequently used to calculate the transfer of polarization, in the

time-domain, due to the one-time application of a DNP pulse
sequence; agreement with explicit numerical propagation was found
to be excellent. We also benchmarked the three DNP pulse
sequences in experiments at 1.2 T/51 MHz/34 GHz. To enable a
fair evaluation, the parameters for each sequence had to be carefully
optimized. We started by numerically scanning the quality of pos-
sible DNP conditions across all experimentally feasible microwave
resonance offsets, electron Rabi frequencies, pulse lengths, and (for
TPPM) phases. To this end, we used simulations of a single (one-
time) transfer of polarization from an unpaired electron with a
realistic g-anisotropy to two nearby protons. The presence of the sec-
ond proton was not essential, but it improved the agreement with
experimental line shapes. The best conditions were subsequently
tested on the spectrometer. Predicted parameters were adjusted if
necessary, and, in addition, the contact and repetition times were
optimized. Following this procedure, we found that TPPM DNP, at
an electron Rabi frequency of 33 MHz, generated both the high-
est enhancement factor of the proton polarization and the fastest
build-up. XiX DNP was the runner-up but worked very well at a
much lower electron Rabi frequency of 7 MHz. Generally, a better
preservation of the electron–nuclear dipolar coupling in the effec-
tive Hamiltonian of the DNP sequence produces faster build-up of
the bulk dynamic nuclear polarization, but does not imply a higher
enhancement factor.22

A further conclusion from the investigations at 1.2 T was that
simulations of the single transfer could not reproduce all experimen-
tal observations: peak shapes and intensities in field profiles differed
between simulations and experiments, as did contact curves and the
dependence on the electron Rabi frequency. Effects of the repetition
time could obviously not be simulated. Thus, better simulation tools
are needed for the evaluation of DNP pulse sequences and to guide
the design of microwave sources.

Two numerical complexity obstacles26 arise in the simulation
of the full (pulsed) DNP process. The first is that very large spin sys-
tems have to be considered. Each polarizing agent serves hundreds
to thousands of nuclear spins. To capture the build-up of the bulk
nuclear polarization, all these spins and their interactions have to be
modeled. In addition, we know that interactions between polarizing
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agents matter.22 A first, critical step toward solving this problem
was taken with the introduction of restricted state spaces.26,27 For
the large majority of magnetic resonance contexts (the single crys-
tal is the notable exception),28 it suffices to consider four to five
spins per product state.29 This approach has been used to simulate
the static, continuous-wave solid-effect30 as well as the cross-effect
under MAS.31,32 Nevertheless, to model nuclear spin diffusion, addi-
tional measures remained necessary: in the static solid-effect, the
build-up of bulk polarization has been modeled as kinetically con-
strained diffusion,33 in cross-effect under MAS, the Landau–Zener
approximation is used to determine the polarization transfer dur-
ing rotor events.34,35 More recently, the realization that state spaces
can be further restricted by using a neighbor’s cutoff36 has enabled
large-scale ab initio simulation of MAS DNP.37

The second obstacle is that the steady state (see below for the
formal definition) is reached only when electron spin polarization,
nuclear spin diffusion, and relaxation are balanced; this can take
seconds. In MAS DNP, this is after many rotor periods; in pulsed
DNP, this is after the DNP sequence has been applied many times.
In a brute force simulation approach, the spin system is propagated
explicitly through these cycles. This is computationally expensive:
in their simulations of MAS DNP, Perras and Pruski had to use a
Monte Carlo method to avoid storing the propagator.31

Periodically-driven, dissipative linear systems do not, in gen-
eral, have a steady state. Instead, they have a steady orbit—a peri-
odic trajectory to which system dynamics eventually converge.38

A stroboscopic steady state may then be defined as a state at a
given point of the steady orbit, usually the point that corresponds
to the end of the period. We explore three algorithms to calcu-
late stroboscopic steady states numerically from the propagator of
the complete pulsed-DNP period, defined as the repetition time
including the pulse sequence [Fig. 1(a)]. The first algorithm uses
repeated squaring of the propagator matrix. Every squaring oper-
ation doubles the time step; a high enough power of the propaga-
tor represents long-term evolution well. This always works, but is
numerically expensive. The second algorithm computes an effec-
tive evolution generator using the matrix logarithm method,39 puts
the time derivative to zero in the Liouville–von Neumann equa-
tion, and solves the resulting algebraic equation for the steady state.
This method works well in NMR spectroscopy,40 but large and
badly conditioned matrices make it numerically unstable in dissi-
pative DNP settings. The third algorithm, which we advocate here,
uses the Newton–Raphson method to find the stroboscopic steady
state from the pulsed-DNP propagator in just a few matrix-vector
operations.

We demonstrate steady-state simulations of NOVEL at 0.34 T
and of TOP, XiX, and TPPM DNP at 1.2 T. We also present the
first experimental results of XiX DNP at 3.4 T, along with the
corresponding steady-state simulations. Experimental field profiles,
optimization of the repetition times, and the dependence on the
electron Rabi frequency are remarkably well reproduced, even when
just one electron and one proton are considered. The same is true
for the polarization transfer during the contact time, which pro-
vides evidence that steady orbits differ from the trajectories of the
spin system during the first polarization transfer. Integration over
the proton position distribution (including its effect on the nuclear
relaxation) and the distribution in the microwave B1-field improves
the agreement with experiments further.

II. STROBOSCOPIC STEADY STATE ALGORITHMS
A standard result from the dynamical systems theory38 is that

a periodically driven dissipative linear system (a) always has a
unique steady orbit and (b) converges to that orbit from any ini-
tial condition. Spin system dynamics under a DNP pulse sequence
is dissipative, linear, and periodically driven—this is visible in the
equation of motion for the density matrix ρ,

∂ρ
∂t
= −i(ℋ0 +ℋ1(t))ρ +ℛ(ρ − ρeq), (1)

which has the time-independent interactions in the drift Hamil-
tonian commutation superoperator ℋ0, the time-periodic pulse
sequence events in ℋ1(t), and the negative-definite relaxation
superoperator ℛ that drives the system toward the thermal equi-
librium state ρeq. The latter part is sometimes abbreviated to

use a “thermalized” relaxation superoperator ℛθρ =ℛ(ρ − ρeq). A
unique steady orbit, therefore, exists; a stroboscopic steady state ρ∞
may be defined as the system state at the point in the steady orbit
that matches the pulsed-DNP period, i.e., the repetition time includ-
ing the pulse sequence [Fig. 1(a)]. Once ρ∞ is computed, the steady
orbit may be obtained by propagating ρ∞ through the period.

Stroboscopic evolution generators and steady states have a
long history in Magnetic Resonance; the average Hamiltonian the-
ory41 is only stroboscopically correct. Steady states of repeating
NMR sequences42 were explored shortly after the Liouville space43

became computationally affordable. Steady states of DNP systems
under continuous microwave irradiation are a topic of ongoing
research;37,44 in that case, the source of the periodic time dependence
is magic-angle spinning. Algorithmic improvements we are propos-
ing pertain to the computer science side of the problem: as Sec. II C
demonstrates, we managed to reduce the computational complexity
of finding the stroboscopic steady state.

A. Propagator squaring
Consider the propagator 𝒫 taking the system forward in time

by one pulsed-DNP period T,

ρ(t + T) = 𝒫ρ(t),

𝒫 = lim
Δtk→0

←Ð
∏

k
exp{[−i(ℋ0 +ℋ1(tk)) +ℛθ]Δtk}.

(2)

Despite its formidable-looking definition (the limit of time-ordered
products of thin time slice propagators), 𝒫 is easy to compute,45,46

particularly when the Hamiltonian is piecewise-constant in the
interaction representation.47 The properties discussed above guar-
antee that repeated action by 𝒫 on any physically valid (mean-
ing Hermitian, non-negative definite, unit trace) density matrix ρ0
would eventually yield the stroboscopic steady state,

ρ∞ = lim
n→∞
(𝒫 nρ0) = 𝒫(𝒫(⋅ ⋅ ⋅ (𝒫(𝒫ρ0)))). (3)

However, a practical difficulty is that the pulsed-DNP period con-
tained in 𝒫 is in milliseconds, whereas the nuclear relaxation times
in ℛ that determine the steady orbit settling time are in seconds.
To reach the steady state, 𝒫 , therefore, has to be applied thousands
of times. This is computationally expensive, even if ρ0 is carefully
chosen.
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One simple solution is to observe that every time a propaga-
tor is squared, its evolution time doubles.45,46 The settling time may,
therefore, be reached by performing around log2103 ≈ 10 sequen-
tial squaring operations; this is particularly efficient on a graphics
processing unit (GPU),

ρ∞ = lim
n→∞(𝒫

2n

ρ0) = (((𝒫
2)2)

⋅ ⋅ ⋅
)

2
ρ0. (4)

In practice, propagator squaring is performed until the next squaring
no longer changes the resulting state to a user-specified tolerance;
numerical efficiency trade-offs in such procedures are explored in
our recent work.48 This method is implemented as the “squaring”
option in the function steady.m of Spinach 2.10 and later ver-
sions.49 In magnetic resonance settings, it is unconditionally stable.
However, it still involves a significant number of matrix-matrix mul-
tiplications in Liouville space—this is better than the naïve time evo-
lution method, but still expensive. A small blessing is that sequential
squares of the propagator do eventually become sparser; sparse
index clean-up47 after each square is, therefore, recommended.

B. Effective Hamiltonian
An alternative way of computing the stroboscopic steady state

is to find effective evolution and dissipation generators that describe
the net result of the events inside the pulsed-DNP period T,

∂ρ
∂t
= −iℋρ +ℛ(ρ − ρeq). (5)

Such equations and ways of computing ℋ and ℛ are extensively
researched.50–52 Their solutions are stroboscopically correct—they
coincide with the solution of Eq. (1) at the edges of the period. Equa-
tion (5) may, therefore, be used to obtain the stroboscopic steady
state. From its definition (zero-time derivative in the equation of
motion), we obtain a straightforwardly computable expression,

0 = −iℋρ∞ +ℛ(ρ∞ − ρeq) ⇒ ρ∞ = (−iℋ +ℛ)−1
ℛρeq. (6)

The lower–upper (LU) preconditioned generalized minimum resid-
uals method (GMRES)53 is recommended for the inverse-times-
vector operation—the matrix inverse need not be calculated
explicitly.

In practical calculations, this method has three logistical prob-
lems, which we call the good, the bad, and the ugly. The good
problem is the calculation of the effective generator—analytical
series converge slowly54 and the numerical method for computing
the propagator logarithm,39

ℋ + iℛ = i
T

ln (𝒫 ), (7)

requires repeated matrix square roots that rely on factorizations that
have no efficient sparse, parallel, or GPU implementations. For small
spin systems in Hilbert space, this matrix logarithm method works
beautifully55 because evolution generators are Hermitian (mean-
ing diagonalization is always possible), propagators are unitary
(meaning the best possible condition number of 1), and interac-
tion representations keep evolution generator condition numbers
benign.

Unfortunately, ℋ + iℛ may be ill-conditioned—this is the bad
problem: even in the rotating frame, the largest eigenvalues of ℋ

are in the tens of MHz (hyperfine couplings and electron nutation
frequencies) and the smallest ones are actually zero because ℋ is
a commutation superoperator. One must then rely on the smallest
absolute eigenvalue of the negative definite matrix ℛ for stability,
which may be less than 0.1 Hz (bulk nuclei in a cryogenic sample).
This then yields a condition number (the ratio of the largest singular
value to the smallest one) for ℋ + iℛ of 109 that gets worse (because
multiple-quantum frequencies appear) with each additional particle.
The result is that the inverse-times-vector operation in Eq. (6) strains
the IEEE FP64 format (precision of 2−53 = 1.11 × 10−16), making it
numerically unstable.

Finally, the ugly problem is that iℛ is semi-definite, not Her-
mitian, and may be unbounded. This moves the situation from
the group-theoretically sound average Hamiltonian theory into its
treacherous dissipative semigroup equivalent, where the tangent
map is broken and the logarithm may not exist: not every element
of a semigroup is an exponential of a finite matrix.

C. Newton–Raphson
By its definition, the stroboscopic steady state does not change

under the action by the pulsed-DNP propagator 𝒫 ,

𝒫ρ∞ = ρ∞ ⇒
⎧⎪⎪⎨⎪⎪⎩

(𝒫 − 1)ρ∞ = 0
Tr (ρ∞) = 1.

(8)

This is a fixed-point finding problem with a linear constraint; it
may be solved using the Newton–Raphson root-finding algorithm.56

The spherical tensor basis57 used by Spinach in Liouville space is par-
ticularly convenient here because the T00 coefficient corresponding
to the density matrix trace is the first element ρ1 of the state vector;57

in thermodynamically consistent simulations, this element is always
equal to 1. We, therefore, only need to solve Eq. (8) for the rest of the
state vector. The procedure is as follows:

1. Set up the residual vector that is to be driven to zero:

f(ρ) = (𝒫ρ − ρ)2:n.

.2. Form the Jacobian J =𝒫 2:n,2:n − 1. Optionally, pre-compute its
LU factorization to facilitate the subsequent repeated inverse-
times-vector operations.

3. Repeatedly take the Newton–Raphson step

ρ(k+1)
2:n = ρ(k)2:n − J−1f(ρ(k))

until there is no change in the state vector to the user-specified
tolerance (10−8 or smaller). LU-preconditioned GMRES53

method is recommended here.

A software implementation is available under the “newton”
option in the function steady.m of Spinach 2.10 and later versions.49

Explicit calculation and storage of the propagator is not required
because the stages above only use its action on vectors: a cheap
operation when Krylov-type methods47 and Suzuki–Trotter decom-
positions are used.58,59 When the propagator is cheap enough to be
computed explicitly, the LU factorization may also be precomputed
because the Jacobian is state-independent.

This method needs very few iterations—the convergence is
guaranteed to be asymptotically quadratic, and the solution is unique
because the problem is convex: a significant improvement on the
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previous state of the art that used Monte-Carlo methods.37,44 No
changes are needed to accommodate MAS: either the rotor period
propagator35 should be used with the pulse sequence appropriately
synchronized, or the pulsed-DNP propgator when MAS is handled
using the Fokker–Planck formalism (Spinach default60) that permits
rotor-asynchronous events. The Newton–Raphson procedure also
does not suffer from numerical stability problems, because all eigen-
values of the propagator are inside the unit circle but well away from
zero. The eigenvalues of the Jacobian are, therefore, all of the form
e−iωTe−rT – 1, where ω and r are positive real numbers, T is the
pulsed-DNP period, and rT ≪ 1. Upper and lower bounds on the
modulus of this quantity are

rminT ≤ ∣e−iωTe−rT − 1∣ ≤ 2, (9)

where rmin is the smallest relaxation rate found in the system, on the
order of 0.1 Hz for longitudinal relaxation of bulk nuclei. A typical
pulsed-DNP period is in milliseconds, yielding a condition number
2/rminT of around 104 for the Jacobian; this is easily handled in dou-
ble precision arithmetic. Importantly, this condition number does
not depend on the system size.

III. MATERIALS AND METHODS
A. Experimental

All pulsed DNP experiments were performed on samples of
6 mM of the narrow-line radical trityl OX063 (obtained from
Polarize ApS) doped into a glassy matrix of d8-glycerol:D2O:H2O
60:30:10 v:v:v (“DNP juice”) at a temperature of 80 K.61 Data at
0.34 T/15 MHz/9.7 GHz (X band) and 1.2 T/51 MHz/34 GHz
(Q band) are reproduced from Jain et al.19 and Redrouthu et al.,22

respectively. At both fields, a commercial pulsed electron param-
agnetic resonance (EPR) spectrometer was used, which had been
extended in-house with an NMR console. The ENDOR (electron
nuclear double resonance) probe was made suitable for 1H NMR
excitation and detection with a custom-built tuning/matching box.
At X band, microwave pulses were amplified to 1 kW using a
travelling-wave tube (TWT) and used to excite a sample volume
of 20–50 μl in a fully over-coupled dielectric resonator. At Q band,
microwave pulses were amplified to 50 W using a solid-state ampli-
fier and used to excite a sample volume of 1–2 μl, also in a fully over-
coupled dielectric resonator. 1H NMR signals had to be detected
with an echo sequence, because ring-down temporarily saturates the
receiver after the radiofrequency pulse. A typical delay between the
pulses of the echo sequence was 20–40 μs.

Data at 3.4 T/143 MHz/94 GHz (W band) were newly acquired
on a pulsed EPR spectrometer constructed by Cruickshank et al.,62

which was recently upgraded.63 A pulsed extended-interaction
klystron amplifier (EIKA) provides up to 1.3 kW of peak power
across an operational range of 93.5–94.5 GHz. The non-resonant
sample-holder supports a single transverse waveguide mode (active
volume 30 μl) with a mean conversion efficiency of 1.4 MHz/W1/2.
For the pulsed DNP experiments reported here, the polarization of
the microwave irradiation was converted from linear to circular, at
a cost of reduced power, but in favor of a more homogeneous exci-
tation across the sample (electron Rabi frequency of 20 MHz). 1H
NMR signals were excited and detected using a locally tuned sad-
dle coil. After microwave irradiation, a radiofrequency π/2-pulse

was applied and the free induction decay could be detected after a
delay of 7 μs. For DNP-enhanced NMR signals, a single acquisition
produces a sufficient signal-to-noise ratio.

B. Hardware and software
Simulations were performed using Spinach49 on a Dell Pow-

erEdge T550 server equipped with two Intel Xeon 6326 Gold proces-
sors (32 cores in total), 512 GB of RAM, and an Nvidia A100 GPU
(80 GB of RAM, 9.7 TFLOPS FP64). The initial state was thermal
equilibrium. The transformation of longitudinal electron spin mag-
netization (SZ) into longitudinal nuclear spin magnetization (IZ) was
monitored by reading out the expectation value according to

⟨IZ⟩∞ = Tr (IZρ∞). (10)

Note that the longitudinal magnetization is half of the normal-
ized population difference or polarization. For the sudden DNP
sequences investigated in this work, we expect, after powder aver-
aging, a maximum enhancement factor of 1

2 ∣γe/γ1H ∣ = 329. The
corresponding values of ⟨IZ⟩ are 7.1 × 10−4 at X band, 2.5 × 10−3

at Q band, and 7.1 × 10−3 at W band.

C. Model spin systems
The basic spin system for the steady-state simulations consists

of one electron and one proton separated by 3.5 Å, correspond-
ing to a dipolar coupling of 1.8 MHz. To reproduce the EPR line
shape of the trityl OX063 radical, g-anisotropy was included (gx = gy
= 2.003 19, gz = 2.002 58). The electron–proton coupling was
adjusted to reproduce the polarization transfer times observed in
NOVEL and pulsed solid-effect experiments at 0.34 T19 and is clearly
stronger than individual electron–proton couplings.64,65 The reason
is that the unpaired electron of trityl OX063 is surrounded by tens
of protons at similar distances, which are simultaneously available
for polarization transfer.65–67 We briefly explored the placement of
further protons in the proximity of the electron, but steady-state
simulations of these larger spin systems were not better than those
using ensemble averaging over the position of a single proton as
described below. Still, for the sake of completeness, we did use chains
of up to nine protons, starting at 3.5 Å with each subsequent proton
1.5 Å further away, for computational efficiency benchmarking of
the stroboscopic steady-state algorithms. The dimension of the Liou-
ville space was reduced by including only product states between up
to a specified (see below) number of spins.26,29

D. Relaxation
Experimental information at Q band22 was used as a guide

for choosing spin relaxation times. At X band,61 W band,68,69 and
140 GHz,70 as far as we know, there are no major differences—for
the purposes of this work, it was sufficient to set the orders of mag-
nitude correctly. The longitudinal electron spin relaxation time T1e
was measured, by inversion recovery, to be 1.8 ms; we set the value
to 1 ms. In an echo decay experiment, the phase memory time was
found to be 1.8 μs; since processes other than transverse relaxation
contribute significantly to dephasing, we set T2e to 5 μs. The longi-
tudinal relaxation time of the bulk protons T1n,bulk was found to be
52 s; we used this value at Q and W band. At X band, we took 26 s
from Mathies et al.61 Finally, we used the 1H spin echo decay time as
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an estimate for the transverse nuclear relaxation time, T2n; we set it
to 20 μs throughout, assuming that flip-flops with neighboring pro-
tons are the dominant mechanism, even for the protons nearest to
the trityl radical.71

Close to the radical, the longitudinal relaxation of nuclear spins
becomes faster. Consider an isolated, non-mobile, unpaired electron
and its dipolar coupling to a nearby spin-1/2 nucleus. Longitu-
dinal relaxation of the electron spin gives rise to fluctuations of
the dipolar coupling with correlation time T1e. Via the C and D
terms of the dipolar alphabet,72 these cause single-quantum nuclear
spin transitions, resulting in longitudinal nuclear relaxation. When
ν0IT1e ≫ 1,

1
T1n
≃ (νdip

ν0I
)

2 1
T1e

sech2( geμBB0

2kBT
), (11)

where νdip is the electron-nuclear dipolar coupling

νdip =
μ0

4π
gegnμBμN

h
1 − 3 cos2 θ

r3
dip

, (12)

and ν0I is the nuclear Larmor frequency.71 The hyperbolic secant
accounts for the fact that when the electron spins are fully polarized,
fluctuations disappear, and this contribution to nuclear relaxation
vanishes. All other symbols have their usual meaning: ge is the
free-electron g-factor, μB is the Bohr magneton, B0 is the external
magnetic field, kB is Boltzmann’s constant, T is temperature, μ0 is
the vacuum permeability, gn is the nuclear g-factor, μN is the nuclear
magneton, h is Planck’s constant, and θ is the angle between the
external magnetic field and the dipolar distance vector, rdip. King
et al. verified Eq. (11) experimentally for a crystal of yttrium ethyl
sulfate doped with Yb3+ at temperatures below 3.8 K.73

Adding the bulk nuclear relaxation rate gives the following
practical expression for the distance and angle dependence of the
longitudinal relaxation rate of protons close to the trityl radical:

1
T1n
≃ ( μ0

4π
geμB

1 − 3 cos2 θ
r3

dip

1
B0
)

2
1

T1e
sech2( geμBB0

2kBT
) + 1

T1n,bulk
.

(13)
Figure 2 shows T1n as a function of the electron-nuclear distance
for various angles θ. The orientation dependence at 3.5 Å is plotted
in Fig. S1 of the supplementary material. Note that at Q band, for
θ = 0○, T1n decreases from the bulk value of 52 s down to 0.19 s at
3.5 Å. However, at W band, T1n decreases only to 1.5 s.

The square around the orientation function in Eq. (13) gives
it a fourth spherical rank and thereby puts it outside the com-
mon orientation-dependent line width formalisms, such as g-strain.
The powder.m context function of Spinach kernel was, therefore,
extended to allow the user to supply arbitrary angular dependences
for the relaxation rates in the form of Matlab function handles.

E. Ensemble averaging
The exact location of nearby protons varies per trityl molecule

in the frozen glassy matrix. As a consequence, a distribution of
electron–proton dipolar couplings exists within the sample. To
account for the effects of this distribution, we average the simulation

FIG. 2. Nuclear longitudinal relaxation time T1n as a function of electron–proton
distance at Q band, following Eq. (13). The value of the angle θ between the
direction of the external magnetic field and the dipolar distance vector is given in
the legend. For these angles, the values of T1n are 0.19, 3.0, 52, 10, and 0.75 s,
respectively, at 3.5 Å.

outcome over electron–proton distances. Together with the usual
system orientation averaging, this yields a triple integral,

⟨IZ⟩∞ =
3

4π(R3
max − R3

min)

Rmax

∫
Rmin

r2 dr
π

∫
0

sin θ dθ
2π

∫
0

dφ

× {⟨IZ⟩∞(r, θ, φ)}, (14)

with Rmin = 3.5 Å as discussed above. Rmax = 20 Å was empiri-
cally found to converge the radial part of the average. The angular
part of this integral was evaluated using an 800-point REPULSION
grid,74 and the radial part was done using the Gauss–Legendre
quadrature;75 both are implemented in Spinach.

On top of the orientation and distance distribution, we also
consider a distribution in electron Rabi frequencies; the strength of
the magnetic field component of the microwave irradiation (∣B1∣) is
not uniform across the sample. The Gauss–Legendre quadrature75

was used here, too. For the simulations of TOP and XiX DNP at
Q band, we have averaged the simulation over a uniform distribu-
tion of electron Rabi frequencies between 10 and 20 MHz, unless
noted otherwise.

IV. RESULTS
A. Performance benchmarks

As discussed in Sec. II B, the effective-Hamiltonian algorithm
for computing the stroboscopic steady state is numerically unstable
in dissipative DNP settings. Stable alternatives are propagator
squaring and the Newton–Raphson method. We have benchmarked
them; full results are presented in Fig. S2. Propagator squaring
and Newton–Raphson perform similarly up to the Liouville
space dimension of 256 (e.g., one spin-1/2 electron and three
protons without state-space restriction). For larger state spaces,
Newton–Raphson is faster—up to three times for one electron and
five protons. A GPU becomes advantageous also for matrix dimen-
sions above 256: for a system with one electron and five protons
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with state space restriction up to four-spin correlations (propagator
dimension 1909), our Nvidia A100 card was six times faster than
multi-threaded matrix arithmetic on 32 Intel Xeon 6326 Gold CPU
cores. GPU memory utilization should be carefully monitored—at
the time of writing, sparse matrix arithmetic in CUDA libraries
is unreasonably memory-hungry; this feature is unfortunately
inherited by Matlab. Benchmarks are architecture-, hardware-
, and implementation-dependent, but the Newton–Raphson
method on a GPU is generally recommended for stability and
complexity scaling—it was used in all simulations discussed
below.

B. Field profiles
Figure 3 shows simulations as well as the experimental field

profile (top) of XiX DNP at Q band. Efficient DNP occurs at the
microwave resonance offsets ±39 and ±60 MHz; less efficient DNP
occurs at ±13 and ±81 MHz. The simulation of a single polar-
ization transfer (bottom) predicts all these DNP conditions, but
not with the correct intensities: most noticeable, the simulated

FIG. 3. Field profiles of XiX DNP at Q band. From bottom to top: simulation of a
single polarization transfer; steady-state simulation with a single set of parameters;
steady-state simulation with the electron–proton distance ensemble; steady-state
simulation with the electron–proton distance and the electron Rabi frequency
ensembles; experiment. The parameters of the XiX DNP experiment were: ν1S
= 18 MHz, tp = 48 ns, tc = 3456 ns (36 blocks), trep = 204 μs, and 1H NMR
recycle delay = 24 s.

peaks at ±13 MHz are too strong. The shapes of the peaks are
not correctly predicted either: in the single-transfer simulation, the
peaks are pointy and asymmetric, reflecting the axial g-anisotropy
of trityl, whereas in the experiment, they are smooth and more
symmetric. In the experiment, some enhancement is observed in
between the matching conditions, for example, at resonance off-
sets of ±50 MHz, but this is not reproduced in the single-transfer
simulation. The steady-state simulations show improvements on all
these fronts, even when just a single electron–proton distance and
B1-field strength are considered (in the following referred to as a
single parameter set). Further improvement is obtained when the
distributions of distances and B1-fields are integrated over. When
the ensemble of electron Rabi frequencies is included, the weak
intensities of the DNP conditions at ±13 MHz are correctly pre-
dicted. These conditions are active for a narrow range of electron
Rabi frequencies (18–20 MHz),22 which makes them susceptible to
the—apparently—quite inhomogeneous microwave B1-field across
the experimental sample. The other matching conditions are active
for a broader range of Rabi frequencies; they, therefore, remain
unaffected by the B1 inhomogeneity.

Figure 4 shows simulations as well as the experimental field
profile (top) of XiX DNP at W band. Enhancements at the
microwave resonance offsets at ±110 and ±170 MHz dominate. The
single-transfer simulation predicts this fairly well, but the shapes of
the peaks are again not correct. Some improvement is accomplished
with the steady-state simulation based on a single parameter set, but

FIG. 4. Field profiles of XiX DNP at W band. From bottom to top: simulation of a
single polarization transfer; steady-state simulation with a single set of parameters;
steady-state simulation with the electron–proton distance ensemble; experiment.
Before each 1H NMR acquisition in the experimental field profile, the XiX DNP
sequence was applied for 60 s, with ν1S = 20 MHz, tp = 18 ns, tc = 360 ns (10
blocks), and trep = 167 μs.
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the shapes are still off and intensities at resonance offsets ±60 and
±230 MHz come out too strong. Both problems are corrected when
the electron–proton distance ensemble is included; the largest dis-
tance in the ensemble (20 Å) was adjusted to reproduce the relative
peak intensities in the experimental field profile. A strong depen-
dence on the electron Rabi frequency is not expected for any of the
active DNP conditions (Fig. S3). Therefore, including a B1 ensemble
has no significant effect.

Parameter scans are a prerequisite for finding the best condi-
tions for the TOP/XiX/TPPM/BEAM DNP sequences. Previously,22

we relied on single-transfer simulations for this purpose (see Fig. S3
for an example at W band). In Fig. 5, a steady-state simulation and
experimental parameter scan are compared, for the purpose of opti-
mizing the pulse length in XiX DNP at W band. Just as with the
field profiles, the agreement with the experiment is much improved,
especially regarding the shapes and relative intensities of the DNP

conditions. The steady-state simulation took just over an hour to
compute.

C. Repetition-time profiles
The repetition time, at which the highest enhancement fac-

tor is achieved, strongly depends on the choice of the DNP pulse
sequence.22 Simulation of a single transfer of polarization cannot
predict this property, but a steady-state simulation can, as shown
in Fig. 6. As with the field profiles, including electron–proton dis-
tance and electron Rabi frequency ensembles further improves the
agreement with experiments (Fig. S4).

The same set of relaxation parameters (with the exception of
T1n,bulk, which was adjusted to 26 s following the experiments) also
reproduces the repetition-time profile of NOVEL at X band, see
Fig. 7. When a flip-back pulse is applied after the contact time,19,61

FIG. 5. Parameter scans for XiX DNP at W band: (a) steady-state simulation with the electron–proton distance ensemble and (b) experiment. To obtain the experimental
parameter scan, the 1H NMR signal was acquired for a total of 460 combinations of microwave resonance offset and pulse length. Sampling was denser in regions where
strong enhancement was expected, and data points were interpolated onto a uniform parameter grid for plotting. The XiX DNP sequence was applied for 60 s, with ν1S
= 20 MHz and trep = 167 μs. Contact times were adjusted between 340 and 370 ns to accommodate complete XiX blocks. To obtain the simulated parameter scan, 20 200
combinations of microwave resonance offset, and pulse length were computed. The dashed horizontal lines in both plots indicate the corresponding field profiles in Fig. 4.

FIG. 6. Optimization of repetition times for TOP, XiX, and TPPM DNP at Q band. Left: steady-state simulations with electron–proton distance and electron Rabi frequency
ensembles. Right: experiments. The parameters for the TOP DNP experiment were: ν1S = 18 MHz, tp = 10 ns, d = 14 ns, tc = 7200 ns, and Ω/2π = 95 MHz; for XiX: ν1S
= 18 MHz, tp = 48 ns, tc = 3456 ns, and Ω/2π = −39 MHz; for TPPM: ν1S = 33 MHz, tp = 16 ns, ϕ = 115○, tc = 9600 ns, and Ω/2π = 2 MHz. In the simulations, the range
of the electron Rabi frequencies is 10–20 MHz for TOP and XiX DNP and 25–35 MHz for TPPM DNP. For XiX, the absolute values of ⟨IZ⟩ and the 1H NMR intensity are
plotted for clarity.
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FIG. 7. Optimization of repetition times
for NOVEL, with and without the flip-
back pulse after the contact time, at
X band. Left: steady-state simulations
with the electron–proton distance and
the electron Rabi frequency ensembles.
Right: experiments with the following
parameters: ν1S = 15 MHz, tc = 500 ns,
and Ω/2π = 0 MHz. In the simula-
tions, the range of the electron Rabi
frequencies is 14–16 MHz.

the optimal repetition time shortens from about 1 to 0.5 ms, and
the peak enhancement increases. Interestingly, in the steady-state
simulation of NOVEL with flip back, the predicted nuclear polar-
ization peaks above the maximum theoretical enhancement factor of
329. For completeness, we also simulated the continuous-wave solid-
effect in the steady state (see Fig. S5). At the same average microwave
power, the enhancement with NOVEL with flip back is 70% higher
than with the continuous-wave solid-effect.

D. Polarization transfer during the DNP sequence
Figure 8 shows the polarization transfer as a function of the

contact time, tc. The single-transfer simulations in Fig. 8(a) do not
predict the experiments in Fig. 8(c) very well. Prominent oscilla-
tions remain (even after powder averaging), because the dipolar
coupling to only two proton positions is considered, while the exper-
iments show a smooth transfer curve. Worse is that the transfer
times are incorrectly predicted for both XiX (purple) and high-
power TOP DNP (red): in the experiment, transfers with these
sequences are about as fast as with TPPM, but the simulations pre-
dict them to be much slower. Once again, steady-state simulations
are more accurate [Fig. 8(b)]. Inclusion of the electron–proton dis-
tance ensemble smoothens the oscillations, and inclusion of the
electron Rabi frequency ensemble slows down the transfer under

low-power TOP (blue) (Fig. S6), resembling experiments. Prediction
of relative enhancement factors also improves, but is not yet perfect,
at least in part because the 1H NMR signals were acquired with a
recycle delay of 24 s, which is well below five times the bulk build-up
times for all sequences.22 Finally, the steady-state simulations show
a gradual decay of the nuclear polarization for contact times longer
than 1 μs, while the experiments show a gradual increase of the 1H
NMR signal on this time scale for all sequences except XiX. A likely
explanation is that our modeling is still not complete; we come back
to this point in Sec. V. Note that the crossovers between XiX (purple)
and TOP (red and blue) are reproduced.

E. Electron Rabi frequency dependence
Redrouthu et al. observed that the optimal repetition time not

only depends on the DNP pulse sequence but also on the elec-
tron Rabi frequency.22 This implies that single-transfer simulations
cannot provide reliable information about the dependence of the
enhancement factor on the electron Rabi frequency. Figure 9 shows
that this problem is also tackled by the steady-state simulations. In
the experiments, the repetition time and the resonance offset were
optimized for each electron Rabi frequency. The result was an almost
constant enhancement factor with XiX DNP, in contrast to a steadily
increasing enhancement factor with TOP DNP. This remarkable

FIG. 8. Transfer of longitudinal magnetization during the TOP, XiX, and TPPM DNP pulse sequences at Q band. (a) Single-transfer simulations, from one electron to two
protons, (b) steady-state simulations with the electron–proton distance and the electron Rabi frequency ensembles, and (c) experiments. The parameters for the TOP DNP
experiments were: ν1S = 18 or 33 MHz, tp = 10 ns, d = 14 ns, trep = 102 or 153 μs, and Ω/2π = 95 or 92 MHz; for XiX: ν1S = 18 MHz, tp = 48 ns, trep = 153 μs, and Ω/2π
= 61 MHz; for TPPM: ν1S = 33 MHz, tp = 16 ns, ϕ = 115○, trep = 816 μs, and Ω/2π = 2 MHz.
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FIG. 9. Dependence of the enhanced nuclear polarization on the electron Rabi frequency for XiX and TOP DNP at Q band. (a) and (b) Steady-state simulations with the
electron–proton distance and the electron Rabi frequency ensembles. For ν1S = 7 MHz, the ensemble range is 1–9 MHz. For the other values of ν1S, the range is ν1S −8 to
ν1S +2 MHz. (c) and (d) Corresponding experiments for XiX and TOP DNP. For XiX, the optimal repetition time increases from 51 to 306 μs as the electron Rabi frequency
increases, whereas for TOP, the optimal repetition time remains constant at 153 μs. For a full account of all parameters, see the supplementary material of Redrouthu
et al.22

behavior is reproduced in the steady-state simulations, including the
gradual shift of the resonance offsets.

V. DISCUSSION
The steady-state simulation methods introduced above have

enabled accurate prediction of pulsed-DNP field profiles, optimal
repetition times, polarization transfer during the sequence, and the
dependence on the electron Rabi frequency. Remarkably, it was suf-
ficient to consider just one electron and one proton together with
distributions in the electron–proton distances and microwave B1-
fields. For the nuclear relaxation, we used a crude existing model.71

This worked: the different pulsed-DNP experiments were success-
fully simulated with the same set of parameters. While improve-
ments are certainly possible, as we discuss below, simulation of
pulsed DNP in the steady state is a clear step forward compared to
the single-transfer simulations.

To make sure that the relaxation parameters are not wildly
off, we investigated the effects of alternative values of T1e, T2e, T1n,

and T2n on the field and repetition-time profiles and the polariza-
tion transfer during the sequence for XiX DNP at Q band (Fig. S7).
As expected, increasing T2e and T1n leads to higher enhancement
factors, while increasing T1e leads to lower enhancement factors.
Changes in T2n have only moderate effects. Given the simplicity
of the spin system, we do not expect that the current simulations
can quantitatively predict enhancement factors. This makes that the
shapes of the repetition-time profiles, more so than the field profiles,
are helpful to validate the relaxation modeling. The simulations in
black (Fig. S7) were obtained with the parameters as described in
Sec. III; we have found at least a local minimum. Further investiga-
tion is, however, warranted, particularly concerning T2n. Effects of
including the distance and orientation dependence of T1n are barely
noticeable in the simulations in Fig. S7 (overlapping black and red
curves). The reason is that for a large fraction of the protons in the
electron–proton distance distribution, T1n remains at the bulk value.
In simulations with one electron and one proton at 3.5 Å, includ-
ing the distance and orientation dependence of T1n decreases the
enhancement by a few percent.
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The obvious next step is to include more nuclei in the spin
system. We expect that this would fix the remaining shortcom-
ings in the simulations of the transfer during the DNP sequence
(Fig. 8), which seem to relate to a fraction of protons that polarize
more slowly than the rest. Modeling of proton–proton spin dif-
fusion would allow us to simulate the build-up times of the bulk
polarization and bring us closer to quantitative prediction of the
enhancement factors. Large-scale ab initio simulations have already
been demonstrated for the cross-effect under MAS37 and we can fol-
low the same approach. We would need a realistic set of nuclear
locations in 3D and the use of neighbors cutoff36 to prune the
restricted basis set further. With this in place, theoretical optimiza-
tion becomes possible for both the DNP pulse sequence and the
chemical structure of the polarizing agent.76 Going further, effects
of electron–electron interactions should be modeled as well.77 Sim-
ulation of pulsed DNP under MAS would produce complications of
its own. However, software infrastructure to generate the evolution
generators already exists,49,60 and the Newton–Raphson method can
be used as is (see the technical discussion in Sec. II C above).

The rate of the polarization transfer is determined by the
electron–proton dipolar coupling and its preservation in the effec-
tive Hamiltonian.22 This is a property of the DNP pulse sequence
and varies per DNP condition (choice of the pulse length, resonance
offset, electron Rabi frequency, etc.). Generally, a higher electron
Rabi frequency means a better preservation, as was recently analyti-
cally shown.78 A faster rate of transfer leads to a faster build-up of the
bulk polarization, but not necessarily to a larger enhancement; other
factors, such as the response of the pulse sequence to the width of the
EPR spectrum of the polarizing agent, play a role as well. To derive
the effective Hamiltonian, perturbation theory is used to capture the
trajectory of the spin system in a suitable interaction frame. Analyt-
ical treatments of this kind are in perfect agreement with numerical
simulations of the single transfers.22 However, the reality of a pulsed
DNP experiment, which always requires many transfers, is more
complex. For XiX and TOP DNP, the polarization is transferred con-
siderably faster than analytical theory predicts [Figs. 8(a) and 8(c)]
and, interestingly, the steady-state simulations reproduce this very
well [Fig. 8(b)]. This implies that the steady orbit differs from the
trajectory during the single (one-time) transfer.

Small wiggles are observed in the steady-state simulations of the
polarization transfer [Fig. 8(b)], but not in the single-transfer simu-
lations [Fig. 8(a)]. They smoothen with ensemble averaging (Fig. S7).
We have excluded numerical noise as the cause. Instead, they arise
because the direction of the electron spin magnetization vector at
the end of the DNP pulse sequence (slightly) varies with the num-
ber of blocks. As a consequence, after a period of relaxation that
is clearly shorter than five times T1e, the starting direction before
the renewed application of the DNP pulse sequence changes, differ-
ently depending on the number of blocks. Thus, the wiggles reflect
that the steady orbit depends on the contact time (and the repe-
tition time). This is particularly the case for XiX and high-power
TOP DNP with short contact times, as becomes clear from the unex-
pectedly large values of ⟨IZ⟩. These steady orbits enable a better
preservation of the electron–proton dipolar coupling than expected
from analysis of the sequence and the electron Rabi frequency. Opti-
mization of the effective Hamiltonian has recently been used to
develop the broadband DNP pulse sequence PoLarizAtion Transfer
via non-linear Optimization (PLATO).79 The effective Hamiltonian

of a single transfer was calculated numerically using the matrix log-
arithm, in Hilbert space. Extension of this optimization approach
to the steady state, however, requires further thought, for starters
because of the numerical instability of the matrix logarithm method
in Liouville space. Implementations of gradient ascent pulse engi-
neering (GRAPE)80 for dissipative evolution generator design also
do not yet exist. Finding a way to engineer these fast steady orbits
is nevertheless important, because they might provide a loophole to
efficient high-field pulsed DNP at low peak power.

The ensemble averaging in this work was over the
electron–proton distance and the electron Rabi frequency.
These are not the only distributed quantities in a glassy DNP
matrix. The flexibility of the chemical linker in polarizing agents
for cross-effect DNP is a well-known source of distributions in the
electron–electron dipolar couplings, the exchange interaction, and
the relative positions and orientations of the radical moieties.81

There are also distributions in the distance to the next nearest
polarizing agent, internuclear distances depend on the conforma-
tions, etc. If d- or f-elements are used as polarizing agents, magnetic
properties vary drastically with conformation,82 which would in
turn affect the relaxation of nearby nuclei. All together there are far
too many parameters for a product grid integral to be affordable;
Monte-Carlo averaging would have to be used instead.

VI. CONCLUSION
We have introduced the simulation of pulsed DNP in the steady

state. Several algorithms to compute the stroboscopic steady state
from the pulsed-DNP propagator have been explored; of these,
we recommend the Newton–Raphson method for its stability and
complexity scaling. Agreement with experiments at X, Q, and W
bands, with DNP pulse sequences NOVEL, TOP, XiX, and TPPM, is
remarkably good, even when a spin system of just one electron and
one proton is considered. The steady-state simulations are expected
to be equally useful for DNP pulse sequences that induce polariza-
tion transfer by adiabatic passage. An important observation is that
the trajectory of the spin system during the first application of the
DNP pulse sequence differs from the steady orbit. This may pro-
vide a clue to designing efficient pulse sequences for high-field MAS
DNP. We will put the steady-state simulations to use exactly for this
purpose.

SUPPLEMENTARY MATERIAL

The supplementary material contains a plot of the orientation
dependence of T1n near an unpaired electron, performance bench-
marks of the propagator squaring and Newton–Raphson algorithms,
a single-transfer simulation of the electron Rabi frequency depen-
dence of XiX at W band, supplementary repetition-time profiles, a
comparison of NOVEL and continuous-wave solid-effect at X band,
supplementary polarization transfer curves, and a set of simulations
with alternative values of the relaxation times.

ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungsgemein-

schaft through SFB 1527 (Project No. 454252029) and a research
grant from the Center for New Scientists at the Weizmann
Institute of Science. The work at Weizmann Institute was also sup-
ported by a research grant from Anton Rabie, Stanley and Tanya

J. Chem. Phys. 163, 034111 (2025); doi: 10.1063/5.0283196 163, 034111-11

© Author(s) 2025

 24 Septem
ber 2025 10:36:50

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7899605


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Rossby Endowment Fund, Danielle Bitton & Raphy Benbaron,
and two benefactors who have chosen to remain anonymous. The
authors thank Robert Hunter and Hassane El Mkami for assistance
with the W-band experiments.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Shebha Anandhi Jegadeesan: Conceptualization (equal); Data cura-
tion (equal); Formal analysis (equal); Investigation (equal); Method-
ology (equal); Software (equal); Validation (equal); Visualization
(equal); Writing – original draft (equal); Writing – review & edit-
ing (equal). Yujie Zhao: Data curation (equal); Investigation (equal);
Writing – review & editing (equal). Graham M. Smith: Investi-
gation (equal); Resources (equal); Supervision (equal); Writing –
review & editing (equal). Ilya Kuprov: Conceptualization (equal);
Formal analysis (equal); Funding acquisition (equal); Investiga-
tion (equal); Methodology (equal); Project administration (equal);
Resources (equal); Software (equal); Supervision (equal); Validation
(equal); Writing – original draft (equal); Writing – review & editing
(equal). Guinevere Mathies: Conceptualization (equal); Data cura-
tion (equal); Formal analysis (equal); Funding acquisition (equal);
Investigation (equal); Methodology (equal); Project administration
(equal); Resources (equal); Software (equal); Supervision (equal);
Validation (equal); Visualization (equal); Writing – original draft
(equal); Writing – review & editing (equal).

DATA AVAILABILITY
All data generated in this study has been deposited in Zenodo

at https://doi.org/10.5281/zenodo.15373856. Scripts for numerical
simulations are available in the example set of the Spinach library
in GitHub at https://github.com/IlyaKuprov/Spinach.

REFERENCES
1A. W. Overhauser, “Polarization of nuclei in metals,” Phys. Rev. 92(2), 411–415
(1953).
2C. D. Jeffries, “Dynamic orientation of nuclei by forbidden transitions in
paramagnetic resonance,” Phys. Rev. 117(4), 1056–1069 (1960).
3C. F. Hwang and D. A. Hill, “Phenomenological model for the new effect in
dynamic polarization,” Phys. Rev. Lett. 19(18), 1011–1014 (1967).
4T. Polenova, R. Gupta, and A. Goldbourt, “Magic angle spinning NMR spec-
troscopy: A versatile technique for structural and dynamic analysis of solid-phase
systems,” Anal. Chem. 87(11), 5458–5469 (2015).
5B. Reif, S. E. Ashbrook, L. Emsley, and M. Hong, “Solid-state NMR
spectroscopy,” Nat. Rev. Methods Primers 1(1), 2 (2021).
6A. S. Gilmour, “Microwave and millimeter-wave vacuum electron devices:
Inductive output tubes, klystrons, traveling-wave tubes, magnetrons, crossed-field
amplifiers, and gyrotrons,” in Artech House Microwave Library (Artech House,
Norwood, MA, 2020).
7A. A. Nevzorov, A. Marek, S. Milikisiyants, and A. I. Smirnov, “High-frequency
high-power DNP/EPR spectrometer operating at 7 T magnetic field,” J. Magn.
Reson. 362, 107677 (2024).
8I. V. Sergeyev, F. Aussenac, A. Purea, C. Reiter, E. Bryerton, S. Retzloff, J. Hes-
ler, L. Tometich, and M. Rosay, “Efficient 263 GHz magic angle spinning DNP at

100 K using solid-state diode sources,” Solid State Nucl. Magn. Reson. 100, 63–69
(2019).
9M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P. M.
Borchard, S. R. Cauffman, K. L. Felch, R. T. Weber, R. J. Temkin, R. G. Griffin, and
W. E. Maas, “Solid-state dynamic nuclear polarization at 263 GHz: Spectrometer
design and experimental results,” Phys. Chem. Chem. Phys. 12(22), 5850 (2010).
10M. Rosay, M. Blank, and F. Engelke, “Instrumentation for solid-state dynamic
nuclear polarization with magic angle spinning NMR,” J. Magn. Reson. 264, 88–98
(2016).
11M. Vöhringer, A. Marek, K. Balaban, M. Möck, J. Jelonnek, and C. A. Ulu-
soy, “A new type of hybrid broadband high-power amplifier systems for DNP-
NMR spectroscopy at 263 GHz,” in Abstract Submitted for European Microwave
Conference, 2023.
12H. J. Kim, E. A. Nanni, M. A. Shapiro, J. R. Sirigiri, P. P. Woskov, and R. J.
Temkin, “Amplification of picosecond pulses in a 140-GHz gyrotron-traveling
wave tube,” Phys. Rev. Lett. 105(13), 135101 (2010).
13E. A. Nanni, S. M. Lewis, M. A. Shapiro, R. G. Griffin, and R. J. Temkin,
“Photonic-band-gap traveling-wave gyrotron amplifier,” Phys. Rev. Lett. 111(23),
235101 (2013).
14C. Gao, N. Alaniva, E. P. Saliba, E. L. Sesti, P. T. Judge, F. J. Scott, T. Halbritter,
S. T. Sigurdsson, and A. B. Barnes, “Frequency-chirped dynamic nuclear polariza-
tion with magic angle spinning using a frequency-agile gyrotron,” J. Magn. Reson.
308, 106586 (2019).
15T. V. Can, R. T. Weber, J. J. Walish, T. M. Swager, and R. G. Griffin, “Ramped-
amplitude NOVEL,” J. Chem. Phys. 146(15), 154204 (2017).
16T. V. Can, R. T. Weber, J. J. Walish, T. M. Swager, and R. G. Griffin, “Frequency-
swept integrated solid effect,” Angew. Chem., Int. Ed. 56(24), 6744–6748 (2017).
17K. O. Tan, R. T. Weber, T. V. Can, and R. G. Griffin, “Adiabatic solid effect,”
J. Phys. Chem. Lett. 11(9), 3416–3421 (2020).
18A. Henstra, P. Dirksen, J. Schmidt, and W. T. Wenckebach, “Nuclear spin ori-
entation via electron spin locking (NOVEL),” J. Magn. Reson. 77(2), 389–393
(1988).
19S. K. Jain, G. Mathies, and R. G. Griffin, “Off-resonance NOVEL,” J. Chem.
Phys. 147(16), 164201 (2017).
20K. O. Tan, C. Yang, R. T. Weber, G. Mathies, and R. G. Griffin, “Time-optimized
pulsed dynamic nuclear polarization,” Sci. Adv. 5(1), eaav6909 (2019).
21V. S. Redrouthu and G. Mathies, “Efficient pulsed dynamic nuclear polarization
with the X-inverse-X sequence,” J. Am. Chem. Soc. 144(4), 1513–1516 (2022).
22V. S. Redrouthu, S. Vinod-Kumar, and G. Mathies, “Dynamic nuclear
polarization by two-pulse phase modulation,” J. Chem. Phys. 159(1), 014201
(2023).
23N. Wili, A. B. Nielsen, L. A. Völker, L. Schreder, N. C. Nielsen, G. Jeschke, and
K. O. Tan, “Designing broadband pulsed dynamic nuclear polarization sequences
in static solids,” Sci. Adv. 8(28), eabq0536 (2022).
24I. Scholz, B. H. Meier, and M. Ernst, “Operator-based triple-mode Floquet
theory in solid-state NMR,” J. Chem. Phys. 127(20), 204504 (2007).
25R. Ramesh and M. S. Krishnan, “Effective Hamiltonians in Floquet theory of
magic angle spinning using van Vleck transformation,” J. Chem. Phys. 114(14),
5967–5973 (2001).
26I. Kuprov, N. Wagner-Rundell, and P. J. Hore, “Polynomially scaling spin
dynamics simulation algorithm based on adaptive state-space restriction,”
J. Magn. Reson. 189(2), 241–250 (2007).
27M. C. Butler, J.-N. Dumez, and L. Emsley, “Dynamics of large nuclear-spin sys-
tems from low-order correlations in Liouville space,” Chem. Phys. Lett. 477(4–6),
377–381 (2009).
28L. J. Edwards, D. V. Savostyanov, A. A. Nevzorov, M. Concistrè, G. Pileio, and
I. Kuprov, “Grid-free powder averages: On the applications of the Fokker–Planck
equation to solid state NMR,” J. Magn. Reson. 235, 121–129 (2013).
29A. Karabanov, I. Kuprov, G. T. P. Charnock, A. Van Der Drift, L. J. Edwards, and
W. Köckenberger, “On the accuracy of the state space restriction approximation
for spin dynamics simulations,” J. Chem. Phys. 135(8), 084106 (2011).
30A. Karabanov, A. Van Der Drift, L. J. Edwards, I. Kuprov, and W. Köckenberger,
“Quantum mechanical simulation of solid effect dynamic nuclear polarisation
using Krylov–Bogolyubov time averaging and a restricted state-space,” Phys.
Chem. Chem. Phys. 14(8), 2658 (2012).

J. Chem. Phys. 163, 034111 (2025); doi: 10.1063/5.0283196 163, 034111-12

© Author(s) 2025

 24 Septem
ber 2025 10:36:50

https://pubs.aip.org/aip/jcp
https://doi.org/10.5281/zenodo.15373856
https://github.com/IlyaKuprov/Spinach
https://doi.org/10.1103/physrev.92.411
https://doi.org/10.1103/physrev.117.1056
https://doi.org/10.1103/physrevlett.19.1011
https://doi.org/10.1021/ac504288u
https://doi.org/10.1038/s43586-020-00002-1
https://doi.org/10.1016/j.jmr.2024.107677
https://doi.org/10.1016/j.jmr.2024.107677
https://doi.org/10.1016/j.ssnmr.2019.03.008
https://doi.org/10.1039/c003685b
https://doi.org/10.1016/j.jmr.2015.12.026
https://doi.org/10.1103/physrevlett.105.135101
https://doi.org/10.1103/physrevlett.111.235101
https://doi.org/10.1016/j.jmr.2019.106586
https://doi.org/10.1063/1.4980155
https://doi.org/10.1002/anie.201700032
https://doi.org/10.1021/acs.jpclett.0c00654
https://doi.org/10.1016/0022-2364(88)90190-4
https://doi.org/10.1063/1.5000528
https://doi.org/10.1063/1.5000528
https://doi.org/10.1126/sciadv.aav6909
https://doi.org/10.1021/jacs.1c09900
https://doi.org/10.1063/5.0153053
https://doi.org/10.1126/sciadv.abq0536
https://doi.org/10.1063/1.2800319
https://doi.org/10.1063/1.1354147
https://doi.org/10.1016/j.jmr.2007.09.014
https://doi.org/10.1016/j.cplett.2009.07.017
https://doi.org/10.1016/j.jmr.2013.07.011
https://doi.org/10.1063/1.3624564
https://doi.org/10.1039/c2cp23233b
https://doi.org/10.1039/c2cp23233b


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

31F. A. Perras and M. Pruski, “Large-scale ab initio simulations of MAS DNP
enhancements using a Monte Carlo optimization strategy,” J. Chem. Phys.
149(15), 154202 (2018).
32F. Mentink-Vigier, “Numerical recipes for faster MAS-DNP simulations,”
J. Magn. Reson. 333, 107106 (2021).
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