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ABSTRACT

The goal of this work is to explore alternative approaches to the cochlear implant array
processing work recently published by Honert and Kelsall [Journal of the Acoustical Society of
America, Vol. 121, No. 6, pp. 3703-3716, 2007]. They demonstrated the possibility of phased array
excitation of cochlear implant electrodes in order to achieve focused intracochlear excitation. This
memorandum outlines an extension of this work by means of more advanced matrix inversion
techniques. These techniques allow one to solve for the electrode array impedance matrix; invert the
matrix; and influence the inverse solution in desirable ways.
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1. INTRODUCTION

The goal of this work is to explore alternative approaches to the cochlear implant array
processing work recently published by Honert and Kelsalll. They demonstrated the possibility of
phased array excitation of cochlear implant electrodes in order to achieve focused intracochlear
excitation. Current cochlear implant technology excites a single electrode in order to stimulate nerve
fibres in a particular region of the cochlea. However, it is well known that such excitation results in
“leakage” since the locus of excitation reaches well beyond the targeted region due to current
conduction through cochlea fluid and tissue.

Honert and Kelsall sought to alleviate this problem by simultaneously exciting numerous
electrodes in a phased array with the aim of producing an excitation voltage at a single location while
cancelling the “leaked” excitation. This was accomplished by making a set of measurements on in
situ cochlear implants to determine the full impedance matrix. Each cochlear electrode was excited
with a prescribed current and the induced voltages at all other electrodes were then measured. “Self”
impedances were not measured directly but were estimated. After some conditioning of the data the
result was an equation of the form

vi=[zli} M)

where v is the vector of induced electrode voltages, i is the vector of applied currents, and Z is the
impedance matrix. The idea proposed by Honert and Kelsall was that to induce a specified voltage at
one electrode (and zero voltage at all other electrodes) then the necessary excitation current was
prescribed by

ij=[z]*0 - v, - 0Of @

Therefore, the inverse of the impedance matrix represents the phased array weighting necessary
for prescribed induced voltages. The idea is straight forward, but there are two primary difficulties.
First the impedance measurement data was subject to noise and, second, the impedance matrices
were poorly conditioned. Both of these difficulties resulted in solutions which created potentially
undesirable excitations in the cochlea. The purpose of this work is to explore improved methods of
both impedance matrix creation and inversion to alleviate the undesirable effects.

2. REGULARIZED INVERSION

Regularized inversion is an approach which allows one to improve the condition of the inverse
solution while incorporating « priori knowledge about the solution. For a typical linear equation that
is possibly over- or under-determined

Ax=b 6)

T Chris van den Honert and David C. Kelsall, “Focused intracochlear electric stimulation with phased array channels,”
Journal of the Acoustical Society of America, Vol. 121, No. 6, pp. 3703-3716, 2007.
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the solution which minimizes the square-error,

x=[ATA]'A™D @

If the matrix to be inverted is poorly conditioned then small changes in the data can result in large
changes in the solution. This is the case in the cochlear impedance inversion problem.

Regularized inversion is the process of minimizing an objective function that includes an

expression of data misfit (the square error) and a regularizing term that imposes the expectation that
the solution x in some manner resembles the a priori information X

(|)=|Ax—b|2 +ul|H1(x—§(1)|2 +112|H2(x—f(2)|2 ©)

In this case two separate regularizing terms have been included. H is the arbitrary weighting matrix
and p is a Lagrange multiplier allowing for trade-off between the relative importance of terms. The
solution that minimizes the objective function is

x=[ATA+p HH, +p,HH, | [A" +p, H'H R, +p,H H, %, | ©)

Specific instances of the regularization terms are discussed below.

3. SOLVING FOR THE IMPEDANCE MATRIX WITH REGULARIZED
INVERSION

On way in which regularized inversion can improve cochlear array processing is by using it to
solve for the elements of the impedance matrix. Assume that a set of measurements has been carried
out and that the input cutrents are known. Furthermore, assuming that the measured voltages ate
unknown as are all entries in the impedance matrix. Now the impedance relationship of Equation 1
can be rearranged into a linear equation like Equation such that b is populated with zeros; A is
populated with appropriately arranged known currents, ones and zeros; and x is populated with the
impedance matrix entries and the “unknown” voltages.

Now the first regularization term, Hi, can be used to force the solution towards an estimate.
This estimate, X, , can be random numbers (or even zeros) for the truly unknown impedances and the

unknown self-voltages but to the actual measured voltages for the other voltage entries. Then the
regularization matrix is set to a diagonal matrix

lediag[}/az RN A A %} o)

o, is the standard deviation of the impedance and the self-voltage estimates and should be set
relatively large. The standard deviation of the measured voltages, o, can be set to a small (but non-
zero) value. If only this regularization term were used then the solution would contain voltages very
close to the measured ones, off-diagonal impedance terms that are the appropriate measured voltages
divided by the induced currents. However, since there is no interdependence in the equations, and



there is not data for the diagonal terms, the solution for the diagonal impedances as well as the
unknown self-voltages would be zero. Read on.

The diagonal impedances can be estimated by making use of the second regularization term. If
the regularization matrix is populated as follows

0 -12-10 0 0
H,=|-- 0 0 0 0 0 0 0 - ®
00 0 -12-10

where the row of zeros at the centre corresponds to the self-voltage estimate. The result is that the
self-voltage solution is forced toward the average of the linear projections from the two
measurements to the right and the two measurements to the left.

- Impedance Matrix Row Comparison ] Results using both of these regularization
| ——Honert 5 terms and the data provided by Hornet are
| :ng:::: :; shown in Figure 1. Not surprisingly the
i & R InviE results away from the diagonal terms compare

= ! © Reg. Inv. 11 well with Hornet and Kelsall. They differ near

%1‘5’ | © Reg. Inv. 18] the diagonal because the average linear

B | projection used here is different from the

E i 1 maximum linear projection used by Hornet
| and Kelsall.

0.5
| s The above solution does not extend what
o 7 . . | Hornet and Kelsall have done in a very useful
0 5 10 15 20 25

Electrode # manner and in fact it may be worse in some
ways. However it does offer the possibility to
improve things in the future. For example
this approach needs no adaptation to
accommodate multiple data sets for an over-
determined  solution. Also, a third
regularization term could be added that forces the impedance matrix solution toward a symmetric
result. Furthermore, a regularization term could be used to extrapolate beyond the end of the array
to create virtual electrodes. These could then be used to reduce auditory excitation beyond the end
of the cochlear array.

Figure 1 Comparison of regularized inversion impedance
matrix calenlation with original data.

4. SOLVING THE PHASED ARRAY INVERSION WITH REGULARIZED
INVERSION

A more immediate benefit can be seen when regularized inversion is used to perform the
impedance matrix inversion of Equation 2. In this case we do not possess any a priori estimate of
the solution itself. However the solution can be influenced in a desirable manner. Three examples
of desirable solution influence are demonstrated here including:



1. Minimize the “effort” or rms current required for focused excitation.

2. Minimize the total current across all electrodes and thus reduce the “penalty current”
referred to by Honert and Kelsall.

3. Minimize the “tails” (those electrodes away from the focus point) of the excitation
current distribution.

Simulations were conducted by assuming that the impedance matrix supplied by Honert and
Kelsall for subject 1 is exact. A noisy impedance matrix was created by adding normally
distributed noise with zero mean and standard deviation of 0.01. This standard deviation is
slightly larger than that estimated by Honert and Kelsall. A noisy matrix was then used to
calculate the currents required to produce a focused voltage excitation at electrode 7. In
subsequent plots showing minimized variables versus rms voltage error each data point is the
average of 100 simulations with independent noisy impedance matrices.

MINIMIZING THE CURRENT EFFORT

The rms current can be minimized (along with the solution rms error) by using a single
regularization term in Eq. 5; setting the weighting matrix, Hi, to the identity matrix; and setting the
estimate vectot, X, to zeros. In this manner the sum of the squares of the individual currents will be
minimized along with the rms solution error. The inverse of the impedance matrix was calculated in
this manner for pi ranging between 0 and 1000. The objective was to induce a voltage at electrode 7
only. The resulting rms current is plotted against the voltage error in Figure 2. As the Lagrange
multiplier, pi, is increased the rms current decreases but at the expense of increasing error. This
curve is relatively linear suggesting that it may not be advantageous to use this approach. A specific
solution of this type is shown in Figure 3. As one would expect, minimizing the rms current forces
all node currents toward zero.

rms Current (Effort) weight: 0< p, <1000, p,=p,=0 I"1 =1 1 l‘l2=°' |"3=0
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Figure 2 rms Current versus rms voltage error when the rms — Fignre 3 Array currents and induced voltages. Location of this
current is minimized using regularized inversion. solution in Fig. 2 indicated by red star.

MINIMIZING THE NET CURRENT

A second way in which regularized inversion may favourably affect the solution is to minimize
the net current flowing into the tissue. This will minimize the “penalty current” described by Honert



and Kelsall. The net current can be minimized by using a single regularization term and populating
the weighting matrix, Hi, with ones and populating f(l with zeros. ‘This will force the sum of all

currents towards zero. In this manner, the larger we make p; the smaller the net current will be.
Results from these simulations are shown in Fig. 4 which shows the total current versus rms voltage
error as w1 varies between 0 and 1e6. As demonstrated, if one can accept about twice the voltage
error, the total current can be decreased several orders of magnitude. The region which the data in
Figure 4 occupies in Figure 2 is indicated in Figure 2 by the red oval. Recall that the data points in
Fig 4 are the averages for 100 separate trials. The standard deviation of the rms voltage error is
rather large (about 2e-4) for larger values of p; (the right portion of the graph). A specific trial from
these simulations is shown in Figure 5. Note that minimizing the total current results in alternating
positive/negative current values. However, the individual current values are not pushed toward zero
as occurred in the previous case.
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Figure 4 Total Current versus rms voltage error when the Fagnre 5 Array currents and induced voltages. Location of this
total current is minimized nsing regulariged inversion. solution in Fig. 4 indicated by a black star.

MINIMIZING THE CURRENT “TAIL”

Finally, it may be desirable for the current to tend toward zero away from the target electrode.
This can be accomplished by forcing the solution to be smooth except near the target electrode. A
smooth solution is encouraged by setting H; equal to

2 -1 0 0 0 0 O
-1 2 -1 0 0 O O
0O 0 O O o o0 o
0O 0 O O O o0 o
Hz = ©)
0O 0 O O o o0 o
O 0 O o0 -1 2 0
O 0 O o0 o -1 2




Eq. 9 defines a tri-diagonal matrix, with 2 on the main diagonal and -1 on the first off-diagonals.
Furthermore the rows of the targeted electrode, plus the row above and below, are set to zero. The
effect of setting a row to {-1 2 -1} is to approximate the second detivative of the solution. Therefore
the curvature of the solution is minimized. The effect of the zeroed rows is to allow the solution to
be un-smooth near the target electrode. Results from simulations are shown in Figure 6 which shows
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Figure 6 rms Current versus rms voltage error when the

current tail is minimized using regularized inversion. This

data occupies the grey box in Figure 2.
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Figure 7 rms Current “tail” versus rms voltage error.

the rms current versus the rms voltage error
for 0< w<le4 . Opverall the rms current is
changed very little. This is because the rms
current is dominated by the targeted electrode
and two neighbouring electrode currents.
Since the weighting matrix is zero for these
electrodes there is no effect on their values.
Note that Fig. 6 occupies the grey box region
of Fig. 2. Away from the targeted electrode
there is a significant effect on the current.
This is demonstrated in Figure 7 which shows
the rms tail current versus the rms voltage
error for 0< wi<le4. The rms tail current is
the rms of all currents except the targeted
electrode and the two neighbouring electrodes.
As shown in Figure 7 the tail rms can be
significantly reduced.  Figure 8 shows a

specific solution for current tail weighing which is located on Figures 6 and 7 by the green star. As
can be seen, all of the cutrents in the tails are forced toward zero while the central currents are not.



5. SOLVING THE INVERSION WITH SINGULAR VALUE DECOMPOSTION

Another method of quantifying and rectifying problems with pootly conditioned matrices is with
Singular Value Decomposition. Applying SVD to the impedance matrix of Equation 1 results in

Z=UAW' (10)

where U and W consist of columns of orthonormal vectors and A is a diagonal matrix of singular
values. Making use of Equation (3) the solution to Equation 1 can be written as

M
i=WA1UTV=Z%WiuiTV (11)

i=1 7%

If any of the singular values, i, are small compared to the largest then the matrix is ill
conditioned. The result in the solution is that small singular values can have a large influence on the
solution. A common method is to set the inverse of small singular values (those less than 1% of the
maximum for example) equal to zero. This was applied to the data supplied by Honert and Kelsall
and the results are shown in Figure 8. It seems that although the matrix is poorly conditioned
(conditioning number of 1306) the elimination of small singular values does not result in a more
accurate solution.
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Figure 7 Normalized singular values for Honert and Kelsall ~ Fignre 8§ RMS voltage error versus the number of eliminated
subject 1 impedance matrix. singular values.

6. CONCLUSIONS

Overall these results show that it may be possible to improve on the approach of Honert and
Kelsall through the use of regularized inversion. Assuming that decreasing net current and
decreasing current “tails” are beneficial result, then this approach offers substantial benefit. More
importantly these results show that regularized inversion can be used to significantly alter the
solution in desirable ways. Future work should focus on specifying what constitutes a “desirable”
solution and developing methods for expressing this in regularization terms.
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