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ABSTRACT 
 

The goal of this work is to explore alternative approaches to the cochlear implant array 
processing work recently published by Honert and Kelsall [Journal of the Acoustical Society of 
America, Vol. 121, No. 6, pp. 3703-3716, 2007].  They demonstrated the possibility of phased array 
excitation of cochlear implant electrodes in order to achieve focused intracochlear excitation.  This 
memorandum outlines an extension of this work by means of more advanced matrix inversion 
techniques.  These techniques allow one to solve for the electrode array impedance matrix; invert the 
matrix; and influence the inverse solution in desirable ways. 
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1 .  INTRODUCTION 

The goal of this work is to explore alternative approaches to the cochlear implant array 
processing work recently published by Honert and Kelsall†.  They demonstrated the possibility of 
phased array excitation of cochlear implant electrodes in order to achieve focused intracochlear 
excitation.  Current cochlear implant technology excites a single electrode in order to stimulate nerve 
fibres in a particular region of the cochlea.  However, it is well known that such excitation results in 
“leakage” since the locus of excitation reaches well beyond the targeted region due to current 
conduction through cochlea fluid and tissue. 

Honert and Kelsall sought to alleviate this problem by simultaneously exciting numerous 
electrodes in a phased array with the aim of producing an excitation voltage at a single location while 
cancelling the “leaked” excitation.  This was accomplished by making a set of measurements on in 
situ cochlear implants to determine the full impedance matrix.  Each cochlear electrode was excited 
with a prescribed current and the induced voltages at all other electrodes were then measured.  “Self” 
impedances were not measured directly but were estimated.  After some conditioning of the data the 
result was an equation of the form 

{ } [ ]{ }iZv =            (1) 

where v is the vector of induced electrode voltages, i is the vector of applied currents, and Z is the 
impedance matrix.  The idea proposed by Honert and Kelsall was that to induce a specified voltage at 
one electrode (and zero voltage at all other electrodes) then the necessary excitation current was 
prescribed by 

 { } [ ] { }T
ov 001

LL
−= Zi        (2) 

Therefore, the inverse of the impedance matrix represents the phased array weighting necessary 
for prescribed induced voltages.  The idea is straight forward, but there are two primary difficulties.  
First the impedance measurement data was subject to noise and, second, the impedance matrices 
were poorly conditioned.  Both of these difficulties resulted in solutions which created potentially 
undesirable excitations in the cochlea.  The purpose of this work is to explore improved methods of 
both impedance matrix creation and inversion to alleviate the undesirable effects. 

2 .  REGULARIZED INVERSION 

Regularized inversion is an approach which allows one to improve the condition of the inverse 
solution while incorporating a priori knowledge about the solution.  For a typical linear equation that 
is possibly over- or under-determined 

bAx =            (3) 
                                                      
† Chris van den Honert and David C. Kelsall, “Focused intracochlear electric stimulation with phased array channels,” 
Journal of the Acoustical Society of America, Vol. 121, No. 6, pp. 3703-3716, 2007. 
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the solution which minimizes the square-error, 2bAx − , is 

[ ] bAAAx TT 1−
=           (4) 

If the matrix to be inverted is poorly conditioned then small changes in the data can result in large 
changes in the solution.  This is the case in the cochlear impedance inversion problem. 

 Regularized inversion is the process of minimizing an objective function that includes an 
expression of data misfit (the square error) and a regularizing term that imposes the expectation that 
the solution x in some manner resembles the a priori information x  ˆ

2
22

2
11

2 )x(xHµ)x(xHµbAxφ 21 ˆˆ −+−+−=       (5) 

In this case two separate regularizing terms have been included.  H is the arbitrary weighting matrix 
and µ is a Lagrange multiplier allowing for trade-off between the relative importance of terms.  The 
solution that minimizes the objective function is 

[ ] [ ]22
T
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T
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T xHHµxHHµbAHHµHHµAAx ˆˆ ++++=
−

   (6) 

Specific instances of the regularization terms are discussed below. 

3 .  SOLVING FOR THE IMPEDANCE MATRIX WITH REGULARIZED 
INVERSION 

On way in which regularized inversion can improve cochlear array processing is by using it to 
solve for the elements of the impedance matrix.  Assume that a set of measurements has been carried 
out and that the input currents are known.  Furthermore, assuming that the measured voltages are 
unknown as are all entries in the impedance matrix.  Now the impedance relationship of Equation 1 
can be rearranged into a linear equation like Equation such that b is populated with zeros; A is 
populated with appropriately arranged known currents, ones and zeros; and x is populated with the 
impedance matrix entries and the “unknown” voltages. 

Now the first regularization term, H1, can be used to force the solution towards an estimate.  
This estimate, , can be random numbers (or even zeros) for the truly unknown impedances and the 
unknown self-voltages but to the actual measured voltages for the other voltage entries.  Then the 
regularization matrix is set to a diagonal matrix 

1x̂

⎥⎦
⎤

⎢⎣
⎡=

vvzz
diag σσσσ

1111
1 LLH .     (7) 

σz is the standard deviation of the impedance and the self-voltage estimates and should be set 
relatively large.   The standard deviation of the measured voltages, σv, can be set to a small (but non-
zero) value.  If only this regularization term were used then the solution would contain voltages very 
close to the measured ones, off-diagonal impedance terms that are the appropriate measured voltages 
divided by the induced currents.  However, since there is no interdependence in the equations, and 
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there is not data for the diagonal terms, the solution for the diagonal impedances as well as the 
unknown self-voltages would be zero.  Read on. 

 The diagonal impedances can be estimated by making use of the second regularization term.  If 
the regularization matrix is populated as follows  

⎥
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−−

−−
=
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2H       (8) 

where the row of zeros at the centre corresponds to the self-voltage estimate.  The result is that the 
self-voltage solution is forced toward the average of the linear projections from the two 
measurements to the right and the two measurements to the left. 

Results using both of these regularization 
terms and the data provided by Hornet are 
shown in Figure 1.  Not surprisingly the 
results away from the diagonal terms compare 
well with Hornet and Kelsall.  They differ near 
the diagonal because the average linear 
projection used here is different from the 
maximum linear projection used by Hornet 
and Kelsall.   

 The above solution does not extend what 
Hornet and Kelsall have done in a very useful 
manner and in fact it may be worse in some 
ways.  However it does offer the possibility to 
improve things in the future.  For example 
this approach needs no adaptation to 
accommodate multiple data sets for an over-
determined solution.  Also, a third 

regularization term could be added that forces the impedance matrix solution toward a symmetric 
result.  Furthermore, a regularization term could be used to extrapolate beyond the end of the array 
to create virtual electrodes.  These could then be used to reduce auditory excitation beyond the end 
of the cochlear array.   

Figure 1 Comparison of regularized inversion impedance 
matrix calculation with original data. 

4 .  SOLVING THE PHASED ARRAY INVERSION WITH REGULARIZED 
INVERSION 

A more immediate benefit can be seen when regularized inversion is used to perform the 
impedance matrix inversion of Equation 2.  In this case we do not possess any a priori estimate of 
the solution itself.  However the solution can be influenced in a desirable manner.  Three examples 
of desirable solution influence are demonstrated here including: 
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1. Minimize the “effort” or rms current required for focused excitation. 

2. Minimize the total current across all electrodes and thus reduce the “penalty current” 
referred to by Honert and Kelsall. 

3. Minimize the “tails” (those electrodes away from the focus point) of the excitation 
current distribution. 

Simulations were conducted by assuming that the impedance matrix supplied by Honert and 
Kelsall for subject 1 is exact.  A noisy impedance matrix was created by adding normally 
distributed noise with zero mean and standard deviation of 0.01.  This standard deviation is 
slightly larger than that estimated by Honert and Kelsall.  A noisy matrix was then used to 
calculate the currents required to produce a focused voltage excitation at electrode 7.  In 
subsequent plots showing minimized variables versus rms voltage error each data point is the 
average of 100 simulations with independent noisy impedance matrices. 

MINIMIZING THE CURRENT EFFORT 

The rms current can be minimized (along with the solution rms error) by using a single 
regularization term in Eq. 5; setting the weighting matrix, H1, to the identity matrix; and setting the 
estimate vector, x , to zeros.  In this manner the sum of the squares of the individual currents will be 
minimized along with the rms solution error.  The inverse of the impedance matrix was calculated in 
this manner for µ1 ranging between 0 and 1000.  The objective was to induce a voltage at electrode 7 
only.  The resulting rms current is plotted against the voltage error in Figure 2.  As the Lagrange 
multiplier, µ1, is increased the rms current decreases but at the expense of increasing error.  This 
curve is relatively linear suggesting that it may not be advantageous to use this approach.  A specific 
solution of this type is shown in Figure 3.  As one would expect, minimizing the rms current forces 
all node currents toward zero. 

ˆ

Figure 2 rms Current versus rms voltage error when the rms 
current is minimized using regularized inversion. 

Figure 3 Array currents and induced voltages. Location of this 
solution in Fig. 2 indicated by red star. 

MINIMIZING THE NET CURRENT 

A second way in which regularized inversion may favourably affect the solution is to minimize 
the net current flowing into the tissue.  This will minimize the “penalty current” described by Honert 
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and Kelsall.  The net current can be minimized by using a single regularization term and populating 
the weighting matrix, H1, with ones and populating  with zeros.   This will force the sum of all 
currents towards zero. In this manner, the larger we make µ1 the smaller the net current will be.  
Results from these simulations are shown in Fig. 4 which shows the total current versus rms voltage 
error as µ1 varies between 0 and 1e6.  As demonstrated, if one can accept about twice the voltage 
error, the total current can be decreased several orders of magnitude.  The region which the data in 
Figure 4 occupies in Figure 2 is indicated in Figure 2 by the red oval.  Recall that the data points in 
Fig 4 are the averages for 100 separate trials.  The standard deviation of the rms voltage error is 
rather large (about 2e-4) for larger values of µ1 (the right portion of the graph).  A specific trial from 
these simulations is shown in Figure 5.  Note that minimizing the total current results in alternating 
positive/negative current values.  However, the individual current values are not pushed toward zero 
as occurred in the previous case. 

1x̂

Figure 4 Total Current versus rms voltage error when the 
total current is minimized using regularized inversion. 

Figure 5 Array currents and induced voltages. Location of this 
solution in Fig. 4 indicated by a black star. 

MINIMIZING THE CURRENT “TAIL” 

Finally, it may be desirable for the current to tend toward zero away from the target electrode. 
This can be accomplished by forcing the solution to be smooth except near the target electrode.  A 
smooth solution is encouraged by setting H1 equal to  
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Eq. 9 defines a tri-diagonal matrix, with 2 on the main diagonal and -1 on the first off-diagonals.  
Furthermore the rows of the targeted electrode, plus the row above and below, are set to zero.  The 
effect of setting a row to {-1 2 -1} is to approximate the second derivative of the solution.  Therefore 
the curvature of the solution is minimized.  The effect of the zeroed rows is to allow the solution to 
be un-smooth near the target electrode.  Results from simulations are shown in Figure 6 which shows  

Figure 6 rms Current versus rms voltage error when the 
current tail is minimized using regularized inversion. This 
data occupies the grey box in Figure 2. 

Figure 7 rms Current “tail” versus rms voltage error. 

 

the rms current versus the rms voltage error 
for 0< µ1<1e4 .  Overall the rms current is 
changed very little.  This is because the rms 
current is dominated by the targeted electrode 
and two neighbouring electrode currents.  
Since the weighting matrix is zero for these 
electrodes there is no effect on their values.   
Note that Fig. 6 occupies the grey box region 
of Fig. 2.  Away from the targeted electrode 
there is a significant effect on the current.  
This is demonstrated in Figure 7 which shows 
the rms tail current versus the rms voltage 
error for 0< µ1<1e4.  The rms tail current is 
the rms of all currents except the targeted 
electrode and the two neighbouring electrodes.  
As shown in Figure 7 the tail rms can be 
significantly reduced.  Figure 8 shows a 

specific solution for current tail weighing which is located on Figures 6 and 7 by the green star.  As 
can be seen, all of the currents in the tails are forced toward zero while the central currents are not. 

Figure 5 Array currents and induced voltages. Location of this 
solution in Fig. 4 indicated by a green star. 
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5 .  SOLVING THE INVERSION WITH SINGULAR VALUE DECOMPOSTION 

Another method of quantifying and rectifying problems with poorly conditioned matrices is with 
Singular Value Decomposition.  Applying SVD to the impedance matrix of Equation 1 results in 

TWUΛZ  =            (10) 

where U and W consist of columns of orthonormal vectors and Λ is a diagonal matrix of singular 
values.  Making use of Equation (3) the solution to Equation 1 can be written as 

∑
=

− ==
M

i i1

1 vuwvUWΛi T
ii

T1

λ
        (11) 

If any of the singular values, λi, are small compared to the largest then the matrix is ill 
conditioned.  The result in the solution is that small singular values can have a large influence on the 
solution.  A common method is to set the inverse of small singular values (those less than 1% of the 
maximum for example) equal to zero.  This was applied to the data supplied by Honert and Kelsall 
and the results are shown in Figure 8.  It seems that although the matrix is poorly conditioned 
(conditioning number of 136) the elimination of small singular values does not result in a more 
accurate solution. 

Figure 7 Normalized singular values for Honert and Kelsall 
subject 1 impedance matrix. 

Figure 8 RMS voltage error versus the number of eliminated 
singular values. 

6 .  CONCLUSIONS 

Overall these results show that it may be possible to improve on the approach of Honert and 
Kelsall through the use of regularized inversion.  Assuming that decreasing net current and 
decreasing current “tails” are beneficial result, then this approach offers substantial benefit.  More 
importantly these results show that regularized inversion can be used to significantly alter the 
solution in desirable ways.   Future work should focus on specifying what constitutes a “desirable” 
solution and developing methods for expressing this in regularization terms. 
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