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ABSTRACT

Context. Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. However, modeling
the selection function of such samples is complicated by noncluster members projected along the line of sight (projection effects) and the potential
detection of unvirialized objects (contamination).
Aims. We empirically constrained the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy Survey data with
the redMaPPer algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d).
Methods. For matched clusters, we augmented the redMaPPer catalog with the SPT detection significance. For unmatched objects we used the
SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multiwavelength data,
we explored various physically motivated models to describe the relationship between observed richness and halo mass.
Results. Our analysis reveals a clear preference for models with an additional skewed scatter component associated with projection effects over
a purely log-normal scatter model. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While
dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these
simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated
challenge that requires a combination of simulation and data-driven approaches.
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1. Introduction

As their name suggests, galaxy clusters appear as overdensities
of galaxies. Since it is relatively easy to detect galaxies in optical
wavelengths with wide and deep observations at optical wave-
lengths, finding galaxy clusters by identifying overdensities of
galaxies has not only led to the first cluster catalogs (Abell 1958)
but also to the largest available catalogs available to this date
(e.g., Rykoff et al. 2016; Oguri et al. 2018; McClintock et al.
2019; Maturi et al. 2019, 2023; Aguena et al. 2021). They sur-
pass the size of the galaxy cluster catalog selected in X-ray and
millimeter wavelengths by at least an order of magnitude.

Despite this apparent advantage, cosmological inference
from the number counts of optically selected clusters has proven
more prone to systematic effects (DES Collaboration 2020;
Costanzi et al. 2021), even in the presence of weak gravita-
tional lensing (WL) mass calibration (McClintock et al. 2019;
Bellagamba et al. 2019; Murata et al. 2019; Park et al. 2023;
Sunayama et al. 2024). It has arguably also been surpassed by
the constraining power of WL-calibrated number counts of clus-

? Corresponding author: sebastian.grandis@uibk.ac.at

ter samples selected in X-rays or via the Sunyaev-Zel’dovich
effect (SZe), despite the latter’s smaller sample sizes and lower
WL signal-to-noise ratio (Mantz et al. 2016; Bocquet et al.
2019, 2024a; Ghirardini et al. 2024). These experiments still
critically rely on deep and wide photometric data to confirm X-
ray or SZe cluster candidates, to measure their redshifts (e.g.,
most recently, Klein et al. 2019, 2024; Bleem et al. 2020, 2024;
Hilton et al. 2021; Kluge et al. 2024), and to calibrate their mass
scale via WL (e.g., Bocquet et al. 2024b; Grandis et al. 2024;
Bocquet et al. 2024a; Kleinebreil et al. 2025). The discriminat-
ing factor, thus, is not the use of photometric data in itself but its
use as a primary detection method for galaxy clusters.

Simulation studies (Cohn et al. 2007; Song et al. 2012;
Farahi et al. 2016; Costanzi et al. 2019; Wu et al. 2022;
Salcedo et al. 2024) and spectroscopic analyses (Myles et al.
2021; Werner et al. 2023; Sunayama et al. 2024) have both
highlighted that the selection function of optically detected
cluster samples is quite complicated. Specifically, the mea-
sured overdensity of galaxies includes a noticeable fraction of
galaxies not associated with the main halo. These galaxies are
arranged along the principal halo’s line of sight, but the low
radial resolution of the photometric data makes these galaxies
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indistinguishable from the halo galaxies. It has been speculated
that even unvirialized objects might be detected in extreme
cases. It is by now well understood these projection effects
lead to significant leakage of low-mass halos into optically
selected cluster samples and bias their halo population toward
objects with uncharacteristically high levels of structure along
the line of sight, altering their WL signal and the resulting mass
calibration (Sunayama et al. 2020, 2024; DES Collaboration
2020; Wu et al. 2022; Zhang & Annis 2022; Salcedo et al. 2024;
Zeng et al. 2023).

Complementary to simulation-based and spectroscopic
approaches, optically selected clusters have been exten-
sively compared to X-ray selected and SZe-selected clus-
ters (Rozo & Rykoff 2014; Rozo et al. 2015; Saro et al. 2015;
Hollowood et al. 2019; Farahi et al. 2019; Giles et al. 2022;
Kelly et al. 2024). These works find that optically selected clus-
ters are complete at the high-mass end, where the cluster richness
(number of photometric member galaxies) shows a small scat-
ter with respect to halo mass. Grandis et al. (2020, 2021) then
demonstrated how the Bayesian population modeling used for
WL-calibrated cluster number counts could constrain a sample’s
selection functions by fitting for the fraction of objects detected
by a survey in another wavelength. This requires that the follow-
up survey have a well-calibrated selection function, a condition
met by the South Pole Telescope (SPT) cluster surveys in light of
their successful cluster number count cosmology (Bocquet et al.
2019, 2024a,b).

The results by Grandis et al. (2021) on the SPT-SZ survey
follow-up of the Dark Energy Survey (DES) year 1 optically
selected clusters did not yield a clear detection of contami-
nation and could not probe the strength of projection effects
directly. Several upgrades motivated us to present here an
updated version of that analysis. Including wide and deeper sur-
vey data has significantly increased the SPT and DES samples
(DES Collaboration 2018; Bleem et al. 2020, 2024). Further-
more, the recent WL-calibrated cluster number count analysis
of SPT-selected clusters with DES Y3 WL has significantly
improved our knowledge of the SZe–mass scaling relation
(Bocquet et al. 2024a,b), which encapsulates uncertainties on the
SPT selection function. This enables us to present an updated
version of the SPT follow-up of DES-selected clusters.

This paper is organized as follows. In Section 2 we present
the data sets used and how they were combined. Section 3 out-
lines the analysis methods, which yield the results presented in
Section 4 and discussed in Section 5. We conclude this work
in Section 6, adding supplementary discussion in the Appen-
dices. As a reference cosmology, here we adopt a present-day
matter density ΩM = 0.3, flatness, a cosmological constant Dark
Energy, and a dimensionless Hubble parameter h = 0.7. Halos
are defined as spherical overdensities 200 times the critical den-
sity of the Universe.

2. Data

For this work we used data from the Dark Energy Survey and the
SPT. We describe the two data sets employed and the methods
used to combine them. We finally validate the combination of
the two data sets.

2.1. Clusters selected in Dark Energy Survey

The DES is an approximately 5000 deg2 photometric survey in
the optical bands grizY , carried out at the 4 m Blanco telescope
at the Cerro Tololo Inter-American Observatory (CTIO), Chile,

with the Dark Energy Camera (DECam, Flaugher et al. 2015).
This analysis utilizes the sample of galaxy clusters selected from
the photometric galaxy catalogs from the first three years of
observations (DES Y3, DES Collaboration 2018) covering the
full survey footprint.

The catalog was constructed using the
redMaPPer algorithm, whose application to DES data is
described in Rykoff et al. (2016), McClintock et al. (2019).
Based on the griz colors, the galaxy catalog is filtered based
on the red-sequence colors of spectroscopically confirmed
clusters and a spatial filter following a projected Navarro-
Frenk-White profile (Navarro et al. 1996), which is known to
describe the member galaxy profile of galaxy clusters accurately
(Hennig et al. 2017; Shin et al. 2021). As a result, significant
concentrations of red-sequence galaxies with mutually consis-
tent redshifts are identified as a photometrically selected cluster.
Each object has a very accurate photometric redshift and a sum
of its constituent galaxies’ membership probabilities, called
richness λ̂. We consider here objects with richness λ̂ > 20,
the richness threshold applied in previous cosmological anal-
yses (DES Collaboration 2020; Costanzi et al. 2021; To et al.
2021a,b). The typical DES-Y3 depth yields a photometrically
complete cluster sample in the redshift range 0.2 < z < 0.65.
Fainter cluster members fall below the photometric complete-
ness at higher redshifts, making photometric cluster detection
noisier. We also employ the masking fraction maskfrac. It
records the fraction of the masked area with regard to the
total aperture used for the richness measurement. Our baseline
analysis employs the standard selection 0 ≤ maskfrac < 0.2,
while Appendix A explores different cuts within that range.

Photometric redshifts of optically selected clusters have
proven very accurate and precise. This is largely due to the
color filters selecting early-type galaxies, for which photometric
redshift estimation is comparably easy (Gladders & Yee 2000;
Rozo et al. 2016). Furthermore, cluster member galaxies are,
on average, brighter than field galaxies, facilitating the redshift
estimation. Finally, the cluster redshift is the weighted sum of
at least a dozen individual galaxy redshifts, improving accu-
racy and precision. In addition, the richness has been proven
to be an excellent mass proxy when considering cluster sam-
ples selected via their intracluster medium (ICM), as shown, for
instance, in Saro et al. (2015), Bleem et al. (2020), Grandis et al.
(2020, 2021), Chiu et al. (2022). The performance of richness as
a mass proxy at lower masses and/or richness is poorly under-
stood. So far, it is clear that galaxies in a line of sight dis-
tance of up to ±100 Mpc can contribute to the measured rich-
ness (Cohn et al. 2007; Costanzi et al. 2019; Sunayama et al.
2020, 2024; Myles et al. 2021). This long kernel along the line
of sight has also motivated the hypothesis that some optically
selected clusters are not associated with massive virialized halos
(Song et al. 2012). However, this claim is disputed for richness
λ̂ > 20 objects (Farahi et al. 2016).

2.2. South Pole Telescope observations

The strength of projection effects and the fraction of unviri-
alized objects can be empirically constrained by studying the
ICM emission of redMaPPer selected clusters as a function of
richness and redshift (Grandis et al. 2021). This work uses the
SPT data to trace the ICM. Specifically, we use a catalog of
significant Sunyaev-Zeldovich effect (SZe) detections from the
SPTpol-500d survey data (Bleem et al. 2024), the SPT-SZ data
(Bleem et al. 2015) where no SPTpol-500d data is available,
and the SPTpol-ECS survey (Bleem et al. 2020). In short, CMB
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maps are cleaned of point sources, and the SZe signal is extracted
with a matched filter approach. We refer the reader to the respec-
tive works cited above for details on the data processing and cat-
alog creation. The three SPT surveys are unified into a master
catalog in case of overlaps (Bocquet et al. 2024b). This results
in a catalog of objects with an SZe significance ξ. Following
the recent cosmological work on that sample by Bocquet et al.
(2024a,b), we employ the selection thresholds ξ > 4.25/4.5/5
for the SPTpol-500d/SPT-SZ/SPTpol-ECS surveys, respectively,
which yields samples with a comparable purity in SZe.

We also indirectly use the optical information about the SPT
clusters derived from the optical follow-up of these objects, as
described in more detail in the next section. The multicompo-
nent matched filter cluster confirmation tool (MCMF, Klein et al.
2018, 2019) measures richnesses and photometric redshifts for
SPT clusters by identifying red-sequence galaxies around the
SZe-derived position. These are compared with richnesses and
redshifts derived from random lines of sight to ensure high-
confidence optical confirmation, as discussed in more detail in
Bleem et al. (2020, 2024), Klein et al. (2024).

2.3. SPT value-added DES cluster catalog

Based on the SPT pixel map, we assign to each DES Y3
redMaPPer selected cluster the field scaling γf of the SPT field it
fell in. The SPT field scaling γf parameterizes the rescaling of the
SPT detection significance due to the noise properties, account-
ing for the variations in the SPT observing depth among different
fields (Vanderlinde et al. 2010). If the object falls in no SPT field,
we mark it as not observed by SPT. 8.9% of DES Y3 clusters
fall in area observed by SPTpol-500d, 37.3% in areas observed
by SPT-SZ outside of the pol-500d footprint, 24.8% in SPTpol-
ECS, while 29.1% are unobserved by SPT. The latter objects are
predominantly at Dec > −20 deg. To match the lower redshift
limit of the SPT-selected samples, we only consider clusters with
z > 0.25. This results in 13354 redMaPPer selected clusters with
SPT data for which we can potentially have an SPT signal, span-
ning the redshift range 0.25 < z < 0.85.

We exclude high-redshift SPT clusters (z > 0.9) that have
been securely identified through optical cleaning. These clusters
might randomly align with redMaPPer objects. Secure high-
redshift clusters are those that have been selected for the cos-
mological analysis by Bocquet et al. (2024b), and comprise 289
objects in the parent SPT sample of 1304 entries. Filtering
them out significantly reduces the chance of randomly match-
ing a redMaPPer object with a high-redshift halo. Excluding the
secure high-redshift clusters from the SPT sample leaves us with
1015 SZe detections for the cross-matching with redMaPPer
objects. We positionally crossmatch the redMaPPer clusters that
SPT could observe with these SPT detections. Note that we
expressly do not use the SPT internal optical confirmation in
the redshift range 0.25 < z < 0.9. Optical cleaning is based
on the richness computed by the MCMF algorithm, which
assumes the SZe detection’s center. This alternative richness
measurement correlates with the DES Y3 redMaPPer richness.
Modeling incompleteness induced by the optical cleaning as a
function of the DES Y3 redMaPPer richness is thus very com-
plicated. Instead, we keep possible SPT false detections in our
SPT sample. Such false detections have an expected number
density of 0.22 deg−2/0.073 deg−2/0.019 deg−2 for the SPTpol-
500d/-SZ/pol-ECS surveys (Bleem et al. 2015, 2024). These
arise from random fluctuations that pass the SPT detection algo-
rithm. Their distribution follows a Gaussian to high accuracy,
as expected by the Gaussian nature of the noise in CMB maps.

We shall discuss below why we can ignore their presence in this
analysis.

Around each redMaPPer cluster that SPT observes, we
search for the nearest entry in the SPT sample within an aper-
ture corresponding to 0.6Rλ = 0.6(λ̂/100)0.2 h−1 Mpc in the ref-
erence cosmology (see Section 4.3.2 for an extended discussion
on the implications of this choice). At high redshift, where this
aperture spans an angular size smaller than 2 arcmin, we fix the
search radius to that angular extent. The positional query results
in 423 redMaPPer objects matched to an SPT counterpart. 5
have redMaPPer and SPT redshift that does not match. They
are positionally matched to the clusters SPT-CL J0143-4452,
SPT-CL J0202-5401, SPT-CL J0024-6301, SPT-CL J0131-6248,
SPT-CL J0406-4805. They all have two or more significant
optical structures along the line of sight, as revealed by the
SPT optical follow-up (Bleem et al. 2020, 2024; Klein et al.
2024). The positional matches with inconsistent redshift corre-
spond to redMaPPer objects that coincide with secondary opti-
cal structures in the SPT optical follow-up. We interpret this
as blending, with fainter halos being undetectable because of
brighter halos in their line of sight (Section 3.1.2). We find
418 redMaPPer clusters with a significant SZe detection out of
13354 observed by SPT. When limiting ourselves to the range
where redMaPPer is photometrically complete, that is, to z <
0.65, SPT confirms 378 out of 11687 observed clusters.

In the upper panels of Fig. 1, we show their richness–SZe
signal distribution, split by the SPT survey in which they were
observed, with redshift color-coded. The left panel shows the
SPTpol-ECS survey, the central one SPT-SZ and the right one
SPTpol-500d. From left to right, the distribution of SZe signals
is shifted to smaller richness values, in line with the increase
in SPT survey depth. Similarly, the fraction of SPT detected
redMaPPer clusters as a function of their richness for the dif-
ferent surveys is shown in the lower panels of Fig. 1. All three
confirmation fractions converge to 1 for large richnesses; the
confirmation fraction declines faster for the shallower SZe sur-
veys. We report the upper limit for the probability of matching an
SPT false detection to redMaPPer clusters, which results from
the aforementioned number of false detections times the search
area around the redMaPPer clusters as a gray area. We selected
the aperture size at z = 0.25 to determine an upper limit angu-
lar scale corresponding to 0.6Rλ. The chance of matching to an
SPT false detection is at least an order of magnitude smaller than
the measured confirmation fraction. For the SPTpol-ECS survey,
it is so small that it falls outside of the plotting range. For this
analysis, we can thus neglect the possibility that a redMaPPer
cluster is matched to a false SPT detection.

3. Method

This work uses a Bayesian population modeling approach to ana-
lyze the SPT follow-up of DES-Y3 selected clusters. In such
Bayesian frameworks, a stochastic process that generates the
data set D needs to be postulated, called the generative process,
that will inevitably have some unknown parameters p, referred
to as model parameters. Upon specification of the generative
model, the probability of the data D given a set of model param-
eters p, called likelihood L(D|p), can be readily derived. Using
Bayes’ Theorem, we can find the expression for the posterior,
that is, the probability density function of the model parameters
p, given the data D, reading

p(p|D) =
L(D|p)p(p)
E(D)

, (1)

A15, page 3 of 19



Grandis, S., et al.: A&A, 700, A15 (2025)

5

7

10

20

40

70

SZ
 S

/N
 

SPTpol-ECS

 

 

 

 

 

 
SPT-SZ

 

 

 

 

 

 
SPTpol-500d

30 50 70 100 200
richness 

0.001
0.01
0.1

1

SP
T 

co
nf

. f
ra

c

30 50 70 100 200
richness 

30 50 70 100 200
richness 

z

0.25

0.33

0.41

0.49

0.57

0.65

Fig. 1. Upper panels: Distribution in richness λ̂ and SZe signal-to-noise ξ of the redMaPPer clusters matched by SPT, (color-coded by redshift;
see color bar at right). We split this into three surveys with different SZe detection limits (the gray lines) and varying depth. Lower panels: Fraction
of redMaPPer clusters confirmed by SPT in the three surveys as a function of richness (black points). The gray-shaded area shows the upper limit
of the confirmation fraction due to false SPT detections.

where p(p) is the prior distribution of the model parameters, and
E(D) the evidence. Given that we are working on posterior sam-
ples whose creation requires the log-posterior to be evaluated
only up to constants in the model parameters, the later quantity
is of no interest for this work.

3.1. Cluster population model

Here, we outline the generative model that we use to understand
cluster populations and provide the physical motivation for that
model.

3.1.1. Intrinsic population properties

The basic physical premise of population models for galaxy clus-
ters is that every detected object has a one-to-one association to
a halo, that is, a virialized, collapsed structure with a mass M
at a cosmic epoch parameterized by the redshift z. While some
debate on the optimal mass definition has been going on, as seen
later, the halo mass will be a latent variable of our analysis, mak-
ing our analysis invariant under reparameterizations of the mass.
We only require that the differential number of halos as a func-
tion of mass M and redshift z in our angular survey volume be
computable for each cosmological model considered. In prac-
tice, we use

d2N
d ln Mdz

=
dn

d ln M
dV
dz
, (2)

where dn
d ln M is the halo mass function, as calibrated by cosmolog-

ical simulations, and dV
dz is the differential cosmological volume.

Following Kaiser (1986), we assume that massive halos are
gravity-dominated structures, which results in their observables
displaying tight scaling relations with halo mass, critical den-
sity, and scale factor, as amply demonstrated in observation
(e.g., Mohr & Evrard 1997; Mohr et al. 1999; Pratt et al. 2009;
Mantz et al. 2016; Chiu et al. 2018; Bahar et al. 2022, among

others) and simulations (Bryan & Norman 1998; Angulo et al.
2012; Farahi et al. 2018; Pop et al. 2022). We therefore param-
eterize the mean intrinsic richness λ for a halo of mass M and
redshift z as

〈ln λ|M, z〉 = ln Aλ + Bλ ln
(

M
Mpiv

)
+ Cλ ln

(
1 + z

1 + zpiv

)
, (3)

with constant pivots in mass Mpiv = 3 × 1014 h−1 M�, and in
redshift zpiv = 0.6, and with unknown model parameters Aλ,
the amplitude of the scaling relation, representing the richness
of an object with mass Mpiv at redshift zpiv, the mass trend
of the mean richness Bλ, and the redshift trend Cλ. Several
past works have found that this parameterization describes their
data (Saro et al. 2015; Bleem et al. 2020; Grandis et al. 2021;
Bocquet et al. 2024a,b), while some simulation work has sug-
gested a two-component model (Anbajagane et al. 2020).

Analogously to the richness–mass scaling, also the mean
intrinsic SZe signal-to-noise in SPT observations follows a
power-law-like scaling relation, reading

〈ln ζ |M, z〉 = ln(γfASZ) + BSZ ln
(

M
Mpiv

)
+ CSZ ln

(
E(z)

E(zpiv)

)
, (4)

whose unknown parameters are equivalent to those of the
richness–mass relation above, as done in all previous SPT works.
γf denotes the relative depth of the SPT field in question when
compared with the reference field defined in Vanderlinde et al.
(2010). E(z) = H(z)/H0 is the unitless expansion rate at red-
shift z.

Not all halos at a given mass and redshift would have the
same observables, even without instrumental noise effects. This
is due to the inherent heterogeneity of cluster physics and the
plethora of effects that can lead to small deviations from the
mean relation. As these effects are astrophysical and cosmo-
logical, they are a priori unknown, and their magnitude needs
to be empirically determined. Following the established model-
ing choice introduced by Mantz et al. (2010), we parameterize
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the joint distribution of intrinsic noise-free richness λ and SZe
signal-to-noise ratio ζ as

P
([

ln λ
ln ζ

] ∣∣∣∣M, z) = N

([
ln λ
ln ζ

] ∣∣∣∣ [〈ln λ|M, z〉〈ln ζ |M, z〉

]
; C

)
, (5)

where N(x|µ,C) stands for a multivariate normal distribution in
x with mean µ and covariance C. Farahi et al. (2018) explicitly
confirmed the log-normality of this relation for the stellar and
gas mass of massive halos in simulations. As the extent of the
heterogeneity of the cluster population is unknown, the covari-
ance of the intrinsic cluster properties is modeled via free param-
eters as

C =

[
σ2
λ(M) +

max(λ−1,0)
λ2 ρσλ(M)σSZ

ρσλ(M)σSZ σ2
SZ

]
, (6)

where σSZ is the intrinsic scatter of the SZe signal-to-noise, and
σλ(M) is the intrinsic scatter of the richness. The Poissonian
noise of the number of noncentral galaxies supplements the vari-
ance in the richness. The correlation coefficient ρ between the
intrinsic optical and SZe scatter captures a variety of astrophysi-
cal scenarios where objects with uncharacteristically high or low
SZe signals for their mass and redshift also have uncharacteristic
richnesses. As ρ is a free parameter, we stay agnostic about the
astrophysical details of such processes. Given their astrophysical
nature, they are typically hard to model accurately.

The joint distribution of clusters in the space of intrinsic
observables and redshift results from the marginalization of the
halo mass as

d3N
d ln λd ln ζdz

=

∫
d ln M P (ln λ, ln ζ |M, z)

d2N
d ln Mdz

, (7)

which we implement via grid-based numerical integration. Note
how we integrate the halo mass, treating it as a latent variable of
our population model. This expression is invariant under repa-
rameterizations of the mass if the scaling relation parameters are
adjusted to the new mass definition.

3.1.2. Observed population properties

The next step when forward-modeling the cluster population is
to specify the mapping between the noise-free and measured
observables.

Regarding the SZe properties, the prescription is based on
studies of the interplay between the noise in the SZe map and the
matched filter employed for cluster detection (Vanderlinde et al.
2010). The probability of a measured signal-to-noise ξ is mod-
eled as

P(ξ|ζ) = N

(
ξ
∣∣∣∣ √ζ2 + 3, 1

)
Θ(ζ − ζmin), (8)

where the first term describes the effect of running a matched
filter on a noisy map. The signal-to-noise of the matched filter
will naturally have a variance of 1, but the mean is biased by
the filter optimization, leading to a shift away from the noise-
free signal. Θ(ζ − ζmin) is the Heaviside function, which is 1
for ζ > ζmin, and 0 otherwise. Faint halos are undetectable by
SPT, as brighter halos occupy their line of sight. This manifests
as some optically selected clusters being matched to secondary
structures revealed by the optical follow-up of SPT-selected clus-
ters (see Section 2.3). Furthermore, we expect a sharp decline in
the pressure of lower-mass halos, leading to an effective trunca-
tion of the SZe–mass relation. As these effects are complicated
to model from first principles, we let ζmin be a free parameter.
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Fig. 2. Redshift-dependent (color-coded) calibration of the photometric
error on the richness measurement (systematic shift µbkg, first panel, and
statistical scatter σbkg, second panel), the strength of projection effects
τ (third panel), the frequency of projection effects fprj (fourth panel),
the frequency of percolation effects fmsk (fifth panel), and the fractional
increase in richness due to projection effects (last panel) as functions of
richness as calibrated from simulations.

For the optical richness, we know for certain that the pho-
tometric noise in the galaxy catalogs and the background sub-
traction lead to a Gaussian noise with richness and redshift-
dependent mean and variance

Pbkg(λ̂|λ, z) = N(λ̂; µbkg(λ, z), σ2
bkg(λ, z)), (9)

as demonstrated by Costanzi et al. (2019). Following that work,
we recalibrate µbkg(λ, z) and σbkg(λ, z) by randomly inject-
ing synthetic objects with richness and redshift (λ, z) into the
DES Y3 data, and re-extracting them to recover λ̂ by run-
ning redMaPPer. For further details, we refer the reader to
Costanzi et al. (2019), which discusses the details of this step in
the context of SDSS. Applying the same procedure to DES-Y3
results in means and standard deviation shown in Fig. 2.

We also consider the possibility that galaxies along the line
of sight boost the observed richness and the masking of low-
richness structures by superposed higher-richness objects. Fol-
lowing Costanzi et al. (2019) this is modeled as

λ̂ = λ + ∆bkg + ∆prj + ∆msk, (10)

where ∆bkg ∼ N(µbkg(λ, z) − λ, σ2
bkg(λ, z)) is the aforementioned

contribution from photometric uncertainties. Masking effects
parameterized via ∆msk are also play a very minor role. They
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occur with probability fmsk(λ, z), which is smaller than 0.1 for
richness λ > 10.

The physically most important contribution is ∆prj. It is the
increment in richness due to including galaxies that are not halo
members in the richness measurement. Their photometric colors,
however, are indistinguishable from those of cluster members
due to their physical proximity along the line of sight. It is well
established in simulation works that this affects galaxies within
a line of sight distance of up to ±100 h−1 Mpc, the typical pho-
tometric uncertainty of red-sequence galaxies1. Costanzi et al.
(2019) found that their simulations are well described by

P(∆prj|λ, z) = (1 − fprj(λ, z))δ(∆prj) + fprj(λ, z)Exp(∆prj|τ(λ, z)),
(11)

with δ(∆prj) being the delta-function, and Exp(∆prj|τ) an expo-
nential distribution with rate parameter τ. The probability
of being affected by projection effects, fprj(λ, z), and their
strength τ(λ, z) are extracted from simulations as described in
Costanzi et al. (2019), and shown in Fig. 2. They find that all
objects with richness λ > 8 are certain to be impacted by pro-
jection effects, as fprj(λ, z) = 1. According to this model, the
expected number of redMaPPer members not associated with
the main halo is given by

〈∆prj|λ, z〉 =
fprj(λ, z)
τ(λ, z)

· (12)

For λ > 5 the ratio between the mean number of projected galax-
ies and the host halos richness decreases gently toward higher
richness, from ∼30% at λ ∼ 5 to less 10% at λ > 200, as shown
in the lowest panel of Fig. 2. As derived in Costanzi et al. (2019,
see their Equation (15)) the distribution Pprj(λ̂|λ, z) takes a com-
plex but analytical form, which we will use here.

The distribution in observed quantities then results from the
integration

d3N
dλ̂dξdz

=

∫
d ln λP(λ̂|λ, z)

∫
d ln ζ P(ξ|ζ)

d3N
d ln λd ln ζdz

· (13)

Given the gentle trends of all the functions above with red-
shift and the excellent precision and accuracy of cluster redshift,
we can ignore photometric redshift uncertainties and treat the
observed redshift as the true redshift, ẑ = z.

3.2. Likelihood of individual clusters

As we are interested in the SPT follow-up of redMaPPer clus-
ters, our generative model should generate SZe signals ξi|λ̂i, zi
conditional upon a cluster richness and redshift. For each cluster
i, the pdf of its SZe signal ξi conditional on richness and redshift
is given by

p(ξi|λ̂i, zi) =

(
d2N
dλ̂dz

∣∣∣∣
λ̂i,zi

)−1
d3N

dλ̂dξdz

∣∣∣∣
ξi,λ̂i,zi

, (14)

where the prefactor normalizes the distribution to integrate to 1
over all possible ξi values.

For objects not detected by SPT, we interpret the lack of
detection as an upper limit on the SZe signal. For such objects,

1 Typical photometric redshift uncertainties of red galaxies are ∆zphot ≈

0.03, which translates in a line of sight distance ∆rphot ≈ c/H(z)∆zphot ≈

90 h−1 Mpc at redshift z = 0.

the SZe signal has to be lower than the SPT selection threshold
ξi,min in the respective SPT survey. Its likelihood then reads

p(ξ < ξi,min|λ̂i, zi) =

(
d2N
dλ̂dz

∣∣∣∣
λ̂i,zi

)−1 ∫ ξi,min

0
dξ

d3N
dλ̂dξdz

∣∣∣∣
λ̂i,zi

. (15)

As already explored by Grandis et al. (2021), we also enter-
tain the possibility that an excess fraction πcont(λ̂, z) of clusters is
not detected by SPT on top of those predicted by our population
model. These would be clusters with excessively low SZe sig-
nals or overdensities of red galaxies not associated with any col-
lapsed object and thus lacking the high-pressure gas that sources
the SZe. Accounting for this possibility, the individual cluster
likelihood reads

Li =
(
1 − πcont(λ̂i, zi)

)
p(ξi|λ̂i, zi), (16)

if detected by SPT or

Li = πcont(λ̂i, zi) +
(
1 − πcont(λ̂i, zi)

)
p(ξ < ξi,min|λ̂i, zi), (17)

if not detected by SPT, as derived by Grandis et al. (2021),
see specifically their Fig. 5. The subscript cont stands for con-
tamination. The total log-likelihood of the SPT follow-up of
redMaPPer clusters then results by summing the log-likelihood
of the individual clusters.

3.3. Model variants

We consider several generative model variants to understand
which model best describes the observed data. These models are
summarized in Table 1.

Plain. In this baseline model, we set the intrinsic richness
scatter to a constant σλ(M) = σλ, consider only photomet-
ric uncertainties on the richness Pbkg(λ̂|λ, z), and allow for no
excess nondetections, πcont(λ̂, z) = 0. This model has been
very successful in describing the optical properties of SPT clus-
ters (Saro et al. 2015; Bleem et al. 2020; Grandis et al. 2021;
Bocquet et al. 2024a,b).

Mass-dependent scatter We expand the plain model with a
mass-dependent scatter. As high-mass clusters have shown a
remarkably low scatter between mass and richness, we a priori
reject models that have a mass power-law trend in the richness
scatter, instead opting for a composite model

σλ(M) = σλ

(
1 +

Mbreak

M

)Bσ
, (18)

with free parameters Mbreak and Bσ. For M � Mbreak, this model
has a constant richness scatter, while for M � Mbreak, it shows
a power-law trend σ(M) ∝ M−Bσ . Positive Bσ thus indicates an
increased scatter at low masses, while negative Bσ indicates a
much less likely decrease of the richness scatter at low masses.

Projection effects. In the projection effect model, we consider a
constant richness scatter with mass, no excess nondetections, as
well as the simulation calibrated mapping between intrinsic and
true richness Pprj(λ̂|λ, z), that includes projection and percolation
effects.
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Table 1. Summary of the models we consider, listed by their abbreviations.

Name Intrinsic scatter Projection effects Contamination Free parameters Results

plain
log-normal, constant
+ Poisson term,
Equation (6)

no no Aλ, Bλ, Cλ, σλ

cont same as plain no Equation (20) plain,
bcont

0 , bcont
z , acont

0

cont. consistent with zero,
absent at λ̂ & 100

mass dep
log-normal with mass
trend + Poisson term,
Equation (6,18)

no no plain,
log10 Mbreak, Bσ

constant scatter for
log10 M200,c & 14.2

prj same as plain from simulation
see Fig. 2 no plain preferred over

plain, cont and mass dep

prj+cont same as plain same as prj same as cont plain,
bcont

0 , bcont
z , acont

0
same as cont

prj+ same as plain prj with free amplitude
Equation (19) no plain α0 consistent with prj

prj++ same as plain
prj with free amplitude,
richness & redshift trend
Equation (19)

no plain,
α0, αλ, αz

possible redshift trend in
strength of projection effects

Notes. We report the intrinsic richness model assumed, the treatment of projection effects and contamination, their free parameters of the richness–
mass relation, and the main result we found in each model. All models share the same treatment of photometric scatter, Equation (9).

Extended projection effects. We empirically extend the pro-
jection effects model by altering the strength of the projection
effects as

τext(λ, z) = eα0τ(λ, z)
(

1 + z
1.5

)αz ( λ
30

)αλ
. (19)

The new parameter α0 probes the overall strength of the projec-
tion effects, with the expected number of redMaPPer members
not associated with the main halo 〈∆prj|λ, z〉 ∝ e−α0 (see Equa-
tion (13)). αz is the redshift trend, and αλ the richness trend of
the strength of projection effects. We probe two models: prj+,
where we only vary the amplitude α0 while keeping the richness
and redshift trend fixed (αz,λ = 0), and ‘prj++’ where we fit for
all three extra parameters. These models can be understood as
an empirical validation of the simulation-calibrated projection
effects.

Contamination. Following Grandis et al. (2021), we model the
richness scatter as a constant, utilize only the photometric uncer-
tainties on the observational richness scatter, but we fit for an
excess of nondetection with the following model

πcont(λ̂, z) =
A(λ̂, z)

1 + A(λ̂, z)
and A(λ̂, z) = ebcont

0

( z
0.5

)bcont
z

(
λ̂

30

)acont
0

.

(20)

Here bcont
0 governs the overall amplitude of the excess nondetec-

tions, bcont
z its redshift trend, and acont

0 its richness trend.

Contamination and projection effects. As a final model, we
also consider a model with σλ(M) = σλ, with projection effects
Pprj(λ̂|λ, z), and a model for the excess nondetections, given in
Equation (20).

We shall use the following abbreviations for the models we
consider: prj: projection effects, cont: contamination, mass dep:
mass-dependent scatter, prj+: projection effect with free ampli-
tude, prj++: projection effects with free amplitude, richness and

redshift trends, prj+cont: projection effects with contamination,
as also summarized in Table 1.

3.4. Posterior sampling and priors

We generate posterior samples using emcee
(Foreman-Mackey et al. 2013). Our parameter space is
sufficiently low dimensional (13–16 dimensions) to keep this
sampling method effective. We assess the convergence of the
chains by visual inspection of the trace plots, specifically
requiring that the walkers reach a steady-state solution.

For the priors, we chose two different approaches. We use
informative priors on the SZe–mass scaling relation and on the
cosmological parameters ΩM andσ8 derived from the DES Y3 &
HST WL mass calibration and cosmological number counts fit of
SPT-selected clusters (Bocquet et al. 2024a,b). These priors are
implemented as independent Gaussians with means and standard
deviations given by ΩM = 0.286 ± 0.032, σ8 = 0.817 ± 0.026,
ln ASZ = 0.72 ± 0.09, BSZ = 1.69 ± 0.06, CSZ = 0.50 ± 0.27,
σSZ = 0.20 ± 0.05 and γECS = 1.05 ± 0.03, with the lat-
ter parameterizing the depth of the SPT-ECS field (Bleem et al.
2020). These constraints were derived simultaneously with the
cosmological inference by Bocquet et al. (2024a,b), thus provid-
ing a conservative estimate of our understanding of the SZe–
mass relation and the resulting SPT selection function. We fix
the scaled Hubble constant h = 0.7. The halo mass function, the
cosmological volume, and the scaling relations are phrased in
units with little-h, making the population model independent of
the value of the Hubble constant. To expedite the inference, we
thus do not vary this cosmological parameter.

Our likelihood is independent of WL mass calibration
and cosmological number count likelihood, as demonstrated in
Bocquet et al. (2024b) in the context of other follow-up observ-
ables. Note also that these priors would have to be dropped if
our likelihood was combined with the WL and number counts of
DES-selected clusters, as they are not statistically independent
of the WL and number counts of the SPT-selected clusters.

The parameters of the richness–mass scaling relation, the
contamination model, the SZe line of sight blending, and the

A15, page 7 of 19



Grandis, S., et al.: A&A, 700, A15 (2025)

Table 2. Priors on the model parameters.

Parameter Prior

ΩM
present-day
matter density N(0.286, 0.0322)

h scaled Hubble constant 0.7

σ8
amplitude of
matter fluctuation N(0.817, 0.0262)

SZe–mass scaling
ln ASZ amplitude N(0.72, 0.092)
BSZ mass slope N(1.69, 0.062)
CSZ redshift trend N(0.50, 0.272)
σSZ intrinsic scatter N(0.20, 0.052)

γECS
calibration of
SPT-ECS field depth N(1.05, 0.032)

ζmin
minimal SZe
signal-to-noise U(0.2, 4)

richness–mass scaling
ln Aλ amplitude U(3, 4.5)
Bλ mass slope U(0.7, 1.4)
Cλ redshift trend U(−1.5, 2)
σλ intrinsic scatter U(0.05, 0.4)
multivariante observables–mass relation
ρ correlation coefficient U(−0.8, 0.8)
mass-dependent scatter
log10 Mbreak characteristic mass U(11, 16)
Bσ mass slope U(−0.5, 1.5)
contamination fraction
bcont

0 amplitude U(−5, 2)
bcont

z redshift trend U(−2, 0)
acont

0 richness trend U(−3.5, 0)
extended projection effects model
α0 amplitude U(−5, 2)
αz redshift trend U(−1, 11)
αλ richness trend U(−0.7, 0.7)

Notes. N(µ, v) denotes a Gaussian distribution with mean µ and vari-
ance v,U(a, b) a uniform distribution in the interval (a, b).

extended projection effects are sampled with flat priors, reported
in Table 2. Where applicable, the ranges of these priors were
expanded after exploratory analyses to fully sample the poste-
rior distribution.

3.5. Model comparison

This work explores seven partially nested models to describe the
same data. We compare these models following the discussions
in Kerscher & Weller (2019). As our likelihood is not Gaussian,
we forego using the chi-squared to test the goodness of fit. Fur-
thermore, Bayesian evidence ratios are proportional to the prior
volume for flat priors. As the latter are chosen without physical
meaning, evidence ratios are avoided. We focus on the following
3 metrics to compare our models:

Likelihood ratio test. Consider the maximum likelihood ln L̂M
for modelM. As a comparison metric for the models A and B,
we use

SmaxL
A,B = −2

(
ln L̂A − ln L̂B

)
, (21)

which compares the probabilities that either best-fit parameters
describe the data. For nested models, it can be directly used to
reject the null hypothesis that the data was generated by model
B in favor of the test hypothesis that model A generated the data
if SA,B is small enough.

Information theoretic approaches. We can also measure how
well the best fit can predict the data by using the Akaike infor-
mation criteria (Akaike 1973, 1981)

AICM = −2 ln L̂M + 2 dim(M), (22)

where dim(M) is the number of model parameters in the model
M. This metric is derived by estimating the relative entropy (also
known as the Kullback-Leibler divergence) between the true dis-
tribution of the data and the data distribution predicted by the
best-fit model.

As a metric, we use the difference between the AICs, SAIC
A,B =

AICA − AICB. This metric penalizes the model with more free
parameters. The preference for fewer parameters expresses the
principle of Ockham’s razor (not including unnecessary extra
parameters).

In the case of complex hierarchical models similar to ours
Spiegelhalter et al. (2002), van der Linde (2012) propose the
Bayesian complexity pD to quantify the number of effective
model parameters, reading

pD,M = −2〈lnLM〉 + 2 ln L̂M, (23)

where 〈·〉 denotes an average over the posterior sample. Gener-
ally, pD,M < dim(M), as not all model parameters are effectively
measured. Using this expression as an Ockham’s razor penalty
yields the deviance information criterion (DIC)

DICM = −2 ln L̂M + 2 pD,M. (24)

We use the difference between the DICs of the two models,
SDIC

A,B = DICA − DICB as a metric that penalizes the number of
parameters less severely.

We interpret the result of the model comparison based on
Jeffrey’s scale, as proposed by Spiegelhalter et al. (2002). Fol-
lowing the discussion in Grandis et al. (2016), we interpret 0 >
SA,B > −2 as ‘insignificant’ evidence for model A, −2 > SA,B >
−5 as ‘positive’ evidence, −5 > SA,B > −10 as ‘strong’ evi-
dence, and −10 > SA,B as ‘decisive’ evidence.

In summary, we will compare models using three metrics:
the difference in maximum likelihood, the difference in Deviance
Information Criterion, and the difference in Akaike Information
Criterion. They differ in how strongly they penalize the introduc-
tion of extra model complexity in the form of free parameters.
The likelihood ratio does not penalize this at all, while the AIC
penalizes this the strongest.

4. Results

This section presents the constraints on the parameters in the
different models we considered. We then perform a model selec-
tion to determine which of the considered models best describes
the data. We also present posterior predictive distributions for
derived quantities in the different models.

4.1. Parameter constraints

4.1.1. Richness–mass relation

The one-dimensional marginal posteriors on the parameters of
the richness–mass relation (amplitude ln Aλ, mass slope Bλ and
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Fig. 3. One-dimensional marginal posteriors on the parameters of the
richness–mass relation (amplitude ln Aλ, mass slope Bλ and redshift
evolution Cλ), as well as the intrinsic scatter in richness σλ and the cor-
relation between the intrinsic SZe and richness scatter ρ in the different
models considered (prj: projection effects; cont: contamination; mass
dep: mass-dependent scatter; prj+: projection effect with free ampli-
tude; prj++: projection effects with free amplitude, richness and red-
shift trends; prj+cont: projection effects with contamination). The stars
denote the median. The darker (faded) line extends from the 16th (2.5th)
to the 84th (97.5th) percentile.

redshift evolution Cλ), and the intrinsic scatter in richness σλ are
shown in Fig. 3. In different colors, we present the posteriors
in the different models we considered. Generally speaking, all
parameters except the correlation coefficient and the cosmologi-
cal parameters are well-measured. For the latter, we recover the
priors. This indicates that our likelihood does not contain direct
cosmological information, as expected. We report the numerical
values for the one-dimensional posterior of the well-measured
parameters in Table 3.

We find that the intrinsic scatter in richness at a given halo
mass is between σλ = 0.199 ± 0.054 when considering an
extended projection effects model with free amplitude, richness,
and redshift trend (prj++) and σλ = 0.256 ± 0.045 when con-
sidering a log-normal scatter model (plain). As expected, the
inferred amount of intrinsic scatter in richness depends on the
details of the optical scatter model. It is generally lower for mod-
els where part of the scatter is absorbed/accounted for by projec-
tion effects or contamination. The inferred values are nonethe-
less mutually consistent at less than 2σ.

We find that the amplitude of the richness–mass scaling rela-
tion is between ln Aλ = 3.710± 0.067 for the model with projec-
tion effects (prj) and ln Aλ = 3.831 ± 0.075 for the model with a
mass-dependent log-normal scatter (mass dep). This corresponds
to a richness between exp〈ln λ|Mpiv, zpiv〉 = 40.85 ± 6.7% and
exp〈ln λ|Mpiv, zpiv〉 = 46.11 ± 7.5% at the pivot mass Mpiv =

3×1014 h−1 M�, and pivot redshift zpiv = 0.6. Differences among
the models are less than 2σ. The correlation ρ between the rich-
ness scatter and the SZe scatter remains unconstrained.

The mass trend of the richness is constrained to be between
Bλ = 0.890 ± 0.056 for the model with only log-normal scatter
(plain) and Bλ = 0.979 ± 0.082 for the model with maximally
extended projection effects (prj++). The inferred values vary by
less than 2σ depending on the model. They are generally consis-
tent with being slightly less than unity.

The redshift evolution of the richness–mass relation is con-
strained to be between Cλ = −0.64± 0.28 in the model with pro-
jection effects (prj) and Cλ = −0.44±0.29 in the model with log-
normal scatter and contamination (cont). A qualitative outlier is

the model in which projection effects have a free amplitude, rich-
ness, and redshift trend (prj++), where we find a positive redshift
trend Cλ = 0.56 ± 0.52. In light of the large uncertainties on
the redshift evolution, this is still statistically consistent with the
value inferred from other models at less than 2σ.

4.1.2. Minimal detectable SZe significance

The minimal intrinsic SZe significance is constrained to be
between ζmin = 1.19 ± 0.46 in the model with contamination
(cont) and ζmin = 1.50± 0.47 in the model with plain log-normal
scatter (plain). The values inferred in different models are mutu-
ally consistent at less than 1σ. We detect a truncation in the SZe
significance to mass relation, that is ζmin > 0, at around 3σ,
depending on the model for the optical scatter. We thus empir-
ically confirm the presence of this effect at a population level,
corroborating our choices to exclude optically selected clusters
matched to secondary structures in the SPT optical follow-up
(see Section 2.3). The constraint we recover is also consistent
with values ζmin = 1 or = 2 that Bocquet et al. (2024b) tested
in the DES and HST WL calibrated SPT cluster number counts.
They provide empirical evidence for the truncation of the SZe
significance to mass relation postulated by previous SPT stud-
ies (Vanderlinde et al. 2010; Bocquet et al. 2015, 2019, 2024a,b;
de Haan et al. 2016).

4.1.3. Contamination fraction

No clear detection of a contamination fraction results from our
fits, both when considering plain log-normal scatter in richness
(cont) and when considering projection effects (prj+cont), as
can be seen in Fig. 4, showing the one- and two-dimensional
marginal contour plots of the posteriors on the parameters of
the contamination fraction. In the model with projection effects,
the amplitude of the contamination fraction is limited to bcont

0 <
−0.71 at 95% credibility. In the model with log-normal scatter,
we only recover the upper limit bcont

0 < 0.01 at 95% credibility.
This indicates that the contamination fraction πcont(z = 0.5, λ̂ =
30) < 0.50 (0.33) in the model with log-normal scatter (with
projection effects). We could not detect a redshift trend in the
contamination fraction. We find a weak constraint on the rich-
ness trend of the contamination fraction acont

0 = −1.74 ± 0.92
(−1.61±0.98) in the model with log-normal scatter (with projec-
tion effects). We can exclude the presence of unvirialized objects
at high richness while we have less constraining power at low
richness, as demonstrated below (see Section 4.3.2).

4.1.4. Extended projection effects

We considered two scenarios within the extended projection
effects modeling (see Equation (19)). In the first, we only consid-
ered a free amplitude α0 for the strength of the projection effects
while keeping the redshift and richness trend as fitted in the sim-
ulations (prj+). We find the lower limit α0 > −0.42 in this case.
This means that the amount of redMaPPer members not associ-
ated with the main halo is, at worst, e0.42 = 1.52 times larger than
in the simulations used for the calibration. Our upper prior range
is α0 = 1.50, corresponding to e−1.50 = 0.22 times weaker pro-
jection effects. As shown by the orange distribution in the upper
left panel of Fig. 5, no constraint on the amplitude of projection
effects besides the lower limit is obtained in this model.

We also consider a model where we additionally fit for
the richness and redshift of the projection effects αλ,z (prj++).
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Table 3. One-dimensional marginal posteriors for the parameters of interest.

Model σλ ln Aλ Bλ Cλ ρ ζmin

prj 0.217± 0.042 3.710± 0.067 0.960± 0.051 −0.64± 0.29 – 1.41± 0.47
plain 0.256± 0.045 3.795± 0.067 0.890± 0.056 −0.51± 0.24 – 1.50± 0.47
cont 0.239± 0.043 3.799± 0.075 0.919± 0.077 −0.44± 0.29 – 1.19± 0.46
mass dep 0.213± 0.045 3.831± 0.075 0.910± 0.056 −0.49± 0.25 – 1.46± 0.45
prj+ 0.233± 0.046 3.781± 0.083 0.924± 0.056 −0.51± 0.26 – 1.46± 0.46
prj++ 0.199± 0.054 3.772± 0.087 0.979± 0.082 0.56± 0.52 – 1.50± 0.51
prj+cont 0.211± 0.045 3.722± 0.073 0.978± 0.054 −0.56± 0.27 – 1.41± 0.46

Notes. We report the results for the parameters of the richness–mass relation (amplitude ln Aλ, mass slope Bλ and redshift evolution Cλ), its scatter
intrinsic scatter σλ and the minimum detectable intrinsic SZe signal-to-noise ζmin, reported via their mean ± their standard deviation. The posterior
of the correlation coefficient ρ between the SZe and richness scatter is unconstrained.
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Fig. 4. One- and two-dimensional marginal posteriors on the parame-
ters of the contamination fraction (amplitude bcont

0 , redshift trend bcont
z

and richness trend acont
0 ) in the different models considered (cont: con-

tamination with log-normal richness–mass scatter; prj+cont: projection
effects with contamination).

We find that the richness trend of the projection effects αλ =
−0.04 ± 0.35 is well compatible with zero. We find the weak
constraint αz = 6.32± 2.16 for the redshift trend. This constraint
is inconsistent with zero redshift evolution at more than 2σ, as
can also be seen in the red contours in Fig. 5. We discuss the
implications of this result below. The amplitude of the projec-
tion effect strength is found to be α0 = 0.12±0.45, when consid-
ering also free redshift and richness trends (prj++). Compared
to the case with frozen richness and redshift trend, our posterior
declines noticeably before hitting the upper prior bound, indi-
cating a clear empirical detection of projection effects. Further-
more, we find that the richness trend of the projection effects αλ
correlates with the mass trend of the richness slope Bλ and that
the redshift trend of the projection effects αz correlates with the
redshift evolution of the richness–mass relation Cλ.

4.1.5. Mass-dependent scatter

We find no detection of a mass-dependent richness scatter, as the
mass trend of the scatter Bσ remains unconstrained, as seen in

0.0
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10
.0
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0.6
0.3
0.0
0.3
0.6

0.0 2.5 5.0 7.5 10
.0 0.6 0.3 0.0 0.3 0.6

prj+
prj++

Fig. 5. In red, the one- and two-dimensional marginal posterior plots for
the parameters, amplitude α0, redshift trend αz, and richness trend αλ,
of the maximally extended projection effects model (prj++). The One-
dimensional posterior for the amplitude parameter α0 is also shown in
orange for the extended projection effects model (prj+); the other two
parameters are set to zero (αλ = αz = 0) in this model.

Fig. 6. Depending on the value of the mass slope, we find dif-
ferent upper limits for the characteristic mass Mbreak, which sets
the transition between a constant scatter and a mass-dependent
scatter. Naturally, for Bσ = 0, Mbreak remains unconstrained,
as Equation (18) becomes trivial. Pronounced mass-dependent
scatter (0.5 < Bσ < 0.7) leads to an upper limit log10 Mbreak <
14.4. Strong mass trend (1.1 < Bσ < 1.3) implies log10 Mbreak <
14.0. We, therefore, conclude that massive clusters are unlikely
to have a mass-dependent richness scatter while being unable to
assess if such trends are present in the group regime (log10 M <
14).

4.2. Model selection

For each of the models we considered, we can compute the max-
imum likelihood, the Deviance Information Criterion, and the
Akaike Information criterion conveniently from a posterior sam-
ple that also reports the likelihood value. We summarize the
numerical values in Table 4.
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Fig. 6. One- and two-dimensional marginal posteriors on the parame-
ters of the mass-dependent scatter (characteristic mass Mbreak, and mass
trend Bσ).

The Bayesian complexity pD crystallizes some of the trends
one could glean from the marginal posterior distribution. The
plain model attains a complexity pD = 4, though, in our visual
assessment, five parameters have been well measured (the four
parameters of the richness–mass relation and the minimal SZe
signal-to-noise). It also remains unclear how 0.4 more param-
eters are well measured in the model considering projection
effects (prj) when compared to the model with log-normal scat-
ter, as the correlations in the posterior in the two models are
visually similar. Allowing for a free contamination fraction typ-
ically increases the Bayesian complexity by one. This reflects
the fact that the richness trend of the contamination fraction
is constrained. When considering the mass-dependent scatter
model, the complexity increases by 1.7 with respect to the plain
model. Indeed, the marginal posterior on the correlation coef-
ficient peaks more in this model, and some constraints on the
mass dependence of the scatter could be extracted. Sampling just
the amplitude of the projection effects leads to no increase in
complexity, as the amplitude parameter remains unconstrained.
When allowing for amplitude, richness, and redshift trends in
the projection effects, we attain the highest complexity (pD =
7.1), as we measure the most parameters. The results from the
Bayesian complexity thus generally reflect the visual inspection
of the two-dimensional marginal plots but do not contribute any
significant quantitative insights on their own.

The comparison of the maximum likelihood, the DIC, and
the AIC is visualized in Fig. 7. Each cell of the panel represents
the difference between the model on the row and the model on
the column. These difference are interpreted using the Jeffrey’s
scales: 0 > SA,B > −2 is ‘insignificant’ evidence for model A,
−2 > SA,B > −5 ‘positive’ evidence, −5 > SA,B > −10 ‘strong’
evidence, and −10 > SA,B ‘decisive’ evidence (see Section 3.5).
We see that models with projection effects are, for the most part,
strongly favored over models without projection effects. This
is a clear empirical indication that the scatter in the richness–

Table 4. Quantities used for the model comparison.

Model dim(M) pD −2 lnL DIC AIC

cont 16 6.5 3050.9 3073.9 3078.9
plain 13 6.3 3051.0 3073.6 3073.0
massdep 15 5.4 3050.9 3071.7 3076.9
prj 13 5.7 3045.0 3066.4 3067.0
prj+ 14 5.8 3043.9 3065.6 3067.9
prj++ 16 8.5 3036.3 3063.3 3064.3
cnt&prj 16 6.9 3042.9 3066.7 3070.9

mass relation deviates from log-normality and shows skewness
induced by projection effects. This skewness can not be absorbed
by assuming a contamination fraction or a mass-dependent but
still log-normal scatter. This is evidenced by the fact that mod-
els with projection effects perform better than the model without
projection effects but with contamination (cont) and the model
without projection effects with mass-dependent scatter (‘mass-
dep’). The best-performing model is the maximally extended
projection effects model (prj++), in which we detected a strong
redshift trend in the number of unassociated redMaPPer mem-
bers that deviated from our simulation-based expectation.

More detailed comparisons can not be drawn in a defini-
tive fashion, as the model comparison values vary from method
to method, showing that the degree to which one wishes to
penalize extra model complexity plays an important role. For
instance, evidence for the maximally extended projection effects
model (prj++) over the baseline simulation-based calibration
of selection effects (prj) varies from ‘strong’ if no penalty for
extra parameters is introduced (left panel) to ‘insignificant’ if we
penalize extra model parameters maximally (right panel). Below,
we shall discuss further physical and methodological arguments
in favor of and against picking the simulation-based projection
effect model over its empirically calibrated counterpart.

Our analysis also shows that models with a contamination
fraction are typically penalized compared to models without
a contamination fraction. The former has more free parame-
ters, namely those parameterizing the contamination fraction.
As these are weakly constrained, they do not increase the good-
ness of the fit (expressed via the maximum likelihood) but are
penalized by Ockham’s razor terms. Nonetheless, the presence
of large amounts of contamination by unvirialized objects can-
not be definitively ruled out.

4.3. Derived properties

This section presents quantities derived from our posterior sam-
ples and discusses the resulting predictions.

4.3.1. Unmatched fraction

The analysis methods used in this work and introduced by
Grandis et al. (2021) set themselves apart from other studies of
the ICM properties of optically selected clusters by the fact that
we explicitly fit for a fraction of unmatched objects. We consider
here the fraction of SPT undetected objects f no

kl in a redshift bin
k and richness bin l. This can be estimated from the data as

f̂ no
kl =

Nno
kl

N tot
kl

with Var
[
f no
kl

]
=

(
N tot

kl − Nno
kl

)
Nno

kl(
N tot

kl

)3 , (25)
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Fig. 7. Model comparison metrics (from left to right: maximum likelihood, deviance information criterion, Akaike information criterion) for the
different models we considered (prj: projection effects, cont: contamination, mass dep: mass-dependent scatter, prj+: projection effect with free
amplitude, prj++: projection effects with free amplitude, richness and redshift trends, prj+cont: projection effects with contamination). Each entry
is the difference between the model in the row and the model in the column. Negative values (in blue) mean that the model in that the row is
preferred.
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Fig. 8. Unmatched fraction of redMaPPer objects as a function of redshift bins. We show as black points the empirical estimate for the fraction
of redMaPPer objects not detected by SPT in redshift panels (columns) and richness bins. We show the posterior predictive distribution of the
fraction of unmatched objects in the best-fit model (prj++, red), and the worst-fit model (plain, gray). The filled area encompasses the 16th and
84th percentile.

where Nno
kl is the number of unmatched objects in the bin kl,

while N tot
kl is the total number2. The resulting summary statistic

is shown in Fig. 8 as black points, with error bars given by the
square root of the variance.

The posterior predictive distribution for the fraction of
unmatched objects is computed by evaluating Equation (17) at
richness λ̂ and redshift z corresponding the bin kl, reading

f no(λ̂, z) = πcont(λ̂, z) +
(
1 − πcont(λ̂, z)

)
p(ξ < ξmin|λ̂, z), (26)

weighted by the solid angle of the different SPT surveys. We
evaluate this expression on samples drawn from the posterior
samples in our different models to generate posterior predictive

2 This estimator can be directly derived from the maximum likeli-
hood solution to the Bernoulli likelihood expressing the probability of
Nno occurrences out of a pool of N tot events with a rate of occurrence
f ∈ [0, 1]: lnL = Nno ln f +

(
N tot − Nno) ln (1 − f ). The estimator is the

maximum in f for this expression, while the variance is given by the
negative inverse second derivatives toward f at the maximum, as cus-
tomary for maximum likelihood estimators. In the limit of Nno → 0, the
estimator converges to f̂ = 0 with variance 1/N tot.

samples. At each richness and for each redshift bin, we plot the
area in the 16th and 84th percentiles of the posterior predictive
in Fig. 8. In red, we plot the model with maximally extended
projection effects, prj++, our best-fitting model according to the
model selection, and gray the worst-fitting model (plain). The
differences between the predictions in the two models are mini-
mal but still redshift-dependent.

4.3.2. Contamination fraction

We use the posteriors on the parameters of the contamination
fraction (amplitude bcont

0 , redshift trend bcont
z and richness trend

acont
0 ) in the model with contamination and log-normal richness–

mass scatter (cont) and in the model with projection effects and
contamination (prj+cont) to predict the posterior predictive dis-
tribution on the contamination fraction πcont(λ̂, z = 0.5). As we
found no constraint on the redshift evolution, we just inspect
this prediction at the pivot redshift z = 0.5. The median (solid
curves) and the 16th and 84th percentile (dashed curves) at each
richness λ̂ are shown in Fig. 9. We see that the resulting upper
limit on the contamination fraction declines rapidly as a function
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Fig. 9. Median (solid curves) and 16th and 84th percentile (dashed
curves) of the contamination fraction πcont(λ̂, z = 0.5) at each richness
in the model with contamination and log-normal richness–mass scatter
(cont, blue) and in the model with projection effects and contamination
(prj+cont, green). We also show the fraction of objects missed due to
our search area as a gray band, as predicted by the mis-centering dis-
tribution of redMaPPer clusters (Filled area is plotted between the 16th
and 84th percentile).

of richness. At low richness values, we can not exclude that
a significant part of the sample is comprised of unvirialized
objects, but our data is also consistent with all objects being
actual halos. We compare the contamination at higher richness
with the expected fraction of unmatched objects derived by con-
fronting our search area radius 0.6Rλ with the mis-centering dis-
tribution of redMaPPer clusters derived by Kelly et al. (2024).
We find that the cumulative probability of a mis-centering larger
than 0.6Rλ is P(Rmis > 0.6Rλ) = 0.0327+0.016

−0.014, shown in Fig. 9
as a gray band. For clusters with richness λ̂ = 20 (λ̂ = 100), we
use the 0.6Rλ search radius up to z ∼ 0.4 (z ∼ 0.6) and a larger
radius of 2 arcmin above that redshift (see Section 2.3). As such,
we would expect to not match high-richness redMaPPer clusters
with ∼3% probability for most of the redshift range we consider.
As unmatched clusters contribute to the contamination fraction
constraint, P(Rmis > 0.6Rλ) provides a useful comparison for
the contamination fraction. Our prediction for the contamination
fraction falls below this limit around richness λ̂ ∼ 100. We thus
infer that no contamination is present at larger richness.

4.3.3. Projection effects

We also derive posterior predictive distributions for the frac-
tional increase in richness due projection effects, which can be
computed as

f!halo(λ, z) =
〈∆prj|λ, z〉

λ
· (27)

As this fraction is proportional to 〈∆prj|λ, z〉, it is inversely pro-
portional to the quantity τ(λ, z). In Fig. 10, we show as cyan
lines the fraction of unassociated members that results from the
simulation calibration. It gently declines from around 30% for
low-richness systems to below 10% for high-richness systems.
It is larger at high redshifts on account of the larger photometric
redshift errors at higher redshifts.

We show as orange dashed lines in Fig. 10 the fractions
below the 84th percentile of the posterior predictive distribu-
tion in the model with a free amplitude for the projection effects
strength. As discussed in Section 4.1, we found a lower limit

on the parameters α0, which translates into an upper limit on
the fraction of unassociated members. The dotted orange lines
show the 97.5th percentile. In this model, our data is consistent
with the simulation calibration. It would, however, also allow for
significantly fewer projection effects, as very small fractions of
unassociated members have large posterior predictive probabili-
ties.

We also predict the fraction of unassociated galaxies for the
maximally extended projection effects model (prj++), in which
we fit for an amplitude and a richness and redshift trend of the
richness. The corresponding posterior predictive distribution is
shown in Fig. 10 in red, with the median as a solid line and the
16th and 84th percentile as dashed lines. The prediction agrees
within 2σ with the simulation calibration. Minor deviations can
be observed for the low-redshift–high-richness regime, where
this model predicts a larger fraction of unassociated redMaPPer
members, and for the high-redshift regime, where a smaller frac-
tion is preferred. This matches with the goodness of fit results
based on the fraction of unmatched objects as a function of
observed richness (see Section 4.3.1). Given a larger (smaller)
fraction of unassociated members, the same observed richness
results in a smaller (larger) intrinsic richness and, thus, in a
smaller (larger) halo mass and predicted SZe signal. Smaller
(larger) predicted SZe increase (decrease) the fraction of SPT-
unmatched objects. Thus, the fraction of unassociated members
and the fraction of unmatched objects correlate. Indeed, in the
low-redshift–high-richness regime, we find that the maximally
extended projection effects model predicts a larger fraction of
unmatched objects compared to the other models we considered.
Similarly, the extended model predicts a smaller unmatched frac-
tion at high redshifts. In summary, the trends in the fraction
of member galaxies not associated with the main halo agree
with the observations we made from the fraction of unmatched
objects.

5. Discussion

We shall discuss several aspects of our results, such as the com-
parison to previous work, the astrophysical interpretation of our
results, its applicability to other optical cluster finders, and,
finally, the implications of this work for cosmological inference
from optically selected clusters.

5.1. Comparison to previous works

The most direct comparison can be drawn to the analysis of
the SPT-SZ follow-up of DES Y1 redMaPPer clusters by
Grandis et al. (2021). That work used a smaller SPT cluster
sample, a smaller DES-redMaPPer sample, and wider pri-
ors on the SZe–mass scaling relation parameters. It was lim-
ited to a richness λ̂ > 40 because of the shallower SZe
data. In total, it used 207 SPT confirmed clusters out of 1005
redMaPPer objects, compared to the 378 SPT confirmations
for 11 687 redMaPPer objects we analyze here. Considering
these limitations, it is unsurprising that its conclusion was much
weaker than the one presented here. Nonetheless, the predictions
that work made on the contamination fraction are consistent with
the ones found here, even though they allow for a larger contam-
ination fraction. Compared to that work, we also use quantitative
model comparison metrics.

For redMaPPer clusters selected in SDSS, Myles et al.
(2021) analyzed the spectroscopic redshift of member galaxies
in the cluster redshift range 0.08 ≤ z ≤ 0.12. When stack-
ing clusters in richness bins, they found that the spectroscopic
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Fig. 10. Posterior predictive distributions for the fraction of redMaPPer members that are not associated with the main halo 〈∆prj〉/λ as a function
of intrinsic richness λ for different redshift (panels). We plot the result of the simulation-based calibration (cyan). The 84th (97.5th) percentiles for
the model with a free amplitude (prj+) are shown as orange, dashed (dotted) lines. The median (full line) and 16th and 84th percentiles (dashed
line) for the model with free amplitude, and the redshift and richness trends (prj++, red) are also shown.

redshift distribution comprised a narrow and a wide compo-
nent. They concluded that the first one was associated with the
galaxies of the halo, while the second one was due to projec-
tion effects. The fractional contribution of the wider compo-
nent matched the simulation prediction by Costanzi et al. (2019).
Stacked analyses of cluster member spectroscopy can determine
the ratio between halo members and unassociated galaxies in
a richness bin. It can not address if the unassociated members
are distributed over all redMaPPer objects, leading to projection
effect, or if those unassociated members comprise a subset of
the objects associated with unvirialized structures. An intrigu-
ing observation window in the latter direction is given by study-
ing the velocity dispersion-richness relation of optically selected
clusters. Wetzell et al. (2022) found an outlier population with
approximately twice the velocity dispersion at a given richness.
The larger velocity dispersion was likely not due to a higher
mass of these systems, as they had generally weaker X-ray sig-
natures than the main population. This corroborates our findings
that projection effects play a significant role in optically selected
clusters while the detection of unvirialized structures can not be
excluded.

Also Costanzi et al. (2021) indirectly concluded that pro-
jection effects play a significant role by combining the num-
ber count of DES Y1 redMaPPer clusters with the SPT-SZ
clusters WL mass calibration as presented by Schrabback et al.
(2018), Dietrich et al. (2019), Bocquet et al. (2019) and their
number counts at high redshift. In that context, the full data-set
could only be self-consistently described using projection effects
instead of a plain log-normal richness scatter, providing another
empirical piece of evidence for projection effects.

5.2. Astrophysical interpretation

This work is principally concerned with understanding the scat-
ter around the richness–mass relation to properly forward model
the mass incompleteness of optically selected cluster samples.
Given the inconclusive comparison results between the model
with a simulation-based calibration of projection effects (prj)
and the one with an extended one (prj++), we also investigate
which of the two models conforms better with our astrophysical
understanding of red galaxies. In the extended model, we find
that the redshift evolution of the richness–mass relation is pos-
itive, Cλ = 0.56 ± 0.52, while that evolution is negative in all
other models. A positive evolution would contradict our under-
standing of galaxy evolution in clusters, as the number of early-

type, red galaxies is expected to increase with lower redshift
(see for instance Hennig et al. 2017, and references therein).
While this trend is weak at the redshifts probed in this work,
a positive redshift trend nonetheless remains puzzling. Given its
very weak significance, we do not see any immediate reason for
concern.

Similarly, it seems astrophysically implausible that projec-
tion effects affect lower-redshift clusters more strongly. The driv-
ing factor for projection effects is the photometric redshift uncer-
tainty of red-sequence galaxies (Costanzi et al. 2019), which is
smaller at low redshifts. An increasing trend toward low red-
shift can be found in the normalization of the galaxy luminosity
function (Lilly et al. 1995; Ilbert et al. 2005; Ramos et al. 2011;
Capozzi et al. 2017). This implies that the density of galaxies
increases to lower redshifts. Our current simulations for pro-
jection effects use the richness–mass relation to paint mem-
ber galaxies on simulated halos, and are not tuned to repro-
duce the redshift trends in the galaxy luminosity function. This
might lead to inaccuracies in the estimated redshift trends of the
projection effects. These speculations underline that an accu-
rate simulation-based calibration of selection effects requires
high fidelity in assigning galaxy properties in simulations. As
any simulation will only reach a finite accuracy, it is method-
ologically prudent to use the extended projection effects model
instead of a model with projection effects fixed to the simulation-
based calibration.

5.3. Applicability to other optical cluster finders

We explored projection effects and contamination in optically
selected cluster samples on a sample constructed with the
redMaPPer algorithm. Our results are thus not quantitatively
applicable to samples constructed with other algorithms. Such
algorithms can be generally split into two categories: red-
sequence-based algorithms, such as redMaPPer, or CAMIRA
(Oguri 2014; Oguri et al. 2018), and cluster finders based on
photometric redshift, such as AMICO (Bellagamba et al. 2018;
Maturi et al. 2019, 2023; Toni et al. 2024), PZWaV (Werner et al.
2023; Thongkham et al. 2024; Doubrawa et al. 2024), or WaZP
(Aguena et al. 2021). In the case of CAMIRA, Murata et al. (2019)
found a complex redshift trend in the scatter of the richness–
mass relation when fitting for the number counts and stacked
WL at fixed cosmology. The scatter is smallest for the redshift
bin 0.4 ≤ z ≤ 0.7, while it is larger at higher and lower redshifts.
While the increase in higher redshifts seems natural, the increase
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in lower redshifts might be due to the increased low-redshift pro-
jection effects we also find.

To the authors’ knowledge, no study of projection effects
has been carried out for photometric redshift-based cluster find-
ers. We hypothesize that they are equally, if not more strongly,
affected by projection effects. The physical reason for projection
effects is the low line of sight resolution of photometric data.
Galaxies with the same photometric redshift might be several
dozen Mpc apart along the line of sight and still be indistinguish-
able from the cluster’s galaxies. Red-sequence galaxies have the
lowest scatter in photometric redshift. All other things being
equal, it thus seems plausible that including non-red-sequence
galaxies thus increases the line of sight kernel width and the
projection effects, on account of their larger photometric redshift
scatter. This amounts to a conjecture that will have to be quan-
titatively proven in future work. The simulation-based methods
presented in Costanzi et al. (2019) and the empirical tests pre-
sented in Grandis et al. (2021) and in this work will also enable
us to understand these effects for photo-z-based cluster detection
methods.

5.4. Implications for cosmology

Understanding projection effects is essential for the cosmolog-
ical exploitation of cluster samples. A crucial effect that needs
to be considered in that context is the ‘Eddington bias’. Its
role in the context of cluster cosmology is well explained by
Mortonson et al. (2011), Appendix C, recently revisited with
attention to the role of correlated scatter by Grandis et al. (2024),
Section 6.3, and also discussed by Norton et al. (2024), who pro-
pose to call it ‘convolution bias’. In short, there are many more
low-mass halos than high-mass halos as the halo mass function
declines rapidly with halo mass. Even in the presence of sym-
metric scatter, it is thus more likely that low-mass halos scatter
up to a given observable value than high-mass halos scatter down
to the same observable values. Conversely, we will find more
up-scattered, low-mass objects at a given observable value than
high-mass, down-scattered ones. This effect can be easily mod-
eled by Bayesian population analyses; see Allen et al. (2011),
Fig. 5 for an illustrative plot. Most cluster cosmological works
adopt this framework in one way or another. As physical pro-
cesses source intrinsic scatter, cluster samples will naturally be
biased toward whatever leads to larger observable values at a
given mass and redshift. In the case of optically selected clus-
ters, projection effects boost the measured richness at a given
mass and redshift. Optically selected samples thus have a dispro-
portionately larger fraction of objects with uncharacteristically
higher structure along the line of sight.

This has been shown to impact their correlation function
and WL signal. Halos in overdense regions are more strongly
biased with regard to the matter density contrast than the aver-
age halo population (To et al. 2021a). Given the preference of
optical clusters for structure along the line of sight, they have
an anisotropic halo-matter correlation function (Sunayama et al.
2020, 2024). These effects can be empirically calibrated by
introducing extra free parameters (To et al. 2021b; Park et al.
2023; Sunayama et al. 2024), generally called ‘optical selec-
tion bias’ (Zhang & Annis 2022; Wu et al. 2022). Introducing
extra parameters will, however, dilute the cosmological con-
straining power of cluster number counts, which relies primarily
on the accuracy and precision of the weak gravitational lens-
ing measurement to determine the observable–mass mapping
(Bocquet et al. 2024a,b; Grandis et al. 2024; Ghirardini et al.
2024).

The strength of the optical selection bias is directly linked
to the strength of the projection effects, as they both result from
the distribution of matter and galaxies in and around massive
halos. They, thus, are inherently affected by astrophysical uncer-
tainties, leading to inaccurate WL mass calibration and signif-
icantly challenging the cosmological exploitation of optically
selected cluster samples. In this context, it has been proposed
to use multiwavelength information and to split the stacked WL
in ICM-detected and undetected objects to constrain the optical
selection bias (Zhou et al. 2024). Full forward modeling of the
galaxy painting procedure has also successfully reproduced the
number counts and stacked WL of DES Y1 redMaPPer selected
clusters, as demonstrated by Salcedo et al. (2024). That work
employed galaxy counts in cylinders as a richness proxy and
used the number counts of objects at fixed Planck cosmology
to establish the mapping between cylindrical galaxy counts and
richness. In summary, projection effects and the possible con-
tamination of optically selected cluster samples pose significant
challenges to their cosmological exploitation via WL calibrated
cluster number counts. As carried out in this work, future clus-
ter cosmological analyses of optically selected clusters will ben-
efit from quantitative cross-calibration with ICM-based cluster
surveys.

6. Conclusions

In this work, we determined the SZe signature of the cluster sam-
ples selected with the redMaPPer algorithm from the DES Y3
data by positional cross-matching with significant SZe detection
in SPT observations. Of the 11687 redMaPPer-selected clusters
in the redshift range 0.25 < z < 0.65 with SPT data available,
SPT confirms 378. If no SZe detection was found, we used the
SPT detection threshold as an upper limit on the SZe signal.

These data were analyzed with a Bayesian population model
introduced in Grandis et al. (2021), which uses the halo mass
function, observable–mass scaling relation for the richness and
intrinsic SZe signal-to-noise, correlated intrinsic scatter models
for the scatter around the mean observable–mass relations, and
SZe measurement noise; the model accounts for the photometric
noise in the optical cluster selection. We expanded on that model
by constraining the minimal detectable SZe significance and by
modeling the mapping between measured and intrinsic richness
with seven different models, summarized in Table 1:

– log-normal richness–mass scatter with no extra assumptions,
plain;

– a mass-dependent log-normal scatter, mass dep;
– log-normal scatter with an added fraction of unvirialized

objects that contaminate the optically selected cluster sam-
ple, cont;

– log-normal richness–mass scatter with a simulation-based
calibration of the contributions of unassociated galax-
ies projected along the line of sight, updated following
Costanzi et al. (2019) to DES Y3, prj;

– log-normal richness–mass scatter with a model where the
amplitude of the projection effects is let free, prj+;

– log-normal richness–mass scatter with a model where the
amplitude, richness and redshift trend of the projection
effects is let free, prj++;

– log-normal richness–mass scatter with a model with
simulation-based projection effects and a contamination
fraction, prj+cont.

Posteriors on the parameters of the richness–mass scaling rela-
tion, the minimal SZe signal-to-noise due to blending, the cor-
relation among SZe and richness scatter, and where applicable
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the extra model parameters of the respective model were sam-
pled using priors on the SZe–mass scaling and scatter derived
by the number counts and WL measurements of SPT-selected
clusters (Bocquet et al. 2024a,b). The resulting model fits were
compared with three different model comparison metrics; their
goodness of fit and their predictions were discussed.

We find the following:
– The minimal detectable SZe signal-to-noise ratio is ζmin ∼

1.4, in excellent agreement with the values 1 and 2 explored
by Bocquet et al. (2024a) in the context of WL calibrated
cluster number counts of SPT-selected clusters.

– The mean richness ranges between exp〈ln λ|Mpiv, zpiv〉 =
39.45 ± 9.1% and exp〈ln λ|Mpiv, zpiv〉 = 45.38 ± 6.8% for
a halo at the pivot mass Mpiv = 3 × 1014 h−1 M�, and pivot
redshift zpiv = 0.6, depending on the model used.

– The slope of the richness–mass relation is consistently
slightly less than unity, while the redshift trend is generally
negative, but consistent with zero.

– The richness scatter ranges from σλ = 0.194±0.056 to σλ =
0.253±0.043 depending on the model, and is unlikely to have
a strong mass trend in the cluster regime (log10 M > 14).

– The contamination fraction is consistent with zero for high
richness (λ̂ > 100), but remains weakly constrained in the
low richness regime.

– The addition of simulation-calibrated projection effects pro-
vides a better description of the data than a plain log-normal
scatter and contamination fraction. However, we detect a red-
shift trend, with stronger projection effects found in the low-
redshift–high-richness regime and fewer projection effects
found in the high-redshift regime when compared to the sim-
ulations.

In summary, we caution against using a calibration of projection
effects from simulations without considering the possible limited
accuracy of such simulations. If possible, the strength of projec-
tion effects should be fitted on the fly from the data together with
other properties of interest.

Our results on the mean observable–mass relation and the
value of its scatter provide tighter constraints and agree with pre-
vious studies (Saro et al. 2015; Bleem et al. 2020; Grandis et al.
2021). The presence of unvirialized structures in the redMaPPer
sample is not favored by the model comparison but cannot be
definitively excluded at low richness. Strong projection effects
are confirmed, as already suggested by spectroscopic studies
(Myles et al. 2021; Wetzell et al. 2022), cosmological number
counts, and WL analyses (Costanzi et al. 2021), though their
quantitative trends with redshift remain uncertain. Future cos-
mological analyses of optically selected clusters will critically
depend on our ability to characterize the impact of projection
effects on the WL signal and the correlation function between
optically selected clusters and the matter field.

Data availability

The SPT catalogs are all online and available at https://pole.
uchicago.edu/public/Publications.html. The DES data
underlying this article cannot be shared publicly as it is propri-
etary to the Dark Energy Survey Collaboration. However, the
DES collaboration is open to external collaboration requests.
Don’t hesitate to contact the corresponding author to initiate
such a request.
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Appendix A: Effect of masking on optical selection

Past comparisons between redMaPPer and SPT selected clus-
ters have highlighted that some SPT selected clusters that are
nominally included in the DES footprint are not matched to
redMaPPer selected objects. Closer inspection of these objects
has revealed that small-scale masking in the photometric data
has made detecting these objects impossible despite the clear
presence of red-sequence galaxies (Bleem et al. 2020, specif-
ically Fig. 9). In calculating the effective survey area, the
redMaPPer algorithm already accounts for the cluster redshift
and position-dependent part of this effect.

Possible richness/mass-dependent trends have not been
explored but could well be expected and lead to a richness-
dependent incompleteness of the redMaPPer sample. This
would primarily affect cosmological inference from cluster num-
ber counts. Our analysis, which normalizes out the number
counts information, should be unaffected in as far as masking is
random and mainly due to bright foreground objects. Nonethe-
less, comparing the distribution in masking fraction maskfrac
of the SPT detected and undetected objects reveals that they are
significantly different (p-value 0.0023 in a two-sample KS test).

We, therefore, explore for which split in masking frac-
tion maskfrac ∈ (0, 0.2) the richness distributions of the
redMaPPer selected clusters with smaller and larger masking
fractions differ the most. The resulting KS-test attains signifi-
cant p-values < 0.001 when splitting at maskfrac ∼ 0.075. The
sample with maskfrac > 0.075 comprises about 10% of the
total sample. We compare the richness distributions of the two
samples in Fig. A.1. The more strongly masked subsample has
significantly more clusters at richness ∼ 100 and a conspicuous
lack of objects at higher richnesses. The alteration of the mask-
ing fraction at high richness explains the difference in mask-
ing fractions between the SPT detection and undetected objects,
as the former are preferentially at high richness. At this stage
of the analysis, further investigations into masking would go
beyond the scope of this work but might nonetheless be neces-
sary for the precision required for the cosmological exploitation
of stage IV optically cluster surveys. Of special concern is that
this effect is richness-dependent and affects the high-richness
regime, which was otherwise considered more robust than the
low-richness regime.
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Fig. A.1. Distribution in richness of the more masked and the less
masked subset of the redMaPPer sample (blue and orange, respec-
tively), as well as the total sample (dashed gray), normalized to the same
number-density. The vertical lines show the richness binning planned
for the WL calibrated cluster number counts analysis.
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