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ABSTRACT 
 

An increasing number of laboratories have the facilities to take high speed 

photographs of the pulsations of microbubbles to a degree not previously possible. 

Together with the advent of ultrasonic contrast agents which are stable over a long 

period, and the use of techniques to locate them within the field of view, these 

experimental utilities enable movies to be made of the pulsation of bubbles with much 

finer spatial and temporal scales. The quantitative analysis of such movies, if it 

occurs, relies on fitting with models that contain several unknowns. This paper 

discusses in a preliminary manner how such movies can be interpreted in a way which 

reduces the reliance on uncertain fits of models to data, given that the movie provides 

basic dynamic information in the form of a time step and a bubble size and shape. If 

the driving acoustic field, including its phase with respect to the movie frames, is 

recorded, then the movie data can be interpreted directly in terms of key bubble 

parameters without fitting. 
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Figure 1. Schematic of the plots that could be obtained from the steady-

state maps generated if the bubble size is determined simultaneously with 

the amplitude and phase of the insonifying field. See text for details. 
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Figure 2. Schematic of the bubbles response in the linear steady state for 

insonification by a pressure field of the form ( ) cosP t A tω= . See text for 

details. 

 

 15

Figure 3.  The frequency dependence of the threshold pressure required to 

generate subharmonic in the electrochemical signal, measured on a single 

air bubble (R0 ~ 2 mm) in an electrolyte which had surface tensions, as 

measured by a DuNouy tensiometer, of 33.5 (□), 48.5 (▲) and 68 (•) 

mN/m adjusted by the addition of Triton X-100. Data from P. R. Birkin, 

Y. E. Watson and T. G. Leighton. 
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1 Introduction 

In some respects, the ever-increasing computing power that is becoming available can 

make models less useful. Whilst enhanced computational facilities undoubtedly bring 

benefits, they also bring disadvantages in that ingenious methods common to 

experimentalists a century ago may be neglected in favour of easier routes. As models 

increase in complexity, it can become a far more attractive proposition to code up 

equations quoted directly from other authors (or even to adopt the codes programmed 

from another user) than it is to re-derive the equations. This approach sidesteps an 

important process, since such re-derivation would provide the programmer with an 

appreciation of the model’s underlying assumptions and inherent limitations, and 

therefore the degree to which the model is appropriate to the situations to which it is 

being applied. Furthermore, if such models are used to determine unknown 

parameters through fitting or inversion, the sophistication of the model and the result 

of a best fit may hide the fact that, if one of the fixed input values is erroneous, or if 

the physics inherent in the model does not reflect the environment with sufficient 

accuracy, then the result of the fit may be wrong. This is because the best-fit or 

inversion can be adjusting the value of the unknown parameter in a way which 

attempts to account for the erroneous value of the fixed input, or erroneous physics in 

the model [1]. There is a wealth of examples of this from the field of bubble acoustics. 

For example, if acoustic attenuation in the frequency range minf  to maxf  is inverted to 

obtain the bubble size distribution, but the characteristics of that inversion erroneously 

assumes there exist no bubbles with resonances less than minf  or greater than maxf , 

then the estimated bubble numbers may be erroneously augmented to account for any 

attenuation caused by bubbles with resonances less than minf  or greater than maxf . 

Similarly, if the volume velocity V&  of a bubble is assumed to equal 2
04 R Rπ &  instead 

of 24 R Rπ & , then the assumption has been made that the radiating bubble acts as a 

rigid pulsator [2]. As a result, not only is the contribution of the oscillating gas 

pressure to the radiation neglected, but higher order terms (which may be necessary in 

later expansions) have already been neglected.  
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Therefore although increasing computing power makes it more feasible to invert 

models of increasing complexity, and indeed frequently offers a cheaper and quicker 

route to providing an answer than analytical or experimental approaches, there are 

complementary options to such ‘blind’ inversion. The one studied here is found in the 

employment of a more critical assessment of the relationship between the model and 

the experimental observable. Such assessment might provide a more accurate answer, 

or at least provide an indication of the extent to which the given answer might be 

inaccurate. This complementary approach should be a particularly important element 

in student training.  

 

This report provides two examples of how such considerations may be applied in 

bubble acoustics, specifically: determination of the stiffness and dissipation of a 

pulsating bubble; and determination of the ‘true’ value of the surface tension of a gas 

bubble. These two examples were chosen because of the possibilities for observation 

which are opening up through the increasing access to high speed cameras (which are 

producing superb results [3-7]), coupled with the availability of controlled bubbles in 

the form of biomedical ultrasonic contrast agents which, although able to provide a 

controlled population, nevertheless require techniques which can provide estimates of 

key dynamic parameters associated with the gas, the wall, and the fluxes across it.  

 

Just as increased computing power has opened up opportunities for use of 

sophisticated modelling, fitting and inversion, so have advances in data acquisition 

provided remarkable facilities for making direct observations of bubbles to support 

the approaches of this paper. Today high speed imaging at >10 million frames per 

second (fps) is accessible, and cameras capable of 106 fps are available for hire by 

most laboratories in the developed world, with sufficient light sensitivity to image 

fields of view of micrometre order. Furthermore, unless specific measures were taken 

(such as using acoustic or optical radiation forces, or confining the bubbles in a 

vessel, which can in principle affect bubble stability; [8-11]), past photographic 

investigations could be confounded by the low odds of finding a microbubble within 

the field of view. Now there are now common methods for placing and holding long-

lived bubbles (in the form of ultrasonic contrast agents) within that field of view [12]. 

This then opens up the possibility of, for example, viewing the vessel walls not as a 

method of in vitro confinement which regrettably violates the assumption of a bubble 
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in an infinite free field inherent in the theory to which the observation is compared (as 

was the case in the past), but rather of studying the effect on the bubble dynamics of 

the vessel walls themselves, since in vivo the bubbles of interest may well be similarly 

confined [13-22]. 

 

Therefore the facilities for photographing the stable pulsations of microbubbles are 

significantly greater and more widespread than they were in the past.  In the early 

1990s, when megafrexel (106 fps) framing rates were available only to very few 

laboratories [23-26], and whilst in other laboratories flash photography provided some 

spectacular single images, extraordinary conditions had to be contrived to provide 

movies of individual bubbles undergoing pulsation and shape oscillation [27,28], or 

collapse, jetting and fragmentation [24,29-33]. Today, such events can be filmed 

under standard in vitro conditions [34].  Similarly the acquisition of 200 s of data for 

events of 10 ns duration took extraordinary measures [35,36] whilst today the real-

time acquisition of >GB of data is available. For example, today even an inexpensive 

PC can achieve high data transfer rates (e.g. 320 MB/s for a SCSI interface, 375 MB/s 

for a SATA 300 interface). 

 

2 Bubble dynamics in PVt Space: 
visualisation of the stiffness and dissipation 
 

The ubiquitous method of representing bubble pulsation, through modelling or 

measurement (using high speed imaging (see section 1), or the scattering of light [37-

39] or ultrasound [40] etc.), is by plotting the time history of the bubble radius R or 

volume V.  However the passage of time t can also be tracked through the driving 

pressure, as it evolves in time, and therefore it is possible to envisage the volume time 

history of as a projection onto 2D space of a 3D plot of the driving pressure, the 

bubble volume, and the time. However the 2D projection of this onto PV space allows 

the flow of energy to be appreciated [28-44]. This is shown schematically on Figure 

1(a) for (i) the stiffness-controlled regime, (ii) resonance, and (iii) the inertia-

controlled regime. As time progresses a locus of points is mapped out by the pulsation 
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in PV space, and the area enclosed by each loop represents the dP V∫  energy transfer, 

the direction of which following readily from the clockwise or counter-clockwise 

direction by which the loop is mapped out as t increases, allowing for example one to 

distinguish between multi-loop oscillations where the flow of energy is into the 

bubble during one loop and out of the bubble in the other, from those where the flow 

of energy is the same direction for both loops.  Similarly, experimentally measured 

volume time histories can therefore be represented in this way and used to visualise 

energy flow. Net losses can be calculated by a dP V∫  integration1, and if the loops do 

not replicate exactly in each cycle, integration of the area over many loops on the 

steady state, and division by the number N of loops, reduces the end-error in the start 

and end of the integration by a factor of N.  

 

Consider the pulsation shown in Figure 4.35 of reference [45]. Plots of the time 

history of volume from such a figure could be used to show which of several models 

(differing most noticeably by their damping) best predicts the measured oscillation. 

However before assessing the effect of changes to the dissipation in this way, it is best 

first to determine the stiffness, as opposed to obtain it from a fit.  

 

Assume therefore that a record of bubble size time history is made (through high 

speed photography (section 1), Mie scattering [37-39], or envelope modulation of a 

high frequency ultrasonic beam [40] etc.) when it is driven by an applied pressure 

field P(t) which is uniform over the bubble wall at any instant (assume that all the 

wavenumbers k associated with P(t) obey 0 1kR 〈〈 )). It is important that the phase of 

the applied field be recorded in synchrony with the bubble motion. This will require 

experimental practicalities such as keeping far enough from the bubble so that the 

radiated field does not dominate the hydrophone emission, but not so far that a 

significant phase difference is introduced: presumably a record is made in the absence 

of the bubble, and then synchronised to the hydrophone record made in the presence 

of the bubble. As a result, whilst the bubble pulsates under a driving sound field, the 

observer acquires two sets of data: 

                                                 
1  Care needs to be taken on defining losses: If a bubble is very much greater than resonance size, its 
pulsation amplitude is small, but the scattering losses can be large simply because of its size compared 
to the acoustic wavelength.  
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(I) the time history of the driving sound field; and 

(II) the time history of the bubble volume. 

 

 
 

Figure 1. Schematic of the plots that could be obtained from the steady-state maps 
generated if the bubble size is determined simultaneously with the amplitude and 

phase of the insonifying field. See text for details (including discussion of how this 
scheme could fail because of the influence of dynamic terms). 

 

 

The problems is to use these to find various unknowns, including the polytropic index 

(κ ), the surface tension (σ ) and the dissipation. The following subsections explore 

how this problem may be approached. The dynamic problem is examined in Section 

2.2, the analysis being extended to the linear terms in the steady state only. This 

analysis shows the difficulties associated in separating out the polytropic index (κ ) 
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from the surface tension (σ ), since both appear together in linked form through the 

expression for the gas pressure within the bubble. Whilst this analysis can be used to 

obtain estimations, therefore, it is useful first to explore the quasi-static limit, as is 

done in Section 2.2. This regime is important because, if the bubble pulsations are 

such that the dynamical terms of negligible, the quasi-static limit allows the effects of 

the polytropic index (κ ) from the surface tension (σ ) to manifest themselves in 

separate variables, which are amenable to direct observation. These can then be 

translated to values appropriate for other insonification conditions.  

 

2.1  The quasi-static lossless limit 

 

Assume for the moment that the bubble dynamics occur over timescales that allow 

quasi-static approximations to be used. In practice this means that the sound field 

drives the bubbles at much less than the pulsation resonance frequency of the bubble. 

Furthermore assume that there is no dissipation. In this limit, the pressure in the liquid 

at the bubble wall ( Lp ) equals the sum of the static pressure in the liquid ( 0p ) and the 

applied pressure field ( ( )P t ) which, when the Laplace pressure ( ( )1/32 4 / 3p Vσ σ π= ) 

is taken into account, must balance the sum of the gas ( gp ) and vapour pressures ( vp ) 

in the bubble. That is to say that the internal pressure within the bubble is ip  where: 

 

i g v L

L g v

p p p p p

p p p p
σ

σ

= + = + ⇒

= + −
,
 

(1)

and  

 

L 0 ( )p p P t= + .
 

(2)

 

If the gas is ideal with pressure g ( )p t  (taking value g,ep  when  0V V= ), then 

g g,e 0p V p Vκ κ= . An equation of dynamics in terms of bubble volume is useful [2,46-

48] as certain terms (such as the gas pressure) can be expressed in terms of volume 

even if the bubble loses sphericity. Whilst the technique can readily be cast in terms 

of the bubble volume, for convenience the following analysis with use the bubble 
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radius as this is the more usual output from photographic data (and the calculation of 

volumes from this can introduce some numerical errors [2]). The approach can readily 

be adapted for bubbles with shell properties. From (1) and (2): 

 
3 1 3

g v 0 g,e 0 v 0

3 1 3 1 1 3 1
g,e 01

( ) ( ) 2 /

3 ( ) 2 ( ) 2
( )

P t p p p p p R R p p R

P p R R R
R

κ κ
σ

κ κ κ

σ

κ σ ξ σ

−

− − − −
−

= + − − = + − −

∂
⇒ = + = +

∂

,
 

(3)

 

assuming that the surface tension is not a function of the bubble radius ( )R t  (if it 

were to be, this approach could readily be adapted). At first sight it would seem from 

equation (3) that a plot of 1/ ( )P R−∂ ∂  against 1 3R κ−  would, in this quasi-static limit, 

yield the surface tension σ   through the intercept regardless of the value of κ , which 

is yet to be determined. Therefore several curves could be plotted for a number of 

putative values of κ , and all these curves should extrapolate back to a common 

intercept at 2σ . Each curve would have a gradient of 3
g,e 03 p R κξ κ= , and given that a 

putative value of κ was used to derive each, these gradients provide an estimate for  
3

g,e 0p R . 

 

There are however some complexities associated with this simple scheme. In the 

absence of dissipation in steady state, the values of P and R map one-to-one, and the 

locus of points in the PV plane is a single line (which has constant gradient if the 

bubble dynamics are linear, and a changing gradient if not) [28,41-44]. With 

dissipation, a loop of finite area is mapped out and the value of κ  changes during the 

cycle. At least twice in each cycle (more in some circumstances, e.g. during two-

frequency insonification), the value of 1/ ( )P R−∂ ∂  must become zero, and also 

become so large as to undefined. This is demonstrated in Figure 1(c). By plotting the 

pressure against the reciprocal of the bubble radius (Figure 1(b), it is simple to sketch 

out the expected form of the plot of a plot of 1/ ( )P R−∂ ∂  against 1R−  (Figure 1(c)). 

There are clearly features associated with the turning points of the loop (when the 

bubble achieves maximum and minimum size), and whilst they contain valuable 

information, for the purposes of this preliminary analysis the gradients and intercepts 

are more easily interpreted (in terms of ((3))) away from these points (in the same way 
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as the spine of the PV loop can be used to determine the sound speed both during 

linear (when the spine is straight) and nonlinear (when the spine is curved) [41,42]. 

The spines of loops are shown as the red dashed lines in Figures 1(a) and (b). The 

formulation of equations (1)-(3) can be interpreted simply in the absence of 

dissipation, since there is only a single value of 1/ ( )P R−∂ ∂  during the oscillation. 

Recalling that, furthermore, the physics in this subsection assumes quasi-static 

conditions. Both the conditions for low dissipation and quasi-static conditions tend to 

be better met when the bubble is driven at very low frequencies (which would 

produce plots like Figure 1(a)). However at higher frequencies, and where the 

dissipation is greater, the bubble dynamics do not conform with these conditions. 

 

The same issues become compounded differentiating of (3) with respect to 1R−  (a 

more detailed approach need not rely on the assumption that the variation of σ  with 

volume is negligible): 

 
3 22 1

3 1 3 2 2
g,e 0 g,e 01 2 1

0

3 (3 1) ( ) 3 (3 1)
( )

P Rp R R p R
R R

κ
κ κκ κ κ κ

−−
− −

− −

⎛ ⎞∂
= − = − ⎜ ⎟∂ ⎝ ⎠  

(4)

 

and therefore 
2

1 3
g,e 01 2ln (3 2) ln( ) 3 (3 1)

( )
P R p R

R
κκ κ κ−

−

∂
= − + −

∂  

(5)

and 
2 1

2
g,e 01 2 1

0

ln (3 2) ln 3 (3 1)
( )

P R p R
R R

κ κ κ
−

− −

⎛ ⎞∂
= − + −⎜ ⎟∂ ⎝ ⎠  

(6)

 

Simple examination of the equation suggests some useful trends, although (as with 

use of equation (3)) the physics of the situation may make these routes difficult to 

implement. If 2 1 2/ ( )P R−∂ ∂ were to be greater than zero at all times, then plotting 
2 1 2ln( / ( ) )P R−∂ ∂  against 1ln( )R−  would from (3) yield an estimate of κ  through the 

gradient. In principle this could then be used to find the product 3
g,e 0p R κ  from the 

intercept, although in practice this might entail considerable extrapolation.  Therefore 

if a sufficiently robust estimate for 0R  is known (e.g. from the bubble size before the 
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onset of insonification) then plotting 2 1 2ln( / ( ) )P R−∂ ∂  against 1 1
0ln( / )R R− −  might be 

thought of as providing an estimate of the gradient of (3 2)κ −  and thereby make 

available a better-defined intercept of 2
g,e 03 (3 1) p Rκ κ −  , from which the gas pressure 

at equilibrium can be obtained ( g,ep ). 

 

However this simple scheme is not so easy to implement. Dissipation will generate 

negative values of 2 1 2/ ( )P R−∂ ∂  because of the influence of the turning points of the 

loop (Figure 1(d)), such that a simple interpretation of (5) (or (6) if 0R  has been 

estimated with sufficient accuracy from the pre-insonification conditions or from (3)) 

to determine an estimate of κ  must be applied to data away from these points. 

 

Most importantly, the fundamental equations on which this analysis is based pertain to 

static conditions. As such, the scheme presented in this section might be expected to 

work at very low frequencies of insonification, but to become inaccurate when 

dynamical terms (e.g. those related to the bubble wall speed or acceleration) become 

large, as would occur for example at resonance. Therefore whilst the scheme shown in 

Figure 1(i) might work, that shown in Figure 1(ii) would be inaccurate.  

 

Because of this, the following section investigates how the dynamical terms can enter 

into the analysis. 

 

2.2  The dynamic small-amplitude steady-state regime 

 

Incorporation of only viscous losses into the nonlinear equation of dynamics for the 

bubble produces the well-known Rayleigh-Plesset equation ‘in the radius frame’ [2]: 

 
32

0
0 v v 0

0 0

3 1 2 2 4 ( )
2
R R RRR p p p p P t

R R R R

κσ σ η
ρ

⎛ ⎞⎛ ⎞⎛ ⎞+ = + − + − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

& &
&& .

 

(7)

 

where 0R  is the unperturbed bubble radius, where 0ρ  is the unperturbed liquid 

density, η  is the shear viscosity of the liquid, and p∞  is the liquid pressure far from 
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the bubble, which is here assumed to consist of a static pressure 0p  and an applied 

acoustic field ( )P t , such that 0 ( )p p P t∞ = + . As in section 3.1, a polytropic gas law 

has been used to evaluate the liquid pressure at the bubble wall ( Lp ), and use of the 

polytropic index (κ ) adjusts the gas stiffness for reversible heat flow across the 

bubble wall, but does not describe any net thermal losses. The only dissipation present 

in (7) occurs through viscous losses.  

 

This study will now consider the effect of taking a small-amplitude linearised 

expansion of (7). This Appendix gives an alternative linear expansion for the 

Rayleigh-Plesset equation (7) in the steady state linear regime to that shown in section 

3.2, by defining the driving force as 

 

( ) cosP t A tω= ,
 

(8)

 

and then seeking the bubble response: 

 

2 2
0 0( ) cos sin cos( )R t R B t C t R B C tω ω ω= + + = + + +Θ .

 

(9)

 

Differentiation of (9) with respect to time gives:  

 

( ) sin cosR t B t C tω ω ω ω= − +& , 
2 2( ) cos sinR t B t C tω ω ω ω= − −&& .

 

(10)

 

Substitution of these into (7) gives: 
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( )( )
( )

( )

2 2
0

2

3

0 v v
0 0 0

1

0 0 0
0 1

0 0 0

0

cos sin cos sin

3 sin cos
2

2 1 cos sin

2 1 cos sin1

4 sin cos
1 cos sin

cos

R B t C t B t C t

B t C t

B Cp p t t p
R R R

B Ct t
R R R

B t C t B Ct t
R R R

p A t

κ

ω ω ω ω ω ω

ω ω ω ω

σ ω ω

σ ω ω
ρ

η ω ω ω ω
ω ω

ω

−

−

−

− + + +

− +
+

⎛⎛ ⎞⎛ ⎞
⎜ + − + + +⎜ ⎟⎜ ⎟
⎜⎝ ⎠⎝ ⎠
⎜

⎛ ⎞
− + +⎜ ⎟= ⎝ ⎠

− + ⎛ ⎞
− + +⎜ ⎟

⎝ ⎠
− −⎝

⎞
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

.
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Expansion of this, ignoring the DC terms and terms of second order or higher, gives: 

 

( )

( )

2 2
0 0

0 v v
0 0 0

0 0 0 0

0
0

cos sin

2 3 31 cos sin

1 2 1 cos sin

4 sin cos
cos

R B t R C t

B Cp p t t p
R R R

B Ct t
R R R

B t C t
p A t

R

ω ω ω ω

σ κ κω ω

σ ω ω
ρ

η ω ω ω ω
ω

− + =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟+ − − − +⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠⎝ ⎠
⎜ ⎟

⎛ ⎞⎜ ⎟= − − −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟− +
− − −⎜ ⎟⎜ ⎟
⎝ ⎠

.
 

(12)

 

which further simplifies as follows: 

 

( )

( )

2 2
0 0

0 v
0 0 0

0 0 0 0

0

cos sin

2 3 3cos sin

1 2 cos sin

4 sin cos
cos

R B t R C t

B Cp p t t
R R R

B Ct t
R R R

B t C t
A t

R

ω ω ω ω

σ κ κω ω

σ ω ω
ρ

η ω ω ω ω
ω

− + =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟+ − − −⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠⎝ ⎠
⎜ ⎟

⎛ ⎞⎜ ⎟= − − −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟− +
− −⎜ ⎟⎜ ⎟
⎝ ⎠

.
 

(13)

 

It is interesting to consider what the effect on the physics has been of the 

mathematical operation involved in eliminating the DC terms and the terms that are of 
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quadratic order or higher in the expansion which transforms (7) into (13). By 

undertaking this elimination, the following approximations have effectively been 

implemented. The term 23 / 2R&  from (7) has made no finite contribution. The term  

RR&&  has been replaced by 0R R&& . The term 4 /R Rη &  has been replaced by 04 /R Rη & . 

 

The unknowns B and C can now be determined from (13). Equating the cosine terms 

on both side of  (13) gives: 

 

2
0 0 v 2

0 0 0 0 0

1 2 3 2 4B B CR B p p A
R R R R
σ κ σ η ωω

ρ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟− = + − − + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

.
 

(14)

 

which can be rewritten as 

 

2 1
0

1
0 0

2
2 0 0 v2

0 0 0 0 0

4

2 2 3

Aa B a C

a
R

a R p p
R R R

ρ
ηω
ρ

σ σ κω
ρ ρ

+ =

= −

⎛ ⎞⎛ ⎞
= + − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

.
 

(15)

 

It is important to note that reflects the viscous losses, and is a combined term 

incorporating σ  and κ  which reflects the pressure within the bubble gas and the 

pulsation resonance frequency. Equating the sine terms on both side of (13) gives: 

 

2
0 0 v 2

0 0 0 0 0

1 2 3 2 4C C BR C p p
R R R R
σ κ σ η ωω

ρ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟− = + − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

.
 

(16)

 

From (16) 

 

20 0 2
0 0 v2

0 0 0 0 0 1

2 2 3
4

R aB R p p
C R R R a

ρ σ σ κω
ηω ρ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + − + − =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
.
 

(17)
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Substitution of (17) into (15) gives:  

 

2
2 2

0 2 1( )
a AB
a aρ

=
+

.
 

(18)

 

and 

 

1
2 2

0 2 1( )
a AC
a aρ

=
+

.
 

(19)

 

The amplitude of the bubble wall pulsation is   

 

2 2

2 2
0 2 1

2 2
2

0 0 0 v2
0 0 0 0 0 0 0

2 2 3 4

AB C
a a

A

R p p
R R R R

ρ

σ σ κ ηωρ ω
ρ ρ ρ

+ =
+

=
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(20)

 

and the phase relationship from (9) is: 

 

1

2 2 2
0 0 0 v

0 0

4tan /
2 23

aC B
a

R p p
R R

ηω
σ σω ρ κ

Θ = − = − =
⎛ ⎞⎛ ⎞

+ − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(21)

 

This expression is sensible, as it agrees with the physics reasoned out in Figure 2.  

 

Consider when 0ω → , the quasi-static condition which corresponds to the very low-

frequency limit of the stiffness-controlled regime, when the insonification frequency 

is much less than the bubbles resonance (i.e. 00;ω ω ω→ << , where 0ω  is defined 

below in equation (22)). Here, if the driving pressure is a cosine wave (equation (8) 

and Figure 2(b)), then because the bubble will be contracting during the compressive 

half-cycle and expanding during the rarefaction half-cycle of the driving pressure 

field, then the phase angle Θ  in equation (9) will be such that πΘ→ . As a result, 
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tan 0Θ→  as shown in Figure 2(b). This is the outcome predicted by equation (21), 

which is the very low frequency limit tends to, i.e.  

0 0 0 vtan 4 /((2 / ) 3 ( (2 / ) )) 0R p R pηω σ κ σΘ = − + − →  when ( 00;ω ω ω→ << ). 

 

Similarly when ω →∞ , at the high frequency limit of the inertia-controlled regime, 

then the bubble will be expanding during the compressive half-cycle, and contracting 

during the rarefaction half-cycle, of the driving pulse. This condition is shown in 

Figure 2(d), to which equation (9) complies if 0Θ→ . This would mean that 

tan 0Θ→ , and this result is predicted by equation (21), which is this very high 

frequency limit tends to 2
0 0tan 4 /( ) 0Rη ωρΘ = →   when 0( ; )ω ω ω→ ∞ >> . 

 

When the driving frequency is small but finite, then the oscillation is as given by the 

dashed purple line in Figure 2(b). This corresponds to the phase factor Θ  in equation 

(9) being slightly less than π . This would produce a value of tanΘ  which is small 

and negative (Figure 2(d)). This is the outcome predicted by equation (21), which is 

the very low frequency limit tends to  

0 0 0 v 0 v 0tan 4 /((2 / ) 3 ( (2 / ) )) 4 /(3 ( ) (3 1)(2 / ))R p R p p p Rηω σ κ σ ηω κ κ σΘ = − + − = − − + −
which is small and negative (since the smallest value which κ  can take is unity, 

corresponding to isothermal conditions).  

 

Consider when tanΘ  becomes undefined. This occurs when the denominator of (21) 

becomes zero, i.e. when 0ω ω= , where 

 

0 0 v
0 0 0 0 0

1 2 3 2p p
R R R

σ κ σω
ρ ρ

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠  

(22)

 

and shows the condition of resonance, as expected. This allows (21) to be rewritten as 

follows: 

 

( )2 2 2
0 0 0

4tan
R

ηω
ρ ω ω

Θ =
−  

(23)
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which indicates that tanΘ<0 for 00 ω ω< <  (i.e. in the stiffness-controlled regime), 

and tanΘ>0 in the inertia-controlled regime, in agreement with the physics-based 

reasoning used to derive Figure 2. Furthermore, it shows that, at resonance, tanΘ  is 

undefined, which occurs for the condition / 2πΘ = (Figure 2(c)).  

 

 

 
Figure 2. Schematic of the bubbles response in the linear steady state for 

insonification by a pressure field of the form ( ) cosP t A tω= . See text for details. 

 

 

The question remains as to how this phase can be used to determine bubble 

parameters. Key to the method is measurement of the phase of the bubble oscillation 

with respect to the phase of the driving field, just as was introduced for the quasi-

static case described in Section 2.1.  

 

Assume that plots of the bubble radius or volume have been obtained, and plotted 

against the pressure (with the phase relation known), to form plots of the form shown 

in Figure 1(a). The data for these could come from simulation or from high speed 

photography (section 1), Mie scattering [37-39], or envelope modulation of a high 
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frequency ultrasonic beam [40] etc. The value of tanΘ  is readily obtained from the 

gradient of the spine of the plots in Figure 1(a) and (b).  

 

If the phase of the oscillation is monitored, this gives a far more precise way of 

measuring the position of the resonance, since the phase changes so dramatically 

about the resonance. Simple measurement of the resonance frequency on its own, 

however, does not allows identification of  σ  and κ , since both appear as unknowns 

in equation (22). Use can of course be made of the relative sizes of their respective 

terms within the square root of (22), the surface tension term generally being smaller 

for macroscopic bubbles. However all this does is make the resonance frequency 

insensitive to σ , such that it cannot be determined from (22) if this approximation is 

made. Therefore alternative information must be used, as will now be discussed. 

 

Having used the phase to identify the resonance, the amplitude at resonance from (20) 

can be measured, and compared to the predicted amplitude: 

 

2 2

2 2
0 2 1

2 2
2 0

0 0 0 0 v2
0 0 0 0 0 0 0

42 2 3

AB C
a a

A

R p p
R R R R

ρ

ηωσ σ κρ ω
ρ ρ ρ

+ =
+

=
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(24)

 

Here again however it is not possible to uniquely identify σ  and κ  and η , although 

again use can be made of the relative size of the additive terms within the square root. 

 

There are therefore three unknowns, with only two equations. If however the rate of 

change of the phase with respect to the insonification frequency is monitored as the 

frequency varies, the damping is immediately apparent, a fundamental outcome of the 

physics of a damped linear system. It might therefore be assumed that inversion of 

(23) can be applied right across the range of insonification, from very high to very 

low frequencies, to determine the shear viscosity, with particularly sensitivity at 

resonance. Such an approach, however, needs to be treated with caution, because 

although the only source of dissipation in (7) is through viscous losses, in practice 
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there are other sources of loss when a bubble pulsates (associated with acoustic 

radiation losses, thermal losses, and wall effects). Hence the inversion of (23) will 

generate the effective shear viscosity, the value of η  which is augmented to account 

for these other sources of loss as best it can (given that these other sources of loss 

might not readily be described in (7) by a term of the form 4 /R Rη &  [2]). Such an 

effective viscosity is by no means without value. Furthermore, the importance of the 

various damping mechanisms can be determined by adding and subtracting the 

various mechanisms, as included in more sophisticated formulations than that used in 

Section 2.2 [42], and noting the effect on the PVt plot, and comparing this to the 

effective viscosity. Recall that the spine of the plot reflects the stiffness (Figure 1). 

 

If the measured phase response across a wide frequency range is to be exploited, a 

simple way would be to use the measured value for 0ω in (23). However the variation 

of tanΘ  with frequency across a wide frequency range can be used to obtain 

estimates of σ  and κ , since  

 

2
0 0 0 v

0 0

2 3 2
1

tan 4

R p p
R R
σ κ σωρ

ω ω
η

⎛ ⎞
+ − + −⎜ ⎟

⎝ ⎠=
Θ  

(25)

 

Combining the measured amplitude and the measured phase as the frequency varies 

across a range provide another method of estimating this effective viscosity, and the 

combined term incorporating σ  and κ  which reflects the pressure within the bubble 

gas: 

 

( )

2 2

2 2 2 2
0 2 1 2 0 1 2

22
0 0 0 v2
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0
2 2 2

1 0 2 1

1 /

2 2 3 1 tan

1 / 14 1
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a a a a a

A

R p p
R R R

ARA
a a a

ρ ρ

σ σ κρ ω
ρ ρ

ρ
ηω

+ = =
+ +

=
⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − + − + Θ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

−
= =

+ ⎛ ⎞+ ⎜ ⎟Θ⎝ ⎠

 

(26)
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Of course, if the amplitude of oscillation is sufficiently great, which is of particular 

interest around the resonance, then a higher order expansion will allow exploitation of 

the nonlinear variation of the relevant parameters with the driving amplitude A. 

 

Whilst σ  and κ  are still coupled in equations (23)-(26), they provide a route for the 

experimentalist to exploit these relationships through appropriare choice of 

experimental conditions. Options include the choice of quasi-static conditions 

(Section 2.1), or undertaking repeated experiments as 0p  is varied, in order to identify 

σ  and κ  separately.  

 

 

3 Conclusions 

An increasing number of laboratories have access to high speed cameras for studying 

the dynamics of ultrasonic contrast agents, single-bubble sonoluminescence etc.. Mie 

scattering and other techniques have been available for many years. Provided the 

sound field is recorded and synchronised with the movie, such studies provide 

measurements of three dynamic parameters: time, bubble volume, and the driving 

sound field. Study of the evolution of this data in PVt space allows direct 

determination of key bubble parameters, including the polytropic index, the surface 

tension, dissipation, gas stiffness, and the equilibrium conditions. A steady-state linear 

analysis was used to show the extent to which the measured phase angle between the 

driving field and the bubble response might be used to estimate the unknown 

parameter values, and the limitations imposed upon this by the coupling of the 

polytropic index and the surface tension in the expression for the pressure in the 

bubble gas (Section 2.2). To circumvent this restriction, if the bubble motion can be 

measured in conditions where the dynamic terms are negligible, the polytropic inde 

and surface tension may individually be measurable (Section 2.1). 

 

These techniques require measurement of the pulsation and its phase relation to the 

driving field, which is not a simple undertaking if the bubble distorts from spherical to 

such an extent that it becomes difficult to identify the bubble pulsation. The Appendix 
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showed how, in such circumstances, the shape oscillations themselves may be used to 

determine the effective surface tension (which may well differ from the results of 

Langmuir trough measurement). 

 

To illustrate these principles the analyses are presented for free microbubbles, but the 

principles can be extended to account for the presence of a shell. Such an approach 

offers a complementary route to fitting models which contain several unknowns, or to 

inversions where the accuracy of the result is not quantified by the process which 

finds it. 
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4 Appendix: How to find surface tension on a 
real bubble wall if the volume displacements are 
masked by shape oscillations 

 

The main body of this preliminary investigation outlined an approach which might 

provide a complementary route to curve-fitting and, if curve-fitting is to be used, 

gives equations with less inherent uncertainty than the equations of motion usually 

used. The price for this is the restriction that the data be taken in regimes where the 

approximations used in those equations are relevant (e.g. small amplitude linear s 

steady state pulsations of Section 2.2; and, in Section 2.1, quasi-static oscillations).  

Furthermore, it is important to recognise that the presence of finite damping and 

resonances can make some datapoints poorly defined through parts of the oscillatory 

cycle, so that uncritical calculations based on the whole dataset would be unwise. 

 

Key to the approach outlined in Section 2 is the measurement of bubble volume, since 

many of the expressions of radius in the above enter the physics through the bubble 

volume. If however the departure from sphericity is so great as to make such 

determinations difficult from high speed photography, then there are alternative 

techniques. One of these is the topic of this Appendix. 

 

Whilst the pulsation mode (the spherical harmonic perturbations of order n=0) is by 

far the most effective contributor to the far field acoustic field radiated by a bubble, 

the shape oscillations give the greater visual effect, if they are present [49-51]. 

However whilst the n=0 pulsations is always present if there is a driving field, the 

higher orders corresponding to the shape oscillations ( 2n ≥ ) require threshold 

pressures to be exceeded, and the insonification frequency to be within a given band, 

for a bubble of known characteristics (e.g. 0 ,R σ  and the liquid density 0ρ ) to 

undergo a given shape oscillation. If the applied pressure exceeds the threshold of 

many modes, these can all contribute to the surface oscillation, although the initial 

conditions (i.e. an initial distortion by tweezers or a wall) may promote one mode. 

The Faraday wave corresponds to that mode which has the lowest threshold pressure 
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(the frequency of which is close to half that of the bubble pulsation resonance 

frequency), and if the excitation field exceeds that threshold but not that of any other 

mode, then only the Faraday wave and the pulsation motion will occur on the bubble. 

When the bubble is driven exactly at the pulsation resonance frequency, there are two 

shape oscillation modes (with consecutive integer values of n) which could generate 

the Faraday wave, and which mode is chosen depends on whether the frequency is 

increasing the decreasing [52]. In order to be excited, each mode has its own threshold 

amplitude of spherical wall motion [53], CT, given in the small amplitude linear limit 

by: 

 

( )

2

2 2

( 1) 4
2 3 / 2 2( 1/ 2)

n
T

n

a pC
p a n q

− +
=

− + + +  

(A1)

where 
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2 3 2 2
0 0 0 0 0 0

4( 1)( 1)( 2) 2( 2)(2 1) 6( 2), ,n
n n n n n na p q

R R R
σ η η

ρ ω ρ ω ρ ω
⎛ ⎞− + + + + +

= = =⎜ ⎟
⎝ ⎠  

(A2)

 

and the mode natural frequency is: 

 

3
0 0

( 1)( 1)( 2)
n

n n n
R

σω
ρ

− + +
=

 

(A3)

 

Clearly, if the other parameters in (A3) are known, the surface tension on the bubble 

wall can be determined from the observed mode natural frequency; and the natural 

frequency of several modes can be used to reduce uncertainties in those other 

parameters.  In practice, the presence of a higher order mode could make the 

amplitude of the amplitude of the pulsation mode at the threshold difficult to measure 

(although not impossible, for example through analysis of the appropriate spectral 

components from Mie or ultrasonic scatter), in which case this could be calculated 

through application of a simple linear analysis of the form shown in section 2.2 with 

the drive amplitude known. 
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The presence of a threshold pressure for the excitation of a mode provides a powerful 

measurement technique, given the high sensitivities associated with threshold. Whilst 

this paper is primarily aimed at high speed photographic observations, Birkin, 

Leighton and their students did not have access to such a camera, and used an 

electrochemical technique to exploit this threshold in making sensitive measurements 

of surface tension (as well as for bubble growth and dissolution, rectified diffusion 

etc. [54]). In this experiment an air bubble ( 0R  ~ 2 mm) was held under a glass rod 

(although later experiments used rising bubbles [28]) in an aqueous solution 

containing 5 mmol dm-3 potassium ferricyanide (K3[Fe(CN)6] 99.5% A.C.S. Reagent, 

Sigma) in 0.2 mol dm-3 strontium nitrate  (Sr(NO3)2 99% A.C.S. Reagent, Aldrich). A 

25 mµ  diameter Pt microelectrode was held horizontally and level with the bubble 

centre. In the absence of a sound field, the current resulting from reduction of the 

ferricyanide (Fe(CN)6
3- + e- →Fe(CN)6

4-) at the electrode tip is diffusion-limited, 

since a depletion layer builds up around the tip. If the bubble wall pulsates, 

convection at that frequency introduces a current enhancement at the same frequency. 

The onset of the Faraday wave is detected by a subharmonic component in the 

current. In this way, the threshold driving pressure required to excite Faraday waves 

as a function of the frequency of the applied acoustic wave could be plotted (Figure 

3). This allows the effective surface tension on the bubble wall to be measured when 

known amounts of surfactant are added (unwanted surfactants were excluded through 

use of rigorously clean conditions). The results of Figure 3 can readily be compared 

with a suitable model to relate the bubble radius displacement to the applied pressure, 

so that equations (A1)-(A3) can be used to find the in situ surface tension on the 

bubble wall. Measurement of the ring-up time of shape modes would provide an 

alternative route [55]. 
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Figure 3.  The frequency dependence of the threshold pressure required to generate subharmonic in 

the electrochemical signal, measured on a single air bubble (R0 ~ 2 mm) in an electrolyte which 

had surface tensions, as measured by a DuNouy tensiometer, of 33.5 (□), 48.5 (▲) and 68 (•) 

mN/m adjusted by the addition of Triton X-100. Data from P. R. Birkin, Y. E. Watson and T. G. 

Leighton. 
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