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ABSTRACT

An increasing number of laboratories have the facilities to take high speed
photographs of the pulsations of microbubbles to a degree not previously possible.
Together with the advent of ultrasonic contrast agents which are stable over a long
period, and the use of techniques to locate them within the field of view, these
experimental utilities enable movies to be made of the pulsation of bubbles with much
finer spatial and temporal scales. The quantitative analysis of such movies, if it
occurs, relies on fitting with models that contain several unknowns. This paper
discusses in a preliminary manner how such movies can be interpreted in a way which
reduces the reliance on uncertain fits of models to data, given that the movie provides
basic dynamic information in the form of a time step and a bubble size and shape. If
the driving acoustic field, including its phase with respect to the movie frames, is
recorded, then the movie data can be interpreted directly in terms of key bubble

parameters without fitting.



LIST OF FIGURES

Figure Page

Figure 1. Schematic of the plots that could be obtained from the steady- 5
state maps generated if the bubble size is determined simultaneously with

the amplitude and phase of the insonifying field. See text for details.

Figure 2. Schematic of the bubbles response in the linear steady state for 15

insonification by a pressure field of the form P(t) = Acoswt . See text for

details.

Figure 3. The frequency dependence of the threshold pressure required to 23
generate subharmonic in the electrochemical signal, measured on a single

air bubble (Ryp ~ 2 mm) in an electrolyte which had surface tensions, as

measured by a DuNouy tensiometer, of 33.5 (0), 48.5 (A) and 68 (e)

mN/m adjusted by the addition of Triton X-100. Data from P. R. Birkin,

Y. E. Watson and T. G. Leighton.



1 Introduction

In some respects, the ever-increasing computing power that is becoming available can
make models less useful. Whilst enhanced computational facilities undoubtedly bring
benefits, they also bring disadvantages in that ingenious methods common to
experimentalists a century ago may be neglected in favour of easier routes. As models
increase in complexity, it can become a far more attractive proposition to code up
equations quoted directly from other authors (or even to adopt the codes programmed
from another user) than it is to re-derive the equations. This approach sidesteps an
important process, since such re-derivation would provide the programmer with an
appreciation of the model’s underlying assumptions and inherent limitations, and
therefore the degree to which the model is appropriate to the situations to which it is
being applied. Furthermore, if such models are used to determine unknown
parameters through fitting or inversion, the sophistication of the model and the result
of a best fit may hide the fact that, if one of the fixed input values is erroneous, or if
the physics inherent in the model does not reflect the environment with sufficient
accuracy, then the result of the fit may be wrong. This is because the best-fit or
inversion can be adjusting the value of the unknown parameter in a way which
attempts to account for the erroneous value of the fixed input, or erroneous physics in
the model [1]. There is a wealth of examples of this from the field of bubble acoustics.

For example, if acoustic attenuation in the frequency range f . to f__ is inverted to

X

obtain the bubble size distribution, but the characteristics of that inversion erroneously

assumes there exist no bubbles with resonances less than f . or greater than f

max

then the estimated bubble numbers may be erroneously augmented to account for any

attenuation caused by bubbles with resonances less than f . or greater than f__ .
Similarly, if the volume velocity V of a bubble is assumed to equal 47ZR§R instead

of 47R’R, then the assumption has been made that the radiating bubble acts as a

rigid pulsator [2]. As a result, not only is the contribution of the oscillating gas
pressure to the radiation neglected, but higher order terms (which may be necessary in

later expansions) have already been neglected.



Therefore although increasing computing power makes it more feasible to invert
models of increasing complexity, and indeed frequently offers a cheaper and quicker
route to providing an answer than analytical or experimental approaches, there are
complementary options to such ‘blind’ inversion. The one studied here is found in the
employment of a more critical assessment of the relationship between the model and
the experimental observable. Such assessment might provide a more accurate answer,
or at least provide an indication of the extent to which the given answer might be
inaccurate. This complementary approach should be a particularly important element

in student training.

This report provides two examples of how such considerations may be applied in
bubble acoustics, specifically: determination of the stiffness and dissipation of a
pulsating bubble; and determination of the ‘true’ value of the surface tension of a gas
bubble. These two examples were chosen because of the possibilities for observation
which are opening up through the increasing access to high speed cameras (which are
producing superb results [3-7]), coupled with the availability of controlled bubbles in
the form of biomedical ultrasonic contrast agents which, although able to provide a
controlled population, nevertheless require techniques which can provide estimates of

key dynamic parameters associated with the gas, the wall, and the fluxes across it.

Just as increased computing power has opened up opportunities for use of
sophisticated modelling, fitting and inversion, so have advances in data acquisition
provided remarkable facilities for making direct observations of bubbles to support
the approaches of this paper. Today high speed imaging at >10 million frames per
second (fps) is accessible, and cameras capable of 10° fps are available for hire by
most laboratories in the developed world, with sufficient light sensitivity to image
fields of view of micrometre order. Furthermore, unless specific measures were taken
(such as using acoustic or optical radiation forces, or confining the bubbles in a
vessel, which can in principle affect bubble stability; [8-11]), past photographic
investigations could be confounded by the low odds of finding a microbubble within
the field of view. Now there are now common methods for placing and holding long-
lived bubbles (in the form of ultrasonic contrast agents) within that field of view [12].
This then opens up the possibility of, for example, viewing the vessel walls not as a

method of in vitro confinement which regrettably violates the assumption of a bubble

-



in an infinite free field inherent in the theory to which the observation is compared (as
was the case in the past), but rather of studying the effect on the bubble dynamics of
the vessel walls themselves, since in vivo the bubbles of interest may well be similarly

confined [13-22].

Therefore the facilities for photographing the stable pulsations of microbubbles are
significantly greater and more widespread than they were in the past. In the early
1990s, when megafrexel (10° fps) framing rates were available only to very few
laboratories [23-26], and whilst in other laboratories flash photography provided some
spectacular single images, extraordinary conditions had to be contrived to provide
movies of individual bubbles undergoing pulsation and shape oscillation [27,28], or
collapse, jetting and fragmentation [24,29-33]. Today, such events can be filmed
under standard in vitro conditions [34]. Similarly the acquisition of 200 s of data for
events of 10 ns duration took extraordinary measures [35,36] whilst today the real-
time acquisition of >GB of data is available. For example, today even an inexpensive
PC can achieve high data transfer rates (e.g. 320 MB/s for a SCSI interface, 375 MB/s
for a SATA 300 interface).

2 Bubble dynamics in PVt Space:

visualisation of the stiffness and dissipation

The ubiquitous method of representing bubble pulsation, through modelling or
measurement (using high speed imaging (see section 1), or the scattering of light [37-
39] or ultrasound [40] etc.), is by plotting the time history of the bubble radius R or
volume V. However the passage of time t can also be tracked through the driving
pressure, as it evolves in time, and therefore it is possible to envisage the volume time
history of as a projection onto 2D space of a 3D plot of the driving pressure, the
bubble volume, and the time. However the 2D projection of this onto PV space allows
the flow of energy to be appreciated [28-44]. This is shown schematically on Figure
I(a) for (i) the stiffness-controlled regime, (ii) resonance, and (iii) the inertia-

controlled regime. As time progresses a locus of points is mapped out by the pulsation



in PV space, and the area enclosed by each loop represents the j PdV energy transfer,

the direction of which following readily from the clockwise or counter-clockwise
direction by which the loop is mapped out as t increases, allowing for example one to
distinguish between multi-loop oscillations where the flow of energy is into the
bubble during one loop and out of the bubble in the other, from those where the flow
of energy is the same direction for both loops. Similarly, experimentally measured

volume time histories can therefore be represented in this way and used to visualise

energy flow. Net losses can be calculated by a _[ PdV integration', and if the loops do

not replicate exactly in each cycle, integration of the area over many loops on the
steady state, and division by the number N of loops, reduces the end-error in the start

and end of the integration by a factor of N.

Consider the pulsation shown in Figure 4.35 of reference [45]. Plots of the time
history of volume from such a figure could be used to show which of several models
(differing most noticeably by their damping) best predicts the measured oscillation.
However before assessing the effect of changes to the dissipation in this way, it is best

first to determine the stiffness, as opposed to obtain it from a fit.

Assume therefore that a record of bubble size time history is made (through high
speed photography (section 1), Mie scattering [37-39], or envelope modulation of a
high frequency ultrasonic beam [40] etc.) when it is driven by an applied pressure
field P(t) which is uniform over the bubble wall at any instant (assume that all the

wavenumbers K associated with P(t) obey kR,((1)). It is important that the phase of

the applied field be recorded in synchrony with the bubble motion. This will require
experimental practicalities such as keeping far enough from the bubble so that the
radiated field does not dominate the hydrophone emission, but not so far that a
significant phase difference is introduced: presumably a record is made in the absence
of the bubble, and then synchronised to the hydrophone record made in the presence
of the bubble. As a result, whilst the bubble pulsates under a driving sound field, the

observer acquires two sets of data:

! Care needs to be taken on defining losses: If a bubble is very much greater than resonance size, its
pulsation amplitude is small, but the scattering losses can be large simply because of its size compared
to the acoustic wavelength.
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Figure 1. Schematic of the plots that could be obtained from the steady-state maps
generated if the bubble size is determined simultaneously with the amplitude and
phase of the insonifying field. See text for details (including discussion of how this
scheme could fail because of the influence of dynamic terms).

The problems is to use these to find various unknowns, including the polytropic index
(x), the surface tension (o) and the dissipation. The following subsections explore
how this problem may be approached. The dynamic problem is examined in Section
2.2, the analysis being extended to the linear terms in the steady state only. This

analysis shows the difficulties associated in separating out the polytropic index (x )



from the surface tension (o ), since both appear together in linked form through the
expression for the gas pressure within the bubble. Whilst this analysis can be used to
obtain estimations, therefore, it is useful first to explore the quasi-static limit, as is
done in Section 2.2. This regime is important because, if the bubble pulsations are
such that the dynamical terms of negligible, the quasi-static limit allows the effects of
the polytropic index (x) from the surface tension (o) to manifest themselves in
separate variables, which are amenable to direct observation. These can then be

translated to values appropriate for other insonification conditions.

2.1 The quasi-static lossless limit

Assume for the moment that the bubble dynamics occur over timescales that allow
quasi-static approximations to be used. In practice this means that the sound field
drives the bubbles at much less than the pulsation resonance frequency of the bubble.
Furthermore assume that there is no dissipation. In this limit, the pressure in the liquid

at the bubble wall ( p, ) equals the sum of the static pressure in the liquid ( p, ) and the
applied pressure field ( P(t)) which, when the Laplace pressure ( p, =20 (47/3V )]/3 )
is taken into account, must balance the sum of the gas ( p, ) and vapour pressures ( p, )

in the bubble. That is to say that the internal pressure within the bubble is p, where:

Pi=P,+P, =P +P, = (1)
PL=P,+P, - D, ’

and

P =P T P(t) . (2)

If the gas is ideal with pressure p,(t) (taking value p,, when V =V), then

p.V"* =p,V, . An equation of dynamics in terms of bubble volume is useful [2,46-

48] as certain terms (such as the gas pressure) can be expressed in terms of volume
even if the bubble loses sphericity. Whilst the technique can readily be cast in terms

of the bubble volume, for convenience the following analysis with use the bubble

-6-



radius as this is the more usual output from photographic data (and the calculation of
volumes from this can introduce some numerical errors [2]). The approach can readily

be adapted for bubbles with shell properties. From (1) and (2):

P(t)=p,+ P, —Py— P, = PR (R +p,—p,-20/R 3)

ap 3k —1\3x-1 —-1\3x-1
= —=3xp. R*(R +20=¢(R +20
6(R,1) pg,e 0 ( ) 5( )

b

assuming that the surface tension is not a function of the bubble radius R(t) (if it
were to be, this approach could readily be adapted). At first sight it would seem from
equation (3) that a plot of 6P /8(R™") against R'™* would, in this quasi-static limit,
yield the surface tension o through the intercept regardless of the value of x, which
is yet to be determined. Therefore several curves could be plotted for a number of
putative values of x, and all these curves should extrapolate back to a common

intercept at 2o . Each curve would have a gradient of & =3xp,, Ry, and given that a

putative value of x was used to derive each, these gradients provide an estimate for

Pye R .

There are however some complexities associated with this simple scheme. In the
absence of dissipation in steady state, the values of P and R map one-to-one, and the
locus of points in the PV plane is a single line (which has constant gradient if the
bubble dynamics are linear, and a changing gradient if not) [28,41-44]. With
dissipation, a loop of finite area is mapped out and the value of x changes during the
cycle. At least twice in each cycle (more in some circumstances, e.g. during two-
frequency insonification), the value of OP/A(R™) must become zero, and also
become so large as to undefined. This is demonstrated in Figure 1(c). By plotting the
pressure against the reciprocal of the bubble radius (Figure 1(b), it is simple to sketch
out the expected form of the plot of a plot of OP/&(R™") against R™ (Figure 1(c)).
There are clearly features associated with the turning points of the loop (when the
bubble achieves maximum and minimum size), and whilst they contain valuable
information, for the purposes of this preliminary analysis the gradients and intercepts

are more easily interpreted (in terms of ((3))) away from these points (in the same way



as the spine of the PV loop can be used to determine the sound speed both during
linear (when the spine is straight) and nonlinear (when the spine is curved) [41,42].
The spines of loops are shown as the red dashed lines in Figures 1(a) and (b). The
formulation of equations (1)-(3) can be interpreted simply in the absence of
dissipation, since there is only a single value of oP/0(R™") during the oscillation.
Recalling that, furthermore, the physics in this subsection assumes quasi-static
conditions. Both the conditions for low dissipation and quasi-static conditions tend to
be better met when the bubble is driven at very low frequencies (which would
produce plots like Figure 1(a)). However at higher frequencies, and where the

dissipation is greater, the bubble dynamics do not conform with these conditions.

The same issues become compounded differentiating of (3) with respect to R™' (a
more detailed approach need not rely on the assumption that the variation of o with

volume is negligible):

o°P

R )2 (4)
a(R—l )2

=3x(3x -1 p,, RF(R™Y™? =3k(3x - 1) Pye R; (F
0

and therefore

2 5
ln% =Bk -2)In(R™") +3x(3x —1) Pye R~ ®)
and

o' R (6)
lnm = (3K - 2) In (R—OlJ + 3K(3K — 1) pg,e Rg

Simple examination of the equation suggests some useful trends, although (as with

use of equation (3)) the physics of the situation may make these routes difficult to

implement. If °P/8(R™")”* were to be greater than zero at all times, then plotting
In(6°P/8(R™)*) against In(R™") would from (3) yield an estimate of x through the
gradient. In principle this could then be used to find the product pg’eRg" from the

intercept, although in practice this might entail considerable extrapolation. Therefore

if a sufficiently robust estimate for R, is known (e.g. from the bubble size before the



onset of insonification) then plotting In(6°P/d(R™)*) against In(R™'/R;") might be
thought of as providing an estimate of the gradient of (3x—2) and thereby make
available a better-defined intercept of 3x(3x—1)p,, R; , from which the gas pressure

at equilibrium can be obtained ( p,, ).

However this simple scheme is not so easy to implement. Dissipation will generate

negative values of &°P/0(R™")* because of the influence of the turning points of the
loop (Figure 1(d)), such that a simple interpretation of (5) (or (6) if R, has been

estimated with sufficient accuracy from the pre-insonification conditions or from (3))

to determine an estimate of x must be applied to data away from these points.

Most importantly, the fundamental equations on which this analysis is based pertain to
static conditions. As such, the scheme presented in this section might be expected to
work at very low frequencies of insonification, but to become inaccurate when
dynamical terms (e.g. those related to the bubble wall speed or acceleration) become
large, as would occur for example at resonance. Therefore whilst the scheme shown in

Figure 1(i) might work, that shown in Figure 1(ii) would be inaccurate.

Because of this, the following section investigates how the dynamical terms can enter

into the analysis.

2.2 The dynamic small-amplitude steady-state regime

Incorporation of only viscous losses into the nonlinear equation of dynamics for the

bubble produces the well-known Rayleigh-Plesset equation ‘in the radius frame’ [2]:

R " - 7)
R+ 25 =i((po+2—“—pj(&j +pv—2—"—@—po—P(t)J.

2o

where R, is the unperturbed bubble radius, where p, is the unperturbed liquid

density, 77 is the shear viscosity of the liquid, and p_ is the liquid pressure far from

9.



the bubble, which is here assumed to consist of a static pressure p, and an applied
acoustic field P(t), such that p, = p, + P(t). As in section 3.1, a polytropic gas law
has been used to evaluate the liquid pressure at the bubble wall ( p, ), and use of the

polytropic index (x) adjusts the gas stiffness for reversible heat flow across the
bubble wall, but does not describe any net thermal losses. The only dissipation present
in (7) occurs through viscous losses.

This study will now consider the effect of taking a small-amplitude linearised
expansion of (7). This Appendix gives an alternative linear expansion for the
Rayleigh-Plesset equation (7) in the steady state linear regime to that shown in section
3.2, by defining the driving force as

P(t)=Acosat, (8)
and then seeking the bubble response:

R(t)=R, + Bcosat +Csinwt = R, ++/B* +C? cos(wt +®). ©)

Differentiation of (9) with respect to time gives:

R(t) = —Bwsin wt + Cwcos wt , (10)

R(t) = —Bw’ cos wt — Cw’ sin wt .

Substitution of these into (7) gives:

-10-



—(R, + Bcoswt +C sin wt)( Bw* cos wt + Cw” sin wt
0

s 3(-Bwsin ot +Cwcos a)t)2

f}(

20

pO t+t—- pv
- 1+Ec0s a)t+£sina)t
R 0

RO
0(

477(—Ba)sin ot +Cwcos a)t)
RO

1+—cos wt
0

0

—p, — Acos ot

!

(11)

+—sin wt
0

j_l

-3k
o

B C .
+—cos wt + —sin wt

0 0

I

Expansion of this, ignoring the DC terms and terms of second order or higher, gives:

—(ROBa)2 cos wt + R Cw’ sin a)t) =

20

(12)

p0+__ pv

3xB

RO

3xC
cos ot —

&

0

sin a)t} +p,

0

(20

RO

(I—Ecosa)t—gsin ot
0

477(—Ba)sin ot +Cwcos a)t)
RO

0

|

- p, —Acos wt

which further simplifies as follows:

—(ROBa)2 cos wt + R Cw’ sin a)t) =

| |

41 (-Bwsin ot + Carcos ot)
RO

(13)

20

RO

B C .
———cos ot ——sin wt
RO

0

— Acoswt

It is interesting to consider what the effect on the physics has been of the

mathematical operation involved in eliminating the DC terms and the terms that are of

-11-



quadratic order or higher in the expansion which transforms (7) into (13). By

undertaking this elimination, the following approximations have effectively been
implemented. The term 3R?/2 from (7) has made no finite contribution. The term

RR has been replaced by R,R . The term 47R /R has been replaced by 47R /R, .

The unknowns B and C can now be determined from (13). Equating the cosine terms

on both side of (13) gives:

(14)
-R,B’ _ L [ P, +2_O-_ pvj(_ 3’(8] + 2028 _dnCo Al
0 RO RO RO RO
which can be rewritten as
15
azB+alC:—'BL (15)
P
a = 4nw
PR,
, 20 20 3k
a, =R +———| pp+—-D,
PoR; R, PRy

It is important to note that reflects the viscous losses, and is a combined term
incorporating o and x which reflects the pressure within the bubble gas and the

pulsation resonance frequency. Equating the sine terms on both side of (13) gives:

(16)
_RCw’ _ 1 (po L20 pvj(_ 3K‘C) N 20'2C L 4nBo |
Po R, R, Ry R,
From (16)
(17)
B__»R R,@ +L‘2_[po +2_O-_ pvj[ 3K j]:&
C 4new PoRy R, PoRy 8,

-12-



Substitution of (17) into (15) gives:

__ aA (18)
po(a22 + a12)

and

___aA (19)
,00(322 + a12)

The amplitude of the bubble wall pulsation is

A (20)
VB +C = —
,00\135 +a;
A

2 2
N sza[pzapj(wc] (4,7@}
PoR; R, PoRy PRy

and the phase relationship from (9) is:

tan®=-C/B=—2L 4nw 1)

a2 20' 20'
R’ py+—=3K| py+——
( 0@ Py R, (po R, P, }J

This expression is sensible, as it agrees with the physics reasoned out in Figure 2.

Consider when @ — 0, the quasi-static condition which corresponds to the very low-
frequency limit of the stiffness-controlled regime, when the insonification frequency
is much less than the bubbles resonance (i.e. @ = 0;w << ®,, where @, is defined
below in equation (22)). Here, if the driving pressure is a cosine wave (equation (8)
and Figure 2(b)), then because the bubble will be contracting during the compressive
half-cycle and expanding during the rarefaction half-cycle of the driving pressure

field, then the phase angle ® in equation (9) will be such that ® — 7. As a result,

-13-



tan® — 0 as shown in Figure 2(b). This is the outcome predicted by equation (21),

which is the very low frequency limit tends to, ie.

tan® =4nw/((20/R,) - 3x(p, + (2o /R,)—p,)) = 0 when (o = 0; 0 << @,).

Similarly when @ — oo, at the high frequency limit of the inertia-controlled regime,
then the bubble will be expanding during the compressive half-cycle, and contracting
during the rarefaction half-cycle, of the driving pulse. This condition is shown in
Figure 2(d), to which equation (9) complies if ® — 0. This would mean that
tan® — 0, and this result is predicted by equation (21), which is this very high

frequency limit tends to tan ® = 477 /(R;wp,) = 0 when (@ — w0;0 >> @,) .

When the driving frequency is small but finite, then the oscillation is as given by the
dashed purple line in Figure 2(b). This corresponds to the phase factor ® in equation
(9) being slightly less than 7. This would produce a value of tan® which is small
and negative (Figure 2(d)). This is the outcome predicted by equation (21), which is
the very low frequency limit tends to
tan® =4nw/((20/R,) - 3x(p, + 2o /R,)—p,)) =—4no/(3x(p, — p,)+ Bx —1)(20/R,))
which is small and negative (since the smallest value which x can take is unity,

corresponding to isothermal conditions).

Consider when tan ® becomes undefined. This occurs when the denominator of (21)

becomes zero, i.e. when @ = @, , where

o= 2o 2 .
’ ’ R, ' Lo PRy

and shows the condition of resonance, as expected. This allows (21) to be rewritten as

follows:

4nw (23)

tan® = ,OORoz(a)z —a)g)
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which indicates that tan® <0 for 0 <@ < @, (i.e. in the stiffness-controlled regime),
and tan®>0 in the inertia-controlled regime, in agreement with the physics-based
reasoning used to derive Figure 2. Furthermore, it shows that, at resonance, tan® is

undefined, which occurs for the condition ® = 7 /2 (Figure 2(c)).
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Figure 2. Schematic of the bubbles response in the linear steady state for

insonification by a pressure field of the form P(t) = Acos wt . See text for details.

The question remains as to how this phase can be used to determine bubble
parameters. Key to the method is measurement of the phase of the bubble oscillation

with respect to the phase of the driving field, just as was introduced for the quasi-

static case described in Section 2.1.

Assume that plots of the bubble radius or volume have been obtained, and plotted
against the pressure (with the phase relation known), to form plots of the form shown
in Figure 1(a). The data for these could come from simulation or from high speed

photography (section 1), Mie scattering [37-39], or envelope modulation of a high
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frequency ultrasonic beam [40] etc. The value of tan ® is readily obtained from the

gradient of the spine of the plots in Figure 1(a) and (b).

If the phase of the oscillation is monitored, this gives a far more precise way of
measuring the position of the resonance, since the phase changes so dramatically
about the resonance. Simple measurement of the resonance frequency on its own,
however, does not allows identification of o and x, since both appear as unknowns
in equation (22). Use can of course be made of the relative sizes of their respective
terms within the square root of (22), the surface tension term generally being smaller
for macroscopic bubbles. However all this does is make the resonance frequency
insensitive to o, such that it cannot be determined from (22) if this approximation is

made. Therefore alternative information must be used, as will now be discussed.

Having used the phase to identify the resonance, the amplitude at resonance from (20)

can be measured, and compared to the predicted amplitude:

A (24)
VB’ +C? = ——
/00‘\/&22 +a;
A

2 2
20 20 3k dnw,
P Roa’g+z_(po+_pvj[j +(770]
PoR; R, PRy PoRy

Here again however it is not possible to uniquely identify o and x and 77, although

again use can be made of the relative size of the additive terms within the square root.

There are therefore three unknowns, with only two equations. If however the rate of
change of the phase with respect to the insonification frequency is monitored as the
frequency varies, the damping is immediately apparent, a fundamental outcome of the
physics of a damped linear system. It might therefore be assumed that inversion of
(23) can be applied right across the range of insonification, from very high to very
low frequencies, to determine the shear viscosity, with particularly sensitivity at
resonance. Such an approach, however, needs to be treated with caution, because

although the only source of dissipation in (7) is through viscous losses, in practice
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there are other sources of loss when a bubble pulsates (associated with acoustic
radiation losses, thermal losses, and wall effects). Hence the inversion of (23) will

generate the effective shear viscosity, the value of 7 which is augmented to account
for these other sources of loss as best it can (given that these other sources of loss
might not readily be described in (7) by a term of the form 47R/R [2]). Such an

effective viscosity is by no means without value. Furthermore, the importance of the
various damping mechanisms can be determined by adding and subtracting the
various mechanisms, as included in more sophisticated formulations than that used in
Section 2.2 [42], and noting the effect on the PVt plot, and comparing this to the
effective viscosity. Recall that the spine of the plot reflects the stiffness (Figure 1).

If the measured phase response across a wide frequency range is to be exploited, a
simple way would be to use the measured value for @, in (23). However the variation

of tan® with frequency across a wide frequency range can be used to obtain

estimates of o and «, since

) 20 3k 20 (25)
Riopy+————| Po+ 5 — R,
B oR, o R,
tan® 4n

Combining the measured amplitude and the measured phase as the frequency varies
across a range provide another method of estimating this effective viscosity, and the
combined term incorporating o and x which reflects the pressure within the bubble

gas:

(26)

JB*+C* = A = A
,00\]3; +a; 3-2,00\]1"‘3-12 /2,
A

20 20 3k 2
D Ra)2+—(p +—pvl(} 1+(tan®
0( ’ poR(? ’ R PR, ( )

B A B —-AR,
a, p1+as/a 4o 1+( 1 jz
tan ®
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Of course, if the amplitude of oscillation is sufficiently great, which is of particular
interest around the resonance, then a higher order expansion will allow exploitation of

the nonlinear variation of the relevant parameters with the driving amplitude A.

Whilst o and « are still coupled in equations (23)-(26), they provide a route for the
experimentalist to exploit these relationships through appropriare choice of
experimental conditions. Options include the choice of quasi-static conditions

(Section 2.1), or undertaking repeated experiments as p,, is varied, in order to identify

o and x separately.

3 Conclusions

An increasing number of laboratories have access to high speed cameras for studying
the dynamics of ultrasonic contrast agents, single-bubble sonoluminescence etc.. Mie
scattering and other techniques have been available for many years. Provided the
sound field is recorded and synchronised with the movie, such studies provide
measurements of three dynamic parameters: time, bubble volume, and the driving
sound field. Study of the evolution of this data in PVt space allows direct
determination of key bubble parameters, including the polytropic index, the surface
tension, dissipation, gas stiffness, and the equilibrium conditions. A steady-state linear
analysis was used to show the extent to which the measured phase angle between the
driving field and the bubble response might be used to estimate the unknown
parameter values, and the limitations imposed upon this by the coupling of the
polytropic index and the surface tension in the expression for the pressure in the
bubble gas (Section 2.2). To circumvent this restriction, if the bubble motion can be
measured in conditions where the dynamic terms are negligible, the polytropic inde

and surface tension may individually be measurable (Section 2.1).

These techniques require measurement of the pulsation and its phase relation to the
driving field, which is not a simple undertaking if the bubble distorts from spherical to
such an extent that it becomes difficult to identify the bubble pulsation. The Appendix
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showed how, in such circumstances, the shape oscillations themselves may be used to
determine the effective surface tension (which may well differ from the results of

Langmuir trough measurement).

To illustrate these principles the analyses are presented for free microbubbles, but the
principles can be extended to account for the presence of a shell. Such an approach
offers a complementary route to fitting models which contain several unknowns, or to
inversions where the accuracy of the result is not quantified by the process which

finds it.
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4  Appendix: How to find surface tension on a
real bubble wall if the volume displacements are

masked by shape oscillations

The main body of this preliminary investigation outlined an approach which might
provide a complementary route to curve-fitting and, if curve-fitting is to be used,
gives equations with less inherent uncertainty than the equations of motion usually
used. The price for this is the restriction that the data be taken in regimes where the
approximations used in those equations are relevant (e.g. small amplitude linear s
steady state pulsations of Section 2.2; and, in Section 2.1, quasi-static oscillations).
Furthermore, it is important to recognise that the presence of finite damping and
resonances can make some datapoints poorly defined through parts of the oscillatory

cycle, so that uncritical calculations based on the whole dataset would be unwise.

Key to the approach outlined in Section 2 is the measurement of bubble volume, since
many of the expressions of radius in the above enter the physics through the bubble
volume. If however the departure from sphericity is so great as to make such
determinations difficult from high speed photography, then there are alternative

techniques. One of these is the topic of this Appendix.

Whilst the pulsation mode (the spherical harmonic perturbations of order n=0) is by
far the most effective contributor to the far field acoustic field radiated by a bubble,
the shape oscillations give the greater visual effect, if they are present [49-51].
However whilst the n=0 pulsations is always present if there is a driving field, the
higher orders corresponding to the shape oscillations (n>2) require threshold
pressures to be exceeded, and the insonification frequency to be within a given band,
for a bubble of known characteristics (e.g. R,,o and the liquid density p,) to
undergo a given shape oscillation. If the applied pressure exceeds the threshold of
many modes, these can all contribute to the surface oscillation, although the initial
conditions (i.e. an initial distortion by tweezers or a wall) may promote one mode.

The Faraday wave corresponds to that mode which has the lowest threshold pressure
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(the frequency of which is close to half that of the bubble pulsation resonance
frequency), and if the excitation field exceeds that threshold but not that of any other
mode, then only the Faraday wave and the pulsation motion will occur on the bubble.
When the bubble is driven exactly at the pulsation resonance frequency, there are two
shape oscillation modes (with consecutive integer values of n) which could generate
the Faraday wave, and which mode is chosen depends on whether the frequency is
increasing the decreasing [52]. In order to be excited, each mode has its own threshold

amplitude of spherical wall motion [53], Ct, given in the small amplitude linear limit

by:

c - (3,~1)" +4p (A1)
" \(2p-3a,/2+2(+1/2)) +¢
where
2 (A2)
, _Hn-D(+D(n+2o o= (2(n +2)(2n+ 1)77] o 6(n+2)7y
" Po@’R; ’ Po@R; ’ Py@R;
and the mode natural frequency is:
Y \/(n ~D(n+1)(n+2)c (A3)
! PoR;

Clearly, if the other parameters in (A3) are known, the surface tension on the bubble
wall can be determined from the observed mode natural frequency; and the natural
frequency of several modes can be used to reduce uncertainties in those other
parameters. In practice, the presence of a higher order mode could make the
amplitude of the amplitude of the pulsation mode at the threshold difficult to measure
(although not impossible, for example through analysis of the appropriate spectral
components from Mie or ultrasonic scatter), in which case this could be calculated
through application of a simple linear analysis of the form shown in section 2.2 with

the drive amplitude known.
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The presence of a threshold pressure for the excitation of a mode provides a powerful
measurement technique, given the high sensitivities associated with threshold. Whilst
this paper is primarily aimed at high speed photographic observations, Birkin,
Leighton and their students did not have access to such a camera, and used an
electrochemical technique to exploit this threshold in making sensitive measurements
of surface tension (as well as for bubble growth and dissolution, rectified diffusion

etc. [54]). In this experiment an air bubble (R, ~ 2 mm) was held under a glass rod

(although later experiments used rising bubbles [28]) in an aqueous solution
containing 5 mmol dm™ potassium ferricyanide (Ks3[Fe(CN)s] 99.5% A.C.S. Reagent,
Sigma) in 0.2 mol dm™ strontium nitrate (Sr(NOs), 99% A.C.S. Reagent, Aldrich). A

25 um diameter Pt microelectrode was held horizontally and level with the bubble

centre. In the absence of a sound field, the current resulting from reduction of the
ferricyanide (Fe(CN)63 T +e —>Fe(CN)64') at the electrode tip is diffusion-limited,

since a depletion layer builds up around the tip. If the bubble wall pulsates,
convection at that frequency introduces a current enhancement at the same frequency.
The onset of the Faraday wave is detected by a subharmonic component in the
current. In this way, the threshold driving pressure required to excite Faraday waves
as a function of the frequency of the applied acoustic wave could be plotted (Figure
3). This allows the effective surface tension on the bubble wall to be measured when
known amounts of surfactant are added (unwanted surfactants were excluded through
use of rigorously clean conditions). The results of Figure 3 can readily be compared
with a suitable model to relate the bubble radius displacement to the applied pressure,
so that equations (A1)-(A3) can be used to find the in situ surface tension on the
bubble wall. Measurement of the ring-up time of shape modes would provide an

alternative route [55].
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Figure 3. The frequency dependence of the threshold pressure required to generate subharmonic in
the electrochemical signal, measured on a single air bubble (Ry ~ 2 mm) in an electrolyte which
had surface tensions, as measured by a DuNouy tensiometer, of 33.5 (0), 48.5 (A ) and 68 (e)
mN/m adjusted by the addition of Triton X-100. Data from P. R. Birkin, Y. E. Watson and T. G.
Leighton.
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