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Abstract

Machine learning is reshaping gel-based additive manufacturing by enabling accelerated
material design and predictive process optimization. This review provides a comprehensive
overview of recent progress in applying machine learning across gel formulation develop-
ment, printability prediction, and real-time process control. The integration of algorithms
such as neural networks, random forests, and support vector machines allows accurate
modeling of gel properties, including rheology, elasticity, swelling, and viscoelasticity, from
compositional and processing data. Advances in data-driven formulation and closed-loop
robotics are moving gel printing from trial and error toward autonomous and efficient
material discovery. Despite these advances, challenges remain regarding data sparsity,
model robustness, and integration with commercial printing systems. The review results
highlight the value of open-source datasets, standardized protocols, and robust validation
practices to ensure reproducibility and reliability in both research and clinical environ-
ments. Looking ahead, combining multimodal sensing, generative design, and automated
experimentation will further accelerate discoveries and enable new possibilities in tissue
engineering, biomedical devices, soft robotics, and sustainable materials manufacturing.

Keywords: machine learning; gels additive manufacturing; material design; process
optimization

1. Introduction
Gel materials have become fundamental to additive manufacturing in both biomedi-

cal [1–3] and engineering [4–7] applications. Their ability to hold large amounts of water
while maintaining tunable mechanical properties makes them ideal for replicating native
tissue environments [8,9]. These attributes enable applications ranging from scaffolds for
tissue growth [10] and regenerative medicine [11] to controlled drug [12] release plat-
forms and flexible wearables [13]. Despite the promise, traditional gel printing still relies
heavily on trial-and-error methods. Formulation and printing parameter selection remain
time-intensive and prone to variability. This bottleneck inhibits scalability and consistent
fabrication outcomes [14].

Artificial intelligence and machine learning approaches are transforming the way
materials are developed and processes are optimized [15–17]. Machine learning tech-
niques [18–26], including decision trees, random forests, deep learning, and support vector
machines, are being applied to predict the behavior of gels based on rheological and
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compositional inputs [27]. For instance, interpretable machine learning models have been
used to explain how additives impact print fidelity using bulk material properties [28]. By
linking formulation data to performance outcomes, AI enables an efficient search within
vast compositional spaces, yielding faster formulation cycles and reduced experimental
cost [29,30].

Nonetheless, challenges remain before such smart printing becomes mainstream. Data
on gel systems are still limited in size and diversity and models often lack interpretability
and robustness across new material spaces [31]. Translating AI methods to commercial
hardware requires standardized interfaces and validation workflows that currently do not
exist for most systems [32]. Furthermore, establishing trust in AI-recommended formula-
tions in healthcare demands transparent machine learning frameworks backed by physical
insight and regulatory validation [33,34].

Gel-based additive manufacturing (AM) encompasses a variety of printing technologies,
each with distinct mechanisms and achievable resolutions for fabricating soft, hydrated
materials [35]. Figure 1 presents a comparative schematic of several leading gel AM methods:
binder jetting, direct ink writing (DIW), vat photopolymerization (including stereolithogra-
phy and digital light processing), material extrusion, inkjet bioprinting, and laser-assisted
bioprinting. Each technique offers unique advantages in terms of resolution, material com-
patibility, and suitability for biomedical and engineering applications [36–40].

Binder jetting (Figure 1a) involves the selective deposition of a liquid binder onto
a bed of powdered or gel precursor material [41,42]. The typical resolution for binder
jetting ranges from about 50 to 100 µm [43,44], determined mainly by the droplet size and
the powder granularity [36,39,45]. While this approach allows the fabrication of complex
and porous scaffolds, it often requires post-processing, such as debinding, sintering, and
infiltration, to attain the desired mechanical integrity [46]. The use of machine learning has
recently improved binder distribution and print fidelity within these constraints [47].

Direct ink writing (Figure 1b) is a versatile extrusion-based method where gel or
hydrogel inks are deposited through a nozzle according to a programmed path [48]. Direct
ink writing can achieve resolutions of 50 µm [49], governed by the nozzle diameter and
ink rheology [37,50,51]. Machine learning models, particularly random forests and neural
networks, have been used to optimize ink formulations for printability and shape retention
at these fine scales [52–55]. Finer nozzles permit higher resolution but risk clogging or
instability if ink rheology is not optimal [56].

Vat photopolymerization (Figure 1c), which includes stereolithography (SLA) and
digital light processing (DLP), utilizes photosensitive gel precursors that are cured layer-by-
layer with patterned light [57]. These technologies are noted for their high precision, with
SLA typically reaching resolutions of <5 µm [58]; DLP can achieve a pixel size of 15 µm
and can print with a layer thickness of 25 µm [59]. High resolution makes them particularly
suitable for applications requiring smooth surfaces and intricate features, especially for
gels [60].

Extrusion additive manufacturing (Figure 1d) extends a wider range of gel materials,
which is the most common way for gel printing [61–67]. The typical resolution is about
500 µm [68], mainly determined by nozzle diameter and extrusion rate [69,70]. While not
as fine as vat photopolymerization or DIW, material extrusion is ideal for creating larger
constructs and can be efficiently optimized using machine learning for robust print fidelity.
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Figure 1. Schematics of gels printing: (a) binder jetting [36], (b) direct ink writing [37], (c) vat
photopolymerization [38], including stereolithography (left) and digital light processing (right),
(d) material extrusion [39], (e) inkjet jetting bioprinting [40], and (f) laser assisted bioprinting [40].
Panel a adapted from ref. [36], Elsevier, CC BY 4.0. Panel b adapted from ref. [37], Elsevier, CC
BY-NC-ND 4.0. Panel c adapted from ref. [38], AccScience Publishing, CC BY-NC 4.0. Panel d adapted
from ref. [39], MDPI, CC BY 4.0. Panels e and f adapted from ref. [40], Wiley, CC BY 4.0.

Inkjet bioprinting (Figure 1e) uses pulsed droplets of gel-based bioinks, typically
achieving a resolution in the range of 5–10 µm with 80 µm nozzle [71]. This high spatial
precision is valuable for the patterned deposition of cells and biomolecules [72]. Machine
learning methods have been successfully applied to control droplet formation [73], assess
print quality [74], and enhance the uniformity of bioprinted structures [75].

Laser-assisted bioprinting (Figure 1f) uses focused laser pulses to propel minute quantities
of gel precursors onto a substrate, with a typical achievable resolution of 30 to 60 µm [76,77].
The non-contact nature of this technique provides superior spatial accuracy and is particularly
well-suited for fragile or sensitive biological samples [78]. Currently, no reports about machine
learning algorithms support the optimization of laser-assisted bioprinting.
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2. Fundamentals of Gel Additive Manufacturing
Gel additive manufacturing enables the fabrication of soft hydrated materials and

often biologically compatible structures with spatial precision [79]. The technique is distin-
guished by the use of gel precursors [80], where the materials display tunable behaviors
and typically undergo a crosslinking process to solidify into stable three-dimensional
(3D) structures. The effectiveness of gel additive manufacturing depends on a balance
between gel properties and printing parameters [81,82]. In Figure 2, this schematic out-
lines the critical interdependencies between gel material properties—including viscosity,
shear-thinning behavior, viscoelasticity, yield stress, and crosslinking strategies—and pro-
cess parameters such as nozzle diameter, extrusion pressure, printing speed, and path
height [51,83–85]. These factors collectively govern the success of gel-based additive man-
ufacturing by influencing filament continuity, shape fidelity, and structural integrity. A
deep understanding of these relationships provides the necessary foundation for applying
machine learning techniques to optimize formulation design and printing conditions in a
data-driven, predictive manner.

Figure 2. Interdependent material properties and process parameters in gel-based additive manufacturing.

Rheological properties are crucial to gel printability [86,87]. Low viscosity can lead to
the formation of undesirable droplets, causing uneven filament merging and cell sedimen-
tation during printing [80,88]. Conversely, high viscosity allows the printing of continuous
and stable filaments, but it increases shear stresses to encapsulated cells, reducing their
viability [88]. Shear-thinning behavior, in which ink viscosity decreases with increasing
stress, facilitates printing by reducing viscosity during extrusion without compromising cell
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viability [89]. The viscosity recovers rapidly post-deposition to prevent structural collapse.
Viscoelasticity, characterized by storage (elastic) modulus G′ and loss (viscous) modulus
G′′, enables the gel inks to maintain shape fidelity during printing and exhibit elastic shape
retention afterwards [90]. Yield stress, referring to the stress while the deformation of gel
inks occurs, is also essential to printability. It limits the linear viscoelastic range and flow
point of inks, leading to an increased stress to initiate the extrusion but also an enhanced
stiffness and shape retention of the extruded filaments [80]. These rheological behaviors are
highly correlated to the system of the gels such as the crosslinking mechanism, molecular
weight, and polymer concentration [91,92].

Crosslinking strategies further modulate printability and other gel properties [85]. Nat-
ural materials such as gelatin and alginate [93] have been widely used to develop gel inks
due to their physically crosslinkable ability under mild conditions (e.g., temperature and
ions) without chemical modification [94,95]. Despite the attraction of physical crosslinking,
its relatively slow gelation and weak mechanical stability post-printing limit its applications.
Pre-crosslinking chemistries such as thermal and ionic crosslinking have been introduced
to enhance this process [96–98]. Chemical modification is an alternative strategy to allow
additional crosslinking and improve the printability of gel inks. For example, gelatin and
hyaluronic acid have been modified by methacrylate and norbornene groups to allow
in situ photocrosslinking [99]. The photocrosslink ability of gel inks enables the smooth
extrusion of inks as well as rapid post-printing crosslinking. Moreover, low-viscosity gel
inks are also incorporated with rheology modifier materials to enhance printability. For ex-
ample, thermal-responsive methylcellulose (MC)-based materials are introduced to gelatin
methacryloyl (GelMA) ink to increase viscosity and extend the thermal gelation window,
allowing 3D bioprinting at a physiological temperature, thus improving cell viability [100].
Advanced network design by combining multiple crosslinking strategies can precisely
control mechanical properties (e.g., stiffness, viscoelasticity) and physical properties (e.g.,
swelling, degradation). However, these intricate material–property relationships introduce
additional optimization challenges.

Cells are often encapsulated in gel inks for tissue engineering and biomedical applica-
tions [61,101]. The density and size of cells have an impact on the crosslinking efficiency and
rheological properties, as cells might behave as a physical hindrance between different in-
teraction groups or chains in the bioink [102,103]. Additionally, cells may interfere with the
chemical process of crosslinking reactions reducing the efficiency [104]. Certain crosslinking
chemistries, such as thiol–ene, may involve functional groups which are naturally present
on amino acids and therefore on the cell surface [105]. Moreover, the components (e.g.,
ions, amino acids) in the cell culture medium of cell suspension might be interacted with
gel materials or buffering conditions used in the gel, compromising crosslinking and ink
viscosity [106,107].

Multiple materials including a combination of hard materials and soft gels have
been printed to create mechanically and biologically gradient structures [108–110]. How-
ever, layer delamination resulting from insufficient interfacial bonding or variations in
crosslinking and mechanisms between layers might occur [111,112]. The introduction of
an intermediate layer allowing bonding between different phases has been reported [113].
Moreover, ensuring homogeneity in composition and gelation kinetics across layers is
essential to maintain mechanical integrity.

The performance of gel manufactured by additive manufacturing is a function of
both the material characteristics and printing process variables. Depending on printing
techniques, various parameters such as nozzle size [114], extrusion pressure [115], and
printing speed [116] also affect printability. The wrong set of these conditions can result
in printing failures including poor layer adhesion, filament collapse, and inhomogeneous
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structures [117]. Therefore, the printing parameters need to be carefully aligned with the
rheological properties of the gel inks to ensure precise fabrication.

Smaller nozzles achieve finer structures but increase shear forces during print-
ing [118,119]. This potentially damages cells and clogs the printing nozzle. Conversely,
larger nozzles reduce shear stresses but compromise printing resolution. Embedded print-
ing techniques, such as extruding gels into support baths, have been developed to mitigate
this [120,121], while introducing additional complexities such as gel-support bath inter-
actions. In addition, printing pressure must overcome the yield stress of gels to initiate
flow. Higher concentrations of gel material (e.g., GelMA) facilitate cellular behavior while
higher pressures generate damages on cells [99,122]. Printing speed further complicates
the printing process. A slower printing speed improves filament deposition but increases
the risk of nozzle clogging for fast-crosslinking systems (e.g., photocrosslinkable gels) [123].
Mismatches of the printing nozzle, pressure. and speed would result in poor printing, with
either under-extrusion or over-extrusion.

Another essential printing quality factor is printing geometry. Path height, vertical
offset between the printing nozzle and printing bed [124], must align with rheological
properties such as elastic modulus. Larger path heights lead to stretching filaments and
breakage [125]. Increased lag time between the gel leaving the nozzle and reaching the
print bed would cause incorrect printing paths and incomplete corner structures [126].
However, smaller path heights result in nozzle interference and over-extrusion [124].

The multifactorial nature of gel additive manufacturing encompasses complex interde-
pendencies between gel properties and printing process, making it challenging to optimize
with conventional approaches [88]. Machine learning offers opportunities by mapping
relationships across these conditions [52,83,124]. Unlike static systems, artificial intelligence
(AI) enables adaptive real-time control with accurate prediction of the printing [17].

3. Machine Learning in Gels Material Design and 3D Printability
Machine learning enables the accurate prediction and optimization of fundamental gel

properties such as rheological parameters [50], elastic modulus [51], creep dynamics [52],
swelling ratio [127], permeability [128], and viscoelasticity [83,84,129]. Currently, no report
mentions machine learning for biocompatibility and syneresis prediction. Neural networks
and random forest models were used to predict the swelling behavior of temperature-
responsive hydrogels based on synthesis parameters with high accuracy [130]. Deep learn-
ing approaches have been applied to forecast storage modulus G’ and loss modulus G” in
polyacrylamide gels from composition and processing data [53]. In another study, random
forest models linked shear viscosity to bioink composition and predicted cell viability in
hydrogel formulations [131].

Decision tree and random forest algorithms excel in modeling nonlinear formulation
property relationships [132]. One work [54] applied these methods to predict viscosity
changes across shear rates and polymer ratios, achieving coefficients of determination above
0.98. Comparisons indicate that random forests often match or exceed neural networks in
predicting rheological behavior when training sets are small. Support vector machines have
been used to classify printable versus non-printable bioink formulations using rheological
features [69].

Active learning combined with robotics advances autonomous gel discovery work-
flows. A peptide hydrogel study used Bayesian optimization with variational autoencoders
to explore thousands of candidates and achieved higher hit rates in gelator identifica-
tion [53,133]. Robotic experimentation systems integrated with random forest viscosity
prediction enabled the closed-loop optimization of bioink formulations. Such intelligent sys-
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tems are shifting gel formulation from intuition-based experimentation toward data-driven
autonomous pipelines [70].

Data sparsity remains a challenge in gel ML applications. Many public hydrogel data
repositories contain fewer than one thousand samples, limiting model generalization [134].
Purely data-driven models can produce nonphysical predictions when extrapolating be-
yond training boundaries. Physics-informed neural networks that impose viscosity and
modulus constraints show promise for improved data efficiency and physical reliabil-
ity [135].

3.1. Accelerating Material Discovery and Formulation Design

Machine learning has revolutionized the search for novel gel and hydrogel formulations
with tailored properties [53,55,136–139]. By leveraging diverse ML algorithms—including
neural networks, Gaussian Processes, extreme gradient boosting, random forests, multilayer
perceptrons, and support vector regression—researchers have efficiently mapped the complex,
multidimensional relationships among compositional variables, synthesis parameters, and
targeted gel behaviors as shown in Table 1.

A notable example is the application of neural networks for predicting the molec-
ular weight of collagen gels, enabling the precise tailoring of molecular architecture for
biomedical uses [137]. Similarly, neural network models have been employed to improve
gel stiffness in mildly refined yellow pea protein systems, streamlining the identification
of optimal formulations for food and biomaterial applications [136]. For inorganic C–S–H
(CaO–SiO2–H2O) gels, a combination of neural networks and Gaussian Process models
successfully led to the design of compositions with significantly enhanced elastic mod-
uli, outperforming traditional experimental methods in both efficiency and predictive
power [138]. Extreme Gradient Boosting (XGB) has further enabled the accurate prediction
of viscosity in polysaccharide colloids such as konjac glucomannan (KGM), facilitating
rapid formulation screening for printable food gels and biopolymer materials [139].

Hybrid hydrogel systems have also benefited from ML optimization. For instance,
HAMA/GelMA (hyaluronic acid methacrylate/gelatin methacrylate) hydrogels with tun-
able viscosity and improved printability have been developed using multilayer perceptron
(MLP) and random forest (RF) models [55]. In polyacrylamide hydrogels, ML approaches
such as MLP, variational autoencoders (VAE), and conditional VAE (CVAE) have enabled
the simultaneous prediction of storage modulus (G′), loss modulus (G′′), and formula-
tion parameters, supporting both a forward and inverse design for mechanical property
control [53]. In another case, logistic regression facilitated the efficient field screening of
polyacrylamide gels crosslinked with organic agents, identifying promising candidates for
oilfield and water shutoff applications [140].

Random forest algorithms have enabled the formulation of tunable, printable bioinks
such as alginate/gelatin/TO-NFC (tempo-oxidized nanofibrillated cellulose) hydrogels by
predicting viscosity and printability from compositional inputs [141]. For photodegradable
acrylic and methacrylic gels, Bayesian optimization has driven the rapid development of
new materials with fast, customizable degradation rates, critical for applications in tissue
engineering and smart devices [142].

Table 1. New gel compositions designed by machine learning.

New Composition Superior Properties Machine Learning Algorithm Ref.

Collagen gels Predict molecular weight Neural network [137]
Mildly refined yellow
pea ingredients Improved gel stiffness Neural network [136]

CaO–SiO2–H2O C–S–H gels Higher elastic moduli Neural network, Gaussian Process (GP) [138]
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Table 1. Cont.

New Composition Superior Properties Machine Learning Algorithm Ref.

Polysaccharide colloids (KGM) Better viscosity prediction Extreme Gradient Boosting (XGB) [139]

HAMA/GelMA hybrid hydrogels Tunable viscosity HydroThermo Multilayer Perceptron
(MLP), Random Forest (RF) [55]

Polyacrylamide hydrogels (PAA) Predict G′, G′′

or composition

Multilayer Perceptron (MLP),
Variational Autoencoder (VAE), and
Conditional Variational
Autoencoder (CVAE)

[53]

Polyacrylamide (PAM) and
organic crosslinkers Better field screening Logistic regression [140]

Polysaccharide gels Predict printability SVR, Neural network, Convolutional
neural network (CNN) [50]

Atelocollagen, native collagen Improved shape fidelity Multiple regression [51]
Hydrogel
supercapacitor electrolytes

Higher
capacitance, stability

SHAP (SHapley Additive
exPlanations), tree models [143]

Alginate/gelatin/TO-NFC bioink Tunable viscosity, printable Random forest [141]
Photodegradable
acrylic/methacrylic gels

Fast, tunable
photodegradation Bayesian optimization [142]

The integration of artificial intelligence and machine learning is fundamentally trans-
forming how new gel formulations are designed, optimized, and validated for additive
manufacturing. As illustrated in Figure 3, contemporary workflows utilize a combination
of deep learning, generative modeling, and experimental feedback to predict critical rheo-
logical and mechanical properties from compositional and process variables, as well as to
invert this mapping for autonomous recipe generation [51,53,144]. Figure 3a illustrates an
advanced workflow where deep learning and generative artificial intelligence are harnessed
to both predict and inversely design the rheological properties of 3D-printed hydrogels
based on resin composition and printing parameters [53]. In this approach, comprehen-
sive datasets encompassing various formulation recipes, process variables, and measured
mechanical properties are used to train deep neural networks and generative models.
The trained models can perform forward prediction—rapidly estimating properties such
as viscosity, storage modulus, and printability from given material compositions. More
importantly, the inverse design capability enables researchers to specify target mechanical
or rheological properties and automatically generate candidate formulations predicted to
meet these requirements, substantially accelerating the search for optimal recipes.

Figure 3b presents a schematic integrating experimental and cell studies of porous
PVA/gelatin hydrogels with deep neural networks to accurately predict the compressive
mechanical response of hydrogels, based on both material composition and microstructural
descriptors [144]. In this workflow, experimental data—including microstructural images
and quantitative metrics describing porosity, crosslinking density, and pore architecture—are
fed as inputs into supervised learning algorithms. These neural networks are trained to
map the microstructural and compositional inputs to macroscale mechanical properties
such as compressive strength and modulus. By capturing the intricate structure–property
relationships that govern gel mechanics, this approach allows for the rational tuning of gel
formulations for targeted mechanical performance. Figure 3c highlights a workflow for
bioink development in which mathematical modeling and machine learning are combined
to predict and optimize 3D-printable formulations based on rheological measurements and
target printability metrics [51]. Here, data from rheological tests—such as viscosity, elastic
modulus, and yield stress—are used as input features for machine learning models, which
are trained to classify or score the printability of candidate bioinks. These models guide the
iterative formulation process by suggesting compositions with an increased probability of
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successful 3D printing, significantly reducing the reliance on trial-and-error experimentation.
Such predictive frameworks have enabled the rapid identification of bioink formulations that
not only meet the required mechanical and flow properties but also maintain biocompatibility
and cellular viability, advancing the clinical translation of 3D bioprinted tissues.

 
Figure 3. Workflow of artificial intelligence inform composition design. (a) This workflow uses deep
learning and generative AI to both predict the rheological properties of 3D-printed hydrogels from resin
composition and printing parameters, and inversely design printing recipes for targeted mechanical
properties [53]. (b) The schematic combines experimental and cell studies of porous PVA/gelatin
hydrogels with deep neural networks to accurately predict the mechanical response of the hydrogels
based on material composition and microstructure [144]. (c) A strategy illustrates a bioink development
strategy using a mathematical model and machine learning to predict and optimize 3D-printable bioink
formulations based on their rheological properties for tissue engineering applications [51]. Panel (a)
adapted with permission from ref. [53], MDPI, CC BY 4.0. Panel (b) adapted with permission from
ref. [144], Elsevier. Panel (c) adapted with permission from ref. [51], IOP Publishing.
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3.2. Enhancing Gels’ 3D Printability

The integration of machine learning (ML) into gel-based additive manufacturing has
fundamentally reshaped the prediction and optimization of 3D printability, allowing for
unprecedented control over material formulation and process parameters. Printability,
which encompasses the ease of extrusion, shape retention, and fidelity of printed structures,
depends on a complex interplay of rheological, mechanical, thermal, and formulation-
related properties [145]. By leveraging large datasets of compositional and processing
parameters, ML algorithms such as neural networks, random forests, and support vector
machines can accurately predict fundamental material properties, including the viscosity,
elastic modulus, swelling ratio, and viscoelasticity [55,137,139], in Table 2. Instead of
laboriously synthesizing and testing every candidate formulation, researchers can now use
data-driven models to efficiently screen vast compositional spaces, identifying promising
candidates with minimal experimental effort [45]. For example, deep learning models have
been used to predict the rheological behavior and printability of bioinks and food gels,
substantially reducing the number of required experiments [50,53]. Generative models and
active learning further enable the autonomous design of new gel recipes optimized for
target properties [133].

Table 2. Machine learning predictions in gels’ 3D printability.

Property Type Key Feature Effect on Printability Machine Learning Methods

Rheological Viscosity [50,55,137,139,146] Determines ease of extrusion Random forest, SHAP;
gradient boosting

Storage modulus (G′), loss
modulus (G′′)
[53,137,139,146,147]

Determines viscoelastic
behavior and shape retention

Python 3.9 libraries (NumPy,
Pandas, Scipy, and Sklearn) used
for curve fitting, smoothing, and
extrapolation for G′ and G′′

curves; MLP (Multilayer
Perceptron), VAE
(Variational Autoencoder)

Shear-thinning [50,55] Enables smooth extrusion Random forest
Yield stress [50,55],
critical stress [146]

Supports shape after printing
and maintains printed shape

SHAP feature ranking; support
vector machines

Angular frequency (ω) [139] Key parameters
affecting viscosity

Decision tree (DT), random forest
(RF), gradient boosting decision
tree (GBDT), extreme gradient
boosting (XGBoost)

Mechanical Elastic modulus [50,55]
Structural support
post-printing and ensures
structural integrity

Regression models; decision tree

Crosslinking potential [50] Long-term stability Data-driven formulation selection
Surface tension [55] Affects layer stacking Neural networks

Stiffness components [138] Quantifies gel
mechanical properties

Gaussian Process (GP) Regression,
Neural Network (NN)

Young’s modulus (Eu, kPa) [136] Measures gel stiffness Neural Network

Gel strength (g × mm) [148] Indicates firmness, quality
Long short-term memory
network, Convolutional
Neural Network

Thermal Sensitivity
Denaturation temperature
(Td) [137], gel point [147],
max process temperature [146]

Sets upper limit for printing
temperature to
avoid degradation

SVM, random forest, extreme
gradient boosting (XGB)

Water holding capacity
(WHC) [146] Influences structure formation Random forest, decision tree

Formulation
Concentration [53,55,136,139,146],
molecular weight (MW) [139],
H2O content (molar %) [138]

Modifies gel strength, key
parameters affecting viscosity
and mechanical properties

Logistic regression, decision tree,
Neural Network
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Central to printability prediction are rheological properties, such as viscosity, storage
modulus (G′), loss modulus (G′′), shear-thinning behavior, and yield stress [50,55,137,139,146].
These properties govern both the flow of gels through the print nozzle and the fidelity of
shape after deposition. Machine learning models have demonstrated robust predictive
power for these parameters, with random forest and gradient boosting methods excelling at
viscosity and modulus prediction using compositional and processing data [50,55,139,146].
Deep learning approaches, including multilayer perceptrons and variational autoencoders,
have been particularly effective in mapping complex nonlinear dependencies between molec-
ular composition, printing parameters, and resultant mechanical or rheological proper-
ties [53,133,135,147]. Physics-guided neural networks further enhance model reliability and
generalizability, incorporating physical constraints into data-driven predictions [135].

Mechanical properties, such as elastic modulus, Young’s modulus, gel strength,
and crosslinking potential, are equally vital for maintaining structural integrity post-
printing [50,51,55,136,138,140]. Gaussian process regression, tree-based models, and neural
networks have been used to quantify these parameters and correlate them to successful
printing outcomes [142,144,146]. For instance, studies applying support vector regression
and SHapley Additive exPlanations (SHAP) have elucidated the most influential factors
determining whether a given hydrogel formulation will print successfully or fail [146]. Sur-
face tension and stiffness, key for stacking layers and achieving desired construct geometry,
have also been incorporated into predictive frameworks using both neural and ensemble
methods [55,138].

Beyond classical rheological and mechanical factors, thermal sensitivity—such as
denaturation temperature, gel point, and maximum process temperature—directly impacts
the window of printable conditions and material stability during processing [137,146,147].
Additionally, ML approaches are being used to predict water holding capacity and optimize
formulation parameters, including concentration, molecular weight, and water content, to
modulate gel strength and viscosity precisely [53,55,136,138,139].

4. AI-Driven Process Optimization in Gel Additive Manufacturing
In this section, we discuss machine learning driven additive manufacturing process

optimization. Figure 4 serves as a preview and workflow on how to modify the process by
machine learning. One critical approach illustrated (Figure 4a) is the use of scoring systems
to quantitatively evaluate bio-ink printability based on printed layer morphology and pore
structure, enabling the selection of optimal formulations and print conditions [149]. Such
systems minimize subjective judgment and improve reproducibility by providing clear
criteria for assessing print quality.

Another important strategy (Figure 4b) involves hierarchical machine learning models
that link experimental print variables with physical parameters to accurately predict three-
dimensional print fidelity [150]. This intermediate step allows for more interpretable and
robust predictions, as it connects directly measurable process variables to the underlying
material behavior. These hierarchical models can optimize both the process and the resulting
material properties, facilitating high-fidelity printing with fewer trial-and-error experiments.

In Figure 4c, machine learning is also enabling non-destructive and quality-by-design
optimization of hydrogel properties specifically for biomedical applications. Through
predictive modeling, key process and formulation parameters can be tuned to yield desired
mechanical and biological outcomes, reducing reliance on destructive testing and lengthy
validation protocols [151]. By leveraging these models, researchers can accelerate the
translation of printed hydrogels into clinical use.
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Figure 4. Process optimization via machine learning. (a) The scoring system for evaluating bioink
printability based on printed layer morphology and pore structure, with optimal printability [149].
(b) The hierarchical machine learning (HML) model structure, showing how experimental print
variables are connected through a middle layer of physical parameters to predict 3D print fidelity [150].
(c) Machine learning enables non-destructive, quality-by-design optimization of 3D-printed hydrogel
properties for biomedical use [151]. (d) The workflow of computer vision and machine learning is
used for real-time, in situ monitoring and adjustment of 3D bioprinting to ensure optimal printability
by detecting gelation conditions during the process [152]. Panel (a) adapted with permission from
ref. [149], Elsevier. Panel (b) adapted with permission from ref. [150], American Chemical Society.
Panel (c) adapted with permission from ref. [151], Elsevier. Panel (d) adapted from ref. [152], Elsevier,
CC BY-NC-ND 4.0.

Real-time process control is further enhanced through the integration of computer
vision and machine learning as shown in Figure 4d. In situ monitoring systems can detect
changes in gelation conditions or identify print defects as they occur, allowing immediate
adjustments to printing parameters [152]. This closed-loop feedback not only ensures
consistent print quality but also improves process robustness and scalability. As a result,
the combination of machine learning with advanced sensing technologies is paving the
way toward fully autonomous, intelligent bioprinting systems.

4.1. Reasons to Use Machine Learning

Additive manufacturing (AM) of gels holds enormous promise for applications in tis-
sue engineering, soft robotics, electronics, and drug delivery, due to the inherent versatility
and tunability of these soft materials [40]. However, traditional experimental approaches to
optimizing material composition and process parameters are labor-intensive and reliant on
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trial and error, often resulting in suboptimal performance and limited reproducibility [14].
The adoption of machine learning (ML) in gel-based AM is rapidly transforming the field by
enabling accelerated material discovery [16], predictive process optimization [17], real-time
quality control [153], and intelligent automation [154].

By enabling the efficient exploration of material and process spaces, machine learn-
ing drastically reduces the number of failed experiments and the consumption of costly
or rare reagents [155]. Predictive modeling also helps minimize material waste and en-
ergy consumption, supporting the development of greener and more sustainable additive
manufacturing workflows [156].

Classical machine learning models such as decision trees, random forests, and linear or
logistic regression are widely regarded as the most interpretable approaches for regulatory
purposes [157,158], particularly in gel printing [28]. These models offer straightforward
insights into how input features influence predictions, with clear decision paths or fea-
ture importance rankings that facilitate transparency and traceability—qualities highly
valued by regulatory bodies. In contrast, complex models such as deep neural networks
and ensemble methods often function as “black boxes”, making it more challenging to
directly understand the rationale behind their outputs. However, the interpretability of
these advanced models can be enhanced through the application of post hoc explanation
tools such as SHAP (SHapley Additive exPlanations) [159], which help elucidate feature
contributions and decision mechanisms.

4.2. Wide Availability of Resources

The growth of publicly available datasets, open-source ML packages, and standardized
data formats has greatly facilitated the application of ML to gel-based AM as shown in
Table 3. Comprehensive repositories such as Mendeley [160], Zenodo [161], Figshare [162],
and NIST [163] provide a rich resource for model training, benchmarking, and cross-study
comparison, accelerating progress in the field.

A diverse array of open-source datasets and machine learning packages have signifi-
cantly propelled research and innovation in gels additive manufacturing process optimization.
Among publicly accessible datasets, repositories such as Mendeley, Google Dataset Search,
NIST, Zenodo, Figshare, and the AmeriGEOSS Community Platform DataHub have been
instrumental in supporting data-driven advances in this field [160–164]. Mendeley and Zen-
odo, in particular, offer not only a breadth of datasets but also journal articles, formulations,
and benchmarking resources, making them some of the most frequently referenced plat-
forms. The adoption of open-source packages has similarly accelerated the implementation
of machine learning algorithms, with Scikit-learn standing out as the most commonly used
toolkit for classical machine learning models such as support vector machines, decision
trees, random forests, and gradient boosting, which have enabled applications ranging from
shrinkage prediction and rheological property modeling to high-fidelity printability optimiza-
tion [51,149,150,165,166]. Meanwhile, TensorFlow and PyTorch 2.3.0 dominate deep learning
development, supporting neural network-based approaches for tasks such as printing speed
optimization, real-time video monitoring, scaffold quality prediction, and light scattering
compensation [151,153,167,168]. Keras is frequently favored for rapid prototyping of deep
learning models, especially for extrusion pressure and structural conformity prediction [169].
The synergy between these open-source tools and expansive data repositories has enabled
not only predictive modeling and process optimization but also the simultaneous tuning
of formulation, material, and process variables, thereby reducing experimental burden and
enhancing reproducibility [51,149,150,170]. Collectively, the prevalence of Scikit-learn across
a multitude of studies underscores its pivotal role, while Mendeley and Zenodo emerge
as the most frequently utilized data platforms, facilitating cross-study benchmarking and
accelerating methodological development.
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Table 3. Open-source packages, machine learning models, datasets and their applications cases in
gels additive manufacturing process optimization.

Machine Learning Description and Features Application

Open-source datasets

Mendeley [160]
Available from

https://data.mendeley.com
(accessed on 1 June 2025)

Datasets [171–175]

Google Dataset search

Available from
https://datasetsearch.research.

google.com
(accessed on 1 June 2025)

Datasets [176,177]

NIST [163]
Available from

https://data.nist.gov
(accessed on 1 June 2025)

Datasets [178]

Zenodo [161]
Available from

https://zenodo.org
(accessed on 1 June 2025)

Datasets, journal papers, and
formulations [179–211]

Figshare [162]
Available from

https://figshare.com
(accessed on 1 June 2025)

Figures, videos, and
datasets [212–218]

AmeriGEOSS Community
Platform DataHub [164]

Available from
https://data.amerigeoss.org

(accessed on 1 June 2025)

Patents, datasets, and project
reports [219,220]

Open-source packages

Scikit-learn [221]

Classical machine learning
models (easy-to-use,

general-purpose). Typical models:
Support Vector Machine, Decision

Tree, Random Forest, Logistic
Regression, k-Nearest Neighbors,
Principal Component Analysis,
k-Means Clustering, Gradient

Boosting Machine, Extreme
Gradient Boosting (XGB), PCA.

Shrinkage [222], gel point [223],
gelatin, pore size and

stiffness [170], rheological
properties [224], high elastic

modulus and yield stress [51],
simultaneously optimize material,

formulation, and processing
variables [165], high-fidelity [150],

shear rate [225], compressive
modulus, density, and

porosity [226], printability from
rheological measurements [166],
high viscosity [149], storage and

loss moduli, and hardness for
extraordinary printability [227]

TensorFlow [228]

Deep learning and neural
networks (high flexibility for

research and production). Typical
models: Convolutional Neural

Network, Recurrent Neural
Network, Deep Neural Network,
Generative Adversarial Network,

Long Short-Term Memory
Network, Transformer Model.

Printing speed, printing pressure
and infill percentage [151], and

real-time videos
monitoring [153,167]

PyTorch [229]

Research, flexible deep learning
model development,

Convolutional Neural Network,
Recurrent Neural Network,

Transformer Model,
Diffusion Model.

Light scattering
compensation [168], monomer

composition ratios [230],
printability and scaffold

quality [231], and material
deposition temperature

monitoring [154]

Keras [232]

High-level API; excellent for
quick development of deep

learning models (uses TensorFlow
backend). Convolutional Neural

Network, Recurrent Neural
Network, Deep Neural Network,

Long Short-Term
Memory Network.

Minimum extrusion pressure
(MEP) and printed structure

conformity (PSC) [169]

https://data.mendeley.com
https://datasetsearch.research.google.com
https://datasetsearch.research.google.com
https://data.nist.gov
https://zenodo.org
https://figshare.com
https://data.amerigeoss.org
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4.3. Predictive Process Optimization

One of the major advantages of integrating ML in gel AM is the ability to predict the
effect of process parameters—such as nozzle diameter, extrusion pressure, print speed, and
temperature—on print fidelity and final material properties in Table 4. Classical ML algo-
rithms (e.g., decision trees [233], random forests [132], support vector machines [234]) and
advanced deep learning architectures like CNN [235] and the deep neural network [236]
have demonstrated high accuracy in modeling the complex, nonlinear relationships be-
tween input parameters and print outcomes [69,138]. These models enable rapid opti-
mization and parameter tuning, minimizing the cost and time associated with random
experimental trials and reducing material waste [31,38,51,55]. Furthermore, multi-response
optimization methods can simultaneously consider multiple printability metrics, facilitating
the development of robust, reproducible processes [124,140].

Table 4. Machine learning driven process optimization in gels additive manufacturing.

AM Methods AM Process Parameter How to Improve the Process Machine
Learning Methods Ref

Extrusion bioprinting Nozzle size, pressure Optimize alginate formulation Deep learning [237]
Bioink composition Control hydrogel rheology Physics-informed ML [147]

NHS/EDC concentrations Adjust crosslinking
for flexibility XGBoost, SHAP [238]

Nozzle speed, diameter Improve viscosity, digestibility ANN-GA, RSM [149]
Flow rate, nozzle design Reduce trial-and-error Decision trees [239]
Layer height, print speed Bioink optimization Multiscale ML, Big Data [239]

Bioink rheology Multi-response optimization
of printability ANN, DOE, RSM [169]

Printing defects Detect in real time,
reduce waste CNN, deep learning [153]

Ink composition, nozzle Suggest ink formula and
print settings Bayesian optimization [149]

Bioink comp., shear rate Predict viscosity,
optimize formula Random forest, DT, PF [141]

ADA-GEL, pore size Tune stiffness for
tissue engineering XGBoost [170]

Print speed, flow rate, and
nozzle, ink

Predict high-fidelity
hydrogel prints Hierarchical ML [150]

Bioink comp., temp, speed,
and pressure

Minimize trial-and-error
for printability Bayesian optimization [240]

Path height, nozzle temp,
and composition

Maximize print fidelity,
minimize tests SVM [124]

Vat photopolymerization Monomer composition Targeted property selection Active learning,
ML regression [230]

Food printing Starch/protein ratio Predict printability and texture PCA, SVM [227]

4.4. Real-Time Quality Control and Autonomous Process Control

Real-time monitoring in gel-based additive manufacturing, particularly hydrogel
extrusion processes, is essential to ensure precise structure deposition and mechanical
performance. Traditional optical imaging techniques such as optical coherence tomogra-
phy face limitations due to gel opacity and high water content, which reduce imaging
depth and accuracy during printing [241,242]. The inherent variability in gel rheology,
nozzle–substrate interactions, and post-processing crosslinking dynamics introduce addi-
tional quality control challenges unique to hydrogel-based systems.

A recent study introduced a real-time, in situ ultrasound monitoring system integrated
into a Bio X bioprinter platform. By capturing ultrasound reflections from alginate–gelatin
hydrogel layers, the system identifies subtle defects such as layer delamination, nozzle
scraping, and gravitational sagging, with subwavelength resolution (~0.78 λ) [241]. This
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method enables a layer-by-layer quality assessment, real-time parameter adjustment, and
optimal crosslinking time determination in CaCl2 baths.

Machine vision systems have also been tailored for gel-based processes. For in-
stance, computer vision systems monitor hydrogel printing with embedded fibers to
prevent misalignment in real time by adjusting extruder movement and fiber feed dynam-
ically [243–246]. While originally demonstrated in composite filament deposition, these
principles are transferable to hydrogel printing, enabling closed-loop control.

Machine learning, particularly in combination with computer vision, is enabling real-
time, in situ monitoring of gel 3D printing processes [50,166,247]. Convolutional neural
networks and other image-based ML approaches can rapidly detect defects, misprints,
or suboptimal gelation conditions during printing, triggering immediate corrective ac-
tions [167,237,248,249]. Such closed-loop systems help ensure consistent print quality and
reproducibility, even in the face of batch-to-batch variations in materials or environmental
changes. Robotic experimentation systems, coupled with ML-based feedback, are moving
the field toward autonomous and intelligent manufacturing pipelines [250,251].

Despite rapid advancements in real-time monitoring and autonomous control in gel
additive manufacturing, several significant challenges remain. The challenge involves the
complexity and volume of process data generated during real-time monitoring. High-speed
imaging, ultrasound signals, rheological data, and other sensor outputs quickly result in
large, multimodal datasets. Effectively fusing and interpreting these data streams in real
time requires sophisticated data processing pipelines and often machine learning models
that can operate efficiently with minimal latency [252]. However, ensuring interoperability
across different platforms, maintaining data integrity, and dealing with inconsistent formats
or sensor drift remain unresolved problems [253]. Additionally, the development and
deployment of standardized data protocols for gel additive manufacturing are still in
their infancy, impeding seamless cross-study comparison and reproducibility [242]. The
generalization and robustness of machine learning models represent further hurdles. Most
ML algorithms and neural networks used for process control are trained on datasets specific
to particular gel formulations, bioprinter models, or environmental conditions. When
these models are applied to new materials, different crosslinking chemistries, or altered
hardware setups, their performance can degrade rapidly, necessitating continual retraining
and calibration [151,231]. Another challenge is the integration of autonomous control
algorithms with existing hardware and process workflows. Many gel printing systems
were not originally designed for closed-loop or adaptive feedback operation. Retrofitting
these platforms to accommodate real-time control, ensuring mechanical stability, and
validating control actions in compliance with safety and quality standards—especially
for biomedical applications—are nontrivial tasks [254–256]. Furthermore, maintaining
biocompatibility and sterility during automated interventions, particularly for cell-laden
hydrogels, requires additional consideration [257].

5. Research Limitations and Outlook
5.1. Limitations

Despite recent progress, several technical and translational barriers hinder the matu-
rity of gel printing. First, print resolution and structural fidelity remain constrained by the
inherently low viscosity of most gels, leading to collapse or deformation in overhanging
regions and complex architectures [258]. Coupled with this is the lack of standardized rheo-
logical benchmarks: while printability is often qualitatively assessed, the absence of unified
metrics makes cross-study comparison challenging. Moreover, real-time monitoring in gel
printing lags behind polymer AM. Sensor techniques such as optical coherence tomography
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and ultrasound have been explored, but have yet to achieve the robustness required for
in-process defect detection, especially under biologically relevant conditions [259].

From a materials design standpoint, there is limited integration of data-driven formula-
tion pipelines. Existing studies using the design of experiments and machine learning have
focused predominantly on food-grade or simple biomaterial gels, leaving robust organogel
systems for structural or functional use less explored [258]. Furthermore, while responsive
and 4D hydrogels show promise in tissue modeling and soft robotics, current models lack
predictive accuracy due to incomplete incorporation of complex thermomechanical or
swelling dynamics [14,245,260]. Scalability and standardization remain significant hurdles:
most gel-printed constructs are small-scale and lack quality benchmarks—clinical or indus-
trial translation requires larger constructs, repeatable processes, and regulatory-aligned
validation protocols.

5.2. Outlook

As gel-based printing (particularly hydrogels, organogels, and bioinks) continues to ad-
vance, its convergence with machine learning and materials innovation presents both exciting
opportunities and challenges. Recent reviews highlight several crucial future directions.

5.2.1. Real-Time Defect Detection with Multimodal Monitoring

Real-time defect detection with multimodal monitoring holds immense potential
to revolutionize gel-based additive manufacturing, especially as new combinations of
ultrasound, computer vision, and machine learning-based anomaly detection become stan-
dard. For example, ultrasound tracking of alginate-gelatin prints achieved millimeter-scale
detection of interlayer bonding and deformation in near real-time [241]. In the future,
multimodal systems could enable continuous, in-process optimization during the fabri-
cation of complex biomedical scaffolds, ensuring uniformity and structural integrity in
patient-specific implants. For tissue engineering, integrating real-time imaging and ML can
facilitate automated correction of defects or incomplete layers during the printing of cell-
laden hydrogels, improving construct viability and clinical reliability. In soft robotics and
wearable devices, such monitoring will allow precise tuning of mechanical gradients and
embedded functions as printing progresses, supporting the fabrication of multi-material
and multi-functional components. Beyond healthcare, real-time multimodal monitoring
can advance food printing and soft electronics by enabling closed-loop control for consistent
texture, patterning, and functionality, even under variable environmental conditions. Ulti-
mately, the convergence of these technologies is set to drive fully autonomous, intelligent
gel printing systems capable of self-correcting and delivering reliable, high-performance
products for a diverse set of emerging applications.

5.2.2. Predictive Stimuli-Responsive 4D Gel Systems

The combination of machine learning and predictive modeling is set to unlock transfor-
mative applications for stimuli-responsive 4D gel systems. By training models on datasets
that connect gel composition, structure, and environmental cues to dynamic behaviors,
researchers will be able to design gels that perform highly specific shape changes or force
outputs under precise conditions. In the future, these predictive 4D gel systems could
be used to create programmable scaffolds for tissue engineering. In soft robotics, gels
with machine-learned deformation profiles will enable devices that adapt their motion,
stiffness, or gripping ability on demand, leading to safer and more versatile interaction
with biological tissues or delicate objects [261,262]. In drug delivery, 4D gels could provide
temporally and spatially controlled release of therapeutics, responding intelligently to
physiological signals such as pH, temperature, or enzymatic activity. Moreover, in areas
like bioelectronics and responsive surfaces, ML-optimized gels may enable adaptive inter-
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faces that change conductivity, permeability, or optical properties in real time. Ultimately,
as datasets grow and predictive models become more robust, stimuli-responsive 4D gel
printing guided by machine learning will drive innovation across biomedicine, soft robotics,
sensing, and smart materials, creating adaptive systems that respond seamlessly to complex
and changing environments.

5.2.3. AI Assisted In-Body Gel Printing

A recent study demonstrated the ultrasound-guided printing of drug-laden hydrogels
inside a mouse bladder, enabling localized chemotherapy with real-time shape control [263].
For future possibilities, the integration of machine learning with in-body gel printing using
ultrasound-responsive bioinks is poised to transform minimally invasive medicine. As
deep learning and adaptive control algorithms become more sophisticated, they will enable
real-time interpretation of ultrasound images, guiding the precise formation and placement
of gels within dynamic living tissues. Machine learning will also facilitate the adaptive
adjustment of printing parameters in response to individual anatomical and physiological
variations, supporting the delivery of patient-specific therapies.
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