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Abstract

Recently, there has been a growing interest in the production of high-resolution maps of vaccination
coverage. These maps have been useful for uncovering geographic inequities in coverage and
improving targeting of interventions to reach marginalized populations. Different methodological
approaches have been developed for producing these maps using mostly geolocated household
survey data and geospatial covariate information. However, it remains unclear how much the
predicted coverage maps produced by the various methods differ, and which methods yield more
reliable estimates. Here, we explore the predictive performance of these methods and resulting
implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey as
a case study, we generate 1x1 km and district level maps of indicators of vaccination coverage using
geostatistical, machine learning (ML) and hybrid methods and evaluate predictive performance via
cross-validation. Our results show similar predictive performance for five of the seven methods
investigated, although two geostatistical approaches are the best performing methods. The worst-
performing methods are two ML approaches. We find marked differences in spatial prioritization
using these methods, which could potentially result in missing important underserved populations,
although broad similarities exist. Our study can help guide map production for other health and

development metrics.

Keywords: Bayesian geostatistics; Machine learning; Vaccination coverage; Demographic and Health

Surveys; Health and development indicators; INLA-SPDE

1. Introduction

Immunization is a fundamental component of primary healthcare, playing a critical role in reducing
vaccine preventable morbidity and mortality (Shattock et al., 2024). It is also essential for achieving

the Sustainable Development Goals (United Nations, 2015) and other global health policy goals, such



as the Immunization Agenda 2030 (World Health Organization, 2020) and Gavi Strategy 5.0 (Gavi The
Vaccine Alliance, 2020). However, immunization and other health services remain out of reach for
vulnerable and marginalized populations, including those in remote rural areas, urban slums, and
conflict-affected and humanitarian settings (Chopra et al., 2020, UNICEF and the Bill and Melinda

Gates Foundation, 2021, Wigley et al., 2022).

To design effective strategies to reach these underserved populations, there is a need for accurate,
spatially detailed maps of vaccination coverage and other health and development indicators (HDlIs)
such as maternal literacy, poverty, school attendance, malaria prevalence, malnutrition and skilled
birth attendance (Bosco et al., 2017, Mosser et al., 2019, Weiss et al., 2019, Kinyoki et al., 2020,
Sbarra et al., 2021). Such maps enable decision makers to identify geographic and other inequities in
service coverage and utilization, thereby supporting more targeted and effective interventions - a
key focus of the growing field of precision public health (Dowell et al., 2016). Moreover, by providing
current, robust and actionable evidence base, high-resolution maps help bridge the data gap that
exist in many low- and middle-income countries where health management information systems and
other administrative data sources such as vital registration are often incomplete and unreliable

(Scobie et al., 2020, Mwinnyaa et al., 2021).

Data for producing maps of vaccination coverage and other HDIs often come from nationally
representative, geolocated household surveys such as the Demographic and Health Surveys, Multiple
Indicator Cluster Surveys and national vaccination coverage surveys. Due to their high operational
costs, these surveys are generally designed to provide estimates at the provincial or first
administrative level. As a result, classical survey analysis methods, such as direct weighted estimators
(Rao, 2005), can only generate reliable estimates at this coarse spatial scale. However, accurate and
timely estimates are most valuable at lower administrative levels, e.g., the district or second
administrative level at which vaccination programs and other interventions are planned and

implemented. This need, along with advances in geostatistical modelling techniques and computing



power, has spurred the widespread use of geostatistical and machine learning (ML) approaches to
produce gridded estimates of HDIs from survey data. These approaches leverage the direct and
proximate relationships between HDI outcomes measured at survey cluster locations and geospatial
covariates, as along with spatial and spatiotemporal dependence, to model and predict the spatial
distributions of HDIs for single or multiple timepoints. By producing estimates at the grid level,
typically 1 km or 5 km resolution, these outputs are not constrained by changing political or
administrative boundaries and can be flexibly aggregated to operationally relevant areas of interest.
Moreover, when integrated with other geospatial datasets, e.g., high-resolution population maps
(Tatem, 2017) and geolocated health facility data (Lim et al., 2008, Johns et al., 2022), precise
estimates of at-risk or underserved populations can be produced. Research and survey programs
such as WorldPop through its VaxPop project (Utazi et al., 2018b, Utazi et al., 2019, Utazi et al., 2021,
Utazi et al., 2022), the Institute for Health Metrics and Evaluation (IHME) (Mosser et al., 2019, Sbarra
et al., 2021) and the DHS program (Janocha et al., 2021) now routinely produce and distribute maps

of HDIs.

A range of geostatistical, ML and hybrid approaches have been employed to produce high-resolution
maps of vaccination coverage and other HDIs. Prominent examples include geostatistical models
(GEOS) (Bosco et al., 2017, Utazi et al., 2021, Utazi et al., 2022, Alegana et al., 2024), generalized
additive models (GAMs) (Takahashi et al., 2017, Kawakatsu et al., 2024), stacked generalization (STG)
(Mosser et al., 2019, Sbarra et al., 2021), boosted regression trees (BRT) (Kawakatsu et al., 2024),
random forests (Browne et al., 2021), least absolute shrinkage and selection operator (LASSO)
regression and deep learning/artificial neural networks (ANN) (Bosco et al., 2017). Model-based
geostatistics (Diggle et al., 1998) explicitly accounts for spatial autocorrelation and the (non)linear
effects of covariates, and is often implemented in a Bayesian framework using the INLA-SPDE
approach or MCMC techniques, with INLA-SPDE being more popular recently due to its
computational efficiency. When non-linear (or smooth) functions of covariates are incorporated into

a geostatistical model, the result is a semiparametric geostatistical model (SGEOS) (Wood, 2011,



Wang et al., 2018), which eliminates the need for covariate data transformation. A key advantage of
the Bayesian implementation of geostatistical models is the natural framework to account for
uncertainty in both model predictions and input data. ML and hybrid approaches are particularly
suitable for modelling complex nonlinear relationships and interactions in the data, though this often
comes at the expense of interpretability. ML approaches can automatically identify relevant
covariates/features in the data, unlike geostatistical modelling which may require a separate
covariate selection process. While ML approaches rely only on covariates to make predictions and
would be expected to perform well when these are highly informative, geostatistical and hybrid
approaches additionally exploit residual spatial (and temporal) autocorrelation to improve predictive
performance. In general, ML approaches are computationally less demanding, can handle large-scale
and high-dimensional data better, and are sometimes less challenging to implement (e.g., GAM,
LASSO and BRT) (James et al., 2013, Berrocal et al., 2020). However, some ML approaches such as
BRT, ANN and LASSO do not produce uncertainty estimates, necessitating the use of supplementary

techniques for uncertainty quantification (Veronesi and Schillaci, 2019, Berrocal et al., 2020).

Currently, little is known about the comparative predictive performance of these ML and
geostatistical approaches in the context of mapping vaccination coverage. There is a lack of
substantial evidence on how much the predicted maps produced by these approaches differ and
which approaches yield more reliable estimates for vaccination coverage mapping. This gap may be
attributed to the technical complexity involved in implementing these models and, in some cases,
insufficient emphasis on methodological rigour. As maps of vaccination coverage and other HDIs
become increasingly popular, it is crucial to assess the strengths and limitations of these modelling
approaches. The goal of this study is, therefore, to critically evaluate widely used approaches for
mapping vaccination coverage and other HDIs in terms of their predictive accuracy and associated
uncertainties. Specifically, we investigate four machine learning approaches (ANN, BRT, GAM and
LASSO), two geostatistical models (GEOS and SGEOS) and one hybrid approach (STG). Our evaluation

is based on a case study mapping the coverage of the first dose of the diphtheria-tetanus-pertussis



(DTP1) and the first dose of the measles-containing vaccine (MCV1) vaccines using the 2018 Nigeria

Demographic and Health Survey (NDHS) (National Population Commission - NPC and ICF, 2019).

2. Methodology
2.1 Data

2.1.1 \Vaccination coverage data

Data on the coverage of DTP1 and MCV1 vaccines were obtained from the 2018 NDHS (National
Population Commission - NPC and ICF, 2019) for children aged 12-23 months and 9-35 months,
respectively. The NDHS was conducted between August and December 2018, utilizing a stratified, two-
stage sampling design to produce estimates of indicators at the national, regional and state levels, as
well as for urban and rural areas. Stratification was achieved by separating each of the 36 states and
the Federal Capital Territory (FCT) into urban and rural areas. Samples were drawn from within each
stratum in two stages: the first stage involved the selection of survey clusters (enumeration areas) from
a national sampling frame using a probability proportional to size sampling scheme, while the second
stage involved selecting households randomly from household lists within the selected clusters.
Detailed information on the methods employed in the survey is published elsewhere (National
Population Commission - NPC and ICF, 2019). The NDHS was selected for this study because of ease of
data access and having been used extensively in previous work to map coverage (Dong and Wakefield,

2021, Aheto et al., 2023, Utazi et al., 2023, Kawakatsu et al., 2024).

The survey was implemented in a total of 1,389 clusters, with 11 of the originally selected 1,400
clusters excluded due to security concerns. In Borno State, only 11 of the 27 local government areas
were included in the survey due for similar reasons For both vaccines, we used information obtained
from both home-based records and maternal/caregiver recall, following DHS guidance during data
extraction (Croft et al., 2023). Hence, our analysis captures crude DTP1 and MCV1 coverage

estimates (World Health Organization, 2018). At the cluster level, we aggregated individual-level



data to produce numbers of children surveyed, numbers vaccinated and empirical proportions of

children vaccinated as shown in Figure 1.

[Figure 1 about here]

2.1.2 Geospatial covariate and population data

To enhance the prediction of vaccination coverage using the approaches investigated, we obtained
some geospatial covariate information — see supplementary Figures S1 and S2 and supplementary
Table 1. These covariates have been successfully used in previous work (Bosco et al., 2017, Utazi et
al., 2019, Utazi et al., 2022, Utazi et al., 2023) to model and predict vaccination coverage and other
HDIs. These comprise variables measuring a range of conditions in the study country which may have
direct or proximate relationships with vaccination coverage. The covariates include measures of
remoteness (travel time to the nearest health facility and distance to cultivated areas),
socioeconomic status (poverty index, household wealth, maternal education), health-related factors
(ownership of health or vaccination card/document, skilled birth attendance, access to media and
use of mobile phone/internet) and urbanicity or development (nightlight intensity and urban/rural

areas).

The externally sourced geospatial covariates (supplementary Table 1) were processed and
harmonized at 1 x 1 km resolution, at which we planned to produce grid level coverage estimates. To
extract the values of the covariates for each cluster location, we used the approach described in
Utazi et al. (2018b) and Perez-Haydrich et al. (2013), which accounts for the displacement of the
clusters (this displacement often occurs within districts in DHS surveys). For the DHS-derived
covariates, we first calculated their values at the cluster level using detailed definitions provided in
supplementary Table 1 and then used the krig () function in the fields package in R (Nychka et al.,

2017) to create corresponding 1 x 1 km interpolated surfaces, with the optimal range parameter set



to the first quartile of the distances between the clusters (other distance quartiles yielded almost the
same results). The kriging interpolation was carried out using the logit-transformed cluster level data
in each case, due to its underlying Gaussian assumption, after which the estimates were back-

transformed to the unit interval.

We checked for multicollinearity by examining the correlations between the covariates and by fitting
non-spatial binomial regression models to estimate their variance inflation factors (VIFs).
Furthermore, for one of the modelling approaches (equations (1) and (2)), we examined the
distributions of the covariates and their relationships with vaccination coverage (on the empirical
logit scale), following which we log- or logit-transformed some skewed covariates to improve their
linear relationships with vaccination coverage. The plots of the covariates and their relationships
with vaccination coverage are shown in supplementary Figures S3 and S4. All 14 covariates were
retained in our study, as their VIFs were less than 5.0 for both DTP1 and MCV1. This also facilitated

using the application of ML approaches, which typically benefit from a richer set of covariates.

To aggregate the coverage estimates to the district and other administrative levels, we obtained 2018
gridded estimates of numbers of children aged under 5 years from WorldPop (Tatem, 2017), which

we used as a proxy population layer for the age groups included in the study.

2.2 Geostatistical and machine learning modelling approaches

We considered seven modelling approaches to predict vaccination coverage at 1x1 km resolution, as
indicated previously. In all analyses, we accounted for the complex sampling design of the NDHS,
specifically urban-rural stratification, by including an urban-rural covariate and, when using
geostatistical modelling approaches, between-cluster variation (Dong and Wakefield, 2021,
Gascoigne et al., 2025). The modelling approaches are described in detail as follows and illustrated in

Figure 2.



2.2.1 Bayesian geostatistical regression model (GEOS)

The first model we considered is a Bayesian geostatistical model with a Binomial likelihood. Let Y (s;)
denote the number of children vaccinated at survey location s; (i = 1, ...,n) and m(s;) the number

of children sampled at the location. The first level of the model assumes that

Y(s;)|p(s;) ~ Binomial(m(s;), p(s;)), (1)

where p(s;) (0 < p(s;) < 1) is the true vaccination coverage at location s;. We model p(s;) using

the logistic regression model
logit(p(s;)) = Bo + 25-;1 X;(5:)B; + w(s;) + €(sy), (2)

where 3, is an intercept term, X, (S;), ..., X,, (8;) are covariates associated with s; (including an
urban-rural covariate), fy, ..., B, are the corresponding regression coefficients, €(s;) is an
independent and identically distributed (iid) Gaussian random effect with variance, 62, used to
model non-spatial residual variation or between-cluster variation, and w(s;) is a Gaussian spatial
random effect used to capture residual spatial correlation in the model. That is, @ =

(w(sy), ..., w(s,) )T ~ N(0,Z,), where %, is assumed to follow the Matérn covariance function
(Matérn, 1960). For identifiability reasons, we set the smoothness parameter in X, to one, see

Lindgren et al. (2011).

To complete the Bayesian model specification, we assigned a N(0,103I) prior to the regression
parameter, B8, and a penalized complexity (PC) (Simpson et al., 2017) prior to g, such that

p(o. > 3) = 0.01. Similarly, following Fuglstad et al. (2019), we placed a joint PC prior on the
covariance parameters of the spatial random effect, w, such that p(r < r,) = 0.01 and p(g > 3) =

0.01, with 1y chosen to be the 5% of the extent of the country in the north-south direction.

The model was fitted using the INLA-SPDE approach implemented in the R-INLA package (Lindgren et
al., 2015, R Core Team, 2021). Predictions at 1x1 km resolution were obtained using the fitted model

by drawing samples from the posterior predictive distributions of p(s;) at the grid locations.



Throughout, predictions at the administrative level were obtained as population-weighted averages

taken over all the grid cells falling within each administrative area (Utazi et al., 2022).

2.2.2 Bayesian semiparametric geostatistical regression model (SGEQS)

This model extends the GEOS model in equations (1) and (2) through using smooth functions to
account for the nonlinear effects of some covariates. The model assumes that the true vaccination

coverage at location S;, p(S;), can be expressed as

logit(p(s;)) = Bo + X5_1 X1 (5)B; + Ty [ (zr(5)) + w(s;) + €(sy), (3)

where f, is an intercept term, X, (S;), ..., X, (8;) are linear covariates with regression coefficients
Bi, ) ﬁp, and f;(.), ..., f;(.) are smooth functions used to account for the non-linear effects of the
covariates z; (S;), ..., Z; (8;). Other terms in the model are as defined previously in equation (2). We

specified a second-order random walk prior for f(.) such that
fQuilwi—g, uiz) ~ NQui_y — w3, 05), (4)

which is the Bayesian equivalent of a cubic smoothing spline (Wang et al., 2018). For identifiability, a
sum-to-zero constraint was imposed on each of the smooth functions since the model includes an
intercept term (Wang et al., 2018). Model (3) was also fitted in a Bayesian framework using the INLA-
SPDE approach. We assumed the default non-informative R-INLA log-Gamma prior on log (a;;2), i.

e., log (6;%) ~ log — Gamma(1, 0.00005).

2.2.3 Generalized additive model (GAM)

Generalized additive models also provide a mechanism to account for non-linear relationships by
allowing non-linear functions of all continuous covariates whilst maintaining additivity (James et al.,

2013). The model is given by

10



logit(p(sy)) = Bo + Bix1(5) + Ti_y fi(ze(s) + g(s), (5)

where X, (S;) denotes the urban-rural covariate and f;(.), ..., f; (.) are functions used to account for
the non-linear effects of other covariates. For our analyses, we chose cubic smoothing splines for

f (), noting that other choices are also possible (James et al., 2013). The function g(.) is used to
account for the effect of space in the model, for which we specified a two-dimensional smoother - an
isotropic smooth of latitude and longitude on the sphere with a second-order penalty and number of
basis functions set equal to 100 (Wahba, 1981). The model was fitted in a frequentist framework and
implemented in R using the mgcv package (Wood and Wood, 2015). We note that by including non-
linear functions of all continuous covariates, our implementation of model (5) differs from the SGEOS

model where smooth functions are only applied to non-linear relationships determined beforehand.

2.2.4 Boosted Regression Model/Trees (BRT)

Boosting is a tree-based ensemble method that models complex, non-linear relationships between
an outcome variable and multiple predictor variables (James et al., 2013). The method is based on
the generation of a collection of sequentially fitted regression trees that optimize the predictive
value of the response variable based on local predictor values. The boosting algorithm proceeds by
fitting a regression tree to the data using the outcome variable as the response in the first iteration.
The fitted tree is then scaled by a shrinkage parameter and added to the fitted function (this is set
equal to zero in the first iteration) to update the residuals. In subsequent iterations of the algorithm,
the regression trees are fitted using the residuals as the response. The process continues until a
desired number of iterations or trees have been fitted. The output from the boosted model for

location s; can be expressed as

gB(s)) =281 28°B(s)), (6)

11



where, §(.) denotes the final prediction from the model, §?(.) is the prediction from the bth
component regression tree, A is a shrinkage parameter and B is the number of trees/iterations. 4
controls the rate at which the boosting learns and is usually chosen to be small. For our application,
we set A = 0.01 as recommended in James et al. (2013) and chose B = 10,000. Another important
tuning parameter when fitting a boosting model is the number of splits in each tree or the
interaction depth, which controls the complexity of the boosted ensemble. This is often set equal to
the default value of 1. The BRT model was implemented in our study using the gbm package in R
(Ridgeway and Ridgeway, 2004). Due to the unavailability of the binomial distribution in the gbm
package, we elected to model the logit-transformed cluster level vaccination coverage p(s;) using a
Gaussian distribution and then back-transformed all the predictions post model-fitting. We note that
as in model (5), the set of covariates used in fitting the model included the longitude and latitude

coordinates to account for spatial variation.

2.2.5 Least absolute shrinkage and selection operator (LASSO) regression

Lasso regression performs both variable selection and regularization and is particularly suitable for
modelling contexts where a large or considerable number of covariates are available. The method
implements automatic covariate selection through a penalty term (the L, penalty) included in its
objective function, which uses a tuning or regularization parameter to control the amount of
regularization, i.e., how much the regression coefficients are shrunken towards zero. The method

finds regression coefficients B, that minimize the objective function

’ (7)

InL(Bldata) + a T¥_,|B;

where « is the regularization parameter and all other terms are as defined previously. The first term
in (7) is the log-likelihood function which can be obtained from the binomial regression model in
equations (1) and (2) when the spatial and non-spatial random effects are excluded. Sufficiently large

values of a will force some regression coefficients to be equal to zero. In practice, « is chosen via a

12



grid search using cross-validation techniques. As in the GAM approach, the covariate data considered
in the analysis using (7) included the longitude and latitude coordinates of the data locations. The
LASSO regression model was implemented in our work using the glmnet package in R (Friedman et

al., 2021).

2.2.6 Stacked generalization using a Bayesian geostatistical model (STG)

In statistical learning, stacked generalisation or stacked regression is an ensemble method for
combining predictions from multiple models, often referred to as child models. In the hybrid variant
implemented in our work, the child models were different ML approaches, predictions from which
were combined using a geostatistical model (Bhatt et al., 2017, Mosser et al., 2019, Sbarra et al.,
2021). Through these child models, the STG approach accounts for complex, nonlinear relationships
between the covariates and the outcome. Also, the geostatistical modelling framework is used to
account for residual spatial autocorrelation. The STG approach was proposed/utilized in Bhatt et al.
(2017) and has been used to model vaccination coverage and various HDIs (Mayala et al., 2019,

Mosser et al., 2019, Sbarra et al., 2021).

Following Sbarra et al. (2021), we considered the following child models: GAM, BRT and LASSO
regression. These child models were implemented as described previously but excluding the
geographical coordinates of the data locations in the covariate data. To obtain final predictions for
the outcome, the predictions from these child models were included as covariates in the

geostatistical model:
logit(p(s:)) = Bo + Bix M (s) + BoxPFT(s;) + Bax"4550(s) + w(s) + e(sy),  (8)

where S, B1, B> and 35 are regression coefficients and other terms are as described previously in
equation (2). As in Sbarra et al. (2021), a sum-to-one constraint was imposed on the regression
coefficients corresponding to the child models, such that 213-=1 B; = 1. This constraint helps to

mitigate the effect of extreme predictions in the child models included in (8) (Bhatt et al., 2017). As is

13



usually the case in stacked generalization, Bhatt et al. (2017) recommended the use of K-fold cross-
validation predictions from the child models to calibrate the model (i.e., estimate the parameters) in
(8), and then refitting the child models using the full data and using the predictions from these in (8)
without refitting the model. We noted that using the cross-validation predictions from the child
models in (8) compared to the full data predictions did not necessarily yield improvements in
predictive performance in our analyses. The STG approach was implemented in our work using the

INLA-SPDE approach and the INLABRU package in R (Lindgren et al., 2024).

2.2.7 Artificial neural networks (ANN)

An artificial neural network (ANN) is a ML technique that mimics the functioning of the animal brain.
An ANN model is particularly useful in modelling contexts where data are large and complex, with
potential nonlinearities and interactions between the covariates. The network consists of layers of
connected neurons that serve as data processing units, where each neuron applies a linear
transformation to its inputs, followed by a non-linear activation function. For our work, we used a
multilayer perceptron network (Park and Lek, 2016), which consists of an input layer, multiple
hidden layers and an output layer. The input layer receives the features from the data, processes
and transmits these to the hidden layers which process the information further through

interconnected neurons, while the output layer produces the final predictions. For a spatial location

T
s with covariate vector x(s) = (xl(s), X, (S), ...,xp(s)) , the predicted value from an ANN with a

single hidden layer can be expressed as:

Output layer: (s) = b3 + Z] Wizl (s),
Hidden layer: zZ(s) = f(bl + Z, ) ]lzl(s)) l=1,..,L,
Input layer: z} (s) = f(bl + 2, " ]lX] (s)),l = ,...,Ll, (9)

where L; and L, are the numbers of neurons in the input and hidden layers, respectively, f(.) is the

wa, w3

activation function, b}, b7, b* and Wﬁ, i1, w; are bias and weight parameters estimated to minimize

14



mean squared error in the training data. Furthermore, z} (s), z2(s) and p(s) are outputs from the

layers as shown in equation (9).

Fitting an ANN requires tuning the number of hidden layers, the number of neurons in each layer,
and choosing the activation function. Other parameters such as the number of epochs (the number
of times the entire data is passed through the network during training), stopping metric, stopping
tolerance and stopping rounds are also tuned during model fitting. These early stopping criteria help
to avoid overfitting in the model. A common choice for the activation function f(.) is the rectified
linear unit (relu), defined as f(x) = max{0, x}. The model was fitted using the h2o.deeplearning()
function in the H20 package in R (Fryda et al., 2024). Since the H20 package does not support the
binomial distribution, we elected to model the logit-transformed cluster-level vaccination coverage,
denoted by #(s) in equation (9) using a Gaussian distribution and then back-transformed the
predictions post model fitting. Based on a hold-out cross-validation exercise with an 80% training
and 20% testing split, the final selected model had two hidden layers with 100 neurons each, with
the number of epochs set to 100. The chosen stopping metric was the root mean square error
(RMSE) while the stopping tolerance and rounds were set equal to 0.001 and 5, respectively. We
checked the sensitivity of these choices by running several cases with different justifiable parameter

values but obtained the same results each time.

[Figure 2 about here]

2.3 Uncertainty estimation using delete-a-block jackknife cross-validation

To estimate the uncertainties associated with the ML approaches: BRT, LASSO and ANN, we
employed a delete-a-block jackknife technique. This is a variant of the delete-1 jackknife (Wang and
Yu, 2021) in which a block of observations is deleted at a time. The spatial blocks were formed by

drawing observations at random from the observed data. These can also be formed using spatially

15



contiguous observations, but this approach is more likely to affect the underlying spatial structure in
the data and can potentially introduce some artificial patterns in the uncertainty estimates,
depending on the sizes of the blocks. The choice of the block size was guided by the need to have as
many iterations as computationally logical (relative to the number of observations in the data) whilst
preserving the underlying spatial correlation in the data. Having many iterations ensures stability in
the results (i.e., the uncertainty estimates) and also reduces the numbers of observations deleted at
each iteration. We noted during test runs that block sizes of up to b = 40 observations produced
variogram estimates that were very similar to those of the full data in our applications
(supplementary Figures S5 and S6). We also noted that there were no material differences in the
estimates obtained for numbers of replicates r = 100. We, therefore, set r = 100 in our work,
corresponding to block sizes of n/r, where n is the number of observations or spatial locations in
the data as defined previously in (1). For all three ML approaches, we obtained the jackknife

estimates of the uncertainties (i.e., the standard deviations) associated with the grid level

2
predictions as \/#Z‘,;:l (ﬁj (s) — ﬁ]ack(s)) , Where p;(s) is the jth coverage estimate for grid

location s and P, (8) is the jackknife estimate of the mean across all the replicates.

2.4 Model validation using k-fold cross-validation and variogram analysis

To evaluate the out-of-sample predictive performance of the modelling approaches, we conducted a
k-fold cross-validation exercise, setting k = 10. For each indicator-method combination, we created
the cross-validation folds in two ways: random folds and spatially stratified folds. For the random
folds, the survey locations were assigned to each of the k folds in a random manner; whereas with
the spatially stratified method, each fold comprised neighbouring cluster locations. We calculated

the following measures of predictive performance: the correlation between observed (p;) and

predicted (f;) values, root mean square error (RMSE = \/Y;(; — p;)?/m), mean absolute error

(MAE =1 molpi - pi|), average bias (AVG_BIAS = % mo® - pl-)) and the continuous

m
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ranked probability score (CRPS(F;, p;) = Ef,|X; — pil — %EFJXL' — X;'|) (Gneiting and Raftery, 2007),
where F;(.) is the cumulative distribution function corresponding to the predictive distribution of
the ith cluster level estimate, and X; and X;" are two independent random variables distributed

according to F;(. ). With r posterior samples, the CRPS can be estimated as CRPS(F;, p;) =

N/ |;§L.(j) —pil = 522721 Xi=1 ﬁi(j) - ﬁi(l)|, which is then averaged over all the locations within
each fold and over all the k folds. While the other metrics (also averaged over all the k folds)
measure the accuracy of the point predictions produced by the approaches, the CRPS measures the
accuracy of both the point and uncertainty estimates as it utilizes the entire posterior predictive
distribution to determine the discrepancies between the observations and the predictions. Also, the
CRPS was only computed for the three Bayesian approaches (GEOS, SGEOS and STG) in our work as it
requires the posterior distributions of the estimates. The closer the AVG_BIAS, MAE and RMSE

estimates are to zero and the smaller the CRPS, the better the predictions. Correlation values closer

to one indicate better predictive ability.

Additionally, to further examine the fits of the different methods, we checked their (standardized) in-
sample residuals for spatial autocorrelation using variograms and the associated variogram

envelopes, which were obtained by permutation, using the geoR package in R (Ribeiro Jr et al., 2024).

3. Results

3.1 In- and out-of-sample predictive performance using cross-validation and variogram analysis

With respect to the metrics used to evaluate the accuracy of the point estimates produced by the
methods at the cluster level (correlation, RMSE, MAE and AVG_BIAS), we found that GEOS, SGEOS
and, to a great extent, LASSO had the best out-of-sample predictive performance in most cases
(Figure 3 and supplementary Table 2). The values of these metrics for GAM and STG were also very

close to those of the three best approaches, indicating only slightly worse predictive performance. In

17



contrast, BRT and ANN generally had the worst predictive performance, which can be clearly seen

when considering the AVG_BIAS and RMSE estimates in Figure 3.

Among the three Bayesian approaches for which we computed the CRPS metric, we found that GEOS
and SGEOS outperformed the STG method based on this metric, which is also consistent with the
results obtained using the other metrics. All the methods had fairly similar predictive performance
under the two types of cross-validation folds investigated (i.e., random and spatially stratified folds)
according to all the metrics except the correlations which showed that nearly all the methods had
better predictive performance under the random folds. These results indicate that the methods can
reasonably predict not only random but also spatial blocks of missing values in unsampled areas.
There was no evidence of improved predictive performance for MCV1 despite having relatively larger
cluster level sample sizes than DTP1 (supplementary Figure S7). This is likely due to the cluster level
sample sizes for MCV1 not being large enough to induce noticeable improvements in predictive

performance.

[Figure 3 about here]

Furthermore, when examining the out-of-sample predictions in low coverage areas (i. e., areas with
cluster level proportions p(s;) < 0.4 - supplementary Figures S8 and S9), we found that the
prediction errors (RMSE, random folds) for ANN and BRT were consistently larger (RMSE = 0.33)
than those of the other approaches (0.24 < RMSE < 0.3), although there was evidence of
overestimation in all the approaches. For DTP1, the lowest prediction errors were obtained for the

GEOS and SGEOS methods, whereas for MCV1, these were obtained for SGEOS, GEOS and STG.

The variograms of the in-sample residuals for DTP1 and MCV1 shown in supplementary Figures S10
and S11 indicate that of all seven approaches investigated, there was strong evidence of residual
spatial autocorrelation in the ANN and BRT methods. The variograms for both methods closely

resembled those of the outcome variables (i. e., the cluster level proportions of vaccinated children
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— supplementary Figures S5 and S6). Also, the lack of evidence of spatial autocorrelation in the

residuals is strongest for the geostatistical approaches — GEOS, SGEOS and STG.

3.2 1x1 km estimates of vaccination coverage and associated uncertainties

The rationale for the differences observed in the out-of-sample predictive performance of the
approaches is apparent when investigating the 1x1 km predicted maps of vaccination coverage and
associated uncertainties produced through using these approaches. Figure 4 (a) shows strong
similarities between the predicted surfaces produced by GAM, LASSO, GEOS, SGEOS and STG.
Broadly similar patterns demonstrating a north-south divide in coverage can also be seen in the
predicted maps produced using ANN and BRT, but their estimates are closer to the extremes of the
unit interval and smoother in the lower and higher coverage areas than those of the other

approaches.

[Figure 4 about here]

The over-smoothing of the coverage estimates by ANN and BRT relative to the other approaches is
evident in the distributions of the grid level DTP1 predictions shown in Figure 4 (b). All the methods
produced bimodal distributions reflecting the characteristic spatial distribution of vaccination
coverage in Nigeria (Utazi et al., 2018b, Dong and Wakefield, 2021, Utazi et al., 2022, Utazi et al.,
2023). However, the grid level estimates produced by ANN and BRT are more peaked near zero and
one than those produced by the other approaches, suggesting overestimation in high coverage areas
and underestimation in low coverage areas by both approaches. This also explains the higher
AVG_BIAS and RMSE values for both approaches relative to other approaches. For MCV1,
supplementary Figures S12 (a-b) show similar patterns in the grid level estimates produced by all the
approaches, with strong evidence of over-smoothing in low and high coverage areas by ANN and

BRT relative to the other approaches.
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The uncertainties associated with the predictions have broadly similar spatial patterns across the
methods, with lower uncertainties in areas where coverage estimates are either close to the
endpoints (an artefact of the binomial distribution) of the unit interval or where data locations are
dense, and higher uncertainties in areas where the estimates are closer to 0.5 or where data

locations are sparse (Figures 5 (a) and (b)).

[Figure 5 about here]

However, due to the relative over-smoothing by ANN and BRT, the uncertainties associated with
both approaches are much smaller than those of other approaches (Figure 5 (b)) in areas of lower
and higher coverage, even in comparison with LASSO for which we used the same jackknife
approach to produce its uncertainty estimates. In areas with mid-level coverage estimates, the
uncertainties associated with the estimates produced by BRT are noisier and relatively much higher
than other approaches. For MCV1 (supplementary Figures S13 (a-b)), similar patterns can be
observed, with the uncertainties associated with both ANN and BRT being much higher in many

areas relative to the other approaches.

[Figure 6 about here]

At the national level, the estimates produced through using these approaches revealed that ANN
(and BRT to some extent; and GEOS — MCV1 only) overestimated coverage for both DTP1 and MCV1
relative to the direct survey estimate that is often considered to be the gold standard (Figures 6a-b).
On the other hand, whilst there are strong correlations between the grid level estimates produced
by these approaches (Figures 6¢-d), it is evident that ANN and BRT are most dissimilar to other

approaches, particularly for DTP1.

3.3 Exploring spatial prioritization using district level coverage estimates
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To further investigate the utility of the coverage estimates produced by the methods for spatial
prioritization, we computed district level coverage estimates using their respective 1x1 km predicted
maps and then ranked the districts based on these estimates. We note that the comparisons
undertaken here using rankings obtained from the district-level coverage estimates are purely for
illustration since estimates of numbers of unvaccinated children can characterise disease risk more

accurately and are better suited for this purpose.

[Figure 7 about here]

Figures 7 (a-c) demonstrate that although there are broad similarities between the rankings of the
district level DTP1 coverage estimates produced by the different methods, remarkable differences
exist, both when examining groups of ranks (Figure 7a) and, more evidently, the individual ranks
(Figure 7b). The differences between the rankings generally appear relatively smaller in areas of
lower coverage in the northern parts of the country and much larger in higher coverage areas (Figure
6c). Also, these differences appear more pronounced when considering smaller numbers of areas
(e.g., the 80th to 100thlowest coverage areas) than larger numbers of areas (e.g., the 100 lowest
coverage areas) (Figure 7b). The median of the ranges of the ranks per district (Figure 7c) at the
national level is 112.5 (interquartile range (IQR) = 100, maximum value = 428), indicating marked
differences among the methods. Among the five methods with similar predictive performance (i.e.,
GAM, LASSO, GEOS, SGEOS and STG), the median of the ranges of the ranks per district reduces to 83
(IQR = 89, maximum value = 337), which still indicates considerable differences. However, when
examining pairs of methods with more similar predictive accuracy, there are large reductions in the
differences between the rankings. For example, for the GEOS and SGEOS methods, the median of the

ranges of the ranks per district is 17 (IQR=32).

Similar patterns were observed for MCV1 (supplementary Figure S14), with the median of the ranges

of the ranks per district estimated to be 141 (IQR=114, maximum value = 499) for all the methods at
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the national level, 87 (IQR=82, maximum value = 336) for GAM, LASSO, GEQS, SGEOS and STG, and
26 (IQR=50) for the GEOS and SGEOS methods. These differences in the rankings produced by the
methods are also apparent in the bivariate plots of the ranks shown in supplementary Figures S15

and S16.

4. Discussion

This study systematically evaluated the performance of seven geostatistical and ML approaches for
producing high-resolution estimates of vaccination coverage. All the methods, with the exception of
SGEQS, were implemented using standard desktop computers, each requiring less than three hours
(some ML methods completed much faster) to produce predictions at 1x1 km resolution. The SGEOS
method, due to its computational demands, was run on a high-memory computer with a total

runtime of = 2.5 hours.

Our results revealed similar out-of-sample predictive performance at the cluster level for five of the
methods - GEOS, SGEOS, LASSO, GAM and STG, although stronger predictive performance was
observed for GEOS, SGEOS and LASSO methods. Among all seven approaches investigated, ANN and
BRT had the poorest predictive performance. The relative over-smoothing observed in both
approaches is likely due to the use of a different outcome distribution (Gaussian, instead of
binomial), or how their algorithms learn from data. We further explored the impact of likelihood
choice by evaluating the predictive performance of the remaining methods under a Gaussian
likelihood (Supplementary Table 5). While ANN and BRT continued to underperform (see
Supplementary Tables 2 and 5), the predictive performance of the other methods deteriorated under
the Gaussian likelihood, reinforcing the suitability of the binomial distribution for our application.
Moreover, the poor performance of ANN and BRT was consistent regardless of the set of covariates
used (e.g., kriged DHS covariates vs. other geospatial covariates), as over-smoothing remained

evident in both cases (supplementary Figure S17). Interestingly, among the Bayesian approaches,
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GEOS and SGEOS generally outperformed the hybrid STG method, despite the latter’s widespread
use in mapping HDIs (Bhatt et al., 2017, Mosser et al., 2019, Sbarra et al., 2021). These findings were
further supported by in-sample assessments of residual spatial autocorrelation and comparisons of
out-of-sample predictions in low coverage areas. We did not find evidence of better predictive
performance for MCV1 due to larger cluster level sample sizes relative to DTP1. This may be because
the increase in sample size was insufficient to yield measurable improvements in predictive accuracy.
A more detailed examination of the effect of cluster-level sample size on predictive accuracy can be

found in Utazi et al. (2022).

The 1x1 km predicted maps of the indicators revealed that GAM, LASSO, GEOS, SGEOS and STG
produced very similar results, whereas ANN and BRT produced relatively over-smoothed estimates,
with values clustering toward the extremes of the coverage scale. Although the uncertainty estimates
produced by these approaches had very similar spatial distributions, the uncertainties from ANN and
BRT were either relatively smaller (for DTP1) — an artefact of over-smoothing — or appeared relatively
noisier and higher (for MCV1) in certain areas. Correlations between the grid level estimates
produced by the different approaches were generally high (= 0.78), but these also indicated
relatively lower correlations between ANN and BRT and other approaches, particularly for DTP1.
Further comparisons with direct survey estimates at the national level revealed that ANN
consistently overestimated coverage, with some evidence of similar overestimation by BRT. These
discrepancies suggest that ANN and BRT are also likely to yield other subnational (e.g., provincial-

level) estimates that are not well aligned with direct survey estimates.

Considering the importance of district level estimates of vaccination coverage and corresponding
estimates of numbers of zero-dose and under-vaccinated children for program planning and
implementation, we further investigated the utility of the coverage estimates produced by the
different approaches for spatial prioritization. We found remarkable differences in their rankings of

the districts, although there were broad similarities especially when considering larger numbers of

23



areas. The differences were most pronounced in areas of higher coverage and more modest in lower
coverage areas, which might have been affected by the spatial distribution of vaccination coverage in
the study country. We further observed a reduction in differences in rankings among methods with
similar predictive performance, as expected, and even substantial reductions between pairs of
methods with similar predictive performance. These results hold significant implications for
vaccination programming, especially in resource-constrained settings where only a limited number of
areas can be targeted per time, since inaccurate identification of priority areas for interventions
could result in missing important vulnerable populations, suboptimal resource allocation, reduced
impact and persistence of disease circulation or outbreaks. The predictive accuracy of these

approaches should therefore guide their use for map production and operationalization.

Although our study is the first to systematically compare geostatistical, ML and hybrid approaches for
vaccination coverage estimation, similar studies have been conducted in other application domains.
For example, Berrocal et al. (2020) and Veronesi and Schillaci (2019) evaluated geostatistical and ML
approaches for mapping air pollution and soil organic carbon, respectively, and found that
geostatistical models outperformed ML methods — findings that align closely with our results. Zhu et
al. (2024), in a related study on air pollution mapping, reported that random forests, a ML method,
outperformed geostatistical models. Similarly, other studies utilizing kriging-based geostatistical
approaches (e.g., Chen et al (2019) and Molla et al. (2023)) found that ML approaches performed
better. In the context of mapping HDIs, our results are somewhat different from those of Bosco et al.
(2017), who compared ANN with a Bayesian geostatistical model across multiple countries and
various HDIs. While they found similar predictive performance between the two approaches, they
preferred the geostatistical model due to its ease of implementation (i.e., not requiring many tuning
parameters). It is important to note that direct comparisons between our results and those from the
literature are challenging due to substantial differences in study designs, geographic settings and
applications, including choice of validation methods, amount of available data and parameter tuning.
These contextual factors likely contribute to the mixed evidence regarding the relative performance
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of ML and geostatistical approaches, suggesting that model performance is, to some extent, context
specific. We further assessed the generalizability of our findings to other settings by conducting an
additional case study using data from the 2021 Cote d’lvoire DHS (Institut National de la Statistique
and ICF, 2023) - see supplementary materials for details. The results we obtained also showed that
the other approaches investigated generally had better out-of-sample predictive performance than
ANN and BRT. Also, among these other approaches, SGEOS and GEOS were the best performing
methods, further corroborating our findings using the 2018 NDHS and reinforcing the robustness of

our conclusions across different settings.

Our study has some limitations that should be acknowledged. As noted earlier, our implementation
of the ANN and BRT approaches in the R programming language did not permit the use of a binomial
likelihood for the outcome variables. Implementing these approaches using other programming
languages such as Python may facilitate this. Although we found consistent results in our case study
using the 2018 Nigeria DHS and the additional analyses using the 2021 Cote d’lvoire DHS
(supplementary materials), it will be useful to also explore how these methods perform in other
geographical settings with additional antigens and potentially different sampling designs, degrees of
spatial autocorrelation in vaccination coverage and numbers and types of covariates and their
relationships with vaccination coverage (Bosco et al., 2017). It may be the case that the
underperformance observed in ANN and BRT is dependent on some of these factors, but this also
reveals a lack of robustness of both approaches to some modelling contexts or limitations in some of
their current software implementations. For geostatistical models, these attributes have been
investigated in detail in previous work using simulation studies (e.g., Utazi et al. (2018a)). However,
we note that a simulation study would not be ideal when comparing geostatistical and ML
approaches, as this would require simulating data from a geostatistical model or a sampling design
based on geostatistical techniques, which would confer an undue advantage on these models over
ML techniques. Furthermore, other approaches for estimating the uncertainties associated with the

ML approaches are also possible. For example, a spatial bootstrap algorithm (this did not perform
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well in our study during initial trials) or an approach that involves interpolating spatial cross-

validation residuals to create an uncertainty map, similar to Blanco et al (2018), could be used.

Whilst the use of geostatistical and ML approaches to produce high-resolution maps of HDIs has
grown in popularity, other small area estimation methods for producing maps of HDIs exist (Tzavidis
et al., 2018, Utazi et al., 2021, Paige et al., 2022), but these assume a discrete spatial domain,
meaning that estimates can only be produced for a given administrative level at a time. Some of
these methods are well explored in Utazi et al. (2021). Furthermore, in the ML arena, there are other
hybrid approaches aiming to overcome the limitation of ML approaches not explicitly accounting for
spatial autocorrelation in the data through (i) creating features that imitate the spatial
autocorrelation in the outcome and using these as additional covariates in conventional ML methods
(Sekuli¢ et al., 2020, Fouedjio and Arya, 2024), (ii) combining ML predictions with the kriging of the
prediction residuals (Kaya et al., 2022) and (iii) locally calibrated ML algorithms (Hagenauer and
Helbich, 2022, Fouedjio and Arya, 2024). Future work in mapping vaccination coverage and other
HDIs may involve the exploration of these hybrid approaches. In geostatistical models, spatially
varying coefficient models (Gelfand et al., 2003) could also be used to account for the spatial non-
stationarity in the regression relationship between vaccination coverage and geospatial covariate

information.

In conclusion, our results provide valuable guidance to practitioners regarding the utility of these
modelling approaches for producing maps of vaccination coverage and other HDIs. While most of the
approaches we investigated had good predictive accuracy and produced similar results, some
approaches were relatively better, with significant implications for spatial prioritization. Effort should
be made to either identify the best modelling framework for each analytical context or to use

approaches that have been shown to be more robust and reliable in a similar setting.
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Figure 1: 1x1 km maps of the externally sourced geospatial covariates used in the study.

39



pusen Proportion of mathers with at least a primary
i education

Faoen

Maternal educ
D.9%

e

faoen

Vaccination card/health document ownership

Health card/doc.
088

Fson Proportion of households with access to media

Use of media
099

fasen Proportion of households with access te a maobile
i phone/finternet

faoen

Phonefinternet
0.99

Fah

5T 1T
1

Laosn

Skilled birth attendance

Skilled birth att

059

Luen  Proportion of middle/richer/richest households (DHS)

i

e’

bonn

Household wealth

IE.W
0

Figure 2: 1x1 km

maps of the DHS-derived geospatial covariates used in the study.

40




Table 1: Descriptions of the geospatial covariates used in the study. Covariates 1 — 8 are the
externally sourced geospatial covariates while covariates 9 — 14 are the DHS-derived covariates.

Covariate Description Year Source
S/N
Externally sourced geospatial covariates
1 Travel time to Travel time (in minutes) from | 2018 | Maina, J. et al. A spatial database of health
the nearest each km? grid to the nearest facilities managed by the public health sector
health facility health facility created using a in sub Saharan Africa. Sci Data 6, 134 (2019).
health facility data base from https://doi.org/10.1038/s41597-019-0142-2
Maina et al. (2019) and the
methodology described in Weiss, D.J. et al. (2018). A global map of
Weiss et al. (2018) travel time to cities to access inequalities in
accessibility in 2015. Nature 553(7688):333-
336. doi:10.1038/nature25181.
2 Poverty index Proportion of people livingin | 2013 | WorldPop (2013) https://www.worldpop.org/
poverty (poverty as defined
by USD 2.00)
3 Nightlight VIIRS night-time lights 2016 | NOAA —Visible Infrared Imaging Radiometer
intensity Nano-watts (sqgcm*sr) Suite.
https://ngdc.noaa.gov/eog/viirs/index.html
4 Cattle density Number of cattle per km? grid | 2010 | Gilbert, M. et al. (2018) Global Distribution
Data for Cattle, Buffaloes, Horses, Sheep,
Goats, Pigs, Chickens and Ducks in 2010.
Nature Scientific data, 5:180227. doi:
10.1038/sdata.2018.227
5 Daytime Land Average MODIS daytime land | 2013- | Wan, Z. et al. MOD11C3 MODIS/Terra Land
Surface surface temperature 2013- 2018 | Surface Temperature/Emissivity Monthly L3
Temperature 2018 (Kelvin) Global 0.05Deg CMG Voo6 [Data set]. NASA
EOSDIS Land Processes DAAC
6 Distance to Distance to settlements/built- | 2014 | WorldPop (www.worldpop.org - School of
settlements up areas (Metres) Geography and Environmental Science,
University of Southampton; Department of
Geography and Geosciences, University of
Louisville; Departement de Geographie,
Universite de Namur) and Center for
International Earth Science Information
Network (CIESIN), Columbia University
(2014). Global High Resolution Population
Denominators Project - Funded by The Bill
and Melinda Gates Foundation
(OPP1134076).
https://dx.doi.org/10.5258/SOTON/WP00670
7 Distance to Distance to the edge of 2015 | ESA (European Space Agency) CCl (Climate
cultivated areas | cultivated areas (Metres) Change Initiative) Land Cover project 2017.
"Land Cover CCI Product - Annual LC maps
from 2000 to 2015 (v2.0.7)."
http://maps.elie.ucl.ac.be/CCI /viewer
8 Urban and rural | Urban and rural areas 2018 | WorldPop (www.worldpop.org - School of
areas produced using WorldPop Geography and Environmental Science,
2018 unconstrained total University of Southampton; Department of
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https://www.worldpop.org/
https://dx.doi.org/10.5258/SOTON/WP00670

population estimates and
information obtained from
the 2018 NDHS as described
in Utazi et al (2022)

Geography and Geosciences, University of
Louisville; Departement de Geographie,
Universite de Namur) and Center for
International Earth Science Information
Network (CIESIN), Columbia University
(2018). Global High Resolution Population
Denominators Project - Funded by The Bill
and Melinda Gates Foundation
(OPP1134076).
https://dx.doi.org/10.5258/SOTON/WP00670

National Population Commission - NPC and
ICF, Nigeria Demographic and Health Survey
2018 - Final Report, 2019, Abuja, Nigeria:
NPC and ICF. Available at
http://dhsprogram.com
/pubs/pdf/FR359/FR359.pdf, 2019

Utazi CE et al (2022). Conditional probability
and ratio-based approaches for mapping the
coverage of multi-dose vaccines. Statistics in
Medicine; 41(29): 5662-5678.

NDHS-derived geospatial c

ovariates

survey that were assisted by a
skilled provider (i.e.

9 Ownership of Proportion of children age <= | 2018 | National Population Commission - NPC and
health 35 months who owned a ICF, Nigeria Demographic and Health Survey
card/document | vaccination card and/or a 2018 - Final Report, Abuja, Nigeria: NPC and

health document which ICF. Available at http://dhsprogram.com
were/was seen during the /pubs/pdf/FR359/FR359.pdf, 2019
survey

10 | Household Proportion of households 2018 | National Population Commission - NPC and
wealth (with at least one living child) ICF, Nigeria Demographic and Health Survey

belonging to the top three 2018 - Final Report, Abuja, Nigeria: NPC and
wealth quintiles ICF. Available at http://dhsprogram.com
(middle/richer/richest) /pubs/pdf/FR359/FR359.pdf, 2019
11 | Maternal Proportion of mothers who 2018 | NDHS 2018 National Population Commission
education had at least a primary - NPC and ICF, Nigeria Demographic and

education Health Survey 2018 - Final Report, Abuja,
Nigeria: NPC and ICF. Available at
http://dhsprogram.com
/pubs/pdf/FR359/FR359.pdf, 2019

12 Use of media Proportion of mothers who 2018 | NDHS 2018 National Population Commission

had access to - NPC and ICF, Nigeria Demographic and

newspaper/radio/television Health Survey 2018 - Final Report, Abuja,

at least once a week Nigeria: NPC and ICF. Available at
http://dhsprogram.com
/pubs/pdf/FR359/FR359.pdf, 2019

13 | Skilled birth Proportion of live births in 2018 | NDHS 2018 National Population Commission
attendance the 5 years preceding the - NPC and ICF, Nigeria Demographic and

Health Survey 2018 - Final Report, Abuja,
Nigeria: NPC and ICF. Available at
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https://dx.doi.org/10.5258/SOTON/WP00670

doctor/nurse/auxiliary

nurse/midwide)

http://dhsprogram.com
/pubs/pdf/FR359/FR359.pdf, 2019.

14 | Accessto Proportion of mothers who 2018 | NDHS 2018 National Population Commission
mobile had access to a mobile phone - NPC and ICF, Nigeria Demographic and
phone/internet | and/or internet Health Survey 2018 - Final Report, Abuja,

Nigeria: NPC and ICF. Available at
http://dhsprogram.com
/pubs/pdf/FR359/FR359.pdf, 2019.
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Figure 3: Plots of the relationships between the original geospatial covariates (excluding urban-rural)
and DTP1 coverage at the cluster level. The blue lines are linear fits while the red lines are natural
cubic spline fits to the data.
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Figure 4: Plots of the relationships between the original geospatial covariates (excluding urban-rural)
and MCV1 coverage at the cluster level. The blue lines are linear fits while the red lines are natural
cubic spline fits to the data.
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Table 2: Out-of-sample predictive performance of the geostatistical and machine learning approaches

investigated based on a k-fold cross-validation exercise using cluster level data

Method Corr. RMSE MAE AVG_BIAS CRPS | Corr. RMSE MAE AVG_BIAS CRPS
DTP1 Random k-fold DTP1 Stratified k-fold

ANN 0.7230 0.2804 0.1775 -0.0366 0.7025  0.2853  0.1830 -0.0510

BRT 0.7060 0.2740 0.1730 -0.0760 0.4700  0.2830  0.1830 -0.0620

GAM 0.7630 0.2100 0.1630 0.0040 0.5290  0.2240  0.1720 0.0100

LASSO  0.7730 0.2070 0.1620 0.0060 0.5950  0.2080  0.1630 0.0060

GEOS 0.7877 0.2017 0.1564 -0.0046 0.1213  0.5994  0.2126  0.1666 0.0011  0.1270

SGEOS 0.7888 0.2013 0.1571 -0.0041 0.1212 05910 0.2156  0.1690 0.0014  0.1282

STG 0.7140 0.2281 0.1859 0.0102 0.1459  0.4325 02525  0.2119 0.0345  0.1580

Method MCV1 Random k-fold MCV1 Stratified k-fold

ANN 0.6035 0.3036 0.2319 -0.0574 0.5568 0.3158 0.2438 -0.0452

BRT 0.6330 0.2890 0.2190 -0.0550 0.4620 0.2960 0.2250 -0.0530

GAM 0.6760 0.2130 0.1690 0.0030 0.5150 0.2210 0.1760 0.0020

LASSO  0.6790 0.2120 0.1700 0.0030 0.5380 0.2150 0.1740 0.0070

GEOS 0.7268 0.1983 0.1569 -0.0024 0.1176 (0.5519 0.2181 0.1744 -0.0097 0.1300

SGEOS 0.7229 0.1997 0.1584 -0.0039 0.1184 (0,5310 0.2218 0.1780 -0.0125 0.1325

STG 0.6660 0.2148 0.1727 0.0080 0.1353 (.3743 0.2466 0.2040 0.0159 0.1532
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Random K-fold cross-validation
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Figure 8: Prediction in low coverage areas for DTP1 using geostatistical and machine-learning
approaches (i.e., survey clusters with proportion of children vaccinated p < 0.4).
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Figure 9: Prediction in low coverage areas for MCV1 using geostatistical and machine-learning
approaches (i.e., survey clusters with proportion of children vaccinated p < 0.4).
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Figure 10: Variograms of the in-sample residuals for DTP1 produced by the different methods. The
shaded areas are the variogram envelopes.
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Figure 11: Variograms of the in-sample residuals for MCV1 produced by the different methods. The

shaded areas are the variogram envelopes.
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Figure 12: 1x1 km modelled estimates of MCV1 coverage produced through using different
geostatistical and machine learning approaches shown using (a) maps and (b) density plots.
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Figure 13: Estimates of the uncertainties associated with 1x1 km estimates of MCV1 coverage
produced using different geostatistical and machine learning approaches shown using (a) maps and

(b) density plots.
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estimates produced using geostatistical and machine learning approaches, and (c) the range of the
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GEOS method.
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Figure 15: Examining the correlations between 1x1 km grid level DTP1 estimates produced by the

different geostatistical and machine learning approaches.
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Figure 16: Examining the correlations between 1x1 km grid level MCV1 estimates produced by the

different geostatistical and machine learning approaches.
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Additional analyses to investigate the performance of the geostatistical and machine learning
approaches using the 2021 Cote d’lvoire Demographic and Health Survey data

For this analysis, we obtained cluster level data on MCV1 coverage from the 2021 Cote d’lvoire
Demographic and Health Survey (Institut National de la Statistique and ICF, 2023) for children aged
12-23 months. Detailed information on the survey can be found in the survey report (Institut
National de la Statistique and ICF, 2023). The extracted data included information for 1,919 children
aged 12 — 23 months, sampled from 509 clusters. As in the application using the 2018 NDHS, we also
obtained 13 geospatial covariates for the analysis from WorldPop, as reported in supplementary
Table 4. These covariates were processed and evaluated as described in Section 2.1.2.

We conducted a k-fold cross-validation exercise, setting k = 10 and using random and stratified
folds as before, to evaluate the out-of-sample predictive performance of the modelling approaches
using the 2021 Cote d’lvoire DHS. All the methods were implemented as described previously in
Section 2.2, with appropriate choices made for the current application.

The results of the k-fold cross-validation exercise are reported in supplementary Table 3 below.
These results generally indicate that based on RMSE, MAE and AVG_BIAS, the ANN and BRT were the
worst performing approaches. Both approaches only had better correlations than the STG approach.
Also, based on all the metrics, the best performing approaches were the SGEOS and GEOS
approaches.

Table 3: Out-of-sample predictive performance of the geostatistical and machine learning approaches
investigated based on a k-fold cross-validation exercise using cluster level 2021 Cote d’lvoire
Demographic and Health Survey data

Method | Correlation | RMSE | MAE | AVG_BIAS | CRPS
Random K-fold

ANN 0.2619 0.4292 0.3357 -0.0776 -

BRT 0.2502 0.4342 0.3255 -0.0908 -

GAM 0.2707 0.3245 0.2709 -0.0136 -

LASSO 0.2835 0.3171 0.2632 -0.0150 -

GEOS 0.3143 0.2834 | 0.2367 0.0051 | 0.1803

SGEOS | 0.3252 0.2821 0.2351 0.0050 | 0.1793

STG 0.2317 0.3207 0.2679 -0.0118 0.2169
Stratified K-fold

ANN 0.2563 04217 | 0.3260 -0.0898 | -

BRT 0.1494 04570 | 0.3515 -0.0854 | -

GAM 0.2268 03287 | 0.2754 -0.0059 | -

LASSO | 0.2317 03227 | 0.2685 -0.0139 |-

GEOS 0.2682 0.2856 | 0.2369 0.0057 | 0.1784

SGEOS | 0.2759 0.2835 0.2352 -0.0018 | 0.1780

STG 0.1469 0.3252 0.2718 -0.0116 | 0.2155
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Table 4: Descriptions of the geospatial covariates used in the additional analyses. Covariates 1 —9 are
the externally sourced geospatial covariates while covariates 10 — 13 are the DHS-derived covariates.

Covariate Description Year Source
S/N
Externally sourced geospatial covariates
1 Urban and Urban and rural areas | 2021 | WorldPop (www.worldpop.org - School of
rural areas produced using WorldPop Geography and Environmental Science, University
2021 unconstrained total of Southampton; Department of Geography and
population estimates and Geosciences, University of Louisville; Departement
information obtained from de Geographie, Universite de Namur) and Center for
the 2021 Cote d’lvoire DHS International Earth Science Information Network
as described in Utazi et al (CIESIN), Columbia University (2021). Global High
(2022) Resolution Population Denominators Project -
Funded by The Bill and Melinda Gates Foundation
(OPP1134076).
https://dx.doi.org/10.5258/SOTON/WP00670
Institut National de la Statistique-INS et ICF,
Demographic and Health Surveys of Cote d'lvoire,
2021- Final Report, INS/Cote d'lvoire & ICF,
Available at
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf,
2021
Utazi CE et al (2022). Conditional probability and
ratio-based approaches for mapping the coverage of
multi-dose vaccines. Statistics in Medicine; 41(29):
5662-5678.
2 Vegetation MODIS Mid-Infrared | 2017- | Didan, K. (2021). MODIS/Aqua Vegetation Indices
index Vegetation index 16-day | 2021 | 16-Day L3 Global 1km SIN Grid V061 [Data set].
mean NASA EOSDIS Land Processes DAAC.
https://doi.org/10.5067/MODIS/MYD13A2.061
3 Average  wet | Number of wet days | 2017- | Harris, ., Osborn, T. J., Jones, P., & et al. (2020).
days (averaged over 2017 - | 2021 | Version 4 of the CRU TS monthly high-resolution
2021) gridded multivariate climate dataset. Scientific
Data, 7, 109. https://doi.org/10.1038/s41597-020-
0453-3
4 Distance to | Distance to UCDP conflict | 2016- | Uppsala Conflict Data Program, UCDP Conflict
conflict locations averaged over | 2020 | Encyclopedia: www.ucdp.uu.se/database, Uppsala
locations 2016 — 2020 (Metres) University (accessed on 01/07/2024).
5 Elevation Calculation of elevation | 2020 | https://www.viewfinderpanoramas.org/dem3.html
above the sea level (Metres)
6 Accessto urban | Estimated travel access to | 2015 | Weiss, D.J. et al. (2018). A global map of travel time
areas urban areas per 1km pixel to cities to access inequalities in accessibility in
resolution 2015. Nature 553(7688):333-336.
doi:10.1038/nature25181.
7 Travel time to | Travel time walking (in | 2020 | Maina, J. et al. A spatial database of health facilities

the nearest
health facility

minutes) from each km? grid
to the nearest health facility
created using a health

managed by the public health sector in sub Saharan
Africa. Sci Data 6, 134 (2019).
https://doi.org/10.1038/s41597-019-0142-2
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https://doi.org/10.5067/MODIS/MYD13A2.061
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3

facility data base from
Maina et al. (2019) and the
methodology described in
Weiss et al. (2018)

Weiss, D.J. et al. (2018). A global map of travel time
to cities to access inequalities in accessibility in
2015. Nature 553(7688):333-336.
doi:10.1038/nature25181.

8 Average Malaria parasite prevalence | 2017- | Weiss, D. J., Lucas, T. C. D., Nguyen, M., Nandi, A. K,
malaria in 2-10-year-olds averaged | 2020 | Bisanzio, D., et al. (2019). Mapping the global
Prevalence over 2017- 2020 prevalence, incidence, and mortality of Plasmodium

falciparum, 2000-17: A spatial and temporal
modelling study. The Lancet, 394(10195), 322—-331.
https://doi.org/10.1016/5S0140-6736(19)31097-9

9 Average Maximum temperature | 2017- | Harris, 1., Osborn, T. J., Jones, P, & et al. (2020).
maximum (averaged over 2017 —| 2020 | Version 4 of the CRU TS monthly high-resolution
temperature 2021) gridded multivariate climate dataset. Scientific

Data, 7, 109. https://doi.org/10.1038/s41597-020-
0453-3
NDHS-derived geospatial covariates

10 | Ownership of Proportion of children age 2021 | Institut National de la Statistique-INS et ICF,
health <= 35 months who owned a Demographic and Health Surveys of Cote d'lvoire,
card/document | vaccination card and/or a 2021- Final Report, INS/Céte d'lvoire & ICF,

health document which Available at
were/was seen during the www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf,
survey 2021
11 | Household Proportion of households 2021 | Institut National de la Statistique-INS et ICF,
wealth (with at least one living Demographic and Health Surveys of Céte d'lvoire,
child) belonging to the top 2021- Final Report, INS/Cote d'lvoire & ICF,
three wealth quintiles Available at
(middle/richer/richest) www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf,
2021
12 | Maternal Proportion of mothers who | 2021 | Institut National de la Statistique-INS et ICF,
education had at least a primary Demographic and Health Surveys of Céte d'lvoire,
education 2021- Final Report, INS/Céte d'lvoire & ICF,
Available at
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf,
2021
13 | Use of media Proportion of mothers who | 2021 | Institut National de la Statistique-INS et ICF,

had access to
newspaper/radio/television
at least once a week

Demographic and Health Surveys of Cote d'lvoire,
2021- Final Report, INS/Céte d'lvoire & ICF,
Available at
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf,
2021
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Results of additional analyses for GAM, LASSO, GEOS, SGEOS and STG methods using Gaussian
likelihoods

Table 5: Out-of-sample predictive performance of five of the methods investigated based on a cluster
level k-fold cross-validation exercise using a Gaussian likelihood.

Method | Cor. | RMSE | MAE | AVG BIAS | CRPS
DTP1 Random k-fold

GAM 0.7401 | 0.2516 [ 0.1595 |  -0.0639

LASSO 0.7509 | 0.2510 [ 0.1603 |  -0.0542

GEOS 0.7575 | 0.2414 [ 0.1530 0.0628 | 0.1344

SGEOS 0.7627 | 0.2401 [ 0.1533 0.0516 | 0.1342

STG 0.6598 | 0.2784 [ 0.1855 |  -0.0853 | 0.1609
DTP1 Stratified k-fold

GAM 0.4721 | 0.2715 [ 0.1761 |  -0.0599

LASSO 0.5590 | 0.2494 | 0.1615 |  -0.0545

GEOS 0.5660 | 0.2466 | 0.1584 0.0640 | 0.1359

SGEOS 0.5540 | 0.2485 | 0.1612 0.0535 | 0.1379

STG 0.3873 | 0.2739 | 0.1907 |  -0.0899 | 0.1589

Examining the predictive performance of ANN and BRT using different groups of covariates
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Figure 17: Distributions of grid-level predictions produced through using ANN and BRT when only
externally sourced geospatial covariates (GEO) and DHS-derived covariates (DHS) were used for
prediction (see supplementary Table 1). The urban-rural covariate was included in each case.
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