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Abstract  

Recently, there has been a growing interest in the production of high-resolution maps of vaccination 

coverage. These maps have been useful for uncovering geographic inequities in coverage and 

improving targeting of interventions to reach marginalized populations. Different methodological 

approaches have been developed for producing these maps using mostly geolocated household 

survey data and geospatial covariate information. However, it remains unclear how much the 

predicted coverage maps produced by the various methods differ, and which methods yield more 

reliable estimates. Here, we explore the predictive performance of these methods and resulting 

implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey as 

a case study, we generate 1x1 km and district level maps of indicators of vaccination coverage using 

geostatistical, machine learning (ML) and hybrid methods and evaluate predictive performance via 

cross-validation. Our results show similar predictive performance for five of the seven methods 

investigated, although two geostatistical approaches are the best performing methods. The worst-

performing methods are two ML approaches. We find marked differences in spatial prioritization 

using these methods, which could potentially result in missing important underserved populations, 

although broad similarities exist. Our study can help guide map production for other health and 

development metrics. 

Keywords: Bayesian geostatistics; Machine learning; Vaccination coverage; Demographic and Health 

Surveys; Health and development indicators; INLA-SPDE 

 

1. Introduction 

Immunization is a fundamental component of primary healthcare, playing a critical role in reducing 

vaccine preventable morbidity and mortality (Shattock et al., 2024). It is also essential for achieving 

the Sustainable Development Goals (United Nations, 2015) and other global health policy goals, such 
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as the Immunization Agenda 2030 (World Health Organization, 2020) and Gavi Strategy 5.0 (Gavi The 

Vaccine Alliance, 2020). However, immunization and other health services remain out of reach for 

vulnerable and marginalized populations, including those in remote rural areas, urban slums, and 

conflict-affected and humanitarian settings (Chopra et al., 2020, UNICEF and the Bill and Melinda 

Gates Foundation, 2021, Wigley et al., 2022).  

To design effective strategies to reach these underserved populations, there is a need for accurate, 

spatially detailed maps of vaccination coverage and other health and development indicators (HDIs) 

such as maternal literacy, poverty, school attendance, malaria prevalence, malnutrition and skilled 

birth attendance (Bosco et al., 2017, Mosser et al., 2019, Weiss et al., 2019, Kinyoki et al., 2020, 

Sbarra et al., 2021). Such maps enable decision makers to identify geographic and other inequities in 

service coverage and utilization, thereby supporting more targeted and effective interventions -  a 

key focus of the growing field of precision public health (Dowell et al., 2016). Moreover, by providing 

current, robust and actionable evidence base, high-resolution maps help bridge the data gap that 

exist in many low- and middle-income countries where health management information systems and 

other administrative data sources such as vital registration are often incomplete and unreliable 

(Scobie et al., 2020, Mwinnyaa et al., 2021). 

Data for producing maps of vaccination coverage and other HDIs often come from nationally 

representative, geolocated household surveys such as the Demographic and Health Surveys, Multiple 

Indicator Cluster Surveys and national vaccination coverage surveys. Due to their high operational 

costs, these surveys are generally designed to provide estimates at the provincial or first 

administrative level. As a result, classical survey analysis methods, such as direct weighted estimators 

(Rao, 2005), can only generate reliable estimates at this coarse spatial scale. However, accurate and 

timely estimates are most valuable at lower administrative levels, e.g., the district or second 

administrative level at which vaccination programs and other interventions are planned and 

implemented. This need, along with advances in geostatistical modelling techniques and computing 
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power, has spurred the widespread use of geostatistical and machine learning (ML) approaches to 

produce gridded estimates of HDIs from survey data. These approaches leverage the direct and 

proximate relationships between HDI outcomes measured at survey cluster locations and geospatial 

covariates, as along with spatial and spatiotemporal dependence, to model and predict the spatial 

distributions of HDIs for single or multiple timepoints. By producing estimates at the grid level, 

typically 1 km or 5 km resolution, these outputs are not constrained by changing political or 

administrative boundaries and can be flexibly aggregated to operationally relevant areas of interest. 

Moreover, when integrated with other geospatial datasets, e.g., high-resolution population maps 

(Tatem, 2017) and geolocated health facility data (Lim et al., 2008, Johns et al., 2022), precise 

estimates of at-risk or underserved populations can be produced. Research and survey programs 

such as WorldPop through its VaxPop project (Utazi et al., 2018b, Utazi et al., 2019, Utazi et al., 2021, 

Utazi et al., 2022), the Institute for Health Metrics and Evaluation (IHME) (Mosser et al., 2019, Sbarra 

et al., 2021) and the DHS program (Janocha et al., 2021) now routinely produce and distribute maps 

of HDIs.  

A range of geostatistical, ML and hybrid approaches have been employed to produce high-resolution 

maps of vaccination coverage and other HDIs. Prominent examples include geostatistical models 

(GEOS) (Bosco et al., 2017, Utazi et al., 2021, Utazi et al., 2022, Alegana et al., 2024), generalized 

additive models (GAMs) (Takahashi et al., 2017, Kawakatsu et al., 2024), stacked generalization (STG) 

(Mosser et al., 2019, Sbarra et al., 2021), boosted regression trees (BRT) (Kawakatsu et al., 2024), 

random forests (Browne et al., 2021), least absolute shrinkage and selection operator (LASSO) 

regression and deep learning/artificial neural networks (ANN) (Bosco et al., 2017). Model-based 

geostatistics (Diggle et al., 1998) explicitly accounts for spatial autocorrelation and the (non)linear 

effects of covariates, and is often implemented in a Bayesian framework using the INLA-SPDE 

approach or MCMC techniques, with INLA-SPDE being more popular recently due to its 

computational efficiency. When non-linear (or smooth) functions of covariates are incorporated into 

a geostatistical model, the result is a semiparametric geostatistical model (SGEOS) (Wood, 2011, 
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Wang et al., 2018), which eliminates the need for covariate data transformation. A key advantage of 

the Bayesian implementation of geostatistical models is the natural framework to account for 

uncertainty in both model predictions and input data. ML and hybrid approaches are particularly 

suitable for modelling complex nonlinear relationships and interactions in the data, though this often 

comes at the expense of interpretability. ML approaches can automatically identify relevant 

covariates/features in the data, unlike geostatistical modelling which may require a separate 

covariate selection process. While ML approaches rely only on covariates to make predictions and 

would be expected to perform well when these are highly informative, geostatistical and hybrid 

approaches additionally exploit residual spatial (and temporal) autocorrelation to improve predictive 

performance. In general, ML approaches are computationally less demanding, can handle large-scale 

and high-dimensional data better, and are sometimes less challenging to implement (e.g., GAM, 

LASSO and BRT) (James et al., 2013, Berrocal et al., 2020). However, some ML approaches such as 

BRT, ANN and LASSO do not produce uncertainty estimates, necessitating the use of supplementary 

techniques for uncertainty quantification (Veronesi and Schillaci, 2019, Berrocal et al., 2020).  

Currently, little is known about the comparative predictive performance of these ML and 

geostatistical approaches in the context of mapping vaccination coverage. There is a lack of 

substantial evidence on how much the predicted maps produced by these approaches differ and 

which approaches yield more reliable estimates for vaccination coverage mapping. This gap may be 

attributed to the technical complexity involved in implementing these models and, in some cases, 

insufficient emphasis on methodological rigour. As maps of vaccination coverage and other HDIs 

become increasingly popular, it is crucial to assess the strengths and limitations of these modelling 

approaches. The goal of this study is, therefore, to critically evaluate widely used approaches for 

mapping vaccination coverage and other HDIs in terms of their predictive accuracy and associated 

uncertainties.  Specifically, we investigate four machine learning approaches (ANN, BRT, GAM and 

LASSO), two geostatistical models (GEOS and SGEOS) and one hybrid approach (STG).  Our evaluation 

is based on a case study mapping the coverage of the first dose of the diphtheria-tetanus-pertussis 
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(DTP1) and the first dose of the measles-containing vaccine (MCV1) vaccines using the 2018 Nigeria 

Demographic and Health Survey (NDHS) (National Population Commission - NPC and ICF, 2019).  

 

2. Methodology 

2.1 Data 

2.1.1 Vaccination coverage data 

Data on the coverage of DTP1 and MCV1 vaccines were obtained from the 2018 NDHS (National 

Population Commission - NPC and ICF, 2019) for children aged 12-23 months and 9-35 months, 

respectively. The NDHS was conducted between August and December 2018, utilizing a stratified, two-

stage sampling design to produce estimates of indicators at the national, regional and state levels, as 

well as for urban and rural areas. Stratification was achieved by separating each of the 36 states and 

the Federal Capital Territory (FCT) into urban and rural areas. Samples were drawn from within each 

stratum in two stages: the first stage involved the selection of survey clusters (enumeration areas) from 

a national sampling frame using a probability proportional to size sampling scheme, while the second 

stage involved selecting households randomly from household lists within the selected clusters. 

Detailed information on the methods employed in the survey is published elsewhere (National 

Population Commission - NPC and ICF, 2019). The NDHS was selected for this study because of ease of 

data access and having been used extensively in previous work to map coverage (Dong and Wakefield, 

2021, Aheto et al., 2023, Utazi et al., 2023, Kawakatsu et al., 2024). 

The survey was implemented in a total of 1,389 clusters, with 11 of the originally selected 1,400 

clusters excluded due to security concerns. In Borno State, only 11 of the 27 local government areas 

were included in the survey due for similar reasons For both vaccines, we used information obtained 

from both home-based records and maternal/caregiver recall, following DHS guidance during data 

extraction (Croft et al., 2023). Hence, our analysis captures crude DTP1 and MCV1 coverage 

estimates (World Health Organization, 2018). At the cluster level, we aggregated individual-level 
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data to produce numbers of children surveyed, numbers vaccinated and empirical proportions of 

children vaccinated as shown in Figure 1. 

 

[Figure 1 about here] 

 

2.1.2 Geospatial covariate and population data 

To enhance the prediction of vaccination coverage using the approaches investigated, we obtained 

some geospatial covariate information — see supplementary Figures S1 and S2 and supplementary 

Table 1. These covariates have been successfully used in previous work (Bosco et al., 2017, Utazi et 

al., 2019, Utazi et al., 2022, Utazi et al., 2023) to model and predict vaccination coverage and other 

HDIs. These comprise variables measuring a range of conditions in the study country which may have 

direct or proximate relationships with vaccination coverage. The covariates include measures of 

remoteness (travel time to the nearest health facility and distance to cultivated areas), 

socioeconomic status (poverty index, household wealth, maternal education), health-related factors 

(ownership of health or vaccination card/document, skilled birth attendance, access to media and 

use of mobile phone/internet) and urbanicity or development (nightlight intensity and urban/rural 

areas).  

 The externally sourced geospatial covariates (supplementary Table 1) were processed and 

harmonized at 1 × 1 km resolution, at which we planned to produce grid level coverage estimates. To 

extract the values of the covariates for each cluster location, we used the approach described in 

Utazi et al. (2018b) and Perez-Haydrich et al. (2013), which accounts for the displacement of the 

clusters (this displacement often occurs within districts in DHS surveys). For the DHS-derived 

covariates, we first calculated their values at the cluster level using detailed definitions provided in 

supplementary Table 1 and then used the krig() function in the fields package in R (Nychka et al., 

2017) to create corresponding 1 × 1 km interpolated surfaces, with the optimal range parameter set 
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to the first quartile of the distances between the clusters (other distance quartiles yielded almost the 

same results). The kriging interpolation was carried out using the logit-transformed cluster level data 

in each case, due to its underlying Gaussian assumption, after which the estimates were back-

transformed to the unit interval. 

We checked for multicollinearity by examining the correlations between the covariates and by fitting 

non-spatial binomial regression models to estimate their variance inflation factors (VIFs). 

Furthermore, for one of the modelling approaches (equations (1) and (2)), we examined the 

distributions of the covariates and their relationships with vaccination coverage (on the empirical 

logit scale), following which we log- or logit-transformed some skewed covariates to improve their 

linear relationships with vaccination coverage. The plots of the covariates and their relationships 

with vaccination coverage are shown in supplementary Figures S3 and S4. All 14 covariates were 

retained in our study, as their VIFs were less than 5.0 for both DTP1 and MCV1. This also facilitated 

using the application of ML approaches, which typically benefit from a richer set of covariates.  

To aggregate the coverage estimates to the district and other administrative levels, we obtained 2018 

gridded estimates of numbers of children aged under 5 years from WorldPop (Tatem, 2017), which 

we used as a proxy population layer for the age groups included in the study.  

 

2.2 Geostatistical and machine learning modelling approaches 

We considered seven modelling approaches to predict vaccination coverage at 1x1 km resolution, as 

indicated previously. In all analyses, we accounted for the complex sampling design of the NDHS, 

specifically urban-rural stratification, by including an urban-rural covariate and, when using 

geostatistical modelling approaches, between-cluster variation (Dong and Wakefield, 2021, 

Gascoigne et al., 2025). The modelling approaches are described in detail as follows and illustrated in 

Figure 2.  
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2.2.1 Bayesian geostatistical regression model (GEOS) 

The first model we considered is a Bayesian geostatistical model with a Binomial likelihood. Let 𝑌𝑌(𝒔𝒔𝑖𝑖) 

denote the number of children vaccinated at survey location 𝒔𝒔𝑖𝑖  (𝑖𝑖 = 1, … ,𝑛𝑛) and 𝑚𝑚(𝒔𝒔𝑖𝑖) the number 

of children sampled at the location. The first level of the model assumes that 

                       𝑌𝑌(𝒔𝒔𝑖𝑖)|𝑝𝑝(𝒔𝒔𝑖𝑖) ∼ Binomial�𝑚𝑚(𝒔𝒔𝑖𝑖),𝑝𝑝(𝒔𝒔𝑖𝑖)�,                                                                          (1) 

where 𝑝𝑝(𝒔𝒔𝑖𝑖) (0 ≤ 𝑝𝑝(𝒔𝒔𝑖𝑖) ≤ 1) is the true vaccination coverage at location 𝒔𝒔𝑖𝑖 . We model 𝑝𝑝(𝒔𝒔𝑖𝑖) using 

the logistic regression model  

                logit(𝑝𝑝(𝒔𝒔𝑖𝑖)) = 𝛽𝛽0 + ∑ x𝑗𝑗(𝒔𝒔𝑖𝑖)𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + 𝜔𝜔(𝒔𝒔𝑖𝑖) + 𝜖𝜖(𝒔𝒔𝑖𝑖),                                             (2) 

where 𝛽𝛽0 is an intercept term, x1(𝒔𝒔𝑖𝑖), … , x𝑝𝑝(𝒔𝒔𝑖𝑖) are covariates  associated with 𝒔𝒔𝑖𝑖 (including an 

urban-rural covariate), 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝  are the corresponding regression coefficients, 𝜖𝜖(𝒔𝒔𝑖𝑖) is an 

independent and identically distributed (iid) Gaussian random effect with variance, 𝜎𝜎𝜖𝜖2, used to 

model non-spatial residual variation or between-cluster variation, and 𝜔𝜔(𝒔𝒔𝑖𝑖) is a Gaussian spatial 

random effect used to capture residual spatial correlation in the model. That is, 𝝎𝝎 =

(𝜔𝜔(𝒔𝒔1), … ,𝜔𝜔(𝒔𝒔𝑛𝑛) )𝑇𝑇 ∼ 𝑁𝑁(0, Σ𝜔𝜔), where  Σ𝜔𝜔 is assumed to follow the Matérn covariance function 

(Matérn, 1960). For identifiability reasons, we set the smoothness parameter in  Σ𝜔𝜔 to one, see 

Lindgren et al. (2011). 

To complete the Bayesian model specification, we assigned a 𝑁𝑁(0,103𝑰𝑰) prior to the regression 

parameter, 𝜷𝜷, and a penalized complexity (PC) (Simpson et al., 2017) prior to 𝜎𝜎𝜖𝜖  such that 

𝑝𝑝(𝜎𝜎𝜖𝜖 > 3) = 0.01. Similarly, following Fuglstad et al. (2019), we placed a joint PC prior on the 

covariance parameters of the spatial random effect, 𝝎𝝎, such that 𝑝𝑝(𝑟𝑟 < 𝑟𝑟0) = 0.01 and 𝑝𝑝(𝜎𝜎 > 3) =

0.01, with 𝑟𝑟0 chosen to be the 5% of the extent of the country in the north-south direction.    

The model was fitted using the INLA-SPDE approach implemented in the R-INLA package (Lindgren et 

al., 2015, R Core Team, 2021).  Predictions at 1x1 km resolution were obtained using the fitted model 

by drawing samples from the posterior predictive distributions of 𝑝𝑝(𝒔𝒔𝑖𝑖) at the grid locations. 
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Throughout, predictions at the administrative level were obtained as population-weighted averages 

taken over all the grid cells falling within each administrative area (Utazi et al., 2022).  

 

2.2.2 Bayesian semiparametric geostatistical regression model (SGEOS) 

This model extends the GEOS model in equations (1) and (2) through using smooth functions to 

account for the nonlinear effects of some covariates. The model assumes that the true vaccination 

coverage at location 𝒔𝒔𝑖𝑖, 𝑝𝑝(𝒔𝒔𝑖𝑖), can be expressed as 

                logit(𝑝𝑝(𝒔𝒔𝑖𝑖)) = 𝛽𝛽0 + ∑ x𝑗𝑗(𝒔𝒔𝑖𝑖)𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1 +  ∑ 𝑓𝑓𝑘𝑘(z𝑘𝑘(𝒔𝒔𝑖𝑖))𝑞𝑞

𝑘𝑘=1 + 𝜔𝜔(𝒔𝒔𝑖𝑖) + 𝜖𝜖(𝒔𝒔𝑖𝑖),              (3)        

where 𝛽𝛽0 is an intercept term, x1(𝒔𝒔𝑖𝑖), … , x𝑝𝑝(𝒔𝒔𝑖𝑖) are linear covariates with regression coefficients 

𝛽𝛽1, … ,𝛽𝛽𝑝𝑝, and  𝑓𝑓1(. ), … , 𝑓𝑓𝑞𝑞(. ) are smooth functions used to account for the non-linear effects of the 

covariates z1(𝒔𝒔𝑖𝑖), … , z𝑞𝑞(𝒔𝒔𝑖𝑖). Other terms in the model are as defined previously in equation (2).  We 

specified a second-order random walk prior for 𝑓𝑓(. ) such that   

                                           𝑓𝑓(𝑢𝑢𝑖𝑖|𝑢𝑢𝑖𝑖−1,𝑢𝑢𝑖𝑖−2) ∼ 𝑁𝑁(2𝑢𝑢𝑖𝑖−1 − 𝑢𝑢𝑖𝑖−2,𝜎𝜎𝑢𝑢2) ,                                                     (4) 

which is the Bayesian equivalent of a cubic smoothing spline (Wang et al., 2018). For identifiability, a 

sum-to-zero constraint was imposed on each of the smooth functions since the model includes an 

intercept term (Wang et al., 2018). Model (3) was also fitted in a Bayesian framework using the INLA-

SPDE approach. We assumed the default non-informative R-INLA log-Gamma prior on log (𝜎𝜎𝑢𝑢−2), i. 

e., log (𝜎𝜎𝑢𝑢−2) ∼ log − Gamma(1, 0.00005).  

 

2.2.3 Generalized additive model (GAM) 

Generalized additive models also provide a mechanism to account for non-linear relationships by 

allowing non-linear functions of all continuous covariates whilst maintaining additivity (James et al., 

2013). The model is given by 
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                logit�𝑝𝑝(𝒔𝒔𝑖𝑖)� = 𝛽𝛽0 + 𝛽𝛽1x1(𝒔𝒔𝑖𝑖) + ∑ 𝑓𝑓𝑘𝑘�z𝑘𝑘(𝒔𝒔𝑖𝑖)�
𝑞𝑞
𝑘𝑘=1 + 𝑔𝑔(𝒔𝒔𝑖𝑖),                                       (5) 

where x1(𝒔𝒔𝑖𝑖) denotes the urban-rural covariate and 𝑓𝑓1(. ), … , 𝑓𝑓𝑞𝑞(. ) are functions used to account for 

the non-linear effects of other covariates. For our analyses, we chose cubic smoothing splines for 

𝑓𝑓(. ), noting that other choices are also possible (James et al., 2013).  The function 𝑔𝑔(. ) is used to 

account for the effect of space in the model, for which we specified a two-dimensional smoother - an 

isotropic smooth of latitude and longitude on the sphere with a second-order penalty and number of 

basis functions set equal to 100 (Wahba, 1981). The model was fitted in a frequentist framework and 

implemented in R using the mgcv package (Wood and Wood, 2015). We note that by including non-

linear functions of all continuous covariates, our implementation of model (5) differs from the SGEOS 

model where smooth functions are only applied to non-linear relationships determined beforehand.  

 

2.2.4 Boosted Regression Model/Trees (BRT)  

Boosting is a tree-based ensemble method that models complex, non-linear relationships between 

an outcome variable and multiple predictor variables (James et al., 2013). The method is based on 

the generation of a collection of sequentially fitted regression trees that optimize the predictive 

value of the response variable based on local predictor values. The boosting algorithm proceeds by 

fitting a regression tree to the data using the outcome variable as the response in the first iteration. 

The fitted tree is then scaled by a shrinkage parameter and added to the fitted function (this is set 

equal to zero in the first iteration) to update the residuals. In subsequent iterations of the algorithm, 

the regression trees are fitted using the residuals as the response. The process continues until a 

desired number of iterations or trees have been fitted. The output from the boosted model for 

location 𝒔𝒔𝑖𝑖 can be expressed as 

                                                   𝑔𝑔��𝑝𝑝�(𝒔𝒔𝑖𝑖)� = ∑ 𝜆𝜆𝐵𝐵
𝑏𝑏=1 𝑔𝑔�𝑏𝑏(𝑝𝑝�(𝒔𝒔𝑖𝑖)),                                                                      (6) 
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where, 𝑔𝑔�(. ) denotes the final prediction from the model, 𝑔𝑔�𝑏𝑏(. ) is the prediction from the 𝑏𝑏th 

component regression tree, 𝜆𝜆 is a shrinkage parameter and 𝐵𝐵 is the number of trees/iterations. 𝜆𝜆 

controls the rate at which the boosting learns and is usually chosen to be small. For our application, 

we set 𝜆𝜆 = 0.01 as recommended in James et al. (2013) and chose 𝐵𝐵 = 10,000. Another important 

tuning parameter when fitting a boosting model is the number of splits in each tree or the 

interaction depth, which controls the complexity of the boosted ensemble. This is often set equal to 

the default value of 1. The BRT model was implemented in our study using the gbm package in R 

(Ridgeway and Ridgeway, 2004). Due to the unavailability of the binomial distribution in the gbm 

package, we elected to model the logit-transformed cluster level vaccination coverage 𝑝𝑝�(𝒔𝒔𝑖𝑖) using a 

Gaussian distribution and then back-transformed all the predictions post model-fitting. We note that 

as in model (5), the set of covariates used in fitting the model included the longitude and latitude 

coordinates to account for spatial variation.  

 

2.2.5 Least absolute shrinkage and selection operator (LASSO) regression 

Lasso regression performs both variable selection and regularization and is particularly suitable for 

modelling contexts where a large or considerable number of covariates are available. The method 

implements automatic covariate selection through a penalty term (the 𝐿𝐿1 penalty) included in its 

objective function, which uses a tuning or regularization parameter to control the amount of 

regularization, i.e., how much the regression coefficients are shrunken towards zero. The method 

finds regression coefficients 𝜷𝜷�  𝛼𝛼
𝐿𝐿  that minimize the objective function 

                                             ln 𝐿𝐿(𝜷𝜷|data) + 𝛼𝛼 ∑ �𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1 ,                                                                             (7) 

where  𝛼𝛼 is the regularization parameter and all other terms are as defined previously. The first term 

in (7) is the log-likelihood function which can be obtained from the binomial regression model in 

equations (1) and (2) when the spatial and non-spatial random effects are excluded. Sufficiently large 

values of 𝛼𝛼 will force some regression coefficients to be equal to zero.  In practice, 𝛼𝛼 is chosen via a 
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grid search using cross-validation techniques. As in the GAM approach, the covariate data considered 

in the analysis using (7) included the longitude and latitude coordinates of the data locations. The 

LASSO regression model was implemented in our work using the glmnet package in R (Friedman et 

al., 2021).            

                                                

2.2.6 Stacked generalization using a Bayesian geostatistical model (STG) 

In statistical learning, stacked generalisation or stacked regression is an ensemble method for 

combining predictions from multiple models, often referred to as child models. In the hybrid variant 

implemented in our work, the child models were different ML approaches, predictions from which 

were combined using a geostatistical model (Bhatt et al., 2017, Mosser et al., 2019, Sbarra et al., 

2021). Through these child models, the STG approach accounts for complex, nonlinear relationships 

between the covariates and the outcome. Also, the geostatistical modelling framework is used to 

account for residual spatial autocorrelation. The STG approach was proposed/utilized in Bhatt et al. 

(2017) and has been used to model vaccination coverage and various HDIs (Mayala et al., 2019, 

Mosser et al., 2019, Sbarra et al., 2021). 

Following Sbarra et al. (2021), we considered the following child models: GAM, BRT and LASSO 

regression. These child models were implemented as described previously but excluding the 

geographical coordinates of the data locations in the covariate data. To obtain final predictions for 

the outcome, the predictions from these child models were included as covariates in the 

geostatistical model: 

 logit(𝑝𝑝(𝒔𝒔𝑖𝑖)) = 𝛽𝛽0 + 𝛽𝛽1x𝐺𝐺𝐺𝐺𝐺𝐺(𝒔𝒔𝑖𝑖) + 𝛽𝛽2x𝐵𝐵𝐵𝐵𝐵𝐵(𝒔𝒔𝑖𝑖) + 𝛽𝛽3xLASSO(𝒔𝒔𝑖𝑖) + 𝜔𝜔(𝒔𝒔𝑖𝑖) + 𝜖𝜖(𝒔𝒔𝑖𝑖),          (8) 

where 𝛽𝛽0,𝛽𝛽1,𝛽𝛽2 and 𝛽𝛽3 are regression coefficients and other terms are as described previously in 

equation (2). As in Sbarra et al. (2021), a sum-to-one constraint was imposed on the regression 

coefficients corresponding to the child models, such that ∑ 𝛽𝛽𝑗𝑗3
𝑗𝑗=1 = 1. This constraint helps to 

mitigate the effect of extreme predictions in the child models included in (8) (Bhatt et al., 2017). As is 
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usually the case in stacked generalization, Bhatt et al. (2017) recommended the use of K-fold cross-

validation predictions from the child models to calibrate the model (i.e., estimate the parameters) in 

(8), and then refitting the child models using the full data and using the predictions from these in (8) 

without refitting the model. We noted that using the cross-validation predictions from the child 

models in (8) compared to the full data predictions did not necessarily yield improvements in 

predictive performance in our analyses. The STG approach was implemented in our work using the 

INLA-SPDE approach and the INLABRU package in R (Lindgren et al., 2024).  

 

2.2.7 Artificial neural networks (ANN) 

An artificial neural network (ANN) is a ML technique that mimics the functioning of the animal brain. 

An ANN model is particularly useful in modelling contexts where data are large and complex, with 

potential nonlinearities and interactions between the covariates. The network consists of layers of 

connected neurons that serve as data processing units, where each neuron applies a linear 

transformation to its inputs, followed by a non-linear activation function. For our work, we used a 

multilayer perceptron network (Park and Lek, 2016), which consists of an input layer, multiple 

hidden layers and an output layer. The input layer receives the features from the data, processes 

and transmits these to the hidden layers which process the information further through 

interconnected neurons, while the output layer produces the final predictions. For a spatial location 

𝒔𝒔 with covariate vector 𝐱𝐱(𝒔𝒔) = �x1(𝒔𝒔), x2(𝒔𝒔), … , x𝑝𝑝(𝒔𝒔)�
𝑇𝑇

,  the predicted value from an ANN with a 

single hidden layer can be expressed as: 

Output layer: 𝑝𝑝�(𝒔𝒔)� = 𝑏𝑏3 + ∑ 𝑤𝑤𝑗𝑗3𝑧𝑧𝑗𝑗2
𝐿𝐿2
𝑗𝑗=1 (𝒔𝒔),  

Hidden layer: 𝑧𝑧𝑙𝑙2(𝒔𝒔) = 𝑓𝑓�𝑏𝑏𝑙𝑙2 + ∑ 𝑤𝑤𝑗𝑗𝑗𝑗2𝑧𝑧𝑗𝑗1(𝒔𝒔)𝐿𝐿1
𝑗𝑗=1 �, 𝑙𝑙 = 1, … , 𝐿𝐿2,  

Input layer: 𝑧𝑧𝑙𝑙1(𝒔𝒔) = 𝑓𝑓�𝑏𝑏𝑙𝑙1 + ∑ 𝑤𝑤𝑗𝑗𝑗𝑗1x𝑗𝑗(𝒔𝒔)𝑝𝑝
𝑗𝑗=1 �, 𝑙𝑙 = 1, … , 𝐿𝐿1,                                                        (9) 

 

where 𝐿𝐿1 and 𝐿𝐿2 are the numbers of neurons in the input and hidden layers, respectively, 𝑓𝑓(. ) is the 

activation function, 𝑏𝑏𝑙𝑙1, 𝑏𝑏𝑙𝑙2,𝑏𝑏3 and 𝑤𝑤𝑗𝑗𝑗𝑗1 ,𝑤𝑤𝑗𝑗𝑗𝑗2 ,𝑤𝑤𝑗𝑗3 are bias and weight parameters estimated to minimize 
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mean squared error in the training data. Furthermore, 𝑧𝑧𝑙𝑙1(𝒔𝒔), 𝑧𝑧𝑙𝑙2(𝒔𝒔) and 𝑝𝑝�(𝒔𝒔)� are outputs from the 

layers as shown in equation (9).  

Fitting an ANN requires tuning the number of hidden layers, the number of neurons in each layer, 

and choosing the activation function. Other parameters such as the number of epochs (the number 

of times the entire data is passed through the network during training), stopping metric, stopping 

tolerance and stopping rounds are also tuned during model fitting. These early stopping criteria help 

to avoid overfitting in the model. A common choice for the activation function 𝑓𝑓(. ) is the rectified 

linear unit (relu), defined as 𝑓𝑓(x) = max{0, x}. The model was fitted using the h2o.deeplearning() 

function in the H2O package in R (Fryda et al., 2024). Since the H2O package does not support the 

binomial distribution, we elected to model the logit-transformed cluster-level vaccination coverage, 

denoted by 𝑝𝑝�(𝒔𝒔) in equation (9) using a Gaussian distribution and then back-transformed the 

predictions post model fitting. Based on a hold-out cross-validation exercise with an 80% training 

and 20% testing split, the final selected model had two hidden layers with 100 neurons each, with 

the number of epochs set to 100. The chosen stopping metric was the root mean square error 

(RMSE) while the stopping tolerance and rounds were set equal to 0.001 and 5, respectively. We 

checked the sensitivity of these choices by running several cases with different justifiable parameter 

values but obtained the same results each time.  

 

[Figure 2 about here] 

 

2.3 Uncertainty estimation using delete-a-block jackknife cross-validation  

To estimate the uncertainties associated with the ML approaches: BRT, LASSO and ANN, we 

employed a delete-a-block jackknife technique. This is a variant of the delete-1 jackknife (Wang and 

Yu, 2021) in which a block of observations is deleted at a time. The spatial blocks were formed by 

drawing observations at random from the observed data. These can also be formed using spatially 
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contiguous observations, but this approach is more likely to affect the underlying spatial structure in 

the data and can potentially introduce some artificial patterns in the uncertainty estimates, 

depending on the sizes of the blocks. The choice of the block size was guided by the need to have as 

many iterations as computationally logical (relative to the number of observations in the data) whilst 

preserving the underlying spatial correlation in the data. Having many iterations ensures stability in 

the results (i.e., the uncertainty estimates) and also reduces the numbers of observations deleted at 

each iteration. We noted during test runs that block sizes of up to 𝑏𝑏 = 40 observations produced 

variogram estimates that were very similar to those of the full data in our applications 

(supplementary Figures S5 and S6). We also noted that there were no material differences in the 

estimates obtained for numbers of replicates 𝑟𝑟 ≥ 100. We, therefore, set 𝑟𝑟 = 100 in our work, 

corresponding to block sizes of 𝑛𝑛/𝑟𝑟, where 𝑛𝑛 is the number of observations or spatial locations in 

the data as defined previously in (1). For all three ML approaches, we obtained the jackknife 

estimates of the uncertainties (i.e., the standard deviations) associated with the grid level 

predictions as �𝑟𝑟−1
𝑟𝑟
∑ �𝑝̂𝑝𝑗𝑗(𝒔𝒔) − 𝑝̅𝑝𝚥𝚥𝚥𝚥𝚥𝚥𝚥𝚥� (𝒔𝒔)�

2
𝑟𝑟
𝑗𝑗=1   , where 𝑝̂𝑝𝑗𝑗(𝒔𝒔) is the 𝑗𝑗th coverage estimate for grid 

location 𝒔𝒔 and 𝑝̅𝑝𝚥𝚥𝚥𝚥𝚥𝚥𝚥𝚥� (𝒔𝒔) is the jackknife estimate of the mean across all the replicates. 

 

2.4 Model validation using k-fold cross-validation and variogram analysis  

To evaluate the out-of-sample predictive performance of the modelling approaches, we conducted a 

𝑘𝑘-fold cross-validation exercise, setting 𝑘𝑘 = 10. For each indicator-method combination, we created 

the cross-validation folds in two ways: random folds and spatially stratified folds. For the random 

folds, the survey locations were assigned to each of the 𝑘𝑘 folds in a random manner; whereas with 

the spatially stratified method, each fold comprised neighbouring cluster locations. We calculated 

the following measures of predictive performance: the correlation between observed (𝑝𝑝𝑖𝑖) and 

predicted (𝑝̂𝑝𝑖𝑖) values, root mean square error �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)2/𝑚𝑚𝑖𝑖 �, mean absolute error 

�𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚
∑ |𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖|𝑚𝑚
𝑖𝑖=1 �, average bias �𝐴𝐴𝐴𝐴𝐴𝐴_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1

𝑚𝑚
∑ (𝑝̂𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)𝑚𝑚
𝑖𝑖=1 � and the continuous 
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ranked probability score (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝑖𝑖 ,𝑝𝑝𝑖𝑖) = 𝐸𝐸𝐹𝐹𝑖𝑖|𝑋𝑋𝑖𝑖 − 𝑝𝑝𝑖𝑖| − 1
2𝐸𝐸𝐹𝐹𝑖𝑖|𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖∗|) (Gneiting and Raftery, 2007), 

where 𝐹𝐹𝑖𝑖(. ) is the cumulative distribution function corresponding to the predictive distribution of 

the 𝑖𝑖th cluster level estimate, and 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖∗ are two independent random variables distributed 

according to 𝐹𝐹𝑖𝑖(. ). With 𝑟𝑟 posterior samples, the CRPS can be estimated as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝑖𝑖 ,𝑝𝑝𝑖𝑖) =

1
𝑟𝑟
∑ |𝑝̂𝑝𝑖𝑖

(𝑗𝑗) − 𝑝𝑝𝑖𝑖| − 1
2𝑟𝑟2
∑ ∑ |𝑝̂𝑝𝑖𝑖

(𝑗𝑗) − 𝑝̂𝑝𝑖𝑖
(𝑙𝑙)|𝑟𝑟

𝑙𝑙=1
𝑟𝑟
𝑗𝑗=1

𝑟𝑟
𝑗𝑗=1 , which is then averaged over all the locations within 

each fold and over all the 𝑘𝑘 folds. While the other metrics (also averaged over all the 𝑘𝑘 folds) 

measure the accuracy of the point predictions produced by the approaches, the CRPS measures the 

accuracy of both the point and uncertainty estimates as it utilizes the entire posterior predictive 

distribution to determine the discrepancies between the observations and the predictions. Also, the 

CRPS was only computed for the three Bayesian approaches (GEOS, SGEOS and STG) in our work as it 

requires the posterior distributions of the estimates. The closer the AVG_BIAS, MAE and RMSE 

estimates are to zero and the smaller the CRPS, the better the predictions. Correlation values closer 

to one indicate better predictive ability.  

Additionally, to further examine the fits of the different methods, we checked their (standardized) in-

sample residuals for spatial autocorrelation using variograms and the associated variogram 

envelopes, which were obtained by permutation, using the geoR package in R (Ribeiro Jr et al., 2024).  

 

3. Results 

3.1 In- and out-of-sample predictive performance using cross-validation and variogram analysis 

With respect to the metrics used to evaluate the accuracy of the point estimates produced by the 

methods at the cluster level (correlation, RMSE, MAE and AVG_BIAS), we found that GEOS, SGEOS 

and, to a great extent, LASSO had the best out-of-sample predictive performance in most cases 

(Figure 3 and supplementary Table 2). The values of these metrics for GAM and STG were also very 

close to those of the three best approaches, indicating only slightly worse predictive performance. In 
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contrast, BRT and ANN generally had the worst predictive performance, which can be clearly seen 

when considering the AVG_BIAS and RMSE estimates in Figure 3.  

Among the three Bayesian approaches for which we computed the CRPS metric, we found that GEOS 

and SGEOS outperformed the STG method based on this metric, which is also consistent with the 

results obtained using the other metrics. All the methods had fairly similar predictive performance 

under the two types of cross-validation folds investigated (i.e., random and spatially stratified folds) 

according to all the metrics except the correlations which showed that nearly all the methods had 

better predictive performance under the random folds. These results indicate that the methods can 

reasonably predict not only random but also spatial blocks of missing values in unsampled areas. 

There was no evidence of improved predictive performance for MCV1 despite having relatively larger 

cluster level sample sizes than DTP1 (supplementary Figure S7). This is likely due to the cluster level 

sample sizes for MCV1 not being large enough to induce noticeable improvements in predictive 

performance.  

[Figure 3 about here] 

Furthermore, when examining the out-of-sample predictions in low coverage areas (i. e., areas with 

cluster level proportions 𝑝𝑝(𝒔𝒔𝑖𝑖) ≤ 0.4 - supplementary Figures S8 and S9), we found that the 

prediction errors (RMSE, random folds) for ANN and BRT were consistently larger (RMSE ≥ 0.33)  

than those of the other approaches (0.24 ≤ RMSE ≤ 0.3), although there was evidence of 

overestimation in all the approaches. For DTP1, the lowest prediction errors were obtained for the 

GEOS and SGEOS methods, whereas for MCV1, these were obtained for SGEOS, GEOS and STG. 

The variograms of the in-sample residuals for DTP1 and MCV1 shown in supplementary Figures S10 

and S11 indicate that of all seven approaches investigated, there was strong evidence of residual 

spatial autocorrelation in the ANN and BRT methods. The variograms for both methods closely 

resembled those of the outcome variables (i. e., the cluster level proportions of vaccinated children 
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– supplementary Figures S5 and S6). Also, the lack of evidence of spatial autocorrelation in the 

residuals is strongest for the geostatistical approaches – GEOS, SGEOS and STG. 

 

3.2 1x1 km estimates of vaccination coverage and associated uncertainties 

The rationale for the differences observed in the out-of-sample predictive performance of the 

approaches is apparent when investigating the 1x1 km predicted maps of vaccination coverage and 

associated uncertainties produced through using these approaches. Figure 4 (a) shows strong 

similarities between the predicted surfaces produced by GAM, LASSO, GEOS, SGEOS and STG. 

Broadly similar patterns demonstrating a north-south divide in coverage can also be seen in the 

predicted maps produced using ANN and BRT, but their estimates are closer to the extremes of the 

unit interval and smoother in the lower and higher coverage areas than those of the other 

approaches.  

[Figure 4 about here] 

The over-smoothing of the coverage estimates by ANN and BRT relative to the other approaches is 

evident in the distributions of the grid level DTP1 predictions shown in Figure 4 (b). All the methods 

produced bimodal distributions reflecting the characteristic spatial distribution of vaccination 

coverage in Nigeria (Utazi et al., 2018b, Dong and Wakefield, 2021, Utazi et al., 2022, Utazi et al., 

2023). However, the grid level estimates produced by ANN and BRT are more peaked near zero and 

one than those produced by the other approaches, suggesting overestimation in high coverage areas 

and underestimation in low coverage areas by both approaches. This also explains the higher 

AVG_BIAS and RMSE values for both approaches relative to other approaches. For MCV1, 

supplementary Figures S12 (a-b) show similar patterns in the grid level estimates produced by all the 

approaches, with strong evidence of over-smoothing in low and high coverage areas by ANN and 

BRT relative to the other approaches. 
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The uncertainties associated with the predictions have broadly similar spatial patterns across the 

methods, with lower uncertainties in areas where coverage estimates are either close to the 

endpoints (an artefact of the binomial distribution) of the unit interval or where data locations are 

dense, and higher uncertainties in areas where the estimates are closer to 0.5 or where data 

locations are sparse (Figures 5 (a) and (b)). 

[Figure 5 about here] 

However, due to the relative over-smoothing by ANN and BRT, the uncertainties associated with 

both approaches are much smaller than those of other approaches (Figure 5 (b)) in areas of lower 

and higher coverage, even in comparison with LASSO for which we used the same jackknife 

approach to produce its uncertainty estimates. In areas with mid-level coverage estimates, the 

uncertainties associated with the estimates produced by BRT are noisier and relatively much higher 

than other approaches. For MCV1 (supplementary Figures S13 (a-b)), similar patterns can be 

observed, with the uncertainties associated with both ANN and BRT being much higher in many 

areas relative to the other approaches.  

[Figure 6 about here] 

At the national level, the estimates produced through using these approaches revealed that ANN 

(and BRT to some extent; and GEOS – MCV1 only) overestimated coverage for both DTP1 and MCV1 

relative to the direct survey estimate that is often considered to be the gold standard (Figures 6a-b). 

On the other hand, whilst there are strong correlations between the grid level estimates produced 

by these approaches (Figures 6c-d), it is evident that ANN and BRT are most dissimilar to other 

approaches, particularly for DTP1.  

 

3.3 Exploring spatial prioritization using district level coverage estimates 
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To further investigate the utility of the coverage estimates produced by the methods for spatial 

prioritization, we computed district level coverage estimates using their respective 1x1 km predicted 

maps and then ranked the districts based on these estimates. We note that the comparisons 

undertaken here using rankings obtained from the district-level coverage estimates are purely for 

illustration since estimates of numbers of unvaccinated children can characterise disease risk more 

accurately and are better suited for this purpose.  

 

[Figure 7 about here] 

Figures 7 (a-c) demonstrate that although there are broad similarities between the rankings of the 

district level DTP1 coverage estimates produced by the different methods, remarkable differences 

exist, both when examining groups of ranks (Figure 7a) and, more evidently, the individual ranks 

(Figure 7b). The differences between the rankings generally appear relatively smaller in areas of 

lower coverage in the northern parts of the country and much larger in higher coverage areas (Figure 

6c). Also, these differences appear more pronounced when considering smaller numbers of areas 

(e.g., the 80th to 100thlowest coverage areas) than larger numbers of areas (e.g., the 100 lowest 

coverage areas) (Figure 7b). The median of the ranges of the ranks per district (Figure 7c) at the 

national level is 112.5 (interquartile range (IQR) = 100, maximum value = 428), indicating marked 

differences among the methods. Among the five methods with similar predictive performance (i.e., 

GAM, LASSO, GEOS, SGEOS and STG), the median of the ranges of the ranks per district reduces to 83 

(IQR = 89, maximum value = 337), which still indicates considerable differences. However, when 

examining pairs of methods with more similar predictive accuracy, there are large reductions in the 

differences between the rankings. For example, for the GEOS and SGEOS methods, the median of the 

ranges of the ranks per district is 17 (IQR=32).  

Similar patterns were observed for MCV1 (supplementary Figure S14), with the median of the ranges 

of the ranks per district estimated to be 141 (IQR=114, maximum value = 499) for all the methods at 
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the national level, 87 (IQR=82, maximum value = 336) for GAM, LASSO, GEOS, SGEOS and STG, and 

26 (IQR=50) for the GEOS and SGEOS methods. These differences in the rankings produced by the 

methods are also apparent in the bivariate plots of the ranks shown in supplementary Figures S15 

and S16. 

 

4. Discussion 

This study systematically evaluated the performance of seven geostatistical and ML approaches for 

producing high-resolution estimates of vaccination coverage. All the methods, with the exception of 

SGEOS,  were implemented using standard desktop computers, each requiring less than three hours 

(some ML methods completed much faster) to produce predictions at 1x1 km resolution. The SGEOS 

method, due to its computational demands, was run on a high-memory computer with a total 

runtime of ≈ 2.5 hours. 

Our results revealed similar out-of-sample predictive performance at the cluster level for five of the 

methods - GEOS, SGEOS, LASSO, GAM and STG, although stronger predictive performance was 

observed for GEOS, SGEOS and LASSO methods. Among all seven approaches investigated, ANN and 

BRT had the poorest predictive performance. The relative over-smoothing observed in both 

approaches is likely due to the use of a different outcome distribution (Gaussian, instead of 

binomial), or how their algorithms learn from data. We further explored the impact of likelihood 

choice by evaluating the predictive performance of the remaining methods under a Gaussian 

likelihood (Supplementary Table 5). While ANN and BRT continued to underperform (see 

Supplementary Tables 2 and 5), the predictive performance of the other methods deteriorated under 

the Gaussian likelihood, reinforcing the suitability of the binomial distribution for our application. 

Moreover, the poor performance of ANN and BRT was consistent regardless of the set of covariates 

used (e.g., kriged DHS covariates vs. other geospatial covariates), as over-smoothing remained 

evident in both cases (supplementary Figure S17). Interestingly, among the Bayesian approaches, 
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GEOS and SGEOS generally outperformed the hybrid STG method, despite the latter’s widespread 

use in mapping HDIs (Bhatt et al., 2017, Mosser et al., 2019, Sbarra et al., 2021). These findings were 

further supported by in-sample assessments of residual spatial autocorrelation and comparisons of 

out-of-sample predictions in low coverage areas. We did not find evidence of better predictive 

performance for MCV1 due to larger cluster level sample sizes relative to DTP1. This may be because 

the increase in sample size was insufficient to yield measurable improvements in predictive accuracy. 

A more detailed examination of the effect of cluster-level sample size on predictive accuracy can be 

found in Utazi et al. (2022).  

The 1x1 km predicted maps of the indicators revealed that GAM, LASSO, GEOS, SGEOS and STG 

produced very similar results, whereas ANN and BRT produced relatively over-smoothed estimates, 

with values clustering toward the extremes of the coverage scale. Although the uncertainty estimates 

produced by these approaches had very similar spatial distributions, the uncertainties from ANN and 

BRT were either relatively smaller (for DTP1) – an artefact of over-smoothing – or appeared relatively 

noisier and higher (for MCV1) in certain areas. Correlations between the grid level estimates 

produced by the different approaches were generally high (≥ 0.78), but these also indicated 

relatively lower correlations between ANN and BRT and other approaches, particularly for DTP1. 

Further comparisons with direct survey estimates at the national level revealed that ANN 

consistently overestimated coverage, with some evidence of similar overestimation by BRT. These 

discrepancies suggest that ANN and BRT are also likely to yield other subnational (e.g., provincial-

level) estimates that are not well aligned with direct survey estimates.  

Considering the importance of district level estimates of vaccination coverage and corresponding 

estimates of numbers of zero-dose and under-vaccinated children for program planning and 

implementation, we further investigated the utility of the coverage estimates produced by the 

different approaches for spatial prioritization. We found remarkable differences in their rankings of 

the districts, although there were broad similarities especially when considering larger numbers of 
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areas. The differences were most pronounced in areas of higher coverage and more modest in lower 

coverage areas, which might have been affected by the spatial distribution of vaccination coverage in 

the study country. We further observed a reduction in differences in rankings among methods with 

similar predictive performance, as expected, and even substantial reductions between pairs of 

methods with similar predictive performance. These results hold significant implications for 

vaccination programming, especially in resource-constrained settings where only a limited number of 

areas can be targeted per time, since inaccurate identification of priority areas for interventions 

could result in missing important vulnerable populations, suboptimal resource allocation, reduced 

impact and persistence of disease circulation or outbreaks. The predictive accuracy of these 

approaches should therefore guide their use for map production and operationalization.  

Although our study is the first to systematically compare geostatistical, ML and hybrid approaches for 

vaccination coverage estimation, similar studies have been conducted in other application domains. 

For example, Berrocal et al. (2020) and Veronesi and Schillaci (2019) evaluated geostatistical and ML 

approaches for mapping air pollution and soil organic carbon, respectively, and found that 

geostatistical models outperformed ML methods – findings that align closely with our results. Zhu et 

al. (2024), in a related study on air pollution mapping, reported that random forests, a ML method, 

outperformed geostatistical models. Similarly, other studies utilizing kriging-based geostatistical 

approaches (e.g., Chen et al (2019) and Molla et al. (2023)) found that ML approaches performed 

better. In the context of mapping HDIs, our results are somewhat different from those of Bosco et al. 

(2017), who compared ANN with a Bayesian geostatistical model across multiple countries and 

various HDIs. While they found similar predictive performance between the two approaches, they 

preferred the geostatistical model due to its ease of implementation (i.e., not requiring many tuning 

parameters). It is important to note that direct comparisons between our results and those from the 

literature are challenging due to substantial differences in study designs, geographic settings and 

applications, including choice of validation methods, amount of available data and parameter tuning. 

These contextual factors likely contribute to the mixed evidence regarding the relative performance 
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of ML and geostatistical approaches, suggesting that model performance is, to some extent, context 

specific. We further assessed the generalizability of our findings to other settings by conducting an 

additional case study using data from the 2021 Cote d’Ivoire DHS (Institut National de la Statistique 

and ICF, 2023) - see supplementary materials for details. The results we obtained also showed that 

the other approaches investigated generally had better out-of-sample predictive performance than 

ANN and BRT. Also, among these other approaches, SGEOS and GEOS were the best performing 

methods, further corroborating our findings using the 2018 NDHS and reinforcing the robustness of 

our conclusions across different settings.  

Our study has some limitations that should be acknowledged. As noted earlier, our implementation 

of the ANN and BRT approaches in the R programming language did not permit the use of a binomial 

likelihood for the outcome variables. Implementing these approaches using other programming 

languages such as Python may facilitate this. Although we found consistent results in our case study 

using the 2018 Nigeria DHS and the additional analyses using the 2021 Cote d’Ivoire DHS 

(supplementary materials), it will be useful to also explore how these methods perform in other 

geographical settings with additional antigens and potentially different sampling designs,  degrees of 

spatial autocorrelation in vaccination coverage and numbers and types of covariates and their 

relationships with vaccination coverage (Bosco et al., 2017).  It may be the case that the 

underperformance observed in ANN and BRT is dependent on some of these factors, but this also 

reveals a lack of robustness of both approaches to some modelling contexts or limitations in some of 

their current software implementations. For geostatistical models, these attributes have been 

investigated in detail in previous work using simulation studies (e.g., Utazi et al. (2018a)). However, 

we note that a simulation study would not be ideal when comparing geostatistical and ML 

approaches, as this would require simulating data from a geostatistical model or a sampling design 

based on geostatistical techniques, which would confer an undue advantage on these models over 

ML techniques. Furthermore, other approaches for estimating the uncertainties associated with the 

ML approaches are also possible. For example, a spatial bootstrap algorithm (this did not perform 
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well in our study during initial trials) or an approach that involves interpolating spatial cross-

validation residuals to create an uncertainty map, similar to Blanco et al (2018), could be used.  

Whilst the use of geostatistical and ML approaches to produce high-resolution maps of HDIs has 

grown in popularity, other small area estimation methods for producing maps of HDIs exist (Tzavidis 

et al., 2018, Utazi et al., 2021, Paige et al., 2022), but these assume a discrete spatial domain, 

meaning that estimates can only be produced for a given administrative level at a time. Some of 

these methods are well explored in Utazi et al. (2021). Furthermore, in the ML arena, there are other 

hybrid approaches aiming to overcome the limitation of ML approaches not explicitly accounting for 

spatial autocorrelation in the data through (i) creating features that imitate the spatial 

autocorrelation in the outcome and using these as additional covariates in conventional ML methods 

(Sekulić et al., 2020, Fouedjio and Arya, 2024), (ii) combining ML predictions with the kriging of the 

prediction residuals (Kaya et al., 2022) and (iii) locally calibrated ML algorithms (Hagenauer and 

Helbich, 2022, Fouedjio and Arya, 2024). Future work in mapping vaccination coverage and other 

HDIs may involve the exploration of these hybrid approaches. In geostatistical models, spatially 

varying coefficient models (Gelfand et al., 2003) could also be used to account for the spatial non-

stationarity in the regression relationship between vaccination coverage and geospatial covariate 

information. 

In conclusion, our results provide valuable guidance to practitioners regarding the utility of these 

modelling approaches for producing maps of vaccination coverage and other HDIs. While most of the 

approaches we investigated had good predictive accuracy and produced similar results, some 

approaches were relatively better, with significant implications for spatial prioritization. Effort should 

be made to either identify the best modelling framework for each analytical context or to use 

approaches that have been shown to be more robust and reliable in a similar setting.  

 

 



27 
 

Funding 

CEU, ANL and AJT were supported by funding from Gavi, the Vaccine Alliance. CEU, SC and ANL were 
supported by funding from UNICEF (Grant number: 43387656). 

Acknowledgements 

The authors would like to thank the VaxPop Project team for their support during the study.  

Author contributions: CRediT 

C. Edson Utazi: Conceptualization, Data Curation, Methodology, Formal analysis, Software, 
Supervision, Visualization, Funding acquisition, Writing – original draft, Writing – review and editing. 
Ortis Yankey: Data Curation, Methodology, Formal analysis, Software, Writing – review and editing. 
Somnath Chaudhuri: Data Curation, Methodology, Formal analysis, Software, Visualization, Writing 
– original draft, Writing – review and editing. Iyanuloluwa D. Olowe: Data Curation, Writing – review 
and editing. M. Carolina Danovaro-Holliday: Conceptualization, Writing – review and editing. Attila 
N. Lazar: Supervision, Funding acquisition, Writing – review and editing. Andrew J. Tatem: 
Supervision, Funding acquisition, Writing – review and editing. 

Data and code availability 

All the data used in the study are available from the sources referenced in the manuscript. The 
authors do not have the rights to redistribute these data. All R code used in the analyses is available 
via GitHub https://github.com/EdsonUtazi/GEOS_ML_paper.  

Competing interests 

The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. MCD-H works at the World 
Health Organisation. The comments on this article reflect those of the authors alone and do not 
necessarily reflect those of the World Health Organization. 

Ethical approval  

The study utilized anonymized secondary data. Ethics approval was provided by the University Ethics 
Committee (Application ID: 48522.A1), University of Southampton, UK. 

 

 

 

 

 

 

https://github.com/EdsonUtazi/GEOS_ML_paper


28 
 

References 

Aheto, J. M. K., Olowe, I. D., Chan, H. M., Ekeh, A., Dieng, B., Fafunmi, B., Setayesh, H., Atuhaire, B., 
Crawford, J., Tatem, A. J. & Utazi, C. E. 2023. Geospatial analyses of recent household surveys 
to assess changes in the distribution of zero-dose children and their associated factors before 
and during the covid-19 pandemic in nigeria. Vaccines, 11. 

Alegana, V. A., Ticha, J. M., Mwenda, J. M., Katsande, R., Gacic-Dobo, M., Danovaro-Holliday, M. C., 
Shey, C. W., Akpaka, K. A., Kazembe, L. N. & Impouma, B. 2024. Modelling the spatial 
variability and uncertainty for under-vaccination and zero-dose children in fragile settings. 
Scientific Reports, 14, 24405. 

Berrocal, V. J., Guan, Y., Muyskens, A., Wang, H., Reich, B. J., Mulholland, J. A. & Chang, H. H. 2020. A 
comparison of statistical and machine learning methods for creating national daily maps of 
ambient pm2.5 concentration. Atmospheric Environment, 222, 117130. 

Bhatt, S., Cameron, E., Flaxman, S. R., Weiss, D. J., Smith, D. L. & Gething, P. W. 2017. Improved 
prediction accuracy for disease risk mapping using gaussian process stacked generalization. 
Journal of The Royal Society Interface, 14, 20170520. 

Bosco, C., Alegana, V., Bird, T., Pezzulo, C., Bengtsson, L., Sorichetta, A., Steele, J., Hornby, G., 
Ruktanonchai, C., Ruktanonchai, N., Wetter, E. & Tatem, A. J. 2017. Exploring the high-
resolution mapping of gender-disaggregated development indicators. Journal of The Royal 
Society Interface, 14, 20160825. 

Browne, C., Matteson, D. S., Mcbride, L., Hu, L., Liu, Y., Sun, Y., Wen, J. & Barrett, C. B. 2021. 
Multivariate random forest prediction of poverty and malnutrition prevalence. PLOS ONE, 16, 
e0255519. 

Chen, L., Ren, C., Li, L., Wang, Y., Zhang, B., Wang, Z. & Li, L. 2019. A comparative assessment of 
geostatistical, machine learning, and hybrid approaches for mapping topsoil organic carbon 
content. ISPRS International Journal of Geo-Information, 8, 174. 

Chopra, M., Bhutta, Z., Chang Blanc, D., Checchi, F., Gupta, A., et al. 2020. Addressing the persistent 
inequities in immunization coverage. Bull World Health Organ, 98, 146–148. 

Croft, T. N., Allen, C. K. & Zachary, B. W. 2023. Guide to dhs statistics. Rockville, Maryland, USA: ICF. 
Diggle, P. J., Tawn, J. A. & Moyeed, R. A. 1998. Model-based geostatistics. Journal of the Royal 

Statistical Society Series C: Applied Statistics, 47, 299–350. 
Dong, T. Q. & Wakefield, J. 2021. Modeling and presentation of vaccination coverage estimates using 

data from household surveys. Vaccine, 39, 2584–2594. 
Dowell, S. F., Blazes, D. & Desmond-Hellmann, S. 2016. Four steps to precision public health. Nature, 

540, 189–191. 
Fouedjio, F. & Arya, E. 2024. Locally varying geostatistical machine learning for spatial prediction. 

Artificial Intelligence in Geosciences, 5, 100081. 
Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N. & Qian, J. 2021. Package 

‘glmnet’. CRAN R Repositary, 595. 
Fryda, T., Ledell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kraljevic, T. & Nykodym, T. 2024. R 

package ‘h2o’: R interface for the 'h2o' scalable machine learning platform. 
Fuglstad, G.-A., Simpson, D., Lindgren, F. & Rue, H. 2019. Constructing priors that penalize the 

complexity of gaussian random fields. Journal of the American Statistical Association, 114, 
445–452. 

Gascoigne, C., Smith, T., Paige, J. & Wakefield, J. 2025. Estimating subnational under-five mortality 
rates using a spatio-temporal age-period-cohort model. Spatial and Spatio-temporal 
Epidemiology, 52, 100708. 

Gavi the Vaccine Alliance. 2020. Gavi strategy 5.0, 2021-2025. Available: https://www.gavi.org/our-
alliance/strategy/phase-5-2021-2025 [Accessed 25 June 2021]. 

Gelfand, A. E., Kim, H.-J., Sirmans, C. F. & Banerjee, S. 2003. Spatial modeling with spatially varying 
coefficient processes. Journal of the American Statistical Association, 98, 387–396. 

https://www.gavi.org/our-alliance/strategy/phase-5-2021-2025
https://www.gavi.org/our-alliance/strategy/phase-5-2021-2025


29 
 

Gneiting, T. & Raftery, A. E. 2007. Strictly proper scoring rules, prediction, and estimation. Journal of 
the American statistical Association, 102, 359–378. 

Guio Blanco, C. M., Brito Gomez, V. M., Crespo, P. & Ließ, M. 2018. Spatial prediction of soil water 
retention in a páramo landscape: Methodological insight into machine learning using random 
forest. Geoderma, 316, 100–114. 

Hagenauer, J. & Helbich, M. 2022. A geographically weighted artificial neural network. International 
Journal of Geographical Information Science, 36, 215–235. 

Institut National De La Statistique & Icf 2023. Côte d’ivoire enquête démographique et de santé 2021 
rapport final. Rockville, Maryland, USA et la Côte d’Ivoire: INS et ICF. 

James, G., Witten, D., Hastie, T. & Tibshirani, R. 2013. An introduction to statistical learning: With 
applications in r, Spinger. 

Janocha, B., Donohue, R. E., Fish, T. D., Mayala, B. K. & Croft, T. N. 2021. Guidance and 
recommendations for the use of indicator estimates at subnational administrative level 2. 
DHS Spatial Analysis Report 20. Rockville, Maryland, USA: ICF. 

Johns, N. E., Hosseinpoor, A. R., Chisema, M., Danovaro-Holliday, M. C., Kirkby, K., Schlotheuber, A., 
Shibeshi, M., Sodha, S. V. & Zimba, B. 2022. Association between childhood immunisation 
coverage and proximity to health facilities in rural settings: A cross-sectional analysis of 
service provision assessment 2013–2014 facility data and demographic and health survey 
2015–2016 individual data in malawi. BMJ Open, 12, e061346. 

Kawakatsu, Y., Mosser, J. F., Adolph, C., Baffoe, P., Cheshi, F., Aiga, H., Watkins, D. A. & Sherr, K. H. 
2024. High-resolution mapping of essential maternal and child health service coverage in 
nigeria: A machine learning approach. BMJ Open, 14, e080135. 

Kaya, F., Keshavarzi, A., Francaviglia, R., Kaplan, G., Başayiğit, L. & Dedeoğlu, M. 2022. Assessing 
machine learning-based prediction under different agricultural practices for digital mapping 
of soil organic carbon and available phosphorus. Agriculture, 12, 1062. 

Kinyoki, D. K., Osgood-Zimmerman, A. E., Pickering, B. V., Schaeffer, L. E., Marczak, L. B., et al. 2020. 
Mapping child growth failure across low- and middle-income countries. Nature, 577, 231–
234. 

Lim, S. S., Stein, D. B., Charrow, A. & Murray, C. J. L. 2008. Tracking progress towards universal 
childhood immunisation and the impact of global initiatives: A systematic analysis of three-
dose diphtheria, tetanus, and pertussis immunisation coverage. The Lancet, 372, 2031–2046. 

Lindgren, F., Bachl, F., Illian, J., Suen, M. H., Rue, H. & Seaton, A. E. 2024. Inlabru: Software for fitting 
latent gaussian models with non-linear predictors. arXiv preprint arXiv:2407.00791. 

Lindgren, F., Rue, H. & Lindström, J. 2011. An explicit link between gaussian fields and gaussian 
markov random fields: The stochastic partial differential equation approach. J Roy Stat Soc 
Series B (Stat Methodol), 73, 423–498. 

Lindgren, F., Rue, H. & Lindström, J. 2015. Bayesian spatial modelling with r-inla. Journal of Statistical 
Software, 63, 25. 

Matérn, B. 1960. Spatial variation, Berlin, Germany, Springer-Verlag. 
Mayala, B., Dontamsetti, T., Fish, T. & Crof, T. 2019. Interpolation of dhs survey data at subnational 

administrative level 2. Dhs spatial analysis reports no. 17. Rockville: ICF. 
Molla, A., Zhang, W., Zuo, S., Ren, Y. & Han, J. 2023. A machine learning and geostatistical hybrid 

method to improve spatial prediction accuracy of soil potentially toxic elements. Stochastic 
Environmental Research and Risk Assessment, 37, 681–696. 

Mosser, J. F., Gagne-Maynard, W., Rao, P. C., Osgood-Zimmerman, A., Fullman, N., et al. 2019. 
Mapping diphtheria-pertussis-tetanus vaccine coverage in africa, 2000 - 2016: A spatial and 
temporal modelling study. The Lancet, 393, 1843–1855. 

Mwinnyaa, G., Hazel, E., Maïga, A. & Amouzou, A. 2021. Estimating population-based coverage of 
reproductive, maternal, newborn, and child health (rmnch) interventions from health 
management information systems: A comprehensive review. BMC Health Services Research, 
21, 1083. 



30 
 

National Population Commission - Npc & Icf 2019. Nigeria demographic and health survey 2018 - 
final report. Abuja, Nigeria: NPC and ICF. 

Nychka, D., Furrer, R., Paige, J. & Sain, S. 2017. Fields: Tools for spatial data. R package version, 9, 
D6W957CT. 

Paige, J., Fuglstad, G.-A., Riebler, A. & Wakefield, J. 2022. Design- and model-based approaches to 
small-area estimation in a low- and middle-income country context: Comparisons and 
recommendations. Journal of Survey Statistics and Methodology, 10, 50–80. 

Park, Y. S. & Lek, S. 2016. Chapter 7 - artificial neural networks: Multilayer perceptron for ecological 
modeling. In: JØRGENSEN, S. E. (ed.) Developments in environmental modelling. Elsevier. 

Perez-Haydrich, C., Warren, J. L., Burgert, C. R. & Emch, M. E. 2013. Guidelines on the use of dhs gps 
data. DHS Spatial Analysis Reports No. 8. Calverton, Maryland, USA: ICF International. 

R Core Team 2021. A language and environment for statistical computing. Vienna, Austria. 
Rao, J. N. 2005. Small area estimation, John Wiley & Sons. 
Ribeiro Jr, P. J., Diggle, P. J., Christensen, O., Schlather, M., Bivand, R. & Ripley, B. 2024. The geor 

package: Analysis of geostatistical data. 
Ridgeway, G. & Ridgeway, M. G. 2004. The gbm package. R Foundation for Statistical Computing, 

Vienna, Austria, 5. 
Sbarra, A. N., Rolfe, S., Nguyen, J. Q., Earl, L., Galles, N. C., et al. 2021. Mapping routine measles 

vaccination in low- and middle-income countries. Nature, 589, 415–419. 
Scobie, H. M., Edelstein, M., Nicol, E., Morice, A., Rahimi, N., Macdonald, N. E., Carolina Danovaro-

Holliday, M. & Jawad, J. 2020. Improving the quality and use of immunization and 
surveillance data: Summary report of the working group of the strategic advisory group of 
experts on immunization. Vaccine, 38, 7183–7197. 

Sekulić, A., Kilibarda, M., Heuvelink, G. B., Nikolić, M. & Bajat, B. 2020. Random forest spatial 
interpolation. Remote Sensing, 12, 1687. 

Shattock, A. J., Johnson, H. C., Sim, S. Y., Carter, A., Lambach, P., et al. 2024. Contribution of 
vaccination to improved survival and health: Modelling 50 years of the expanded programme 
on immunization. The Lancet, 403, 2307–2316. 

Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. 2017. Penalising model component 
complexity: A principled, practical approach to constructing priors. Statistical Science, 32, 1–
28. 

Takahashi, S., Metcalf, C. J. E., Ferrari, M. J., Tatem, A. J. & Lessler, J. 2017. The geography of measles 
vaccination in the african great lakes region. Nature Communications, 8, 15585. 

Tatem, A. J. 2017. Worldpop, open data for spatial demography. Scientific Data, 4, 170004. 
Tzavidis, N., Zhang, L.-C., Luna, A., Schmid, T. & Rojas-Perilla, N. 2018. From start to finish: A 

framework for the production of small area official statistics. Journal of the Royal Statistical 
Society Series A: Statistics in Society, 181, 927–979. 

Unicef and the Bill and Melinda Gates Foundation. 2021. Equity reference group for immunization 
advocacy brief. Available: 
https://drive.google.com/file/d/1VpuVX85RWd_vq6FJ4lcmCnPOYJp1AhuM/view [Accessed 
05 May 2021]. 

United Nations. 2015. Transforming our world: The 2030 agenda for sustainable development. 
Available: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E 
[Accessed 20 June 2017]. 

Utazi, C. E., Aheto, J. M. K., Chan, H. M. T., Tatem, A. J. & Sahu, S. K. 2022. Conditional probability and 
ratio-based approaches for mapping the coverage of multi-dose vaccines. Statistics in 
Medicine, 41, 5662 – 5678. 

Utazi, C. E., Aheto, J. M. K., Wigley, A., Tejedor-Garavito, N., Bonnie, A., Nnanatu, C. C., Wagai, J., 
Williams, C., Setayesh, H., Tatem, A. J. & Cutts, F. T. 2023. Mapping the distribution of zero-
dose children to assess the performance of vaccine delivery strategies and their relationships 
with measles incidence in nigeria. Vaccine, 41, 170–181. 

https://drive.google.com/file/d/1VpuVX85RWd_vq6FJ4lcmCnPOYJp1AhuM/view
http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E


31 
 

Utazi, C. E., Nilsen, K., Pannell, O., Dotse-Gborgbortsi, W. & Tatem, A. J. 2021. District-level estimation 
of vaccination coverage: Discrete vs continuous spatial models. Stat Med, 40, 2197–2211. 

Utazi, C. E., Thorley, J., Alegana, V. A., Ferrari, M. J., Nilsen, K., Takahashi, S., Metcalf, C. J. E., Lessler, J. 
& Tatem, A. J. 2018a. A spatial regression model for the disaggregation of areal unit based 
data to high-resolution grids with application to vaccination coverage mapping. Statistical 
Methods in Medical Research, 28, 3226–3241. 

Utazi, C. E., Thorley, J., Alegana, V. A., Ferrari, M. J., Takahashi, S., Metcalf, C. J. E., Lessler, J., Cutts, F. 
T. & Tatem, A. J. 2019. Mapping vaccination coverage to explore the effects of delivery 
mechanisms and inform vaccination strategies. Nature Communications, 10, 1633. 

Utazi, C. E., Thorley, J., Alegana, V. A., Ferrari, M. J., Takahashi, S., Metcalf, C. J. E., Lessler, J. & Tatem, 
A. J. 2018b. High resolution age-structured mapping of childhood vaccination coverage in low 
and middle income countries. Vaccine, 36, 1583–1591. 

Veronesi, F. & Schillaci, C. 2019. Comparison between geostatistical and machine learning models as 
predictors of topsoil organic carbon with a focus on local uncertainty estimation. Ecological 
Indicators, 101, 1032–1044. 

Wahba, G. 1981. Spline interpolation and smoothing on the sphere. SIAM Journal on Scientific and 
Statistical Computing, 2, 5–16. 

Wang, L. & Yu, F. 2021. Jackknife resample method for precision estimation of weighted total least 
squares. Communications in Statistics - Simulation and Computation, 50, 1272–1289. 

Wang, X., Yue, Y. R. & Faraway, J. J. 2018. Bayesian regression modeling with inla, Chapman and 
Hall/CRC. 

Weiss, D. J., Lucas, T. C. D., Nguyen, M., Nandi, A. K., Bisanzio, D., et al. 2019. Mapping the global 
prevalence, incidence, and mortality of plasmodium falciparum, 2000-17: A spatial and 
temporal modelling study. The Lancet, 394, 322–331. 

Wigley, A., Lorin, J., Hogan, D., Utazi, C. E., Hagedorn, B., Dansereau, E., Tatem, A. J. & Tejedor-
Garavito, N. 2022. Estimates of the number and distribution of zero-dose and under-
immunised children across remote-rural, urban, and conflict-affected settings in low and 
middle-income countries. PLOS Global Public Health, 2, e0001126. 

Wood, S. & Wood, M. S. 2015. Package ‘mgcv’. R package version, 1, 729. 
Wood, S. N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of 

semiparametric generalized linear models. Journal of the Royal Statistical Society Series B: 
Statistical Methodology, 73, 3–36. 

World Health Organization. 2018. World health organization vaccination coverage cluster surveys: 
Reference manual. Available: https://apps.who.int/iris/handle/10665/272820. 

World Health Organization. 2020. Immunization agenda 2030: A global strategy to leave no one 
behind. Available: https://www.who.int/immunization/immunization_agenda_2030/en/ 
[Accessed 25/06/2020]. 

Zhu, Q., Lee, D. & Stoner, O. 2024. A comparison of statistical and machine learning models for 
spatio-temporal prediction of ambient air pollutant concentrations in scotland. 
Environmental and Ecological Statistics, 31, 1085–1108. 

 

 

 

 

 

 

 

https://apps.who.int/iris/handle/10665/272820
https://www.who.int/immunization/immunization_agenda_2030/en/


32 
 

 

 

 

List of figures 

 

Figure 1: Cluster level estimates of proportions of children aged 12-23 months and 9-35 
months who had received DTP1 and MCV1, respectively, obtained using the 2018 Nigeria 
Demographic and Health Survey.  
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Figure 2: Methodological overview. A schematic illustrating the implementation of geostatistical and 
machine learning approaches investigated in the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 

 

 

Figure3: Model validation. Out-of-sample predictive performance of the geostatistical and machine 
learning approaches investigated based on a k-fold cross-validation exercise using cluster level data 
(see supplementary Table 2). 
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Figure 4: Predicted DTP1 coverage estimates. 1x1 km modelled estimates of DTP1 coverage 
produced through using different geostatistical and machine learning approaches shown using (top) 
maps and (bottom) density plots. 
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Figure 5: Uncertainty estimates for DTP1. Estimates of the uncertainties associated with 1x1 km 
estimates of DTP1 coverage produced using different geostatistical and machine learning 
approaches shown using (a) maps and (b) density plots. 
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Figure 6: National and grid level coverage estimates. Comparisons between national (a-b) and grid 
level (c-d) coverage estimates produced through using geostatistical and machine learning 
approaches. In panels (a-b), the national estimates are compared with the direct survey estimates 
(dotted red lines) while panels (c-d) show the correlations between the grid level estimates. 
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Figure 7: Spatial prioritization. (a-b) Ranking of districts from lowest (rank 1) to highest (rank 774) 
based on DTP1 coverage estimates produced using geostatistical and machine learning approaches, 
and (c) the range of the ranks per district. In panel (b), the districts have been ordered using the 
ranking produced by the GEOS method.  
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Figure 1: 1x1 km maps of the externally sourced geospatial covariates used in the study.  
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Figure 2: 1x1 km maps of the DHS-derived geospatial covariates used in the study. 
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Table 1: Descriptions of the geospatial covariates used in the study. Covariates 1 – 8 are the 
externally sourced geospatial covariates while covariates 9 – 14 are the DHS-derived covariates. 

 

S/N 
Covariate Description Year Source 

Externally sourced geospatial covariates 
1 Travel time to 

the nearest 
health facility 

Travel time (in minutes) from 
each km2 grid to the nearest 
health facility created using a 
health facility data base from 
Maina et al. (2019) and the 
methodology described in 
Weiss et al. (2018) 

2018 Maina, J. et al. A spatial database of health 
facilities managed by the public health sector 
in sub Saharan Africa. Sci Data 6, 134 (2019). 
https://doi.org/10.1038/s41597-019-0142-2 
 
Weiss, D.J. et al. (2018). A global map of 
travel time to cities to access inequalities in 
accessibility in 2015. Nature 553(7688):333-
336. doi:10.1038/nature25181. 

2 Poverty index Proportion of people living in 
poverty (poverty as defined 
by USD 2.00) 

2013 WorldPop (2013) https://www.worldpop.org/ 
 

3 Nightlight 
intensity 

VIIRS night-time lights 
Nano-watts (sqcm*sr) 

2016 NOAA – Visible Infrared Imaging Radiometer 
Suite.  
https://ngdc.noaa.gov/eog/viirs/index.html  

4 Cattle density Number of cattle per km2 grid  2010 Gilbert, M. et al.  (2018) Global Distribution 
Data for Cattle, Buffaloes, Horses, Sheep, 
Goats, Pigs, Chickens and Ducks in 2010. 
Nature Scientific data, 5:180227. doi: 
10.1038/sdata.2018.227 

5 Daytime Land 
Surface 
Temperature 

Average MODIS daytime land 
surface temperature 2013-
2018 (Kelvin) 

2013-
2018 

Wan, Z. et al. MOD11C3 MODIS/Terra Land 
Surface Temperature/Emissivity Monthly L3 
Global 0.05Deg CMG Voo6 [Data set]. NASA 
EOSDIS Land Processes DAAC 

6 Distance to 
settlements 

Distance to settlements/built-
up areas (Metres) 

2014 WorldPop (www.worldpop.org - School of 
Geography and Environmental Science, 
University of Southampton; Department of 
Geography and Geosciences, University of 
Louisville; Departement de Geographie, 
Universite de Namur) and Center for 
International Earth Science Information 
Network (CIESIN), Columbia University 
(2014). Global High Resolution Population 
Denominators Project - Funded by The Bill 
and Melinda Gates Foundation 
(OPP1134076). 
https://dx.doi.org/10.5258/SOTON/WP00670 

7 Distance to 
cultivated areas 

Distance to the edge of 
cultivated areas (Metres) 

2015 ESA (European Space Agency) CCI (Climate 
Change Initiative) Land Cover project 2017. 
"Land Cover CCI Product - Annual LC maps 
from 2000 to 2015 (v2.0.7)." 
http://maps.elie.ucl.ac.be/CCI /viewer  

8 Urban and rural 
areas 

Urban and rural areas 
produced using WorldPop 
2018 unconstrained total 

2018 WorldPop (www.worldpop.org - School of 
Geography and Environmental Science, 
University of Southampton; Department of 

https://www.worldpop.org/
https://dx.doi.org/10.5258/SOTON/WP00670
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population estimates and 
information obtained from 
the 2018 NDHS as described 
in Utazi et al (2022) 

Geography and Geosciences, University of 
Louisville; Departement de Geographie, 
Universite de Namur) and Center for 
International Earth Science Information 
Network (CIESIN), Columbia University 
(2018). Global High Resolution Population 
Denominators Project - Funded by The Bill 
and Melinda Gates Foundation 
(OPP1134076). 
https://dx.doi.org/10.5258/SOTON/WP00670 
 
National Population Commission - NPC and 
ICF, Nigeria Demographic and Health Survey 
2018 - Final Report, 2019, Abuja, Nigeria: 
NPC and ICF. Available at 
http://dhsprogram.com 
/pubs/pdf/FR359/FR359.pdf, 2019 
 
Utazi CE et al (2022). Conditional probability 
and ratio-based approaches for mapping the 
coverage of multi-dose vaccines. Statistics in 
Medicine; 41(29): 5662-5678.  

NDHS-derived geospatial covariates 
9 Ownership of 

health 
card/document   

Proportion of children age <= 
35 months who owned a 
vaccination card and/or a 
health document which 
were/was seen during the 
survey 

2018 National Population Commission - NPC and 
ICF, Nigeria Demographic and Health Survey 
2018 - Final Report, Abuja, Nigeria: NPC and 
ICF. Available at http://dhsprogram.com 
/pubs/pdf/FR359/FR359.pdf, 2019 

10 Household 
wealth  

Proportion of households 
(with at least one living child) 
belonging to the top three 
wealth quintiles 
(middle/richer/richest) 

2018 National Population Commission - NPC and 
ICF, Nigeria Demographic and Health Survey 
2018 - Final Report, Abuja, Nigeria: NPC and 
ICF. Available at http://dhsprogram.com 
/pubs/pdf/FR359/FR359.pdf, 2019 

11 Maternal 
education 

Proportion of mothers who 
had at least a primary 
education 

2018 NDHS 2018 National Population Commission 
- NPC and ICF, Nigeria Demographic and 
Health Survey 2018 - Final Report, Abuja, 
Nigeria: NPC and ICF. Available at 
http://dhsprogram.com 
/pubs/pdf/FR359/FR359.pdf, 2019 

12 Use of media Proportion of mothers who 
had access to 
newspaper/radio/television 
at least once a week 

2018 NDHS 2018 National Population Commission 
- NPC and ICF, Nigeria Demographic and 
Health Survey 2018 - Final Report, Abuja, 
Nigeria: NPC and ICF. Available at 
http://dhsprogram.com 
/pubs/pdf/FR359/FR359.pdf, 2019 

13 Skilled birth 
attendance 

Proportion of live births in 
the 5 years preceding the 
survey that were assisted by a 
skilled provider (i.e. 

2018 NDHS 2018 National Population Commission 
- NPC and ICF, Nigeria Demographic and 
Health Survey 2018 - Final Report, Abuja, 
Nigeria: NPC and ICF. Available at 

https://dx.doi.org/10.5258/SOTON/WP00670
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doctor/nurse/auxiliary 
nurse/midwide) 

http://dhsprogram.com 
/pubs/pdf/FR359/FR359.pdf, 2019. 

14 Access to 
mobile 
phone/internet  

Proportion of mothers who 
had access to a mobile phone 
and/or internet  

2018 NDHS 2018 National Population Commission 
- NPC and ICF, Nigeria Demographic and 
Health Survey 2018 - Final Report, Abuja, 
Nigeria: NPC and ICF. Available at 
http://dhsprogram.com 
/pubs/pdf/FR359/FR359.pdf, 2019. 

 

 

 

Figure 3: Plots of the relationships between the original geospatial covariates (excluding urban-rural) 
and DTP1 coverage at the cluster level. The blue lines are linear fits while the red lines are natural 
cubic spline fits to the data. 
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Figure 4: Plots of the relationships between the original geospatial covariates (excluding urban-rural) 
and MCV1 coverage at the cluster level. The blue lines are linear fits while the red lines are natural 
cubic spline fits to the data. 
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Figure 5:  Sample variograms for DTP1 estimated using the full data and by deleting blocks of 
observations of different sizes at random from the full data.   

 

 

Figure 6: Sample variograms for MCV1 estimated using the full data and by deleting blocks 
of observations of different sizes at random from the full data.   
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Figure 7: Distributions of cluster-level sample sizes for DTP1 and MCV1. 
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Table 2: Out-of-sample predictive performance of the geostatistical and machine learning approaches 
investigated based on a k-fold cross-validation exercise using cluster level data 

Method Corr. RMSE MAE AVG_BIAS CRPS Corr. RMSE MAE AVG_BIAS CRPS 
DTP1 Random k-fold DTP1 Stratified k-fold 

ANN 0.7230 0.2804 0.1775 -0.0366  0.7025 0.2853 0.1830 -0.0510  

BRT 0.7060 0.2740 0.1730 -0.0760  0.4700 0.2830 0.1830 -0.0620  

GAM 0.7630 0.2100 0.1630 0.0040  0.5290 0.2240 0.1720 0.0100  

LASSO 0.7730 0.2070 0.1620 0.0060  0.5950 0.2080 0.1630 0.0060  

GEOS 0.7877 0.2017 0.1564 -0.0046 0.1213 0.5994 0.2126 0.1666 0.0011 0.1270 

SGEOS 0.7888 0.2013 0.1571 -0.0041 0.1212 0.5910 0.2156 0.1690 0.0014 0.1282 

STG 0.7140 0.2281 0.1859 0.0102 0.1459 0.4325 0.2525 0.2119 0.0345 0.1580 

Method MCV1 Random k-fold MCV1 Stratified k-fold 
ANN 0.6035 0.3036 0.2319 -0.0574  0.5568 0.3158 0.2438 -0.0452  
BRT 0.6330 0.2890 0.2190 -0.0550  0.4620 0.2960 0.2250 -0.0530  
GAM 0.6760 0.2130 0.1690 0.0030  0.5150 0.2210 0.1760 0.0020  
LASSO 0.6790 0.2120 0.1700 0.0030  0.5380 0.2150 0.1740 0.0070  
GEOS 0.7268 0.1983 0.1569 -0.0024 0.1176 0.5519 0.2181 0.1744 -0.0097 0.1300 
SGEOS 0.7229 0.1997 0.1584 -0.0039 0.1184 0.5310 0.2218 0.1780 -0.0125 0.1325 
STG 0.6660 0.2148 0.1727 0.0080 0.1353 0.3743 0.2466 0.2040 0.0159 0.1532 
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Figure 8: Prediction in low coverage areas for DTP1 using geostatistical and machine-learning 
approaches (i.e., survey clusters with proportion of children vaccinated 𝑝𝑝 ≤ 0.4). 

 

 

Figure 9: Prediction in low coverage areas for MCV1 using geostatistical and machine-learning 
approaches (i.e., survey clusters with proportion of children vaccinated 𝑝𝑝 ≤ 0.4). 
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Figure 10: Variograms of the in-sample residuals for DTP1 produced by the different methods. The 
shaded areas are the variogram envelopes. 

 

 

 

Figure 11: Variograms of the in-sample residuals for MCV1 produced by the different methods. The 
shaded areas are the variogram envelopes. 
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Figure 12: 1x1 km modelled estimates of MCV1 coverage produced through using different 
geostatistical and machine learning approaches shown using (a) maps and (b) density plots. 

 

 

 

a 

b 
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Figure 13: Estimates of the uncertainties associated with 1x1 km estimates of MCV1 coverage 
produced using different geostatistical and machine learning approaches shown using (a) maps and 
(b) density plots. 

 

a 

b 
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Figure 14: (a-b) Ranking of districts from lowest (rank 1) to highest based on MCV1 coverage 
estimates produced using geostatistical and machine learning approaches, and (c) the range of the 
ranks per district. In panel (b), the districts have been ordered using the ranking produced by the 
GEOS method. 
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Figure 15: Examining the correlations between 1x1 km grid level DTP1 estimates produced by the 
different geostatistical and machine learning approaches. 

 

 

 

Figure 16: Examining the correlations between 1x1 km grid level MCV1 estimates produced by the 
different geostatistical and machine learning approaches. 
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Additional analyses to investigate the performance of the geostatistical and machine learning 
approaches using the 2021 Cote d’Ivoire Demographic and Health Survey data 

For this analysis, we obtained cluster level data on MCV1 coverage from the 2021 Cote d’Ivoire 
Demographic and Health Survey (Institut National de la Statistique and ICF, 2023) for children aged 
12-23 months. Detailed information on the survey can be found in the survey report (Institut 
National de la Statistique and ICF, 2023). The extracted data included information for 1,919 children 
aged 12 – 23 months, sampled from 509 clusters. As in the application using the 2018 NDHS, we also 
obtained 13 geospatial covariates for the analysis from WorldPop, as reported in supplementary 
Table 4. These covariates were processed and evaluated as described in Section 2.1.2. 

We conducted a 𝑘𝑘-fold cross-validation exercise, setting 𝑘𝑘 = 10 and using random and stratified 
folds as before, to evaluate the out-of-sample predictive performance of the modelling approaches 
using the 2021 Cote d’Ivoire DHS. All the methods were implemented as described previously in 
Section 2.2, with appropriate choices made for the current application. 

The results of the 𝑘𝑘-fold cross-validation exercise are reported in supplementary Table 3 below. 
These results generally indicate that based on RMSE, MAE and AVG_BIAS, the ANN and BRT were the 
worst performing approaches. Both approaches only had better correlations than the STG approach. 
Also, based on all the metrics, the best performing approaches were the SGEOS and GEOS 
approaches.  

 

Table 3: Out-of-sample predictive performance of the geostatistical and machine learning approaches 
investigated based on a 𝑘𝑘-fold cross-validation exercise using cluster level 2021 Cote d’Ivoire 
Demographic and Health Survey data 

Method Correlation RMSE MAE AVG_BIAS CRPS 
Random K-fold 

ANN 0.2619 0.4292 0.3357 -0.0776 - 
BRT 0.2502 0.4342 0.3255 -0.0908 - 
GAM 0.2707 0.3245 0.2709 -0.0136 - 
LASSO 0.2835 0.3171 0.2632 -0.0150 - 
GEOS 0.3143 0.2834 0.2367 0.0051 0.1803 
SGEOS 0.3252 0.2821 0.2351 0.0050 0.1793 
STG 0.2317 0.3207 0.2679 -0.0118 0.2169 
 Stratified K-fold 
ANN 0.2563 0.4217 0.3260 -0.0898 - 
BRT 0.1494 0.4570 0.3515 -0.0854 - 
GAM 0.2268 0.3287 0.2754 -0.0059 - 
LASSO 0.2317 0.3227 0.2685 -0.0139 - 
GEOS 0.2682 0.2856 0.2369 0.0057 0.1784 
SGEOS 0.2759 0.2835 0.2352 -0.0018 0.1780 
STG 0.1469 0.3252 0.2718 -0.0116 0.2155 
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Table 4: Descriptions of the geospatial covariates used in the additional analyses. Covariates 1 – 9 are 
the externally sourced geospatial covariates while covariates 10 – 13 are the DHS-derived covariates. 

 

S/N 
Covariate Description Year Source 

Externally sourced geospatial covariates 
1 Urban and 

rural areas 
Urban and rural areas 
produced using WorldPop 
2021 unconstrained total 
population estimates and 
information obtained from 
the 2021 Cote d’Ivoire DHS 
as described in Utazi et al 
(2022) 

2021 WorldPop (www.worldpop.org - School of 
Geography and Environmental Science, University 
of Southampton; Department of Geography and 
Geosciences, University of Louisville; Departement 
de Geographie, Universite de Namur) and Center for 
International Earth Science Information Network 
(CIESIN), Columbia University (2021). Global High 
Resolution Population Denominators Project - 
Funded by The Bill and Melinda Gates Foundation 
(OPP1134076). 
https://dx.doi.org/10.5258/SOTON/WP00670 
 
Institut National de la Statistique-INS et ICF, 
Demographic and Health Surveys of Côte d'Ivoire, 
2021- Final Report, INS/Côte d'Ivoire & ICF, 
Available at  
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf, 
2021 
Utazi CE et al (2022). Conditional probability and 
ratio-based approaches for mapping the coverage of 
multi-dose vaccines. Statistics in Medicine; 41(29): 
5662-5678.  

2 Vegetation 
index 

MODIS Mid-Infrared 
Vegetation index 16-day 
mean 
 

2017-
2021 

Didan, K. (2021). MODIS/Aqua Vegetation Indices 
16-Day L3 Global 1km SIN Grid V061 [Data set]. 
NASA EOSDIS Land Processes DAAC. 
https://doi.org/10.5067/MODIS/MYD13A2.061 

3 Average wet 
days 

Number of wet days 
(averaged over 2017 – 
2021) 
 

2017-
2021 

Harris, I., Osborn, T. J., Jones, P., & et al. (2020). 
Version 4 of the CRU TS monthly high-resolution 
gridded multivariate climate dataset. Scientific 
Data, 7, 109. https://doi.org/10.1038/s41597-020-
0453-3 

4 Distance to 
conflict 
locations  
 

Distance to UCDP conflict 
locations averaged over 
2016 – 2020 (Metres) 
 

2016-
2020 

Uppsala Conflict Data Program, UCDP Conflict 
Encyclopedia: www.ucdp.uu.se/database, Uppsala 
University (accessed on 01/07/2024). 

5 Elevation Calculation of elevation 
above the sea level (Metres) 

2020 https://www.viewfinderpanoramas.org/dem3.html 

6 Access to urban 
areas 

Estimated travel access to 
urban areas per 1km pixel 
resolution 

2015 Weiss, D.J. et al. (2018). A global map of travel time 
to cities to access inequalities in accessibility in 
2015. Nature 553(7688):333-336. 
doi:10.1038/nature25181. 

7 Travel time to 
the nearest 
health facility 

Travel time walking (in 
minutes) from each km2 grid 
to the nearest health facility 
created using a health 

2020 Maina, J. et al. A spatial database of health facilities 
managed by the public health sector in sub Saharan 
Africa. Sci Data 6, 134 (2019). 
https://doi.org/10.1038/s41597-019-0142-2 

https://dx.doi.org/10.5258/SOTON/WP00670
http://www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf
https://doi.org/10.5067/MODIS/MYD13A2.061
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3
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facility data base from 
Maina et al. (2019) and the 
methodology described in 
Weiss et al. (2018) 

 
Weiss, D.J. et al. (2018). A global map of travel time 
to cities to access inequalities in accessibility in 
2015. Nature 553(7688):333-336. 
doi:10.1038/nature25181. 

8 Average 
malaria 
Prevalence 

Malaria parasite prevalence 
in 2-10-year-olds averaged 
over 2017– 2020 
 

2017-
2020 

Weiss, D. J., Lucas, T. C. D., Nguyen, M., Nandi, A. K., 
Bisanzio, D., et al. (2019). Mapping the global 
prevalence, incidence, and mortality of Plasmodium 
falciparum, 2000–17: A spatial and temporal 
modelling study. The Lancet, 394(10195), 322–331. 
https://doi.org/10.1016/S0140-6736(19)31097-9  

9 Average 
maximum 
temperature 

Maximum temperature 
(averaged over 2017 – 
2021) 

2017-
2020 

Harris, I., Osborn, T. J., Jones, P., & et al. (2020). 
Version 4 of the CRU TS monthly high-resolution 
gridded multivariate climate dataset. Scientific 
Data, 7, 109. https://doi.org/10.1038/s41597-020-
0453-3 

NDHS-derived geospatial covariates 
10 Ownership of 

health 
card/document   

Proportion of children age 
<= 35 months who owned a 
vaccination card and/or a 
health document which 
were/was seen during the 
survey 

2021 Institut National de la Statistique-INS et ICF, 
Demographic and Health Surveys of Côte d'Ivoire, 
2021- Final Report, INS/Côte d'Ivoire & ICF, 
Available at  
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf, 
2021 

11 Household 
wealth  

Proportion of households 
(with at least one living 
child) belonging to the top 
three wealth quintiles 
(middle/richer/richest) 

2021 Institut National de la Statistique-INS et ICF, 
Demographic and Health Surveys of Côte d'Ivoire, 
2021- Final Report, INS/Côte d'Ivoire & ICF, 
Available at  
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf, 
2021 

12 Maternal 
education 

Proportion of mothers who 
had at least a primary 
education 

2021 Institut National de la Statistique-INS et ICF, 
Demographic and Health Surveys of Côte d'Ivoire, 
2021- Final Report, INS/Côte d'Ivoire & ICF, 
Available at  
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf, 
2021 

13 Use of media Proportion of mothers who 
had access to 
newspaper/radio/television 
at least once a week 

2021 Institut National de la Statistique-INS et ICF, 
Demographic and Health Surveys of Côte d'Ivoire, 
2021- Final Report, INS/Côte d'Ivoire & ICF, 
Available at  
www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf, 
2021 

 

 

 

 

 

 

https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3
http://www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf
http://www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf
http://www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf
http://www.dhsprogram.com/pubs/pdf/FR385/FR385.pdf
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Results of additional analyses for GAM, LASSO, GEOS, SGEOS and STG methods using Gaussian 
likelihoods 

 

Table 5: Out-of-sample predictive performance of five of the methods investigated based on a cluster 
level k-fold cross-validation exercise using a Gaussian likelihood.  

Method Corr. RMSE MAE AVG_BIAS CRPS 
DTP1 Random k-fold 

GAM 0.7401 0.2516 0.1595 -0.0639  
LASSO 0.7509 0.2510 0.1603 -0.0542  
GEOS 0.7575 0.2414 0.1530 0.0628 0.1344 
SGEOS 0.7627 0.2401 0.1533 0.0516 0.1342 
STG 0.6598 0.2784 0.1855 -0.0853 0.1609 

DTP1 Stratified k-fold 
GAM 0.4721 0.2715 0.1761 -0.0599  
LASSO 0.5590 0.2494 0.1615 -0.0545  
GEOS 0.5660 0.2466 0.1584 0.0640 0.1359 
SGEOS 0.5540 0.2485 0.1612 0.0535 0.1379 
STG 0.3873 0.2739 0.1907 -0.0899 0.1589 

 

 

 

Examining the predictive performance of ANN and BRT using different groups of covariates 

 

Figure 17: Distributions of grid-level predictions produced through using ANN and BRT when only 
externally sourced geospatial covariates (GEO) and DHS-derived covariates (DHS) were used for 
prediction (see supplementary Table 1). The urban-rural covariate was included in each case.  
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