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A B S T R A C T

Recently, there has been a growing interest in the production of high-resolution maps of vaccination coverage. 
These maps have been useful for uncovering geographic inequities in coverage and improving targeting of in
terventions to reach marginalized populations. Different methodological approaches have been developed for 
producing these maps using mostly geolocated household survey data and geospatial covariate information. 
However, it remains unclear how much the predicted coverage maps produced by the various methods differ, and 
which methods yield more reliable estimates. Here, we explore the predictive performance of these methods and 
resulting implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey as a 
case study, we generate 1 × 1 km and district level maps of indicators of vaccination coverage using geo
statistical, machine learning (ML) and hybrid methods and evaluate predictive performance via cross-validation. 
Our results show similar predictive performance for five of the seven methods investigated, although two geo
statistical approaches are the best performing methods. The worst-performing methods are two ML approaches. 
We find marked differences in spatial prioritization using these methods, which could potentially result in 
missing important underserved populations, although broad similarities exist. Our study can help guide map 
production for other health and development metrics.

1. Introduction

Immunization is a fundamental component of primary healthcare, 
playing a critical role in reducing vaccine preventable morbidity and 
mortality (Shattock et al., 2024). It is also essential for achieving the 
Sustainable Development Goals (United Nations, 2015) and other global 
health policy goals, such as the Immunization Agenda 2030 (World 
Health Organization, 2020) and Gavi Strategy 5.0 (Gavi The Vaccine 
Alliance, 2020). However, immunization and other health services 
remain out of reach for vulnerable and marginalized populations, 
including those in remote rural areas, urban slums, and conflict-affected 
and humanitarian settings (Chopra et al., 2020; UNICEF and the Bill and 
Melinda Gates Foundation, 2021; Wigley et al., 2022).

To design effective strategies to reach these underserved pop
ulations, there is a need for accurate, spatially detailed maps of vacci
nation coverage and other health and development indicators (HDIs) 

such as maternal literacy, poverty, school attendance, malaria preva
lence, malnutrition and skilled birth attendance (Bosco et al., 2017; 
Mosser et al., 2019; Weiss et al., 2019; Kinyoki et al., 2020; Sbarra et al., 
2021). Such maps enable decision makers to identify geographic and 
other inequities in service coverage and utilization, thereby supporting 
more targeted and effective interventions - a key focus of the growing 
field of precision public health (Dowell et al., 2016). Moreover, by 
providing current, robust and actionable evidence base, high-resolution 
maps help bridge the data gap that exist in many low- and 
middle-income countries where health management information sys
tems and other administrative data sources such as vital registration are 
often incomplete and unreliable (Scobie et al., 2020; Mwinnyaa et al., 
2021).

Data for producing maps of vaccination coverage and other HDIs 
often come from nationally representative, geolocated household sur
veys such as the Demographic and Health Surveys, Multiple Indicator 
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Cluster Surveys and national vaccination coverage surveys. Due to their 
high operational costs, these surveys are generally designed to provide 
estimates at the provincial or first administrative level. As a result, 
classical survey analysis methods, such as direct weighted estimators 
(Rao, 2005), can only generate reliable estimates at this coarse spatial 
scale. However, accurate and timely estimates are most valuable at 
lower administrative levels, e.g., the district or second administrative 
level at which vaccination programs and other interventions are planned 
and implemented. This need, along with advances in geostatistical 
modelling techniques and computing power, has spurred the widespread 
use of geostatistical and machine learning (ML) approaches to produce 
gridded estimates of HDIs from survey data. These approaches leverage 
the direct and proximate relationships between HDI outcomes measured 
at survey cluster locations and geospatial covariates, along with spatial 
and spatiotemporal dependence, to model and predict the spatial dis
tributions of HDIs for single or multiple timepoints. By producing esti
mates at the grid level, typically 1 km or 5 km resolution, these outputs 
are not constrained by changing political or administrative boundaries 
and can be flexibly aggregated to operationally relevant areas of inter
est. Moreover, when integrated with other geospatial datasets, e.g., 
high-resolution population maps (Tatem, 2017) and geolocated health 
facility data (Lim et al., 2008; Johns et al., 2022), precise estimates of 
at-risk or underserved populations can be produced. Research and sur
vey programs such as WorldPop through its VaxPop project (Utazi et al., 
2018b,2019,2021,2022), the Institute for Health Metrics and Evaluation 
(IHME) (Mosser et al., 2019; Sbarra et al., 2021) and the DHS program 
(Janocha et al., 2021) now routinely produce and distribute maps of 
HDIs.

A range of geostatistical, ML and hybrid approaches have been 
employed to produce high-resolution maps of vaccination coverage and 
other HDIs. Prominent examples include geostatistical models (GEOS) 
(Bosco et al., 2017; Utazi et al., 2021,2022; Alegana et al., 2024), 
generalized additive models (GAMs) (Takahashi et al., 2017; Kawakatsu 
et al., 2024), stacked generalization (STG) (Mosser et al., 2019; Sbarra 
et al., 2021), boosted regression trees (BRT) (Kawakatsu et al., 2024), 
random forests (Browne et al., 2021), least absolute shrinkage and se
lection operator (LASSO) regression and deep learning/artificial neural 
networks (ANN) (Bosco et al., 2017). Model-based geostatistics (Diggle 
et al., 1998) explicitly accounts for spatial autocorrelation and the (non) 
linear effects of covariates, and is often implemented in a Bayesian 
framework using the INLA-SPDE approach or MCMC techniques, with 
INLA-SPDE being more popular recently due to its computational effi
ciency. When non-linear (or smooth) functions of covariates are incor
porated into a geostatistical model, the result is a semiparametric 
geostatistical model (SGEOS) (Wood, 2011; Wang et al., 2018), which 
eliminates the need for covariate data transformation. A key advantage 
of the Bayesian implementation of geostatistical models is the natural 
framework to account for uncertainty in both model predictions and 
input data. ML and hybrid approaches are particularly suitable for 
modelling complex nonlinear relationships and interactions in the data, 
though this often comes at the expense of interpretability. ML ap
proaches can automatically identify relevant covariates/features in the 
data, unlike geostatistical modelling which may require a separate co
variate selection process. While ML approaches rely only on covariates 
to make predictions and would be expected to perform well when these 
are highly informative, geostatistical and hybrid approaches addition
ally exploit residual spatial (and temporal) autocorrelation to improve 
predictive performance. In general, ML approaches are computationally 
less demanding, can handle large-scale and high-dimensional data bet
ter, and are sometimes less challenging to implement (e.g., GAM, LASSO 
and BRT) (James et al., 2013; Berrocal et al., 2020). However, some ML 
approaches such as BRT, ANN and LASSO do not produce uncertainty 
estimates, necessitating the use of supplementary techniques for un
certainty quantification (Veronesi and Schillaci, 2019; Berrocal et al., 
2020).

Currently, little is known about the comparative predictive 

performance of these ML and geostatistical approaches in the context of 
mapping vaccination coverage. There is a lack of substantial evidence on 
how much the predicted maps produced by these approaches differ and 
which approaches yield more reliable estimates for vaccination 
coverage mapping. This gap may be attributed to the technical 
complexity involved in implementing these models and, in some cases, 
insufficient emphasis on methodological rigour. As maps of vaccination 
coverage and other HDIs become increasingly popular, it is crucial to 
assess the strengths and limitations of these modelling approaches. The 
goal of this study is, therefore, to critically evaluate widely used ap
proaches for mapping vaccination coverage and other HDIs in terms of 
their predictive accuracy and associated uncertainties. Specifically, we 
investigate four machine learning approaches (ANN, BRT, GAM and 
LASSO), two geostatistical models (GEOS and SGEOS) and one hybrid 
approach (STG). Our evaluation is based on a case study mapping the 
coverage of the first dose of the diphtheria-tetanus-pertussis (DTP1) and 
the first dose of the measles-containing vaccine (MCV1) vaccines using 
the 2018 Nigeria Demographic and Health Survey (NDHS) (National 
Population Commission - NPC and ICF, 2019).

2. Methodology

2.1. Data

2.1.1. Vaccination coverage data
Data on the coverage of DTP1 and MCV1 vaccines were obtained 

from the 2018 NDHS (National Population Commission - NPC and ICF, 
2019) for children aged 12-23 months and 9-35 months, respectively. 
The NDHS was conducted between August and December 2018, utilizing 
a stratified, two-stage sampling design to produce estimates of indicators 
at the national, regional and state levels, as well as for urban and rural 
areas. Stratification was achieved by separating each of the 36 states and 
the Federal Capital Territory (FCT) into urban and rural areas. Samples 
were drawn from within each stratum in two stages: the first stage 
involved the selection of survey clusters (enumeration areas) from a 
national sampling frame using a probability proportional to size sam
pling scheme, while the second stage involved selecting households 
randomly from household lists within the selected clusters. Detailed 
information on the methods employed in the survey is published else
where (National Population Commission - NPC and ICF, 2019). The 
NDHS was selected for this study because of ease of data access and 
having been used extensively in previous work to map coverage (Dong 
and Wakefield, 2021; Aheto et al., 2023; Utazi et al., 2023; Kawakatsu 
et al., 2024).

The survey was implemented in a total of 1,389 clusters, with 11 of 
the originally selected 1,400 clusters excluded due to security concerns. 
In Borno State, only 11 of the 27 local government areas were included 
in the survey due for similar reasons. For both vaccines, we used in
formation obtained from both home-based records and maternal/care
giver recall, following DHS guidance during data extraction (Croft et al., 
2023). Hence, our analysis captures crude DTP1 and MCV1 coverage 
estimates (World Health Organization, 2018). At the cluster level, we 
aggregated individual-level data to produce numbers of children sur
veyed, numbers vaccinated and empirical proportions of children 
vaccinated as shown in Fig. 1.

2.1.2. Geospatial covariate and population data
To enhance the prediction of vaccination coverage using the ap

proaches investigated, we obtained some geospatial covariate informa
tion — see supplementary Figs. S1 and S2 and supplementary Table 1. 
These covariates have been successfully used in previous work (Bosco 
et al., 2017; Utazi et al., 2019,2022,2023) to model and predict vacci
nation coverage and other HDIs. These comprise variables measuring a 
range of conditions in the study country which may have direct or 
proximate relationships with vaccination coverage. The covariates 
include measures of remoteness (travel time to the nearest health facility 
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and distance to cultivated areas), socioeconomic status (poverty index, 
household wealth, maternal education), health-related factors (owner
ship of health or vaccination card/document, skilled birth attendance, 
access to media and use of mobile phone/internet) and urbanicity or 
development (nightlight intensity and urban/rural areas).

The externally sourced geospatial covariates (supplementary 
Table 1) were processed and harmonized at 1 × 1 km resolution, at 
which we planned to produce grid level coverage estimates. To extract 
the values of the covariates for each cluster location, we used the 
approach described in Utazi et al. (2018b) and Perez-Haydrich et al. 
(2013), which accounts for the displacement of the clusters (this 
displacement often occurs within districts in DHS surveys). For the 
DHS-derived covariates, we first calculated their values at the cluster 
level using detailed definitions provided in supplementary Table 1 and 
then used the krig() function in the fields package in R (Nychka et al., 
2017) to create corresponding 1 × 1 km interpolated surfaces, with the 
optimal range parameter set to the first quartile of the distances between 
the clusters (other distance quartiles yielded almost the same results). 
The kriging interpolation was carried out using the logit-transformed 
cluster level data in each case, due to its underlying Gaussian assump
tion, after which the estimates were back-transformed to the unit 
interval.

We checked for multicollinearity by examining the correlations be
tween the covariates and by fitting non-spatial binomial regression 
models to estimate their variance inflation factors (VIFs). Furthermore, 
for one of the modelling approaches (equations (1) and (2)), we exam
ined the distributions of the covariates and their relationships with 
vaccination coverage (on the empirical logit scale), following which we 
log- or logit-transformed some skewed covariates to improve their linear 
relationships with vaccination coverage. The plots of the covariates and 
their relationships with vaccination coverage are shown in supplemen
tary Figs. S3 and S4. All 14 covariates were retained in our study, as their 
VIFs were less than 5.0 for both DTP1 and MCV1. This also facilitated 
using the application of ML approaches, which typically benefit from a 
richer set of covariates.

To aggregate the coverage estimates to the district and other 
administrative levels, we obtained 2018 gridded estimates of numbers of 
children aged under 5 years from WorldPop (Tatem, 2017), which we 
used as a proxy population layer for the age groups included in the 
study.

2.2. Geostatistical and machine learning modelling approaches

We considered seven modelling approaches to predict vaccination 
coverage at 1 × 1 km resolution, as indicated previously. In all analyses, 
we accounted for the complex sampling design of the NDHS, specifically 

urban-rural stratification, by including an urban-rural covariate and, 
when using geostatistical modelling approaches, between-cluster vari
ation (Dong and Wakefield, 2021; Gascoigne et al., 2025). The model
ling approaches are described in detail as follows and illustrated in 
Fig. 2.

2.2.1. Bayesian geostatistical regression model (GEOS)
The first model we considered is a Bayesian geostatistical model with 

a Binomial likelihood. Let Y(si) denote the number of children vacci
nated at survey location si (i= 1,…, n) and m(si) the number of children 
sampled at the location. The first level of the model assumes that 

Y(si)|p(si) ∼ Binomial(m(si), p(si)), (1) 

where p(si) (0 ≤ p(si) ≤ 1) is the true vaccination coverage at location 
si. We model p(si) using the logistic regression model 

logit(p(si)) = β0 +
∑p

j=1
xj(si)βj + ω(si) + ϵ(si), (2) 

where β0 is an intercept term, x1(si), …, xp(si) are covariates associated 
with si (including an urban-rural covariate), β1,…, βp are the corre
sponding regression coefficients, ϵ(si) is an independent and identically 
distributed (iid) Gaussian random effect with variance, σ2

ϵ , used to 
model non-spatial residual variation or between-cluster variation, and 
ω(si) is a Gaussian spatial random effect used to capture residual spatial 
correlation in the model. That is, ω = (ω(s1),…,ω(sn) )

T
∼ N(0, Σω), 

where Σω is assumed to follow the Matérn covariance function (Matérn, 
1960). For identifiability reasons, we set the smoothness parameter in 
Σω to one, see Lindgren et al. (2011).

To complete the Bayesian model specification, we assigned a 
N
(
0, 103I

)
prior to the regression parameter, β, and a penalized 

complexity (PC) (Simpson et al., 2017) prior to σϵ such that p(σϵ > 3) =

0.01. Similarly, following Fuglstad et al. (2019), we placed a joint PC 
prior on the covariance parameters of the spatial random effect, ω, such 
that p(r< r0) = 0.01 and p(σ > 3) = 0.01, with r0 chosen to be the 5% of 
the extent of the country in the north-south direction.

The model was fitted using the INLA-SPDE approach implemented in 
the R-INLA package (Lindgren et al., 2015; R Core Team, 2021). Pre
dictions at 1 × 1 km resolution were obtained using the fitted model by 
drawing samples from the posterior predictive distributions of p(si) at 
the grid locations. Throughout, predictions at the administrative level 
were obtained as population-weighted averages taken over all the grid 
cells falling within each administrative area (Utazi et al., 2022).

Fig. 1. Cluster level estimates of proportions of children aged 12-23 months and 9-35 months who had received DTP1 and MCV1, respectively, obtained using the 
2018 Nigeria Demographic and Health Survey.
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2.2.2. Bayesian semiparametric geostatistical regression model (SGEOS)
This model extends the GEOS model in equations (1) and (2) through 

using smooth functions to account for the nonlinear effects of some 
covariates. The model assumes that the true vaccination coverage at 
location si, p(si), can be expressed as 

logit(p(si)) = β0 +
∑p

j=1
xj(si)βj +

∑q

k=1
fk(zk(si)) + ω(si) + ϵ(si) (3) 

where β0 is an intercept term, x1(si), …, xp(si) are linear covariates with 
regression coefficients β1,…,βp, and f1(.),…, fq(.) are smooth functions 
used to account for the non-linear effects of the covariates z1(si), …,

zq(si). Other terms in the model are as defined previously in equation 
(2). We specified a second-order random walk prior for f(.) such that 

f(ui|ui− 1, ui− 2) ∼ N
(
2ui− 1 − ui− 2, σ2

u
)

(4) 

which is the Bayesian equivalent of a cubic smoothing spline (Wang 
et al., 2018). For identifiability, a sum-to-zero constraint was imposed 
on each of the smooth functions since the model includes an intercept 
term (Wang et al., 2018). Model (3) was also fitted in a Bayesian 
framework using the INLA-SPDE approach. We assumed the default 
non-informative R-INLA log-Gamma prior on log

(
σ− 2

u
)
, i. e., log

(
σ− 2

u
)
∼

log − Gamma(1, 0.00005).

2.2.3. Generalized additive model (GAM)
Generalized additive models also provide a mechanism to account 

for non-linear relationships by allowing non-linear functions of all 
continuous covariates whilst maintaining additivity (James et al., 2013). 
The model is given by 

logit(p(si)) = β0 + β1x1(si) +
∑q

k=1
fk(zk(si)) + g(si), (5) 

where x1(si) denotes the urban-rural covariate and f1(.),…, fq(.) are 
functions used to account for the non-linear effects of other covariates. 
For our analyses, we chose cubic smoothing splines for f(.), noting that 
other choices are also possible (James et al., 2013). The function g(.) is 
used to account for the effect of space in the model, for which we 
specified a two-dimensional smoother - an isotropic smooth of latitude 
and longitude on the sphere with a second-order penalty and number of 
basis functions set equal to 100 (Wahba, 1981). The model was fitted in 
a frequentist framework and implemented in R using the mgcv package 
(Wood and Wood, 2015). We note that by including non-linear functions 
of all continuous covariates, our implementation of model (5) differs 
from the SGEOS model where smooth functions are only applied to 

non-linear relationships determined beforehand.

2.2.4. Boosted Regression Model/Trees (BRT)
Boosting is a tree-based ensemble method that models complex, non- 

linear relationships between an outcome variable and multiple predictor 
variables (James et al., 2013). The method is based on the generation of 
a collection of sequentially fitted regression trees that optimize the 
predictive value of the response variable based on local predictor values. 
The boosting algorithm proceeds by fitting a regression tree to the data 
using the outcome variable as the response in the first iteration. The 
fitted tree is then scaled by a shrinkage parameter and added to the fitted 
function (this is set equal to zero in the first iteration) to update the 
residuals. In subsequent iterations of the algorithm, the regression trees 
are fitted using the residuals as the response. The process continues until 
a desired number of iterations or trees have been fitted. The output from 
the boosted model for location si can be expressed as 

ĝ(p̃(si)) =
∑B

b=1
λĝb

(p̃(si)), (6) 

where, ĝ(.) denotes the final prediction from the model, ĝb
(.) is the 

prediction from the bth component regression tree, λ is a shrinkage 
parameter and B is the number of trees/iterations. λ controls the rate at 
which the boosting learns and is usually chosen to be small. For our 
application, we set λ = 0.01 as recommended in James et al. (2013) and 
chose B = 10,000. Another important tuning parameter when fitting a 
boosting model is the number of splits in each tree or the interaction 
depth, which controls the complexity of the boosted ensemble. This is 
often set equal to the default value of 1. The BRT model was imple
mented in our study using the gbm package in R (Ridgeway and 
Ridgeway, 2004). Due to the unavailability of the binomial distribution 
in the gbm package, we elected to model the logit-transformed cluster 
level vaccination coverage p̃(si) using a Gaussian distribution and then 
back-transformed all the predictions post model-fitting. We note that as 
in model (5), the set of covariates used in fitting the model included the 
longitude and latitude coordinates to account for spatial variation.

2.2.5. Least absolute shrinkage and selection operator (LASSO) regression
Lasso regression performs both variable selection and regularization 

and is particularly suitable for modelling contexts where a large or 
considerable number of covariates are available. The method imple
ments automatic covariate selection through a penalty term (the L1 
penalty) included in its objective function, which uses a tuning or reg
ularization parameter to control the amount of regularization, i.e., how 
much the regression coefficients are shrunken towards zero. The method 

Fig. 2. Methodological overview. A schematic illustrating the implementation of geostatistical and machine learning approaches investigated in the study.
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finds regression coefficients β̂
L
α that minimize the objective function 

lnL(β|data) + α
∑p

j=1

⃒
⃒βj

⃒
⃒, (7) 

where α is the regularization parameter and all other terms are as 
defined previously. The first term in (7) is the log-likelihood function 
which can be obtained from the binomial regression model in equations 
(1) and (2) when the spatial and non-spatial random effects are 
excluded. Sufficiently large values of α will force some regression co
efficients to be equal to zero. In practice, α is chosen via a grid search 
using cross-validation techniques. As in the GAM approach, the covar
iate data considered in the analysis using (7) included the longitude and 
latitude coordinates of the data locations. The LASSO regression model 
was implemented in our work using the glmnet package in R (Friedman 
et al., 2021).

2.2.6. Stacked generalization using a Bayesian geostatistical model (STG)
In statistical learning, stacked generalisation or stacked regression is 

an ensemble method for combining predictions from multiple models, 
often referred to as child models. In the hybrid variant implemented in 
our work, the child models were different ML approaches, predictions 
from which were combined using a geostatistical model (Bhatt et al., 
2017; Mosser et al., 2019; Sbarra et al., 2021). Through these child 
models, the STG approach accounts for complex, nonlinear relationships 
between the covariates and the outcome. The geostatistical modelling 
framework provides a mechanism to account for residual spatial auto
correlation. The STG approach was proposed/utilized in Bhatt et al. 
(2017) and has been used to model vaccination coverage and various 
HDIs (Mayala et al., 2019; Mosser et al., 2019; Sbarra et al., 2021).

Following Sbarra et al. (2021), we considered the following child 
models: GAM, BRT and LASSO regression. These child models were 
implemented as described previously but excluding the geographical 
coordinates of the data locations in the covariate data. To obtain final 
predictions for the outcome, the predictions from these child models 
were included as covariates in the geostatistical model: 

logit(p(si)) = β0 + β1xGAM(si) + β2xBRT(si) + β3xLASSO(si) + ω(si) + ϵ(si),

(8) 

where β0, β1, β2 and β3 are regression coefficients and other terms are as 
described previously in equation (2). As in Sbarra et al. (2021), a 
sum-to-one constraint was imposed on the regression coefficients cor
responding to the child models, such that 

∑3
j=1 βj = 1. This constraint 

helps to mitigate the effect of extreme predictions in the child models 
included in (8) (Bhatt et al., 2017). As is usually the case in stacked 
generalization, Bhatt et al. (2017) recommended the use of K-fold 
cross-validation predictions from the child models to calibrate the model 
(i.e., estimate the parameters) in (8), and then refitting the child models 
using the full data and using the predictions from these in (8) without 
refitting the model. We noted that using the cross-validation predictions 
from the child models in (8) compared to the full data predictions did 
not necessarily yield improvements in predictive performance in our 
analyses. The STG approach was implemented in our work using the 
INLA-SPDE approach and the inlabru package in R (Lindgren et al., 
2024).

2.2.7. Artificial neural networks (ANN)
An artificial neural network (ANN) is a ML technique that mimics the 

functioning of the animal brain. An ANN model is particularly useful in 
modelling contexts where data are large and complex, with potential 
nonlinearities and interactions between the covariates. The network 
consists of layers of connected neurons that serve as data processing 
units, where each neuron applies a linear transformation to its inputs, 
followed by a non-linear activation function. For our work, we used a 
multilayer perceptron network (Park and Lek, 2016), which consists of 

an input layer, multiple hidden layers and an output layer. The input 
layer receives the features from the data, processes and transmits these 
to the hidden layers which process the information further through 
interconnected neurons, while the output layer produces the final pre
dictions. For a spatial location s with covariate vector x(s) =
(
x1(s), x2(s),…, xp(s)

)T
, the predicted value from an ANN with a single 

hidden layer can be expressed as: 

Outputlayer : ̂̃p(s) = b3 +
∑L2

j=1
w3

j z2
j (s),

Hiddenlayer : z2
l (s) = f

(

b2
l +

∑L1

j=1
w2

jlz
1
j (s)

)

, l = 1,…, L2,

Inputlayer : z1
l (s) = f

(

b1
l +

∑p

j=1
w1

jlxj(s)

)

, l = 1,…, L1,

(9) 

where L1 and L2 are the numbers of neurons in the input and hidden 
layers, respectively, f(.) is the activation function, b1

l , b2
l , b

3 and w1
jl, w2

jl ,

w3
j are bias and weight parameters estimated to minimize mean squared 

error in the training data. Furthermore, z1
l (s), z

2
l (s) and ̂̃p(s) are outputs 

from the layers as shown in equation (9).
Fitting an ANN requires tuning the number of hidden layers, the 

number of neurons in each layer, and choosing the activation function. 
Other parameters such as the number of epochs (the number of times the 
entire data is passed through the network during training), stopping 
metric, stopping tolerance and stopping rounds are also tuned during 
model fitting. These early stopping criteria help to avoid overfitting in 
the model. A common choice for the activation function f(.) is the 
rectified linear unit (relu), defined as f(x) = max{0,x}. The model was 
fitted using the h2o.deeplearning() function in the H2O package in R 
(Fryda et al., 2024). Since the H2O package does not support the bino
mial distribution, we elected to model the logit-transformed cluster-le
vel vaccination coverage, denoted by p̃(s) in equation (9) using a 
Gaussian distribution and then back-transformed the predictions post 
model fitting. Based on a hold-out cross-validation exercise with an 80% 
training and 20% testing split, the final selected model had two hidden 
layers with 100 neurons each, with the number of epochs set to 100. The 
chosen stopping metric was the root mean square error (RMSE) while 
the stopping tolerance and rounds were set equal to 0.001 and 5, 
respectively. We checked the sensitivity of these choices by running 
several cases with different justifiable parameter values but obtained the 
same results each time.

2.3. Uncertainty estimation using delete-a-block jackknife cross- 
validation

To estimate the uncertainties associated with the ML approaches: 
BRT, LASSO and ANN, we employed a delete-a-block jackknife tech
nique. This is a variant of the delete-1 jackknife (Wang and Yu, 2021) in 
which a block of observations is deleted at a time. The spatial blocks 
were formed by drawing observations at random from the observed 
data. These can also be formed using spatially contiguous observations, 
but this approach is more likely to affect the underlying spatial structure 
in the data and can potentially introduce some artificial patterns in the 
uncertainty estimates, depending on the sizes of the blocks. The choice 
of the block size was guided by the need to have as many iterations as 
computationally logical (relative to the number of observations in the 
data) whilst preserving the underlying spatial correlation in the data. 
Having many iterations ensures stability in the results (i.e., the uncer
tainty estimates) and also reduces the numbers of observations deleted 
at each iteration. We noted during test runs that block sizes of up to b =

40 observations produced variogram estimates that were very similar to 
those of the full data in our applications (supplementary Figs. S5 and 
S6). We also noted that there were no material differences in the 
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estimates obtained for numbers of replicates r ≥ 100. We, therefore, set 
r = 100 in our work, corresponding to block sizes of n /r, where n is the 
number of observations or spatial locations in the data as defined pre
viously in (1). For all three ML approaches, we obtained the jackknife 
estimates of the uncertainties (i.e., the standard deviations) associated 

with the grid level predictions as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r− 1
r
∑r

j=1

(
p̂j(s) − p̂jack(s)

)2
√

, where 

p̂j(s) is the jth coverage estimate for grid location s and p̂jack(s) is the 
jackknife estimate of the mean across all the replicates.

2.4. Model validation using k-fold cross-validation and variogram 
analysis

To evaluate the out-of-sample predictive performance of the 
modelling approaches, we conducted a k-fold cross-validation exercise, 
setting k = 10. For each indicator-method combination, we created the 
cross-validation folds in two ways: random folds and spatially stratified 
folds. For the random folds, the survey locations were assigned to each 
of the k folds in a random manner; whereas with the spatially stratified 
method, each fold comprised neighbouring cluster locations. We 
calculated the following measures of predictive performance: the cor
relation between observed (pi) and predicted (p̂i) values, root mean 

square error 
(
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i(p̂i − pi)
2
/m

√ )
, mean absolute error 

(

MAE =

1
m
∑m

i=1 |p̂i − pi|

)

, average bias 
(

AVG BIAS= 1
m
∑m

i=1 (p̂i − pi)

)

and the 

continuous ranked probability score (CRPS(Fi, pi) = EFi |Xi 

− pi|−
1
2EFi |Xi − X∗

i |) (Gneiting and Raftery, 2007), where Fi(.) is the cu
mulative distribution function corresponding to the predictive distri
bution of the ith cluster level estimate, and Xi and X∗

i are two 
independent random variables distributed according to Fi(.). With r 
posterior samples, the CRPS can be estimated as CRPS(Fi, pi) =

1
r
∑r

j=1 |p̂
(j)
i − pi| −

1
2r2

∑r
j=1
∑r

l=1

⃒
⃒
⃒p̂(j)

i − p̂(l)
i

⃒
⃒
⃒, which is then averaged 

over all the locations within each fold and over all the k folds. While the 
other metrics (also averaged over all the k folds) measure the accuracy of 

the point predictions produced by the approaches, the CRPS measures 
the accuracy of both the point and uncertainty estimates as it utilizes the 
entire posterior predictive distribution to determine the discrepancies 
between the observations and the predictions. Also, the CRPS was only 
computed for the three Bayesian approaches (GEOS, SGEOS and STG) in 
our work as it requires the posterior distributions of the estimates. The 
closer the AVG_BIAS, MAE and RMSE estimates are to zero and the 
smaller the CRPS, the better the predictions. Correlation values closer to 
one indicate better predictive ability.

Additionally, to further examine the fits of the different methods, we 
checked their (standardized) in-sample residuals for spatial autocorre
lation using variograms and the associated variogram envelopes, which 
were obtained by permutation, using the geoR package in R (Ribeiro Jr 
et al., 2024).

3. Results

3.1. In- and out-of-sample predictive performance using cross-validation 
and variogram analysis

With respect to the metrics used to evaluate the accuracy of the point 
estimates produced by the methods at the cluster level (correlation, 
RMSE, MAE and AVG_BIAS), we found that GEOS, SGEOS and, to a great 
extent, LASSO had the best out-of-sample predictive performance in 
most cases (Fig. 3 and supplementary Table 2). The values of these 
metrics for GAM and STG were also very close to those of the three best 
approaches, indicating only slightly worse predictive performance. In 
contrast, BRT and ANN generally had the worst predictive performance, 
which can be clearly seen when considering the AVG_BIAS and RMSE 
estimates in Fig. 3.

Among the three Bayesian approaches for which we computed the 
CRPS metric, we found that GEOS and SGEOS outperformed the STG 
method based on this metric, which is also consistent with the results 
obtained using the other metrics. All the methods had fairly similar 
predictive performance under the two types of cross-validation folds 
investigated (i.e., random and spatially stratified folds) according to all 

Fig. 3. Model validation. Out-of-sample predictive performance of the geostatistical and machine learning approaches investigated based on a k-fold cross-validation 
exercise using cluster level data (see supplementary Table 2).
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the metrics except the correlations which showed that nearly all the 
methods had better predictive performance under the random folds. 
These results indicate that the methods can reasonably predict not only 
random but also spatial blocks of missing values in unsampled areas. 
There was no evidence of improved predictive performance for MCV1 
despite having relatively larger cluster level sample sizes than DTP1 
(supplementary Fig. S7). This is likely due to the cluster level sample 
sizes for MCV1 not being large enough to induce noticeable improve
ments in predictive performance.

Furthermore, when examining the out-of-sample predictions in low 
coverage areas (i. e., areas with cluster level proportions p(si) ≤ 0.4 - 
supplementary Figs. S8 and S9), we found that the prediction errors 
(RMSE, random folds) for ANN and BRT were consistently larger 
(RMSE ≥ 0.33) than those of the other approaches (0.24 ≤ RMSE ≤ 0.3), 
although there was evidence of overestimation in all the approaches. For 
DTP1, the lowest prediction errors were obtained for the GEOS and 
SGEOS methods, whereas for MCV1, these were obtained for SGEOS, 

GEOS and STG.
The variograms of the in-sample residuals for DTP1 and MCV1 

shown in supplementary Figs. S10 and S11 indicate that of all seven 
approaches investigated, there was strong evidence of residual spatial 
autocorrelation in the ANN and BRT methods. The variograms for both 
methods closely resembled those of the outcome variables (i. e., the 
cluster level proportions of vaccinated children – supplementary Figs. S5 
and S6). Also, the lack of evidence of spatial autocorrelation in the re
siduals is strongest for the geostatistical approaches – GEOS, SGEOS and 
STG.

3.2. 1 × 1 km estimates of vaccination coverage and associated 
uncertainties

The rationale for the differences observed in the out-of-sample pre
dictive performance of the approaches is apparent when investigating 
the 1 × 1 km predicted maps of vaccination coverage and associated 

Fig. 4. Predicted DTP1 coverage estimates. 1 × 1 km modelled estimates of DTP1 coverage produced through using different geostatistical and machine learning 
approaches shown using (top) maps and (bottom) density plots.

C.E. Utazi et al.                                                                                                                                                                                                                                 Spatial and Spatio-temporal Epidemiology 54 (2025) 100744 

7 



uncertainties produced through using these approaches. Fig. 4 (a) shows 
strong similarities between the predicted surfaces produced by GAM, 
LASSO, GEOS, SGEOS and STG. Broadly similar patterns demonstrating 
a north-south divide in coverage can also be seen in the predicted maps 
produced using ANN and BRT, but their estimates are closer to the ex
tremes of the unit interval and smoother in the lower and higher 
coverage areas than those of the other approaches.

The over-smoothing of the coverage estimates by ANN and BRT 
relative to the other approaches is evident in the distributions of the grid 
level DTP1 predictions shown in Fig. 4 (b). All the methods produced 
bimodal distributions reflecting the characteristic spatial distribution of 
vaccination coverage in Nigeria (Utazi et al., 2018b; Dong and Wake
field, 2021; Utazi et al., 2022,2023). However, the grid level estimates 
produced by ANN and BRT are more peaked near zero and one than 
those produced by the other approaches, suggesting overestimation in 

high coverage areas and underestimation in low coverage areas by both 
approaches. This also explains the higher AVG_BIAS and RMSE values 
for both approaches relative to other approaches. For MCV1, supple
mentary Figs. S12 (a-b) show similar patterns in the grid level estimates 
produced by all the approaches, with strong evidence of over-smoothing 
in low and high coverage areas by ANN and BRT relative to the other 
approaches.

The uncertainties associated with the predictions have broadly 
similar spatial patterns across the methods, with lower uncertainties in 
areas where coverage estimates are either close to the endpoints (an 
artefact of the binomial distribution) of the unit interval or where data 
locations are dense, and higher uncertainties in areas where the esti
mates are closer to 0.5 or where data locations are sparse (Fig. 5 (a) and 
(b)).

However, due to the relative over-smoothing by ANN and BRT, the 

Fig. 5. Uncertainty estimates for DTP1. Estimates of the uncertainties associated with 1 × 1 km estimates of DTP1 coverage produced using different geostatistical 
and machine learning approaches shown using (a) maps and (b) density plots.
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uncertainties associated with both approaches are much smaller than 
those of other approaches (Fig. 5 (b)) in areas of lower and higher 
coverage, even in comparison with LASSO for which we used the same 
jackknife approach to produce its uncertainty estimates. In areas with 
mid-level coverage estimates, the uncertainties associated with the es
timates produced by BRT are noisier and relatively much higher than 
other approaches. For MCV1 (supplementary Figs. S13 (a-b)), similar 
patterns can be observed, with the uncertainties associated with both 
ANN and BRT being much higher in many areas relative to the other 
approaches.

At the national level, the estimates produced through using these 
approaches revealed that ANN (and BRT to some extent; and GEOS – 
MCV1 only) overestimated coverage for both DTP1 and MCV1 relative 
to the direct survey estimate that is often considered to be the gold 
standard (Fig. 6a-b). On the other hand, whilst there are strong corre
lations between the grid level estimates produced by these approaches 
(Fig. 6c-d), it is evident that ANN and BRT are most dissimilar to other 
approaches, particularly for DTP1.

3.3. Exploring spatial prioritization using district level coverage estimates

To further investigate the utility of the coverage estimates produced 

by the methods for spatial prioritization, we computed district level 
coverage estimates using their respective 1 × 1 km predicted maps and 
then ranked the districts based on these estimates. We note that the 
comparisons undertaken here using rankings obtained from the district- 
level coverage estimates are purely for illustration since estimates of 
numbers of unvaccinated children can characterise disease risk more 
accurately and are better suited for this purpose.

Fig. 7 (a-c) demonstrate that although there are broad similarities 
between the rankings of the district level DTP1 coverage estimates 
produced by the different methods, remarkable differences exist, both 
when examining groups of ranks (Fig. 7a) and, more evidently, the in
dividual ranks (Fig. 7b). The differences between the rankings generally 
appear relatively smaller in areas of lower coverage in the northern parts 
of the country and much larger in higher coverage areas (Fig. 6c). Also, 
these differences appear more pronounced when considering smaller 
numbers of areas (e.g., the 80th to 100thlowest coverage areas) than 
larger numbers of areas (e.g., the 100 lowest coverage areas) (Fig. 7b). 
The median of the ranges of the ranks per district (Fig. 7c) at the national 
level is 112.5 (interquartile range (IQR) = 100, maximum value = 428), 
indicating marked differences among the methods. Among the five 
methods with similar predictive performance (i.e., GAM, LASSO, GEOS, 
SGEOS and STG), the median of the ranges of the ranks per district 

Fig. 6. National and grid level coverage estimates. Comparisons between national (a-b) and grid level (c-d) coverage estimates produced through using geostatistical 
and machine learning approaches. In panels (a-b), the national estimates are compared with the direct survey estimates (dotted red lines) while panels (c-d) show the 
correlations between the grid level estimates.
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reduces to 83 (IQR = 89, maximum value = 337), which still indicates 
considerable differences. However, when examining pairs of methods 
with more similar predictive accuracy, there are large reductions in the 
differences between the rankings. For example, for the GEOS and SGEOS 
methods, the median of the ranges of the ranks per district is 17 
(IQR=32).

Similar patterns were observed for MCV1 (supplementary Fig. S14), 
with the median of the ranges of the ranks per district estimated to be 
141 (IQR=114, maximum value = 499) for all the methods at the na
tional level, 87 (IQR=82, maximum value = 336) for GAM, LASSO, 
GEOS, SGEOS and STG, and 26 (IQR=50) for the GEOS and SGEOS 
methods. These differences in the rankings produced by the methods are 
also apparent in the bivariate plots of the ranks shown in supplementary 
Figs. S15 and S16.

4. Discussion

This study systematically evaluated the performance of seven geo
statistical and ML approaches for producing high-resolution estimates of 

vaccination coverage. All the methods, with the exception of SGEOS, 
were implemented using standard desktop computers, each requiring 
less than three hours (some ML methods completed much faster) to 
produce predictions at 1 × 1 km resolution. The SGEOS method, due to 
its computational demands, was run on a high-memory computer with a 
total runtime of ≈ 2.5 hours.

Our results revealed similar out-of-sample predictive performance at 
the cluster level for five of the methods - GEOS, SGEOS, LASSO, GAM 
and STG, although stronger predictive performance was observed for 
GEOS, SGEOS and LASSO methods. Among all seven approaches 
investigated, ANN and BRT had the poorest predictive performance. The 
relative over-smoothing observed in both approaches is likely due to the 
use of a different outcome distribution (Gaussian, instead of binomial), 
or how their algorithms learn from data. We further explored the impact 
of likelihood choice by evaluating the predictive performance of the 
remaining methods under a Gaussian likelihood (Supplementary 
Table 5). While ANN and BRT continued to underperform (see Supple
mentary Tables 2 and 5), the predictive performance of the other 
methods deteriorated under the Gaussian likelihood, reinforcing the 

Fig. 7. Spatial prioritization. (a-b) Ranking of districts from lowest (rank 1) to highest (rank 774) based on DTP1 coverage estimates produced using geostatistical 
and machine learning approaches, and (c) the range of the ranks per district. In panel (b), the districts have been ordered using the ranking produced by the 
GEOS method.
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suitability of the binomial distribution for our application. Moreover, 
the poor performance of ANN and BRT was consistent regardless of the 
set of covariates used (e.g., kriged DHS covariates vs. other geospatial 
covariates), as over-smoothing remained evident in both cases (sup
plementary Fig. S17). Interestingly, among the Bayesian approaches, 
GEOS and SGEOS generally outperformed the hybrid STG method, 
despite the latter’s widespread use in mapping HDIs (Bhatt et al., 2017; 
Mosser et al., 2019; Sbarra et al., 2021). These findings were further 
supported by in-sample assessments of residual spatial autocorrelation 
and comparisons of out-of-sample predictions in low coverage areas. We 
did not find evidence of better predictive performance for MCV1 due to 
larger cluster level sample sizes relative to DTP1. This may be because 
the increase in sample size was insufficient to yield measurable im
provements in predictive accuracy. A more detailed examination of the 
effect of cluster-level sample size on predictive accuracy can be found in 
Utazi et al. (2022).

The 1 × 1 km predicted maps of the indicators revealed that GAM, 
LASSO, GEOS, SGEOS and STG produced very similar results, whereas 
ANN and BRT produced relatively over-smoothed estimates, with values 
clustering toward the extremes of the coverage scale. Although the un
certainty estimates produced by these approaches had very similar 
spatial distributions, the uncertainties from ANN and BRT were either 
relatively smaller (for DTP1) – an artefact of over-smoothing – or 
appeared relatively noisier and higher (for MCV1) in certain areas. 
Correlations between the grid level estimates produced by the different 
approaches were generally high (≥ 0.78), but these also indicated 
relatively lower correlations between ANN and BRT and other ap
proaches, particularly for DTP1. Further comparisons with direct survey 
estimates at the national level revealed that ANN consistently over
estimated coverage, with some evidence of similar overestimation by 
BRT. These discrepancies suggest that ANN and BRT are also likely to 
yield other subnational (e.g., provincial-level) estimates that are not 
well aligned with direct survey estimates.

Considering the importance of district level estimates of vaccination 
coverage and corresponding estimates of numbers of zero-dose and 
under-vaccinated children for program planning and implementation, 
we further investigated the utility of the coverage estimates produced by 
the different approaches for spatial prioritization. We found remarkable 
differences in their rankings of the districts, although there were broad 
similarities especially when considering larger numbers of areas. The 
differences were most pronounced in areas of higher coverage and more 
modest in lower coverage areas, which might have been affected by the 
spatial distribution of vaccination coverage in the study country. We 
further observed a reduction in differences in rankings among methods 
with similar predictive performance, as expected, and even substantial 
reductions between pairs of methods with similar predictive perfor
mance. These results hold significant implications for vaccination pro
gramming, especially in resource-constrained settings where only a 
limited number of areas can be targeted per time, since inaccurate 
identification of priority areas for interventions could result in missing 
important vulnerable populations, suboptimal resource allocation, 
reduced impact and persistence of disease circulation or outbreaks. The 
predictive accuracy of these approaches should therefore guide their use 
for map production and operationalization.

Although our study is the first to systematically compare geo
statistical, ML and hybrid approaches for vaccination coverage estima
tion, similar studies have been conducted in other application domains. 
For example, Berrocal et al. (2020) and Veronesi and Schillaci (2019)
evaluated geostatistical and ML approaches for mapping air pollution 
and soil organic carbon, respectively, and found that geostatistical 
models outperformed ML methods – findings that align closely with our 
results. Zhu et al. (2024), in a related study on air pollution mapping, 
reported that random forests, a ML method, outperformed geostatistical 
models. Similarly, other studies utilizing kriging-based geostatistical 
approaches (e.g., Chen et al (2019) and Molla et al. (2023)) found that 
ML approaches performed better. In the context of mapping HDIs, our 

results are somewhat different from those of Bosco et al. (2017), who 
compared ANN with a Bayesian geostatistical model across multiple 
countries and various HDIs. While they found similar predictive per
formance between the two approaches, they preferred the geostatistical 
model due to its ease of implementation (i.e., not requiring many tuning 
parameters). It is important to note that direct comparisons between our 
results and those from the literature are challenging due to substantial 
differences in study designs, geographic settings and applications, 
including choice of validation methods, amount of available data and 
parameter tuning. These contextual factors likely contribute to the 
mixed evidence regarding the relative performance of ML and geo
statistical approaches, suggesting that model performance is, to some 
extent, context specific. We further assessed the generalizability of our 
findings to other settings by conducting an additional case study using 
data from the 2021 Cote d’Ivoire DHS (Institut National de la Statistique 
and ICF, 2023) - see supplementary materials for details. The results we 
obtained also showed that the other approaches investigated generally 
had better out-of-sample predictive performance than ANN and BRT. 
Also, among these other approaches, SGEOS and GEOS were the best 
performing methods, further corroborating our findings using the 2018 
NDHS and reinforcing the robustness of our conclusions across different 
settings.

Our study has some limitations that should be acknowledged. As 
noted earlier, our implementation of the ANN and BRT approaches in 
the R programming language did not permit the use of a binomial 
likelihood for the outcome variables. Implementing these approaches 
using other programming languages such as Python may facilitate this. 
Although we found consistent results in our case study using the 2018 
Nigeria DHS and the additional analyses using the 2021 Cote d’Ivoire 
DHS (supplementary materials), it will be useful to also explore how 
these methods perform in other geographical settings with additional 
antigens and potentially different sampling designs, degrees of spatial 
autocorrelation in vaccination coverage and numbers and types of 
covariates and their relationships with vaccination coverage (Bosco 
et al., 2017). It may be the case that the underperformance observed in 
ANN and BRT is dependent on some of these factors, but this also reveals 
a lack of robustness of both approaches to some modelling contexts or 
limitations in some of their current software implementations. For 
geostatistical models, these attributes have been investigated in detail in 
previous work using simulation studies (e.g., Utazi et al. (2018a)). 
However, we note that a simulation study would not be ideal when 
comparing geostatistical and ML approaches, as this would require 
simulating data from a geostatistical model or a sampling design based 
on geostatistical techniques, which would confer an undue advantage on 
these models over ML techniques. Furthermore, other approaches for 
estimating the uncertainties associated with the ML approaches are also 
possible. For example, a spatial bootstrap algorithm (this did not 
perform well in our study during initial trials) or an approach that in
volves interpolating spatial cross-validation residuals to create an un
certainty map, similar to Blanco et al (2018), could be used.

Whilst the use of geostatistical and ML approaches to produce high- 
resolution maps of HDIs has grown in popularity, other small area 
estimation methods for producing maps of HDIs exist (Tzavidis et al., 
2018; Utazi et al., 2021; Paige et al., 2022), but these assume a discrete 
spatial domain, meaning that estimates can only be produced for a given 
administrative level at a time. Some of these methods are well explored 
in Utazi et al. (2021). Furthermore, in the ML arena, there are other 
hybrid approaches aiming to overcome the limitation of ML approaches 
not explicitly accounting for spatial autocorrelation in the data through 
(i) creating features that imitate the spatial autocorrelation in the 
outcome and using these as additional covariates in conventional ML 
methods (Sekulić et al., 2020; Fouedjio and Arya, 2024), (ii) combining 
ML predictions with the kriging of the prediction residuals (Kaya et al., 
2022) and (iii) locally calibrated ML algorithms (Hagenauer and Hel
bich, 2022; Fouedjio and Arya, 2024). Future work in mapping vacci
nation coverage and other HDIs may involve the exploration of these 
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hybrid approaches. In geostatistical models, spatially varying coefficient 
models (Gelfand et al., 2003) could also be used to account for the 
spatial non-stationarity in the regression relationship between vacci
nation coverage and geospatial covariate information.

In conclusion, our results provide valuable guidance to practitioners 
regarding the utility of these modelling approaches for producing maps 
of vaccination coverage and other HDIs. While most of the approaches 
we investigated had good predictive accuracy and produced similar 
results, some approaches were relatively better, with significant impli
cations for spatial prioritization. Effort should be made to either identify 
the best modelling framework for each analytical context or to use ap
proaches that have been shown to be more robust and reliable in a 
similar setting.
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