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Recently, there has been a growing interest in the production of high-resolution maps of vaccination coverage.
These maps have been useful for uncovering geographic inequities in coverage and improving targeting of in-
terventions to reach marginalized populations. Different methodological approaches have been developed for
producing these maps using mostly geolocated household survey data and geospatial covariate information.
However, it remains unclear how much the predicted coverage maps produced by the various methods differ, and
which methods yield more reliable estimates. Here, we explore the predictive performance of these methods and
resulting implications for spatial prioritization to fill this gap. Using Nigeria Demographic and Health Survey as a
case study, we generate 1 x 1 km and district level maps of indicators of vaccination coverage using geo-
statistical, machine learning (ML) and hybrid methods and evaluate predictive performance via cross-validation.
Our results show similar predictive performance for five of the seven methods investigated, although two geo-
statistical approaches are the best performing methods. The worst-performing methods are two ML approaches.
We find marked differences in spatial prioritization using these methods, which could potentially result in
missing important underserved populations, although broad similarities exist. Our study can help guide map

production for other health and development metrics.

1. Introduction

Immunization is a fundamental component of primary healthcare,
playing a critical role in reducing vaccine preventable morbidity and
mortality (Shattock et al., 2024). It is also essential for achieving the
Sustainable Development Goals (United Nations, 2015) and other global
health policy goals, such as the Immunization Agenda 2030 (World
Health Organization, 2020) and Gavi Strategy 5.0 (Gavi The Vaccine
Alliance, 2020). However, immunization and other health services
remain out of reach for vulnerable and marginalized populations,
including those in remote rural areas, urban slums, and conflict-affected
and humanitarian settings (Chopra et al., 2020; UNICEF and the Bill and
Melinda Gates Foundation, 2021; Wigley et al., 2022).

To design effective strategies to reach these underserved pop-
ulations, there is a need for accurate, spatially detailed maps of vacci-
nation coverage and other health and development indicators (HDIs)
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such as maternal literacy, poverty, school attendance, malaria preva-
lence, malnutrition and skilled birth attendance (Bosco et al., 2017;
Mosser et al., 2019; Weiss et al., 2019; Kinyoki et al., 2020; Sbarra et al.,
2021). Such maps enable decision makers to identify geographic and
other inequities in service coverage and utilization, thereby supporting
more targeted and effective interventions - a key focus of the growing
field of precision public health (Dowell et al., 2016). Moreover, by
providing current, robust and actionable evidence base, high-resolution
maps help bridge the data gap that exist in many low- and
middle-income countries where health management information sys-
tems and other administrative data sources such as vital registration are
often incomplete and unreliable (Scobie et al., 2020; Mwinnyaa et al.,
2021).

Data for producing maps of vaccination coverage and other HDIs
often come from nationally representative, geolocated household sur-
veys such as the Demographic and Health Surveys, Multiple Indicator
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Cluster Surveys and national vaccination coverage surveys. Due to their
high operational costs, these surveys are generally designed to provide
estimates at the provincial or first administrative level. As a result,
classical survey analysis methods, such as direct weighted estimators
(Rao, 2005), can only generate reliable estimates at this coarse spatial
scale. However, accurate and timely estimates are most valuable at
lower administrative levels, e.g., the district or second administrative
level at which vaccination programs and other interventions are planned
and implemented. This need, along with advances in geostatistical
modelling techniques and computing power, has spurred the widespread
use of geostatistical and machine learning (ML) approaches to produce
gridded estimates of HDIs from survey data. These approaches leverage
the direct and proximate relationships between HDI outcomes measured
at survey cluster locations and geospatial covariates, along with spatial
and spatiotemporal dependence, to model and predict the spatial dis-
tributions of HDIs for single or multiple timepoints. By producing esti-
mates at the grid level, typically 1 km or 5 km resolution, these outputs
are not constrained by changing political or administrative boundaries
and can be flexibly aggregated to operationally relevant areas of inter-
est. Moreover, when integrated with other geospatial datasets, e.g.,
high-resolution population maps (Tatem, 2017) and geolocated health
facility data (Lim et al., 2008; Johns et al., 2022), precise estimates of
at-risk or underserved populations can be produced. Research and sur-
vey programs such as WorldPop through its VaxPop project (Utazi et al.,
2018b,2019,2021,2022), the Institute for Health Metrics and Evaluation
(IHME) (Mosser et al., 2019; Sbarra et al., 2021) and the DHS program
(Janocha et al., 2021) now routinely produce and distribute maps of
HDIs.

A range of geostatistical, ML and hybrid approaches have been
employed to produce high-resolution maps of vaccination coverage and
other HDIs. Prominent examples include geostatistical models (GEOS)
(Bosco et al., 2017; Utazi et al., 2021,2022; Alegana et al., 2024),
generalized additive models (GAMs) (Takahashi et al., 2017; Kawakatsu
et al., 2024), stacked generalization (STG) (Mosser et al., 2019; Sbarra
et al., 2021), boosted regression trees (BRT) (Kawakatsu et al., 2024),
random forests (Browne et al., 2021), least absolute shrinkage and se-
lection operator (LASSO) regression and deep learning/artificial neural
networks (ANN) (Bosco et al., 2017). Model-based geostatistics (Diggle
et al., 1998) explicitly accounts for spatial autocorrelation and the (non)
linear effects of covariates, and is often implemented in a Bayesian
framework using the INLA-SPDE approach or MCMC techniques, with
INLA-SPDE being more popular recently due to its computational effi-
ciency. When non-linear (or smooth) functions of covariates are incor-
porated into a geostatistical model, the result is a semiparametric
geostatistical model (SGEOS) (Wood, 2011; Wang et al., 2018), which
eliminates the need for covariate data transformation. A key advantage
of the Bayesian implementation of geostatistical models is the natural
framework to account for uncertainty in both model predictions and
input data. ML and hybrid approaches are particularly suitable for
modelling complex nonlinear relationships and interactions in the data,
though this often comes at the expense of interpretability. ML ap-
proaches can automatically identify relevant covariates/features in the
data, unlike geostatistical modelling which may require a separate co-
variate selection process. While ML approaches rely only on covariates
to make predictions and would be expected to perform well when these
are highly informative, geostatistical and hybrid approaches addition-
ally exploit residual spatial (and temporal) autocorrelation to improve
predictive performance. In general, ML approaches are computationally
less demanding, can handle large-scale and high-dimensional data bet-
ter, and are sometimes less challenging to implement (e.g., GAM, LASSO
and BRT) (James et al., 2013; Berrocal et al., 2020). However, some ML
approaches such as BRT, ANN and LASSO do not produce uncertainty
estimates, necessitating the use of supplementary techniques for un-
certainty quantification (Veronesi and Schillaci, 2019; Berrocal et al.,
2020).

Currently, little is known about the comparative predictive
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performance of these ML and geostatistical approaches in the context of
mapping vaccination coverage. There is a lack of substantial evidence on
how much the predicted maps produced by these approaches differ and
which approaches yield more reliable estimates for vaccination
coverage mapping. This gap may be attributed to the technical
complexity involved in implementing these models and, in some cases,
insufficient emphasis on methodological rigour. As maps of vaccination
coverage and other HDIs become increasingly popular, it is crucial to
assess the strengths and limitations of these modelling approaches. The
goal of this study is, therefore, to critically evaluate widely used ap-
proaches for mapping vaccination coverage and other HDIs in terms of
their predictive accuracy and associated uncertainties. Specifically, we
investigate four machine learning approaches (ANN, BRT, GAM and
LASSO), two geostatistical models (GEOS and SGEOS) and one hybrid
approach (STG). Our evaluation is based on a case study mapping the
coverage of the first dose of the diphtheria-tetanus-pertussis (DTP1) and
the first dose of the measles-containing vaccine (MCV1) vaccines using
the 2018 Nigeria Demographic and Health Survey (NDHS) (National
Population Commission - NPC and ICF, 2019).

2. Methodology
2.1. Data

2.1.1. Vaccination coverage data

Data on the coverage of DTP1 and MCV1 vaccines were obtained
from the 2018 NDHS (National Population Commission - NPC and ICF,
2019) for children aged 12-23 months and 9-35 months, respectively.
The NDHS was conducted between August and December 2018, utilizing
a stratified, two-stage sampling design to produce estimates of indicators
at the national, regional and state levels, as well as for urban and rural
areas. Stratification was achieved by separating each of the 36 states and
the Federal Capital Territory (FCT) into urban and rural areas. Samples
were drawn from within each stratum in two stages: the first stage
involved the selection of survey clusters (enumeration areas) from a
national sampling frame using a probability proportional to size sam-
pling scheme, while the second stage involved selecting households
randomly from household lists within the selected clusters. Detailed
information on the methods employed in the survey is published else-
where (National Population Commission - NPC and ICF, 2019). The
NDHS was selected for this study because of ease of data access and
having been used extensively in previous work to map coverage (Dong
and Wakefield, 2021; Aheto et al., 2023; Utazi et al., 2023; Kawakatsu
et al., 2024).

The survey was implemented in a total of 1,389 clusters, with 11 of
the originally selected 1,400 clusters excluded due to security concerns.
In Borno State, only 11 of the 27 local government areas were included
in the survey due for similar reasons. For both vaccines, we used in-
formation obtained from both home-based records and maternal/care-
giver recall, following DHS guidance during data extraction (Croft et al.,
2023). Hence, our analysis captures crude DTP1 and MCV1 coverage
estimates (World Health Organization, 2018). At the cluster level, we
aggregated individual-level data to produce numbers of children sur-
veyed, numbers vaccinated and empirical proportions of children
vaccinated as shown in Fig. 1.

2.1.2. Geospatial covariate and population data

To enhance the prediction of vaccination coverage using the ap-
proaches investigated, we obtained some geospatial covariate informa-
tion — see supplementary Figs. S1 and S2 and supplementary Table 1.
These covariates have been successfully used in previous work (Bosco
et al., 2017; Utazi et al., 2019,2022,2023) to model and predict vacci-
nation coverage and other HDIs. These comprise variables measuring a
range of conditions in the study country which may have direct or
proximate relationships with vaccination coverage. The covariates
include measures of remoteness (travel time to the nearest health facility
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Fig. 1. Cluster level estimates of proportions of children aged 12-23 months and 9-

2018 Nigeria Demographic and Health Survey.

and distance to cultivated areas), socioeconomic status (poverty index,
household wealth, maternal education), health-related factors (owner-
ship of health or vaccination card/document, skilled birth attendance,
access to media and use of mobile phone/internet) and urbanicity or
development (nightlight intensity and urban/rural areas).

The externally sourced geospatial covariates (supplementary
Table 1) were processed and harmonized at 1 x 1 km resolution, at
which we planned to produce grid level coverage estimates. To extract
the values of the covariates for each cluster location, we used the
approach described in Utazi et al. (2018b) and Perez-Haydrich et al.
(2013), which accounts for the displacement of the clusters (this
displacement often occurs within districts in DHS surveys). For the
DHS-derived covariates, we first calculated their values at the cluster
level using detailed definitions provided in supplementary Table 1 and
then used the krig () function in the fields package in R (Nychka et al.,
2017) to create corresponding 1 x 1 km interpolated surfaces, with the
optimal range parameter set to the first quartile of the distances between
the clusters (other distance quartiles yielded almost the same results).
The kriging interpolation was carried out using the logit-transformed
cluster level data in each case, due to its underlying Gaussian assump-
tion, after which the estimates were back-transformed to the unit
interval.

We checked for multicollinearity by examining the correlations be-
tween the covariates and by fitting non-spatial binomial regression
models to estimate their variance inflation factors (VIFs). Furthermore,
for one of the modelling approaches (equations (1) and (2)), we exam-
ined the distributions of the covariates and their relationships with
vaccination coverage (on the empirical logit scale), following which we
log- or logit-transformed some skewed covariates to improve their linear
relationships with vaccination coverage. The plots of the covariates and
their relationships with vaccination coverage are shown in supplemen-
tary Figs. S3 and S4. All 14 covariates were retained in our study, as their
VIFs were less than 5.0 for both DTP1 and MCV1. This also facilitated
using the application of ML approaches, which typically benefit from a
richer set of covariates.

To aggregate the coverage estimates to the district and other
administrative levels, we obtained 2018 gridded estimates of numbers of
children aged under 5 years from WorldPop (Tatem, 2017), which we
used as a proxy population layer for the age groups included in the
study.

2.2. Geostatistical and machine learning modelling approaches

We considered seven modelling approaches to predict vaccination
coverage at 1 x 1 km resolution, as indicated previously. In all analyses,
we accounted for the complex sampling design of the NDHS, specifically

Longitude

35 months who had received DTP1 and MCV1, respectively, obtained using the

urban-rural stratification, by including an urban-rural covariate and,
when using geostatistical modelling approaches, between-cluster vari-
ation (Dong and Wakefield, 2021; Gascoigne et al., 2025). The model-
ling approaches are described in detail as follows and illustrated in
Fig. 2.

2.2.1. Bayesian geostatistical regression model (GEOS)

The first model we considered is a Bayesian geostatistical model with
a Binomial likelihood. Let Y(s;) denote the number of children vacci-
nated at survey location s; (i=1,...,n) and m(s;) the number of children
sampled at the location. The first level of the model assumes that

Y(s:)|p(s;) ~ Binomial(m(s;),p(s;)), (€]

where p(s;) (0 <p(s;) <1) is the true vaccination coverage at location
s;. We model p(s;) using the logistic regression model

P

logit(p(si) = Bo + Y X(8:); + w(s:) + €(s1), @
j=1

where f is an intercept term, x; (s;), ...,Xp(8;) are covariates associated

with s; (including an urban-rural covariate), f,,...,5, are the corre-
sponding regression coefficients, ¢(s;) is an independent and identically
distributed (iid) Gaussian random effect with variance, af, used to
model non-spatial residual variation or between-cluster variation, and
o(s;) is a Gaussian spatial random effect used to capture residual spatial
correlation in the model. That is, @ = (@(s1), ...,@(s) )T ~ N(O, Z,),
where X, is assumed to follow the Matérn covariance function (Matérn,
1960). For identifiability reasons, we set the smoothness parameter in
¥, to one, see Lindgren et al. (2011).

To complete the Bayesian model specification, we assigned a
N(0,10%I) prior to the regression parameter, §, and a penalized
complexity (PC) (Simpson et al., 2017) prior to o, such that p(c. > 3) =
0.01. Similarly, following Fuglstad et al. (2019), we placed a joint PC
prior on the covariance parameters of the spatial random effect, @, such
thatp(r<rp) = 0.01 and p(6 > 3) = 0.01, with ry chosen to be the 5% of
the extent of the country in the north-south direction.

The model was fitted using the INLA-SPDE approach implemented in
the R-INLA package (Lindgren et al., 2015; R Core Team, 2021). Pre-
dictions at 1 x 1 km resolution were obtained using the fitted model by
drawing samples from the posterior predictive distributions of p(s;) at
the grid locations. Throughout, predictions at the administrative level
were obtained as population-weighted averages taken over all the grid
cells falling within each administrative area (Utazi et al., 2022).
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Fig. 2. Methodological overview. A schematic illustrating the implementation of geostatistical and machine learning approaches investigated in the study.

2.2.2. Bayesian semiparametric geostatistical regression model (SGEOS)

This model extends the GEOS model in equations (1) and (2) through
using smooth functions to account for the nonlinear effects of some
covariates. The model assumes that the true vaccination coverage at
location s;, p(si), can be expressed as

logit(p(si)) = Ao + Y %i(s1)f; +

fk(zk(si)) + C()(Si) + S(Si) (3)
J 1

k=

where f, is an intercept term, x; (s;), ...,Xp(s;) are linear covariates with
regression coefficients f, ..., 8,, and fi(.), ..., fq(.) are smooth functions
used to account for the non-linear effects of the covariates z;(s;), ...,
Zq4(s;). Other terms in the model are as defined previously in equation
(2). We specified a second-order random walk prior for f(.) such that
Fuglur,ui2) ~ N(2u;-1 —ui2,07) “4)
which is the Bayesian equivalent of a cubic smoothing spline (Wang
et al., 2018). For identifiability, a sum-to-zero constraint was imposed
on each of the smooth functions since the model includes an intercept
term (Wang et al., 2018). Model (3) was also fitted in a Bayesian
framework using the INLA-SPDE approach. We assumed the default
non-informative R-INLA log-Gamma prior on log (s, ?), i. e., log(c,2) ~
log — Gamma(1, 0.00005).

2.2.3. Generalized additive model (GAM)

Generalized additive models also provide a mechanism to account
for non-linear relationships by allowing non-linear functions of all
continuous covariates whilst maintaining additivity (James et al., 2013).
The model is given by

q

logit(p(s;)) = By + Arxa(s:) + Y _ flz(si)) +&(s1), )

k=1

where x;(s;) denotes the urban-rural covariate and fi(.),...,f;(.) are
functions used to account for the non-linear effects of other covariates.
For our analyses, we chose cubic smoothing splines for f(.), noting that
other choices are also possible (James et al., 2013). The function g(.) is
used to account for the effect of space in the model, for which we
specified a two-dimensional smoother - an isotropic smooth of latitude
and longitude on the sphere with a second-order penalty and number of
basis functions set equal to 100 (Wahba, 1981). The model was fitted in
a frequentist framework and implemented in R using the mgcv package
(Wood and Wood, 2015). We note that by including non-linear functions
of all continuous covariates, our implementation of model (5) differs
from the SGEOS model where smooth functions are only applied to

non-linear relationships determined beforehand.

2.2.4. Boosted Regression Model/Trees (BRT)

Boosting is a tree-based ensemble method that models complex, non-
linear relationships between an outcome variable and multiple predictor
variables (James et al., 2013). The method is based on the generation of
a collection of sequentially fitted regression trees that optimize the
predictive value of the response variable based on local predictor values.
The boosting algorithm proceeds by fitting a regression tree to the data
using the outcome variable as the response in the first iteration. The
fitted tree is then scaled by a shrinkage parameter and added to the fitted
function (this is set equal to zero in the first iteration) to update the
residuals. In subsequent iterations of the algorithm, the regression trees
are fitted using the residuals as the response. The process continues until
a desired number of iterations or trees have been fitted. The output from
the boosted model for location s; can be expressed as

gB(s:) = D18 (B(s:), 6)
b=1

where, g(.) denotes the final prediction from the model, §b(.) is the
prediction from the bth component regression tree, 4 is a shrinkage
parameter and B is the number of trees/iterations. A controls the rate at
which the boosting learns and is usually chosen to be small. For our
application, we set A = 0.01 as recommended in James et al. (2013) and
chose B = 10,000. Another important tuning parameter when fitting a
boosting model is the number of splits in each tree or the interaction
depth, which controls the complexity of the boosted ensemble. This is
often set equal to the default value of 1. The BRT model was imple-
mented in our study using the gbm package in R (Ridgeway and
Ridgeway, 2004). Due to the unavailability of the binomial distribution
in the gbm package, we elected to model the logit-transformed cluster
level vaccination coverage p(s;) using a Gaussian distribution and then
back-transformed all the predictions post model-fitting. We note that as
in model (5), the set of covariates used in fitting the model included the
longitude and latitude coordinates to account for spatial variation.

2.2.5. Least absolute shrinkage and selection operator (LASSO) regression

Lasso regression performs both variable selection and regularization
and is particularly suitable for modelling contexts where a large or
considerable number of covariates are available. The method imple-
ments automatic covariate selection through a penalty term (the L;
penalty) included in its objective function, which uses a tuning or reg-
ularization parameter to control the amount of regularization, i.e., how
much the regression coefficients are shrunken towards zero. The method
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where « is the regularization parameter and all other terms are as
defined previously. The first term in (7) is the log-likelihood function
which can be obtained from the binomial regression model in equations
(1) and (2) when the spatial and non-spatial random effects are
excluded. Sufficiently large values of a will force some regression co-
efficients to be equal to zero. In practice, a is chosen via a grid search
using cross-validation techniques. As in the GAM approach, the covar-
iate data considered in the analysis using (7) included the longitude and
latitude coordinates of the data locations. The LASSO regression model
was implemented in our work using the glmnet package in R (Friedman
et al., 2021).

2.2.6. Stacked generalization using a Bayesian geostatistical model (STG)

In statistical learning, stacked generalisation or stacked regression is
an ensemble method for combining predictions from multiple models,
often referred to as child models. In the hybrid variant implemented in
our work, the child models were different ML approaches, predictions
from which were combined using a geostatistical model (Bhatt et al.,
2017; Mosser et al., 2019; Sbarra et al., 2021). Through these child
models, the STG approach accounts for complex, nonlinear relationships
between the covariates and the outcome. The geostatistical modelling
framework provides a mechanism to account for residual spatial auto-
correlation. The STG approach was proposed/utilized in Bhatt et al.
(2017) and has been used to model vaccination coverage and various
HDIs (Mayala et al., 2019; Mosser et al., 2019; Sbarra et al., 2021).

Following Sbarra et al. (2021), we considered the following child
models: GAM, BRT and LASSO regression. These child models were
implemented as described previously but excluding the geographical
coordinates of the data locations in the covariate data. To obtain final
predictions for the outcome, the predictions from these child models
were included as covariates in the geostatistical model:

logit(p(si)) = By + Brx*™ (s1) + Box* " (1) + Pox" "5 (s1) + wo(s7) + e(s1),
®

where f, 1, B, and p5 are regression coefficients and other terms are as
described previously in equation (2). As in Sbarra et al. (2021), a
sum-to-one constraint was imposed on the regression coefficients cor-
responding to the child models, such that ZjS:1 p; = 1. This constraint
helps to mitigate the effect of extreme predictions in the child models
included in (8) (Bhatt et al., 2017). As is usually the case in stacked
generalization, Bhatt et al. (2017) recommended the use of K-fold
cross-validation predictions from the child models to calibrate the model
(i.e., estimate the parameters) in (8), and then refitting the child models
using the full data and using the predictions from these in (8) without
refitting the model. We noted that using the cross-validation predictions
from the child models in (8) compared to the full data predictions did
not necessarily yield improvements in predictive performance in our
analyses. The STG approach was implemented in our work using the
INLA-SPDE approach and the inlabru package in R (Lindgren et al.,
2024).

2.2.7. Artificial neural networks (ANN)

An artificial neural network (ANN) is a ML technique that mimics the
functioning of the animal brain. An ANN model is particularly useful in
modelling contexts where data are large and complex, with potential
nonlinearities and interactions between the covariates. The network
consists of layers of connected neurons that serve as data processing
units, where each neuron applies a linear transformation to its inputs,
followed by a non-linear activation function. For our work, we used a
multilayer perceptron network (Park and Lek, 2016), which consists of
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an input layer, multiple hidden layers and an output layer. The input
layer receives the features from the data, processes and transmits these
to the hidden layers which process the information further through
interconnected neurons, while the output layer produces the final pre-

dictions. For a spatial location s with covariate vector x(s)=

(x1(s),%2(8), ....Xp (s))T, the predicted value from an ANN with a single
hidden layer can be expressed as:

Ly
Outputlayer : p(s) =b° + Y _wz}(s),
=1

Ly
Hiddenlayer : z2(s) —f<b,2 +> wiz (s)) ,1=1,...,L,, )
=1
P
Inputlayer : 7/ (s) = f( b} + > _wjx(s) |, [=1,.... L,
j=1

where L; and L, are the numbers of neurons in the input and hidden
layers, respectively, f(.) is the activation function, b}, b?,b® and wjll, wj2
wj3 are bias and weight parameters estimated to minimize mean squared

error in the training data. Furthermore, 2} (s), 22(s) and p(s) are outputs
from the layers as shown in equation (9).

Fitting an ANN requires tuning the number of hidden layers, the
number of neurons in each layer, and choosing the activation function.
Other parameters such as the number of epochs (the number of times the
entire data is passed through the network during training), stopping
metric, stopping tolerance and stopping rounds are also tuned during
model fitting. These early stopping criteria help to avoid overfitting in
the model. A common choice for the activation function f(.) is the
rectified linear unit (relu), defined as f(x) = max{0,x}. The model was
fitted using the h2o.deeplearning() function in the H20 package in R
(Fryda et al., 2024). Since the H20 package does not support the bino-
mial distribution, we elected to model the logit-transformed cluster-le-
vel vaccination coverage, denoted by p(s) in equation (9) using a
Gaussian distribution and then back-transformed the predictions post
model fitting. Based on a hold-out cross-validation exercise with an 80%
training and 20% testing split, the final selected model had two hidden
layers with 100 neurons each, with the number of epochs set to 100. The
chosen stopping metric was the root mean square error (RMSE) while
the stopping tolerance and rounds were set equal to 0.001 and 5,
respectively. We checked the sensitivity of these choices by running
several cases with different justifiable parameter values but obtained the
same results each time.

2.3. Uncertainty estimation using delete-a-block jackknife cross-
validation

To estimate the uncertainties associated with the ML approaches:
BRT, LASSO and ANN, we employed a delete-a-block jackknife tech-
nique. This is a variant of the delete-1 jackknife (Wang and Yu, 2021) in
which a block of observations is deleted at a time. The spatial blocks
were formed by drawing observations at random from the observed
data. These can also be formed using spatially contiguous observations,
but this approach is more likely to affect the underlying spatial structure
in the data and can potentially introduce some artificial patterns in the
uncertainty estimates, depending on the sizes of the blocks. The choice
of the block size was guided by the need to have as many iterations as
computationally logical (relative to the number of observations in the
data) whilst preserving the underlying spatial correlation in the data.
Having many iterations ensures stability in the results (i.e., the uncer-
tainty estimates) and also reduces the numbers of observations deleted
at each iteration. We noted during test runs that block sizes of up tob =
40 observations produced variogram estimates that were very similar to
those of the full data in our applications (supplementary Figs. S5 and
S6). We also noted that there were no material differences in the
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estimates obtained for numbers of replicates r > 100. We, therefore, set
r =100 in our work, corresponding to block sizes of n /r, where n is the
number of observations or spatial locations in the data as defined pre-
viously in (1). For all three ML approaches, we obtained the jackknife
estimates of the uncertainties (i.e., the standard deviations) associated

N2
with the grid level predictions as \/ =Dy (f)j ($) — Djack (s)) , where

Dj(s) is the jth coverage estimate for grid location s and f);l;((s) is the
jackknife estimate of the mean across all the replicates.

2.4. Model validation using k-fold cross-validation and variogram
analysis

To evaluate the out-of-sample predictive performance of the
modelling approaches, we conducted a k-fold cross-validation exercise,
setting k = 10. For each indicator-method combination, we created the
cross-validation folds in two ways: random folds and spatially stratified
folds. For the random folds, the survey locations were assigned to each
of the k folds in a random manner; whereas with the spatially stratified
method, each fold comprised neighbouring cluster locations. We
calculated the following measures of predictive performance: the cor-
relation between observed (p;) and predicted (p;) values, root mean

square error (RMSE = 1/ >",(p; — p;)*/m ), mean absolute error (MAE =

LS b — pi\>, average bias (AVG_BIAS =15 (D 7p1-)> and the

continuous ranked probability score (CRPS(F;,pi) = Er,|X;
—pi|— 3Er |X; —X;|) (Gneiting and Raftery, 2007), where F;() is the cu-
mulative distribution function corresponding to the predictive distri-
bution of the ith cluster level estimate, and X; and X; are two
independent random variables distributed according to F;(.). With r
posterior samples, the CRPS can be estimated as CRPS(F;, p;) =

13 B - pil— & i1 i ®1, which is then averaged

! - b;
over all the locations within each fold and over all the k folds. While the
other metrics (also averaged over all the k folds) measure the accuracy of
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the point predictions produced by the approaches, the CRPS measures
the accuracy of both the point and uncertainty estimates as it utilizes the
entire posterior predictive distribution to determine the discrepancies
between the observations and the predictions. Also, the CRPS was only
computed for the three Bayesian approaches (GEOS, SGEOS and STG) in
our work as it requires the posterior distributions of the estimates. The
closer the AVG_BIAS, MAE and RMSE estimates are to zero and the
smaller the CRPS, the better the predictions. Correlation values closer to
one indicate better predictive ability.

Additionally, to further examine the fits of the different methods, we
checked their (standardized) in-sample residuals for spatial autocorre-
lation using variograms and the associated variogram envelopes, which
were obtained by permutation, using the geoR package in R (Ribeiro Jr
et al., 2024).

3. Results

3.1. In- and out-of-sample predictive performance using cross-validation
and variogram analysis

With respect to the metrics used to evaluate the accuracy of the point
estimates produced by the methods at the cluster level (correlation,
RMSE, MAE and AVG_BIAS), we found that GEOS, SGEOS and, to a great
extent, LASSO had the best out-of-sample predictive performance in
most cases (Fig. 3 and supplementary Table 2). The values of these
metrics for GAM and STG were also very close to those of the three best
approaches, indicating only slightly worse predictive performance. In
contrast, BRT and ANN generally had the worst predictive performance,
which can be clearly seen when considering the AVG_BIAS and RMSE
estimates in Fig. 3.

Among the three Bayesian approaches for which we computed the
CRPS metric, we found that GEOS and SGEOS outperformed the STG
method based on this metric, which is also consistent with the results
obtained using the other metrics. All the methods had fairly similar
predictive performance under the two types of cross-validation folds
investigated (i.e., random and spatially stratified folds) according to all
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Fig. 3. Model validation. Out-of-sample predictive performance of the geostatistical and machine learning approaches investigated based on a k-fold cross-validation

exercise using cluster level data (see supplementary Table 2).
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the metrics except the correlations which showed that nearly all the
methods had better predictive performance under the random folds.
These results indicate that the methods can reasonably predict not only
random but also spatial blocks of missing values in unsampled areas.
There was no evidence of improved predictive performance for MCV1
despite having relatively larger cluster level sample sizes than DTP1
(supplementary Fig. S7). This is likely due to the cluster level sample
sizes for MCV1 not being large enough to induce noticeable improve-
ments in predictive performance.

Furthermore, when examining the out-of-sample predictions in low
coverage areas (i. e., areas with cluster level proportions p(s;) < 0.4 -
supplementary Figs. S8 and S9), we found that the prediction errors
(RMSE, random folds) for ANN and BRT were consistently larger
(RMSE > 0.33) than those of the other approaches (0.24 < RMSE < 0.3),
although there was evidence of overestimation in all the approaches. For
DTP1, the lowest prediction errors were obtained for the GEOS and
SGEOS methods, whereas for MCV1, these were obtained for SGEOS,

BRT

a ANN
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GEOS SGEOS
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GEOS and STG.

The variograms of the in-sample residuals for DTP1 and MCV1
shown in supplementary Figs. S10 and S11 indicate that of all seven
approaches investigated, there was strong evidence of residual spatial
autocorrelation in the ANN and BRT methods. The variograms for both
methods closely resembled those of the outcome variables (i. e., the
cluster level proportions of vaccinated children - supplementary Figs. S5
and S6). Also, the lack of evidence of spatial autocorrelation in the re-
siduals is strongest for the geostatistical approaches — GEOS, SGEOS and
STG.

3.2. 1 x 1 km estimates of vaccination coverage and associated
uncertainties

The rationale for the differences observed in the out-of-sample pre-
dictive performance of the approaches is apparent when investigating
the 1 x 1 km predicted maps of vaccination coverage and associated
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Fig. 4. Predicted DTP1 coverage estimates. 1 x 1 km modelled estimates of DTP1 coverage produced through using different geostatistical and machine learning
approaches shown using (top) maps and (bottom) density plots.
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uncertainties produced through using these approaches. Fig. 4 (a) shows
strong similarities between the predicted surfaces produced by GAM,
LASSO, GEOS, SGEOS and STG. Broadly similar patterns demonstrating
a north-south divide in coverage can also be seen in the predicted maps
produced using ANN and BRT, but their estimates are closer to the ex-
tremes of the unit interval and smoother in the lower and higher
coverage areas than those of the other approaches.

The over-smoothing of the coverage estimates by ANN and BRT
relative to the other approaches is evident in the distributions of the grid
level DTP1 predictions shown in Fig. 4 (b). All the methods produced
bimodal distributions reflecting the characteristic spatial distribution of
vaccination coverage in Nigeria (Utazi et al., 2018b; Dong and Wake-
field, 2021; Utazi et al., 2022,2023). However, the grid level estimates
produced by ANN and BRT are more peaked near zero and one than
those produced by the other approaches, suggesting overestimation in
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high coverage areas and underestimation in low coverage areas by both
approaches. This also explains the higher AVG_BIAS and RMSE values
for both approaches relative to other approaches. For MCV1, supple-
mentary Figs. S12 (a-b) show similar patterns in the grid level estimates
produced by all the approaches, with strong evidence of over-smoothing
in low and high coverage areas by ANN and BRT relative to the other
approaches.

The uncertainties associated with the predictions have broadly
similar spatial patterns across the methods, with lower uncertainties in
areas where coverage estimates are either close to the endpoints (an
artefact of the binomial distribution) of the unit interval or where data
locations are dense, and higher uncertainties in areas where the esti-
mates are closer to 0.5 or where data locations are sparse (Fig. 5 (a) and
(b).

However, due to the relative over-smoothing by ANN and BRT, the
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Fig. 5. Uncertainty estimates for DTP1. Estimates of the uncertainties associated with 1 x 1 km estimates of DTP1 coverage produced using different geostatistical
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uncertainties associated with both approaches are much smaller than
those of other approaches (Fig. 5 (b)) in areas of lower and higher
coverage, even in comparison with LASSO for which we used the same
jackknife approach to produce its uncertainty estimates. In areas with
mid-level coverage estimates, the uncertainties associated with the es-
timates produced by BRT are noisier and relatively much higher than
other approaches. For MCV1 (supplementary Figs. S13 (a-b)), similar
patterns can be observed, with the uncertainties associated with both
ANN and BRT being much higher in many areas relative to the other
approaches.

At the national level, the estimates produced through using these
approaches revealed that ANN (and BRT to some extent; and GEOS —
MCV1 only) overestimated coverage for both DTP1 and MCV1 relative
to the direct survey estimate that is often considered to be the gold
standard (Fig. 6a-b). On the other hand, whilst there are strong corre-
lations between the grid level estimates produced by these approaches
(Fig. 6¢-d), it is evident that ANN and BRT are most dissimilar to other
approaches, particularly for DTP1.

3.3. Exploring spatial prioritization using district level coverage estimates

To further investigate the utility of the coverage estimates produced
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by the methods for spatial prioritization, we computed district level
coverage estimates using their respective 1 x 1 km predicted maps and
then ranked the districts based on these estimates. We note that the
comparisons undertaken here using rankings obtained from the district-
level coverage estimates are purely for illustration since estimates of
numbers of unvaccinated children can characterise disease risk more
accurately and are better suited for this purpose.

Fig. 7 (a-c) demonstrate that although there are broad similarities
between the rankings of the district level DTP1 coverage estimates
produced by the different methods, remarkable differences exist, both
when examining groups of ranks (Fig. 7a) and, more evidently, the in-
dividual ranks (Fig. 7b). The differences between the rankings generally
appear relatively smaller in areas of lower coverage in the northern parts
of the country and much larger in higher coverage areas (Fig. 6¢). Also,
these differences appear more pronounced when considering smaller
numbers of areas (e.g., the 80th to 100thlowest coverage areas) than
larger numbers of areas (e.g., the 100 lowest coverage areas) (Fig. 7b).
The median of the ranges of the ranks per district (Fig. 7c) at the national
level is 112.5 (interquartile range (IQR) = 100, maximum value = 428),
indicating marked differences among the methods. Among the five
methods with similar predictive performance (i.e., GAM, LASSO, GEOS,
SGEOS and STG), the median of the ranges of the ranks per district
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reduces to 83 (IQR = 89, maximum value = 337), which still indicates
considerable differences. However, when examining pairs of methods
with more similar predictive accuracy, there are large reductions in the
differences between the rankings. For example, for the GEOS and SGEOS
methods, the median of the ranges of the ranks per district is 17
(IQR=32).

Similar patterns were observed for MCV1 (supplementary Fig. S14),
with the median of the ranges of the ranks per district estimated to be
141 (IQR=114, maximum value = 499) for all the methods at the na-
tional level, 87 (IQR=82, maximum value = 336) for GAM, LASSO,
GEOS, SGEOS and STG, and 26 (IQR=50) for the GEOS and SGEOS
methods. These differences in the rankings produced by the methods are
also apparent in the bivariate plots of the ranks shown in supplementary
Figs. S15 and S16.

4. Discussion

This study systematically evaluated the performance of seven geo-
statistical and ML approaches for producing high-resolution estimates of

10

vaccination coverage. All the methods, with the exception of SGEOS,
were implemented using standard desktop computers, each requiring
less than three hours (some ML methods completed much faster) to
produce predictions at 1 x 1 km resolution. The SGEOS method, due to
its computational demands, was run on a high-memory computer with a
total runtime of = 2.5 hours.

Our results revealed similar out-of-sample predictive performance at
the cluster level for five of the methods - GEOS, SGEOS, LASSO, GAM
and STG, although stronger predictive performance was observed for
GEOS, SGEOS and LASSO methods. Among all seven approaches
investigated, ANN and BRT had the poorest predictive performance. The
relative over-smoothing observed in both approaches is likely due to the
use of a different outcome distribution (Gaussian, instead of binomial),
or how their algorithms learn from data. We further explored the impact
of likelihood choice by evaluating the predictive performance of the
remaining methods under a Gaussian likelihood (Supplementary
Table 5). While ANN and BRT continued to underperform (see Supple-
mentary Tables 2 and 5), the predictive performance of the other
methods deteriorated under the Gaussian likelihood, reinforcing the
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suitability of the binomial distribution for our application. Moreover,
the poor performance of ANN and BRT was consistent regardless of the
set of covariates used (e.g., kriged DHS covariates vs. other geospatial
covariates), as over-smoothing remained evident in both cases (sup-
plementary Fig. S17). Interestingly, among the Bayesian approaches,
GEOS and SGEOS generally outperformed the hybrid STG method,
despite the latter’s widespread use in mapping HDIs (Bhatt et al., 2017;
Mosser et al., 2019; Sbarra et al., 2021). These findings were further
supported by in-sample assessments of residual spatial autocorrelation
and comparisons of out-of-sample predictions in low coverage areas. We
did not find evidence of better predictive performance for MCV1 due to
larger cluster level sample sizes relative to DTP1. This may be because
the increase in sample size was insufficient to yield measurable im-
provements in predictive accuracy. A more detailed examination of the
effect of cluster-level sample size on predictive accuracy can be found in
Utazi et al. (2022).

The 1 x 1 km predicted maps of the indicators revealed that GAM,
LASSO, GEOS, SGEOS and STG produced very similar results, whereas
ANN and BRT produced relatively over-smoothed estimates, with values
clustering toward the extremes of the coverage scale. Although the un-
certainty estimates produced by these approaches had very similar
spatial distributions, the uncertainties from ANN and BRT were either
relatively smaller (for DTP1) - an artefact of over-smoothing — or
appeared relatively noisier and higher (for MCV1) in certain areas.
Correlations between the grid level estimates produced by the different
approaches were generally high (> 0.78), but these also indicated
relatively lower correlations between ANN and BRT and other ap-
proaches, particularly for DTP1. Further comparisons with direct survey
estimates at the national level revealed that ANN consistently over-
estimated coverage, with some evidence of similar overestimation by
BRT. These discrepancies suggest that ANN and BRT are also likely to
yield other subnational (e.g., provincial-level) estimates that are not
well aligned with direct survey estimates.

Considering the importance of district level estimates of vaccination
coverage and corresponding estimates of numbers of zero-dose and
under-vaccinated children for program planning and implementation,
we further investigated the utility of the coverage estimates produced by
the different approaches for spatial prioritization. We found remarkable
differences in their rankings of the districts, although there were broad
similarities especially when considering larger numbers of areas. The
differences were most pronounced in areas of higher coverage and more
modest in lower coverage areas, which might have been affected by the
spatial distribution of vaccination coverage in the study country. We
further observed a reduction in differences in rankings among methods
with similar predictive performance, as expected, and even substantial
reductions between pairs of methods with similar predictive perfor-
mance. These results hold significant implications for vaccination pro-
gramming, especially in resource-constrained settings where only a
limited number of areas can be targeted per time, since inaccurate
identification of priority areas for interventions could result in missing
important vulnerable populations, suboptimal resource allocation,
reduced impact and persistence of disease circulation or outbreaks. The
predictive accuracy of these approaches should therefore guide their use
for map production and operationalization.

Although our study is the first to systematically compare geo-
statistical, ML and hybrid approaches for vaccination coverage estima-
tion, similar studies have been conducted in other application domains.
For example, Berrocal et al. (2020) and Veronesi and Schillaci (2019)
evaluated geostatistical and ML approaches for mapping air pollution
and soil organic carbon, respectively, and found that geostatistical
models outperformed ML methods - findings that align closely with our
results. Zhu et al. (2024), in a related study on air pollution mapping,
reported that random forests, a ML method, outperformed geostatistical
models. Similarly, other studies utilizing kriging-based geostatistical
approaches (e.g., Chen et al (2019) and Molla et al. (2023)) found that
ML approaches performed better. In the context of mapping HDIs, our
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results are somewhat different from those of Bosco et al. (2017), who
compared ANN with a Bayesian geostatistical model across multiple
countries and various HDIs. While they found similar predictive per-
formance between the two approaches, they preferred the geostatistical
model due to its ease of implementation (i.e., not requiring many tuning
parameters). It is important to note that direct comparisons between our
results and those from the literature are challenging due to substantial
differences in study designs, geographic settings and applications,
including choice of validation methods, amount of available data and
parameter tuning. These contextual factors likely contribute to the
mixed evidence regarding the relative performance of ML and geo-
statistical approaches, suggesting that model performance is, to some
extent, context specific. We further assessed the generalizability of our
findings to other settings by conducting an additional case study using
data from the 2021 Cote d’Ivoire DHS (Institut National de la Statistique
and ICF, 2023) - see supplementary materials for details. The results we
obtained also showed that the other approaches investigated generally
had better out-of-sample predictive performance than ANN and BRT.
Also, among these other approaches, SGEOS and GEOS were the best
performing methods, further corroborating our findings using the 2018
NDHS and reinforcing the robustness of our conclusions across different
settings.

Our study has some limitations that should be acknowledged. As
noted earlier, our implementation of the ANN and BRT approaches in
the R programming language did not permit the use of a binomial
likelihood for the outcome variables. Implementing these approaches
using other programming languages such as Python may facilitate this.
Although we found consistent results in our case study using the 2018
Nigeria DHS and the additional analyses using the 2021 Cote d’Ivoire
DHS (supplementary materials), it will be useful to also explore how
these methods perform in other geographical settings with additional
antigens and potentially different sampling designs, degrees of spatial
autocorrelation in vaccination coverage and numbers and types of
covariates and their relationships with vaccination coverage (Bosco
et al., 2017). It may be the case that the underperformance observed in
ANN and BRT is dependent on some of these factors, but this also reveals
a lack of robustness of both approaches to some modelling contexts or
limitations in some of their current software implementations. For
geostatistical models, these attributes have been investigated in detail in
previous work using simulation studies (e.g., Utazi et al. (2018a)).
However, we note that a simulation study would not be ideal when
comparing geostatistical and ML approaches, as this would require
simulating data from a geostatistical model or a sampling design based
on geostatistical techniques, which would confer an undue advantage on
these models over ML techniques. Furthermore, other approaches for
estimating the uncertainties associated with the ML approaches are also
possible. For example, a spatial bootstrap algorithm (this did not
perform well in our study during initial trials) or an approach that in-
volves interpolating spatial cross-validation residuals to create an un-
certainty map, similar to Blanco et al (2018), could be used.

Whilst the use of geostatistical and ML approaches to produce high-
resolution maps of HDIs has grown in popularity, other small area
estimation methods for producing maps of HDIs exist (Tzavidis et al.,
2018; Utazi et al., 2021; Paige et al., 2022), but these assume a discrete
spatial domain, meaning that estimates can only be produced for a given
administrative level at a time. Some of these methods are well explored
in Utazi et al. (2021). Furthermore, in the ML arena, there are other
hybrid approaches aiming to overcome the limitation of ML approaches
not explicitly accounting for spatial autocorrelation in the data through
(i) creating features that imitate the spatial autocorrelation in the
outcome and using these as additional covariates in conventional ML
methods (Sekulic et al., 2020; Fouedjio and Arya, 2024), (ii) combining
ML predictions with the kriging of the prediction residuals (Kaya et al.,
2022) and (iii) locally calibrated ML algorithms (Hagenauer and Hel-
bich, 2022; Fouedjio and Arya, 2024). Future work in mapping vacci-
nation coverage and other HDIs may involve the exploration of these
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hybrid approaches. In geostatistical models, spatially varying coefficient
models (Gelfand et al., 2003) could also be used to account for the
spatial non-stationarity in the regression relationship between vacci-
nation coverage and geospatial covariate information.

In conclusion, our results provide valuable guidance to practitioners
regarding the utility of these modelling approaches for producing maps
of vaccination coverage and other HDIs. While most of the approaches
we investigated had good predictive accuracy and produced similar
results, some approaches were relatively better, with significant impli-
cations for spatial prioritization. Effort should be made to either identify
the best modelling framework for each analytical context or to use ap-
proaches that have been shown to be more robust and reliable in a
similar setting.
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