arXiv:2508.10839v1 [cs.CL] 14 Aug 2025

Reinforced Language Models for Sequential Decision Making

Jim Dilkes, Vahid Yazdanpanah, Sebastian Stein

University of Southampton
j-dilkes @soton.ac.uk

Abstract

Large Language Models (LLMs) show potential as sequen-
tial decision-making agents, but their application is often
limited due to a reliance on large, computationally expen-
sive models. This creates a need to improve smaller models,
yet existing post-training methods are designed for single-
turn interactions and cannot handle credit assignment in
multi-step agentic tasks. To address this, we introduce Multi-
Step Group-Relative Policy Optimization (MS-GRPO), a new
algorithm for post-training LLM agents, grounded in for-
mal Text-Mediated Stochastic Game (TSMG) and Language-
Agent Policy (LAP) frameworks. For credit assignment, MS-
GRPO attributes the entire cumulative episode reward to each
individual episode step. We supplement this algorithm with
a novel absolute-advantage-weighted episode sampling strat-
egy that we show improves training performance. We evalu-
ate our approach by post-training a 3-billion parameter model
on Snake and Frozen Lake. Our experiments demonstrate that
the method is effective in improving decision-making perfor-
mance: our post-trained 3B parameter model outperforms a
72B parameter baseline by 50% on the Frozen Lake task. This
work demonstrates that targeted post-training is a practical
and efficient alternative to relying on model scale for creating
sequential decision-making agents using LLMs.

Introduction

Sequential decision making, the problem of an agent select-
ing successive actions to maximize a long-term objective,
represents a fundamental and pervasive challenge in arti-
ficial intelligence. Computational approaches to this prob-
lem have driven significant achievements in applications as
diverse as spacecraft control (Bernard et al. 1998), med-
ical treatment (Murphy 2003; Bani-Harouni et al. 2025),
robotic manipulation (Levine et al. 2016), data center cool-
ing efficiency (Evans and Gao 2016), and vehicle routing
(Kool, Van Hoof, and Welling 2019). Recently, the pow-
erful reasoning and natural language understanding capa-
bilities of Large Language Models (LLMs) have enabled
a new paradigm: agents that can follow human instruction
to operate in dynamic environments conveyed through text,
whether digital (Zheng et al. 2025b) or physical (Mower
et al. 2024; Li et al. 2025). These hold great potential
in leveraging the extensive world knowledge and reason-
ing abilities inherent in LLMs to flexibly tackle sequential
decision-making problems.

Despite this promise, effectively utilizing LLMs for se-
quential decision making remains an open challenge. Specif-
ically, evidence suggests that LLMs struggle with low-level
action selection (Zhang et al. 2024), are not inherently good
planners (Kambhampati et al. 2024), and effective decision
making typically requires large models using computation-
ally expensive reasoning chains (Tanahashi et al. 2023; Yao
et al. 2023; Shinn et al. 2023; Zhou, Du, and Li 2024). For
example, Trivedi et al. (2024) find that their most capable
agent, using GPT-40 (OpenAl et al. 2024) on realistic digi-
tal tasks, costs $0.70 per task while achieving less that 50%
success rate. These shortcomings limit the practicality and
scalability of LLMs, highlighting the need for new training
methods to enhance the capabilities of more efficient mod-
els.

However, existing LLM post-training methods, those that
refine and adapt a pre-trained model to meet application-
specific requirements, are unsuitable for this domain. These
approaches, often based on Reinforcement Learning (RL)
(Sutton and Barto 2018), are designed to optimize models on
single-turn tasks with immediate feedback from a verifier, as
in Reinforcement Learning with Verifiable Rewards (RLVR)
(DeepSeek-Al et al. 2025; Zheng et al. 2025a; Yu et al. 2025;
Wang et al. 2025a; Hou et al. 2025; Park et al. 2025), or
from human preference models, as in Reinforcement Learn-
ing from Human Feedback (RLHF) (Ziegler et al. 2020;
Ouyang et al. 2022; Rafailov et al. 2023; Zhong et al. 2025).
Such methods, however, are incompatible with sequential
decision-making tasks where credit assignment of outcomes
to actions is necessary. Addressing this is an emerging re-
search area. For example, the RAGEN system (Wang et al.
2025b) conditions the agent’s language generation on full
environment episodes, assigning credit for the entire episode
to the agent’s complete sequence of actions.

Furthermore, a conceptual limitation arises when using
LLMs as decision-making agents: the optimization occurs
over sequences of fokens, which are communicative units
rooted in natural language, whereas effective planning re-
quires the selection of actions grounded in the problem do-
main (e.g. navigation moves in a spatial environment). This
discrepancy mirrors the distinction between communicative
acts, such as speech acts in dialogue systems (Traum 1999),
and operational actions needed for sequential decision-
making (Georgeff 1988). Bridging this gap calls for new
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methods that formally align the language-centric outputs of
LLMs with the structured, domain-specific actions required
for agent planning and control.

Against this background, for the first time, we:

1. Define a formal framework connecting language-
based agents and sequential decision-making environ-
ments, comprising the Text-Mediated Stochastic Game
(TMSG), which models the environment with an explicit
text interface, and Language Agent Policy (LAP), which
defines the agent’s LLM-based policy.

2. Introduce Multi-Step Group-Relative Policy Optimiza-
tion (MS-GRPO), an algorithm adapting the GRPO
method for sequential decision-making tasks by assign-
ing the entire cumulative episode reward to each individ-
ual step. To improve efficiency, the optimization for each
step uses only the current state as context.

3. Propose a novel absolute-advantage-weighted (AAW)
episode sampling strategy which we demonstrate im-
proves training performance.

4. Demonstrate that our post-trained 3B parameter model
outperforms a much larger 72B parameter baseline LLM
on the Frozen Lake task by 50%, showing the value of
domain-specific training over model scale.

5. Provide a critical analysis of the MS-GRPO algorithm’s
capabilities, highlighting its high training variance and
mixed results in eliciting generalization in LLM-based
agents.

Framework

This section defines our framework for language model-
based agents in sequential decision-making environments.
The framework consists of two core contributions: (1) a
Text-Mediated Stochastic Game (TMSG), that formalizes
an environment where all interactions are mediated exclu-
sively through text; and (2) a Language Agent Policy (LAP)
that parameterizes an agent’s behavior in terms of a lan-
guage model and interfacing components. Our framework’s
explicit separation of agent and environment is important for
two reasons. First, it allows us to model the TMSG using
the formalisms of Partially-Observable Stochastic Games
(POSG) (Hansen, Bernstein, and Zilberstein 2004). Second,
the LAP formalism makes explicit which components we
can control to affect the agent’s decision making.

Text-Mediated Stochastic Game

To formally model sequential decision-making environ-
ments with text-based interfaces, we define a Text-
Mediated Stochastic Game (TMSG) as a tuple G =
(P,S,A,Q,0, P,R). This formalism builds on Stochas-
tic Games (Shapley 1953) and has similarities to Partially-
Observable Stochastic Games, with the key constraint that
observation space for each agent is the set of all text strings.
While POSGs provide a familiar structure, the TMSG makes
the text interface between an LLM-based agent and the en-
vironment explicit. The components of G are defined as fol-
lows:

e P={1,...,p} is a finite set of p players.!

* S is the finite set of game states. The set of terminal states
is denoted Sy C S.

e A= A; x--- x A, is the joint action space where A;
is the set of all possible actions for agent . The function
A(s) C Areturns the set of legal joint actions in state s.

¢ Q= x---x €, is the joint observation space, where
each agent-specific observation space §2; = X* is the set
of all text strings >*, with 3. the vocabulary of tokens.

* An observation function O : § x A — A(Q), where
O(o|¢’, a) is the probability of the joint observation o af-
ter taking joint action @ and transitioning to state s’.

e P:S x A— A(S) is a state transition function where
P(s'|s,a) is the probability of transitioning to state s’
when the joint action a is taken in state s.

* R:S x A — RP is the reward function, where R(s, a)
returns a list of p numerical values indicating the reward
for each player after taking the joint action a in state s.

Language Agent Policy

In the settings we consider, a player ¢ € P is controlled by a
computational agent whose goal is to maximize its expected
cumulative reward. To achieve this, the agent learns a pol-
icy, which specifies a strategy for choosing actions based on
its observations. Here we outline our proposed architecture
for language-model-based agents, which we call a Language
Agent Policy (LAP).

Previous research in RLVR considers the policy to be the
probability distribution over tokens described by an LLM
(Zheng et al. 2025a). While this framing is useful, our fo-
cus on sequential tasks requires optimizing for environment
actions, not only the tokens that produce them.

An agent’s policy specifies the probability of it taking
action a given observation o. In our LLM-based frame-
work the policy is parameterized by a set of components
II; = (Lo, Gi, Ti, ¥;) comprising:

* Ly,: a generative language model with parameters 6;.

* G;: the generation configuration (e.g., temperature, top-
k) controlling the token sampling behavior of Ly, .

* 7T;: a prompt template that is a text string with a place-
holder to be filled with an observation string to create a
full input prompt.

e ¢; : ¥* — A; U {L}: an action extraction function that
parses the text output of Ly, and maps it to a valid game
action, or to L if the output cannot be interpreted as a
valid action.

The parameterized policy can be written as myy, (ajo) €
[0, 1]. We denote the language model Ly, operating under a
specific generation configuration G; as Ly, |g,. This symbol
represents the resulting stochastic text generation function.

An action a is sampled from the language agent policy at
time ¢ through the following process:

"While this work focuses on single-agent post-training, we
adopt the more general multi-agent case to provide a robust frame-
work. Non-learning agents, such as the opponent in the Snake envi-
ronment, are therefore treated as a component of the environment
and are not the subject of this work.



1. Prompt Construction: A prompt qi € X*is constructed
from the observation o} using the agent’s template gy =
7i(0}).

2. Stochastic Text Generation: A text completion, ¢; €
>*, is sampled from the language model given the input
prompt q;: ¢; ~ Ly, g, (“lgi).

3. Action Parsing: The action taken by the agent a! is ex-
tracted from the completion string by the parsing func-
tion a} = ;(ch).

Agent-Environment Interaction

The interaction between LAP agents and the TMSG en-
vironment proceeds in discrete time steps. This agent-
environment loop applies to any set of agents, each imple-
menting a policy ;. In this work, we are primarily interested
in the case where the policy is a LAP, 7y, .

The sequence of events at each time step ¢, starting from
an initial state s, is as follows:

1. Each player ¢« € P simultaneously selects an action:
ai ~ m(-|lol). If ai =1, apply a predefined recovery
strategy (e.g., no action or a random action). The col-
lection of actions from all agents forms the joint action
ay = (af,...,a}).

2. The environment receives joint action a; and transitions
from state s; to state s;4; by sampling from the state
transition function: s;y1 ~ P(:|s¢, ay).

3. The environment generates a vector of rewards ry1 =
(riy1,-..,m7,), calculated by the reward function
R(St, at).

4. The environment samples a joint observation o:y; =
(otl_H, ...,04,,) from the observation function: 0, ~
O([st41,ar).

5. If 5441 € Sy, the episode terminates. Otherwise, incre-
ment 7" and repeat.

Together, the TMSG and LAP formalisms provide a com-
plete framework for analyzing LLM agents in sequential
decision-making environments.

Methodology

Creating effective LLM-based agents for sequential decision
making requires new methods that overcome the limitations
of single-turn optimization algorithms, particularly the prob-
lem of credit assignment from sparse, delayed rewards. This
section presents our methodology for solving this problem
by training a goal-seeking LAP within the TMSG frame-
work, which consists of two technical contributions:

1. Multi-Step Group-Relative Policy Optimization (MS-
GRPO): a new algorithm that specifies reward assign-
ment from environment steps to tokens in order to handle
multi-step trajectories.

2. Absolute-Advantage-Weighted Episode Sampling: an
episode sampling strategy that prioritizes episodes with
more extreme outcomes.

GRPO Modification for Multi-Step Environments

To optimize the behavior of LAP agents to maximize ex-
pected cumulative reward in TMSG environments we pro-
pose Multi-Step Group-Relative Policy Optimization (MS-
GRPO). Our algorithm is a variation of GRPO (Shao et al.
2024), a type of policy gradient method (Williams 1992).

Whereas GRPO compares rewards from single-step re-
sponses to an identical prompt, MS-GRPO adapts this ap-
proach for multi-step tasks. It calculates an advantage value
from the total cumulative reward and assigns this value to
every generated token in that episode. This technique of at-
tributing the full episodic reward to each action is a form
of Monte Carlo credit assignment (Sutton and Barto 2018).
We use GRPO instead of an actor-critic method such as PPO
(Schulman et al. 2017) due to its reduced memory footprint
which allows training of larger models or the use of longer
contexts.

While the LAP agent’s behavior is defined by the com-
plete policy 717, we optimize only the parameters ¢ that de-
termine its LLM’s distribution over tokens, Lg|g (-g¢). Al-
though the TMSG framework supports multiple players, this
work focuses on optimizing a single agent, so we omit the
player index ¢ in the following definition.

The MS-GRPO objective function is defined as:
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where Lcpyp is the token-level objective for timestep ¢ in
episode j:
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Here, G is the group size, T} is the number of timesteps
in episode j, |y;| is the total number of generated tokens,
and y; ¢ 5 is k-th token in the completion at timestep t. D
denotes the distribution over observations determined by the
TMSG dynamics. The episode advantage, A;, is calculated
by normalizing a composite reward C;j = 3 7 (10 + ;)
which combines the cumulative environment reward with a
task-specific shaping reward (®;):

o C; —mean({Ch,...,Cqg})

J Std({Cl,...,CG})
Finally, Dky. (pgl|prer) is the KL penalty against a reference
model (the original LLM before post-training), and €y, €up

and f are hyperparameters. The MS-GRPO algorithm is de-
tailed in Algorithm 1.

Witk =

4)



Algorithm 1: Multi-Step Group Relative Policy Optimiza-
tion for Language Agent Policies

Require: Initial model parameters 6,.; initial state distribu-
tion Dy; Group size G; learning rate 1); Hyperparameters
€, 3; Sampled group size G”* Sampling temperature T,
1: Initialize policy parameters 6 <— 6yt
2: for training iteration = 1,..., M do
Set Oyq < 0
4 Sample initial state sg ~ Dy
5:  Generate initial observation og from sq
6: for episode j = 1to G do
7.
8

Set 05,0 < Og
for episode step ¢ = 0 until termination do

9: ¢;t = T (0j.+) {Construct prompt}
10: Yit ~ Doya(-|g;,¢) {Generate completion}
11: aj+ = ¥ (y;+) {Parse action}
12: Take action a; ¢, observe 0,1 and 7 ;41
13: if terminal state then
14: break inner loop

15: end if
16: end for
17: Compute reward Cj = >, (75,141 + ®;, 1)
18:  end for

19:  Compute advantages {Ai}jc.*;l as normalized rewards
20:  if Tep > 0.0 then

21: Sample G’ episodes using AAW Sampling

22: Recompute {Ai}lel using only sampled episodes

23:  endif

24:  Update policy parameters using gradient ascent: § —
8 4+ nVoIms-creo(0)

25: end for

26: return Ty

Absolute-Advantage-Weighted Episode Sampling

To improve training efficiency, we propose Absolute-
Advantage-Weighted (AAW) episode sampling. This strat-
egy prioritizes episodes with high-magnitude advantages,
inspired by Prioritized Experience Replay (Schaul et al.
2016). The intuition is that these episodes, representing the
most significant success or failures, are the most informative
for learning.

We calculate the group relative advantage (Equation 4)
across all G generated episodes, then sample G' < G
episodes without replacement. The probability of selecting
episode j is given by the Softmax over the scaled absolute
advantages:

exp(|4;]/Tep)

€
>iz1 exp(|Ail/Tep)
where the temperature T, € (0,00) controls the strength
of the weighting. Smaller T¢;, concentrates sampling on ex-

treme advantage episodes whereas larger T¢, approaches a
uniform distribution.

&)

j =

Experimental Setup

We evaluate our proposed methodology through a series
of experiments. Our experiments aim to determine if MS-

GRPO can improve the decision-making capabilities of a
small LLM and to assess whether those improvements gen-
eralize to unseen environments or variants of the training
environment. To achieve this, we use two 2D grid-world en-
vironments, Snake and Frozen Lake, and evaluate agent per-
formance using the total cumulative reward per episode.

Environments

We choose Snake and Frozen Lake because their dynamics
are simple yet challenging for small language models, mak-
ing them ideal for assessing the learning algorithm’s effec-
tiveness. Their simple structure allows for creating variants
to test generalization.

Both environments have identical action spaces, A =
{Up, Down, Left, Right}, and similar objectives, each re-
quiring the agent to navigate a 2D grid towards a goal while
avoiding dangers. For a LAP agent, solving these tasks re-
quires identifying goals and dangers from a text observation,
planning a strategy, and faithfully translating that plan into
actions. The recovery strategy for an invalid action is to take
no action.

Snake The agent controls a snake that grows longer by
consuming fruit. A non-LAP agent controls a second snake,
which takes random valid actions (avoiding walls and its
own tail). Episodes terminate on collision with the snake’s
own tail, another snake, or the grid boundaries. Fruit is re-
placed in a random empty board tile when consumed. This
environment is adapted from Kamradt (2025).

Frozen Lake The agent navigates a grid of ice tiles to
reach a goal. Some tiles contain holes, and moving on to
one terminates the episode. A safe path to the goal is guar-
anteed to exist and moving into a wall has no effect. The
environment is from the Gymnasium library (Towers et al.
2024).

Environment Variants We create variants of each envi-
ronment to test different aspects of generalization:

* Snake-Standard (training/evaluation): A 10x10 grid
with one other snake and 5 apples giving +1 reward. A
collision results in —3 reward and terminates the episode.

e Snake-Poison (evaluation): Like Snake-Standard, but
apples provide —1 reward, testing the agents ability to
override its training objective.

* FrozenLake-NotSlippery (training/evaluation): A 4x4
grid where each tile has 0.2 probability of being a hole.
Reaching the goal gives +1 reward.

* FrozenLake-Slippery (evaluation): like FrozenLake-
NotSlippery, but movement is stochastic. The agent
moves in the chosen direction with 1/3 probability and
a perpendicular direction with 1/3 probability each. This
variant tests planning under uncertainty.

Agent-Environment Interface

Each environment’s state is converted to text by the obser-
vation function O of the TMSG. We provide the observa-
tion in two ways concurrently: (1) as a list of entity coordi-
nates and (2) as a 2D character grid. These are supplemented



with static text describing their meaning. A static descrip-
tion of the environment’s rules and goals is prepended to
the dynamic state representation to form the observation, o.
The static and dynamic text for each environment variant is
presented in the technical appendix. The complete observa-
tion is inserted into the LAP agent’s template 7, which pro-
vides environment-agnostic instructions on reasoning struc-
ture and output formatting.

Reward Design

The reward signal guides the agent towards two objectives:
maximizing its environment reward and generating well-
formatted text. While the environment reward alone may im-
plicitly encourage good formatting, we add an explicit for-
mat penalty, ®, an approach followed by DeepSeek-Al et al.
(2025). The agent’s total reward is a composite of two com-
ponents:

¢ Environment Reward (R): The native reward from the
environment, plus a —0.5 penalty per invalid action.

* Format Penalty (®): A set of penalties for undesirable
text patterns:

— Length Penalty, a linear penalty for excessive text gen-
eration, scaling from 0 to —0.5 for responses between
180 and 200 tokens

— Structure Penalty, a —0.5 penalty for each missing, un-
necessary, or incorrectly nested XML tag

— Extra Text Penalty, a —0.5 penalty if any text is gener-
ated after the final < /action > tag

Experimental Protocol and Models

We use the Qwen2.5-3B-Instruct (Qwen et al. 2025) model
for post-training as its size offers a balance between capabil-
ity and computational footprint. We compare its post-trained
performance against two larger models, Qwen2.5-32B-
Instruct and Qwen2.5-72B-Instruct. We also train a Deep
Q-Network (DQN) (Mnih et al. 2013) on Snake-Standard
to provide a non-LLM baseline. Agents are trained sepa-
rately on the Snake-Standard and FrozenLake-NotSlippery
environments and evaluated on all four variants. We conduct
an ablation study comparing the effectiveness and time effi-
ciency of MS-GRPO with and without AAW sampling. Full
training parameters, evaluation details, and LAP definitions
are provided in the technical appendix.

Results

Our experiments demonstrate that MS-GRPO can success-
fully improve the sequential decision-making capabilities of
LLMs. This section highlights several key findings: post-
training improves performance on both training environ-
ments, but with high variance on Snake; our post-trained
3B model outperforms a 72B baseline on Frozen Lake; and
our AAW strategy shows signs of improving performance
without sacrificing time efficiency. In addition we find that
a DQN trained baseline vastly outperforms our agents, and
see mixed evidence of generalization.

Post-training with MS-GRPO Improves Sequential
Decision-Making

Post-training with MS-GRPO leads to significant perfor-
mance improvements on the agents’ respective training envi-
ronments, demonstrated by the upward trend of the learning
curves in Figure 1. As shown in Table 1 both agents improve
on their native task, but there is high variability in the final
performance of the Snake-trained agents.

For example, the best run for a Snake-trained agent
achieves a reward of 0.45 on the Snake-Standard evaluation,
considerably greater than the mean of —1.49 and demon-
strating the high degree of variance in the training outcomes.
This variance indicates that the training process is sensitive
to initial conditions or early exploration, with some agents
converging on effective strategies while others stagnate.

Snake - Standard Snake - Poison Apple

0 200 400 600 h 0 200 400 600

Frozen Lake - Slippery

Reward

0 200 400 600 0 200 400 600
Step Step

—— Snake (mean * std)
~ = Snake (best)

Frozen Lake (mean + std)
Frozen Lake (best)

Figure 1: Training progression over 700 steps across four
evaluation scenarios. The solid line in each panel shows the
mean reward across 8 independent training runs, with the
error bars representing the standard deviation. The dashed
line shows the performance of the single best-performing
run. At each step, performance is the mean reward over the
same 50 evaluation episodes.

Post-trained Model Outperforms Larger Baselines

A direct comparison shows that our post-training method
enables the 3B parameter model to outperform its much
larger counterparts. As illustrated in Figure 2, our Frozen
Lake post-trained agent achieves 0.57 + 0.12 on its train-
ing environment, FrozenLake-NotSlippery, surpassing the
0.38 £ 0.48 achieved by the 72B parameter model, despite
operating with a 200-token limit compared to the baseline’s
4096-token limit.

On the other hand, the mean reward of our post-trained
Snake agents showed no clear improvement over the larger
LLMs. However, the single best performing Snake-Standard
agent achieved a final reward of 0.45 on Snake-Standard
compared to —1.26 £ 1.80 for the 72B model, and 0.32 on
FrozenLake-Slippery compared to 0.094 £ 0.29.

These findings demonstrate that task-specific post-
training can be more practical and efficient than scaling



Table 1: Performance comparison across environments at initial and final training steps, with per-run difference statistics. Values

shown as mean (std) of the evaluation environment reward.

Training Evaluation

Initial - O Final - 700 A

Snake Snake - Standard
Snake - Poison Apple
Frozen Lake - Slippery
Frozen Lake - Not Slippery

2.607 (0.162) -1.487 (1.093) +1.120 (1.001)
3298 (0.126)  -3.508 (0.913)
0.020 (0.035)
-0.207 (0.213)

-0.210 (0.827)
0.131 (0.127)  +0.111 (0.114)
0.054 (0.087)  +0.261 (0.203)

Frozen Lake Snake - Standard
Snake - Poison Apple
Frozen Lake - Slippery
Frozen Lake - Not Slippery

2.696 (0.120) -2.665 (0.061) _+0.030 (0.143)
-3.299 (0.086) -3.312 (0.083)
0.040 (0.033)
-0.158 (0.167)

-0.013 (0.049)
0.227 (0.073)  +0.187 (0.059)
0.573 (0.121)  +0.732 (0.201)

model size for sequential decision-making tasks.
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Figure 2: Mean reward per episode for MS-GRPO post-
trained agents and baselines across four evaluation environ-
ments. MS-GRPO results are averaged over § training runs,
each evaluated on 50 episodes. Baselines are evaluated on
1,000 episodes. Error bars show standard deviation across
runs for MS-GRPO agents and 95% confidence intervals for
baselines.

DQN Outperforms MS-GRPO on In-Domain Task

The DQN agent significantly outperforms even the best
single MS-GRPO on Snake-Standard as shown in Figure
2. It achieves 4.58 £ 2.47 compared to 0.45 by the best
MS-GRPO snake agent and —1.49 + 1.09 mean across all
snake agents. This performance gap highlights the chal-
lenges in using general-purpose language models for spe-
cific tasks that are poorly represented in their pre-training
data. To maximize performance on a specific task, a special-
ized model is superior.

MS-GRPO Post-trained Snake Agent Generalizes
to an Unseen Frozen Lake Environment

The best performing Snake-trained agent shows promis-
ing zero-shot generalization to an unseen task, achieving a
higher mean reward (0.32) on the FrozenLake-Slippery task
than the DQN agent (0.17 & 0.38). This suggests the MS-
GRPO agent, despite its substantially worse performance on
the Snake environment, is at adaptin to novel dynamics.
However, the same Snake agent’s generalization perfor-
mance on the Snake-PoisonApple task degraded after post-
training, becoming considerably worse than the base model
it originated from (Figure 2). This suggests that the agent’s
learned behavior for seeking apples cannot be offset by in-
structions in the prompt stating that they are poisoned.

AAW Sampling Improves Performance Without
Impacting Training Time

We find that our AAW sampling strategy reduces train-
ing time while maintaining or improving performance. As
shown in Figure 3, training with G = 100 and G’ = 25
over 700 steps provides 3.5x time savings compared to the
unsampled baseline (G = 100, G’ = 100), while achieving
comparable final rewards (—0.72 vs. —0.86). At the same
time, by generating additional episodes for a fixed number
of training episodes, we see a higher reward: —0.72 with
G = 100 and G’ = 25, compared to —1.00 with G = 25
and G’ = 25. This suggests that, when training on the
Snake environment, our sampling strategy successfully se-
lects higher-quality episodes without substantially increas-
ing computational load.

These results indicate that for our particular environment
and model, using AAW can improve both efficiency and per-
formance.

Discussion

Our experimental results demonstrate that MS-GRPO can
successfully post-train language models on sequential
decision-making tasks. However, the results also reveal con-
siderable limitations in training consistency and a signifi-
cant performance gap relative to a bespoke DQN agent. The
large performance difference between the best Snake agent
and the mean highlights both the potential of the training
method and the need to improve its consistency.



-1.0

el

~

§ -1.5

Q

& Generated 100, Trained 100
-2.0 —e— Generated 100, Trained 25

—e— Generated 100, Trained 50
0 200 400 600 800 1000 1200 1400 1600
Minutes

-1.0 @

v 4

jah

§ -1.5

[0}

~ —— Generated 100, Trained 25

-2.0 —e— Generated 25, Trained 25
Generated 50, Trained 25

0 200 400 600 800 1000 1200 1400 1600
Minutes

Figure 3: Ablation study on convergence and training ef-
ficiency with various degrees of AAW sampling, showing
mean reward versus wall time for different sampling config-
urations on the Snake-Standard evaluation task. (Top) Vary-
ing the number of sampled episodes G’ for a fixed number
of generated episodes G = 100. (Bottom) Varying the num-
ber of generated episodes for a fixed number of sampled
episodes G’ = 25

We hypothesize that this inconsistency stems from insuffi-
cient exploration during training, where finding an effective
policy is left too much down to initial conditions and chance.
Unlike traditional RL agents that directly explore the state-
action space, helped by methods such as e-greedy sampling,
exploration for LAP agents is the indirect result of exploring
the token space. Our LAP framework makes this problem
explicit by defining the distinct components that can be used
to control agent behavior. Additionally to the LLM param-
eters, the agent’s generation configuration, G;, and prompt
template, 7;, provide means for influencing how the LAP
takes actions. For example, dynamically adapting the text
sampling temperature in G; to increase when responses or re-
wards stagnate could enable the learning algorithm to adapt,
so that text generation never becomes too consistent during
training, a prerequisite for environment exploration. Alter-
natively, training the agent with a varied set of prompt tem-
plates (7;) to elicit a variety of behaviors may also promote
more thorough exploration of the environment.

Another possible cause of inconsistent training is the use
of an imprecise Monte Carlo credit assignment scheme,
which may dilute the learning signal from truly effective be-
haviors that the agent explores.

Furthermore, the failure of the best performing Snake
agent on the Snake-PoisonApple task highlights a risk of the
post-training process: reinforcing a specific skill may pre-

vent the model from addressing critical semantic details rel-
evant to that skill. While the training successfully enhanced
the agents ability to seek apples, it was not able to correctly
adapt its behavior to the scenario in which apples are de-
scribed as poisonous, with performance degrading relative
to the base model as a result.

Our AAW sampling approach shows promising perfor-
mance gains (all three experiments using G = 100 outper-
formed those with smaller G) without sacrificing time effi-
ciency. However, the improvements are modest and would
benefit from further validation across more environments.

Finally, the improved performance over larger LLMs
demonstrates the value of task-specific post-training of
smaller LLMs. Using smaller models with fewer generated
tokens reduces computational requirements and improves
response times, making the model more practical for real-
world applications. However, the performance gap relative
to a specialized DQN agent highlights a fundamental limita-
tion of this approach. Even with clear improvement over the
base models and signs of generalization, the agent’s abso-
lute performance on a narrow, well-defined task falls short
of what simpler, specialized alternatives can achieve. This
suggests that the value of LLM-based agents may not be
their ability to outperform specialized agents, but rather their
flexibility to tackle the wide range of scenarios that an agent
might encounter in the real-world scenarios.

Conclusions

In this work, we investigated whether the decision-making
capabilities of small LLMs could be improved for sequential
decision-making tasks without relying on extensive reason-
ing chains. To this end, we introduced the Multi-Step Group-
Relative Policy Optimization (MS-GRPO) post-training al-
gorithm. Our experiments serve as a demonstration that this
approach is effective: a post-trained 3B parameter model
outperformed a 72B parameter baseline, showing that tar-
geted training can be a more effective route to improving
capability than scaling model size. Additionally, we tested
a selective episode sampling strategy and found indications
that it improves task performance without impacting train-
ing time efficiency. This work establishes a methodology for
creating more efficient and practical LLM-based decision-
making agents.

Our findings point to two key directions for future work.
First, our use of a simple Monte Carlo credit assignment
mechanism likely contributes to the observed training in-
consistency. Exploring more nuanced approaches could help
provide a more precise learning signal to improve perfor-
mance. Second, while our agent demonstrated promising
zero-shot generalization to a novel environment’s dynamics,
the simultaneously failure on the semantically simple poi-
soned apple scenario highlights a critical challenge: ensur-
ing that post-training does not override the model’s core se-
mantic reasoning capabilities. Addressing these challenges
will be crucial for enabling practical LLM-agents that are
not only efficient, but also robust and adaptable.
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Technical Appendix

Agents

LAP Agents

We used Qwen2.5-3B-Instruct as the base model for post-training in all experiments, using Low-Rank
Adaptation (LoRA) targeting parameter updates on all linear layers (Hu et al., 2021). LAP definitions
for this and the comparative base LLMs are provided in Table 1. All agents have the same template 7~
and action parser .

Table 1: LAP definitions for the agents used in the experiments. The prompt template 7 and action
parser ¢ are the same for all agents.

Agent LLM (Lp) Generation Configuration (&)

n Owen2.5-3B-Instruct Training: Temp=1.5, top-k=3, tokens=200
MS-GRPO + MS-GRPO LoRA updates Evaluation: Greedy (Temp=0), tokens=200

U TS Owen2.5-3B-Instruct Greedy (Temp=0), tokens=200

113 Owen2.5-32B-Instruct Greedy (Temp=0), tokens=200

I1758-200 Owen2.5-72B-Instruct Greedy (Temp=0), tokens=200

II728.4006  QOwen2.5-72B-Instruct Greedy (Temp=0), tokens=4096

Action Parser ¢y An action string is extracted from the LLM’s response at each timestep. The action
parsing function extracts the text inside the first set of < action > - - - < /action > tags. Each environment
implementation must define a mapping from text string to action index. The action index corresponding
to the extracted string is used as the agent’s action in the next timestep. If there is not a valid pair of
action tags, or the extracted string is not in the mapping, no action is taken.

Template 7~ The LAP agent template, presented below, is shared for all LAP agents used in this
study. There are two slots into which the observation is inserted. The static part of the observation,
containing environment specific rules, is inserted into {environment_prompt}. The dynamic part of
the observation, containing a combination of dynamic text describing the environment state and static
template explaining the representation of the state, is inserted into {game_state}.



LAP Agent Template 7~

<|im_start|>system

You’re a helpful assistant. You always respond by wrapping your thoughts in the
— correct XML tags. Max response length: 200 words (tokens).

<|im_end|>

<|im_start|>user

{environment_prompt}

[Game State]

{game_state}

<|im_end|>

<|im_start|>assistant

Respond using ONLY valid XML with <observe>...</observe>, <think>...</think>, <
< plan>...</plan>, and <action>...</action> tags. Stop responding after the
< </action> tag.

[Response Template]

<observe>{Describe the situation concisely}</observe>

<think>{Think about the situation - what you should aim to do and what you
< should avoid doing.}</think>

<plan>{Describe the immediate plan you will follow to achieve your goal and
< avoid bad outcomes. Be explicit about the actions you will take: name the
— actions.}</plan>

<action>{Up/Down/Left/Right || Up/Down/Left/Right...}</action>

<|im_end|>

<|im_start|>assistant

N J

DQN Agent

We trained a Deep Q-Network (Mnih et al., 2013) to act as a comparison in our experiments. We used a
convolutional neural network with architecture detailed in Table 2, using a Rectified Linear Unit (ReLU)
activation function after each convolutional and hidden fully-connected layer. We also performed a
parameter sweep to determine the training hyperparameters. The search space is as follows:

Learning Rate (o) over {107°,1074,1073}
Discount Factor (y) over {0.9,0.95,0.99}
e-greedy Decay Steps over {5 x 10°,2 x 10*,10°,5 x 10°, 10°}

The model presented for comparison in the Results, as determined by the greatest evaluation environment
reward, used @ = 1073, y = 0.9, €decay = 10°. The following hyperparameters were used for all DQN
training experiments: initial € = 1.0, final € = 0.1, replay buffer size of 10*, batch size of 128, and a
target network update frequency of 1,000 steps. All experiments used 6 million training episodes.

Experiment Configuration

Training Protocol

We trained two types of agent: one exclusively on the Snake-Standard environment and another on
FrozenLake-Standard. 'When training, we limited the number of episode steps to 10. We repeated
training 8 times with different random seeds. All agents were then evaluated on all four environment
variants.

Training was conducted for 700 steps of Algorithm 1 from the Methodology. We generated a group
of G = 100 episodes and sampled G’ = 25 from those, with an episode sampling temperature of



Table 2: Overview of the DQN architecture structure. Input shape is (B, C, H, W), where B is the batch
size, C is the number of input channels, H is the height of the environment grid and W is its width. A is
the number of discrete actions.

Layer Block Layer Type Parameters / Details Output Shape
Input - - (B,C,H,W)
Conv 1 Conv2d 32 filters, kernel 3x3, stride 1, pad 1 (B, 32,H, W)
onv ReLU - (B,32,H,W)
Conv 2 Conv2d 64 filters, kernel 3x3, stride 1, pad 1 (B, 64, H, W)
ReLU - (B,64,H,W)
Conv 3 Conv2d 64 filters, kernel 3x3, stride 1, pad 1 (B, 64, H, W)
RCLU - (B9 649 H’ W)
Flatten - - (B,64 x HXW)
FC 1 Linear 512 output units (B,512)
ReLU - (B,512)
FC 2 (Output) Linear A output units (B, A)

Tep = 0.1. In each episode, a maximum of 5 LAP actions (each of which can specify multiple sequential
environment actions) and 10 environment steps was allowed. The LLM sampling temperature was 1.5
and used top-k sampling with k = 3. Other hyperparameters for MS-GRPO were a learning rate of
1 x 1074, clipping values of €jow = €yp = 0.1 and a KL-penalty weight of 8 = 0.1.

FrozenLake-NotSlippery | Static Observation Text | {environment_prompt}

You are navigating the surface of a frozen lake. You must reach the goal.

Rules:

If you step on a hole, you will fall through and die.

Your available actions are: Up, Down, Left, Right. You can make between 1 and 3
< actions, separated by the action separator " || "

FrozenLake-NotSlippery | Dynamic Observation Text Example | { game_state }

The board size is 4x4. Normal (X, Y) coordinates are used ranging from.
LEFT decreases X, RIGHT increases X, UP increases Y, and DOWN decreases Y.
Coordinates range from (0, 0) at bottom left to (3, 3) at top right.
Player position: (0, 3)

Holes: (1, 3), (2, 3), (3, 3), (3, 2)

Goal: (3, ®)
The meaning of each symbol in the state is:
- P: Player
- 0: Hole
- G: Goal
- _: Empty space
State:
POOO
___0
___G
& J




Snake-Standard | Static Observation Text | {environment_prompt }

You are controlling a snake in a multi-player Snake game

Rules:

- You can move your head one space up, down, left, or right

- If you move onto an apple, you get 1 point and you gain a body segment

- You die if you move into a wall, another snake, or yourself

Your available actions are: Up, Down, Left, Right. You can make between 1 and 3
— actions, separated by the action separator " || "

N J

Snake-Standard | Dynamic Observation Text Example | {game_state}

The board size is 7x7. Normal (X, Y) coordinates are used to denote positions.
LEFT decreases X, RIGHT increases X, UP increases Y, and DOWN decreases Y.
Coordinates range from (0, 0) at bottom left to (6, 6) at top right.
Apples at: (6, 2), (5, 3), (2, 6), (4, 5), (2, 3) (worth 1 points each)
Enemy snakes positions:

* Snake ID 2 has head at position (0, 0) and body segments at []

Your snake head (ID 1) is positioned at (6, 5) and body segments at []

You are controlling the snake at (6, 5)

The meaning of each symbol in the state is:

- 1: Your snake head

- 2: Enemy snake head

- T: Snake body

- A: Apple
- _: Empty space
State:
__A_ __ _
____A_1
_ _A_ _A_
______ A
2 _ _ _ _ __
& J

Evaluation Protocol

To provide a comparison for the performance of the post-trained models, we used two larger models with-
out MS-GRPO post-training, Qwen2.5-32B-Instruct and Qwen2.5-72B-Instruct. For the 72B parameter
model, we evaluated once with a maximum number of generated tokens equal to that of the post-trained
models (200) and once with a much greater limit (4096), providing both a like-for-like comparison as
well as a measure of the model’s full capability. Environment variant specific settings are detailed in
the Experimental Setup section of the paper. The dynamic observation texts are identical to those in the
Training Protocol above. The static observation texts for Snake-PoisonApple and FrozenLake-Slippery
are detailed below. During evaluation, a longer episode of 20 LAP actions and environment steps was
allowed to better assess long term performance. We used greedy decoding (text generation sampling
temperature= ). For consistency, the evaluation configuration file seed is set to O for all experiments,
ensuring that we always use the same set of randomly generated initial conditions for evaluation.



Snake-PoisonApple | Static Observation Text | {environment_prompt}

You are controlling a snake in a multi-player Snake game

Rules:

- You can move your head one space up, down, left, or right

- If you move onto an apple, you *lose* 1 point. You must avoid the apples for
<— as long as possible.

- You die if you move into a wall, another snake, or yourself

Your available actions are: Up, Down, Left, Right. You can make between 1 and 3
< actions, separated by the action separator " || "

FrozenLake-Slippery | Static Observation Text | {environment_prompt }

You are navigating the surface of a frozen lake. You must reach the goal. If you
— step on a hole, you will fall through and die. You may move in an
< unintended direction due to the slippery ice, including into a hole.

Your available actions are: Up, Down, Left, Right. You can make between 1 and 3
< actions, separated by the action separator " || "

N J

Absolute-Advantage-Weighted (AAW) Episode Sampling Ablation Study

To evaluate the effectiveness of our AAW sampling strategy, we conducted two sets of experiments.
First, we generated G = 100 episodes per training step and compared training on different subset sizes
(G’ =25, 50 or 100 episodes). Additionally, we varied the total number of generated episodes (G = 25,
50, 100) and kept the training subset fixed at G” = 25 episodes. All subsets were sampled using e, = 0.1.
All experiments used identical hardware, detailed in the Hardware section below. Other training settings
were identical to those used in Training Protocol.

Hyperparameter Selection

When analyzing the MS-GRPO algorithm, we performed parameter sweeps for LLM generation temper-
ature in the range 0.2 to 2.0 and top-k in the range k = 1 to k = 10 and without a limit. We determined the
selected values for our experiments based on the evaluation reward on Snake-Standard for agents trained
on Snake. We found the combination Temperature= 1.5 and k = 3 to give the best mean evaluation
reward over 3 runs. Similarly, we used the results from the episode sampling study to determine which
values of G and G’ to use, finding that G = 100 with G’ = 25 gave the best combination of training time
efficiency and evaluation reward on Snake-Standard.

Hardware

All training and evaluation was performed on one of two types of hardware:
* NVIDIA A100-SXM4-80GB graphics card with AMD EPYC 7413 24-Core rocessor
* NVIDIA H100 80GB HBM3 graphics card with Intel Xeon Platinum 8468 48 Core processor

Both setups use Red Hat Enterprise Linux 8.9 (Ootpa). MS-GRPO training used a single GPU of either
configuration. Evaluation of I13;p used 2 H100 GPUs, linked by NVLink, and I1;,5 and I1755.409¢ used
4 H100 GPUs, linked by 2x NVLink and combined with 1x NVSwitch.

All training and evaluation for the AAW sampling experiments used the H100 configuration.
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